Site Conceptual Model And Workplan

For:

Former Chevron Station 9-0329 340 Highland Avenue Piedmont, California

Submitted to:

Mr. Scott Seery Alameda County Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California

October 21, 2003

Cambria Environmental Technology, Inc.

5900 Hollis Street
Suite A
Emeryville, CA 94608
Tel (510) 420-0700
Fax (510) 420-9170

SITE CONCEPTUAL MODEL And WORKPLAN

For:

Former Chevron Station 9-0329 340 Highland Avenue Piedmont, California

Prepared by:

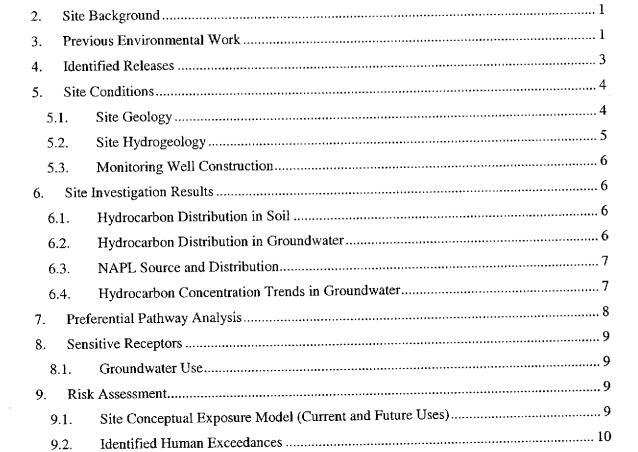
Cambria Environmental Technology, Inc.

5900 Hollis Street, Suite A Emeryville, California 94608

All work performed by Cambria Environmental Technology, Inc. for this project was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate and satisfy the scope of work prescribed by the client for this project. The data, findings, recommendations, specifications or professional opinions presented herein were prepared in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied.

Robert Fors for N. Sort MacLood

N. Scott MacLood, R.G.


Principal Geologist

I/9-0329 PIEDMONT/SITE CONCEPTUAL MODEL/SITE CONCEPTUAL MODEL 9-05291506 A

1.

Table of Contents

Objectives......1

Figures:

1 - Site Location Map

2 - Site Map

3a – Geologic Cross Section A-A' 3b – Geologic Cross Section B-B'

4 - Maximum TPHg Concentrations in Soil
5 - Maximum Benzene Concentrations in Soil
6 - TPHg Concentrations in Groundwater
7 - Benzene Concentrations in Groundwater
8 - MTBE Concentrations in Groundwater

9 – Proposed Boring Locations

Tables:

1 - Well Construction Details

(3)

Appendices: A – Site Maps

B - Boring Logs

C - Analytical Results for Soil

D – Analytical Results for Groundwater

E - Hydrocarbon Concentration Trend Analyses

F – Well Survey Data G – Delta RBCA

H - Standard Field Procedures

1. OBJECTIVES

As required in a September 18, 2003 letter from the Alameda County Environmental Health Services (ACEHS), Cambria Environmental Technology Inc. (Cambria) has prepared this Site Conceptual Model for Fuel Leak Case No. R0269, Piedmont Chevron #9-0329 (dba Texaco Station), 340 Highland Ave., Piedmont. The driver for this work and the abbreviated schedule imposed by the ACEHS is apparently the City of Piedmont. We understand that the parcel upon which the station is located was apparently subdivided by the owner and either sold or developed outside the standard process for the City of Piedmont. This subdivision is affecting the normal pace of this project.

Our objective is to summarize site conditions, identify data gaps based on the previous investigations, and recommend future work to fill the data gaps. A summary of previous work and our conclusions and recommendations are presented below.

2. SITE BACKGROUND

The site is a former Chevron service station located at the intersection of Highland Avenue and Highland Way in Piedmont, California (Figure 1). Chevron sold the property and station facilities to Hoffman Investment Company in 1990. The site is currently operated as Texaco-branded station.

The site is on a south facing hillside and is approximately 345 feet above mean sea level (MSL) with a relatively steep topographic gradient (Figure 1). Surrounding land use is commercial, residential and recreational. Piedmont Park is across Highland Avenue immediately down-gradient of the site. The nearest surface water is a small creek located within Piedmont Park.

3. PREVIOUS ENVIRONMENTAL WORK

1983 On-Site Well Installation: In 1983, Gettler-Ryan installed groundwater monitoring wells C-1 through C-4 (Figure 2). Well C-2 contained ¾-inch of non-aqueous-phase liquid (NAPL) upon installation. No soil samples were collected during well installation. There is no groundwater analytical data from the wells until 1989. During the first sampling event in 1989, elevated hydrocarbon concentrations were detected in wells C-2 and C-4, with the highest concentrations detected in well C-2 (34,000 ug/l total petroleum hydrocarbons as gasoline [TPHg] and 580 ug/l benzene). Well C-1 was apparently never sampled. NAPL has not been encountered in any of the monitoring wells since sampling began in 1989. Historical figures are presented in Appendix A.

1990 On-Site Borings: In November 1990, GeoStrategies drilled soil borings C-A through C-F on the site. Boring C-F was drilled between two USTs into and beneath the tank pit. The highest hydrocarbon concentrations detected were 1,600 mg/kg TPHg at 5.5 feet below grade (fbg) in C-A and 0.16 mg/kg benzene at 6.5 fbg in C-E.

1993 Off-Site Soil Borings: In 1993, Resna drilled shallow off-site borings and temporary wells B-1 through B-4. Groundwater samples could only be collected from borings B-2 and B-4. No hydrocarbons were detected in soil or groundwater. Resna also completed a survey of wells and potential hydrocarbon sources within 1 mile of the site. Forty-five wells were identified, but the locations were not plotted. Resna's well inventory table indicates that 11 were identified as irrigation wells, 17 as domestic, 9 as cathodic protection, 7 as monitoring wells and two of unidentified use. No municipal wells were identified in Resna's survey. Resna also identified Piedmont City Hall as a potential source of diesel subsurface impacts.

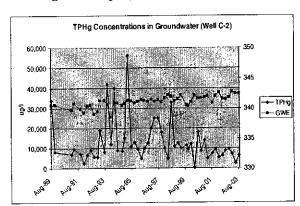
1995 Off-Site Well Installation: In May 1995, Canonie Environmental installed groundwater monitoring well MW-6. No petroleum hydrocarbons were detected in soil samples collected from the boring. The following day well MW-6 was flowing artesian and was subsequently destroyed. No water samples were collected.

1996 Off-Site Well Installation: In November 1996, Pacific Environmental Group (PEG) installed groundwater monitoring wells C-5 and C-6 across Highland Avenue. No hydrocarbons were detected in soil or groundwater.

1998 Chromatogram Review: In January 1998, Sierra Environmental Services worked with Superior Analytical Laboratory to review chromatograms for the presence of MTBE. No MTBE was detected in the in samples collected in 1989, 1991 or through the third quarter of 1992. The first indication of MTBE was 300 ug/l estimated in October 1992.

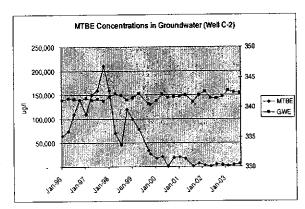
1998 Well Survey: In May 1998, PEG performed a water well and surface water survey of the site vicinity. PEG identified the City of Piedmont well #4, located 0.11 miles south of the site, and the creek in Piedmont Park as the nearest sensitive receptors. City of Piedmont well #4 appears to be used for irrigation at Piedmont Park and its completion depth and screened intervals are unknown.

2000 Utility Trench Investigation: In March 2000, Cambria hand-augered borings U-1 through U-5 adjacent to utilities on and adjacent to the site to assess potential impacts from station operations. Because of drilling safety limitations, the borings were not augered within the utility backfill. The



only TPHg detection was 1,900 mg/kg at 1 fbg in boring U-1, located adjacent to the sanitary sewer line at the southern end of the site. No benzene or MTBE were detected in soil. Groundwater from boring U-1 contained 1,000 ug/l TPHg and 39,000 ug/l MTBE. No benzene or fuel oxygenates other than MTBE were detected.

2002 Utility Trench Investigation: In March 2001, Delta Environmental attempted to hand-auger borings U-6 through U-10 within utility trench backfill. Borings U-6, U-8 and U-10 appear to have penetrated trench fill material and soil samples were collected from 5.5 to 6 fbg from these borings. No hydrocarbons were detected in soil. No water accumulated in the borings, therefore Delta concluded that the utility trenches did not appear to be conduits for preferential groundwater migration.


2002 Risk-Based Corrective Action (RBCA) Assessment: In July 2002, Delta submitted a Tier 2 RBCA. Delta concluded that benzene, toluene, ethylbenzene and xylenes (BTEX) concentrations were below site specific target levels (SSTLs) for all pathways for residential site use, with the exception of groundwater ingestion. Two well surveys have identified wells in the area as domestic use. However, a high number of these wells were installed during the drought years of 1976-1977 and

are likely used currently for irrigation, or not at all. Municipal water is supplied by East Bay Municipal Utility District (EBMUD) in Piedmont. Additionally, most of the wells identified as being of irrigation/domestic use appear to be located either upgradient or cross-gradient of the subject site. Because groundwater beneath the site is not a drinking water source, Delta concluded that the SSTL exceedance for the groundwater ingestion pathway did not warrant additional action.

4. IDENTIFIED RELEASES

There are two to three generations of releases at the site. The fact that ¾-inch of NAPL was detected in well C-2 upon installation in 1983 suggests a non-oxygenated fuel release prior to 1983. Increasing TPHg and benzene concentration trends from below saturation concentrations in well C-2 that peaked between 1993

and 1995 indicates a likely second gasoline release (see adjacent graph). The third release is evidenced by increasing MTBE concentrations in C-2 that peaked in 1997 (see adjacent graph).

We did not locate copies of any filed Unauthorized Release Reports. The only evidence of releases is based on hydrocarbon detections in soil and groundwater.

5. SITE CONDITIONS

5.1. Site Geology

The site sits or

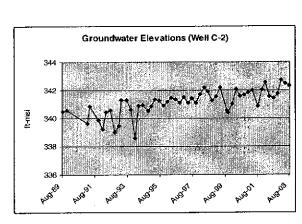
The site sits on a hillside that is underlain at shallow depths by siltstone and sandstone bedrock. Native sediments encountered during drilling were silts and sands that appear to be weathered siltstone and sandstone. Cross-sections parallel and perpendicular to the groundwater flow direction are presented in Figure 3. Based on these cross-sections, the bedrock/sediment interface parallels surface topography and results in a thin veneer of weathered material overlying more competent bedrock. Boring logs are presented in Appendix B.

The transition between weathered material and competent bedrock is somewhat gradational and subject to interpretation by the six different consultants that have logged borings at the site. The ACEHS was concerned that the log for well MW-6 may indicate deeper bedrock in this area compared to other areas. However, the materials logged deeper than about 5 fbg in well MW-6 are likely the same siltstones and sandstones that were logged elsewhere at the site for the following reasons:

- Blow counts increase to 50 or more per 6 inches below about 5 fbg in well MW-6, and these blow counts were similar to those logged for other borings where sandstone and/or siltstone was logged.
- Sediments in well MW-6 below about 5 fbg were logged as very dense, which would be consistent with siltstone and sandstone.
- The log for materials below about 5 fbg in well MW-6 is homogenous silty sand to the total depth explored, which would be typical for a bedrock, but atypical for a fluvial depositional environment.
- The materials below about 5 fbg in well MW-6 were logged as dry to damp until 13 fbg, yet this well was flowing artesian on the following day, indicating that the materials from 5 to 13 fbg were likely competent, low fracture index siltstone/sandstone.

for 4

Well MW-6 was the only well installed by Canonie and we suspect that the logging between this well and the other wells installed at the site is not consistent, and that the material logged below about 5 fbg is the same material classified as bedrock by the five other consulting firms that logged borings at the site.


Wells C-1 through C-4 were logged as having sandstone starting at 6 to 17 fbg. However, these logs were compiled by a construction firm and are not considered to be as reliable as logging by later geologists.

Because the site sits on a relatively steep hillside, sedimentary processes are primarily erosional and not depositional. It would be difficult for sediment to accumulate in this topographic setting. This is consistent with the observation that the creek immediately south of the site is eroding the hillside, not accumulating sediments in the creek bottom. Therefore, we would also not expect to encounter buried stream channels that could be preferential groundwater flow pathways.

how about

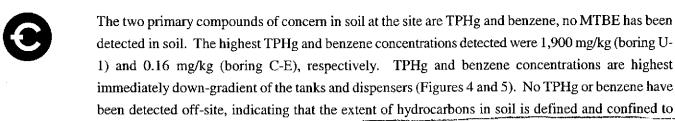
5.2. Site Hydrogeology

Depth to groundwater data has been collected since August 1989. Groundwater is generally less than about 5 fbg, and commonly less than 1-2 fbg, with actual depth dependent upon well location. As indicated on the adjacent figure, groundwater in source area well C-2 has increased by about 2 ft over the last 15 years. Similar trends are observed in the other wells.

As previously indicated, well MW-6 was flowing

artesian shortly after installation. The materials were logged as dry to damp to 13 fbg. Therefore, we suspect that this well encountered fractures at depth that produced the groundwater resulting in flowing artesian conditions. This also indicates a strong upward hydraulic gradient in the site vicinity.

The horizontal hydraulic gradient at the site is consistently steep, at about 0.05. This is roughly consistent with surface topography as well as the bedrock topography, and may indicate that groundwater is flowing along the bedrock – weathered bedrock interface.


l de

5.3. Monitoring Well Construction

To date, 7 groundwater monitoring wells have been installed. Well MW-6 was abandoned shortly after installation. The status of well C-1 is unknown and there are no records of groundwater sampling or abandonment. Well construction details are presented in Table 1.

6. SITE INVESTIGATION RESULTS

6.1. Hydrocarbon Distribution in Soil

6.2. Hydrocarbon Distribution in Groundwater

areas onsite. Soil analytical data is presented in Appendix C.

The distribution of hydrocarbons in groundwater is generally coincident with the distribution in soil with the highest concentrations of TPHg, benzene and MTBE detected down-gradient of the tanks and dispensers (Figures 6, 7 and 8). Although no MTBE was detected in soil, 39,000 ug/l MTBE was detected in a grab sample from native material in boring U-1 and MTBE is detected consistently in well C-2. Groundwater analytical data is presented in Appendix D.

No groundwater was detected in boring U-6 completed within the utility trench backfill at the down-gradient corner of the site, therefore, the utility trench does not appear to be a preferential pathway affecting hydrocarbon distribution.

No hydrocarbons have ever been detected in well C-6, directly down-gradient of the hydrocarbon source area. Therefore, barring some as yet unidentified preferential flow pathway, the hydrocarbon plume does not extend to well C-6.

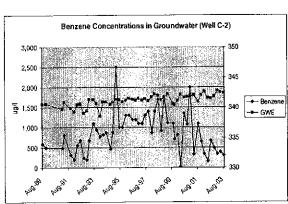
The fact that well MW-6 was flowing artesian shortly after installation indicates there is an upward hydraulic gradient at the site with higher pressures apparently in fractures in the bedrock. Therefore, it is unlikely that the hydrocarbon plume would have a downward vertical component. Instead, it is

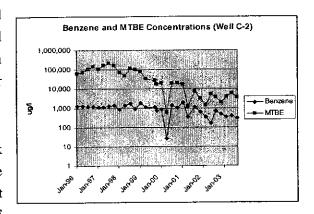
08

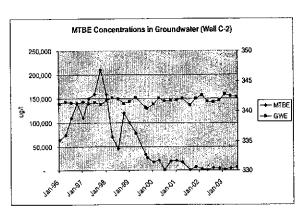
likely that hydrocarbons are migrating in groundwater along the weathered bedrock – bedrock interface.

6.3. NAPL Source and Distribution

Measurable NAPL was detected only once, ¾-inch in well C-2 upon installation in 1983. Despite the fact that groundwater elevations have been at similar levels since that time, no NAPL has accumulated in C-2, or any other well, since then. This fact, coupled with the fact that TPHg and benzene concentrations are no longer indicative of hydrocarbon saturation concentrations in well C-2, indicates there is no NAPL remaining.


3


6.4. Hydrocarbon Concentration Trends in Groundwater


The only well in which hydrocarbons are consistently detected is well C-2. As indicated in the previous and adjacent graphs, TPHg and benzene concentrations seemed to increase until between 1993 and 1995, after which time concentrations began decreasing. MTBE concentrations exhibit a similar increasing then decreasing trend, but the concentrations do not peak until about 1997. A 1998 review of seven available historical chromatograms suggest that MTBE was first detected in October 1992, two years after Chevron ceased their operations at the site.

The fact that benzene and MTBE concentrations track well together over time (bottom graph) indicates that the MTBE may be sourced from a liquid release, and not vapor. Typically if MTBE is sourced from vapor, MTBE concentrations will not track parallel to benzene concentrations.

To determine concentration trends and compound halflives in well C-2, we plotted concentrations over time starting from the point that hydrocarbon concentrations

generally peaked in wells. We then applied a first order exponential decay trend line to the data set and determined the equation for the trend line $(y = b e^{ax})$, where y = concentration, x = time, and a and b are specific constants). The equation function in Excel is then used to determine the constants a and b. Solving the equation for x ($x = \ln(y/b)/a$) lets us determine concentrations at specific times. We also determined compound half-lives using the equation: half-life = $-\ln(2)/a$ (where a is the constant determined above). Concentration trend analyses are included in Appendix E and summarized in Table A.

Table A - Concentration Trend Analysis											
Well	Analyte	Maximum Concentration Detected (ug/i)	Water Quality Objective	Estimated Year to Reach WQO	Estimated Half-Life (years)	Estimated Concentration in 10 Years (ug/l)	Estimated Concentration in 20 Years (ug/l)				
C-2	TPHg	56,000	50 ug/l	Oct-34	4.7	1,076	250				
	Benzene	2,500	1 ug/l	Dec-35	3.8	58	9				
	MTBE	210,000	5 ug/l	Aug-09	0.9	<5	<5				

As indicated in Table A, MTBE concentrations are predicted to be below 5 ug/l in less than 10 years. While TPHg and benzene concentrations are not decreasing as rapidly as MTBE, they are decreasing none the less and will eventually reach water quality objectives.

The difference in attenuation rates for MTBE and TPHg/benzene may be due to a lower MTBE release mass and higher aqueous-phase dissolution rates compared to TPHg/benzene.

7. PREFERENTIAL PATHWAY ANALYSIS

Two potential preferential pathways were identified; the bedrock/sediment interface and underground utilities. The fact that Delta did not encounter groundwater in the three borings advanced beneath utilities in the site vicinity indicates that the utilities are not acting as preferential pathways.

The geologic cross-sections presented in Figure 3 indicate that there is no geologic pathway along which groundwater would preferentially flow. This is supported by the following facts: 1) Blow counts noted on boring logs below about 5 fbg in well MW-6 were similar to those noted for other

- not enough data to reach this conclusion!

borings where sandstone and/or siltstone was logged; 2) Sediments in well MW-6 below about 5 fbg were logged as very dense which would be consistent with siltstone and sandstone; 3) Sediments in MW-6 were noted as homogenous silty sand to the total depth explored, which would be typical for a bedrock, but atypical for a fluvial depositional environment; 4) The materials below about 5 fbg in well MW-6 were logged as dry to damp until 13 fbg, yet this well was flowing artesian on the following day, indicating that the materials from 5 to 13 fbg were likely competent, low fracture index siltstone/sandstone. Based on the data presented above, down-gradient well C-6 very likely monitors water quality in groundwater originating from the source areas at the station and is indicative of water quality at the tail end of the hydrocarbon plume.

3

8. SENSITIVE RECEPTORS

There is an unnamed creek that runs through Piedmont Park about 360 ft south of the station. The creek was flowing at an estimated 10 gallons per minute during a site visit on October 9, 2003. The creek originates from what appears to be a spring in Piedmont Park and flows south to southwestward.

Resna completed a survey of wells within 1 mile of the site. Forty-six wells were identified, but the locations were not plotted. PEG identified City well #4 0.11 miles south of the site. Well survey data is included in Appendix F.

8.1. Groundwater Use

The presence of numerous wells within 1 mile of the site suggests that shallow and/or deep groundwater may have been, and possibly still is, used in the site vicinity. Municipal water supply in the City of Piedmont is provided by EBMUD so it is likely that any groundwater use at the present time would be limited to irrigation.

9. RISK ASSESSMENT

9.1. Site Conceptual Exposure Model (Current and Future Uses)

Delta submitted a Tier 2 risk-based corrective action (RBCA) assessment for residential site use in July 2002. The assessment assumed an exposure model consisting of volatilization of hydrocarbons from soil and groundwater to indoor and outdoor air, groundwater ingestion, and dermal contact. The assessment assumed a residential setting and, therefore, a standard target risk of 10⁻⁶.

9.2. Identified Human Exceedances

The only compound that exceeded Tier 2 site specific target levels using a 10^{-6} risk target level was ingestion of groundwater. EBMUD provides water service to Piedmont. Because groundwater is not a drinking water source in the site vicinity, Delta concluded that the site was a candidate for case closure. Delta's RBCA is included in Appendix G.

10. REMEDIAL ACTIONS TAKEN

No engineered remediation has occurred at the site.

11. CONCLUSIONS AND RECOMMENDATIONS

Based on the site data, it appears that the hydrocarbon plume is small and confined to the area immediately down-gradient of the USTs and dispensers. There is no evidence of groundwater flow within the utility trenches, so the trench backfill is not a preferential hydrocarbon migration pathway. There is no evidence or reason to suspect that there are buried bedrock surface depressions that are acting as preferential pathways based on boring log data as well as the sedimentological setting. Finally, there is evidence of a strong upward hydraulic gradient observed in well MW-6. Therefore, the plume is defined and limited in extent horizontally by down-gradient well C-6, and vertically by the upward hydraulic gradient. Because of this, there is no apparent data gap with respect to site characterization.

conclusions and will require additional investigation. To that end, we recommend a transect of five temporary wells along Highland Avenue down-gradient of the site. We recommend drilling with 8-inch diameter augers and continuous coring the borings to 20 fbg for accurate lithologic logging. Based on the boring logs, we recommend installing three 1-ft long, 0.010" slotted screened wells nested in each boring with a hydrated bentonite seal between each well screen. The intervals screened will be based on lithology or, in the absence of lithologic change, at 5 ft intervals. After installation, the wells should be purged of at least 2-3 gallons each prior to sampling. Based on conversations with Karen Streich of Chevron, Mr. Scott Seery of the ACEHS indicated that temporary wells could be

located within Piedmont Park to minimize utility clearance obstacles and traffic control.

Based on the September 18, 2003 letter, we understand that the ACEHS is unlikely to accept these

()o.

- Geolimbe w/ depth-distrate Go sampling

- alwayee until netonal

Water samples from these temporary wells will be analyzed for TPHg, BTEX and fuel oxygenates including MTBE. Because no hydrocarbons have ever been encountered off site, we do not recommend any additional soil sampling.

We will also measure relative depths to water in the temporary wells to confirm the apparent flowing artesian conditions at the site. Proposed boring locations are shown on Figure 9. Standard field protocols are included in Appendix H.

The data collected will be used to calculate mass flux, if any, across the transect. Based upon this analysis, we will prepare a corrective action plan as required by the ACEHS. If no hydrocarbons are detected in any of the groundwater samples collected, we recommend closing the site as a low-risk groundwater case.

The previous well surveys were not well presented and need to be reviewed and resubmitted with better location controls on wells, as well as assessment into well construction and use. We recommend a thorough well survey including DWR records search and including analysis of screened depths with respect to the hydrocarbon plume.

The status of well C-1 is unknown. We recommend reviewing files and inspecting the site for evidence of its status. If the well is found, we recommend adding it to the sampling program. We also recommend determining the screen interval for wells C-1 through C-4 using a wire rubbed along the side of the well. This will help us assess whether the wells are screened appropriately to monitor possible NAPL accumulation. If the wells are not appropriately screened to monitor NAPL accumulation, we recommend a boring adjacent to well C-2 to screen soils for NAPL using a PID and field observations.

12. ADDITIONAL DISCUSSION

The ACEHS stated in its September 18, 2003 letter that MTBE was the primary compound of concern at this site. Because MTBE concentrations did not peak until 1997, well after ChevronTexaco had sold the property, it does not appear that ChevronTexaco could be responsible for the MTBE. We recommend that ChevronTexaco be assigned secondary responsible party status at this site. ChevronTexaco is willing to work with the current owner to get them into the UST Cleanup Fund for future work. However, it is not appropriate to force ChevronTexaco to take a leading role in future work at this site when that work is driven by MTBE that was released after their tenure at the site.

REFERENCES

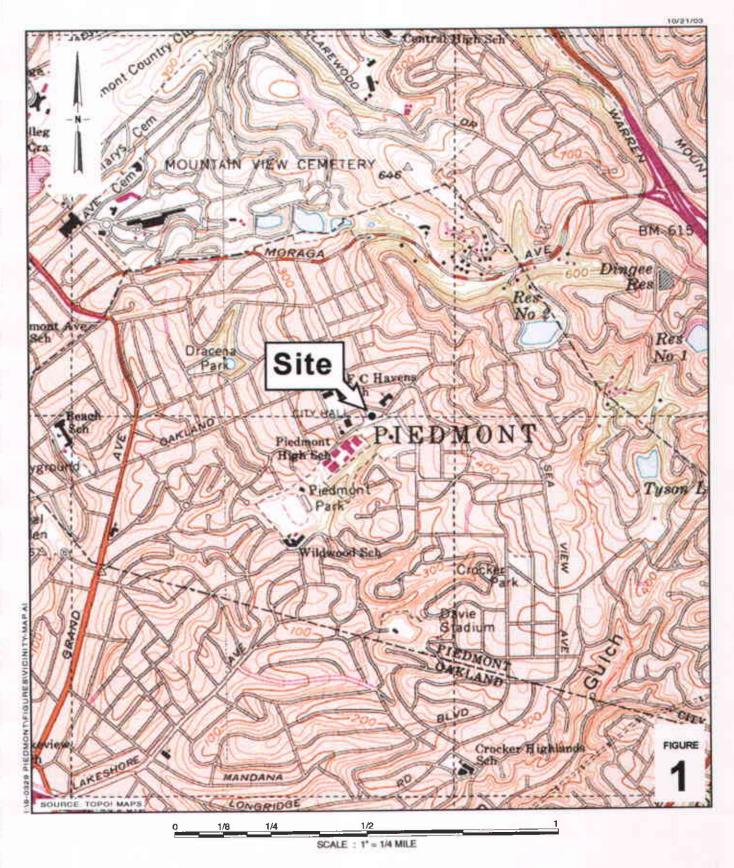
Alameda County Environmental Health Services, Letter to Responsible Parties regarding additional soil and groundwater assessment, September 18, 2003.

Cambria Environmental Technology, Subsurface Investigation Report, August 7, 2000

Canonie Environmental, Subsurface Environmental Investigation Report, 94-247-002-10, February 1995.

Delta Environmental Consultants, Soil Boring Report, DG90329C.4C01, May 3, 2001.

Delta Environmental Consultants, Risk-Based Corrective Action Evaluation, DG90329H.3C01, July 15, 2002.


GeoStrategies, Soil Boring Report, Report 7261-2, November 29, 1990.

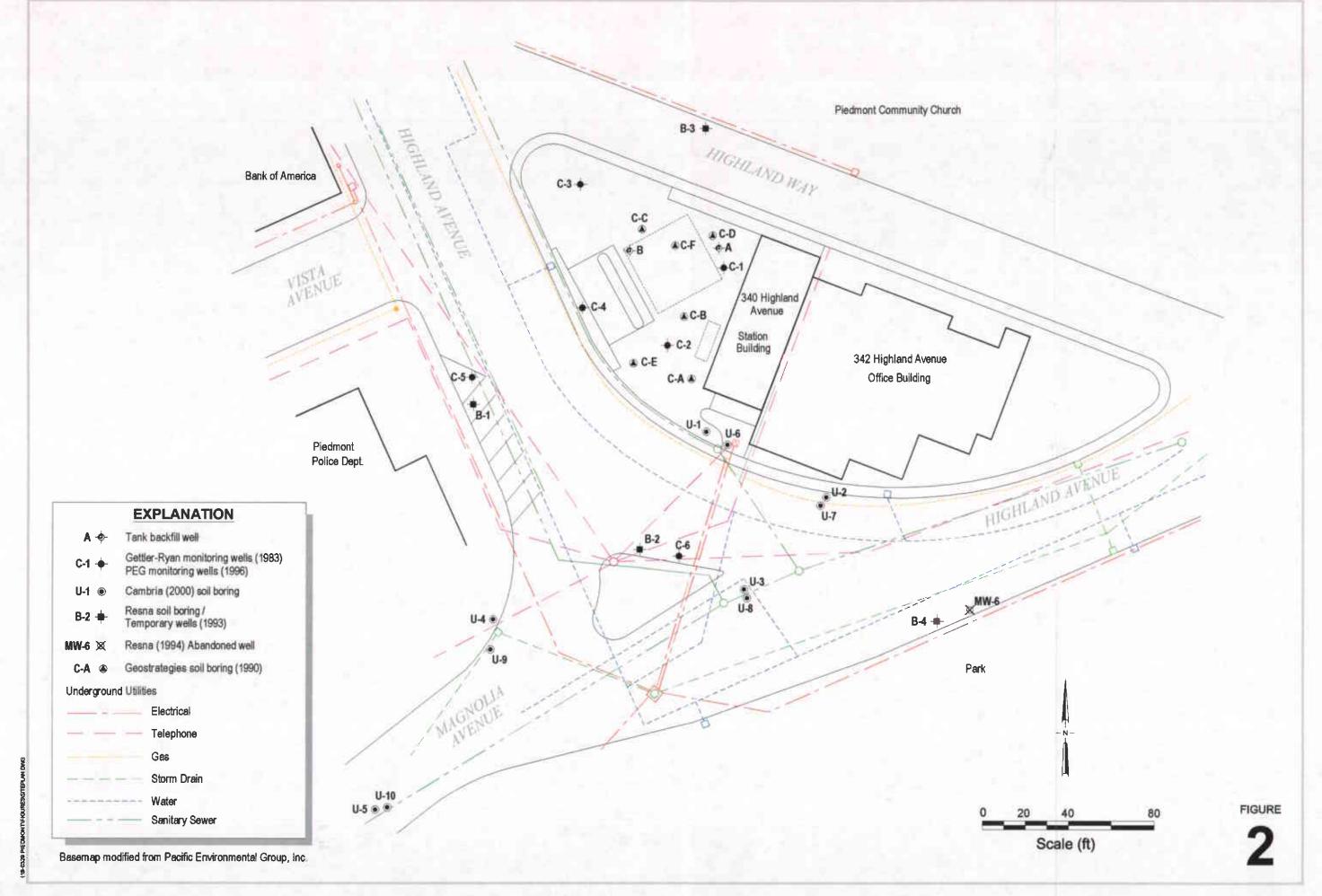
Gettler-Ryan, Inc, Well installation letter-report, January 26, 1983.

Pacific Environmental Group, Soil and Groundwater Investigation, 3201601A, January 14, 1997

Resna, Additional Subsurface Investigation, 170105.1, June 25, 1993.

Sierra Environmental Services, Historical MTBE Study, 1-294-06, January 22, 1998

Former Chevron Station 9-0329



Vicinity Map

340 Highland Avenue Piedmont, California

CAMBRIA

O

345

340

335

Elevation 055

325

320

315

FIGURE

101 Scale (ft)

Northeast

C-1

C-2

343.4

U-1

EXPLANATION = High Permeability Soils SP SW GP Well ID — Well Designation
Elev. — Top of Casing Elevation **Groundwater Monitoring Well** = Low to Moderate Permeability Soils
GM SM
ML SW
SC CL Well Screen Interval

C-6 338.6

= Bedrock

U-4

Sandstone Siltstone

Bottom of boring

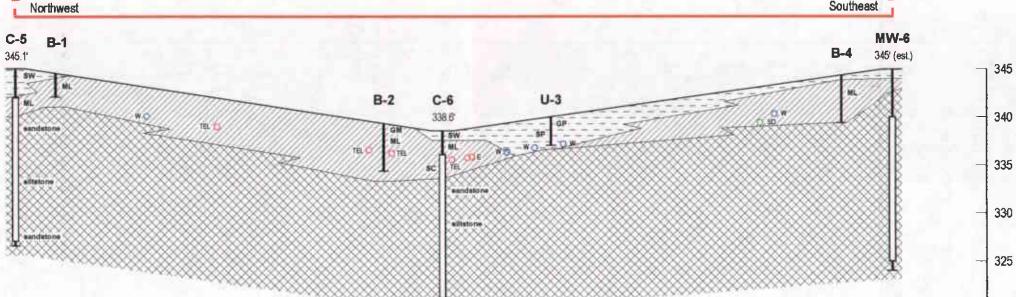
Southwest

U-5

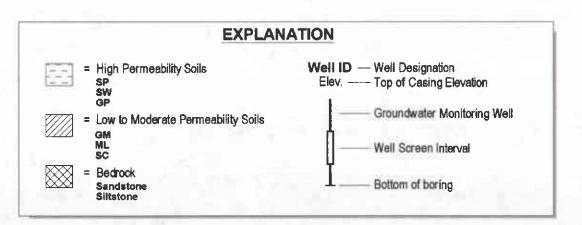
345

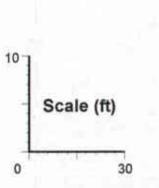
340

335


330

325


320


315 L

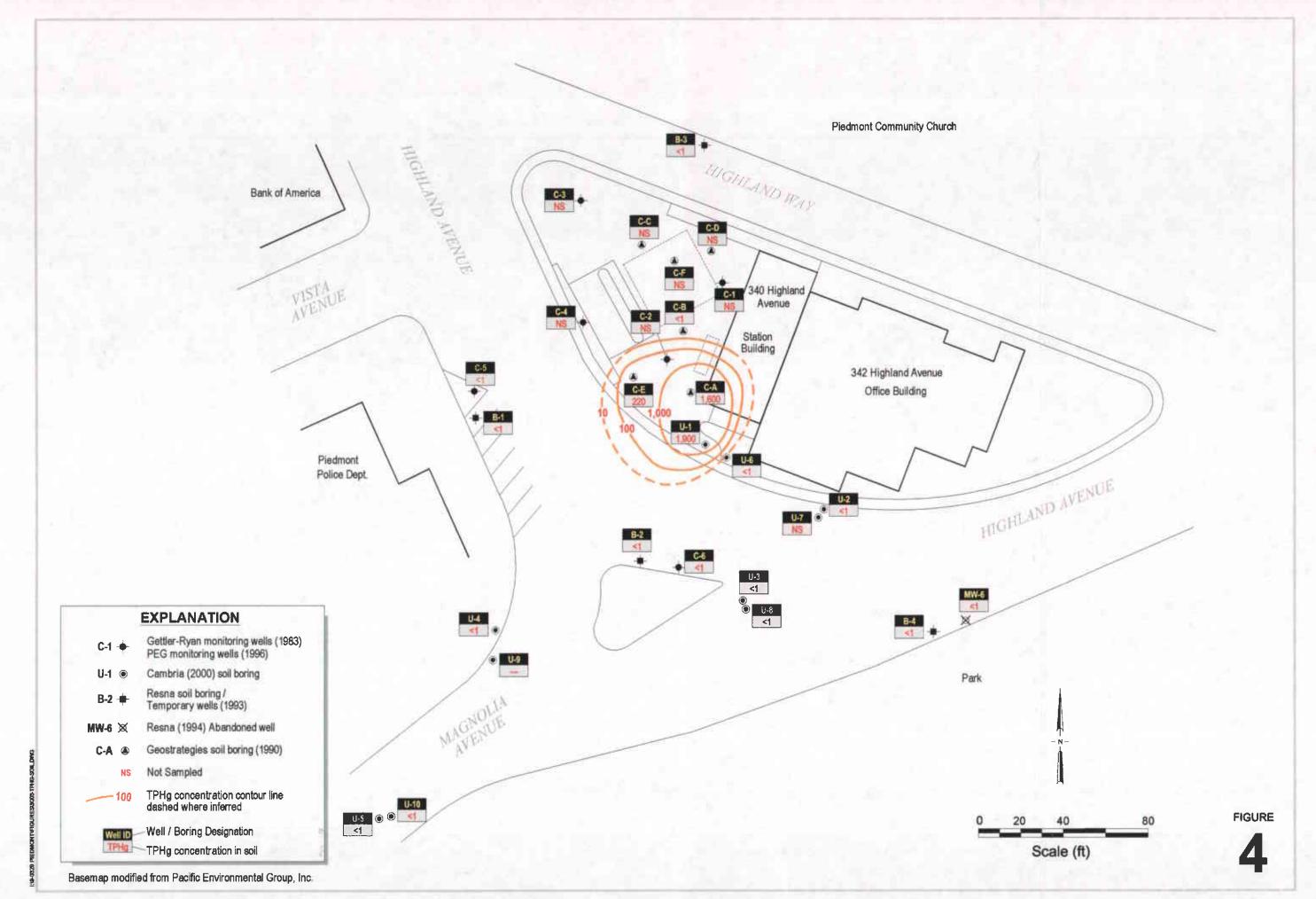
Southeast MW-6

الــ ₃₂₅

FIGURE

345

340


335

330

325

320L

August 18, 2003

Groundwater

TPHg Concentrations in

V Q

Former Chevron Station 9-0329 340 Highland Avenue Piedmont, California

~ ¥ W 4 Q

in Groundwater

Benzene Concentrations

Former Chevron Station 9-0329
340 Highland Avenue
Piedmont, California

Basemap modified from Pacific Environmental Group, Inc.

in Groundwater

Concentrations

MTBE

Former Chevron Station 9-0329 340 Highland Avenue Piedmont, California

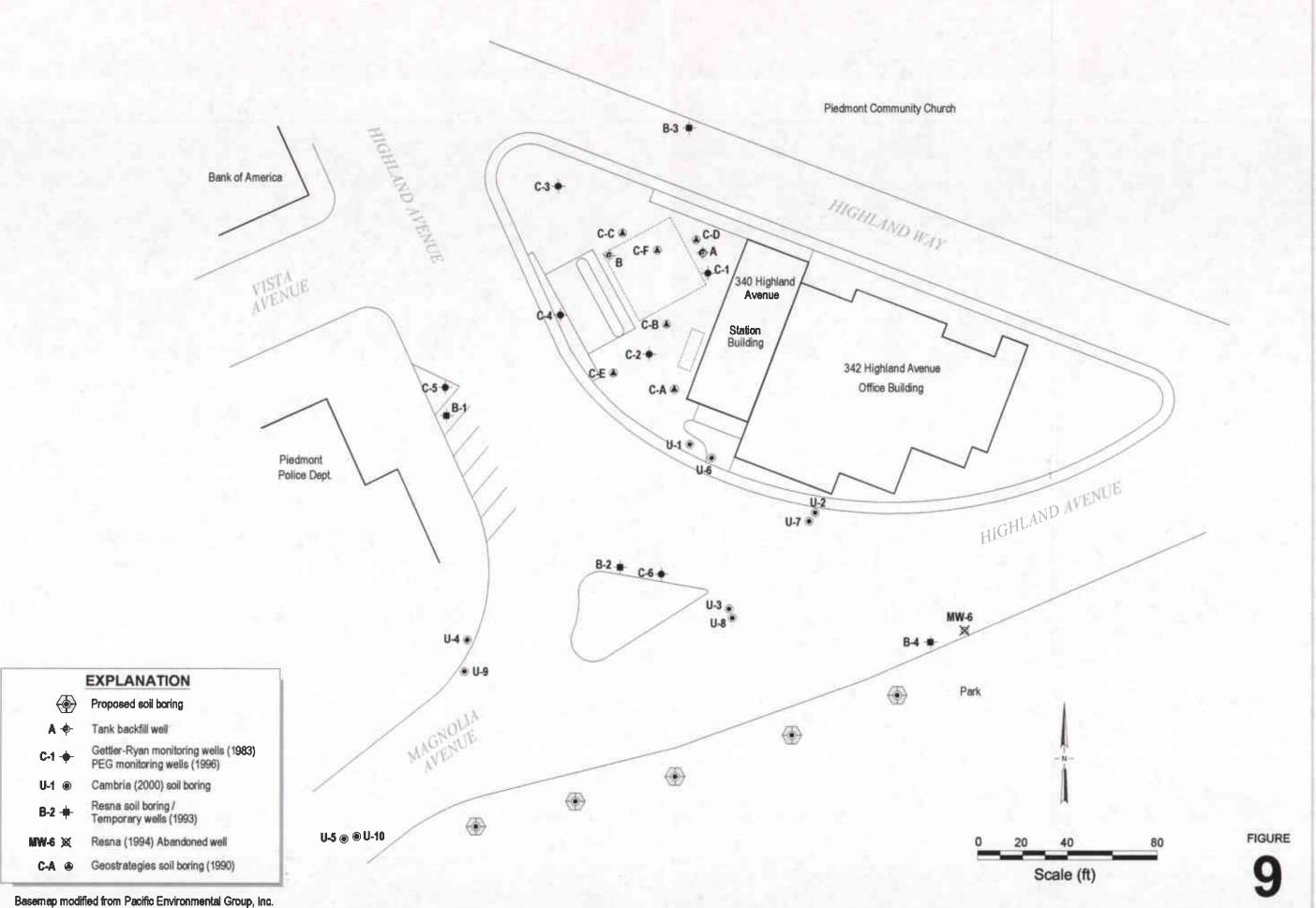
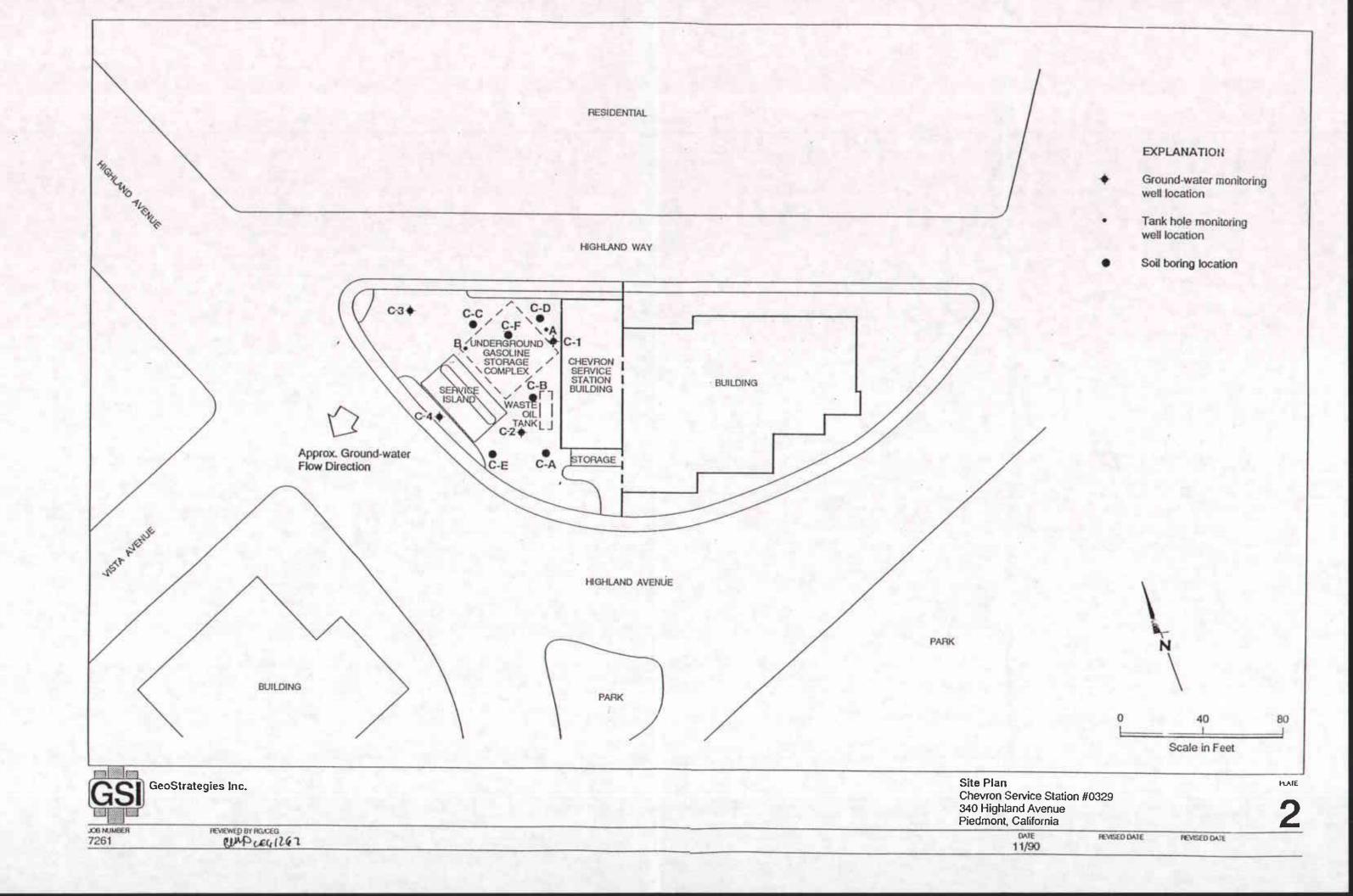
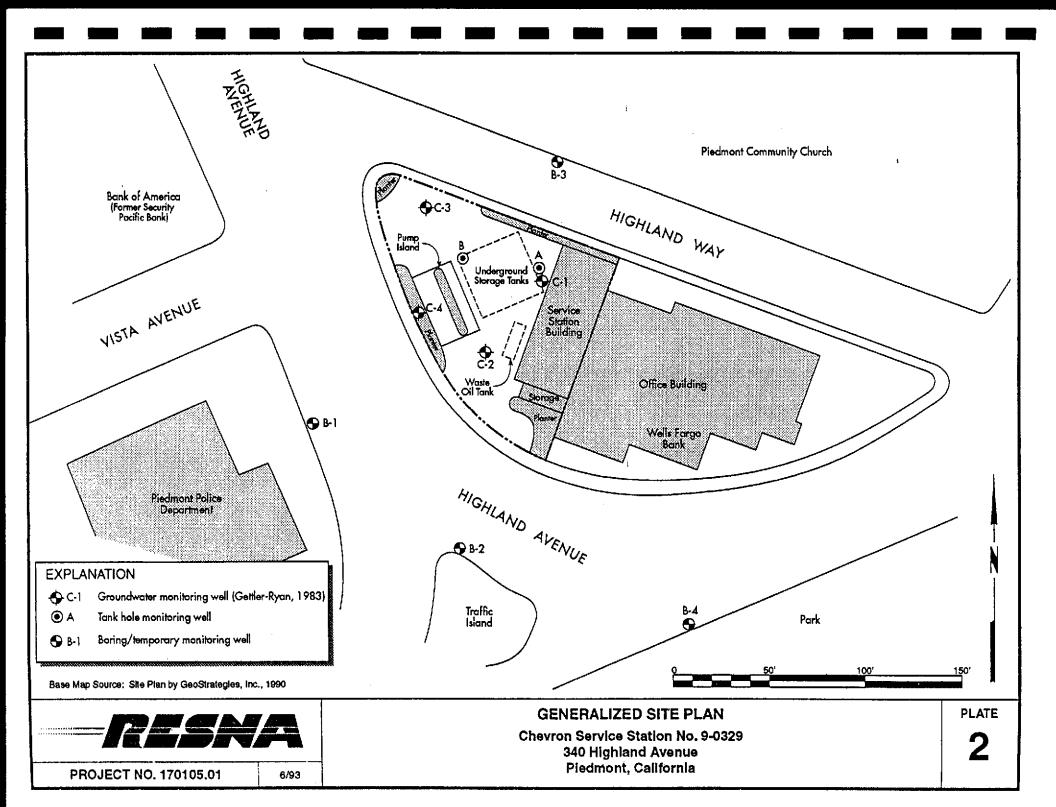
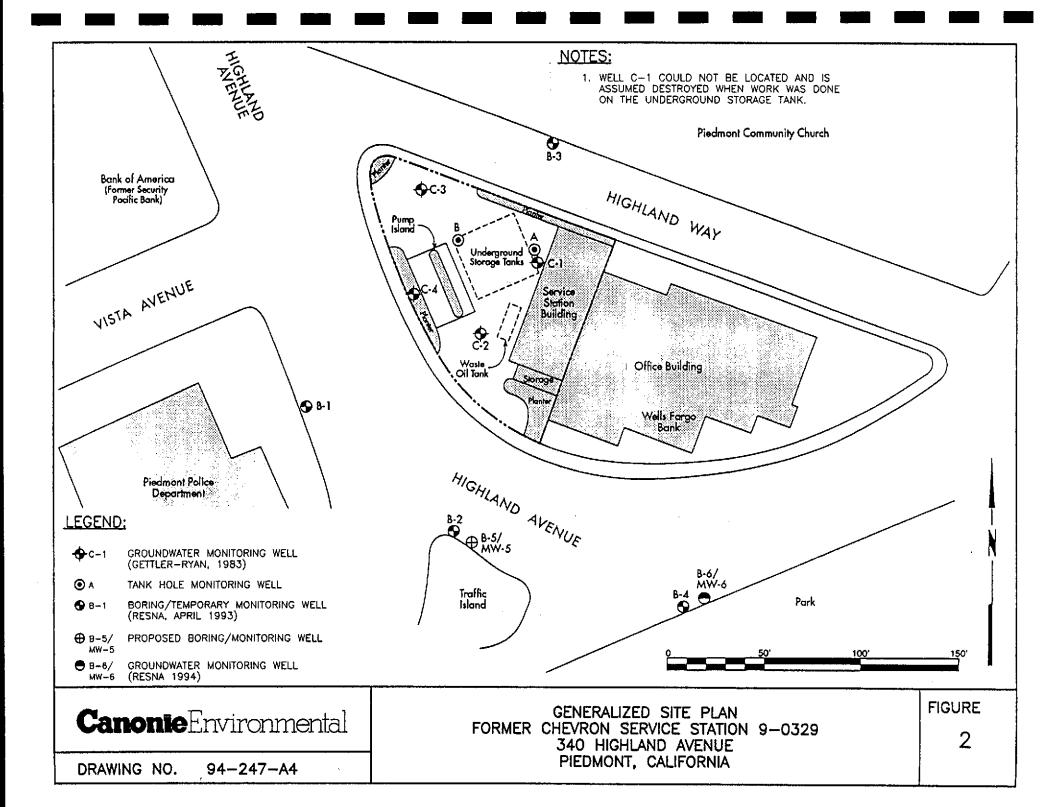
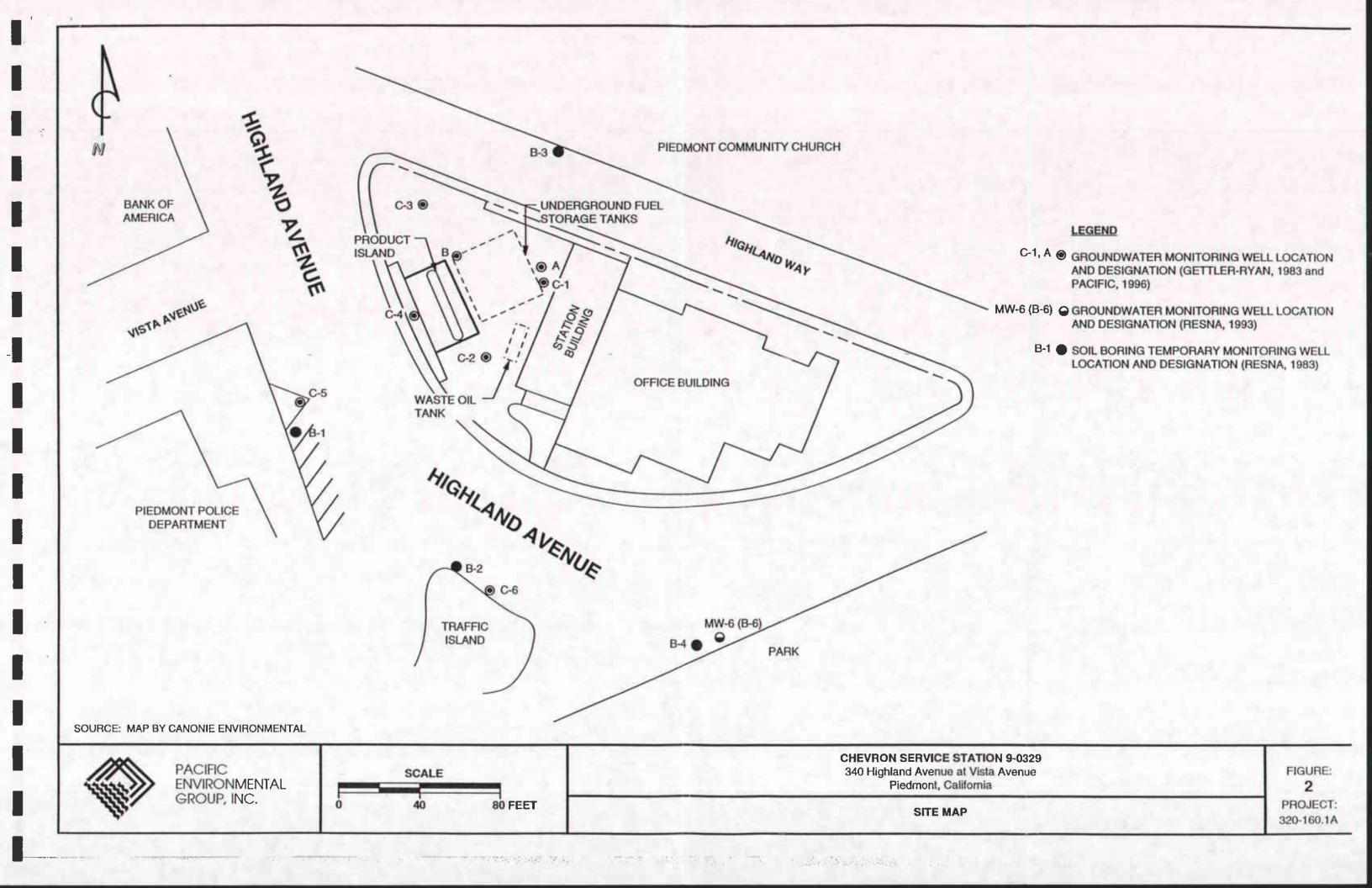


Table 1 Well Construction Data, Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, California

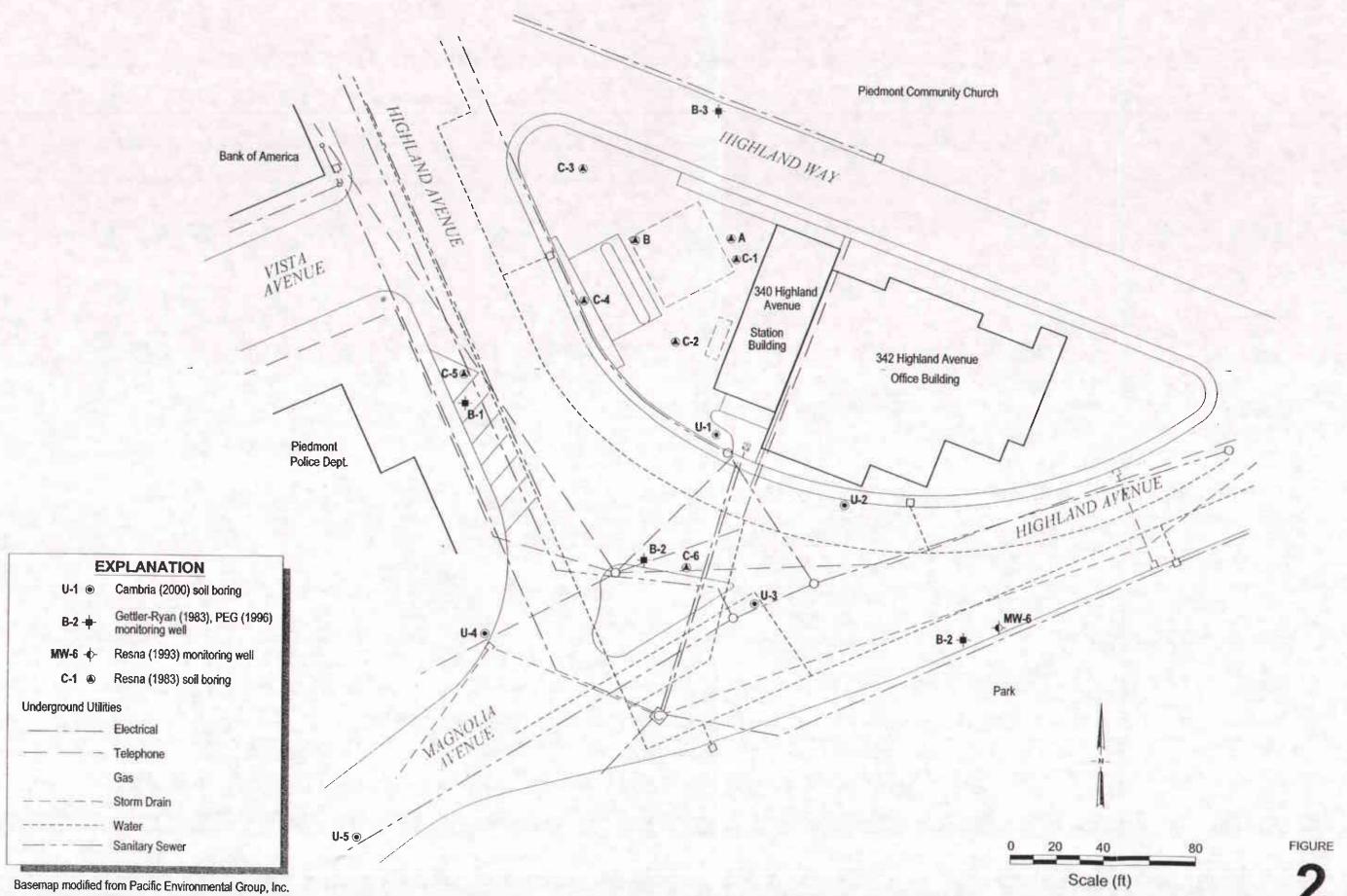

	Top of Casing	Total		Screen	
Well	Elevation (ft msi)	Depth (ft)	Diameter (In)	Interval (fbg)	Comments
C-1	Unknown	17.0	2	Unknown	This well was never sampled. It's status is unknown.
C-2	343.39	17.0	2	Unknown	Logs do not indicate screen interval
C-3	347.08	17.0	2	Unknown	Logs do not indicate screen interval
C-4	344.94	13.0	2	Unknown	Logs do not indicate screen interval
C-5	345.14	18.0	2	3-18	
C-6	338.61	17.5	2	2.5-17.5	
MW-6	Not Surveyed	20.0	2	5-20	Well abandoned

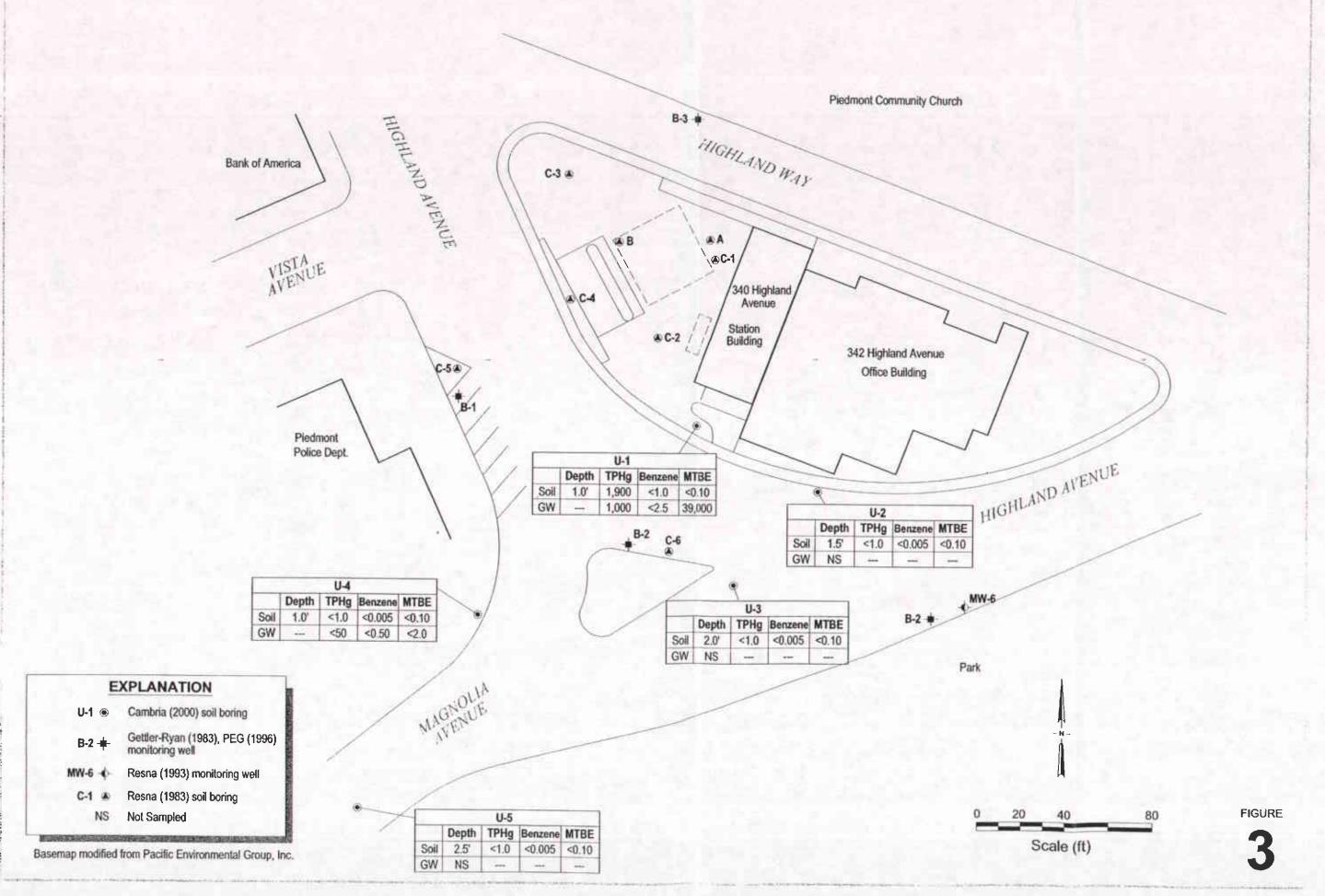

ft = feet


msl = mean sea level


fbg = ft below grade

in = inches





04/10/00

Hydrocarbon Concentrations in Soil and Groundwater

Former Chevron Station 9-0329
340 Highland Avenue
Piedmont, California

FOREMAN: Jeff Ryon -

WELL BORING LOG

Field loc	ation of	boring:				-		Project No.:	7261	Date:	11/02/90	Boring	No:
								Client:	Chevron Se	vice Station	No. 0329	7	
ļ		(5	See Plate	2)				Location:	340 Highlan			- C.	-A
1								City:	Piedmont, C	alifornia		Sheet	1
i								Logged by:	RCM	Driller:	Bayland	of	1
								Casing installa	ation data:			· · · · · · · · · · · · · · · · · · ·	
Drilling			Stem Au	ıger]					
Hole dia	meter:	8-Inche	S					Top of Box El	evation:		Datum:		· · · · · ·
	ু ক্র						્યું	Water Level	4.0'				
Old (mdd)	Blows/ft. or Pressure (psi)	Type of Sample	Sample	Depth (ft.)	Semple	Weti	Soll Group Symbol (USCS)	Time	10:20			 	
" <u>s</u>	BD 55	ĕ₹	8 5	8	8	≥ક	<u> </u>	Date	11/02/90				
	<u>a</u>						ં જે			Description			
	ļ		<u> </u>	1				PAVEM	ENT SECTIO	N - 1.3 feet			
	ļ		<u> </u>	1									
	ļ	 	ļ	1									
		ļ		2	\square			FILL - S	and with Silt	(SM) - very	dark gray (5`	Y 3/1),	
		1		↓ _			1:1.1.1.1		0% fine to m		; 25% silt; 5%	% clay;	
	ļ	ļ	ļ	3			1:1:1:1.	strong c	hemical odo	r			
			ļ	_									
			<u> </u>	4									
045	250	0011	0 1 5 5	_				FILL - S	and (SW) - d	ark greenish	gray (5GY	4/1), loo	se,
845	250	S&H	C-A-5.0	5				saturate	년; 95% fine t	o medium s	and; 5% silt;	brick	
	3		 		$\angle \Box$			fragmen	is; shell frag	ments; stro	ng chemical	odor.	
		 	<u> </u>	6	 								
		ļ			Ш		$\{:::::$						
	 	ļ		7				· · · · · · · · · · · · · · · · · · ·					
<u> </u>	<u> </u>			١,							·		
	-	ļ		8									
	-			9									
	1			1				Ingrapair	an arayal to t	100/ 1 110 = 11			
30	1	S&H	C-A-10.5	10	—			feet.	ng gravel to 1	10%; weak	nemical ooc	or at 10.	5
	1	Odri	5 /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1''	<u></u>			ieet.					
	<u> </u>		<u></u>	11			· : : : :			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
				1	$\vdash \dashv$								
				12	H								
				1 -				Hard dril	ling at 11.5 fe	et .			
				13				, lara an	ing at 17.5 to		78.0		
													
		;	-	14				Switch to	GSA Rock	Color Chart	at 14.5 feet	_	—
212	50/2"	S&H		. ;					3 2		- I IIV IVVb		
				15	\Box			SANDST	ONE (SS) -	dark gravish	orange (10)	(R 7/4)	
									edium hardn				
				16					edium sand;				
									; no chemica				
				17			}						$\overline{}$
								Bottom o	f sample at 1	4.2 feet.		•	
				18					of boring at 1				
								11/02/90					 - :
				19			1 [
													i
Desir		L <u></u>		20			<u> </u>						
неталкя:	PID rea	iding for	sample :	at 14	1.2 m	ay be	due to slo	ugh in auger	S.		·		

GSI

GeoStrategies Inc.

Log of Boring

BORING NO.

C-A

JOB NUMBER 7261

REVIEWED BY ROACEG
OWN OF CHILD

DATE 11/90

REVISED DATE

REVISED DATE

Field loca	ation of b	oring;						Project No.:		Date:	11/02/90	Boring No
1		4.0		_,				Client:	Chevron Se		No. 0329	C-B
		(5	See Plate	2)				Location:	340 Highlan			L
								City:	Piedmont, C		- <u>-</u> -	Sheet 1
								Logged by:	RCM	Driller.	Bayland	of 1
Drilling n	anthad:	Uallaw	Otom A.				 	Casing instal	lation data:			
Hole diar		8-Inches	Stem Au	ger				74 D F	1		15.	
- Tiole ciai		6-inches	5		rr		1 _	Top of Box E	ievation:		Datum:	
	ري (08)	7.2		2			98€	Water Level	ļ		ļ	ļ
DE Good	8 o 8	Type of Sample	Sample	Depth (ft.)	Sample	Veta	85	Time	 			
	Blows/ft. or Pressure (psi)	⊢∞	ωž	å	os		Soil Group Symbol (USCS)	Date	<u> </u>		1	<u> </u>
 			 		-		S	DAVEN	ENT SECTIO	Description		
 		 		1				FAVEN	ILINI SLOTIC	/N - 1.5 leet.	V	
<u> </u>			 	'	\vdash			<u> </u>	.			
			<u> </u>	2	H		1:11					
			 	_			[[:[:]:]:	SILTYS	SAND (SM) -	olive gray (5	V 4/2), damp	· 709/ fina
			 -	3	H		11.11.	sand: 2	5% silt; 5% cl	lav: weak ch	emical odor	, 70% line
				-	$\vdash \vdash \vdash$			odija, E	370 OHC, 070 O	idy, would on	Cilica ocor.	
	-			4	$\vdash \vdash$					-		···-
	400		 				[]:[]:					
165	400	S&H	C-B-5.5	5				Switch 1	to GSA Rock	Color Chart		
	11								TONE (SS) -			(R 7/4).
				6-				damp, n	nedium hardr	ness, modera	ately weathe	red: 95%
									nedium sand;			
				7				chemica				,
				8								
				9								
					Ш							
0	10/3"	0011		10								
0	10/3	S&H		44			· · · · · · · · · · · · · ·	No chei	nical odor.			
				11								
				12	$\vdash \vdash$			Dottom	of comple at	10.05.65-4		
-				12	{				of sample at 1 of boring at 1			
-				13	-			11/02/90		U.Z.5 IEEL	···	{
		-		,_]	11,02,50	<u> </u>			
				14			1					
											·	
				15							· · · · · · · · · · · · · · · · · · · 	 -
					\Box							
				16			l 1					
							İ					
				17								
							İ				.	
				18				· · ·				
				19				W-W				
				Ĺ								
Denvision 1				20								_ 1
Remarks: Hydraulic fluid leaked from hoses connecting driver							er hammer.					
												}

GSI

GeoStrategies Inc.

Log of Boring

S DRING NO.

C-E

JOB NUMBER 7261 PREVIEWED BY PROCEG COMPLICE 1202

DATE 11/90

REVISED DATE

REVISED DATE

Field loc	ation of i	boring:						Project No.:	7261	Date:	11/02/90	Boring	No:
								Client;	Chevron Se	rvice Station	n No. 0329	1 _	_
1		(5	See Plate	⊋ 2)				Location:	340 Highlan			C-	
								City:	Piedmont, C			Sheet	1
İ								Logged by:	RCM	Driller:	Bayland	of	1
D-10-		1.2 - 10 -	<u> </u>					Casing instal	lation data:				
Hole dia	method:		Stem At	ıger	·· ·								
Hole dia	T	8-Inche	S					Top of Box E	levation:	,	Datum:		
	Blows/ft. or Pressure (psi)			15			Soll Group Symbol (USCS)	Water Level		<u> </u>			
OF G	\$ 5 g	Type of Sample	Sample	Depth (PL)	Semple	Veil	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Time			<u> </u>		
_ 💆	₩ %	1≥38	8.5	å	8	>0	§ €	Date	<u>j</u> ,	1	<u>.l</u>		
	ļ <u> </u>	ļ	 	-	 		क			Description		 	
			 	┨.	\vdash			PAVEM	ENT SECTION	DN - 1.0 foot.			
ļ	 	-	<u> </u>	1	-			011 50 / 2					
ļ	 	 	 	۱,	-			SILIYE	SAND (SM) -	yellowish br	own (10YR 5	/6), dan	np;
	 		 	2	-			65% sa	nd; 30% siit;	5% clay; no	chemical od	or.	
<u> </u>	 	 	 	3			[[[,]]]						
	1	 	 	³			11:1:1:1			·····		-,	
ļ 		 	 	1								· · · · · · · · · · · · · · · · · · ·	
	 		 	4									
		ļ	 	_									
	300		 .	5									
0	300	S&H	-					201.00	OUT WORK				
	400		0000	6	M		1:1:11	COLOH	CHANGE to	brownish ye	ellow (10YR 6) /6);	
	400	push	C-C-6.5	-{	<u> </u>			increasi	ng clay to 10	%; roothole	s; no chemic	al odor.	
			 .	7	\vdash		-						
	 		 	_									
	 	 	 	8	$\vdash \vdash \vdash$		- - - - - - - - - - - - - - - - - - -						
			ļ	9	\vdash		1.1.1.1.1						
	 			9	 			l land on	4-30				
	 	<u> </u>		10			14		drilling at 9.0				
0	50+	S&H	C-C-10.5						o GSA Rock				
	304	3001	0-0-10.0	11				SANUS	TONE (SS) -	dark grayish	orange (10Y	H 7/4),	
			 	' '	├──┤			oamp, n	edium nardr	iess, modera	ately weather	red; 95°	%
			 	12	$\vdash \vdash \vdash$						ssive; black s	stained	
.				14	┝─┤			mactures	s; no chemic	ai 000ľ.			
			-	13									
0	10/2"	S&H		13				No obon	nical odor.	. 10-			
	10/5-			14			}	ivo cuen	nicai odor.			-	
			 	, 7			F			· · · · · · · · · · · · · · · · · · ·			
				15			[
				15	$\vdash \dashv$		-	Rottom	of cample of	12.2 foot			
		1		16	$\vdash \vdash$				of sample at 1				
				••			F	11/02/90		3.4 ieel.			
				17				1 1/02/90					
				•								-	
				18	\dashv		1		. = -=				
				, 0									
			•	19								· · · · · · · · · · · · · · · · · · ·	
				13			j -						
				20	\dashv		} }		·				
Remarks:	Ground	water w	as not er		ntere	ad .	<u> </u>					•	
	OI OUT O	water wa	ao HULEI	icou	inei 6	;u							
													
process processed for	2000						Log of B	orina					JG NO

JOB NUMBER 7261

GeoStrategies Inc.

REVIEWED BY AGICEG

DATE 11/90

REVISED DATE

REVISED

Field loc	ation of t	oonng:						Project No.:		Date:	11/02/90	Boring No:
		16	^aa Dista	. ^ \				Client:	Chevron Se		1 No. 0329	C-D
		(3	See Plate	2)				Location:	340 Highlan			4
								City: Logged by:	Piedmont, C		5	Sheet 1
								Casing instal		Driller:	Bayland	of 1
Drilling (method:	Hollow	Stem Au	nor			·····	Casing Histau	abori data.			
Hole dia		8-Inche		gei				Top of Box E	levation.		Datum:	
	1	- Indic	<u> </u>				1 6	Water Level	- Valkoti.		Datum.	η
- 2	Blows/ft. or Preceure (psi)	\$ 6	200	₹		=	Soil Group Symbol (USCS)	Time	 	 	 	
Pio (mdd)	lowed lower	Type of Sample	Sample	Depth (ft.)	Sample	Well	5 2	Date	 		 	
	- E		""	Δ	"		& £	 	<u> </u>	Description	<u> </u>	<u> </u>
					1		1,334,50	PAVEN	ENT SECTIO			
				1						7.0 7.0 7.0 0.0	7-1	
		<u> </u>		1	П							~
· · · · · · · · · · · · · · · · · · ·				2				SILTY	SAND (SM) -	vellowish bro	own (10YR 5	(4), stiff.
		I]					50% sand; 25			
				3			1.11.11.					
							11111					
 				4			11.11.1					
		ļ	ļ									
				5								
	500			_			$[\cdot]' \cdot [\cdot]$		creasing to 8	0%; roothol	es; no chem	ical odor at
0	500	S&H	0.000	6				6.5 feet	. –		·	
	500	push	C-D-6.5	1								
		 		7	├							
		 -	 	6								
		 		8			$[\cdot]$	·				
		 	 	9								
		 	 	,	\vdash			Switch t	o GSA Rock	Color Chart	at 0.0 foot	
				10				OWICH	U COA HUCK	COIDI CHAIL	at 9.0 leet.	
0	37	S&H						SANDS	TONE (SS) -	dark gravist	orange (10)	YR 7/4)
				11					nedium hardr			
			1					fine to n	nedium sand;	5% silt: ma	ssive: black	stained
				12			ļi		s; no chemic			
				Ì			i i		•			
				13]					
				[Bottom	of sample at	10.5 feet.		
		·		14				Bottom -	of boring at 1	0.5 feet.		
		· · ·						11/02/90)			
			 	15								
-	-			[w.n.		
				16				····				
		-	 	,					····			
				17			[
				18	-					-		
				*0			 		· - ···			
				19	\dashv		 					
	~~~									<del></del>	<del></del>	<del></del>
		· · · · · · · · · · · · · · · · · · ·		20	$\dashv$							
Remarks:	Ground	water w	as not en		ntere	ed .	·					
:		,										
mma 80000 p	7009											

GSI

GeoStrategies Inc.

Log of Boring

BORING NO

C-D

JOB NUMBER 7261

REVIEWED BY ROJCEG

DATE 11/90

REVISED DATE

REVISED

Field loc	cation of t	coring:						Project No.:	7261	Date:	11/02/90	Boring No:
								Client:	Chevron Se	rvice Station	٦	1
1		(5	See Plate	e 2)				Location:	340 Highlan	d∕Vista		C-E
1								City:	Piedmont, C	alifornia		Sheet 1
								Logged by:	RCM	Driller:	Bayland	of 1
								Casing instal	lation data:			
Drilling		Hollow		ıger								
Hole dia	ameter.	8-Inche	S					Top of Box E	levation:		Datum:	
	J (S			~		ł	Soil Group Symbol (USCS)	Water Level	5.0'			
7. € (m d d)	Blows/ft. or Pressure (psi)	Type of Sample	Sample	Depth (ft.)	Semple	Welf	- Ge	Time	14:00			
ي ت	98 ser	<i>⊱</i> 8	名名	8	8	۶۵	1500 E	Date	11/02/90		<u>_</u>	
	12.	<u> </u>	ļ	┼—			ें हे		***	Description		
				_ ا		4	4.970	PAVEN	ENT SECTIO	N - 1.5 feet		
	<del></del>	<del> </del>		_ 1		4						
	<u> </u>	<del> </del> -	<del> </del>	┨╻	<u> </u>	}		E0.1 5				<del></del>
	ļ			2		┦		FILL - S	Sand (SP) - da	ark gray (5Y	4/1), damp;	95% sand;
	1	<del> </del>	<del> </del>	3	-	-		5% SIN;	moderate ch	emical odol	<u>.</u>	
	<del> </del>		<del>                                     </del>	- J		1						
			<del></del>	4	-	-				<del></del>	<del></del>	
	<del>                                     </del>			┨ ▼		1						
	<del>                                     </del>			5								<del></del>
	500			┤		Ϋ́		Larges	ize pieces of	asnhalt she	ell fragmente	hrick
575	500	S&H	C-E-6.0	6		1		fragmer	nts, saturated	innen etro	on regineries	odor at 6.0
	4					1		feet.	no, odtarated	, 10030, 3410	ong chemica	OGO! AL U.U
	<u> </u>			7	<u> </u>			1000				——————————————————————————————————————
				1								
				8								
			7	1		1			*	<del></del>		
				9		]	1:4:1:1					
									<u> </u>			· ·
				10								
1-10	6			]				SILTYS	SAND (SM) - I	pale olive (5	Y 6/4), moist	, dense:
1540	16	S&H	C-E-11.0	11	翠			75% fin	e to medium s	sand; 25% s	silt; strong cl	nemical odor.
	24		<del></del>		$\mathbb{Z}_{\perp}$							
·····				12								
			<del></del>	47								
	18		<del></del>	13	107		14:14:13	00100	CHANCE			
138	28	CALL	C-E-14.0	4,					CHANGE to		rown (10YR	5/8) at 14.0
100		OKII	U-L,-14,(	14	A				chemical odd		· Ohe-tett	06
	<del> </del>			15				NOTE: 5	witch to GSA	HOCK GOIO	Chart at 14.	.u reet.
90.9	30/3"	S&H		1	b			SANDO	TONE (SS) -	dark aradah	orange (40)	VD 7/A\
	00,0			16	$\vdash$				nedium hardn			
					┝┈┤		<b> </b>		nedium nardii nedium sand;			
		-		17	$\vdash \vdash$		<b>]</b>		s; no chemica		JOINE, DIACK	Starried .
				1	$\vdash$		1	cotta Ci	-, 110 0110111100	VVVI.	<del></del>	
			_	18				Bottom	of sample at 1	15.25 feet		
				•					of boring at 1:			
				19				11/02/90			<del></del>	
				20								
Remarks:												
erger (000012)	7778						<del></del>		·			

JOB NUMBER 7261

GeoStrategies Inc.

Log of Boring

BORING NO.

REVIEWED BY RICCEG

(WWW) USA 1262

DATE 11/90

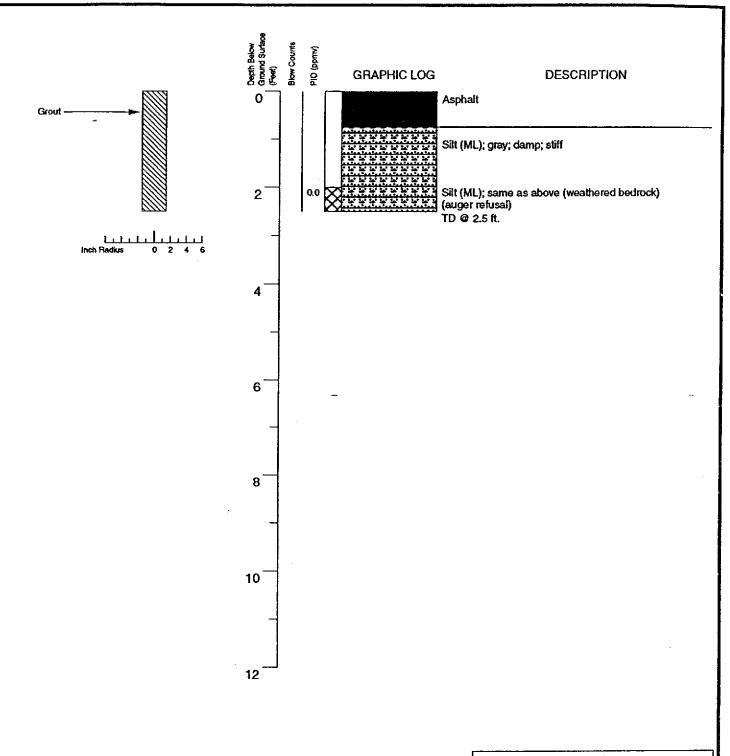
REVISED DATE

REVISED C

Field loc	ation of t	ooring:						Project No.:		Date:	11/02/90	Boring No:
		10	oo Diet-	, n)				Client:		ervice Station	No. 0323	- C-F
		(8	See Plate	2)				Location:	340 Highlar			
								City: Logged by:	Piedmont, (		Day de and	Sheet 1
								Casing instal	RCM	Driller:	Bayland	of †
Drilling	method:	Hollow (	Stom A.	001		<del></del>		casing instal	HUOD GRIA;			
Hole dia		Hollow 9		yer		·		Top of Box E	levetions		Datum:	
Hole of	,	8-inches	<u> </u>	T	1				devagon:	<del> </del>	Datum:	<u></u>
_	. ± . (§		_	⊋			SSS	Water Level				<u> </u>
PID (ppm)	8 2 8	Type of Sample	Sample	Depth (ft.)	Sample	Well Detait	5 2 5 5	Time	<del> </del>	<del>- </del>	ļ	<del></del>
9	Blows/ft. or Pressure (psi)	FØ	のぎ	8	Ø		Soil Group Symbol (USCS)	Date		1	<u> </u>	<u> </u>
							ဟ	DAVEN	ENT SECTION	Description		
		<del> </del>		1			18 A A A A A	FAVLIV	ILMI SLOTI	ON - 1.0 leet		
	<del> </del> -			┪゜			^ _ 0					•
				2	$\vdash$							<del></del>
	<del> </del>	<del> </del>		┪ ̄			0,00	}	<del></del>	<u> </u>	<del></del>	
		<b> </b>		3			0 0					
				1								
				4			000					
				]				FILL - F	ea Gravel - o	olive (5Y 4/4)	, damp, loos	e; 100%
				5			0000	gravel.		<u> </u>		
				]			000					
				6		<del>-</del>	0 0					
				1								
				7			, , ,			-, <u></u>		
		ļ					0 0 0					
				8	_		00					
	<u> </u>				<u> </u>							
				9			00		mical odor of	oserved from	cuttings ab	ove 13.5
,	ļ	-		10	$\vdash$		0 0	feet.				<del> </del>
				10	$\vdash$		000				·	
				11	$\vdash\vdash$		0 0					
				1	$\vdash \vdash \vdash$							
				12								
				1 -	H		00					
				13	一		0 0					
4.1	37	S&H		1			000	Concret	e pillar at 13	.5 feet.		
	13/2"			14			·A·A·A·					
								Bottom	of sample at	13.7 feet.	•	
				15				Bottom	of boring at	13,7 feet.		
								-				
				16								
				17								
				18	Щ							
				19								
					$\Box$				<del></del>			
Remarks:		L		20	<u> </u>		11					
nemarks:	•									-		
- Karanay												
	<b>333</b>						Log of E	loring				BORING N



GeoStrategies Inc.


JOB NUMBER 7261

REVIEWED BY ROUCEG

DATE 11/90

REVISED DATE

REVISED DATE





Recovered drill sample

est K

Sample sealed for chemical analysis

Sieve sample

Grab sample

Core sample

Estimated permeability
(hydraulic conductivity)
1K = primary 2K = secondary

NR No recovery

Water level during drilling

Z Water level in completed well

CONTACTS:

Solid where certain

Dotted when anomylma

- - Dorbad ukara masartaia

-- - Dashed where uncertain

////// Hachured where gradational

Logged by: Project Mgr; Dates Drilled: Erich Neupert Justin Power 4/28/93

Drilling Company: Drilling Method: RESNA 3" Hand Auger

Driller: Erich Neupert

Well Head Completion: none

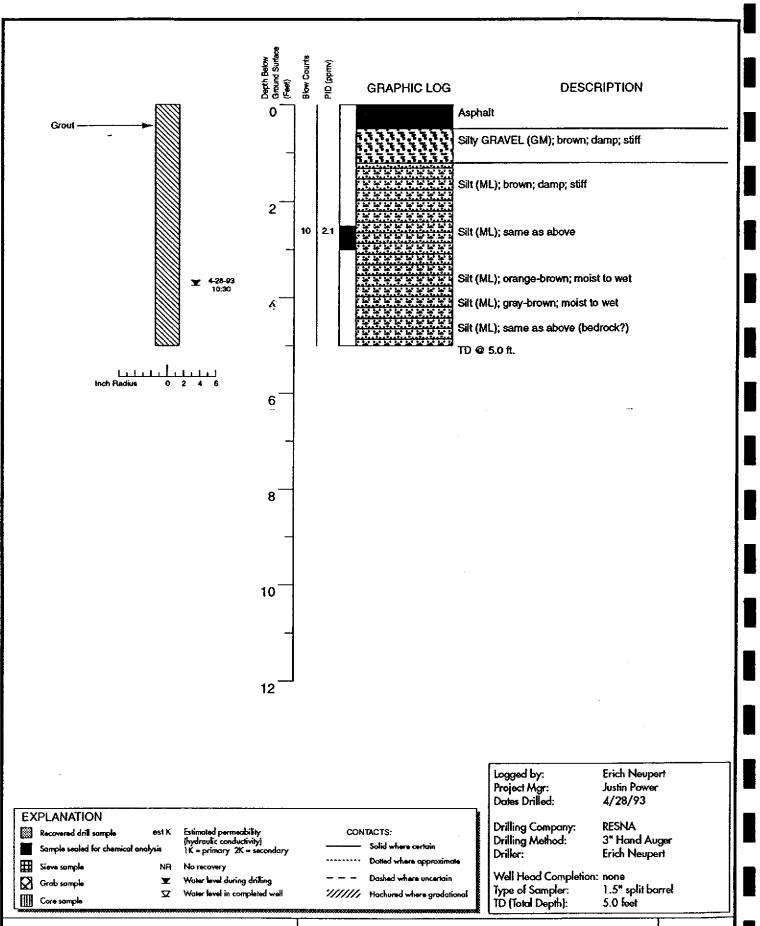
Type of Sampler: TD (Total Depth):

1.5" split barrel 2.5 feet

10 florai Depi

J 1661




PROJECT NO. 170105.01

5/93

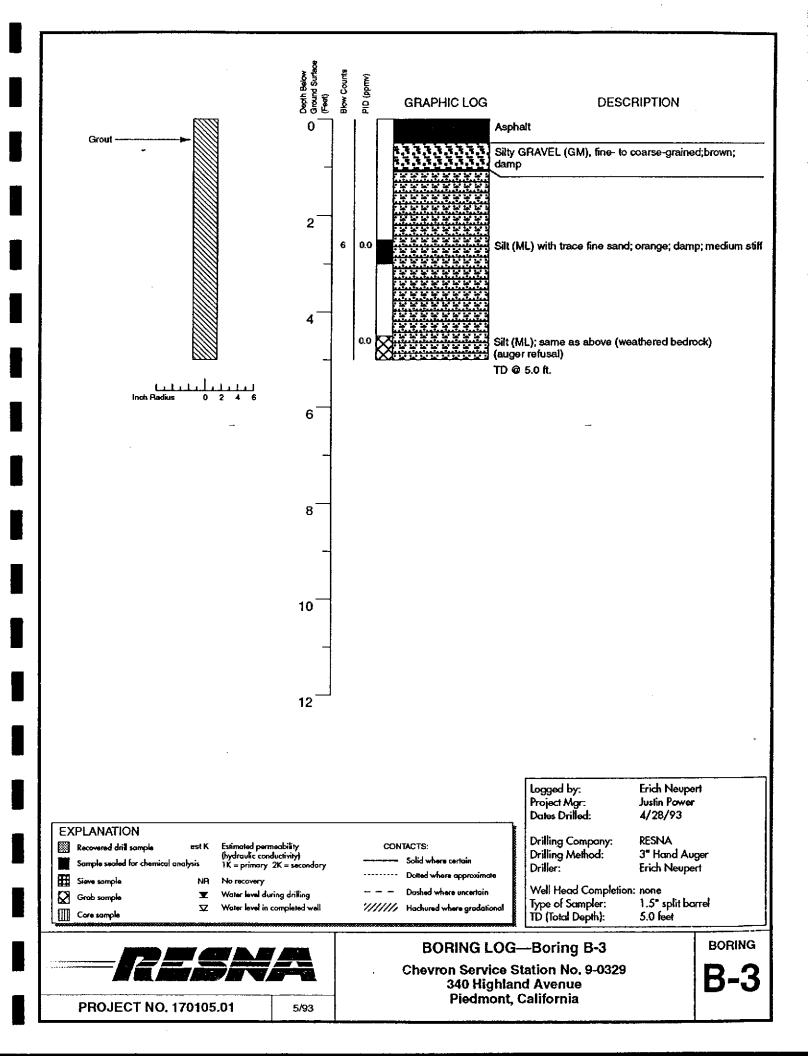
#### **BORING LOG—Boring B-1**

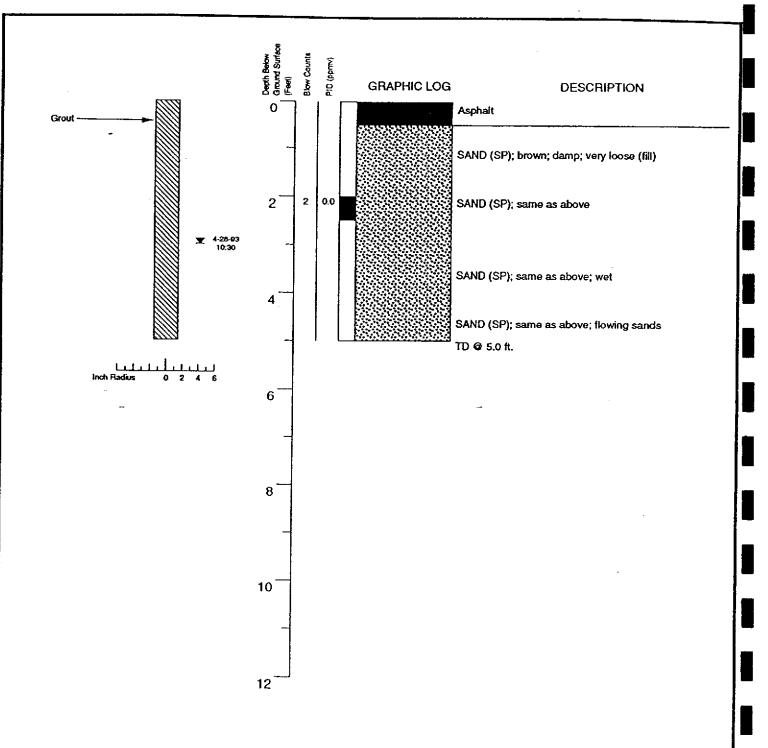
Chevron Service Station No. 9-0329 340 Highland Avenue Piedmont, California **BORING** 

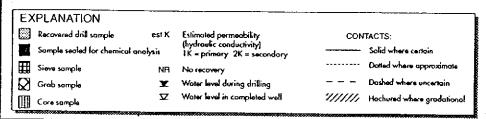
B-1






5/93


PROJECT NO. 170105.01


BORING LOG—Boring B-2

Chevron Service Station No. 9-0329 340 Highland Avenue Piedmont, California BORING

**B-2** 







Logged by: Project Mgr: Dates Drilled: Erich Neupert Justin Power 4/28/93

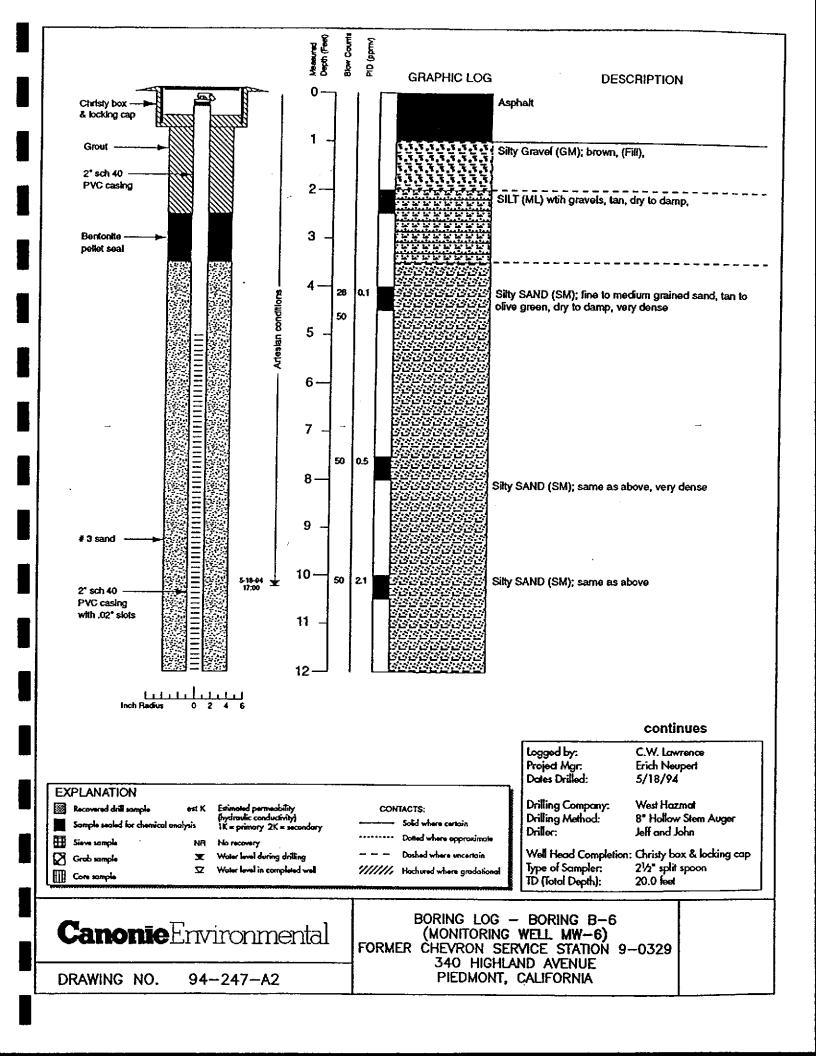
Drilling Company: Drilling Method: RESNA

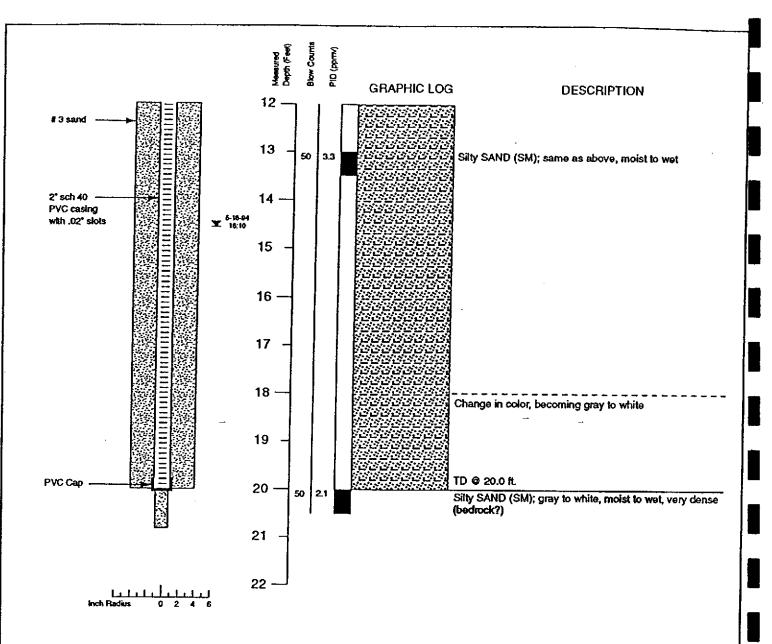
Driller:

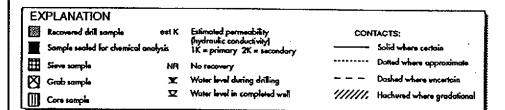
3" Hand Auger Erich Neupert

Well Head Completion: none

Type of Sampler: TD (Total Depth): 1.5" split borrel 5.0 feet





Chevron Service Station No. 9-0329 340 Highland Avenue Piedmont, California

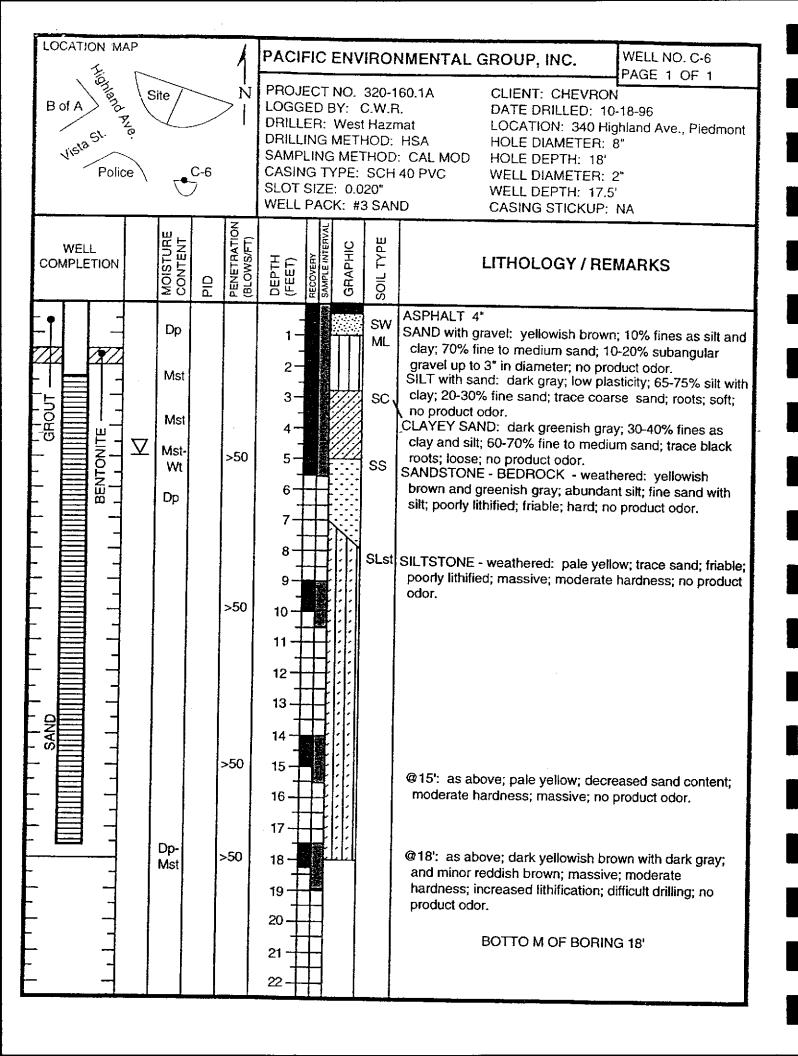

**BORING LOG—Boring B-4** 

**B-4** 

**BORING** 








## **Canonie** Environmental

DRAWING NO. 94-247-A3

BORING LOG — BORING B-6 (MONITORING WELL MW-6) FORMER CHEVRON SERVICE STATION 9-0329 340 HIGHLAND AVENUE PIEDMONT, CALIFORNIA

LOCATION MAP	PACIFIC ENVIR	ONMENTAL GROUP, INC. WELL NO. C-5 PAGE 1 OF 1
B of A St. Site Site Vista St. Police	PROJECT NO. 32 LOGGED BY: C. DRILLER: West H DRILLING METHO SAMPLING METH CASING TYPE: S SLOT SIZE: 0.020 WELL PACK: #3	CLIENT: CHEVRON  J.R. DATE DRILLED: 10-18-96  LOCATION: 340 Highland Ave., Piedmont  D: HSA HOLE DIAMETER: 8"  DD: CAL MOD HOLE DEPTH: 18.5'  CH 40 PVC WELL DIAMETER: 2"  WELL DEPTH: 18'
MOISTURE CONTEINT	(BLOWS/FT) DEPTH (FEET) RECOVERY SAMPLE INTERVAL	LITHOLOGY / REMARKS
SAND SAND SAND 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1— 2— 3— 4— 50 5—	ASPHALT 3" SAND: yellowish brown with minor reddish brown oxidation; 10% fines as clay and silt; 70% fine to medium sand; 20% subangular gravel up to 3" diameter; no product odor.  L SILT with sand and gravel: greenish gray; low plasticity; 60-70% silt with clay; 20% fine sand; 10-20% fine subangular gravel; hard; no product odor.  SANDSTONE - BEDROCK - weathered: yellowish brown; fine sand with silt; poorly lithified; 1-10mm plannar larninae; friable; no product odor.  SILTSTONE: pale yellow; minor sand; friable; poorly lithified; massive; no product odor.  SANDSTONE - weathered: yellowish brown, gray, and reddish brown; friable; poorly lithified; massive; fine sand with silt; moisture in fractures; no product odor.  BOTTO M OF BORING 18.5'





# Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

#### **BORING/WELL LOG**

PAGE 1 OF 1

CLIENT	NAME		Che	vron Pr	oducts	Comp	any	BORING/WELL NAME	U-1	_		·····
JOB/SIT	E NAM		9-03									
LOCATI	ON	:	340	Highlar	nd Aver	nue, Pi	edmont, CA	DRILLING COMPLETED	21-Mar-00			
PROJEC	MUN TO	BER	31A-	1776				WELL DEVELOPMENT DA	ATE (YIELD)_	NA		
DRILLE												· · · · · · · · · · · · · · · · · · ·
DRILLIN	IG MET	HOD	Hano	1 Auger	<u> </u>			TOP OF CASING ELEVAT	TON NA			
		ETER;						SCREENED INTERVAL	NA			<del></del>
									Encountered)			<u> </u>
REVIEW	ED BY		Jim F	^o erkins	, RG			DEPTH TO WATER (Statio	>)	N	Α	<u> </u>
REMARI	KS _	_										<del></del>
TPHg (mg/kg)	BLOW	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHC	DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WE	LL DIAGRAM
		U\$1-1	8		<del></del>	***	Asphalt	and Olive and Minet 400		0.3		
					SM		\ 10% silt, 40% mediu grained subrounded Silty SAND: dark gre	and: Olive grey; Miost, 10% m grained sand, 40% mediu gravels, high estimated perr eyish brown; miost, 5% clay,	m neabilty . 25%	1.0 3.0		■ Bentonite Seal
			4	- 	SP		\silt, 70% fine grained \permeability.	well sorted sand, medium of	estimated /			- Denionite Seal
		US1-5	•	- 5			SAND: brownish yell	ow; damp, 100% fine graine imated permeability.	ed well	5.0		Bottom of Boring @ 5 ft
							Sample U1 - 4 voa's	collected @ 5.10 pm				
											:	
									·			
						·						



## Cambria Environmental Technology, Inc. 1144 - 65th Si. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

**BORING/WELL LOG** 

JOB/SI LOCAT PROJE DRILLE DRILLE BORING LOGGE	CT NUM R NG MET S DIAME D BY VED BY	E 9 3 BER 3	40 l 1A- land inc	29 Highlan 1776 I Auger h d Grego	ory	ue, Pi	edmont, CA	DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT DO GROUND SURFACE ELECTOP OF CASING ELEVAT SCREENED INTERVAL	21-Mar-00 21-Mar-00 ATE (YIELD) VATION ION NA NA Encountered)	NA Not S	urveyed	
TPHg (mg/kg)	BLOW	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHO	DLOGIC DESCRIPTION		CONTACT DEPTH (# bgs)		LL DIAGRAM
		US2-1.5			SM		silt, 45% medium gra gravels, high estimat SAND: olive grey; di	ry, 10% silt, 90% fine graine timated permeability.	d angular /	0.5 1.0 2.5		■ Bentonite Seal  Bottom of Boring @ 2.5 ft





Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME	Chevron Products Company	BORING/WELL NAME U-3
JOB/SITE NAME	9-0329	DRILLING STARTED 21-Mar-00
LOCATION _	340 Highland Avenue, Piedmont, CA	DRILLING COMPLETED 21-Mar-00
PROJECT NUMBER _	31A-1776	WELL DEVELOPMENT DATE (YIELD) NA
DRILLER _		GROUND SURFACE ELEVATION Not Surveyed
DRILLING METHOD _	Hand Auger	TOP OF CASING ELEVATION NA
BORING DIAMETER _	3 inch	SCREENED INTERVAL NA
LOGGED BY	David Gregory	DEPTH TO WATER (First Encountered)
REVIEWED BY	Jim Perkins, RG	DEPTH TO WATER (Static) NA
REMARKS		
9/kg)		CT bgs

REMARKS    Condition   Conditi	LOGGED BY			d Grege			DEPTH TO WATER (First Encountered)			— Ţ
Subject to the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the standard of the		r <u>J</u>	im F	² erkins	, RG		DEPTH TO WATER (Static)	N/	٩	<u> </u>
Bentonite Sea Bentonite Sea Sand, moderate estimated permeability.  SAND: brownish yellow, damp, 100% fine grained well sorted sand, moderate estimated permeability.  Fefusal @ 3 feet, sandstone bedrock	REMARKS				<del></del>					
Bentonite Sea Bentonite Sea Sand, moderate estimated permeability.  SAND: brownish yellow, damp, 100% fine grained well sorted sand, moderate estimated permeability.  Fefusal @ 3 feet, sandstone bedrock	TPHg (mg/kg) BLOW COUNTS	SAMPLE 1D	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (# bgs)	WE	LL DIAGRAM
100 (UBH-00)				0	GP		Poorly graded GRAVEL with sand: dark olive gray; damp, 40% medium-coarse grained sand, 60% medium grained subrounded gravels, high estimated permeability. SAND: brownish yellow, damp, 100% fine grained well sorted sand, moderate estimated permeability.	0.5 1.0		■ Bentonite Seal Bottom of
	WELL LOS (TPH-G) 1									PAGE 1 OF 1



Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

BORING DIAI LOGGED BY REVIEWED B REMARKS	ME 9 3 MBER 3 THOD   H METER 3	9-0329 840 Highla 81A-1776 Hand Auge 9 inch David Greg	nd Avenue	mpany , Piedmont, CA	DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT D GROUND SURFACE ELE TOP OF CASING ELEVA SCREENED INTERVAL	PATE (YIELD)_ EVATION TIONNA It Encountered)	NA Not S	urveyed	
TPHg (mg/kg)	SAMPLE ID	EXTENT DEPTH (# bas)	U.S.C.S.	о О О	OLOGIC DESCRIPTION	57	CONTACT DEPTH (ft bgs)	ĺ	LL DIAGRAM
WELL LOG (TPH-G) ENG-0329/GINT GPJ DEFAULT GDT 3/24/00	US4-1		GM O	\\silt, 75% angular co	en, damp, 70% clay, 30% sil lity.	gh //	0.2 0.8 1.2		■ Bentonite Seal Bottom of Boring @ 1.2 ft

### **BORING/WELL LOG**

PAGE 1 OF 1



Cambria Environmental Technology, Inc. 1144 - 65th St. Oakland, CA 94608 Telephone: (510) 420-0700

		Fax: (	510	) 420-	-9170									
CLIENT	NAME		he	vron Pr	oducts	Comp	any	BORING/WELL NAME	U-5					
JOB/SIT	ENAM		-03					DDV I NIC OTIBEES						
LOCATI	ON	3	40	Highlar	nd Aver	nue, P	iedmont, CA	DRILLING COMPLETED	21-Mar-00					
PROJEC	T NUM	IBER3							TE (YIELD)_	NA				
DRILLEI									Not Surveyed					
							<del>1</del>							
		ETER3						SCREENED INTERVAL NA						
LOGGE	D BY		avi	a Greg	ory			DEPTH TO WATER (First I	Encountered)	ered)				
	EVIEWED BY Jim Perkins, RG EMARKS							DEPTH TO WATER (Static	)	N	<u>A</u>	<u> </u>		
TPHg (mg/kg)	BLOW	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITH	DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WE	LL DIAGRAM		
· .			1				Asphalt			0.5		T		
			1	<u> </u>	GP SM	1	Poorly graded GRA coarse grained sand	VEL with sand: olive gray, d l, 80% medium grained subro	ry, 20% ounded	1.0				
		US5-2.5		j	_		\silt, 45% medium gr	vel: yellowish brown; damp, ained sand, 40% medium gra	15% Ined	2.3		Bottom of Boring @ 2.5 ft		
							refusal @ 2.5 feet, s	andstone bedrock						

## Appendix C Analytical Results for Soil

TABLE 1

### SOIL ANALYSIS DATA

JELL/BORING	SAMPLE	ANALYSIS	TPH-G	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	TOG
NO.	DATE	DATE	(PPH)	(PPM)	(PPM)	(PPM)	(PPM)	(PPM)
C-A-5.5	02-Nov-90	15-Nov-90	1600	.11	1.2	12	37	280
C-A-10.5	02-Nov-90	15-Nov-90	1	<.010	<.015	.015	.035	55
C-8-5.5	02-Nov-90	12-Nov-90	<1	<.005	<.005	0.005	0.021	
C-E-6.5	02-Nov-90	13-Nov-90	20	0.16	0.10	0.10	0.26	
C-E-11.5	02-Nov-90	15-Nov-90	220	0.051	0.51	0.51	1.4	
C-E-14.0	02-Nov-90	12-Nov-90	2	0.007	<.005	0.019	0.016	

TPH-G = Total Petroleum Hydrocarbon calculated as Gasoline

TOG = Total Oil and Grease

PPM = Parts Per Million

Note: 1. All data shown as <x are reported as ND (none detected).

2. BTEX for samples C-A-5.5 and C-A-10.5 were reported in micrograms per kilogram.





#### SOIL ANALYTICAL RESULTS Chevron Service Station No. 9-0329 340 Highland Avenue Piedmont, California

Sample Number	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xylenes	ТРНд
S2.5B1	4/28/93	<0.005	<0.005	<0.005	<0.015	<1.0
S3.0B2	4/28/93	< 0.005	< 0.005	< 0.005	< 0.015	<1.0
S3.0B3	4/28/93	< 0.005	< 0.005	< 0.005	< 0.015	<1.0
S2.5B4	4/28/93	< 0.005	< 0.005	< 0.005	< 0.015	<1.0
Cuttings (A-	D) 4/28/93	< 0.005	< 0.005	< 0.005	< 0.015	<1.0

All results in parts per million (ppm)

TPHg = Total Petroleum Hydrocarbons as Gasoline.

< = Less than the detection limit established by the laboratory

#### TABLE 1

# SOIL ANALYTICAL RESULTS CHEVRON SERVICE STATION 9-0329 340 HIGHLAND AVENUE PIEDMONT, CALIFORNIA

		Concentrations in mg/kg							
Sample No.	Date	TPH-G	Benzene	Toluene	Ethyl- Benzene	Total Xylenes			
S-2.0-B6	05/18/94	<1	< 0.005	<0.005	< 0.005	<0.015			
S-4.5-B6	05/18/94	<1	<0.005	<0.005	< 0.005	< 0.015			
S-7.5-B6	05/18/94	<1	<0.005	< 0.005	< 0.005	< 0.015			
S-10.0-B6	05/18/94	<1	< 0.005	< 0.005	< 0.005	<0.015			
S-15.0-B6	05/18/94	<1	< 0.005	< 0.005	< 0.005	< 0.015			

#### Notes:

mg/kg denotes milligrams per kilogram.

TPH-G denotes total petroleum hydrocarbons as gasoline.

< denotes less than indicated detection limit established by the laboratory.

### Table 1

#### Soil Analytical Data

Total Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MtBE)

#### Chevron Service Station 9-0329 340 Highland Avenue at Vista Avenue Piedmont, California

Well	Sample Depth	Date	TPPH as Gasoline	Benzene	Toluene	Ethyl-	Vidence	MDE
Number	(feet)	Sampled	(ppm)	(ppm)	(ppm)	benzene (ppm)	Xylenes (ppm)	MtBE (ppm)
C-5	5	10/18/96	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.025
	10		<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.025
C-6	5	10/18/96	<1.0	<0.0050	<0.0050	<0.0050	<0.0050	<0.025
	10		<1.0	<0.0050	<0.0050	< 0.0050	<0.0050	< 0.025
TPPH	= Total pur	geable petro	leum hydroc	arbons				
MtBE	= Methyl te	rt-butyl ether	•					
ppm	= Parts per	million						

Table 1. Soil Analytical Data -Former Chevron Station 9-0329, 340 Highland Ave., Piedmont, California

Sample ID	Date	Depth (feet)	TPHg	Benzene Concentrations in	Toluene parts per mill	Ethylbenzene ion (ppm)	Xylenes	MTBE	Fuel Oxygenates
U1-1	3/21/00	1	1900	< 1.0	< 1.0	3.7	8.1	< 0.10	ND
U2-1.5	3/21/00	1.5	< 1.0	< 0.005	< 0.005	< 0.005	0.021	< 0.10	ND
U3-2	3/21/00	2	< 1.0	< 0.005	< 0.005	< 0.005	0.012	< 0.10	ND
U4-1	3/21/00	1	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.10	ND
U5-2.5	3/21/00	2.5	< 1.0	< 0.005	< 0.005	< 0.005	0.0082	< 0.10	ND

#### Abbreviations / Notes

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020

MTBE = methyl tert-butyl ether by EPA Method 8260.

Fuel Oxygenates = Ethanol, tert-butyl alcohol, Di-isopropyl ether, Ethyl tert-butyl ether, tert-Amyl methyl ether, 1,2-Dichloroethane, Ethylene dibromide by EPA Method 8260.

<x = concentration less than the laboratory reporting limits

ND=not detected above laboratory reporting limits

#### Table 1 - Soil Chemical Analytical Data

Former Chevron Service Station #9-0329 340 Highland Avenue Piedmont, California

Sample No.	Sample Date	Sample Depth (feet)	TPHg (ppm)	Benzene (ppm)	Toluene (ppm)	Ethylbenzene (ppm)	Xylenes (ppm)	MtBE ⁽¹⁾ (ppm)	TBA (ppm)	DIPE (ppm)	ETBE (ppm)	TAME (ppm)	Ethanol (ppm)	1,2-DCA (ppm)	EDB (ppm)
U-6	3/21/01	5.5	<1.00	<0.00500	<0.00500	<0.00500	<0.00500	<0.0500/<0.00200	<0.200	<0.00200	<0.00200	<0.00200	<3.000	<0.00200	<0.00200
U-8	3/21/01	6	<1.00	<0.00500	<0.00500	<0.00500	<0.00500	<0.0500/<0.00200	<0.200	<0.00200	<0.00200	<0.00200	<3.000	<0.00200	<0.00200
U-10	3/21/01	6	<1.00	<0.00500	<0.00500	<0.00500	<0.00500	<0.0500/<0.00200	<0.200	<0.00200	<0.00200	<0.00200	<3.000	<0.00200	<0.00200

#### **Explanation:**

TPHg = Total Petroleum Hydrocarbons as gasoline

BTEX = Benzene, toluene, ethylbenzene, xylenes

MtBE = Methyl tert-butyl ether

TBA = Tert-butyl alcohol

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether
TAME = Tert-amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = Ethylene dibromide

ppm = parts per million

#### **Analytical Methods**

TPHg, BTEX, and MtBE by DHS LUFT Method 1,2-DCA and EDB by EPA Method 8260A

Oxygenates by EPA Method 8260A

#### Analytical Laboratories

Sequoia Analytical (ELAP #1624)

#### Notes:

[1] MtBE by DHS LUFT Method/MtBE by EPA Method 8260A

## Appendix D Analytical Results for Groundwater

Environmental Management Company 6001 Bollinger Canyon Rd, L4050 P.O. Box 6012 San Ramon, CA 94583-2324

Karen Streich Project Manager Alameda County

OCT 2 4 2003

**Environmental Health** 

October 21, 2003

Tel 925-842-1589

Fax 925-842-8370

ChevronTexaco

Mr. Scott Seery Alameda County Health Care Services 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re:

Former Chevron Service Station #9-0329 340 Highland Ave, Piedmont, CA Site Conceptual Model and Workplan

Dear Scott,

I have reviewed the Site Conceptual Model and Workplan that Cambria submitted to you today.

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by Cambria Environmental Technology, Inc., upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13267(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct.

Sincerely,

Karen Streich Project Manager

Karen Shew

## COSERVATION WELL DAIL MONITOR RECORD

COMPANY:	CHEURO	OU USA	JOB/: OR 5026	•
LOCATION:	411GHLAX	U7 1 VISTA	DATE: 1-24-83	<b>.</b> 4.
CITY:	Piedm		TIME: 11-00	•
WELL	LIQUID DEPTH	HYDROCARBON THICKNESS	AMOUNT PUMPED	<b>-</b>
1	10"	. 0		<del>-</del>
2	35 "	3/4"		<del>-</del>
3	8"	€		<u>.</u>
	58"	8		<del>-</del>
5				_
6				_
7				_
8				_
9				<del>-</del>
10			•	_
11				<u>.</u>
12				<del></del>
13				_
14				_
15				<del>_</del>
	C: TOTAL LIQUID:	IN.	WATER:IN	•
		OUT:	GALLONS	•
FLOWHETER:		READING	:	
WATER TABLE	DEPRESSION PUMP:_		DISCHARGE	•
SCAVENGER OF	PERATION:		CLEANED:	•
PROBE OPERAT			CLEANED:	
OTHER COMMEN	NTS: Wells #	173 were lille	d with water in	/
	sidewa	14 boves land	redoct Bacter	Hon
FOREMAN:	Mille Dirit	ASSISTANTS:	CHEVRON PE	40

## gettler - rjan let. general coati ters

DAILY ONITOR RECORD

COMPANY:	Cherron L	25A	JOB1: 02-50	
OCATION:	340 High	nland e Vista	DATE: 1-19-	
ity:	Piedmont		TIME: 3.00	3 pm
ÆLL	LIQUID DEPTH	HYDROCARBON THICKNES	S AMOUNT PUMP	ED
1				
2	51"			
3				
4	59"	·		•
5				<del>-</del>
6			<u>-</u> :	
7			_ '	<del> </del>
8				
9				
n - 😘				<del></del>
13				<u>, , , , , , , , , , , , , , , , , , , </u>
14 <u></u>		·		
15			144758	
PRODUCT TAN	K: TOTAL LIQUID:	IN.	GALLONS	
FI OUMETER .	74100N1 101W 25	2,530.0	(G:	
			DISCHARGE	
			CLEANED:	
			CLEANED:	
	<del></del>			
FOREMAN:	Jeff Rus	」、 ASSISTANTS:		
	7			

SAMPLE DATE	SAMPLE POINT	TPH-G (PPB)	BENZENE (PPB)	TOLUENE (PPB)	ETHYLBENZENE (PPB)	XYLENES (PPB)	O & G (PPB)
*****	: <b>: : : :</b> : : : : : : : : : : : : : :				=============		
07-Aug-89	c-2	34000.	580.	60.	170.	270.	12000
15-Nov-89	C-2	8100	500	36	420	180	<500
01-Feb-91	C-2	6800	490	21	310	86	700
16-Apr-91	C-5	9600	810	43	550	270	<500
07-Aug-89	C-3	<50.	<0.5	<1.	<1.	∢.	N/
15-Nov-89	C-3	<500	<0.5	2.8	<0.5	1.1	<500
01-Feb-91	C-3	<b>&lt;50</b>	<0.5	<0.5	<0.5	<0.5	N/
16-Арг-91	C-3	<50	<0.5	<0.5	<0.5	<0.5	N/
15-Nov-89	C-4	1300	2.9	310	0.5	2.9	<500
01-Feb-91	C-4	72	<0.5	9	<0.5	<0.5	N/
16-Apr-91	C-4	<50	<0.5	<0.5	<0.5	<0.5	N/
07-Aug-89	A	1000.	50.	6.	5.	22.	N/
15-Nov-89	A	3700	98	2.1	1 4.3	55	<500
01-Feb-91	Α	36000	1100	750	130	6100	N/
16-Apr-91	A	8000	370	6	86	750	N/

TABLE 2	1
HISTORICAL GROUND-WATER	
***************************************	
***************************************	•••••
	***************************************
Current Regional Water Quality Control Board Maximum Benzene 1. ppb Xylenes 1750, ppb Ethylbenzen	

Current DHS Action Levels Toluene 100.0 ppb

TPH-G = Total Petroleum Hydrocarbons calculated as Gasoline

PPB = Parts Per Billion TB = Trip Blank

O&G = Oil and Grease

NOTE: 1. DHS Action levels and MCL's are subject to change pending State of California review.

- Oil and Grease chemical analytical data for sample point C-2 collected on 2/1/91, was originally reported in milligrams per liter (mg/L).
- 3. All data shown as <X are reported as ND (none detected).

#### Table 2

#### **Groundwater Analytical Data**

Total Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MtBE)

Chevron Service Station 9-0329 340 Highland Avenue at Vista Avenue Piedmont, California

Well Number	Date Sampled	TPPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Xylenes (ppb)	MtBE (ppb)
C-5	11/25/96	<50	<0.50	<0.50	<0.50	<0.50	<2.5
C-6	11/25/96	<50	<0.50	<0.50	<0.50	<0.50	<2.5
TPPH	= Total purg	geable petrol	eum hydroc	arbons			
MtBE		t-butyl ether					,
ppb	= Parts per	-					



#### Table 2

#### GROUNDWATER ANALYTICAL RESULTS

Chevron Service Station No. 9-0329 340 Highland Avenue Piedmont, California

Sample Number	Date Sampled	Benzene	Toluene	Ethyl- benzene	Total Xylenes	ТРНд
B-1	NS	NA	NA	NA	NA	NA
B-2	4/28/93	< 0.005	< 0.005	< 0.005	< 0.005	<50
B-3	NS	NA	NA	NA	NA	NA
B-4	4/28/93	< 0.005	< 0.005	< 0.005	< 0.005	<50

All results in parts per billion (ppb)

TPHg = Total Petroleum Hydrocarbons as Gasoline.

NS = Not Sampled (groundwater not present above bedrock)

NA Not Analyzed

Table 2. Groundwater Analytical Data - Chevron Station 9-0329, 340 Highland Ave., Piedmont, CA

Sample ID	Date Conce	TPHg entrations in pa	Benzene rts per billion (ppb	Toluene )	Ethylbenzene	Xylenes	MTBE	Fuel Oxygenates
U-1	3/21/00	1,000	< 2.5	< 2.5	2.9	< 2.5	39,000	ND
U <b>-</b> 4	3/21/00	< 50	< 0.50	< 0.50	< 0.50	3.1	< 2.0	ND

#### Abbreviations / Notes

TPHg = Total petroleum hydrocarbons as gasoline by modified EPA Method 8015

Benzene, toluene, ethylbenzene, and xylenes by EPA Method 8020

MTBE = methyl tert-butyl ether by EPA Method 8260.

Fuel Oxygenates = Ethanol, tert-butyl alcohol, Di-isopropyl ether, Ethyl tert-butyl ether, tert-Amyl methyl ether, 1,2-Dichloroethane, Ethylene dibromide by EPA Method 8260.

<x = concentration less than the laboratory reporting limits</pre>

ND=not detected above laboratory reporting limits



# GETTLER-RYAN INC.

### TRANSMITTAL

September 17, 2003 G-R #386493

TO:

Ms. Karen Streich

**Chevron Products Company** 

P.O. Box 6004

San Ramon, California 94583

CC: Mr. Bob Foss

Cambria Environmental, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

FROM:

Deanna L. Harding

Project Coordinator Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568 **RE:** Former Chevron Service Station

#9-0329

340 Highland Avenue Piedmont, California

#### WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	September 16, 2003	Groundwater Monitoring and Sampling Report Third Quarter - Event of August 18, 2003

#### COMMENTS:

Please provide any comments/changes and propose any groundwater monitoring modifications for the next event prior to *October 1*, 2003, at which time the final report will be distributed to the following:

c: Mr. Chuck Headlee, RWQCB-S.F. Bay Region, 1515 Clay Street, Suite 1400, Oakland, CA 94612

Mr. Scott Seery, Alameda County Health Care Services, Dept. of Environmental Health, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502-6577

Mr. John M. Robinson, Hoffman Investment Co., 1035 Edwards Road, Burlingame, CA 94010

Mr. Ravi Randawa, Texaco Service Station, 340 Highland, Ave, Piedmont, CA 94611

Mr. Jon Robbins, Chevron Products Law, P.O. Box 6004, Building T, Room T-4284, San Ramon, CA 94583 (w/o attachments)

#### Enclosures



# GETTLER-RYAN INC.

September 16, 2003 G-R Job #386493

Ms. Karen Streich Chevron Products Company P.O. Box 6004 San Ramon, CA 94583

RE: Third Quarter Event of August 18, 2003

Groundwater Monitoring & Sampling Report Former Chevron Service Station #9-0329 340 Highland Avenue

Piedmont, California

Dear Ms. Streich:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and the wells were checked for the presence of separate-phase hydrocarbons. Static water level data, groundwater elevations, and separate-phase hydrocarbon thickness (if any) are presented in the attached Table 1. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells and submitted to a state certified laboratory for analyses. The field data sheets for this event are attached. Analytical results are presented in the table(s) listed below. The chain of custody document and laboratory analytical report are also attached.

Please call if you have any questions or comments regarding this report. Thank you.

Sincerely,

Deanna L. Harding Project Coordinator

Robert C. Mallory

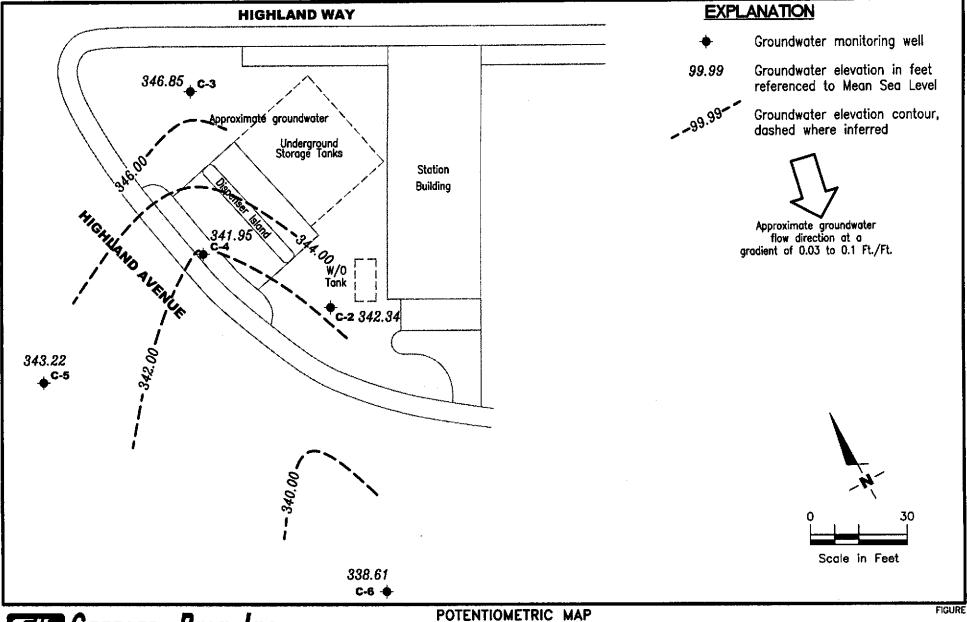
Registered Geologist, No. 7285

Figure 1:

Potentiometric Map

Table 1: Table 2:

Groundwater Monitoring Data and Analytical Results Groundwater Analytical Results - Oxygenate Compounds


Attachments:

Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

OF CAL!



GETTLER - RYAN INC.
6747 Sierro Ct., Suite J
Dublin, CA 94568 (925) 551-7555

Former Chevron Service Station #9-0329 340 Highland Avenue Piedmont, California

REVISED DATE

JOB NUMBER 386493

August 18, 2003

FILE NAME: P:\ENMRO\CHEVRON\9-0329\Q03-9-0329.DWG | Layout Tab: Pot3

REVIEWED BY

1

### Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0329
340 Highland Avenue
Piedmont, California

WELL ID/	DATE	DTW	GWE	TPH-G	В	T	E	X	MTBE
TOC*(ft.)		(fs)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
100 (10)			<u> </u>						
C-2							4.50	270	
94.19	08/07/89	2.88	91.31	34,000	580	60	170	270 180	
	11/15/89	2.80	91.39	8,100	500	36	420	180 86	
	02/01/91	3.75	90.44	6,800	490	21	310		~-
	04/16/91	2.55	91.64	9,600	810	43	550	270 60	
	10/16/91	3.52	90.67	7,100	320	23	200	22	
	01/08/92	4.15	90.04	2,400	190	9.0	83		
	04/10/92	2.96	91.23	6,600	550	33	340	170	
	07/14/92	2.83	91.36	9,000	680	330	580	690	***
	10/05/92	4.38	89.81	5,500	250	17	130	82	
	01/06/93	3.94	90.25	5,500	190	32	41	54	
	03/29/93	2.09	92.10	19,000	670	40	180	370	
	07/02/93	2.09	92.10	8,000	1,100	41	420	500	
	10/11/93	2.76	91.43	42,000	940	34	140	87	
	01/10/94	4.82	89.37	12,000	770	20	220	74	<del>; -</del>
	04/06/94	2.49	91.70	40,000	820	33	190	110	
	07/06/94	2.47	91.72	8,800	870	28	140	95	
	11/11/94	2.87	91.32	8,600	460	81	180	120	
	01/06/95	2.55	91.64	15,000	880	48	270	140	
	04/13/95	2.06	92.13	56,000	2,500	130	730	360	
	07/25/95	2.14	92.05	11,000	1,000	34	540	160	••
	10/05/95	2.51	91.68	13,000	1,000	<20	160	170	
	01/02/96	2.22	91.97	9,500	1,300	<50	380	87	64,000
	04/11/96	1.92	92.27	<10,000	1,300	<100	<100	<100	74,000
	07/08/96	2.05	92.14	<20,000	1,200	<200	<200	<200	110,000
	10/03/96	2.29	91.90	<25,000	1,200	<250	<250	<250	140,000
343.39	01/23/97	1.90	341.49	20,000	1,100	<200	460	<200	110,000
343,37	02/14/97	1.97	341.42	**	••		••		150,000 ¹
	04/08/97	2.27	341.12	<50,000	1,100	< 500	<500	< 500	160,000
	07/09/97	1.98	341.41	<50,000	1,300	<500	<500	< 500	210,000
	10/08/97	2.30	341.09	18,000	1,400	<50	300	95	160,000
	01/22/98	1.68	341.71	10,000	860	10	140	37	70,000
	04/15/98	1.20	342.19	<10,000	1,400	<100	510	<100	46,000
	07/09/98	1.47	341.92	33,000	1,700	<50	650	< 50	120,000

1

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0329 340 Highland Avenue Piedmont, California

WELL ID/	DATE	DTW	GWE	TPH-G	В	7	E	X	MTBE
TOC*(ft.)		(fL)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
							400	7.	100,000
C-2	10/02/98	2.13	341.26	11,000	920	11	130	76	48,400/78,300 ¹
(cont)	01/18/99	1.84	341.55	<25,000	1,770	<250	<250	<250	
	04/19/99	1.17	342.22	9,900	1,110	26.6	455	82	33,300
	09/28/99	2.81	340.58	11,500	1,100	<50	93.9	53.1	26,200
	10/27/99	2.98	340.41	9,440	711	<20	74.9	42.4	17,500
	01/17/00	2.35	341.04	12,200	813	<50	133	<50	21,200
	04/11/00	1.31	342.08	210 ⁴	26	< 0.50	3.7	1.1	580
	07/12/00	1.79	341.60	18,100 ⁵	1,350	480	800	1,240	19,200
	10/07/00	1.70	341.69	8,860 ⁵	1,070	<20.0	406	90.5	20,000
	01/05/01	1.57	341.82	14,000 ⁴	2,000	55	560	120	17,000
	04/05/01	1.37	342.02	4,900 ⁴	330	38	120	32	1,200
	08/20/01	2.52	340.87	7,300	1,100	42	290	55	7,200
	11/26/01	1.35	342.04	9,500	650	13	66	44	3,100
	02/25/02	0.82	342.57	5,300	340	6.9	83	22	1,200/1,400 ⁷
	05/17/02	1.85	341,54	6,300	160	5.1	45	14	5,100
	08/13/02	1.95	341,44	8,800	670	16	380	73	3,700
	11/23/02	1.62	341.77	9,400	490	11	250	47	1,900
	02/17/03	0.65	342.74	7,000	340	9,9	160	35	4,200/3,800 ⁷
	05/19/03 ⁸	0.92	342.47	2,500	390	8	<del>9</del> 0	26	6,000
	08/18/03 ⁸	1.05	342.34	6,400	300	7	62	23	3,500
C-3									
97.65	08/07/89	4.29	93.36	<50	<0.5	<1.0	<1.0	<3.0	·
27.05	11/15/89	5.17	92.48	<500	<0.5	2.8	< 0.5	1.1	
	02/01/91	6.38	91.27	<50	<0.5	<0.5	< 0.5	<0.5	**
	04/16/91	3.72	93.93	<50	<0.5	<0.5	<0.5	<0.5	
	10/16/91	8.20	89.45	<50	<0.5	< 0.5	<0.5	< 0.5	
	01/08/92	6.68	90.97	<50	<0.5	<0.5	< 0.5	< 0.5	
	04/10/92	4.50	93.15	<50	<0.5	<0.5	<0.5	< 0.5	
	07/14/92	6.21	91.44	<50	<0.5	<0.5	<0.5	<0.5	
	10/05/92	9.31	88.34	<50	<0.5	<0.5	< 0.5	< 0.5	
	01/06/93	3.41	94.24	<50	<0.5	<0.5	<0.5	<0.5	
	03/29/93	0.50	97.15	<50	<0.5	<0.5	<0.5	0.8	<del></del>

9-0329.xls/#386493

### Groundwater Monitoring Data and Analytical Results

				1 icanioi	n, Camoma				
WELL ID/ TOC*(fi.)	DATE	DTW (fl.)	GWE (msl)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
					•				
C-3	07/02/93	2.59	95.06	< 50	4.0	3.0	< 0.5	3.0	<b>~~</b>
(cont)	10/11/93	4.90	92.75	<50	<0.5	< 0.5	<0.5	<0.5	
(Cont)	01/10/94	4.39	93.26	< 50	<0.5	1.0	<0.5	0.8	
	04/06/94	2.68	94.97	< 50	<0.5	1.0	0.7	4.5	<b></b>
	07/06/94	2.10	95.55	< 50	2.2	4.1	< 0.5	2.8	pr to
	11/11/94	1.23	96.42	<50	<0.5	0.8	<0.5	< 0.5	
	01/06/95	0,60	97,05	<50	<0.5	< 0.5	< 0.5	<0.5	
	04/13/95	0.60	97.05	<50	<0.5	< 0.5	< 0.5	<0.5	
	07/25/95	1,65	96,00	<50	<0.5	< 0.5	<0.5	<0.5	
	10/05/95	3.63	94,02	<50	<0.5	< 0.5	< 0.5	<0.5	<del></del>
	01/02/96	3.12	94.53	<50	<0.5	<0.5	<0.5	< 0.5	<2.5
	04/11/96	0.82	96.83	<50	<0.5	< 0.5	< 0.5	<0.5	<2.5
	07/08/96	1.50	96.15	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
	10/03/96	2.48	95.17	< 50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
347.08	01/23/97	0.21	346.87	<50	< 0.5	< 0.5	< 0.5	< 0.5	3.2
347.00	04/08/97	0.75	346.33	<50	<0.5	< 0.5	<0.5	< 0.5	<2.5
	07/09/97	1.47	345.61	<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
	10/08/97	2.04	345.04	<50	<0.5	< 0.5	<0.5	<0.5	<2.5
	01/22/98	FLOODED	J 10,0 .	<50	<0.5	<0.5	< 0.5	< 0.5	40
	04/15/98	FLOODED		<50	<0.5	<0.5	<0.5	<0.5	<2.5
347.20	05/13/98 ²						**		
347.20	07/09/98	0.47	346.73	<50	<0.5	< 0.5	<0.5	<0.5	<2.5
	10/02/98	0.98	346.22	<50	<0.5	< 0.5	< 0.5	<1.5	<2.5
	01/18/99	0.77	346.43	<50	<0.5	<0.5	<0.5	<1.5	<2.0
	04/19/99	0.53	346.67	<50	<0.5	<0.5	< 0.5	<0.5	<5.0
	07/19/99	0.81	346.39	<50	<0.5	<0.5	<0.5	<0.5	<5.0
	10/27/99	1.47	345.73	<50	<0.5	<0.5	<0.5	<0.5	<2.5
	01/17/00	0.94	346.26	<50	<0.5	<0.5	<0.5	<0.5	<2.5
	04/11/00	0.30	346.90	<50 <50	< 0.50	<0.50	<0.50	<0.50	<2.5
	04/11/00	0.30	346.78	<50.0	<0.500	< 0.500	<0.500	<0.500	<2.50
			346.19	<50.0	<0.500	<0.500	< 0.500	<0.500	<2.50
	10/07/00	1.01		<50.0 <50	<0.50	<0.50	<0.50	<0.50	<2.5
	01/05/01	1.38	345,82		<0.50	<0.50	<0.50	<0.50	<2.5
	04/05/01	0.35	346.85	<50		<0.50 <0.50	<0.50	<0.50	<2.5
	08/20/01	0.80	346.40	<50	<0.50	<b>&lt;0.30</b>	~0.30	. ~0.30	~2.0

Table 1
Groundwater Monitoring Data and Analytical Results

				·					The second second second
WELL ID/	DATE	DTW	GWE	TPH-G	В	T.	E	X (ppb)	MTBE (ppb)
TOC*(fl.)		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ववव)	(ррв)
					.0.50	<b>40.50</b>	<0.50	<1.5	<2.5
C-3	11/26/01	0.36	346.84	<50	<0.50	<0.50	<0.50	<1.5	<2.5/<2 ⁷
(cont)	02/25/02	0.36	346.84	<50	<0.50	<0.50		<1.5	<2.5
	05/17/02	0.45	346.75	<50	< 0.50	<0.50	<0.50	<1.5	<2.5
	08/13/02	1.11	346.09	<50	< 0.50	<0.50	<0.50		<2.5
	11/23/02	1.49	345.71	<50	< 0.50	<0.50	<0.50	<1.5	<2.5/<0.5 ⁷
	02/17/03	0.51	346.69	<50	<0.50	<0.50	<0.50	<1.5	
	05/19/03 ⁸	0.30	346.90	<50	< 0.5	<0.5	<0.5	<0.5	<0.5
	08/18/03 ⁸	0.35	346.85	<50	<0.5	<0.5	<0.5	<0.5	<0.5
C-4									
95.60	08/07/89	DRY	<del></del> .	<del>-</del> -					
75.00	11/15/89	4.95	90.65	1300	2.9	310	0.5	2.9	
	02/01/91	4.78	90.82	72	<0.5	9.0	< 0.5	< 0.5	
	04/16/91	4.83	90.77	<50	<0.5	<0.5	< 0.5	< 0.5	
	10/16/91	4.23	91.37	<50	<0.5	<0.5	<0.5	< 0.5	
	01/08/92	4.81	90.79	<50	<0.5	< 0.5	< 0.5	< 0.5	
	04/10/92	4.26	91,34	<50	< 0.5	< 0.5	<0.5	< 0.5	
	07/14/92	4.28	91.32	<50	<0.5	3.8	< 0.5	< 0.5	
	10/05/92	4.29	91.31	<50	<0.5	<0.5	<0.5	< 0.5	
	01/06/93	4.29	91.31	<50	0.7	<0.5	<0.5	< 0.5	
	03/29/93	4,30	91.30	<50	0.5	1.0	<0.5	2.0	
	07/02/93	4.22	91.38	<50	<0.5	<0.5	< 0.5	< 0.5	
	10/11/93	4.30	91.30	<50	0.6	<0.5	<0.5	< 0.5	
	01/10/94	4.44	91.16	<50	0.7	3.0	< 0.5	1.0	••
	04/06/94	4.24	91.36	130	2.2	5.4	3.3	24	
	07/06/94	4.24	91.36	99	5.9	7.5	2.0	12	
	11/11/94	4.21	91.39	<50	<0.5	9.5	<0.5	<0.5	
	01/06/95	4.42	91.18	<50	0.7	1.0	<0.5	1.1	
	04/13/95	4.42	91.36	67	0.54	7.2	<0.5	1.1	
	04/13/93	4.24	91.36	390	<2.0	150	<2.0	<2.0	
	10/05/95	4.24	91.22	130	<0.5	66	<0.5	<0.5	
	01/02/96	4.36 4.26	91.22	<50	<0.5	<0.5	<0.5	<0.5	34
				<50 <50	<0.5	0.93	<0.5	<0.5	56
	04/11/96	4.39	91.21	<b>~3</b> 0	~0.5	V.33	~0.5	~0.5	70

Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*(fi.)	DATE	DTW (ft.)	GWE (msl)	TPH-G (ppb)	B (pph)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
	anakana di kutana katana di katana	V.		<b>4 1 2 2 2 2 2 2 2 2 2 2</b>					
C-4	07/08/96	4.28	91.32	<50	<0.5	<0.5	< 0.5	< 0.5	21
(cont)	10/03/96	4.22	91.38	80	<0.5	31	< 0.5	<0.5	9,9
344.94	01/23/97	4.39	340.55	<50	< 0.5	< 0.5	<0.5	< 0.5	23
	04/08/97	4.25	340.69	87	< 0.5	3.6	< 0.5	1.7	7.0
	07/09/97	4.21	340.73	93	< 0.5	32	< 0.5	< 0.5	26
	10/08/97	4.34	340,60	<50	< 0.5	0.63	< 0.5	< 0.5	12
	01/22/98	4.26	340.68	<50	< 0.5	4.3	< 0.5	< 0.5	10
	04/15/98	1.01	343.93	SAMPLED SEMI-	ANNUALLY				
	07/09/98	4.25	340.69	<50	< 0.5	< 0.5	< 0.5	<0.5	37
	10/02/98	4.35	340.59				7-	••	
	01/18/99	4.21	340,73	<50	< 0.5	< 0.5	< 0.5	< 0.5	25.4
	04/19/99	2.31	342.63	<b>*</b> ■					
	07/19/99 ³	1.53	343.41	10,000	1,160	23	178	50.4	45,600
	09/28/99	4,70	340.24	<50	< 0.5	0.919	< 0.5	< 0.5	<2.5
	10/27/99	1.26	343.68					**	
	01/17/00	4.22	340.72	<50	< 0.5	21.4	<0.5	< 0.5	4.6
	04/11/00	4.21	340.73		Spin hard				
	07/12/00	4.21	340.73	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
	10/07/00	4.23	340.71						
	01/05/01	4.22	340.72	<50	< 0.50	< 0.50	< 0.50	< 0.50	27
	04/05/01	4.23	340.71						
	08/20/01	4.27	340.67	<50	< 0.50	< 0.50	< 0.50	< 0.50	18
	11/26/01	4.26	340.68	SAMPLED SEMI-	ANNUALLY	· 			
	02/25/02	4.25	340.69	<50	<0.50	1.8	< 0.50	<1.5	24/247
	05/17/02	3.30	341.64	SAMPLED SEMI-	ANNUALLY		<del></del>		
	08/13/02	4.10	340.84	< 50	< 0.50	<0.50	<1.0	<1.5	7.3
	11/23/02	3.04	341.90	SAMPLED SEMI-	ANNUALLY	<del></del>			
	02/17/03	2.12	342.82	<50	<0.50	< 0.50	< 0.50	<1.5	<2.5/<0.5 ⁷
	05/19/03	2.57	342.37	SAMPLED SEMI-	ANNUALLY				
	08/18/03 ⁸	2.99	341.95	<50	<0.5	<0.5	<0.5	<0.5	<0.5

Table 1
Groundwater Monitoring Data and Analytical Results
Former Chevron Service Station #9-0329

Former Chevron Service Station 340 Highland Avenue Piedmont, California

WELL ID/	DATE	DTW	GWE	TPH-G	В	T	E	X	MTBE
TOC*(fi.)		(fi.)	(msl)	(ppb)	(ppb)	(ррв)	(pph)	(ppb)	(ррь)
									-2.5
C-5	11/25/96	3.30		<50	<0.5	< 0.5	<0.5	< 0.5	<2.5 <2.5
345.14	01/23/97	1.45	343.69	<50	< 0.5	<0.5	<0.5	<0.5	
	04/08/97	2.32	342.82	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
	07/09/97	2.30	342.84	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
	10/08/97	3.00	342.14	<50	< 0.5	<0.5	<0.5	<0.5	<2.5
	01/22/98	1.00	344.14	<50	<0.5	<0.5	<0.5	<0.5	<2.5
	04/15/98	3.25	341.89	SAMPLED ANNU	JALLY				
	07/09/98	0.20	344.94			<del></del>		••	
	10/02/98	2.32	342,82						
	01/18/99	2.13	343.01	<50	< 0.5	<0.5	<0.5	<0.5	<2.0
	04/19/99	2.07	343.07			#+ <del>- #</del>			
	07/19/99	2.42	342.72					~=	
	10/27/99	2.37	342.77						
	01/17/00	2.50	342.64	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	04/11/00	2.18	342.96				+=		
	07/12/00	2.08	343.06		<del></del>	<del></del>			
	10/07/00	2.38	342.76	••	<b></b>			<del></del>	
	01/05/01	2.13	343.01	< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	04/05/01	1.80	343.34					••	
	08/20/01	2.08	343.06						
	11/26/01	2.25	342.89	SAMPLED ANNU	JALLY				
	02/25/02	2.80	342.34	<50	< 0.50	< 0.50	< 0.50	<1.5	<2,5/<27
	05/17/02	1.81	343.33	SAMPLED ANNU	JALLY			<del></del>	
	08/13/02	1.82	343.32	SAMPLED ANNU	JALLY		B-W		
	11/23/02	2.36	342.78	SAMPLED ANNU	UALLY				
	02/17/03	1.89	343.25	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<0.5 ⁷
	05/19/03	1.91	343.23	SAMPLED ANN	UALLY				
	08/18/03	1.92	343.22	SAMPLED ANN			w.c.		
	00/10/05	200-	2,000	•••••					
C-6	11/25/96	2.13		<50	<0.5	<0.5	<0.5	< 0.5	<2.5
338.61	01/23/97	FLOODED		<50	< 0.5	<0.5	<0.5	<0.5	<2.5
	04/08/97	FLOODED		<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	07/09/97	2.77	335.84	<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5

As of 08/18/03

#### Groundwater Monitoring Data and Analytical Results

			Normalis and a section of the		Ounionna Section Section 1	an tanananan arabahan dari dari dari dari dari dari dari dari	erenenius Televisis si in ele		MTBE
WELL ID/	DATE	DTW	GWE	TPH-G	В	T	E (ppb)	X (ppb)	(ppb)
TOC*(ft.)		(f.)	(msl)	(ppb)	(ppb)	(ppb)	(рри)	(рро)	(рро)
C-6	10/08/97	1.44	337.17	<50	<0.5	<0.5	<0.5	<0.5	<2.5
(cont)	01/22/98	1.54	337.07	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
,40,	04/15/98	1.30	337.31	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5
	07/09/98	FLOODED	•-	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5
	10/02/98	2.80	335.81	<50	< 0.5	< 0.5	< 0.5	<1.5	<2.5
	01/18/99	1.29	337.32	<50	< 0.5	< 0.5	<0.5	<0.5	<2.0
	04/19/99	1.31	337.30	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	07/19/99	1.56	337.05	< 50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
	10/27/99	1.45	337,16	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	01/17/00	1.65	336.96	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	04/11/00	1.56	337.05	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	07/12/00	1.01	337.60	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
	10/07/00	1.19	337.42	<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
	01/05/01	0.87	337.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	04/05/01	0.32	338.29	<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	08/20/01	6		< 50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	11/26/01	0.76	337.85	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
	02/25/02	6		<50	< 0.50	< 0.50	<0.50	<1.5	<2.5/<27
	05/17/02	6	••	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
	08/13/02	0.90	337.71	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
	11/23/02	1.03	337.58	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
	02/17/03	0.85	337.76	< 50	< 0.50	< 0.50	< 0.50	<1.5	<2.5/<0.5 ⁷
	05/19/038	6	**	<50	< 0.5	< 0.5	< 0.5	<0.5	< 0.5
	08/18/03 ⁸	00.0	338.61	<50	<0.5	<0.5	<0.5	<0.5	<0.5
Backfill Well; A									
omenini ironi A	08/07/89	2.10		1,000	50	6.0	5.0	22	**
	11/15/89	2.04		3,700	98	2.1	4.3	55	
	02/01/91	3.05		36,000	1,100	750	130	6,100	
	04/16/91	2.01		8,000	370	6.0	86	750	
	10/16/91	4.15							
		RED/SAMPLED							

Table 1
Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0329 340 Highland Avenue Piedmont, California

WELL ID/	DATE	DTW	GWE	TPH-G	В	T	E	X	MTBE
TOC*(/L)		(ft.)	(msl)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
Backfill Well: B									
	08/07/89	4.12						<b>-</b> -	
	11/15/89							ue.	
	02/01/91	5.03							
	04/16/91	4.00							
	10/16/91	6.24							<del></del>
	NOT MONITORE	D/SAMPLED							
Trip Blank									
ГВ-LВ	01/06/93			<50	<0.5	< 0.5	< 0.5	<0.5	<del>-</del> -
	03/29/93			<50	<0.5	< 0.5	< 0.5	1.0	
	07/02/93	# <b>=</b>		<50	<0.5	< 0.5	< 0.5	<0.5	
	10/11/93			<50	< 0.5	< 0.5	< 0.5	<0.5	
	01/10/94			< 50	< 0.5	<0.5	< 0.5	<0.5	
	04/06/94			<50	< 0.5	<0.5	< 0.5	< 0.5	
	07/06/94			<50	<0.5	<0.5	<0.5	< 0.5	
	11/11/94			<50	< 0.5	< 0.5	< 0.5	<0.5	
	01/06/95			<50	<0.5	<0.5	< 0.5	< 0.5	
	04/13/95			<50	< 0.5	<0.5	< 0.5	< 0.5	
	07/25/95			<50	< 0.5	< 0.5	< 0.5	< 0.5	
	10/05/95			<50	< 0.5	< 0.5	< 0.5	<0.5	
	01/02/96			<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
	04/11/96			< 50	<0.5	< 0.5	<0.5	<0.5	<2.5
	07/08/96			<50	<0.5	< 0.5	<0,5	< 0.5	<2.5
	10/03/96			<50	<0.5	<0.5	<0.5	< 0.5	
	01/23/97			<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
	04/08/97			<50	<0.5	<0.5	<0.5	<0.5	<2.5
	07/09/97	T#		<50	<0.5	<0.5	< 0.5	<0.5	<2.5
	10/08/97			<50	< 0.5	<0.5	< 0.5	<0.5	<2.5
	01/22/98			< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5
	07/09/98			<50	<0.5	<0.5	<0.5	< 0.5	<2.5
	10/02/98		<del></del>	<50	<0.5	<0.5	< 0.5	< 0.5	<2.5
	01/18/99			<50	<0.5	<0.5	<0.5	< 0.5	<2.0

As of 08/18/03

9-<u>0329.x</u>ls/#38<u>6493</u>

# Groundwater Monitoring Data and Analytical Results Former Chevron Service Station #9-0329

WELL ID/ TOC*(fi.)	DATE	DTW (ft.)	GWE (msl)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (ppb)
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s								
TB-LB	04/19/99			< 50	< 0.5	<0.5	< 0.5	<0.5	<5.0
(cont)	07/19/99	***		<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0
(00.10)	10/27/99		<del></del>	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5
	01/17/00			<50	< 0.5	< 0.5	<0.5	< 0.5	<2.5
	04/11/00			<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
	07/12/00			<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
	10/07/00			<50.0	< 0.500	< 0.500	< 0.500	< 0.500	<2.50
	01/05/01			<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
	04/05/01			<50	< 0.50	<0.50	< 0.50	< 0.50	<2.5
	08/20/01			<50	< 0.50	< 0.50	< 0.50	< 0.50	<2.5
QA	11/26/01			<50	< 0.50	<0.50	< 0.50	<1.5	<2.5
ŲA.	02/25/02			<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
	05/17/02		••	<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
	08/13/02			<50	<0.50	< 0.50	< 0.50	<1.5	<2.5
	11/23/02			<50	<0.50	< 0.50	< 0.50	<1.5	<2,5
	02/17/03	-÷		<50	< 0.50	< 0.50	< 0.50	<1.5	<2.5
	05/19/03 ⁸			<50	<0.5	<0.5	<0.5	< 0.5	< 0.5
	08/18/038	-		<50	<0.5	<0.5	<0.5	<0.5	<0.5

#### i adie i

#### Groundwater Monitoring Data and Analytical Results

Former Chevron Service Station #9-0329 340 Highland Avenue Piedmont, California

#### **EXPLANATIONS:**

Groundwater monitoring data and laboratory analytical results prior to April 11, 2000, were compiled from reports prepared by Blaine Tech Services, Inc.

TOC = Top of Casing

TPH-G = Total Petroleum Hydrocarbons as Gasoline

MTBE = Methyl tertiary butyl ether

(ft.) = Feet

B ≃ Benzene

(ppb) = Parts per billion

DTW = Depth to Water

T = Toluene

-- = Not Measured/Not Analyzed

GWE = Groundwater Elevation

E = Ethylbenzene

QA = Quality Assurance/Trip Blank

(msl) = Mean sea level

X = Xylenes

- * TOC elevations are relative to msl.
- MTBE confirmation run.
- TOC elevation adjusted due to broken top of casing.
- Anomalous results: Results for this sample are likely the result of a mislabeling of sample containers; results most closely resemble those of well C-2.
- Laboratory report indicates gasoline C6-C12.
- Laboratory report indicates weathered gasoline C6-C12.
- ⁶ Unable to determine DTW, water overflowing TOC.
- MTBE by EPA Method 8260.
- BTEX and MTBE by EPA Method 8260.

### Groundwater Analytical Results - Oxygenate Compounds

Former Chevron Service Station #9-0329 340 Highland Avenue

Piedmont, California

					ont, Camorna				
WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA (ppb)	EDB (ppb)
		(ppb)	(ppb)	(ppb)	(ррь)	(ppb)	(ppb)	(рро)	(рро)
C 2	02/25/02	<500	210	1,400	<2	2	97	<2	<2
C-2	02/23/02		890	3,800	<1	6	110	<1	<1
	02/17/03	 		6,000			<del></del>		
	08/18/03	<250	<del></del>	3,500				<del></del>	
C-3	02/25/02	<500	<100	<2	<2	<2	<2	<2	<2
	02/17/03		<5	<0.5	<0.5	< 0.5	<0.5	<0.5	<0.5
	05/19/03			< 0.5		w=			
	08/18/03	<50		<0.5					
C-4	02/25/02	<500	<100	24	<2	<2	<2	<2	<2
	02/17/03		<5	<0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5
	05/19/03	SAMPLED SEMI-A	ANNUALLY						
	08/18/03	<50		<0.5	**				
C-5	02/25/02	<500	<100	<2	<2	<2	<2	<2	<2
	02/17/03		<5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	05/19/03	SAMPLED ANNU	ALLY						
C-6	02/25/02	<500	<100	<2	<2	<2	<2	<2	<2
	02/17/03		<5	< 0.5	< 0.5	<0.5	< 0.5	<0.5	<0.5
	05/19/03	<del></del>		<0.5					
	08/18/03	<50		< 0.5					

#### Table 2

#### Groundwater Analytical Results - Oxygenate Compounds

Former Chevron Service Station #9-0329 340 Highland Avenue Piedmont, California

#### **EXPLANATIONS:**

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

(ppb) = Parts per billion

-- = Not Analyzed

#### ANALYTICAL METHOD:

EPA Method 8260 for Oxygenate Compounds

### STANDARD OPERATING PROCEDURE -GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Products Company, the purge water and decontamination water generated during sampling activities is transported by IWM to McKittrick Waste Management located in McKittrick, California.



# GETTLER-RYAN INC.

### WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility #: C	hevronTexaco	#9-032	9	Job Number:	386493		_
· —	40 Highland A	venue		Event Date:	8.18.03		(inclusi
· <del>-</del>	iedmont, CA			Sampler:	FT		•
Well iD	c- 2	Date	Monitored:	8.18.03	Well Condition:	ס'ג'	
Well Diameter	2 in.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17	3*= 0.38	1 .
Total Depth	12.21 ft.		Factor (VI	4"= 0.66	5"= 1.02 6"= <b>1</b> .50	12"= 5.80	]
Depth to Water	1.05 ft.	17_	= 1.89	x3 (case volume) =	Estimated Purge Volume:	_ <b>5. 69</b> _gal.	
Purge Equipment:		Sam	pling Equipmen	p. /	Time Started: Time Bailed:		400 hrs) 2400 hrs)
	_/		osable Bailer	<b>/</b>	Depth to Product:		
Disposable Bailer	<u></u>	-	ssure Bailer		Depth to Water:	<del></del> :	f
Stainless Steel Bailer					Hydrocarbon Thickne		ft
Stack Pump			rete Bailer		Visual Confirmation/I		
Suction Pump	<del></del>	Oth	er:		- <u> </u>		
Grundfos		•			Skimmer / Absorbant	Sock (circle one	a)
Other:					Amt Removed from S		gal
		i			Product Transferred		
			·				
Start Time (purge): Sample Time/Date Purging Flow Rate	: 4:24 /B.	18.03	her Conditions Water Color ent Description	CLEV	SUNNY AR Odor:	YESISTE	- -
Did well de-water?		If yes, Tirr	ne:	Volume:	gal.		
Time	Volume	рH	Conductivity	Temperature	D.O.	ORP	
(2400 hr.)	(gal.)	рп	(umhos/cm)	(C)F)	(mg/L)	(mV)	
4115	2.0	7.12	105-5	<u> 247</u>			_
4:18	4.0	7.14	102.5	23.5			_
4.21	5.5	7.17	99.6	22.			_
				!			<u>-</u> -
			BORATORY IN	FORMATION			<del> </del>
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYP		RY ANA	LYSES	
c- 2	(x voa vial	YES	HCL	LANCASTE	R TPH-G(8015)/BTEX ETHANOL(8260)	+MTBE(8260)/	
					ETTANOL(6200)		
COMMENTS:							
			· · · · · · · · · · · · · · · · · · ·				
Add/Replac	ed Lock:			Add/Replaced	Plug:S	ize:	



# GETTLER-RYAN INC.

### WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility #:	ChevronTexaco	#9-032°	9	Job Number:	386493		_
Site Address:	340 Highland A			Event Date:	8-18-03		_(inclus
City:	Piedmont, CA			Sampler:	FT_		<u></u>
Well ID	c- 4	Date	Monitored:	8-18-13	Well Condition	:_o'k'	
Well Diameter	2 in.		Volume	3/4"= 0.02	1"= 0.04 2"= 0.17		] .
Total Depth	9.75 ft.		Factor (VI	F) 4*= 0.66	5"= 1.02 6"= 1.50	12*= 5.80	_}
Depth to Water.	2.99 ft.	= 17	= 1.14	x3 (case volume) =	Estimated Purge Volume	e: <u>3.44</u> gal.	·
	<u> </u>			,	Time Started:	(	2400 hrs)
Purge Equipment:	/		pling Equipmen	t:	Time Bailed: Depth to Product:		2400 hrs) <del>fi</del>
Disposable Bailer		•	osable Bailer		Depth to Water:		
Stainless Steel Baile	er	Pres	sure Bailer		Hydrocarbon Thicki		ft
Stack Pump		Disc	rete Bailer		Visual Confirmation		•
Suction Pump		Oth	er:		_		
Grundfos	<del></del>	,			Skimmer / Absorba	nt Sock (circle on	e)
Other:			,	•	Amt Removed from		
					Amt Removed from		
		•	1		Product Transferred	1 (0:	
Time (2400 hr.) 2:49 2:53 2:58	Volume	pH 7.03 7.02 7.05	Conductivity (u mhos/cm)  86.5  86.3  85-2	Temperature (CF) 22.1 21.6 21.7	D.O. (mg/L)	ORP (mV)	<del>-</del>
SAMPLE ID	(#) CONTAINER	LA REFRIG.	BORATORY IN			IALYSES	
C- 4	<del></del>	YES	HCL	LANCASTE	<b>.</b>	X+MTBE(8260)/	
					ETHANOL(8260)		
COMMENTS:							
		<del></del>		<u> </u>		<del></del> -	
Add/Ren	laced Lock:			Add/Replaced	Plug:	 Size:	<u> </u>

Add/Replaced Lock: _____

### WELL MONITORING/SAMPLING **FIELD DATA SHEET**

	ChevronTexaco			Job Number:	0.55	(incl
ite Address:	340 Highland A	venue	<u> </u>	Event Date:	8.15.03	(HICH
ity:	Piedmont, CA		<del> </del>	Sampler:	<u>FT</u>	
Vell ID	C- 6	Date M	fonitored:	8.15.03	Well Condition:	olki
/ell Diameter	<b>2</b> in.		37-1-1-0	3/4"= 0.02	1"= 0.04 2"= 0.17	3"= 0.38
otal Depth	17.21 ft.		Volume Factor (VF	·	5"= 1.02 6"= 1.50	12"= 5.80
epth to Water	.00 ft.	_			•	0 77 .
	17.21 ×V	<u> ·17                                    </u>	= 1.43	x3 (case volume) = E	stimated Purge Volume:	404001
Equipment		Sampl	ing Equipment	<b>:</b>	Time Started: Time Bailed:	(2400 hr (2400 hr
urge Equipment:	<i>^</i>		able Bailer	· /	Depth to Product:	
Disposable Bailer		,	re Bailer		Depth to Water:	<u> </u>
Stainless Steel Baile Staak Burns			te Bailer		Hydrocarbon Thicknes	
Stack Pump Suction Pump					Visual Confirmation/D	escription:
Grundfos	<del></del>				Skimmer / Absorbant	Sock (circle one)
Other:		•	L	•	Amt Removed from S	kimmer (
					Amt Removed from W	
		•			Product Transferred to	o:
Did well de-wat	er? ND	If yes, Time	:	_ Volume:	gal.	•
<b></b>	Volume	t 1	Conductivity	Temperature	D.O.	ORP
Time						(m\/)
(2400 hr.)	(gal.)	pH	(umhos/cm)	<b>⊘</b> ⊧)	(mg/L)	(mV)
		7.31	(umhos/cm)	21.5	(mg/L)	(mV)
(2400 hr.)	(gal.)	7.31 7.34	97.2 98.1	21.5	(mg/L)	(mV)
(2400 hr.)	(gal.) 	7.31 7.34 7.35	97.2 98.1 96.2	21.5	(mg/c)	(mV)
(2400 hr.)	(gal.) 3.0 6.0	7.31 7.34 7.35	97.2 98.1 96.2	21.5	(mg/c)	(mV)
(2400 hr.) 3: 29 3: 35 3: 4)	(gal.) 3.0 6.0 2. 9.0	7.31 7.34 7.35	97.2 98.1 96.2 ORATORY IN	21.5 20.9 20-1 FORMATION		
(2400 hr.) 3: 29 3: 35 3: 42	(gal.) 3.0 6.0 9.0	7.31 7.34 7.35	97.2 98.1 96.2 ORATORY IN	20-9 20-1 FORMATION E LABORATOR	Y ANA	LYSES
(2400 hr.) 3: 29 3: 35 3: 4)	(gal.) 3.0 6.0 2. 9.0	7.31 7.34 7.35	97.2 98.1 96.2 ORATORY IN	21.5 20.9 20-1 FORMATION	Y ANA	LYSES
(2400 hr.) 3: 29 3: 35 3: 42	(gal.) 3.0 6.0 9.0	7.31 7.34 7.35	97.2 98.1 96.2 ORATORY IN	20-9 20-1 FORMATION E LABORATOR	Y ANA TPH-G(8015)/BTEX+	LYSES
(2400 hr.) 3: 29 3: 35 3: 42	(gal.) 3.0 6.0 9.0	7.31 7.34 7.35	97.2 98.1 96.2 ORATORY IN	20-9 20-1 FORMATION E LABORATOR	Y ANA TPH-G(8015)/BTEX+	LYSES
(2400 hr.) 3: 29 3: 35 3: 42	(gal.) 3.0 6.0 9.0 (#) CONTAINER ( x voa vial	7.31 7.34 7.35	97.2 98.1 96.2 ORATORY IN	20-9 20-1 FORMATION E LABORATOR	Y ANA TPH-G(8015)/BTEX+	LYSES



2425 New Holland Pike, PO Box 12425, Lencaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

#### ANALYTICAL RESULTS

Prepared for:

ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco ChevronTexaco Ch

San Ramon CA 94583 925-842-8582

Prepared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

#### SAMPLE GROUP

The sample group for this submittal is 864015. Samples arrived at the laboratory on Thursday, August 21, 2003. The PO# for this group is 99011184 and the release number is STREICH.

Client Description			<u>Lancaster Labs Number</u>
OA-T-030818	NA	Water	4105977
C-2-W-030818	Grab	Water	4105978
C-3-W-030818	Grab	Water	4105979
	Grab	Water	4105980
C-4-W-030818		,,	4105981
C-6-W-030818	Grab	Water	11007

ELECTRONIC COPY TO

CTRONIC Gettler-Ryan

1 COPY TO Cambria C/O Gettler- Ryan

Attn: Cheryl Hansen

Attn: Deanna L. Harding



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

4105977 Lancaster Laboratories Sample No. WW

Collected:08/18/2003 00:00

Account Number: 10904

Submitted: 08/21/2003 09:30 Reported: 09/05/2003 at 16:56

ChevronTexaco 6001 Bollinger Canyon Rd L4310

San Ramon CA 94583

Discard: 10/06/2003

QA-T-030818

Water

Facility# 90329 Job# 386493

GRD

340 Highland Piedmont

T0600101885 QA

885TB

CAT		,	As Received	As Received Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of Tigasoline constituents eluting pastart time. A site-specific MSD sample was awas performed to demonstrate pro-	rior to the C6	(n-hexane) TPH-G for the project.	RO range A LCS/LCSD		
06054	BTEX+MTBE by 8260B					
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1 _
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N,D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of California Lab Certification No. 2116

	•	Laboratory	Chro	nicle		
CAT		_		Analysis		Dilution Factor
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	08/22/2003 14:44	K. Robert Caulfeild- James	1
06054	BTEX+MTBE by 8260B	SW-846 8260B	1	08/23/2003 23:04	Elizabeth M Taylor	1
01146	GC VOA Water Prep	SW-846 5030B	1	08/22/2003 14:44	K. Robert Caulfeild- James	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/23/2003 23:04	Elizabeth M Taylor	n.a.



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

Lancaster Laboratories Sample No. WW 4105979

ollected:08/18/2003 14:36

Account Number: 10904

Submitted: 08/21/2003 09:30

eported: 09/05/2003 at 16:57 iscard: 10/06/2003

ChevronTexaco

6001 Bollinger Canyon Rd L4310

-3-W-030818

Grab

Water

San Ramon CA 94583

As Pessived

acility# 90329 Job# 386493

GRD

40 Highland Piedmont T0600101885 C-3

885C3

				As Keceived		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of gasoline constituents eluting start time. A site-specific MSD sample was was performed to demonstrate p	prior to the Co not submitted	for the project	. A LCS/LCSD		
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH	ı				
01587	Ethanol	64-17-5	N.D.	50.	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/1	1
05407	Toluene	108-88-3	N.D.	0.5	ug/l	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/l	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of California Lab Certification No. 2116

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Pactor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline	1	08/22/2003 16:47	K. Robert Caulfeild- James	1
01594	BTEX+5	Method SW-846 8260B	1	08/24/2003 14:39	Elizabeth M Taylor	1
01146	Oxygenates+EDC+EDB+ETOH GC VOA Water Prep	SW-846 5030B	1	08/22/2003 16:47	K. Robert Caulfeild- James	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/24/2003 14:39	Elizabeth M Taylor	n.a.



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 1

4105981 Lancaster Laboratories Sample No.

Collected: 08/18/2003 15:50

by FT

Account Number: 10904

Submitted: 08/21/2003 09:30

Reported: 09/05/2003 at 16:57

ChevronTexaco

6001 Bollinger Canyon Rd L4310

Discard: 10/06/2003

C-6-W-030818

Grab Water San Ramon CA 94583

Facility# 90329 Job# 386493

GRD

340 Highland Piedmont

T0600101885 C-6

885C6

				As Received		
CAT			As Received	Method		Dilution
No.	Analysis Name	CAS Number	Result	Detection Limit	Units	Factor
01728	TPH-GRO - Waters	n.a.	N.D.	50.	ug/l	1
	The reported concentration of ? gasoline constituents eluting patart time. A site-specific MSD sample was was performed to demonstrate page 200.	prior to the C6 not submitted recision and ac	<pre>for the project.</pre>	GRO range  A LCS/LCSD		
01594	BTEX+5 Oxygenates+EDC+EDB+ETOH					
01587	Ethanol	64-17-5	N.D.	50.	ug/l	1
02010	Methyl Tertiary Butyl Ether	1634-04-4	N.D.	0.5	ug/l	1
05401	Benzene	71-43-2	N.D.	0.5	ug/l	1
05407	Toluene	108-88-3	N.D.	0.5	ug/1	1
05415	Ethylbenzene	100-41-4	N.D.	0.5	ug/1	1
06310	Xylene (Total)	1330-20-7	N.D.	0.5	ug/l	1

State of California Lab Certification No. 2116

CAT		Laboratory	Chro	nicle Analysis		Dilution
No.	Analysis Name	Method	Trial#	Date and Time	Analyst	Factor
01728	TPH-GRO - Waters	N. CA LUFT Gasoline Method	1	08/22/2003 17:48	K. Robert Caulfeild- James	1
01594	BTEX+5	Method SW-846 8260B	1	08/24/2003 16:41	Elizabeth M Taylor	1
01146	Oxygenates+EDC+EDB+ETOH GC VOA Water Prep	SW-846 5030B	1	08/22/2003 17:48	K. Robert Caulfeild- James	n.a.
01163	GC/MS VOA Water Prep	SW-846 5030B	1	08/24/2003 16:41	Elizabeth M Taylor	n.a.



2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

#### Quality Control Summary

Client Name: ChevronTexaco

Group Number: 864015

Reported: 09/05/03 at 04:57 PM

#### Sample Matrix Quality Control

		Damp	10 1100			<u> </u>			
	MS	MSD	ms/msd		RPD	BKG	DUP	DUP	Dup RPD
Analysis Name	%REC	%REC	<u>Limits</u>	RPD	MAX	Conc	Conc	<u>RPD</u>	Max
ethyl Tertiary Butyl Ether	110	105	69-134	4	30				
enzene	112	111	83-128	1	30				
oluene	106	104	83-127	2	30				
Ethylbenzene	107	106	82-134	1	30				
Xylene (Total)	110	107	82-130	3	30				

#### Surrogate Quality Control

nalysis Name: TPH-GRO - Waters satch number: 03236A16A Trifluorotoluene-F

105977 113 105978 126 105979 112

4105980 111 4105981 110 1lank 112 LCS 116 LCSD 117 MS 115

imits: 57-146

nalysis Name: BTEX+5 Oxygenates+EDC+EDB+ETOH

Batch number: P032351AA

Dibromofluoromethane		1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenz	
1105977	104	101	100	98	
1105977	102	102	100	103	
Blank	104	· 101 103	101 101	97 103	
LCS MS	101 103	109	103	103	
ISD	102	103	103	106	
Limits:	B1-120	82-112	85-112	83-113	

Analysis Name: BTEX+5 Oxygenates+EDC+EDB+ETOH

	per: P032351AB Dibromofluoromethane	1,2-Dichloroethane-d4	Toluene-d8	4-Bromofluorobenzene
4105979	103	102	100	98
4105981	101	99	101	97
	103	100	100	97
Blank LCS	101	103	101	103
MS	103	109	103	103
MSD	102	103	103	106
Limits:	81-120	82-112	85-112	83-113

Analysis Name: BTEX+5 Oxygenates+EDC+EDB+ETOH

Batch number: P032361AA

*- Outside of specification

(1) The result for one or both determinations was less than five times the LOQ.

(2) The background result was more than four times the spike added.



## **Explanation of Symbols and Abbreviations**

Inorganic Qualifiers

ne following defines common symbols and abbreviations used in reporting technical data:

N.D. none detected TNTC Too Numerous To Count IU International Units Imhos/cm micromhos/cm C degrees Celsius Imeq milliequivalents I g gram(s) I milliliter(s) I milliliter(s) I cubic meter(s)	BMQL Below Minimum Quantitation Level MPN Most Probable Number CP Units cobalt-chloroplatinate units NTU nephelometric turbidity units F degrees Fahrenheit Ib. pound(s) kg kilogram(s) mg milligram(s) liter(s) ul microliter(s)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

- less than The number following the sign is the limit of quantitation, the smallest amount of analyte which can be reliably determined using this specific test.
- greater than
- estimated value The result falls within the Method Detection Limit (MDL) and Limit of Quantitation (LOQ). J
- parts per million One ppm is equivalent to one milligram per kilogram (mg/kg), or one gram per million grams. For ppm aqueous liquids, ppm is usually taken to be equivalent to milligrams per liter (mg/l), because one liter of water has a weight very close to a kilogram. For gases or vapors, one ppm is equivalent to one microliter of gas per liter of gas.
- parts per billion ppb

Results printed under this heading have been adjusted for moisture content. This increases the analyte weight Dry weight concentration to approximate the value present in a similar sample without moisture. All other results are reported basis on an as-received basis.

#### J.S. EPA CLP Data Qualifiers:

X,Y,Z

Organic Q	ualitiers
-----------	-----------

	Organio Quannois		•
A B C D E	TIC is a possible aldol-condensation product Analyte was also detected in the blank Pesticide result confirmed by GC/MS Compound quantitated on a diluted sample Concentration exceeds the calibration range of the instrument	B E M N S	Value is <crdl, (msa)="" additions="" but="" calculation<="" control="" due="" duplicate="" estimated="" for="" injection="" interference="" limits="" met="" method="" not="" of="" precision="" sample="" spike="" standard="" th="" to="" used="" within="" ≥idl=""></crdl,>
N	Presumptive evidence of a compound (TICs only)	U	Compound was not detected
P	Concentration difference between primary and	W	Post digestion spike out of control limits
	confirmation columns >25%	*	Duplicate analysis not within control limits
U	Compound was not detected	+	Correlation coefficient for MSA < 0.995

Analytical test results for methods listed on the laboratories' accreditation scope meet all requirements of NELAC unless otherwise noted under the individual analysis.

Measurement uncertainty values, as applicable, are available upon request.

Defined in case narrative

Tests results relate only to the sample tested. Clients should be aware that a critical step in a chemical or microbiological analysis is the collection of the sample. Unless the sample analyzed is truly representative of the bulk of material involved, the test results will be meaningless. If you have questions regarding the proper techniques of collecting samples, please contact us. We cannot be held responsible for sample integrity, however, unless sampling has been performed by a member of our staff. This report shall not be reproduced except in full, without the written approval of the laboratory.

WARRANTY AND LIMITS OF LIABILITY - In accepting analytical work, we warrant the accuracy of test results for the sample as submitted. THE FOREGOING EXPRESS WARRANTY IS EXCLUSIVE AND IS GIVEN IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED. WE DISCLAIM ANY OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING A WARRANTY OF FITNESS FOR PARTICULAR PURPOSE AND WARRANTY OF MERCHANTABILITY. IN NO EVENT SHALL LANCASTER LABORATORIES BE LIABLE FOR INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES INCLUDING, BUT NOT LIMITED TO, DAMAGES FOR LOSS OF PROFIT OR GOODWILL REGARDLESS OF (A) THE NEGLIGENCE (EITHER SOLE OR CONCURRENT) OF LANCASTER LABORATORIES AND (B) WHETHER LANCASTER LABORATORIES HAS BEEN INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. We accept no legal responsibility for the purposes for which the client uses the test results. No purchase order or other order for work shall be accepted by Lancaster Laboratories which includes any conditions that vary from the Standard Terms and Conditions of Lancaster Laboratories and we hereby object to any conflicting terms contained in any acceptance or order submitted by client.

# Appendix E Hydrocarbon Concentration Trend Analyses

#### Hydrocarbon Concentrations in Well C-2, Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, California

Raw Data		TPHg	Benzene	мтве
Date	GWE	(ug/l)	(ug/I)	(ug/L)
8/7/89	340.51	34,000	580	(Legis)
11/15/89	340.59	8,100	500	
2/1/91	339.64	6,800	490	
4/16/91	340.84	9,600	810	
10/16/91	339.87	7.100	320	
1/8/92	339.24	2,400	190	
4/10/92	340.43	6,600	550	i
7/14/92	340.56	9,000	680	
10/5/92	339.01	5,500	250	
1/6/93	339.45	5,500	190	
3/29/93	341.30	19,000	670	
7/2/93	341.30	8,000	1,100	
10/11/93	340.63	42.000	940	
1/10/94	338.57	12,000	770	
4/6/94	340.90	40,000	820	
7/6/94	340.92	8,800	870	
11/11/94	340.52	8,600	460	
1/6/95	340.84	15,000	880	
4/13/95	341.33	56,000	2,500	
7/25/95	341.25	11,000	1,000	· · · · · · · · · · · · · · · · · · ·
10/5/95	340.88	13,000	1,000	
1/2/96	341.17	9,500	1,300	64,000
4/11/96	341.47	<10,000	1,300	74,000
7/8/96	341.34	<20,000	1.200	110,000
10/3/96	341.10	<25,000	1,200	140,000
1/23/97	341.49	20,000	1,100	110,000
2/14/97	341.42			150,000
4/8/97	341.12	<50,000	1,100	160,000
7/9/97	341.41	<50,000	1,300	210,000
10/8/97	341.09	18,000	1,400	160,000
1/22/98	341.71	10,000	860	70,000
4/15/98	342.19	<10,000	1,400	46,000
7/9/98	341.92	33,000	1,700	120,000
10/2/98	341.26	11,000	920	100,000
1/18/99	341.55	<25,000	1,770	78,300
4/19/99	342.22	9.900	1,110	33,300
9/28/99	340.58	11,500	1,100	26,200
10/27/99	340.41	9,440	711	17,500
1/17/00	341.04	12,200	813	21,200
4/11/00	342.08	210	26	580
7/12/00	341.60	18,100	1,350	19,200
10/7/00	341.69	8,860	1,070	20,000
1/5/01	341.82	14,000	2,000	17,000
4/5/01	342.02	4,900	330	1,200
8/20/01	340.87	7,300	1,100	7,200
11/26/01	342.04	9,500	650	3,100
2/25/02	342.57	5,300	340	1,400
5/17/02	341.54	6,300	160	5,100
8/13/02	341.44	8,800	670	3,700
11/23/02	341.77	9,400	490	1,900
2/17/03	342.74	7,000	340	3,800
5/19/03	342.47	2,500	390	6,000
8/18/03	342.34	6,400	300	3,500

Date	GWE	TPHg (ug/l)	Benzene (ug/l)	Date	GWE	MTE (ug/l
8/7/89	340.51	34,000	580	8/7/89	340.51	(56.
11/15/89	340,59	8,100	500	11/15/89	340.59	
2/1/91	339.64	6,800	490	2/1/91	339.64	
4/16/91	340.84	9,600	810	4/16/91	340.84	
10/16/91	339.87	7,100	320	10/16/91	339.87	
1/8/92	339.24	2,400	190	1/8/92	339.24	<del>                                     </del>
4/10/92	340.43	6,600	550	4/10/92	340.43	
7/14/92	340.56	9,000	680	7/14/92	340.56	
10/5/92	339.01	5,500	250	10/5/92	339.01	
1/6/93	339.45	5,500	190	1/6/93	339.45	
3/29/93	341.30	19,000	670	3/29/93	341.30	
7/2/93	341.30	8.000	1,100	7/2/93	341.30	
10/11/93	340.63	42,000	940	10/11/93	340.63	1
1/10/94	338.57	12,000	770	1/10/94	338.57	<del></del>
4/6/94	340.90	40,000	820	4/6/94	340.90	<del> </del>
7/6/94	340.92	8,800	870	7/6/94	340.92	<del> </del>
11/11/94	340.52	8,600	460	11/11/94	340.52	<del>                                     </del>
1/6/95	340.84	15,000	880	1/6/95	340.84	+
4/13/95	341.33	56,000	2,500	4/13/95	341.33	
7/25/95	341.25	11,000	1,000	7/25/95	341.25	<del>                                     </del>
10/5/95	340.88	13,000	1,000	10/5/95	340.88	<del>                                     </del>
1/2/96	341.17	9,500	1,300	1/2/96	341.17	64
4/11/96	341,47	5,000	1,300	4/11/96	341.47	74
7/8/96	341.34	10,000	1.200	7/8/96	341.34	110
10/3/96	341.10	12,500	1,200	10/3/96	341.10	140
1/23/97	341.49	20,000	1,100	1/23/97	341.49	110
4/8/97	341.12	25,000	1,100	2/14/97	341.42	150
7/9/97	341.41	25,000	1,300	4/8/97	341.12	160
10/8/97	341.09	18,000	1,400	7/9/97	341.41	210
1/22/98	341.71	10,000	860	10/8/97	341.09	160
4/15/98	342.19	5.000	1,400	1/22/98	341.71	70
7/9/98	341.92	33,000	1,700	4/15/98	342.19	46
10/2/98	341.26	11,000	920	7/9/98	341.92	120
J/18/99	341.55	12,500	1,770	10/2/98	341.26	100
4/19/99	342.22	9,900	1,110	1/18/99	341.55	78
9/28/99	340.58	11.500	1,100	4/19/99	342.22	33
10/27/99	340.41	9,440	711	9/28/99	340.58	26
1/17/00	341.04	12,200	813	10/27/99	340.41	17
4/11/00	342.08	210	26	1/17/00	341.04	21
7/12/00	341.60	18,100	1,350	4/11/00	342.08	
10/7/00	341.69	8,860	1,070	7/12/00	341.60	19
1/5/01	341.82	14,000	2,000	10/7/00	341.69	20
4/5/01	342.02	4,900	330	L/5/01	341.82	17
8/20/01	340.87	7,300	1,100	4/5/01	342.02	1
11/26/01	342.04	9,500	650	8/20/01	340.87	7
2/25/02	342.57	5,300	340	11/26/01	342.04	3
5/17/02	341.54	6,300	160	2/25/02	342.57	ī
8/13/02	341.44	8,800	670	5/17/02	341.54	5
11/23/02	341.77	9,400	490	8/13/02	341.44	3
2/17/03	342.74	7,000	340	11/23/02	341.77	ī
5/19/03	342.47	2,500	390	2/17/03	342.74	3
8/18/03	342.34	6,400	300	5/19/03	342.47	6

0	42,000				
91	12,000				
177	40,000				
268	8,800				
396	8,600				
452	15,000			_	
549	56,000	0	2,500	]	
652	11,000	103	1,000		
724	13,000	175	1,000		
813	9,500	264	1,300	1	
913	5,000	364	1,300	1	
1,001	10,000	452	1,200	!	
1,088	12,500	539	1,200	1	
1,200	20,000	651	1,100	1	
1,275	25,000	726	1,100	1	
1,367	25,000	818	1,300	<u> </u>	
1,458	18,000	909	1,400	0	210,000
1,564	10,000	1,015	860	91	160,000
1,647	5,000	1,098	1,400	197	70,000
1,732	33,000	1,183	1,700	280	46,000
1,817	11,000	1,268	920	365	120,000
1,925 2,016	12,500 9,900	1,376	1,770 1,110	450 558	100,000 78,300
2,178	11,500	1,629	1,100	649	33,300
2,207	9,440	1,658	711	811	26,200
2,289	12,200	1,740	813	840	17,500
2,265	210	1,825	26	922	21,200
2,466	18,100	1,917	1,350	1,007	580
2,553	8,860	2,004	1,070	1,007	19,200
2,643	14,000	2,094	2,000	1,186	20,000
2,733	4,900	2,184	330	1,276	17,000
2,870	7,300	2,321	1,100	1,366	1,200
2,968	9,500	2,419	650	1,503	7,200
3,059	5,300	2,510	340	1,601	3,100
3,140	6,300	2,591	160	1,692	1,400
3,228	8,800	2,679	670	1,773	5,100
3,330	9,400	2,781	490	1,861	3,700
3,416	7,000	2,867	340	1,963	1,900
3,507	2,500	2,958	390	2,049	3,800
4 342				•	

Days Since Benzene

4/13/1995 (ug/L)

MTBE

(ug/L)

7/9/1997

Data Used for Trend Analysis

TPHg

(ug/L)

Days Since

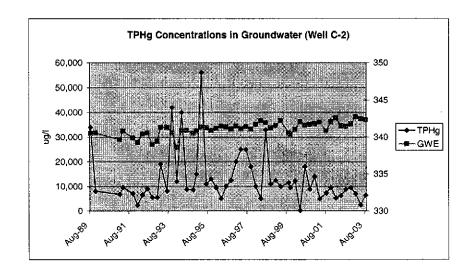
10/11/1993

3,598

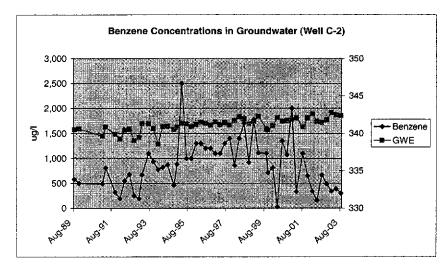
6,400

Assumed <X=X/2

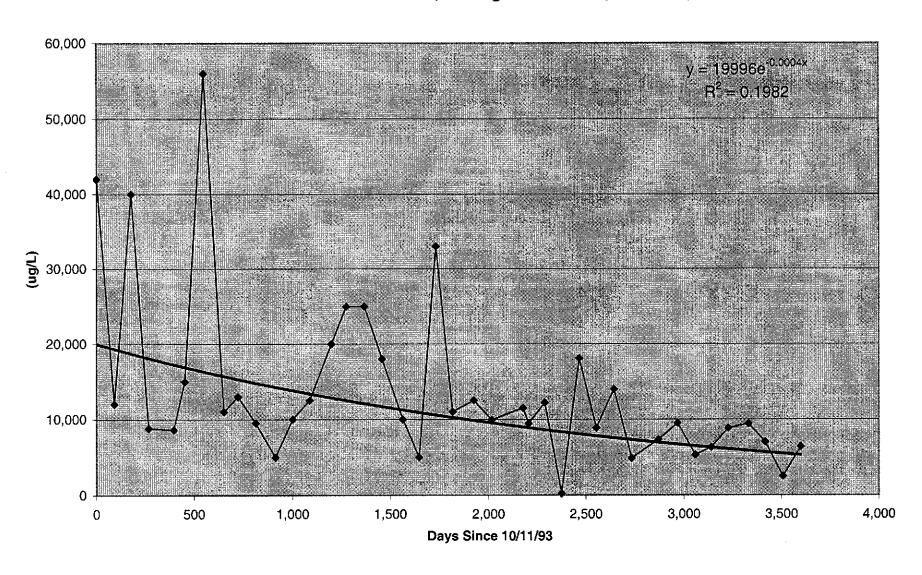
Assumed <X=X/2


3,049

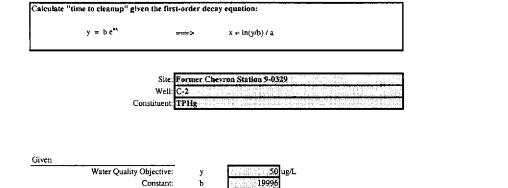
300


2,140 2,231

6,000 3,500

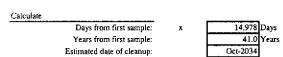

#### Hydrocarbon Concentrations In Groundwater, Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, California





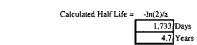


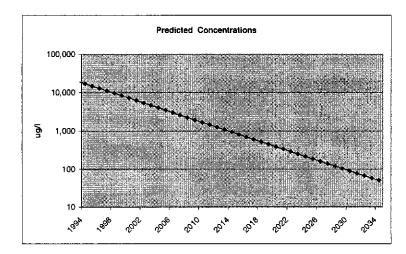

# TPHg Concentration Trends in Groundwater (Well C-2) Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, CA




#### Predicted Time to Cleanup of TPHg in Well C-2, Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, California



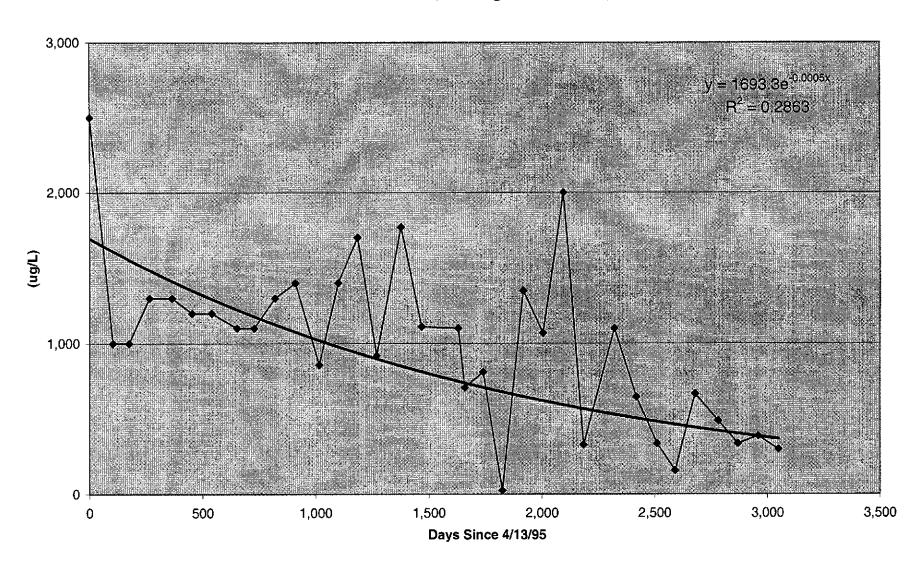

-0.0004


10/11/1993

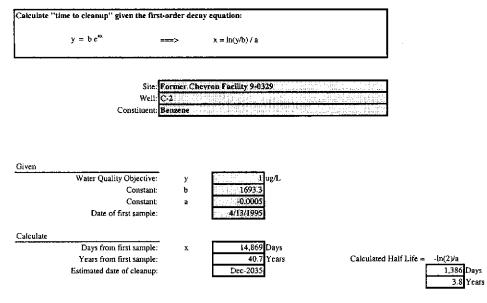


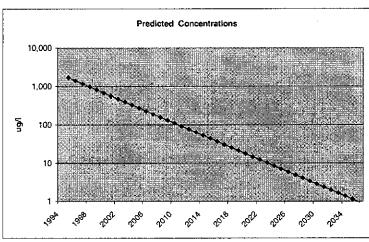
Constant:

Date of first sample:





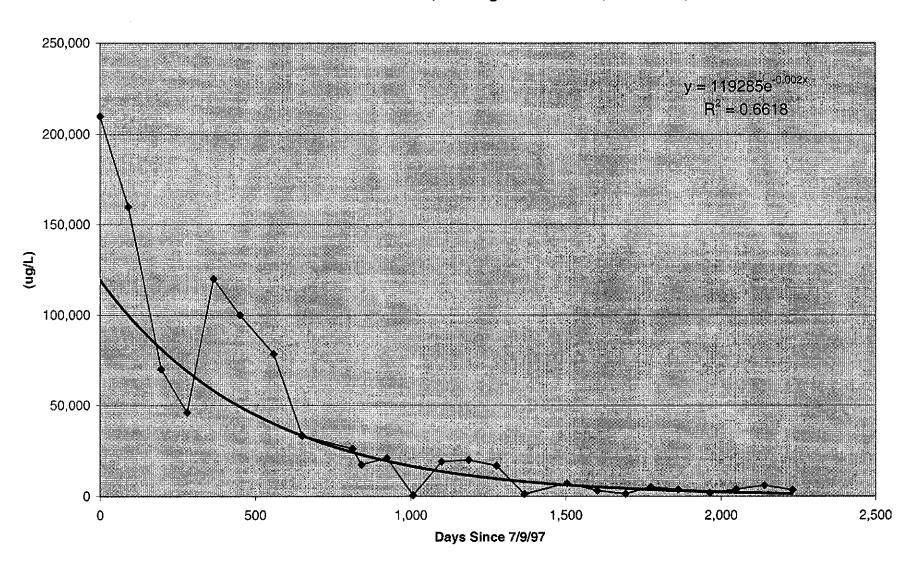


#### Concentration Trend Prediction


	Days from	Predicted
Date	First Sample	Concentration (ug/l)
10/11/1993	0	19,996
10/11/1994	365	17,280
10/11/1995	730	14,932
10/11/1996	1,096	12,899
10/11/1997	1,461	11,147
10/11/1998	1,826	9,632
10/11/1999	2,191	8,324
10/11/2000	2,557	7,190
10/11/2001	2,922	6,214
10/11/2002	3,287	5,369
10/11/2003	3,652	4,640
10/11/2004	4,018	4,008
10/11/2005	4,383	3,464
10/11/2006	4,748	2,993
10/11/2007	5,113	2,587
10/11/2008	5,479	2,234
10/11/2009	5,844	1,931
10/11/2010	6,209	1,669
10/11/2011	6,574	1,442
10/11/2012	6,940	1,245
10/11/2013	7,305	1,076
10/11/2014	7,670	930
10/11/2015	8,035	804
10/11/2016	8,401	694
10/11/2017	8,766	600
10/11/2018	9,131	518
10/11/2019	9,496	448
10/11/2020	9,862	387
10/11/2021	10,227	334
10/11/2022	10,592	289
10/11/2023	10,957	250
10/11/2024	11,323	216
10/11/2025	11,688	186
10/11/2026	12,053	161
10/11/2027	12,418	139
10/11/2028	12,784	120
10/11/2029 10/11/2030	13,149 13,514	104 90
10/11/2030	13,879	90 78
10/11/2031	14,245	67
10/11/2032	14,610	58
10/11/2034	14,975	50
1011112034	17,710	30

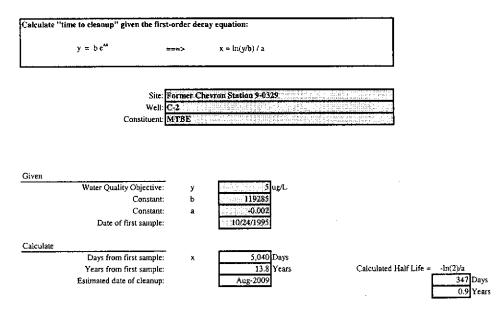
### Benzene Concentration Trends in Groundwater (Well C-2) Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, CA

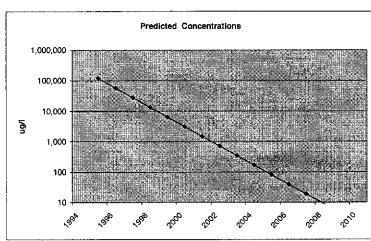


#### Predicted Time to Cleanup of Benzene in Well C-2, Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, California







#### Concentration Trend Prediction


	Days from	Predicted
Date	First Sample	Concentration (ug/l)
4/13/1995	0	1,693
4/13/1996	366	1,410
4/13/1997	731	1,175
4/13/1998	1,096	979
4/13/1999	1,461	816
4/13/2000	1,827	679
4/13/2001	2,192	566
4/13/2002	2,557	472
4/13/2003	2,922	393
4/13/2004	3,288	327
4/13/2005	3,653	273
4/13/2006	4,018	227
4/13/2007	4,383	18 <del>9</del>
4/13/2008	4,749	158
4/13/2009	5,114	131.3
4/13/2010	5,479	109.4
4/13/2011	5,844	91.1
4/13/2012	6,210	75.9
4/13/2013	6,575	63.2
4/13/2014	6,940	52.7
4/13/2015	7,305	43.9
4/13/2016	7,671	36.6
4/13/2017	8,036	30.5
4/13/2018	B,401	25.4
4/13/2019	8,766	21.1
4/13/2020	9,132	17.6
4/13/2021	9 497	14.7
4/13/2022	9,862	12.2
4/13/2023	10,227	10.2
4/13/2024	10,593	8.5
4/13/2025	10,958	7.1
4/13/2026	11,323	5.9
4/13/2027	11,688	4.9
4/13/2028	12,054	4.1
4/13/2029	12,419	3.4
4/13/2030 4/13/2031	12,784	2.8 2.4
4/13/2031 4/13/2032	13,149 13,515	2.4
4/13/2032	13,880	1.6
4/13/2034	14,245	1.4
4/13/2035	14,610	1.1
4/13/2036	14,976	0.9
7/13/2000	171710	0.7

### MTBE Concentration Trends in Groundwater (Well C-2) Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, CA



#### Predicted Time to Cleanup of MTBE in Well C-2, Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, California





#### Concentration Trend Prediction

	Days from	Predicted	
Date	First Sample	Concentration (ug/l)	
10/24/1995	0	119,285	
10/24/1996	366	57,370	
10/24/1997	731	27,647	
10/24/1998	1,096	13,323	
10/24/1999	1,461	6,421	
10/24/2000	1,827	3,088	
10/24/2001	2,192	1,488	
10/24/2002	2,557	717	
10/24/2003	2,922	2,922 346	
10/24/2004	3,288	3,288 166	
10/24/2005	3,653	80	
10/24/2006	4,018	39	
10/24/2007	4,383	19	
10/24/2008	4,749	9	
10/24/2009	5,114	4	

Table 1 Well Construction Data, Former Chevron Station 9-0329, 340 Highland Avenue, Piedmont, California

	Top of Casing	Total		Screen	
Well	Elevation (ft msl)	Depth (ft)	Diameter (in)	Interval (fbg)	Comments
C-1	Unknown	17.0	2	Unknown	This well was never sampled. It's status is unknown.
C-2	343.39	17.0	2	Unknown	Logs do not indicate screen interval
C-3	347.08	17.0	2	Unknown	Logs do not indicate screen interval
C-4	344.94	13.0	2	Unknown	Logs do not indicate screen interval
C-5	345.14	18.0	2	3-18	·
C-6	338.61	17.5	2	2.5-17.5	
MW-6	Not Surveyed	20.0	2	5-20	Well abandoned

ft = feet

msi = mean sea level

fbg = ft below grade in = inches

Appendix F
Well Survey Data

RESMA RESMA RESMA

## APPENDIX A

WATER WELL INVENTORY

	L¢		36.
		W 24,25	۸، .
Inventory of Wells Lo	cated in Township     Range	$\frac{30}{17}$ , Section $\frac{17}{19}$ , Count	y Handa
		30, 29, 20, 18	Year
Owner	Owner's Address	Well Location	Drilled Us
· <u> </u>	PROLOGRAPHY St , Ochand	Soft & Jockyane Ave OK	1975 Catho
EGMOD	2130 Addice 51	5701 S'evenoul Dr	1981 Cath
M. Danteon	#7 Vightout, Product		1977 Dom
	1 .	132 Dracena St. Pm.	1977 Cerch
EBMOD		Grand & Holly M.	1976 Ctl
Coly of Bred make		Dracena Parle	1976 Ctl 1977 Irri
11		Fs.	11
ECHUD		Crand Ave a Holly 121	1982 CA
John to Both Jr	125 Lillside Ave, Pt.		58 IV
Travlery	326 El Carrito		77 Pon
Assat	304 Hill side		7.7 Do
Part Heitelman	321 Hill side		91 0
Transa policina	781 Highland Ave. Pt.	1	1782 58 77 77 77 77 77 77 77 77 77 7
The set of the sent	Hyrmed & Val Visia		79 Ir
that To the parties of the second	151 Hazel Ln Pa		<u> 39</u> Do
Thomas B. Crowley	55 Hazel Ln Pt.		85 Irr
Alon B. Dacks	321 Mountain Ale F.		<u>88 In</u>
Ernest J. Surrelland	321 Hillside P		<u>?</u> ?
Albert Hermins	1600 Fernwind Ok		91 <u>Irv</u>
EBMUD		Mexice Itom Rd & Harbard De	r 86 Cat
Robert Clean	6017 Laselle Montelair		77 IV
Gary Tolle	6313 Estates Dr Or		91 Pon 81 Cat
ERMUD		5980 Wood Dr.	77
P. G. S. L.		Blair De + Mountain Ave	75 Car
Browley Corp	50 Bonle St Son Transito	26 Seaview Pt.	77 IN
Alboe '	445 Blandam P. M. Reduct	·	3 Pom

		1>	•	7W	24,25		
Inventory of Wells Lo	cated in Towns	ship <u> </u> \$	_ Range _	3W Section	17.15 , Coun	ty Alam	e dr
			_		19, 20, 29, 30		
Owner	Owner'	s Addres	s	Well I	ocation	Year <u>Drilled</u>	<u>Use</u>
Dr. + Mrs. D. Ginber	37 Bellyu	e Ave	Preduct	v-			Don
Davis	41 Senur		11	· ·		7.2	<del></del>
Pyre	6 Stav		( r		· · · · · · · · · · · · · · · · · · ·	77	Don.
Mr. Bodes	20 Bell		*			77	Don.
Jack Shuman		lain Ale	F 1			<u> </u>	Don.
Bothy + Kirk Word	Z Senvie	ట	11			77777777777777999	Jr.
D.A. Melcos	42 Glen A	Inike	11			77	Pon.
James F McCloud	45 Glen	•	\			77	Donne
EW JAIMCSON	37 Glen	Alpine	¥)			77	Dom
Mr. Meters	61 Elen	Alpine	. 1	i		77	ITYY.
Ruth Tornbord	15 Gien	Alpire	11			77	Don.
Public licover	46 Sotela		H .			<u> </u>	Dom.
PG + F	Mastell Ave					<u> 74 </u>	<u></u>
Shell oil in	B.O. BOX 4053		ul		d Au. Piedunt	<u> </u>	Man.
), U		Lt.			(A	۵٬۵	Mon
ti et	ek .	ч ч		<u> </u>	. 4	59	Mon
1.		м		44	- t	59 89	Mon
11	·		····	7		39	سيهو لرا
Martin (s.	3669 Craid A	<del></del>	.C. 12.	3509 Grand	<del></del>	90	Mon
Ehroven USA, Inc.	2418 ( 300733		"Doute featists	no Gent	with the word of the generalized	10	Mon
				<del></del>		<del></del>	
		<del></del>					
	**************************************	<del></del>		· · · · · · · · · · · · · · · · · · ·		·	
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			•
Dom = Domestic IV	To a dia	M	Mendace		2.11 1.3		
Dam - Damerica	V. Trvigation	, t., bw .	A SOUTH CE	) (att = (	atus dec	•	



June 1, 1998

Chevron Products Company 6001 Bollinger Canyon Road Building L San Ramon, CA 94583 P.O. Box 6004 San Ramon, CA 94583-0904

Marketing - Sales West Phone 510 842-9500

Ms. Pamela J. Evans Alameda County Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Re: Former Chevron Service Station #9-0329

340 Highland Avenue Piedmont, California

Dear Ms. Evans:

Enclosed is the Water Well and Surface Water Survey that was conducted by our consultant Pacific Environmental Group Inc., for the above noted site. This survey was requested in your letter of March 18, 1998, and was for an area within ¼ mile of the site.

The water well survey conducted at the Department of Water Resources determined that four domestic and four irrigation wells are located within the surveyed area. Four of these wells are located southerly and down gradient of the site.

The closest down gradient well to the site is the City of Piedmont well #4, which is used for irrigation. This well is located approximately 0.11 miles (580 feet) south of the site. The well is screened from 150 to 170 feet and 190 to 210 feet below ground surface. The closest site monitoring wells MW-5 and MW-6 to City well #4 are screened from about 2 ½ to 18 feet and are in a high recharge acquifer near the surface (<5 feet). The soil lithology for these wells below the 5-foot level, is siltstone and sandstone, which would act as a confining barrier between the lower acquifer (copy of well logs enclosed).

The other three down gradient wells #7, #6 and #5 are located 0.17 miles (897 feet), 0.19 miles (1003 feet) and 0.19 miles (1003 feet) respectively south of the site. Well #7 is used for irrigation and is screened from 55 to 275 feet. Well #6 is used for irrigation and is screened from 57 to 157 feet. Well #5 is used for domestic water supply and is screened from 40 to 100 feet.

June 1, 1998 Ms. Pamela Evans Former Chevron Service Station #9-0329 Page 2

None of the down gradient wells are screened in the upper acquifer and with the confining siltstone/sandstone barrier between the upper and lower acquifers, it would not be expected that the down gradient wells would be impacted from the hydrocarbons that have been detected at the site.

If you have any questions or comments please all me at (510) 842-9136.

Sincerely,

#### CHEVRON PRODUCTS COMPANY

Philip R. Briggs Site Assessment and Remediation Project Manager

#### Enclosure

Cc. Mr. Chuck Headlee RWQCB-San Francisco Bay Region 2101 Webster Street, Suite 500 Oakland, CA 94612

> Mr. Frank Hoffman Hoffman Investment Company 1760 Willow Road Hillsborough, CA 94010

Mir Ghafari & Fred Manoucheri Piedmont Enterprises 340 Highland Avenue Piedmont, CA 94611

Ms. Bette Owen, Chevron

Ms. Anne Payne, Chevron, ChvPkv/V-1156



AN TO COMPANY

May 29, 1998 Project 320-160.1B

Mr. Phil Briggs Chevron Products Company P.O. Box 6004 San Ramon, California 94583-804

Re: Water Well and Surface Water Survey
Chevron Service Station 9-0329
340 Highland Avenue at Vista Avenue
Piedmont, California

Dear Mr. Briggs:

The water well survey conducted at the Department of Water Resources for the site referenced above (Figure 1) determined that four domestic water-supply wells, and four irrigation wells are located within 1/4 mile of the site. Available well details are presented in Table 1 and brief descriptions of these wells follows:

- The domestic water-supply wells are owned by individuals for use at their private residences. The nearest domestic well to the site is Well #2 (19P4) located approximately 0.17 miles west-southwest of the site.
- Three of the irrigation wells are owned by individuals, the closest of which, Well #7 (19Q) is approximately 0.17 miles southeast of the site.
- The City of Piedmont well (Well #4, 19Q2) used for irrigation, is the closest well to the site at 0.11 miles to the south. The well is screened from 150 to 170 feet and 190 to 210 feet below ground surface. Further well construction details are not currently known.

The surface water survey identified only one creek within a 1/4-mile radius of the site. A small intermittent creek flows through Piedmont Park and is located approximately 360 feet southeast of the site.

Groundwater gradient at the site has been generally to the southwest. Therefore, the City of Piedmont irrigation well #4 and the intermittent creek located in Piedmont Park are the closest downgradient receptors. Elevated concentrations of methyl tert-butyl ether have been identified in on-site Well C-2. Wells C-5, C-6 should continue to be monitored to evaluate plume status (Figure 2).

If you have any questions or require further information, please call.

Sincerely,

Pacific Environmental Group, Inc.

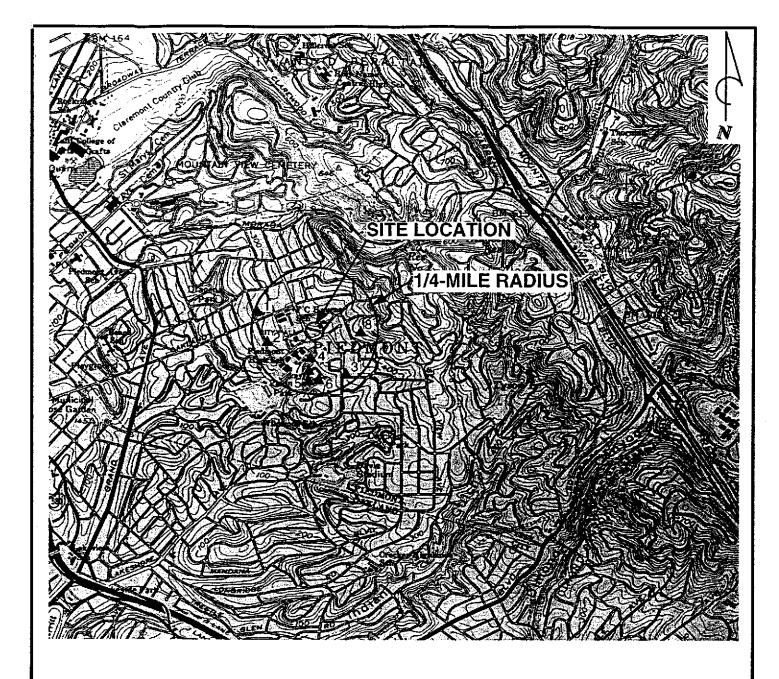
Ross Tinline

Project Geologist

RG 5860

Attachments: Table 1 - Summary of Water Wells

Figure 1 - Site Location Map


Figure 2 - Site Map

# Table 1 Summary of Water Wells Located Within 1/4-Mile Radius of

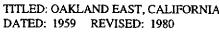
#### Chevron Service Station 9-0329 340 Highland Avenue at Vista Avenue Piedmont, California

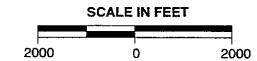
Well		Lacathan			Well	Total	Screened	Distance
		Location	Well	Date	Diameter	Depth	Interval	From Site
<u>ID</u>	Section	(if listed in DWR records)	Ųse	Drilled	(inches)	(feet, bgs)	(feet, bgs)	(miles)
	86.689 358 889 8		cold cool considerate interior for			earch of recovering	A Paragraph and more editions of the first first	M. Cray Poly C. S.
1	19P3	304 Hilfside Near Oakland	Domestic	1977	6	220	NA	0.20 NW
138 1800					35.000000000000000000000000000000000000	5000 0000 0000 0000 1 1 1 1 1 1 1 1 1 1		
2	19P4	321 Hillside at Vista	Domestic	02/04/91	5	161	54-74	0.17 WSW
000000000000000000000000000000000000000								
3	19Q1	781 Highland	Domestic	5/14/77	6	200	NA	0.23 SE
					With the Color Bridge a color	61 (4) 00 00 V 00 00 00 00 00 00 00 00 00 00 0	et et en 1997 i de estátable estátudo estados.	
4	19Q2	Piedmont Park	Irrigation	8/77	6	250	150-170, 190-210	0.11 S
						308088888	7 18 m. 1.2 mars, 19 19 19 19 19 19 19 19 19 19 19 19 19	10.113 10.113
5	19Q3	141 Hazel Lane	Domestic	5/17/88	45	100	.2013.6 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10	0.19 S
1693000	82198038136				องครองสาราธิการกระบ			0.18 S
6	19Q4	55 Hazel Lane near Highland Avenue	Irrigation	0/10/88	4.5	<b>15</b> 7	F7 457	
96.96968 869988	reinin ürene il			9/19/88	4.J	uali (a) La esta de la companyone de la companyone de la companyone de la companyone de la companyone de la companyone	<b>57-157</b> 986-2015 (2011) (1-1-1000) (1-1-1000)	0.19 SE
7	19Q	120 Hazel Lane	leelaatlaa	44000				
80098037888	880803803888	120 Fig2et Latte	Irrigation	11/3/92	4.5	300	55-275	0.17 SE
a 444.000000	19R1	321 Mountain between Mountain and Sharon				seculos (Social Social		
<b>0</b>	19K1 83388888888	J∠1 Mourtain Detween Mourtain and Sharon	Irrigation	6/23/88	4.5	220	80-180	0,23 E
						or gong Souceand propriet in the A. Angeles and A. Angeles >Angeles and A. Angeles and A.	일반으로 많아 아니라 하시하면 얼마를 보는 것	
gs≃ Be	elow ground :	surface						
A = No	ot available							

3,7






QUADRANGLE LOCATION


#### **REFERENCES:**

USGS 7.5 MIN. TOPOGRAPHIC MAP TITLED: OAKLAND EAST, CALIFORNIA

### **LEGEND**

 1   $\blacktriangle$  WATER SUPPLY WELL LOCATION AND DESIGNATION







**PACIFIC ENVIRONMENTAL** GROUP, INC.

#### **CHEVRON SERVICE STATION 9-0329**

340 Highland Avenue at Vista Avenue Piedmont, California

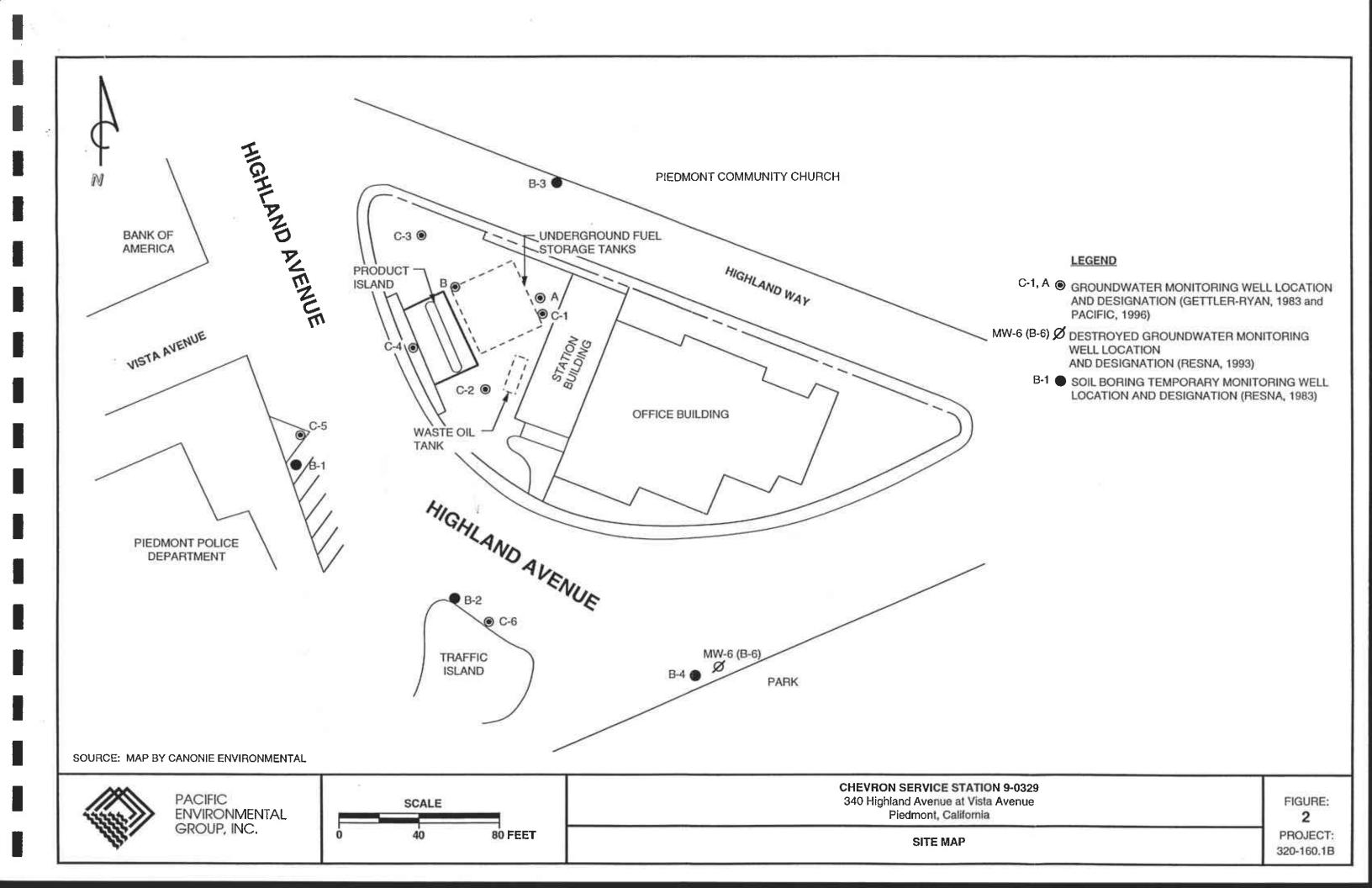

SITE LOCATION MAP

FIGURE: 1

PROJECT: 320-160.1B

FIGURE 3

COMPANY			JOB #	
			DATE	
CITY				
			CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT. CONT.	
Well ID.		Well Cond	lition	
Well Diameter	in	Hydrocar	bon Thickness	
Total Depth Depth to Liquid-		Factor	2'' = 0.17 $6'' = 1.503'' = 0.38$ $8'' = 2.604'' = 0.66$ $10'' = 4.10$	ļ
/ # of \		·	= (Estimated) Purge Volume) -	<del></del>
Purging Equipment				·
Sampling Equipment _				
				•
Starting Time	(Purging)	_ Purging Flo	gpm. = (Anticipated) - (Time)	gpm.
\ Volume /	Rate /		Time )-	min.
Time	рН (	Conductivity	Temperature	Volume
				·
		·		
		- 4		
			·	
	<u> </u>		,	
	<u> </u>			
Did well dewater?				
Sampling Time		Weather Cond	itions	
Analysis	· · · · · · · · · · · · · · · · · · ·	Bott	les Used	
Chain of Custody Numb	)er			
COMMENTS				
FOREXAN				



```
Sampling Crew Reviews Project
                                               Sampling Requirments/Schedule
                                                 field Decontamination and
                                                instrumentation Calibration
                                                  Check Integrity of Well
                                                 (Inspect for Well Damage)
                                            Measure and Record Depth to Water
                                                   and lotal Well Depth
                                                  (Electric Well Sounder)
                                                Check for Floating Product
                                               (Oll/water Interface Prove)
 losting Product
                                             Floating Product Hot
Fresent
                                             Present
 Confirm Product Thickness
                                            Purpe Volume Calculation
                              V = \pi(r/12)^2 h(_{f} = vol)(7.48) = _{f} /gallons
 (Acrylic or PVC Bailer)
                              V = Purge volume (gallons)
follest free-Product Sample
                              TI = 3 14159
                              h = Height of Water Column (feet)
 rissolved Product Sample
                              r = Borehole radius (inches)
Not Required
 econd Date on
                              Evacuate water from well equal to the calculated purge volume while
 ield Data form
                             monitoring groundwater stabilization indicator parameters (pH, conductivity, temperature)
                              at intervals of one casing volume.
      Well Dewaters after
                                                            Well Readily Recovers
      One Purge Volume
      (Low yield well)
      Well Recharges to 80% of
                                                            Record Groundwater Stability
      Initials Measured Water
                                                           Indicator Parameters from each
      Column Height in Feet
                                                            Additional Purge Volume
      within 24 hrs. of Evacuation.
                                                            Stability indicated when the following criteria are met:
      Heasure Groundwater Stability
                                                                           ± 0.1 pH units
      Indicator Parameters (pR,
                                                            Conductivity:
                                                                           ± 10%
      Temp., Conductivity)
                                                                           1.0 degree F
                                                            Tempertaure:
      Collect Sample and Complete
                                           Groundwater Stability
                                                                      Groundwater Stability
     Chain-of-Custody
                                           Achieved
                                                                      Not Achieved
                                                                     Continue Purging
                                           Collect Sample and
                                           Complete
                                                                     Until Stability is
                                           Chain-of-Custody
                                                                     Achieved
     Preserve Sample According
                                          Preserve Sample
                                                                      Collect Sample and
     to Required Chemical Analysis
                                          According to Required
                                                                     Complete Chain-of-
                                          Chemical Analysis
                                                                     Custody
                                                                     Preserve Sample
                                                                     According to Required
                                                                     Chemical Analysis
    Transport to Anayltical
                                          Transport to
    Laboratory
                                                                     Transport to
                                          Analytical Laboratory
                                                                     Analytical Laboratory
```



3164 Gold Camp Drive Suite 200 Rancho Cordova, California 95670-6021 916/638-2085 FAX: 916/638-8385

July 15, 2002

Mr. Scott Seery Alameda County Health Care Services 1153 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Subject:

Risk-Based Corrective Action Evaluation

Former Chevron Service Station No. 9-0329

340 Highland Avenue Piedmont, California DG90329H.3C01

Facility Number 9-03	29
General Correspondences	
Service Reqs./Proposals	
Permits/Bonds	
Drawings/Photos/Notes	
Spill & Leak Reports Legal/Easements/Lic.	
Reports	
ιισμοιτο	6.3

Mr. Seery:

At the request of Chevron Products Company (Chevron), Delta Environmental Consultants, Inc. network associate Gettler-Ryan Inc. (GR) is submitting this report to document the results of implementation of the Risk-Based Corrective Action (RBCA) planning process, as described in ASTM E2081-00 "Standard Guide for Risk-Based Corrective Action". This Tier 2 RBCA was conducted with site-specific data from the former Chevron service station located at 340 Highland Avenue in Piedmont, California. This RBCA was prepared to evaluate a future residential use scenario. The purpose of this work was to evaluate whether the residual hydrocarbons in the site soils and groundwater pose a risk to human health. This report describes site conditions and the RBCA model results for the site (Groundwater Services, Inc. RBCA Toolkit for Chemical Releases, version 1.3a).

#### Risk-Based Corrective Action (RBCA)

Tier 1 of the RBCA process involves comparison of the site constituent concentrations to generic Risk-Based Screening Levels (RBSL) to evaluate whether further evaluation and/or active remediation is warranted. RBSL values are derived from standard exposure equations and reasonable maximum exposure (RME) estimates per U.S. EPA guidelines. RBSL concentrations are designed to be protective of human health even if exposure occurs directly within the onsite area of impacted soil or groundwater, and inherently provides conservative estimates of potential threats to human health and the environment. According to the RBCA process, if Tier 1 limits are not exceeded, the user may proceed directly to compliance monitoring and/or no further action. However, if these defined screening levels are exceeded, the affected media may be addressed by: 1) remediating to the generic Tier 1 limits, if practicable; 2) conducting Tier 2 evaluation to develop site-specific remediation goals; or 3) implement an interim remedial action to abate risk "hot spots". Tier 2 analysis evaluates baseline risks both on and offsite, utilizing site specific soil, groundwater and air parameters. Additionally, Tier 2 analyses allow the use of transport models in calculating risks and cleanup standards related to offsite receptors, and utilizes Site Specific Target Levels (SSTL). The SSTL is a chemical of concern (COC) concentration limit (clean-up level) in the source medium derived by multiplying the risk-based exposure limit at the point of exposure by the natural attenuation factor for the exposure pathway.

Mr. Scott Seery July 15, 2002 Page 2

#### **Site Parameters**

Complete exposure pathways are those that could pose a reasonable potential for contaminant contact with human or environmental receptors. Under Tier 2 RBCA, both onsite and offsite receptors apply. For the purpose of this Tier 2 evaluation, a residential exposure pathway with a risk factor of 1.0E-6 was evaluated for the site. Groundwater beneath and in the site vicinity is not used for drinking water purposes, however, groundwater ingestion and subsurface soil leaching to groundwater (ingestion) exposure pathways were evaluated as a worst case scenario. The following risk pathways were evaluated: subsurface soil and groundwater volatilization to indoor and outdoor air; and ingestion, dermal contact and inhalation from groundwater, surficial and subsurface soils.

Where available, site specific physical data were used in this RBCA evaluation. Site specific parameters included contaminated soil area (5,000 ft²), depth to top of affected soil (5 ft), soil type (silty sand), length of affected soil parallel to wind (75 ft), length of affected soil parallel to groundwater flow (60 ft), groundwater gradient (0.13 ft/ft), thickness of affected subsurface soils (9 ft), groundwater plume width (60 ft) and groundwater plume thickness (12 ft). The depth of groundwater is estimated to be approximately 2 feet below ground surface (GR Fourth Quarter Event of November 26, 2001 Groundwater Monitoring and Sampling Report). Where appropriate and consistent with site conditions, default values were used. The Chemicals of Concern (COC) were evaluated with a conservative 95% Upper Control Limit (UCL) factor as well as the California adjusted oral slope factor for benzene (0.1) for this RBCA analysis. Total Petroleum Hydrocarbons as gasoline (TPHg) were evaluated by inputting the reported TPHg values from soil and groundwater into the aromatic fraction C8-C10 (Total Petroleum Hydrocarbon Criteria Working Group Series, Volume 5, June 1999).

### **Results of RBCA Analysis**

Based on information from previous site investigations and current groundwater monitoring and sampling data, the Tier 2 RBCA program evaluated the complete exposure pathways identified at the site. The RBCA program findings for the identified pathways are surface soil exposure with a cumulative risk factor of 1.3E-8, subsurface soil and groundwater volatilization to outdoor and indoor air exposures with cumulative risk factors of 3.7E-9 and 2.4E-7, respectively, and groundwater ingestion with a cumulative risk factor of 2.7E-5 (Appendix A, Tier 2 Baseline Risk Summary Table). Using the residential risk factor of 1.0E-6 and site conditions, the SSTLs for benzene, toluene, ethylbenzene, and xylenes (BTEX), methyl tert-butyl ether (MtBE), and TPHg were determined to be below established Tier 2 SSTLs (Appendix A, SSTL Values) for all pathways except the groundwater ingestion pathway. According to the RBCA decision making process, further work is warranted to protect against exposure via the groundwater ingestion pathway. However, since the groundwater beneath the site is not utilized for drinking purposes, GR is of the opinion that no further work is warranted at the site. Pertinent input and output data including site specific parameters used in the analysis are presented in Appendix A.

Mr. Scott Seery July 15, 2002 Page 3

#### **Conclusions And Recommendations**

GR performed the RBCA evaluation for the assessment and response to petroleum hydrocarbons in the subsurface soil and groundwater beneath the subject site. A Tier 2 evaluation was performed utilizing available site specific data. The results of these analyses confirm that current site conditions do not exceed the calculated Tier 2 SSTLs specific to the site (Appendix A), except with respect to benzene concentrations in groundwater. Based on the RBCA program and findings presented in this report, and that the shallow groundwater beneath and in the vicinity of the site is not used for drinking water purposes, it is GR's opinion that no further work is warranted and the site should be considered for case closure.

If you have any questions or comments on the enclosed materials, please feel free to contact us at (916) 631-1300.

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Network Associate GETTLER-RYAN INC.

Fed A. Douglas Senior Geologist

David W. Herzog Senior Geologist

R.G. 7211

Cc:

Figure 1. Site Location Map Attachments:

Figure 2. Site Plan

Appendix A. Tier 2 RBCA Input/Output Data

Ms. Karen Streich, Chevron Products Company, P.O. Box 6004, San Ramon, CA 94583

Mr. Chuck Headlee, RWQCB-SFB, 1515 Clay Street, Suite 1400, Oakland, CA 94612

Mr. Frank Hoffman, Hoffman Investment Co., 1760 Willow Road, Hillsborough, CA 94010

Mir Ghafari & Fred Manoucheri, Texaco Service Station 340 Highland Ave., Piedmont, CA 94611

No. 7211

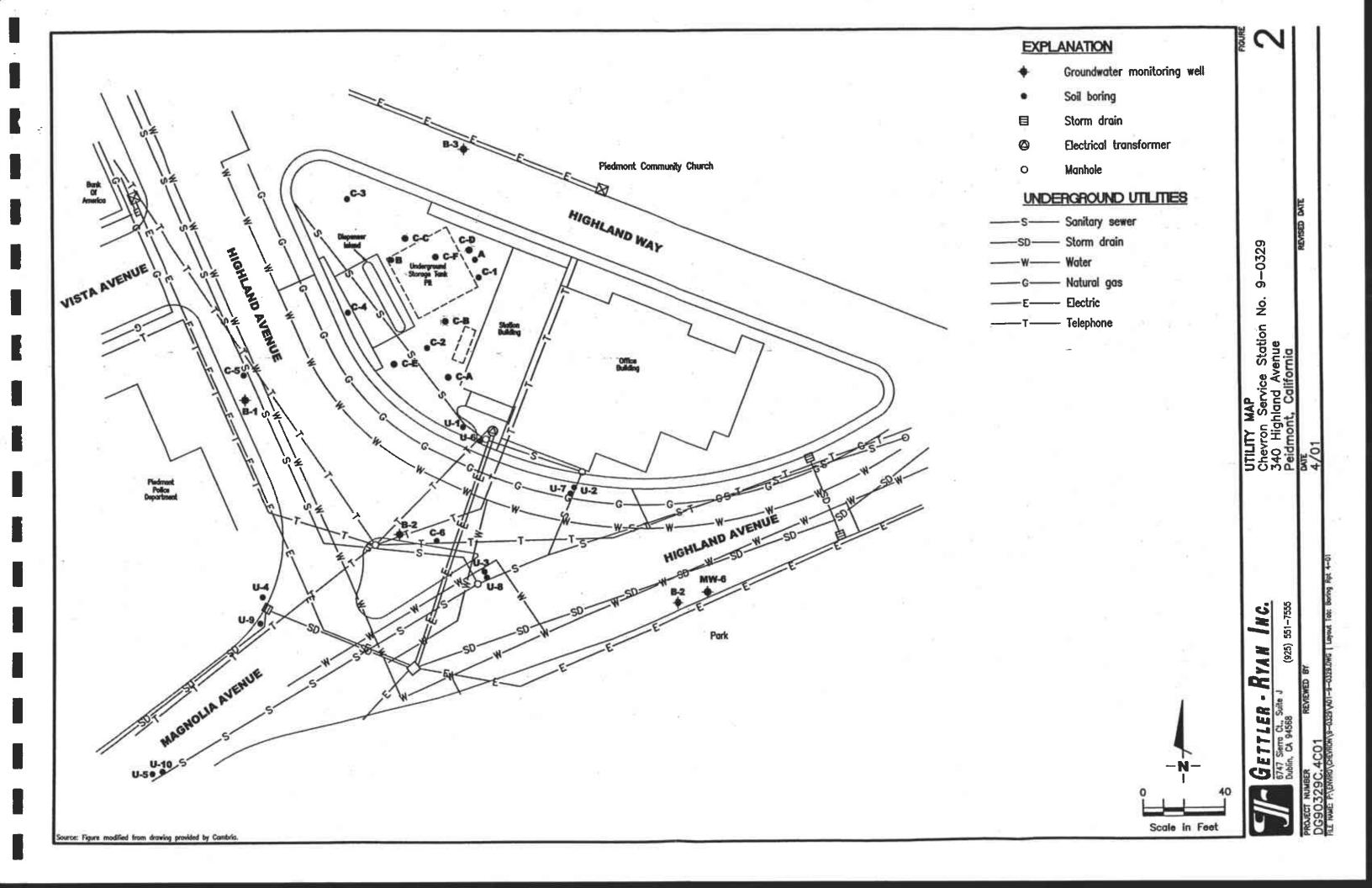
Mr. Jeff Orwig, Texaco Service Station, 340 Highland Ave., Piedmont, CA 94611

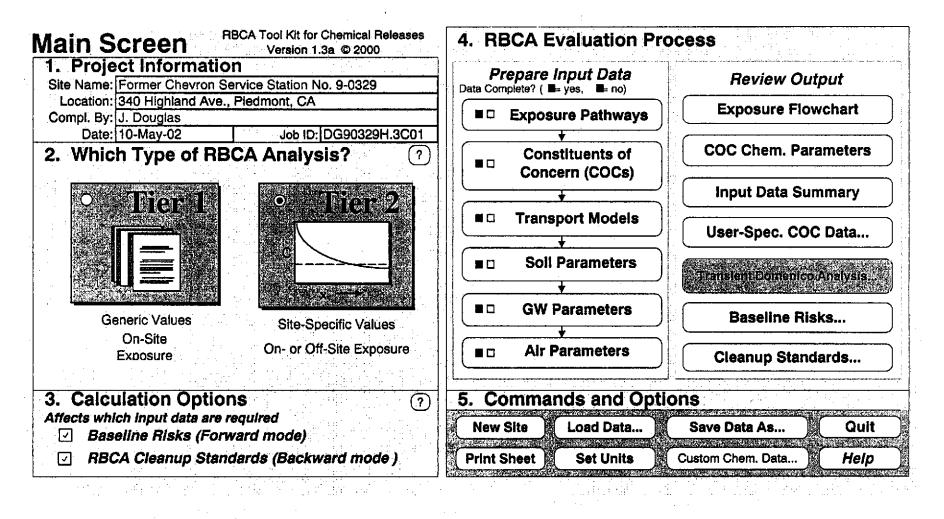
Mr. Jon Robbins, Chevron Products Law, P.O. Box 6004, Building T, Room T-4284, San Ramon,

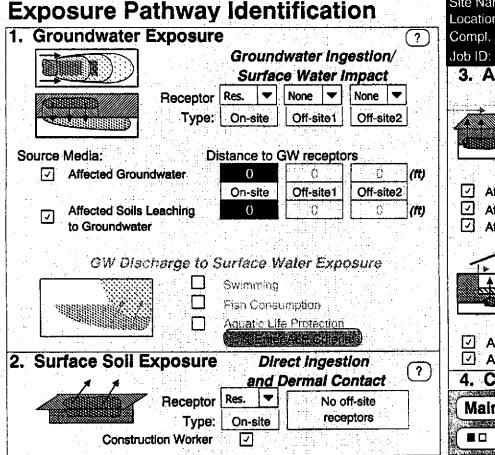
CA 94583

Mr. James Brownell, Delta Environmental Consultants, Inc.



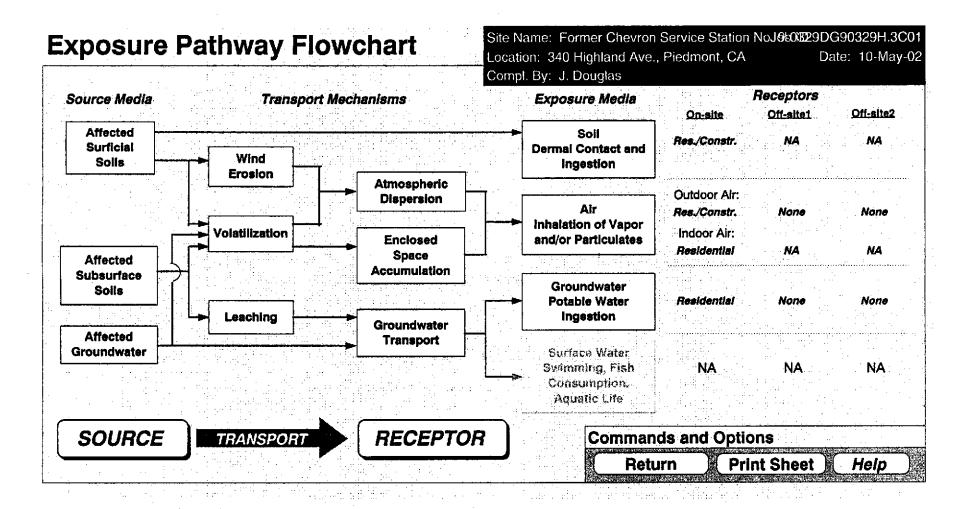

Former Chevron Station 9-0329





Vicinity Map

340 Highland Avenue Piedmont, California

CAMBRIA









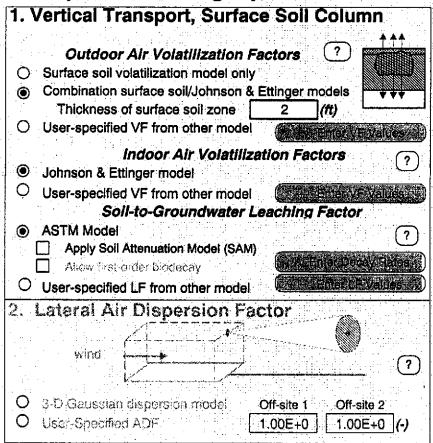

#### Site Name: Former Chevron Service Station No. 9-0329 **Exposure Factors and Target Risk Limits** Location: 340 Highland Ave., Piedmont, CA 1. Exposure Compl. By: J. Douglas **Parameters** Residential Job ID: DG90329H.3C01 Commercial Date: 10-May-02 (Age 0-6) (Age 0-16) Age Adjustment? Chronic Construc. 2. Risk Goal Calculation Options Averaging time, carcinogens (yr) 70 O Individual Constituent Risk Goals Only 25 Averaging time, non-carcinogens (yr) 30 70 15 35 70 Individual and Cumulative Risk Goals Body weight (kg) 30 6 16 25 Exposure duration (yr) 250 Exposure frequency (days/yr) 350 180 3. Target Health Risk Limits 350 250 Dermal exposure frequency (days/yr) 2023 5800 Skin surface area, soil contact (cm²) 5800 5800 Individual Cumulative Soil dermal adherence factor (mg/cm²/day) Target Risk (Class A/B carcins.) 1.0E-6 1.0E-5 Target Risk (Class C carcinogens) 1.0E-5 Water ingestion rate (L/day) 2 200 Target Hazard Quotient 1.0E+0 Soil ingestion rate (mg/day) 100 50 100 1.0E+0 Target Hazard Index 3 Swimming exposure time (hr/event) 4. Commands and Options Swimming event frequency (events/yr) 12 12 0.5 Swimming water ingestion rate (L/hr) 0.05 Return to Exposure Pathways 23000 8100 Skin surface area, swimming (cm²) Print Sheet Fish consumption rate (kg/day) 0.025 Use Default Values Contaminated fish fraction (unitless)

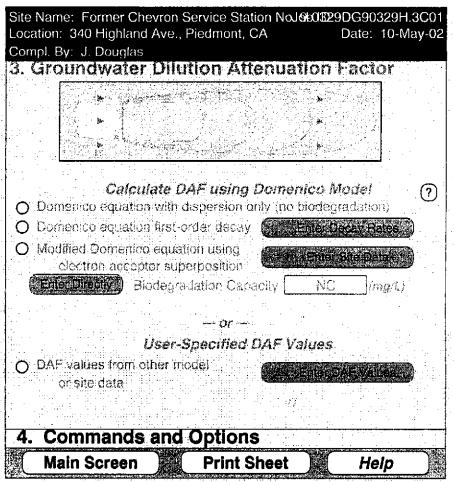


Site Name: Former Chevron Service Sta	ation No. 9-03: Job ID: DG90329H.3C01	Commands and Options	
Location: 340 Highland Ave., Piedmont, Compl. By: J. Douglas	CA Date: 10-May-02	Main Screen Print Sheet	Help
	Constituents of Conce		Apply Raoult's
Selected COCs	Representative C		_ Law ?
COC Select: Sort List: ?	Groundwater Source Zone	Soll Source Zone	Mole Fraction
Add/insert Top MoveUp	Enter Directly ■□ Enter Site Data	Enter Directly	in Scurce Material
Delete Bottom MoveDown	(mg/L) note	(mg/kg) note	
Benzene*	2.3E-2	5.7E-2	
Toluene	3.8E-3	1.8E-1	
Ethylbenzene	9.4E-3	4.7E-1	
Xylene (mixed isomers)	5.7E-3	1.3E+0	
Methyl t-Butyl ether	1.9E-1	1.0E-3	
TPH - Arom >C08-C10  * = Chemical with user-specified data	6.6E-1	9.0E+1	

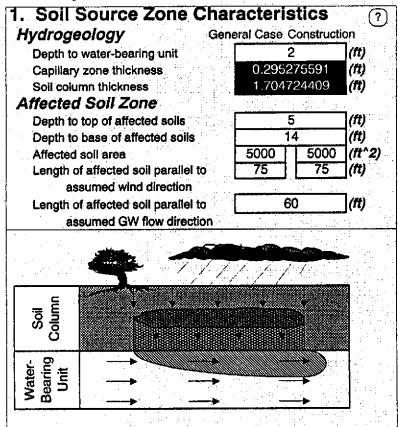
<b>Commands and Options</b>		Site Nam	e: Form	er Chevron Se	rvice Stat	itD:NDG903	29H.3C01
Return Print Sheet	Help	Location: Compl. B	,	hland Ave., Pi uglas	edmont, C	CA Date: 1	10-Ma <b>y-0</b> 2
Groundwater Sour	ce Zoı	ne Co	ncer	itration			UCL Percentile
Calculator	Paste Defaults	)		Estimated	(	Mean Optio	95% n )
Constituent	Detection Limit	No. of Samples	No. of Detects	Distribution of Data	Max. Conc.	Mean Conc.	UCL on Mean
	(mg/L)				(mg/L)	(mg/L)	(mg/L)
Benzene*	5.0E-4	12	12	Lognormal	1.1E+0	3.2E-3	2.3E-2
Toluene	5.0E-4	12	12	Lognormal	4.2E-2	1.3E-3	3.8E-3
Ethylbenzene	5.0E-4	12	12	Lognormal	2.9E-1	1.9E-3	9.4E-3
Xylene (mixed isomers)	5.0E-4	12	12	Lognormal	5.5E-2	1.7E-3	5.7E-3
Methyl t-Butyl ether	2.5E-3	12	12	Lognormal	7.2E+0	3.2E-2	1.9E-1
TPH - Arom >C08-C10	5.0E-2	12	12	Lognormal	9.5⊟+0	1.6E-1	6.6E-1
* = Chemical with user-specifi	ed data						

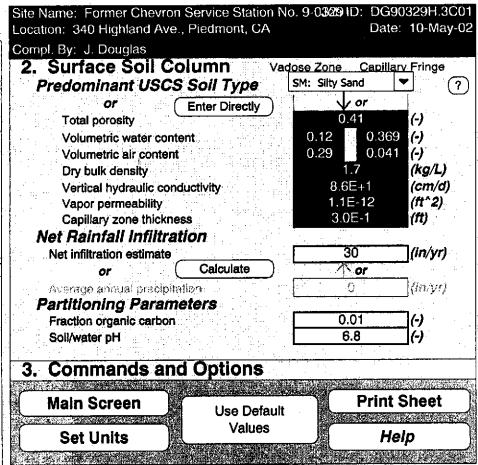
<b>Enter Analytical Data</b>	from
Groundwater Source	Zone
(up to 50 Data Points)	


	undwater to 50 Data	Source Zo a Points)	ne .								Α	nalytical Da	ta
•	1	2	3	4	5	6	7	8	9	10	. 11	12	13
ID	C-2	C-2	C-2	C-2	C-3	C-3	C-3	C-3	C-4	C-4	C-4	C-4	
Date	25-Feb-02	20-Aug-01	5-Apr-01	26-Nov-01	25-Feb-02	20-Aug-01	5-Apr-01	26-Nov-01	20-Aug-01	5-Jan-01	12-Jul-00	25-Feb-02	
	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
	3.40E-1	1.10E+0	3.30E-1	6.50E-1	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	
	6.90E-3	4.20E-2	3.80E-2	1.30E-2	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	1.80E-3	
	8.30E-2	2.90E-1	1.20E-1	6.60E-2	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	2.50E-4	
	2.20E-2	5.50E-2	3.20E-2	4.40E-2	7.50E-4	2.50E-4	2.50E-4	7.50E-4	2.50E-4	2.50E-4	2.50E-4	7.50E-4	


2.50E-2 2.50E-2 2.50E-2

Commands and Options		Site Nan	ne: Form	er Chevron S	ervicel&tal	DonD <b>V</b> 69 <b>9</b> 3	29H.3C01
Return Print Sheet	Help			ghland Ave., F	Piedmont, (	CA Date: 1	0-May-02
		Compl. E	By: J. Do	ouglas			
Soil Source Zone (	Conce	ntrati	on C	alculat	or		UCL
	".: <u>/                                   </u>						Percentile.
	Paste Defaults			Estimated		Mean Option	95%
	Detection	No. of	No. of	Distribution	Max.	Mean	UCL on
Constituent	Limit	Samples		of Data	Conc.	Conc.	Mean
	(mg/kg)				(mg/kg)	(mg/kg)	(mg/kg)
Benzene*	5.0E-3	7	7	Lognormal	1.6E-1	1.5E-2	5.7E-2
Toluene	5.0E-3	7	7	Lognormal	1.2E+0	2.6E-2	1.8E-1
Ethylbenzene	_5.0E-3	7	7	Lognormal	1.2E+1	4.7E-2	4.7E-1
Xylene (mixed isomers)	5.0E-3	7	7	Lognormal	3.7E+1	1.2E-1	1.3E+0
Methyl t-Butyl ether	5.0E-2	1	1	-	1.0E-3	1.0E-3	NA
TPH - Arom >C08-C10	1.0E+0	7	7	Lognormal	1.6E+3	8.6E+0	9.0E+1
* = Chemical with user-specific	ed data						*


	II Source 7	The Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Co						ad king					
(up	to 50 Dat	a Points)									and the factor of	nalytical Da	
	1	2	3	4 5.38	5	6	7	8	9	10	11	12	13
ΙD	U-6	C-A-5.5	C-A-10.5	C-B-5.5	C-E-6.5	C-E-11.5	C-E-14						
Date	21-Mar-01	15-Nov-90	15-Nov-90	12-Nov-90	13-Nov-90	15-Nov-90	12-Nov-90						
٠ : •													
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
. [	2.50E-3	1.10E-1	5.00E-3	2.50E-3	1.60E-1	5.10E-2	7.00E-3						
	2.50E-3	1.20E+0	7.50E-3	2.50E-3	1.00E-1	5.10E-1	2.50E-3						
Ì	2.50E-3	1.20E+1	7.50E-3	2.50E-3	1.00E-1	5.10E-1	1.90E-2						
	2.50E-3	3.70E+1	3.50E-2	2.10E-2	2.60E-1	1.40E+0	1.60E-2						
	1.00E-3												
	5.00E-1	1.60E+3	1.00E+0	5.00E-1	0.005 4	2.20E+2	0.005.0						

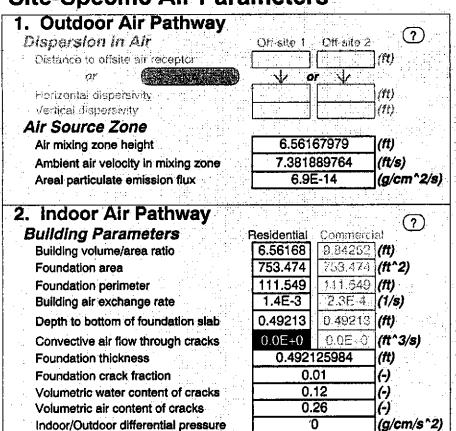

# **Transport Modeling Options**

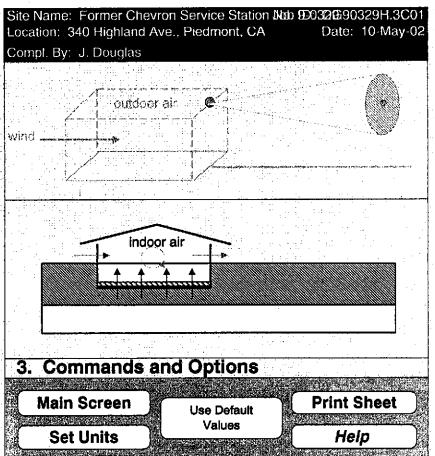




# Site-Specific Soil Parameters







# **Site-Specific Groundwater Parameters**

Groundwater Darcy velocity	8.9E+1	(cm/a
Groundwater seepage velocity	2.3E+2	(cm/o
or Enter Directly	↑ or	_
Hydraulic conductivity	6.9E+2	_(cm/a
Hydraulic gradient	1.3E-1	<b>_(-)</b>
Effective porosity	0.38	] <i>(-)</i>
Sorption		
Fraccion organic carbon—saturated zone		7.)
Groundwater pH		7.)
2. Groundwater Source Zone		(?
Groundwater plume width at source	60	(ft)
Plume (mixing zone) thickness at source	12	(ft)
or Calculate	↑ or	
Saturated thickness	C C	(ft)
tengifi of source zone		(n)

l	Site Name: Former Chevron Service Station No. 9d3899: DG90329H.3C01
	Location: 340 Highland Ave., Piedmont, CA Date: 10-May-02-
	Compl. By: J. Douglas
- :	3. Groundwater Dispersion
	Model:
	Off site 1 Off site 2 1 Off site 2
	Distance to GVV receptors 0 0 0 0 (ii)
	or ( or v or v
	Longitudinal dispersivity:
	Transverse dispersivity
	Vertical dispersivity (ff)
	4. Groundwater Discharge ?
	to Surface Water
1	Off-site 2
	Distance to GW/SW disharge point NA (ff)
-	
	Plane width at GW/SW discharge 0 (#)
	Plume trickness at GW/SW discharge 0 (ff)
1	
. ]	Surface water flowrate at GW/SW discharge 0.0E 0 (#*3/s)
	5. Commands and Options
·	Main Screen Use Default Print Sheet
	Values
	Set Units Help

# Site-Specific Air Parameters





### **RBCA SITE ASSESSMENT**

**Baseline Risk Summary-All Pathways** 

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Piedmont, CA Completed By: J. Douglas
Date Completed: 10-May-02

1 of 1

				_	VE RISK SU	IMMARTI				
		BASELINE	CARCINOG	ENIC RISK			BASELI	NE TOXIC E	FFECTS	,
	individual	COC Risk	Cumulative	COC Risk	Risk	Hazard	Quotient	Hazard Index		Toxicity
EXPOSURE PATHWAY	Maximum Value	Target Risk	Total Value	Target Risk	Limit(s) Exceeded?	Maximum Value	Applicable Limit	Total Value	Applicable Limit	Limit(s) Exceeded
OUTDOOR AIR	EXPOSURE P	ATHWAYS	Militaria di A							
Complete:	3.7E-9	1.0E-6	3.7E-9	1.0E-5	0	2.6E-3	1.0E+0	2.8E-3	1.0E+0	
INDOOR AIR E	XPOSURE PAT	HWAYS		1	Î					
Complete:	2.4E-7	1.0E-6	2.4E-7	1.0E-5		5.8E-2	1.0E+0	7.0E-2	1.0E+0	
SOIL EXPOSU	RE PATHWAYS									
Complete:	1.3E-8	1.0E-6	1.3E-8	1.0E-5		2.1E-2	1.0E+0	2.1E-2	1.0E+0	
GROUNDWATI	R EXPOSURE	PATHWAYS								
Complete:	2.7E-5	1.0E-6	2.7E-5	1.0E-5		5.3E-1	1.0E+0	1.2E+0	1.0E+0	
SURFACE WA	TER EXPOSUR	E PATHWAY	S							11.
Complete:	NA	NA	NA	NA		NA	NA NA	NA	NA	
										• • • • • • • • • • • • • • • • • • •
CRITICAL EXP	2.7E-5	VAY (Maxim 1.0E-6	2.7E-5	1.0E-5	Pathways)	5.3E-1	1.0E+0	1.2E+0	1.0E+0	
	Ground		Z./E-5 Ground		<del></del>		dwater		dwater	
<del></del>	<u> Ground</u>	MAIGL	<u>uroun</u>	uwater	<u> </u>	Groun	uwater	Groun	nwatel	L

#### CHEMICAL DATA FOR SELECTED COCs

Physical Property Data

						DIMU	alon		la	og (Koc) or					Vapor						
			Molecui	87		Coeffi	clents			log(Kd)		Henry's	Law Constant		Pressu	•	Solubilit	y			
			Weigh	t	in eir		in water		(6	20 - 25 C)		(@	20 - 25 C)		(@ 20 · 20	(C)	( <b>@ 20 - 25</b>	C)			
	CAS		(g/mol	)	(cm2/s)		(cm2/e)		1	log(L/kg)		(etm-m3)			(mm Hç	1)	(mg/l.)		acid	base	
Constituent	Number	type	MW	ref	Delr	ref	Dwet	ref		pertition	ref	mol	(unitiess)	ref		ref		ref	рКа	pKb	re
Benzene*	71-43-2	Α.	78.1	PS	8.80E-02	PS	9.80E-06	PS	1.77	Koc	PS	5.55E-03	2.29E-01	PS	9.52E+01	PS	1.75E+03	PS	-	•	-
Toluene	108-88-3	A	92.4	5	8.50E-02	Α	9.40E-06	Α	2.13	Koc	A	6.30E-03	2,60E-01	A	3.00E+01	4	5.15E+02	29		-	-
Ethylbenzene	100-41-4	Α	106.2	P\$	7.50E-02	PS	7.80E-06	PS	2.56	Koc	PS	7.88E-03	3.25E-01	PS	1.00E+01	PS	1.69E+02	PS	-	<del>.</del>	
Xylene (mixed isomers)	1330-20-7	. Α	106.2	. 5	7.20E-02	Α	8.50E-06	A	2.38	Koc	A	7.03E-03	2.90E-01	Α	7.00E+00	4	1.98E+02	5	-	-	-
Methyl t-Butyl ether	1634-04-4	0	88.146	5	7.92E-02	6	9.41E-05	7	1.08	Koc	Α.	5.77E-04	2.38E-02	•	2.49E+02	-	4.80E+04	Α	-	-	•
TPH - Arom >C08-C10	0-00-0	T	120	T	1,00E-01		1.00E-05	7	3.20	Koc	Т	1.16E-02	4.80E-01	٦	4.79E+00		6,50E+01	T			

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Pledmont, CA Completed By: J. Douglas Date Completed: 10-May-02

Job ID: DG90329H.3C01

#### CHEMICAL DATA FOR SELECTED COCs

**Toxicity Data** 

		Referen	oe Dose		Reference C	Cone.		Slope I	Factors		Unit Risk Fa	clor		
		(mg/k	g/day)		(mg/m3	ý		1/(mg/l	kg/day)		1/(yg/m3)			
Constituent	Orei RfD orei	ref	(mg/kg/day) Dermal RfD_dermal	ref	inhelation RfC_inhal	ref	Orei 8F_orei	ref	1/(mg/kg/day) Dermal SF_dermal	ref	Inhalation URF_inhal	ref	EPA Weight of Evidence	is Constituent Carcinogenic ?
Benzene*	3.00E-03	R		-	5.95E-03	R	1.00E-01	P\$	2.99E-02	TX	8.29E-06	P\$	A	TRUE
Toluene	2.00E-01	A,R	1.60E-01	TX	4.00E-01	A,R	-		-		•		D	FALSE
Ethy#benzene	1.00E-01	PS	9.70E-02	TX	1.00E+00	PS	_	-	-	•	-	•	D	FALSE
Xviene (mixed isomers)	2.00E+00	A.R	1.84E+00	ΤX	7.00E+00	A	•	-	-	-	-		D	FALSE
Methyl t-Butyl ether	1.00E-02	31	8.00E-03	TX	3.00E+00	Я	4	•	-		•		-	FALSE
TPH - Arom >C08-C10	4.00€-02	Τ	-	-	2.00E-01	T	-	•	•	•		-	D	FALSE
* = Chemical with user-specifi									:					

Site Name: Former Chevron Sei Site Location: 340 Highland A

#### Miscellaneous Chemical Data

		•	Time-Wei	ighted	Aquatic Life		Biocon-
		Maximum	Average Wo	orkplace :	Prot. Crite	de	centration
	C	onteminent Level	Criter	ria			Factor
Constituent	MCL (mg/L)	ref :	TWA (mg/m3)	ref	AQL (mg/L)	rel	(L-wat/kg-flah)
Benzene*	5.00E-04	4	3.25E+00	•	-		12.6
Toluene	1.00E+00	56 FR 3526 (30 Jan 91)	1.47E+02	ACGIH	-	-	70
Ethylbenzene	7.00E-01	56 FR 3526 (30 Jan 91)	4.35E+02	PS	-	-	1
Xviene (mixed isomers)	1.00E+01	56 FR 3526 (30 Jan 91)	4.34E+02	ACGIH	T -	-	1
Methyl t-Butyl ether	-	-	6.00E+01	NIOSH	•	-	1
TPH - Arom >C08-C10		-	-	-	•	•	1

Site Name: Former Chevron See Site Location: 340 Highland A

### CHEMICAL DATA FOR SELECTED COCs

Miscellaneous Chemical Data

	Dermat		Wa	ter Dermei Per	mesbility Data									
	Relative	Dermel	Leg time for	Critical	Reletive	Water/Skin			Detection	n Limita		Hal	f Life	
	Absorp.	Permeability	Dermal	Exposure	Contr of Derm	Derm Adeorp		Groundw	eter	. Soll		(First-On	der Decay)	
	Factor	Coeff.	Exposure	Time	Perm Coeff	Factor	- 1	(mg/L	<b>)</b>	(mg/kg)		(d	aya)	
Constituent	(unitiess)	(om/tur)	(hr)	(hr)	(unitiess)	(cm/event)	ref		ref		ref	Saturated	Unseturated	ref
Benzene*	0.5	0.021	0.26	0.63	0.013	7.3E-2	D	0.002	S	0.005	S	720	720	<u> </u>
Toluene	0.5	0.045	0.32	0.77	0.054	1.6E-1	D	0.002	s	0.005	S	28	28	<u> </u>
Ethylbenzene	0.5	0.074	0.39	1.3	0.14	2.7E-1	D	0.002	s	0.005	S	228	228	<u> </u>
Xylene (mixed isomers)	0.5	0.08	0.39	1.4	0.16	2.9E-1	D	0.005	S	0.005	S	360	360	Н
Methyl t-Butyl ether	0.5	-	+		•	-	- 1			-	-	360	180	<u> </u>
TPH - Arom >C08-C10	0.5	•		<del></del>			- 1		•		-	-	•	

^{* =} Chemical with user-specified

Site Name: Former Chevron Ser Site Location: 340 Highland A

## **RBCA SITE ASSESSMENT**

Input Parameter Summary

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Piedmont, CA Completed By: J. Douglas Date Completed: 10-May-02 Job ID: DG90329H.3C01

HOODU?	e Parametere		Residential		Commerci	al/industrial
		100	(1 <b>-0</b> ₍ m)	(1-16 yers)	Chennia	Constant.
AT.	Averaging time for carcinogens (yr)	70				
AT,	Averaging time for non-ceroinogens (yr)	30			25	1
BW	Body weight (kg)	70	15	35	70	
ED	Exposure duration (yr)	30	•	16	25	1
ť	Averaging time for vapor flux (yr)	30			25	1
EF	Exposure frequency (days/yr)	350			250	180
Ero	Exposure frequency for dermal exposure	350			260	
R_	ingestion rate of water (L/day)	2			1	
IR.	Ingestion rate of soil (mg/day)	100	200		50	100
SĂ.	Skin surface area (dermai) (cm*2)	5800		2023	5800	5800
M	Soil to skin adherence factor	. 1				
ETman	Swimming exposure time (hr/event)	3			ļ	
ĖV _{Inde}	Swimming event frequency (events/yr)	12	12	12	{	
IFL.	Water ingestion while swimming (L/hr)	0.05	0.5			
SA	Sidn surface area for swimming (cm*2)	23000		8100	1	
iPen.	Ingestion rate of fish (kg/yr)	0.025			j	
Flan	Contaminated tish fraction (unitless)	1			ì	

Complete Exposure Pathways and Receptors	On-elte	Off-site 1	Off-eite 2
Groundwater;			
Groundwater ingestion	Pleaidential .	None	None
Soil Leaching to Groundwater Ingestion	Residential	None	None
Applicable Surface Water Exposure Roules:	•   •		
Swimming			NA
Fish Consumption	1		NA
Aquatic Life Protection			NA
Solt:	-		
Direct Ingestion and Dermai Contact	Res./Constr.		
Outdoor Air:			
Particulates from Burface Solls	Res./Constr.	None	None
Volatilization from Solls	ResJConstr.	None	None
Voladilization from Groundwater	Residential	None	None
Indeer Air:			
Volatilization from Subsurface Soils	Residential	NA	NA
Volatilization from Groundwater	Residential	NA	NA

Receptor Distance from Source Media	·	On-site	Off-site 1	Off-eite 2	(Unite)
Groundwater receptor		0	NA	NA .	. (ft)
Soil leaching to groundwater receptor		. 0	NA	NA NA	(ft)
Outdoor air inhalation receptor		0	NA	NA.	(4)

Target i	leelth Risk Values	individual	Cumulative
TR.	Target Risk (class A&S carcinogens)	1.DE-6	1.0E-5
TR.	Target Risk (class C carcinogens)	1,0E-5	•
THO	Target Hazard Quotient (non-carcinogenic risk)	1.0E+0	1.0E+0

Modeling Options	
RBCA tler	Tier 2
Outdoor air voistifization model	Surface & subsurface models
Indoor air volatilization model	Johnson & Ettinger model
Soli teaching model	ASTM leaching model
Use soil attenuation model (SAM) for leachate?	No
Air dilution factor	NA .
Groundwater dilution-attenuation factor	NA NA

NOTE: NA - Not applicable

ouglas May-02		JOB ID: DG	190329M.3C01	1 OF 1
Surfac	a Parametera	General	Construction	(Unita)
A	Source zone area	5.0E+3	5.0E+3	(11-2)
W	Length of source-zone area parallel to wind	7.5E+1	7.5E+1	(11)
Wga	Length of source-zone area parallel to GW flow	6.0E+1		(ft)
U	Ambient air velocity in mixing zone	7.4E+0		(ft/s)
٠	Air mixing zone height	6.6E+0		(ft)
P.	Areal particulate emission rate	6.9E-14		(g/cm*2/s)
4	Thickness of affected surface soils	2.0E+0		(h)

Burlee	Soli Column Parametere	Value			(Unite)
T	Capillary zone thickness	3.0E-1			(ft)
h.	Vadose zone thickness	1.7E+0			(ft)
ρ.	Soil bulk density	1.7E+0			(g/cm^3
t_	Fraction organic curbon	1.0E-2			(-)
e _T	Soil total porcetty	4.1E-1			(-)
ĸ.	Vertical hydraulic conductivity	8.6E+1			(cm/d)
k,	Vapor parmeability	1.1E-12			(ft^2)
سا	Depth to groundwater	2.0E+0			(ff)
4	Depth to top of affected soils	5.0E+0			(71)
Laure	Depth to base of affected soils	1.4E+1			(ft)
	Thickness of affected soils	9.0E+0			(17)
рH	Soll/groundwater pH	6.8E+0			(-)
		peptilacy	yadqae	foundation	
8	Volumetric water content	0.369	0.12	0.12	(-)
B.	Volumetric air content	0.041	0.29	0.26	(-)

Bulldi	ng Parameters	Residential	Commercial	(efinU)
4	Building volume/area ratio	6,58E+0	NA	(ft)
Ă.	Foundation area	7.53E+2	NA	(#*2)
X.	Foundation perimeter	1.12E+2	NA	(PC)
ER	Building air exchange rate	1.40E-3	NA	(1/5)
Lat	Foundation thickness	4.92E-1	NA	(70)
2	Depth to bottom of foundation slab	4,92E-1	NA	(ft)
η	Foundation crack fraction	1.00E-2	NA	(-)
ďΡ	indoor/outdoor differential pressure	0.00E+0	NA	(g/cm/s^i
Ü.	Convective air flow through slab	0.00E+0	NA	(ft*3/s)

Groundwater Parameters		Yelue	(Unita)
<u></u>	Groundwater mixing zone depth	1.2E+1	(10)
4	Net groundwater imitiration rate	3.0E+1	(in/yr)
Ú	Groundwater Carry velocity	6.9E+1	(cm/d)
٧	Groundwater seepage velocity	2.3E+2	(cm/d)
ĸ.	Saturated hydraulic conductivity	NA NA	(om/d)
1	Groundwater gradient	NA NA	<del>(-)</del>
S.	Width of groundwater source zone	NA NA	(ft)
S	Depth of groundwater source zone	NA NA	(ft)
H _{ed}	Effective porceity in water-bearing unit	NA NA	(-)
lane.	Fraction organic carbon in water-bearing unit	NA .	(-)
pH	Groundwater pH	NA .	(-)
	Blodegradation considered?	l NA	

Transport Parameters	Off-eite 1	Off-site 2	Off-ette 1	. Off-site 2	(Units)
Lateral Greundwater Transport	Groundson	ter ingestion	Ball Least	WD at sale	
a _z Longitudinal dispersivity	NA	NA	NA	NA	(ft)
a. Transverse dispersivity	NA NA	NA	NA	NA	(ft)
a ₂ Vertical dispersivity	NA	NA	NA	NA	(ft)
Leteral Outdoor Air Transport	Boll to Cuts	loer Air John).	GW to Outdo	oor Air Inhal.	
c. Transverse dispersion coefficient	NA	NA	, NA	NA	(ft)
✓ Vertical dispersion coefficient	NA.	NA.	NA	NA	(10)
ADF Air dispersion factor	NA NA	NA	NA.	NA.	(-)

		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
Surface	Water Parameters	Off-site 2	(Unite)
Q.,,,	Surface water flowrate	NA NA	(11^3/6)
W.	Width of GW plume at SW discharge	! NA	(ft)
آية ا	Thickness of GW plume at SW discharge	NA NA	(ft)
UF.	Groundwater-to-surface water dilution factor	NA	Θ

						RBCA SITE	ASSESSME	TV							
Bite Name: F	ormer Chevron Service Station No.	8-0358	Completed By:	J. Douglas			Job ID: D	390329H.3C01							
Site Location:	340 Highland Ave., Piedmont, CA		Date Complete	d: 10-May-02											1 OF 1
\$OIL (5	i - 14 ft) SSTL VALUES		Т	nt Rink (Class A & E arget Risk (Class C get Hazard Guoties	1.0E-5				<u>-</u> .		Groun	dwater DAF Option:			
						SETL Results Fr	or Complete Expe	eure Pathwaye (*	'X" If Complete)						
			X Sc	il Leaching to Gr Ingestion		X Soil Vol. to Indoor Air	×		ization and Surfac			Soil inhalation, Dermai Contact	Applicable	BSTL	Required CRF
CONSTITUE	NTS OF CONCERN	Representative Concentration	On-sita (0 t)	Off-site 1	O - Off-eite 2 (0.10)	On-site (0 ft)	On-si	to (O R)	Off-site 1 (C	Off-site 2 (0 tt)	On-si	ee (O ft)	SSTL.	Exceeded?	Only If "yes"
CAS No.	Name	(mg/kg)	Residential	None	None	Residential	Residential	Construction Worker	None	None	Fleskiential	Construction Worker	(mg/kg)	"E" If yes	left
71-43-2	Benzene*	2.4E-2	5.1E-2	NA NA	NA.	1.7E-1	1.2E+1	>1.2E+3	NA NA	NA	1.8E+0	7.6E+1	5.1E-2		<1
108-88-3	Toluene	5.3E-2	>7.5E+2	NA.	NA.	2.4E+2	>7.5E+2	>7.5E+2	NA NA	NA.	3.9E+3	5.5E+3	2.4E+2		<1
100-41-4	Ethylbenzene	1.1E-1	>6.3E+2	NA	NA	>6.3E+2	>6.3E+2	>6.3E+2	NA	NA	2,4E+3	3.3E+3	2.4E+3		<1
1330-20-7	Xylene (mixed isomers)	2.4E-1	>5.0E+2	NA NA	NA.	>5.0E+2	>5.0E+2	>5.0E+2	NA NA	NA	4.5E+4	6.3E+4	4.5E+4		<1
1634-04-4	Methyl t-Butyl ether	1.0E-3	6.1E+0	NA.	NA.	1.9E+3	>9.4E+3	>9.4E+3	NA	NA	2.0E+2	2.8E+2	6.1E+0		<1
0-00-0	TPH - Arom >C08-C10	2.0E+1	>1.0E+3	NA.	NA	4.1E+2	>1.0E+3	>1.0E+3	NA	NA	9.7E+2	1.4E+3	4.1E+2		<1
* = Chemical	with user-specified data														

*> Indicates risk-based target concentration greater than constituent residual saturation value. NA = Not applicable. NC = Not calculated.

				F	IBCA SITE A	SSESSMENT						
Site Name: Fo	ormer Chevron Service Station No. 9-03	129	Completed By:	J. Douglas			Job ID: DG	90329H,3C01				
Site Location:	: 340 Highland Ave., Pledmont, CA		Date Completed	d: 10-May-02								1 OF 1
GROUN	IDWATER SSTL VALUES		Targ	liek (Class A & B) get Risk (Class C) t Hazerd Quotlent	1.0E-5				Ground	water DAF Option	i	
				S81	TL Results For C	omplete Exposure P	athways ("X" If Co	mplete)				
			x (	Groundwater inç	gestion	X GW Vol. to Indoor Air	x	roundwater Volati to Outdoor A		Applicable	SSTL	Required CRF
		Representative Concentration	On-site (0 ft)	Off-site 1 (Oft)	Off-site 2 (0 ft)	On-site (0 ft)	On-site (0 ft)	Off-site 1 (	Off-site 2 (0 ft)	SSTL	Exceeded ?	Only if "yes"
CAS No.	Name	(mg/L)	Fleekdemital	None	None	Residential	Residential	None	None	(mg/L)	"#" if yea	left
71-43-2	Benzene*	2.3E-2	8.5E-4	NA	NA	2.3E-1	1.3E+1	NA NA	NA	8.5E-4		2.7E+1
108-88-3	Toluene	3.8E-3	7.3E+0	NA	NA	3.1E+2	>5.2E+2	NA	NA	7.3E+0		<1
100-41-4	Ethylbenzene	9.4E-3	3.7E+0	NA	NA	>1.7E+2	>1.7E+2	NA	NA	3.7E+0		<1
1330-20-7	Xylene (mixed isomers)	5.7E-3	7.3E+1	NA	NA	>2.0E+2	>2.0E+2	NA	NA	7.3E+1		<1
1634-04-4	Methyl t-Butyl ether	1.9E-1	3.7E-1	NA	NA	9.5E+3	>4.8E+4	NA	NA	3.7E-1		<1
0-00-0	TPH - Arom >C08-C10	6.6E-1	1.5E+0	NA	NA	>6.5E+1	>6.5E+1	NA	NA	1.5E+0		<1
* = Chemical	with user-specified data				•							

[&]quot;>" indicates risk-based target concentration greater than constituent solubility value.

NA = Not applicable.

NC = Not calculated.

**TPH Criteria SSTL Worksheet** 

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas
Date Completed: 10-May-02

Job ID: DG90329H.3C01

1 OF 1

### **CALCULATION OF SSTL VALUES FOR TPH**

·		Mass	Fractions	Representative	e Concentrations	Calculated Conce	entration Limits	Applicable	SSTL Values
CONSTITUEN	ITS OF CONCERN	Soli	Groundwater	Soli	Groundwater	Residual Soil Concentration	Solubility	Solis (5 - 14 ft)	Groundwater
CAS No.	Name	(-)	(-)	(mg/kg)	(mg/L)	(mg/kg)	(mg/L)	(mg/kg)	(mg/L)
0-00-0	TPH - Arom >C08-C10	1.0E+0	1.0E+0	2.0E+1	6.6E-1	1.0E+3	6.5E+1	4.1E+2	1.5E+0
* = Chemical v	with user-specified data						_		
•	Te	otel 1.0E+0	1.0E+0	2.0E+1	6.6E-1	Total 7	TPH SSTL value	4.1E+2	1.5E+0

[&]quot;>" Indicates risk-based target concentration greater than constituent residual saturation value.

NC = Not calculated.

#### **RBCA SITE ASSESSMENT**

Cumulative Risk Worksheet

Site Name: Former Chevron Service Station No. 9-0329

Completed By: J. Douglas

Job ID: DG90329H.3C01

Site Location: 340 Highland Ave., Piedmont, CA

Date Completed: 10-May-02

1 OF 3

#### **CUMULATIVE RISK WORKSHEET**

CONSTITUEN	TS OF CONCERN	Representativ	e Concentration
CAS No.	Name	Şoil (mg/kg)	Groundwater (mg/L)
71-43-2	Benzene*	2.4E-2	2.3E-2
108-88-3	Toluene	5.3E-2	3.8E-3
100-41-4	Ethylbenzene	1.1E-1	9.4E-3
1330-20-7	Xylene (mixed isomers)	2.4E-1	5.7E-3
1634-04-4	Methyl t-Butyl ether	1.0E-3	1.9E-1
0-00-0	TPH - Arom >C08-C10	2.0E+1	6.6E-1

Propos	ed CRF
Soil	GW

Resultant Targe	et Concentration
Şoil	Groundwater
(mg/kg)	(mg/L)
2.4E-2	2.3E-2
5.3E-2	3.8E-3
1.1E-1	9.4E-3
2.4E-1	5.7E-3
1.0E-3	1.9E-1
2.0E+1	6.6E-1

#### Cumulative Values:

#### **RBCA SITE ASSESSMENT Cumulative Risk Worksheet** Site Name: Former Chevron Service Station No. 9-4Site Name: Former Chevron Service Station No. 9-0: Completed By: J. Douglas Job ID: DG90329H.3C01 Site Location: 340 Highland Ave., Piedmont, CA Site Location: 340 Highland Ave., Piedmont, CA Date Completed: 10-May-02 2 OF 3 Cumulative Target Risk: 1.0E-5 Target Hazard Index: 1.0E+0 **CUMULATIVE RISK WORKSHEET ON-SITE RECEPTORS** Outdoor Air Exposure: Indoor Air Exposure: Soil Exposure: Groundwater Exposure: **Residential** Residential Residential Residential Target Flisk: Target HQ: Target Risk: Target HQ: Target HQ: Target Risk: Target Risk: Target HQ: CONSTITUENTS OF CONCERN 1.0E-6 / 1.0E-5 1.0E+0 1.0E-6 / 1.0E-5 1.0E+0 1.0E-6 / 1.0E-5 1.0E+0 1.0E-6 / 1.0E-5 1.0E+0 Carcinogenic Hazard Carcinogenic Hazard Carcinogenic Hazard Carcinogenic Hazard CAS No. Name Risk Quotient Risk Quotient Risk Quotient Risk Quotient 71-43-2 Benzene* 3.7E-9 1.8E-4 2.4E-7 1.1E-2 1.3E-8 3.2E-4 2.7E-5 2.1E-1 108-88-3 Toluene 3.4E-6 2.4E-4 1.4E-5 5.2E-4 100-41-4 Ethylbenzene 2.7E-6 1.3E-4 4.5E-5 2.6E-3 1330-20-7 Xylene (mixed isomers) 8.4E-7 4.7E-5 5.3E-6 7.8E-5 1634-04-4 Methyl t-Butyl ether 3.4E-6 2.1E-5 5.1E-6 5.3E-1 0-00-0 TPH - Arom >C08-C10 2.6E-3 5.8E-2 2.1E-2 4.5E-1 Cumulative Values: 3.7E-9 2.8E-3 2.1E-2 2.4E-7 7.0E-2 1.3E-8 2.7E-5 1.2E+0

indicates risk level exceeding target risk

ì

Site Name: F	ormer Chevron Service Station No. 9-	Site Name: Form	er Chevron Servi	ce Station No. 9-03	Completed By: J	. Douglas		Job ID: DG90329	H,3C01
		Site Location: 340			Date Completed:	_	•		3 OF
	ATIVE RISK WORKSHEET				arget Risk: 1.0E-5	Target Hazard In	ndex: 1.0E+0 dwater DAF Option:	FALSE	
					OFF-SITE F	RECEPTORS			
			Outdoor A	ir Exposure:			Groundwat	er Exposure:	
		No Target Alsk:		No		No		No	
CONSTITUEN	CONSTITUENTS OF CONCERN		Target HQ: 1.0E+0	Target Risk: 1.0E-6 / 1.0E-5	Target HQ: 1.0E+0	Target Risk: 1.0E-6 / 1.0E-5	Target HQ: 1.0E+0	Target Risk: 1.0E-6 / 1.0E-5	Target HQ: 1.0E+0
CAS No.	Name	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient	Carcinogenic Risk	Hazard Quotient
71-43-2	Benzene*								
108-88-3	Toluene								
100-41-4	Ethylbenzene					٠			
1330-20-7	Xylene (mixed isomers)								
1634-04-4	Methyl t-Butyl ether								
0-00-0	TPH - Arom >C08-C10				<u> </u>	<u> </u>		. :	
	Cumulative Values:	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0	0.0E+0

indicates risk level exceeding target risk

OUTDOOR AIR EXPOSURE PAT	HWAYS				(CHECKED IF	PATHWAY IS A	(CTIVE)	. "."	
SURFACE SOILS:									
VAPOR AND DUST INHALATION	1) Source Medium		2) NAF Val Rece			C	<ol> <li>Exposur</li> <li>Outdoor Air: POE Con</li> </ol>		2)
	Soil Conc.	On-st	te (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-sit	te (Oft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	(mg/kg)	Residential	Construction Worker	None	None	Residential	Construction Worker	None	None
Benzene*	2.4E-2								
Toluene	5.3E-2								
Ethylbenzene	1.1E-1								
Xylene (mixed isomers)	2.4E-1	<u> </u>							
Methyl t-Butyl ether	1.0E-3								
TPH - Arom >C08-C10	2.0E+1								

NOTE:	
NOTE:	NAF = Natural attenuation factor POE = Point of exposure

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas

Date Completed: 10-May-02

2 OF 7

OUTDOOR AIR EXPOSURE PATHW	AYS		<u> </u>					<u> </u>
SURFACE SOILS: VAPOR AND DUST INHALATION (cont'd)		4) Exposure (EFxED)/(ATx3				5) Average Inhal Concentration (		
	On-sit		Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)		Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	Construction Worker	None	None	Residential	Construction Worker	None	None
Benzene*								
Toluene								
Ethylbenzene				<u> </u>				
Xylene (mixed isomers)			· .					
Methyl t-Butyl ether			·	<u> </u>	<u></u>			<u> </u>
TPH - Arom >C08-C10								

ED = Exposure duration (yr) EF = Exposure frequency (days/yr) NOTE: AT = Averaging time (days) Date Completed: 10-May-02 Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

3 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS				(CHECKED IF	PATHWAY IS A	CTIVE)		
SUBSURFACE SOILS (5 - 14 ft):				·····				
VAPOR INHALATION	1) Source Medium	2) (	NAF Value (m^3/ Receptor	kg)	3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1) / (2)			
	Soil Conc.	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	
Constituents of Concern	(mg/kg)	Residential	None	None	Residential	None	None	
Benzene*	2.4E-2	4.0E+4			5.9E-7			
Toluene	5.3E-2	4.0E+4			1.3E-6			
Ethylbenzene	1.1E-1	4.0E+4			2.6E-6			
Xylene (mixed isomers)	2.4E-1	4.0E+4	,		6.0E-6			
Methyl t-Butyl ether	1.0E-3	4.0E+4			2.5E-8			
TPH - Arom >C08-C10	2.0E+1	4.0E+4			5.1E-4			

NOTE: NAF = Natural attenuation factor POE = Point of exposure

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas

Date Completed: 10-May-02

4 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS		<u> </u>			· ·	
SUBSURFACE SOILS (5 - 14 ft):					·	
VAPOR INHALATION (cont'd)		Exposure Multipli (ED)/(ATx365) (unit)			age Inhalation Ex intration (mg/m²3) (	
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	None	None	Residential	None	None
Benzene*	4.1E-1			2.4E-7		
Toluene	9.6E-1			1.3E-6		
Ethylbenzene	9.6E-1			2.5E-6		
Xylene (mixed isomers)	9.6E-1			5.7E-6		
Methyl t-Butyl ether	9.6E-1			2.4E-8		
TPH - Arom >C08-C10	9.6E-1			4.9E-4		

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

5 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS				(CHECKED IF	PATHWAY IS AC	CTIVE)	
GROUNDWATER: VAPOR	Exposure Concentration			····			
INHALATION	1) Source Medium	2) NAF Value (m^3/L) Receptor		3) Exposure Medium Outdoor Air: POE Conc. (mg/m^3) (1) / (2)			
	Groundwater	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site ( (0 ft)
Constituents of Concern	Conc. (mg/L)	Residential	None	None	Residential	None	None
Benzene*	2.3E-2	4.5E+4			5.1E-7	<u>.                                      </u>	ļ
Toluene	3.8E-3	4.3E+4			8.8E-8		
Ethylbenzene	9.4E-3	4.3E+4			2.2E-7		
Xylene (mixed isomers)	5.7E-3	4.7E+4			1.2E-7		
Methyl t-Butyl ether	1.9E-1	1.8E+4			1.1E-5		
TPH - Arom >C08-C10	6.6E-1	2.5E+4			2.7E-5		

NOTE: NAF = Natural attenuation factor POE = Point of exposure

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

Date Completed: 10-May-02

6 OF 7

OUTDOOR AIR EXPOSURE PATHWAYS		· ·				
GROUNDWATER: VAPOR						
NHALATION (cont'd)	•	Exposure Multipli ED)/(ATx365) (unite			age Inhalation Ex Intration (mg/m²3) (	
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	None	None	Residential	None	None
Benzene*	4.1E-1			2.1E-7		
Toluene	9.6E-1			8.5E-8		
Ethylbenzene	9.6E-1			2.1E-7		
Xylene (mixed isomers)	9.6E-1			1.2E-7		
Methyl t-Butyl ether	9.6E-1			1.0E-5		
TPH - Arom >C08-C10	9.6E-1			2.6E-5		

NOTE: AT = Averaging time (days) EF = Exposure frequency (days/yr) ED = Exposure duration (yr)

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

7 OF 7

TIER 2 EXPOSURE CONC	ENTRATION	AND INTAKE	CALCULAT	TION
OUTDOOR AIR EXPOSURE PATHWAYS				
		OTAL PATHWAY E) Sum average expaos from soll and grou	ure concentration	
	On-si	te (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	Construction Worker	None	None
Benzene*	4.5E-7			
Toluene	1.4E-6			
Ethylbenzene	2.7E-6			
Xylene (mixed isomers)	5.8E-6			
Methyl t-Butyl ether	1.0E-5			·
TPH - Arom >C08-C10	5.1E-4			

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas

1 OF 10

OUTDOOR AIR EXPOSURE PA	LIMANG		e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		(CHECKED IE	PATHWAYS AR	E ACTIVE)			
OU DOOR AIN EXPOSURE PA	INVAIS			<del> </del>	<del>,</del>	RCINOGENIC RI		<u> </u>		
	(1) EPA Carcinogenic		(2) Total Ca Exposure			(3) Inhalation Unit Risk		(4) Individua (2) x (3)		
	Classification	On-sit	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	Factor (µg/m^3)^-1	On-sit	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern		Residential	Construction Worker	None	None		Residential	Construction Worker	None	None
Benzene*	Α	4.5E-7				8.3E-6	3.7E-9			<b></b>
Toluene	D					<u> </u>				<u></u>
Ethylbenzene	D									
Xylene (mixed isomers)	. D									
Methyl t-Butyl ether	-									<u> </u>
TPH - Arom >C08-C10	D					l				<u> </u>

Total Pathway Carcinogenic Risk = 3.7E-9

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Pledmont, CA Completed By: J. Douglas Date Completed: 10-May-02

TIER 2 PATHWAY RISK CALCULATION									
OUTDOOR AIR EXPOSURE PAT	HWAYS				(CHECKED IF PATI	HWAYS ARE A	CTIVE)		
					TOXIC EFFECTS		-		
		(5) Totai Exposure			(6) Inhalation Reference	•	(7) Individ Hazard Quo	ual COC tient (5) / (6)	
	On-sit	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	Conc. (mg/m^3)	On-si	e (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	Construction Worker	None	None		Residential	Construction Worker	None	None
Benzene*	1.1E-6				6.0E-3	1.8E-4			
Toluene	1.4E-6				4.0E-1	3.4E-6			
Ethylbenzene	2.7E-6				1.0E+0	2.7E-6			
Xylene (mixed isomers)	5.8E-6				7.0E+0	8.4E-7			
Methyl t-Butyl ether	1.0E-5				3.0E+0	3.4E-6			
TPH - Arom >C08-C10	5.1E-4				2.0E-1	2.6E-3			

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas Date Completed: 10-May-02

1 OF 3

INDOOR AIR EXPOSURE PATHWAYS		1	(CHECKED IF PATHWAY IS ACTIVE)		
SOILS (5 - 14 ft); VAPOR INTRUSION INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m^3/kg) Receptor	3) Exposure Medium indogr Air: POE Conc. (mg/m²3) (1) / (2)	4) Exposure Multiplier (EFxED)/(ATx365) (unitless)	5) Average Inhalation Exposure Concentration (mg/m²3) (3) X (4)
Constituents of Concern	Soit Conc. (mg/kg)	Residential	Residential	Residential	Residential
Benzene*	2.4E-2	5.7E+2	4.2E-5	4.1E-1	1.7E-5
Toluene	5.3E-2	5.7E+2	9.4E-5	9.6E-1	9.0E-5
Ethylbenzene	1.1E-1	9.0E+2	1.2E-4	9,6E-1	1.1E-4
Xylene (mixed isomers)	2.4E-1	7.0E+2	3.4E-4	9.6E-1	3.3E-4
Methyl t-Butyl ether	1.0E-3	6.0E+2	1.7E-6	9.6E-1	1.6E-6
TPH - Arom >C08-C10	2.0E+1	1.9E+3	1.0E-2	9.6E-1	1.0E-2

				225 2111	
NOTE: AT Assessment of the self-self-self-self-self-self-self-self-	EF = Exposure frequency (days/yr)	ED = Exposure duration (vr)	NAF = Natural attenuation factor	POE - Point of exposure	
NOTE: AT = Averaging time (days)	EF = Exposure frequency (days/yr)	CD = Cybrania animanii (Ai)	HALL IN LABOUR DECONDERS (COLO)		

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas

Date Completed: 10-May-02

INDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAY IS ACTIVE)		
GROUNDWATER: VAPOR INTRUSION	Exposure Concentration		!		
INTO ON-SITE BUILDINGS	1) Source Medium	2) NAF Value (m^s/L) Receptor	3) Exposure Medium Indoor Air: POE Conc. (mg/m²3) (1) / (2)	Exposure Multiplier     (EFxED)/(ATx385) (unitless)	5) Average Inhalation Exposure Concentration (mg/m^3) (3) X (4)
Constituents of Concern	Groundwater Conc. (mg/L)	Residential	Residential	Residential	Residential
Benzene*	2.3E-2	7.8E+2	2.9E-5	4.1E-1	1.2E-5
Toluene	3.8E-3	7.4E+2	5.2E-6	9.6E-1	5.0E-6
Ethylbenzene	9.4E-3	7.2E+2	1.3E-5	9.6E-1	1.3E-5
Xylene (mixed isomers)	5.7E-3	7,9E+2	7.2E-6	9.6E-1	6.9E-6
Methyl t-Butyl ether	1.9E-1	3.0E+3	6,3E-5	9.6E-1	6.0E-5
TPH - Arom >C08-C10	6.6E-1	4.0E+2	1.7E-3	9.6E-1	1.6E-3

NOTE: AT = Averaging time (days)	EF = Exposure frequency (days/yr)	ED = Exposure duration (yr)	NAF = Natural attenuation factor	POE = Point of exposure	
		LD # Exposure uniamon (yr)	INFO # INGIONAL BUTCH INGINON INCIDI	I OL = FOIR OF EXPOSURE	
City Marga: Former Charges Condes Station No.	- n nana			Data Campletade 10 May 00	

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA Completed By: J. Douglas

3 OF 3

TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATIO				
NDGOR AIR EXPOSURE PATHWAYS				
	TOTAL PATHWAY EXPOSURE (mg/m*3) (Sum average expanser concentrations from soil and groundwater routes.)			
Constituents of Concern	Residential			
Benzene*	2.9E-5			
Toluene	9.5E-5			
Ethylbenzene	1.3E-4			
Xylene (mixed isomers)	3.3E-4			
Methyl t-Butyl ether	6.2E-5			
TPH - Arom >C08-C10	1.2E-2			

Site Name: Former Chevron Service Station No. 9 Date Completed: 10-May-02 Site Location: 340 Highland Ave., Piedmont, CA Job ID: DG90329H.3C01 Completed By: J. Douglas

3 OF 10

INDOOR AIR EXPOSURE PATHWAYS			(CHECKED IF PATHWAYS	ARE ACTIVE)
			CARCINOGENIC RISK	
	(1) EPA Carcinogenic	(2) Total Carcinogenic Exposure (mg/m²3)	(3) Inhalation Unit Risk Factor	(4) Individual COC Risk (2) x (3) x 1000
Constituents of Concern	Classification	Residential	(μg/m^3)^-1	Residential
Benzene*	Α	2.9E-5	8.3E-6	2.4E-7
Toluene	D			
Ethylbenzene	D			
Xylene (mixed isomers)	D			
Methyl t-Butyl ether	-		<u> </u>	
TPH - Arom >C08-C10	D			

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Pledmont, CA Completed By: J. Douglas

#### RBCA SITE ASSESSMENT

4 OF 10

INDOOR AIR EXPOSURE PATHWAYS		(CHECKED IF PATHWAYS A	RE ACTIVE)
		TOXIC EFFECTS	
	(5) Total Toxicant Exposure (mg/m^3)	(6) Inhalation Reference Concentration	(7) Individual COC Hazard Quotient (6) / (6)
Constituents of Concern	Residential	(mg/m^3)	Residential
Benzene*	6.8E-5	6.0E-3	1.1E-2
Toluene	9.5E-5	4.0E-1	2.4E-4
Ethylbenzene	1.3E-4	1.0E+0	1.3E-4
Xylene (mixed isomers)	3.3E-4	7.0E+0	4.7E-5
Methyl t-Butyl ether	6.2E-5	3.0E+0	2.1E-5
TPH - Arom >C08-C10	1.2E-2	2.0E-1	5.8E-2

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas

Site Name: Former Chevron Service Station N Site Location: 340 Highland Ave., Piedmor Completed By: J. Douglas

Date Completed: 10-May-02

1 OF 1

#### TIER 2 EXPOSURE CONCENTRATION AND INTAKE CALCULATION

SOIL EXPOSURE PATHWAY		(CHECKED IF PAT	HWAY IS ACTIVE)		
SURFACE SOILS OR SEDIMENTS: ON-SITE INGESTION AND DERIMAL CONTACT	1) Source/Exposure Medium	, ,	sure Multiplier xED/(BWxAT) (kg/kg/day)		Daily Intake Rate (day) (1) × (2)
Constituents of Concern	Surface Soil Conc. (mg/kg)	Residential	Construction Worker	Residential	Construction Worker
Benzene*	2.4E-2	1.8E-5	4.2E-7	4.2E-7	9.8E-9
Toluene	5.3E-2	4.1E-5	2.9E-5	2.2E-6	1.5E-6
Ethylbenzene	1.1E-1	4.1E-5	2.9E-5	4.3E-6	3.1E-6
Xylene (mixed isomers)	2.4E-1	4.1E-5	2.9E-5	9.8E-6	6.9E-6
Methyl t-Butyl ether	1.0E-3	4.1E-5	2,9E-5	4.1E-8	2.9E-8
TPH - Arom >C08-C10	2.0E+1	4.1E-5	2.9E-5	8.3E-4	5.9E-4

NOTE: RAF = Relative absorption factor (-)	AT = Averaging time (days)	ED = Exposure duration (yrs)	IR = Soil Ingestion rate (mg/day)
M = Adherence factor (mg/cm*2)	BW = Body weight (kg)		
(III - FEDITE FINE BESTON (IIII CAN E)	DAL - DOGA MORRIE (MR)	EF = Exposure frequencey (days/yr)	SA = Skin exposure area (cm^2/day)

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA Completed By: J. Douglas

5 OF 10

TIER 2 PATHWAY RISK CALCULATION									
SOIL EXPOSURE PATHWAY					(CHECKED IF PATH	IWAY IS ACT	IVE)		
				CARC	CINOGENIC RISK				
	(1) EPA (2) Total Carcinogenic intake Rate (mg/kg/day) Carcinogenic (a) via ingestion (b) via Dermal Contact (c) via ingestion (d) via Dermal Contact			(3) Slope Factor (mg/kg/day)^-1		(4) Individu (2a)×(3a) + (2b)×(3b)	al COC Risk (2c)×(3a) + (2d)×(3b)		
	Classification	Residential Construction Worker		(a) Oral (b) Dermai		Residential Constructio			
Constituents of Concern Benzene*	<del>-   -                                 </del>	1.4E-8	4.0E-7	2.4E-10	9.6E-9	1.0E-1	3.0E-2	1.3E-8	3.1E-10
Toluene	D						<del></del>		
Ethylbenzene	D	<u> </u>			<u> </u>		<del></del>		
Xylene (mixed isomers)	D	<u> </u>							
Methyl t-Butyl ether	-	<u></u>							
TPH - Arom >C08-C10	D						ــــــــــــــــــــــــــــــــــــــ		

* No dermal slope factor available—oral slope factor used.

Total Pathway Carcinogenic Risk =

1.3E-8

3.1E-10

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Piedmont, CA Completed By: J. Douglas

6 OF 10

#### TIER 2 PATHWAY RISK CALCULATION

SOIL EXPOSURE PATHWAY

#### (CHECKED IF PATHWAY IS ACTIVE)

TOXIC EFFECTS

i	TOXIC EFFECTS							
		(5) Total Toxicant Inta	ke Rate (mg/kg/da	ıy)	(6) Oral		(7) Individual COC Hazard Quotient	
	(a) via Ingestion	(b) via Dermal Contact	(c) via ingestion	(d) via Dermal Contact	Reference Do	ae (mg/kg-day)	(6a)/(6a) + (5b)/(6b)	(5c)/(6a) + (5d)/(6b)
Constituents of Concern	Res	idential	Construc	ction Worker	(a) Orat	(b) Dermal	Residential	Construction Worker
Benzene*	3.2E-8	9.4E-7	1.7E-8	6.7E-7	3.0E-3	3.0E-3*	3.2E-4	2.3E-4
Toluene	7.3E-8	2.1E-6	3.8E-8	1.5E-6	2.0E-1	1.6E-1	1.4E-5	9.6E-6
Ethylbenzene	1.4E-7	4.2E-6	7.4E-8	3.0E-6	1.0E-1	9.7E-2	4.5E-5	3.2E-5
Xylene (mixed isomers)	3.3E-7	9.5E-6	1,7E-7	6.8E-6	2.0E+0	1.8E+0	5.3E-6	3.8E-6
Methyl t-Butyl ether	1.4E-9	4.0E-8	7.0E-10	2.8E-8	1.0E-2	8.0E-3	5.1E-6	3.6E-6
TPH - Arom >C08-C10	2.8E-5	8.1E-4	1.4E-5	5.8E-4	4.0E-2	4.0E-2*	2.1E-2	1.5E-2

^{*} No dermai reference doss available-oral reference doss used.

Total Pathway Hazard Index =

2.1E-2 1.5E-2

Site Name: Former Chevron Service Station No. 9-0329 Site Location: 340 Highland Ave., Piedmont, CA Completed By: J. Douglas

1 OF 5

GROUNDWATER EXPOSURE PA	THWAYS		· · · · · · · · · · · · · · · · · · ·	(CHECKED IF	PATHWAY IS A	CTIVE)	: -
SOILS (5 - 14 ft): LEACHING TO GROUNDWATER INGESTION	1) Source Medium	2)	NAF Value (L/k	g)		Exposure Medit ter: POE Conc. (mg	
Constituents of Concern	Soil Conc.	On-site (0 ft) Residential	Off-site 1 (0 ft) None	Off-site 2 (0 ft) None	On-site (0 ft) Residential	Off-site 1 (0 ft) None	Off-site 2 (0 ft) None
Benzene*	2.4E-2	6.0E+1			3.9E-4		
Toluene	5.3E-2	1.3E+2			4.2E-4		
Ethylbenzene	1.1E-1	3.2E+2			3.3E-4		
Xylene (mixed isomers)	2.4E-1	2.2E+2			1.1E-3		
Methyl t-Butyl ether	1.0E-3	1.7E+1_			5.9E-5		
TPH - Arom >C08-C10	2.0E+1	1,4E+3			1.5E-2		

	NAE . Netural attacuation factor	POE = Point of exposure	
NOTE:	NAF = Natural attenuation factor	LOF - I CHY OLOYDOOLO	 

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

2 OF 5

BOILS (5 - 14 ff): LEACHING TO	· ·	<del></del>						
GROUNDWATER INGESTION (cont'd)		4) Exposure Multiplier (IRxEFxED)/(BWxAT) (L/kg-day)			5) Average Daily Intake Rate (mg/kg/day) (3) x (4)			
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)		
Constituents of Concern	Residential	None	None	Residential	None	None		
Benzene*	1.2E-2			4.6E-6				
Toluene	2.7E-2			1.2E-5				
Ethylbenzene	2.7E-2			8.9E-6				
Kylene (mixed isomers)	2.7E-2	•		3.0E-5				
Methyl t-Butyl ether	2.7E-2			1.6E-6				
TPH - Arom >C08-C10	2.7E-2			4.0E-4				

	NOTE: AT = Averaging time (days)	ED = Exposure duration (vr)	IR = Ingestion rate (mg/day)
	HOTE. AT = Averaging unto (days)	FD # Exhospia agregosi (bi)	II - III Goodon I ato (11/8/00)
- (	BW = Body weight (kg)	EF = Exposure frequency (days/yr)	
	DYY = DOUY WEIGHT (Kg)	Er = Exposule (requestry (days/yr)	

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas Date Completed: 10-May-02

3 OF 5

TI	ER 2 EXPOSURE CO	NCENTRATI	ON AND INT	AKE CALCU	LATION		
GROUNDWATER EXPOSURE PATHWA	YS				(CHECKED IF P	ATHWAY IS A	CTIVE)
GROUNDWATER: INGESTION	1) Source Medium	2) i	NAF Value (unition	955)		Exposure Medit ter: POE Conc. (mg	
Constituents of Concern	Groundwater Conc. (mg/L)	On-site (0 ft) Residential	Off-site 1 (0 ft) None	Off-site 2 (0 ft) None	On-site (0 ft) Residential	Off-site 1 (0 ft) None	Off-site 2 (0 ft) None
Benzene*	2.3E-2	1.0E+0			2.3E-2 3.8E-3		
Toluene Ethylbenzene	3.8E-3 9.4E-3	1.0E+0 1.0E+0			9.4E-3		
Xylene (mixed isomers)	5.7E-3 1.9E-1	1.0E+0 1.0E+0			5.7E-3 1.9E-1		
Methyl t-Butyl ether TPH - Arom >C08-C10	6.6E-1	1.0E+0			6.6E-1		

			<del> </del>
MOTE		POE = Point of exposure	
NOTE:	NAF = Natural attenuation factor	LOP - LOUR OI OVDOGOLO	

Site Name: Former Chevron Service Station No. 9-0329

ICC Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

Date Completed: 10-May-02

4 QF 5

TIE	R 2 EXPOSURE	CONCENTRAT	TON AND INTA	KE CALCULAT	ON	
GROUNDWATER EXPOSURE PAT	HWAYS					
GROUNDWATER INGESTION (cont'd)						
		Exposure Multipii FxED)/(BWxAT) (L/kg		5) Av	erage Daily Intake (mg/kg/day) (3) x (4)	Rate
	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)	On-site (0 ft)	Off-site 1 (0 ft)	Off-site 2 (0 ft)
Constituents of Concern	Residential	None	None	Residential	None	None
Benzene*	1.2E-2			2.7E-4		
Toluene	2.7E-2			1.0E-4		
Ethylbenzene	2.7E-2			2.6E-4		
Xylene (mixed isomers)	2.7E-2			1.6E-4		
Methyl t-Butyl ether	2.7E-2			5.3E-3		
TPH - Arom >C08-C10	2.7E-2		·	1.8E-2		
* = Chemical with user-specified data	1					

NOTE:	AT = Averaging time (days)	ED = Exposure duration (yr)	IR = Ingestion rate (mg/day)
1101111		ED - Exposoro deradori (31)	in i = mgeenon rate (mg/day)
	BW = Body weight (kg)	EF = Exposure frequency (days/yr)	
<u> </u>	<u> </u>		<del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del>

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas Date Completed: 10-May-02

5 OF 5

PROUNDWATER EXPOSURE PATHWAYS			· · · · · · · · · · · · · · · · · · ·		
	MAXIMUM PATHWAY INTAKE (mg/kg/day) (Maximum Intake of active pathways soil leaching & groundwater routes.)				
Constituents of Concern	On-site (0 ft) Residential	Off-site 1	Off-site 2 None		
Benzene*	2.7E-4				
Toluene	1.0E-4				
Ethylbenzene	2.6E-4				
Xylene (mixed isomers)	1.6E-4				
Methyl t-Butyl ether	5.3E-3				
TPH - Arom >C08-C10	1.8E-2				

Site Name: Former Chevron Service Station No. 9-0329

3C Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

7 OF 10

GROUNDWATER EXPOSURE PATH	WAYS			<u> </u>	(CHECKED IF PAT	HWAYS ARE A	CTIVE)	
				C	ARCINOGENIC RIS	sk .		
	(1) EPA Carcinogenic	(2) Maximum Carcinogenic intake Rate (mg/kg/day)			(3) Oral Slope Factor	(4) Individual COC Risk (2) x (3)		
-	Classification	On-site (0 ft)	Off-site t	Off-site 2	(mg/kg-day)^-1	On-site (0 ft)	Off-site 1	Off-site 2
Constituents of Concern		Residential	None	None		Residential	None	None
Benzene*	A	2.7E-4		•	1.0E-1	2.7E-5		
Toluene	D							
Ethylbenzene	0							
Xylene (mixed isomers)	D							
Methyl t-Butyl ether	-							
TPH - Arom >C08-C10	D			: .	<del></del>			

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Piedmont, CA

Completed By: J. Douglas

TIER 2 PATHWAY RISK CALCULATION

8 OF 10

TOXIC EFFECTS  (5) Maximum Toxicant (6) Oral Intake Rate (mg/kg/day) Reference			
(=) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1-1) (1			
	(7) Individual COC Hazard Quotient (5) / (6)		
On-site Off-site 1 Off-site 2 Dose On-si (O ft) Off-site 2 (mg/kg/day) (O ft)	·   [M-sna 1	Off-site 2	

		intake Rate (mg/kg/day)			Hazard Quotient (5) / (6)		
	On-site (0 ft)	Off-site 1	Off-site 2	Dose (mg/kg/day)	On-site (0 ft)	Off-site 1	Off-site 2
Constituents of Concern	Residential	None	None		Residential	None	None
Benzene*	6.3E-4			3.0E-3	2.1E-1	_	
Toluene	1.0E-4			2.0E-1	5.2E-4		
Ethylbenzene	2.6E-4			1.0E-1	2.6E-3		
Xylene (mixed isomers)	1.6E-4			2.0E+0	7.8E-5		
Methyl t-Butyl ether	5.3E-3			1.0E-2	5.3E-1		
TPH - Arom >C08-C10	1.8E-2			4.0E-2	4.5E-1		

Total Pathway Hazard Index =

1.2E+0

Site Name: Former Chevron Service Station No. 9-0329

Site Location: 340 Highland Ave., Pledmont, CA

Completed By: J. Douglas

# Appendix H Standard Field Procedures

## **CAMBRIA**

## STANDARD FIELD PROCEDURES FOR SOIL BORING AND MONITORING WELL INSTALLATION

This document presents standard field methods for drilling and sampling soil borings and installing, developing and sampling groundwater monitoring wells. These procedures are designed to comply with Federal, State and local regulatory guidelines. Specific field procedures are summarized below.

#### SOIL BORINGS

#### **Objectives**

Soil samples are collected to characterize subsurface lithology, assess whether the soils exhibit obvious hydrocarbon or other compound vapor or staining, and to collect samples for analysis at a State-certified laboratory. All borings are logged using the Unified Soil Classification System by a trained geologist working under the supervision of a California Registered Geologist (RG).

#### Soil Boring and Sampling

Soil borings are typically drilled using hollow-stem augers or direct-push technologies such as the Geoprobe[®]. Soil samples are collected at least every five ft to characterize the subsurface sediments and for possible chemical analysis. Additional soil samples are collected near the water table and at lithologic changes. Samples are collected using lined split-barrel or equivalent samplers driven into undisturbed sediments at the bottom of the borehole.

Drilling and sampling equipment is steam-cleaned prior to drilling and between borings to prevent cross-contamination. Sampling equipment is washed between samples with trisodium phosphate or an equivalent EPA-approved detergent.

#### Sample Analysis

Sampling tubes chosen for analysis are trimmed of excess soil and capped with Teflon tape and plastic end caps. Soil samples are labeled and stored at or below 4° C on either crushed or dry ice, depending upon local regulations. Samples are transported under chain-of-custody to a State-certified analytic laboratory.

#### Field Screening

One of the remaining tubes is partially emptied leaving about one-third of the soil in the tube. The tube is capped with plastic end caps and set aside to allow hydrocarbons to volatilize from the soil. After ten to fifteen minutes, a portable volatile vapor analyzer measures volatile hydrocarbon vapor concentrations in the tube headspace, extracting the vapor through a slit in the cap. Volatile vapor analyzer measurements are used along with the field observations, odors, stratigraphy and groundwater depth to select soil samples for analysis.

## **CAMBRIA**

#### **Water Sampling**

Water samples, if they are collected from the boring, are either collected using a driven Hydropunch® type sampler or are collected from the open borehole using bailers. The groundwater samples are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.

#### Grouting

If the borings are not completed as wells, the borings are filled to the ground surface with cement grout poured or pumped through a tremie pipe.

#### MONITORING WELL INSTALLATION, DEVELOPMENT AND SAMPLING

#### **Well Construction and Surveying**

Groundwater monitoring wells are installed to monitor groundwater quality and determine the groundwater elevation, flow direction and gradient. Well depths and screen lengths are based on groundwater depth, occurrence of hydrocarbons or other compounds in the borehole, stratigraphy and State and local regulatory guidelines. Well screens typically extend 10 to 15 ft below and 5 ft above the static water level at the time of drilling. However, the well screen will generally not extend into or through a clay layer that is at least three ft thick.

Well casing and screen are flush-threaded, Schedule 40 PVC. Screen slot size varies according to the sediments screened, but slots are generally 0.010 or 0.020 inches wide. A rinsed and graded sand occupies the annular space between the boring and the well screen to about one to two ft above the well screen. A two ft thick hydrated bentonite seal separates the sand from the overlying sanitary surface seal composed of Portland type I,II cement.

Well-heads are secured by locking well-caps inside traffic-rated vaults finished flush with the ground surface. A stovepipe may be installed between the well-head and the vault cap for additional security.

The well top-of-casing elevation is surveyed with respect to mean sea level and the well is surveyed for horizontal location with respect to an onsite or nearby offsite landmark.

## **CAMBRIA**

#### Well Development

Wells are generally developed using a combination of groundwater surging and extraction. Surging agitates the groundwater and dislodges fine sediments from the sand pack. After about ten minutes of surging, groundwater is extracted from the well using bailing, pumping and/or reverse air-lifting through an eductor pipe to remove the sediments from the well. Surging and extraction continue until at least ten well-casing volumes of groundwater are extracted and the sediment volume in the groundwater is negligible. This process usually occurs prior to installing the sanitary surface seal to ensure sand pack stabilization. If development occurs after surface seal installation, then development occurs 24 to 72 hours after seal installation to ensure that the Portland cement has set up correctly.

All equipment is steam-cleaned prior to use and air used for air-lifting is filtered to prevent oil entrained in the compressed air from entering the well. Wells that are developed using air-lift evacuation are not sampled until at least 24 hours after they are developed.

#### **Groundwater Sampling**

Depending on local regulatory guidelines, three to four well-casing volumes of groundwater are purged prior to sampling. Purging continues until groundwater pH, conductivity, and temperature have stabilized. Groundwater samples are collected using bailers or pumps and are decanted into the appropriate containers supplied by the analytic laboratory. Samples are labeled, placed in protective foam sleeves, stored on crushed ice at or below 4°C, and transported under chain-of-custody to the laboratory. Laboratory-supplied trip blanks accompany the samples and are analyzed to check for cross-contamination. An equipment blank may be analyzed if non-dedicated sampling equipment is used.