DRAFT

RGA,

TABLE OF CONTENT	
Introduction	92 15 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Site Background	1:147
Field Investigations	1
Waste Oil and Piping Area	2
(Basement)	
Hydraulic Lift and Sump Area	2
(Ground Floor)	
Gasoline Tank Area (Harrison St.	2
Sidewalk)	
Pump Island and Piping Areas	3
(Ground Floor)	
Site Geology	3
Laboratory Analyses and Results	4
Soil Sample Results	4
Water Sample Results	6
Conclusion	7

LIST OF FIGURES

Figure 1 Figure 2	Site Location Map Boring Locations -
	Basement
Figure 3	Boring Locations - Lift
	and Sump Area
Figure 4	Boring Locations -
	Gasoline Tank Area
Figure 5	Boring Locations -
	Pump Island Area

LIST OF APPENDICES

Appendix A	Lithologic Logs
Appendix B	Laboratory Results -
	Soil Samples
Appendix C	Laboratory Results -
	Water Samples

DRAFT

INTRODUCTION

Alvin H. Bacharach, Inc. contracted RGA, Inc. to perform a site assessment of Harrison Street Garage, located at 1432-1434 Harrison Street, Oakland, California. The scope of the assessment was to drill soil borings and collect samples as follows: 1. Around the waste oil tank and associated pipings in the basement. 2. Around the gasoline tanks on the Harrison street sidewalk. 3. Around the hydraulic lift and sump areas on the floor level. 4. Around the gasoline pump island and associated pipings on the floor level. 5. Wherever possible collect groundwater samples to be used in determining groundwater quality. The collected samples will be analyzed to determine the presence or absence of hydrocarbon compounds, polychlorinated State purpose of work - development of a site safety plan rejending multiple site safety isses rejending multiple site safety isses rejends, surpt hoist biphenyis (PCBs), and metals.

SITE BACKGROUND

Harrison Street Garage is situated within the business district of Oakland. It is located at the corner of Harrison street and 15th street, (see Figure 1). The site is a three-floor commercial garage for automobiles and light trucks. In the past the site was a Chevron Service Station, with underground storage tanks, dispensers and associated pipings.

Previous work performed at the site included Phases I and II Site Assessments by Subsurface Consultants, Inc. of Oakland, California. Preliminary work indicated the potential for possible soil contamination by hydrocarbon compounds. Subsequent assessment indicated the presence of petroleum hydrocarbons in the unsaturated and saturated zones of the subject site.

FIELD INVESTIGATIONS

On January 16, 21, 22, 30, February 3, 4, and 5, 1992, RGA personnel drilled 23 soil borings, using a low access rig. Borings B-1 thru B-12 were located around the waste oil tanks and associated pipings (see Figure 2). Borings B-13, B-14, and B-15 were located at the hydraulic lift area and B-16 was located at the sump area (see Figure 3). Borings B-17, B-18, B-19, and B-20 were located at the gasoline tank area (see Figure 4). Borings B-21, B-22, and B-23 were located at the pump island and the associated piping areas (see Figure 5). Details of soil borings and lithologic logs are contained in Appendix A.

Soil samples were collected using a downhole closed spoon sampler or zero contamination sampler containing sampling sleeve. The samples were collected at 5foot intervals. The sleeve was sealed with aluminum foil, Teflon caps and duct tape, and placed on ice, pending laboratory analyses. A cut-out sleeve was put in a zip-loc bag and the head space was monitored using an organic vapor analyzer (OVA), and later examined for lithologic description using unified soil classification system (USCS). Before each sampling run, the sampler and sleeve were cleansed with trisodium phosphate solution and double rinsed in water and distilled water. Selected samples were recorded on a chain-of-custody and sent to state-certified Carter Analytical Laboratories, Inc. in Campbell, California.

Waste Oil Tank And Piping Area (BASEMENT)

Soil borings B-1 thru B-8 were located along the piping at 20-foot intervals. This interval coincided with the pipe joints which were already exposed. The piping was laid 1 1/2 feet below the basement floor. Soil samples were collected from 2 feet below the piping. Borings B-9 thru B-12 were located around the two waste oil tanks. Due to a possible concrete vault and building foundation, auger refusal was experienced at 5 feet in B-9, 8 feet at B-10, and about 3 to 4 feet in B-11 and B-12. Soil samples were only collected from B-9, and B-10 (see Figure 2 for detailed boring locations). Selected samples from this area were analyzed for benzene, toluene, ethyl benzene, and xylene (BTEX), total petroleum hydrocarbons as gasoline (TPH-G) and as diesel (TPH-D), priority pollutant metals (CAM 17), chlorinated hydrocarbons, oil and grease, and polychlorinated biphenyls (PCBs). The samples were analyzed using appropriate EPA methods.

Hydraulic Lift and Sump Areas (GROUND FLOOR)

Soil borings B-13, B-14, and B-15 were located around the two hydraulic lifts, and B-16 was located around the sump. All borings were drilled to 25 feet below ground surface (see Figure 3 for detailed boring locations). Soil samples were collected at 5-, 10-, and 15-foot intervals. The soil-water interface was at 15 feet below ground surface. Based on field screening, two samples per boring were sent for laboratory analyses. Samples from B-13 had hydrocarbon odor and indicated the presence of petroleum hydrocarbons. Groundwater was encountered in all the borings. Water yield in the borings was low to intermitent due to the tight clay soil. Only boring B-13 yielded sufficient water. Soil and water samples were sent to the laboratory for chemical analyses.

Gasoline Tank Area (HARRISON STREET SIDEWALK)

Two underground storage tanks were installed at about 5 feet below the sidewalk on Harrison street. Soil borings B-17, B-18, B-19, and B-20 were located around the fill ends and pump ends of the tanks (see Figure 4 for detailed boring locations). Boring B-17, and B-19 were drilled to 5 feet below grade, and groundwater was reached.

Soil samples were collected at this depth. No samples were collected from B-18 because of auger refusal at about 3 to 4 feet below grade. Boring B-20 was drilled to 15 feet below grade. It was designed to characterize the subsurface following the sudden contact with groundwater. Groundwater and one soil sample were collected from B-17 and B-20. Groundwater samples were collected from B-19. All samples were sent to the laboratory for chemical analyses.

Pump Island And Piping Areas (GROUND FLOOR)

Soil boring B-21 was located between the tanks and dispensers and along the piping which was less than 20 linear feet. Borings B-22 and B-23 were located at the dispensers (see Figure 5 for detailed boring locations). Boring B-21 was drilled to 15 feet below grade because of past repairs performed along the piping. Borings B-22 and B-23 were drilled to 10 feet below grade. Dispenser pipings are usually 2 to 3 feet below ground surface. Based on field screening, two soil and groundwater samples were collected from B-21, B-22, and B-23, and sent to the laboratory for chemical analyses.

SITE GEOLOGY

During drilling in the basement the lithology encountered was mostly silty sand from surface to 8 feet below the basement floor. Groundwater was not encountered during drilling. Borings drilled in the ground floor (lift and sump areas), were mostly silty sand from grade to about 10 feet below grade. From here to 15 feet below grade it changed to clayey sand with low plasticity. At about 15 feet below grade the soil-water interface was reached. At the soil-water interface the soil type was mostly sandy clay. From here to 25 feet below grade the lithology gradually changed to clayey sand. Groundwater yield in the soil borings were intermittent to low.

During drilling at the gasoline tank area on Harrison Street sidewalk, and at the pump island on the ground floor, the lithology encountered was mostly clayey sand from the ground surface to 5 feet below ground surface. The clayey sand was saturated, and has low plasticity. Groundwater was encountered at about 3 to 5 feet below grade. Soil borings B-17, B-18, and B-19, were stopped at 5 feet below ground surface. In Borings B-20, B-21, B-22, and B-23, the clayey sand continued to 10 feet below ground surface. Borings B-20, and B-21 were drilled to 15 feet below ground surface. The lithology from 10 feet to 15 feet below grade gradually changed from clayey sand to silty sand.

LABORATORY ANALYSES AND RESULTS

Soils

Based on field screening, selected samples were sent to Carter Analytical Laboratories for chemical analyses. Detailed laboratory results are contained in Appendix B.

Waste Oil Tank and Piping Area (BASEMENT)

Soil samples collected from this area were analyzed for TPH-G, TPH-D, BTEX, priority metals, PCBs, and oil and grease. Oil and grease results for borings B-9 and B-10 were misplaced by Carter Laboratories. Laboratory results indicated the following:

- 1. Levels of TPH-G: 27.3 ppm in B1-2′, 1.6 ppm in B3-2′, 1.9 ppm in B4-2, 2.6 ppm in B7-2′, and 2.44 ppm in B9-5′.
- Levels of TPH-D: 55.7 ppm in B1-2′, 1.5 ppm in B2-2′, 1.6 ppm in B3-2′, 24 ppm in B4-2′, 2.5 ppm in B5-2′, 24.3 ppm in B6-2′, 6.3 ppm in B7-2′, 2.9 ppm in B8-2′, 11.1 ppm in B9-5′, and 109 ppm in B10-8′.
- 3. Levels of BTEX: with exception of toluene all the parameters of BTEX were non-detectable or below the detection limits in samples B1-2' thru B8-2'. Toluene was non-detectable in B9-5' and B10-8'.
- 4. Levels of Oil and Grease: 54.2 ppm in B1-2', 54.8 ppm in B4-2', 50.9 ppm in B5-2', 221 ppm in B7-2', 55.1 ppm in B8-2'.
- 5. Levels of chlorinated hydrocarbons: This compound was non-detectable or below detection limits in all the samples (B-1 thru B-10).
- 6. Levels of PCB: This compound was non-detectable or below detection limits in all the samples (B-1 thru B-10).
- 7. Levels of priority pollutant metals: With the exception of Beryllium, Cadmium, and Silver, most of the metals were above the ten times levels of the STLC regulatory levels in all the samples (B-1 thru B-10).

Hydraulic Lift and Sump Areas (GROUND FLOOR)

Soil samples collected from borings B-13, B-14, B-15, and B-16 were analyzed for TPH-G, TPH-D, BTEX, PCBs, priority metals, and oil and grease. Laboratory results of TPH-D, TPH-G, BTEX, oil and grease for borings B-15 and B-16, and oil and grease analyses for B-13 and B-14, were misplaced by Carter Laboratory. Laboratory results indicated the following:

- 1. Levels of TPH-G: There were 83.2 ppm in B13-5', 135.0 ppm in B13-15', less than detection limit in B14-5', and 2.5 ppm in B14-15'.
- 2. Levels of TPH-D: There were 1.63 ppm in B13-5', less than detection limits in B13-15', and B14-5', and 17.3 in B14-15'.
- 3. Levels of BTEX: Toluene was detected in B13-5' and B13-15', at .068 ppm and .71 ppm respectively. Ethyl Benzene was detected only in B13-5' and Xylene was detected in B13-15'. In other samples the parameters of BTEX were not tested or were less than detection limits.
- 4. Levels of Priority Metals: The metals, Beryllium, Chromium, Molybdenum, and Zinc, were not detected in all the samples. The rest of the 17 metals were at levels that are ten times higher than the STLC Regulatory levels in all or some of the samples.
- 5. Levels of PCBs: This compound was less than detection limit in all the samples.
- 6. Levels of Chlorinated Hydrocarbons: This compound was less than detection limit in all the samples.

Gasoline Tank Area (HARRISON STREET SIDEWALK)

Soil samples collected from borings B-19 and B-20 were analyzed for TPH-G, TPH-D, and BTEX. Samples from B-17 were analyzed for priority metals, oil and grease, PCBs, and chlorinated hydrocarbons. Laboratory analyses indicated the following:

- 1. Levels of TPH-G: With the exception of samples from boring B-22, all the soil samples from this area were below County action levels of 10 ppm. Samples B22-5' and B22-10' had 42.3 ppm and 1540 ppm, respectively, of TPH-G.
- Levels of TPH-D: There were 26.0 ppm in B23-5′, 670.0 ppm in B22-5′, 175.0 ppm in B22-10′, 15.7 ppm in B21-10′, 16.7 ppm in B21-5′, 22.7 ppm in B21-15′, 24.0 ppm in B20-5′, and 28.0 ppm in B19-5′. Samples B23-10′ and B20-15′ had no detectable levels of TPH-D.

- 3. Levels of BTEX: Benzene was detected in sample B22-10 at a level of .987 ppm, and was less than detection limit in the rest of the samples. Toluene was detected in all the samples and the levels were above the detection limit of .005 ppm. Ethyl Benzene was only detected in B22-10' at 1.67 ppm, and it was less than detection limit of .005 ppm in the rest of the samples. Xylene was detected above detection limit of .005 ppm in B22-5', B22-10', B21-10', B21-5', B20-5', and B19-5', and it was below detection limits in the rest of the samples.
- 4. Levels of Total Oil and Grease: Soil samples B20-15' and B17-5' were analyzed. The levels were 35.2 ppm and 39.1 ppm for B20-15' and B17-15', respectively.
- 5. Levels of Chlorinated Hydrocarbons: Only sample B17-5' was analyzed. All the parameters analyzed were less than detection limits in the sample.
- 6. Levels of PCB: Samples B20-15', and B15-5' were analyzed. All the parameters were below detection limits in both samples.
- 7. Levels of Priority Metals: With the exception of Beryllium, Cadmium, Chromium, Cobalt, Molybdenum, Selenium, Silver, and Zinc, the rest of the 17 metals have more than ten times the STLC Regulatory levels.

Water Samples Results

Water samples were collected from borings B-13, B-17, B-20, B-21, B-22, and B-23. Detailed laboratory results are contained in Appendix C.

- Levels of TPH-G: Water samples from four borings were analyzed. The levels were 60200.0 ppb in B-13, 96.0 ppb in B-17, 72.0 ppb in B-22, and 1020.0 ppb in B-23.
- Levels of TPH-D: Water samples from borings B-13, B--17, B-22, and B-23 were analyzed. Results indicated that they were all less than detection limits.

When sucr

ditected

benzen is

int it.

3. Levels of BTEX: Water samples from borings B-13, B-17, B-22, and B-23, were analyzed. With the exception of B-21, Benzene was detected in all the samples, and levels ranged from 4.0 ppb to 55.0 ppb. Toluene was detected in B-13, B-17, B-22, and B-23, and the levels ranged from .7 ppb to 45.0 ppb. It was not detected in B-21. Ethyl Benzene was detected in B-13, and B-23, and the levels were 26.5 ppb and 2.0 ppb, respectively. The rest of the samples were less than detection limits. Xylene was detected in B-13, B-17,

B-22, and B-23, and the values ranged from 3.0 ppb to 242.0 ppb. It was less than detection limits in the rest of the samples.

4. Levels Of Oil And Grease: Water sample from B-13 was analyzed for Oil and Grease, and it had 9721 ppb.

Levels Of Chlorinated Hydrocarbons: Water sample from B-17 was analyzed for chlorinated hydrocarbons, and it had 30 ppb of Chloroform, and 2.4 of Bromodichloromethane. The rest of the parameters were less than detection limits.

- 5. Levels of Total Lead: Water samples from B-20, B-21, B-22, and B-23 were analyzed for total lead, and the levels were 0.81 ppb, less than detection limit, 1.38 ppb, and 8.29 ppb, respectively.
 - Levels of Priority Pollutant Metals: Water sample from boring B-17 was analyzed for metals, and the results indicated that all the parameter were less than detection limits.

CONCLUSION

Based on the field observation, laboratory analyses and results of the subject site, the following conclusions were made:

- 1. The waste oil underground storage tanks in the basement appears to be covered by a concrete vault. There are traces of hydrocarbon compounds around the tank and along the piping in the basement.
- 2. The lift areas appears to indicate the presence of hydrocarbon compounds.
- 3. The tank area appears to indicate lower levels of hydrocarbon compounds.
- 4. The dispenser areas appears to indicate the presence of hydrocarbon compounds.

1432-1434 HARRISON STREET

LOCAL AREA SITE LOCATION MAP

• - SITE LOCATION FIGURE - I

ST.

GASOLINE TANK AREA (SIDEWALK)

LEGEND:

● ~ BORING LOCATION

RGA ENVIRONMENTAL INC.	JOB CODE 100801	SITE LOCATION: 1432-1434 HARRISON ST. OAKLAND
EMERYVILLE, CA	SCALE: "= 10 APPROX FIGURE 4	BORING LOCATIONS - GASOLINE TANK AREA

HARRISON

ST.

PUMP ISLAND AREA

LEGEND:

BORING LOCATION

RGA ENVIRONMENTAL INC.	JOB CODE: 100801	SITE LOCATION: 1432-1434 HARRISON ST. OAKLAND
EMERYVILLE, CA	SCALE: I" = IO APPROX., FIGURE 5	BORING LOCATIONS - PUMP ISLAND AREA

DRILLING AND LITHO	PLOGIC LO)(G		B	ORII	NG	#1	- 8
PROJECT : Harrison Garage Oakland	CLIENT: Alvin H. Ba	charac	h, inc	<u> </u>				
PROJECT #:_AHBI-100801								
LOCATION: 1432 Harrison Street, Oakland, California								
DATE DRILLED: January 16, 1992								
SCREEN DIAMETER: N/A LENGTH:	SLOT SIZE:	_						
CASING DIAMETER:_N/A LENGTH:	SAMPLERTYPE: Zero C	ontam	inatio	n.Samp	ler			
DRILLING CO. RGA, INC.	DRILLINGMETHOD: H	loliow S	item <i>!</i>	Auger				_
LOGGED BY: Chris 'Wabuzoh								
CORESAMPLE CONDITION LEGEND: UN		DISTU			_		OVER	
DECORUST		Ŧ	S	SAM	PLES		WE	
DESCRIPTION		DEPTH	USCS	NUMBER	CONDI- TION	BLOWS	PIPE	ᆁ
SILTY SAND: Brown, about 40% silt; about 60% very fin to subrounded sand; none to low dry strength; none to no odor; no reaction with HCL; OVA .2 ppm.	e to fine, hard, rounded to low plastticity; moist;	5 10 15	SM					

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028 -

DRILLING AND LITHOI	LOGIC LO	G		В	ORIN	IG	#9	3
PROJECT: Harrison Garage Oakland	. CLIENT: Alvin H. Ba	charac	h, inc	<u> </u>				
PROJECT #:_AHBI - 100801	TOTAL DEPTH OF I	HOLE:	5 Fe	et	_ DIA	M.; <u>.1</u> :	1/2 ln	nches
LOCATION: 1432 Harrison Street, Oakland, California	. INITIAL DEPTH - TO	GRNE	TAWC	R: <u>N/A</u>	· · · <u>-</u> · · ·		· <u>-</u>	
DATE DRILLED: January 22, 1992	STATIC WATER LI	EVEL:_						_
SCREEN DIAMETER: N/A LENGTH:	SLOT SIZE:	-						
CASING DIAMETER: N/A LENGTH:	SAMPLERTYPE: Zero (Contan	ninatio	on Samp	ler			
DRILLING CO. RGA, INC.	DRILLINGMETHOD:_E	lollow.S	Stem	Auger	-			
LOGGED BY: Chris 'Wabuzoh	REVIEWED BY:_K	en Kor	ford,	CEG #	505			
CORESAMPLE CONDITION LEGEND: UND	_	DISTU			-9	RECO		
DESCRIPTION		Ę	્રહે	SAM	PLES	t	WEL CONS	
DESCRIPTION		ОЕРТН	USCS	NUMBER	CONDI- TION	BLOWS	PIPE	FIL
SILTY SAND: Brown; about 60% very fine to fine, hard, su sand; about 40% silt; none to low dry strength; no plasticit reaction with HCL; OVA 0 ppm.	brounded to rounded by; no odor; moist; no	5 10 - 15 - 15 - 15 - 15 - 17 - 17 - 17 - 17	SM	B9-5'				

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

DRILLING AND LITHOLOGIC LO)G		В	ORIN	IG	#	10
PROJECT : Harrison Garage Oakland CLIENT: Alvin H. Ba	echarac	h, inc					
PROJECT #:_AHBI-100801 TOTAL DEPTH OF	HOLE:	<u>8 Fe</u>	et	_ DIA	M.:1	1/2.in	ches
LOCATION: 1432 Harrison Street, Oakland, California INITIAL DEPTH -To	O GRNI	TAWC	:R: <u>N/A</u>				
DATE DRILLED: January 22, 1992 STATIC WATER L	EVEL:_						
SCREEN DIAMETER: N/A LENGTH: SLOT SIZE:	- -						
CASING DIAMETER: N/A LENGTH: SAMPLERTYPE: Zero	Contan	ninatio	on Samp	ler			
DRILLING CO. RGA, INC. DRILLING METHOD:	Hollow S	Stem A	Auger				
LOGGED BY: Chris 'Wabuzoh a REVIEWED BY: L	(en Kor	ford_	CEG #5	505			
CORESAMPLE CONDITION LEGEND: UNDISTURBED	DISTU	RBED) <u> </u>] NOF	RECO	OVER	łΥ
DESCRIPTION	Ŧ	So. So.	SAM	PLES		WE CONS	
DESCRIPTION	DEPTH	USCS	NUMBER	CONDI- TION	BLOWS	BIPE	FIL
SILTY SAND: Brown; about 60% very fine to fine, hard, subrounded to rounded sand; about 40% silt; none to low dry strength; no plasticity; no odor; moist; no reaction with HCL; OVA 0 ppm.	5	SM	B10-8'				

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

DRILLING AND LITHOLOGIC LOG BORING PROJECT: Harrison Garage Oakland CLIENT: Alvin H. Bacharach, Inc. PROJECT #; _AHBI - 100801. TOTAL DEPTH OF HOLE: 25 Feet DIAM.: 11/2 Inches LOCATION: 1432 Harrison Street, Oakland, California INITIAL DEPTH - TO GRNDWATR: 15 Feet DATE DRILLED: January 21, 1992 STATIC WATER LEVEL: N/A SCREEN DIAMETER: N/A. LENGTH: SLOT SIZE: ______ SLOT SIZE: ____ CASING DIAMETER: N/A LENGTH: _____ SAMPLERTYPE: Zero Contamination Sampler DRILLING CO. RGA_INC. DRILLINGMETHOD: Hollow Stern Auger LOGGED BY: Chris 'Wabuzoh_ REVIEWED BY: Ken Korford_CEG_#505 CORESAMPLE CONDITION LEGEND: INDISTURBED DISTURBED ■ NO RECOVERY SAMPLES USCS CONSTR. DESCRIPTION CONDI-蒀 NUMBER TION SILTY SAND: Brown; about 60% very fine to fine, hard, subrounded to rounded sand; about 40% silt; low dry strength; none to low plasticity; moist; odor; no reaction with HCL; OVA 50 ppm. SM B13-5' CLAYEY SAND: Brown; about 60% very fine to fine, hard, subrounded to rounded sand; about 40% clay; low dry strength; low plasticity; moist; odor; no reaction with HCL; OVA 60 ppm. SC 10 B13-10 SANDY CLAY: Brown; about 40% very fine to fine, hard, rounded sand; about 60% clay; low to medium dry strength; low plasticity; wet; odor; no reaction with HCL; OVA 30 ppm. CL B13-15 CLAYEY SAND: Brown; about 60% very fine to fine, hard, rounded sand; about 40% clay; low to medium dry strength; low plasticity; saturated; odor; no SC reaction with HCL; OVA 30 ppm. B13-20

RGA, INC.
CALIFORNIA 94608-1028

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

CLAYEY SAND: Same As Above. OVA 20 ppm.

BITTLE AND LITTION	GOIG FO	\ Y		<u> </u>	Omir	1	<i>77</i>	J T
PROJECT : Harrison Garage Oakland	CLIENT: Alvin H. Bac	harac	h, Inc					
PROJECT #:_AHBI - 100801	TOTAL DEPTH OF H	IOLE:	25 Fe	iet	_ DIA	M.: _1	ىل2/1	nche
OCATION: 1432 Harrison Street, Oakland, California INITIAL DEPTH - TO GRNDWATR: 15 Feet								
DATE DRILLED: January 21, 1992	STATIC WATER LE	VEL:1	I/A					
SCREEN DIAMETER: N/A LENGTH: S	LOT SIZE:	<u>.</u>						
CASING DIAMETER: N/A LENGTH:	SAMPLERTYPE: Zero C	ontarr	inatio	n Samp	ler			
DRILLING CO. RGA, INC.	DRILLINGMETHOD:_H	ollow S	item A	\uger_				
LOGGED BY: Chris 'Wabuzoh	REVIEWED BY:_Ke	en Kori	ord,	CEG #5	05			
CORESAMPLE CONDITION LEGEND: UND	STURBED 🖂	DISTU	RBED] NOF	RECO)VER	Y
DESCRIPTION	ТH	BOL	SAM	PLES	1	WEL		
DESCRIPTION		ОЕРТН	USCS	NUMBER	CONDI- TION	BLOWS	PIPE	FIL
		0 -						
SILTY SAND: Brown; about 60% very fine to fine, hard, su rounded sand; about 40% silt; low dry strength; none to lo odor; no reaction with HCL; OVA .4 ppm.	brounded to w plasticity; moist no	5	SM	B14-5'				
CLAYEY SAND: Brown; about 60% very fine to fine hard, s rounded sand; about 40% clay; low dry strength; low plast no reaction with HCL; OVA .3 ppm.	subrounded to ticity; moist; no odor;	10 -	sc	B14-10				
SANDY CLAY: Brown; about 40% very fine to fine, hard, ro 60% clay; low to medium dry strength; low plasticity; wet; with HCL; OVA .2 ppm.	ounded sand; about no odor; no reaction	15 -	CL	B14-15				
CLAYEY SAND: Brown; about 60% very fine to fine, hard, i 40% clay; low to medium dry strength; low to medium plas odor; no reaction with HCL; OVA .1 ppm.	rounded sand; about ticity; saturated; no	20 -	sc					
CLAYE SAND: Same As Above	·	25 =	sc					

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

DRILLING AND LITHOLOGIC LO	G		В	ORIN	IG	#1	5
PROJECT : Harrison Garage Oakland CLIENT: Alvin H. Bad	haraci	n Inc					
PROJECT #:AHBL-100801 TOTAL DEPTH OF H	OLE:	25 F	eet	DIA	M.: _1	1/21	nche
LOCATION: 1432 Harrison Street, Oakland, California INITIAL DEPTH - TO	GRNE	WAT	'R <u>: 15 F</u> e	et .			_
DATE DRILLED: January 27, 1992 STATIC WATER LE	VEL:_I	V/A	 				
SCREEN DIAMETER: N/A LENGTH: SLOT SIZE:	•						
CASINGDIAMETER: N/A LENGTH: SAMPLERTYPE: Zero C	ontan	inatio	n Samp	ler			
DRILLING CO. RGA, INC. DRILLING METHOD: He	ollows	tem A	uger				
LOGGED BY: Chris 'Wabuzoh REVIEWED BY: Ki	en Kor	ford_	CEG #5	505			
CORESAMPLE CONDITION LEGEND: UNDISTURBED	DISTU	RBED] NOF	RECO	OVER	ΙΥ
	표	SS SOL	SAM	PLES		WE CONS	_
DESCRIPTION	рертн	NSCS	NUMBER	CONDI- TION	BLOWS	PIPE	FIL
	0						
SILTY SAND: Brown; about 60% very fine to fine, hard, subrounded to rounded; about 40% silt; low to mediumdry strength; low plasticity; moist; no odor no reaction with HCL; OVA .3 ppm.	5	SM	B15-5'				
CLAYEY SAND: Brown; about 60% very fine to fine, hard, subrounded to rounded; about 40% clay; low to medium dry strength; low plasticity; moist; no odor; no reaction with HCL; OVA .3 ppm.	10 -	sc	B15-10				
SANDY CLAY: Brown; about 40% very fine to fine, hard, rounded sand; about 60% clay; low to medium dry strength; low to medium plasticity; wet; no odor; no reacttion with HCL; OVA .1 ppm.	15 -	CL	B15-15				
CLAYEYSAND: Brown; about 60% very fine, hard, rounded sand; about 40% clay; low to medium plasticity; saturated; no odor; no reaction with HCL; OVA .1 ppm.	20 =	sc	B15-20				
CLAYEY SAND: Same As Above,			B15-25		I		

RGA, INC.
1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

DRILLING AND LITHOLOG		G		В	ORIN	IG	#1	6
PROJECT : Harrison Garage Oakland CLIE	NT: <u>Alvin H. Ba</u> c	harach	ı, İnc.					
PROJECT #: AHBI - 100801 TOTA	AL DEPTH OF F	HOLE:	25 Fe	et	. DIA	M.11	/2.lnd	:hes:
LOCATION: 1432 Harrison Street, Oakland, California INITI	AL DEPTH - TO	GRNE	OWAT	R: 15 F	eet			
DATE DRILLED: January 30, 1992 STA	TIC WATER LE	EVEL:_		N/A				
SCREEN DIAMETER: N/A LENGTH: SLOT SIZ	'E:	-						
CASING DIAMETER: N/A LENGTH: SAMPLE	RTYPE: Zero (Contam	ninatio	n Samp	ler			
DRILLING CO. RGA, INC. DRILLIN	GMETHOD:_L	lollow S	Stem.	\uger				
CORE SAMPLE CONDITION LEGEND: UNDISTURBED DISTURBED NO RECOVERY DESCRIPTION REVIEWED BY: Ken Korford NO RECOVERY SAMPLES WELL CONS NUMBER CONDITION BER NUMBER CONDITION								
CORESAMPLE CONDITION LEGEND: UNDISTURB	ED 🖂	DISTU.	RBEC	, <u> </u>] NOF	REC	OVEF	ΙΥ
		Ξ	ر ان م	SAM	PLES			
DESCRIPTION		DEP	USCS	NUMBER		OWS		1
				<u> </u>	HON	BL	п.	<u>. </u>
		0 -						
SILTY SAND: Brown; about 60% very fine to fine, hard, subrounde	ed to							
rounded sand; about 40% clay; low to medium dry strength; low pl no odor; no reaction with HCL; OVA .3 ppm	asticity; moist;		SM	B16-5'			;	
		5 _		510-3				
CLAYEY SAND: Brown; about 60% very fine to fine, hard, subrour	aded to							
roundedsand; about 40% clay; low to medium dry strength; low pl no odor; no reaction with HCL; OVA .2 ppm.	asticity, moist;		sc	B16-10				
		10 -		1.0,0				
SANDY CLAY: Brown; about 40% very fine to fine, hard, rounded a 60% clay; low to medium dry strength; low to medium plasticity; we	sand; about							
reaction with HCL; OVA .1 ppm.			CL	B16-15				
		15	CL	B16-15	7			
CLAVEVSAND: Brown: about 60%/ year #= a least are and all and						ı		
CLAYEY SAND: Brown; about 60% very fine, hard, rounded sand; clay; low to medium dry strength; low to medium plasticity; saturate no reaction with HCL; OVA 0 ppm.	about 40% ed; no odor;		sc					
THO THE CLICITY WITH CL., OVA OPPM.		20 -		B16-20		ı		
CLAYEY SAND: Same As Above			sc	B16-25				

RGA, INC.
1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028 -

DINETHE WAS CHILD	-odio ro				<u> </u>	•	17	
PROJECT : Harrison Garage Oakland	CLIENT: Alvin H. Bac	harac	h, Inc					
PROJECT #: AHBI - 100801	TOTAL DEPTH OF H	OLE:	5 Fe	et	_ DIA	λM.:_	1 1/21	nche
LOCATION:1432 Harrison Street, Oakland, California	INITIAL DEPTH - TO	GRN	TAWC	Я <u>_4 F</u> ө	et			
DATE DRILLED: January 30, 1992	STATIC WATER LE	VEL:_		N/A				
SCREEN DIAMETER: N/A LENGTH: S	LOTSIZE:	-						
CASING DIAMETER: N/A LENGTH: S	SAMPLERTYPE: Closse	edSpo	on Sa	ımpler				
DRILLING CO. RGA INC.	DRILLINGMETHOD: H	ollow S	item /	\uger_				
LOGGED BY: Chris 'Wabuzoh	REVIEWED BY:_K	en Kof	ord_C	EG #5	05			
CORESAMPLE CONDITION LEGEND: UND	STURBED 🖂	DISTU	RBED) [] NOI	REC	OVER	RΥ
		Ę	្ត្រ	SAM	PLES		CONS	
DESCRIPTION		рертн	NSCS	NUMBER	CONDI- TION	BLOWS	PIPE	FEL
CLAYEY SAND: Brown; about 60% very fine to fine to subrounded sand; about 40% clay; low to medic low plasticity; wet; no odor; no reaction with HCL	um dry strength:	5 10 15 15 20 1	sc	B17-5				

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

DRILLING AND LIT	HOLOG	IC LO	G		В	ORIN	۷G	#	19
PROJECT: Harrison Garage, Oakland	CLIEN	T: Alvin H. Ba	charac	h, Inc	<u>. </u>				
PROJECT#: AHBI - 100801	TOTAI	DEPTH OF H	HOLE:	5 Fee	et	_ DIA	М.:_	1 1/2	nche
LOCATION: 1432 Harrison Street, Oakland, Calif	fornia INITIA	L DEPTH - TO	GRN	TAWC	Ή <u>: 5Fe</u>	et			
DATE DRILLED: February 3, 1992	STAT	C WATER LE	VEL:	N/A_					
SCREEN DIAMETER: N/A LENGTH:	SLOT SIZE	:	-						
CASING DIAMETER: N/A LENGTH:	SAMPLEF	TYPE: Close	dSpoc	n Sar	npler	_			
DRILLING CO. RGAINC.	DRILLING	METHOD: H	ollow S	item A	uger	<u> </u>			
LOGGED BY: Chris Nwabuzoh	REVI	EWED BY:_K	en Kor	ford,	CEG #!	505			
CORE SAMPLE CONDITION LEGEND:	UNDISTURBE	o ⊠	DISTU	RBEC) <u> </u>] NOF	RECO	OVER	ΙΥ
DECORUTTON			Ę	3S.	SAM	PLES		CON	-
DESCRIPTION			DEPTH	NSCS	NUMBER	CONDI- TION	BLOWS	BlbE	FILL
CLAYEY SAND: Brown; about 60% very fine to rounded sand; about 40% clay; low to medium no odor; no reaction with HCL; OVA .3 ppm.	fine, hard, subround dry strength, low pla	led to sticity; wet;	5 10 - 15 - 20	sc	B19-5				

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

PHILLING AND LITTUE	JOIG LO	10			<u> </u>	4 W	<i>TT C</i>	-0
PROJECT : Harrison Garage, Oakland	CLIENT: Alvin H. Bad	haraci	h, Inc					
PROJECT#: AHBI-100801	TOTAL DEPTH OF H	lOLE:	5 Fee	et	_ DIA	·Μ.: _	1 1/2և	obes
LOCATION: 1432 Harrison Street, Oakland, California	INITIAL DEPTH - TO	GRNE	TAWC	R <u>_5Fe</u>	et			
DATE DRILLED: February 3, 1992	STATIC WATER LE	VEL:_	·					
SCREEN DIAMETER: N/A LENGTH: S	LOTSIZE:							
CASING DIAMETER: N/A LENGTH:	SAMPLERTYPE: Close	d Spoo	m.Sa	mpler				
DRILLING CO. RGA_INC	DRILLING METHOD: H	ollow S	item /	\uger				
LOGGED BY: Chris Nwabuzoh	REVIEWED BY:_Ke	n Korf	ord,	CEG #5	505			
CORESAMPLE CONDITION LEGEND: UND	STURBED 🖂	DISTUI	RBEC	, _] NOF	REC	OVER'	Υ
DECORPORA		Ę	30r	SAM	PLES		WEI	
DESCRIPTION		DEPTH	USCS	NUMBER	CONDI- TION	BLOWS	BipE	FIL
CLAYEY SAND: Brown; about 60% of fine, hard, subround about 40% clay' low to medium dry strength; low plasticity no reaction with HCL;OVA .5 ppm.	led to rounded sand;	5 10	SC .	B20-5				

RGA, INC.
1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

DÉILLING AND LITHOL	ogic i	0	G		В	ORIN	IG	#2	21
PROJECT : Harrison Garage Oakland	CLIENT: Alvin H	l Baci	naraci	n, inc			-		
PROJECT #: AHBI - 100801	TOTAL DEPTH	OF H	OLE:	15 F	eet	_ DIA	M.: _:	L1/2 J	nches
LOCATION: 1432 Harrison Street, Oakland, California	INITIALDEPTH	I-TO	GRNE	TAWC	R: <u>5 Fe</u>	et			
DATE DRILLED: February 5, 1992	STATIC WATE	R LEV	/EL:_I	V/A					
SCREEN DIAMETER: N/A LENGTH: S	LOT SIZE:								
CASING DIAMETER: N/A LENGTH:	SAMPLERTYPE: Z	ero C	ontan	ninati	on Samp	oler		<u> </u>	
DRILLING CO. RGA, INC.	DRILLINGMETHO	D:_Ho	llows	item A	Auger			<u> </u>	
LOGGED BY: Chris 'Wabuzoh	REVIEWED BY	Y: <u>Ke</u> i	n Kor	ord,	CEG #!	505			
CORESAMPLE CONDITION LEGEND: UND	ISTURBED	\boxtimes c	DISTU	RBED) <u> </u>	ON	RECO	OVER	ΙΥ
DECORPORTION			Ŧ	3S 30L	SAM	PLES		WE CONS	
DESCRIPTION			DEPTH	NSCS NSCS	NUMBER	CONDI- TION	BLOWS	PIPE	FIL
CLAYEYSAND: Brown; about 70% fine to coarse, hard, susand; about 30% clay; low dry strength; none to low plastic odor; no reaction with HCL; OVA 0 ppm. CLAYEYSAND: Same As Above. SILTYSAND: Brown; about 60% very fine to fine, hard subsand; about 40% silt; low dry strength; none to low plasticino reaction with HCL; OVA 0 ppm.	city; saturated; no	▼. ed dor;		SC SM	B21-5'				

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

DHILLING AND LITHU	LUGIC	LU	G.		D	OHI	NG	#	22
PROJECT : Harrison Garage Oakland	CLIENT: Alvin	ı H. Bac	haraci	h, Inc					
PROJECT #: AHB! - 100801	TOTAL DEPT	H OF H	OLE:	10 F	eet	_ DIA	M.: 1	L1/2 Ir	nches
LOCATION: 1432 Harrison Street, Oakland, California	INITIAL DEPT	ГН-ТО	GRNE	WAT	'R <u>: 5 Fee</u>	et			
DATE DRILLED: February 5, 1992	STATIC WAT	TER LE	VEL:_I	V/A_			_		
SCREEN DIAMETER: N/A LENGTH:	SLOT SIZE:								
CASING DIAMETER: N/A LENGTH:	SAMPLERTYPE:	Zero C	ontam	inatio	on Samp	lerr_			
DRILLING CO. RGA, INC.	DRILLINGMETH	IOD: H	ollow S	item /	uger				
LOGGED BY: Chris 'Wabuzoh	REVIEWED	BY:_Ke	n.Korf	ord,	CEG_#	505			
CORESAMPLE CONDITION LEGEND: UN	NDISTURBED	⊠ ı	DISTU	RBEC) [J NO	REC	OVEF	RΥ
			E	S O	SAM	PLES	;	WE	
DESCRIPTION			ОЕРТН	USCS	NUMBER	CONDI- TION	BLOWS	PIPE	FIL
CLAYEY SAND: Brown; about 70% very fine to fine, har rounded sand; about 30% clay; low dry strength; none saturated; no odor; no reaction with HCL; OVA 5 ppm CLAYEY SAND: Same As Above. OVA 2 ppm.	to low plasticity:	₩.	5 10 15 20 1	ග ග	B22-5'				

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028 -

DRILLING AND LITHOL	OGIC LO)G		В	ORIN	G	#2	3
PROJECT : Harrison Garage Oakland	CLIENT: Alvin H. Ba	icharac	h, inc.					
PROJECT #:AHBI - 100801	TOTAL DEPTH OF	HOLE:	10 F	eet	_ DIAM	l.: 11 /	/2 ln	ches
LOCATION: 1432 Harrison Street, Oakland, California	INITIAL DEPTH - To	O GRNI	OWAT	R: 5 Fe	et			
DATE DRILLED: February 5, 1992	STATIC WATER L	EVEL:_	N/A					
SCREEN DIAMETER: N/A LENGTH: S	LOT SIZE:	_						
CASING DIAMETER: N/A LENGTH: 5	SAMPLERTYPE: Zero	Contan	ninatio	n Samp	ler			
DRILLING CO. RGA, INC	DRILLINGMETHOD: J	Swollat-	Stem A	uger_				
LOGGED BY: Chris 'Wabuzoh	REVIEWED BY:	(en Kor	ford,_	CEG #!	505			
CORESAMPLE CONDITION LEGEND: UND	ISTURBED 🖂	DISTU	RBED		NOR	ECO\	/ER	Ý
		Īξ	So is	SAM	PLES	C	WEL	
DESCRIPTION		ОЕРТН	USCS	NUMBER	CONDI- TION	BLOWS	PPE	FIL
CLAYEY SAND: Brown; about 70% very fine to fine, hard, rounded sand; about 30% clay; low dry strength; none to saturated; slight odor; no reaction with HCL; OVA 20 pp. CLAYEY SAND: Same As Above. OVA 10 ppm.	low plasticity:	5 - 10 - 15 - 15 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	sc sc	B23-5				

1260 45th STREET, EMERYVILLE, CALIFORNIA 94608-1028

6=0=1450 6+1 1 3 1892

ENVIRONMENTAL ANALYSIS REPORT

ANALYSIS REPORT FOR

RGA Environmental Consulting 1260 45th Street Emeryville, CA 94608

CONTACT:

Chris Nwabuzoh

DATE: 02-12-92

CHAIN OF CUSTODY ID NO:

AHB1-100801

ORDER NO: 12206-TD P.O. NO: AHB1-100801

SITE DESCRIPTION:

Harrison St. Garage 1432 Harrison St.

Oakland, CA

SAMPLE DESCRIPTION:

Soil

Sampled: 01-16-92 Received: 01-17-92

Analyzed: 01-30-92 (by an independent laboratory)

Number of Samples: 8

REQUESTED ANALYSIS:

Methods: EPA 8240

ž. •

The analyses reported are considered accurate. Should you wish further support for the reported data, submit your requirements in writing within 10 days. It is Carter Analytical Labs intent to give you complete satisfaction. Please reference the order number when communicating with us. The invoice is due and payable within 30 days from invoice date.

Hazardous Materials Certification No: 304 • Drinking Water Certification No: 953 from the

State of California • Department of Health Services

CARTER ANALYTICAL LABORTORY, INC.

CARTER ANALYTICAL LABORATORY, INC.

Enwironmental Data

Page 3 of 7 Order 12206 Project No. AHB1-100801

<u>Sample</u>	Customer Label	<u>Description</u>
L1 L2 L3 L4 L5 L6 L7 L8	B1-2' B2-2' B3-2' B4-2' B5-2' B6-2' B7-2' B8-2'	soil soil soil soil soil soil soil soil
		3311

EPA 8240 Analysis

<u>Compounds</u>	L1 (ug/Kg)	Detection Limit (ug/Kg)	L2 <u>(ug/Kg)</u>	Detection Limit (ug/Kg)
Chloroethane	LDL	1100.	LDL	8.7
Bromomethane	LDL	1100.	LDL	8.7
Vinyl chloride	LDL	1100.	LDL	8.7
Chloromethane	LDL	1100.	LDL	8.7
Methylene chloride	LDL	1100.	LDL	8.7
Trichlorofluoromethane	LDL	1100.	LDL	8.7
1,1-Dichloroethene	LDL	1100.	LDL	8.7
1,1-Dichloroethane	\mathtt{LDL}	1100.	LDL	8.7
trans-1,2-Dichloroethene	LDL	1100.	LDL	8.7
Chloroform	LDL	1100.	LDL	8.7
1,2-Dichloroethane	LDL	1100.	LDL	8.7
1,1,1-Trichloroethane	LDL	1100.	LDL	8.7
Carbon tetrachloride	\mathtt{LDL}	1100.	LDL	8.7
Bromodichloromethane	LDL	1100.	LDL	8.7
1,2-Dichloropropane	\mathtt{LDL}	1100.	LDL	8.7
trans-1,3-Dichloropropene	LDL	1100.	LDL	8.7
1,1,2-Trichloroethane	LDL	1100.	LDL	8.7
Trichloroethene	LDL	1100.	LDL	8.7
Benzene	LDL	1100.	LDL	8.7
2-Chloroethylvinyl ether	LDL	1100.	LDL	8.7
Dibromochloromethane	\mathtt{LDL}	1100.	LDL	8.7
cis-1,3-Dichloropropene	\mathtt{LDL}	1100.	$\mathtt{L}\mathtt{D}\mathtt{L}$	8.7
Bromoform	$\mathtt{L}\mathtt{D}\mathtt{L}$	1100.	LDL	8.7
1,1,2,2-Tetrachloroethane	LDL	1100.	LDL	8.7
Tetrachloroethene	LDL	1100.	LDL	8.7
Toluene	\mathtt{LDL}	1100.	LDL	8.7
Chlorobenzene	LDL	1100.	LDL	8.7
Ethylbenzene	LDL	1100.	\mathtt{LDL}	8.7
1,3-Dichlorobenzene	LDL	1100.	LDL	8.7
1,2-Dichlorobenzene	LDL	1100.	\mathtt{LDL}	8.7
1,4-Dichlorobenzene	LDL	1100.	LDL	8.7
Surrogate Percent Recovery				

Bromochloromethane:	84.	72.
1-Chloro,2-Bromopropane:	90.	101.
1,4-Dichlorobutane:	71.	124.

LDL means results were less than detection limit.

<u>Sample</u>	Customer Label	Description
L1 L2 L3 L4 L5 L6	B1-2' B2-2' B3-2' B4-2' B5-2' B6-2'	soil soil soil soil soil soil
L8	B8-2'	soil

EPA 8240 Analysis

Compounds	L3 (ug/Kg)	Detection Limit	L4	Detection Limit
Compounds	[ug/kg]	(ug/Kg)	(ug/Kg)	<u>(ug/Kg)</u>
Chloroethane	LDL	6.7	LDL	440.
Bromomethane	LDL	6.7	LDL	440.
Vinyl chloride	LDL	6.7	LDL	440.
Chloromethane	LDL	6.7	LDL	440.
Methylene chloride	\mathtt{LDL}	6.7	LDL	440.
Trichlorofluoromethane	\mathtt{LDL}	6.7	LDL	440.
1,1-Dichloroethene	\mathtt{LDL}	6.7	LDL	440.
1,1-Dichloroethane	LDL	6.7	LDL	440.
trans-1,2-Dichloroethene	LDL	6.7	LDL	440.
Chloroform	LDL	6.7	LDL	440.
1,2-Dichloroethane	LDL	6.7	LDL	440.
1,1,1-Trichloroethane	\mathtt{LDL}	6.7	L DL	440.
Carbon tetrachloride	LDL	6.7	LDL	440.
Bromodichloromethane	\mathtt{LDL}	6.7	LDL	440.
1,2-Dichloropropane	LDL	6.7	LDL	440.
trans-1,3-Dichloropropene	LDL	6.7	LDL	440.
1,1,2-Trichloroethane	\mathtt{LDL}	6.7	LDL	440.
Trichloroethene	LDL	6.7	$\mathtt{L}\mathtt{D}\mathtt{L}$	440.
Benzene	LDL	6.7	LDL	440.
2-Chloroethylvinyl ether	$\mathtt{L}\mathtt{D}\mathtt{L}$	6.7	LDL	440.
Dibromochloromethane	\mathtt{LDL}	6.7	LDL	440.
cis-1,3-Dichloropropene	LDL	6.7	LDL	440.
Bromoform	LDL	6.7	\mathtt{LDL}	440.
1,1,2,2-Tetrachloroethane	LDL	6.7	LDL	440.
Tetrachloroethene	\mathtt{LDL}	6.7	LDL	440.
Toluene	\mathtt{LDL}	6.7	LDL	440.
Chlorobenzene	LDL	6.7	LDL	440.
Ethylbenzene	LDL	6.7	$\Gamma D\Gamma$	440.
1,3-Dichlorobenzene	\mathtt{LDL}	6.7	LDL	440.
1,2-Dichlorobenzene	LDL	6.7	\mathtt{LDL}	440.
1,4-Dichlorobenzene	LDL	6.7	LDL	440.
Surrogate Percent Recovery				
Bromochloromethane: 1-Chloro,2-Bromopropane:		87. 94.		89. 96
1,4-Dichlorobutane:		74.		82.

LDL means results; were less than detection limit.

CARTER ÀNALYTICAL LABORATORY, INC.

Environmental Data

Page 5 of 7 Order 12206 Project No. AHB1-100801

<u>Sample</u>	Customer Label	Description
L1 L2 L3 L4 L5 L6 L7 L8	B1-2' B2-2' B3-2' B4-2' B5-2' B6-2' B7-2' B8-2'	soil soil soil soil soil soil soil

EPA 8240 Analysis

	L5	Detection Limit	L6	Detection Limit
<u>Compounds</u>	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
Chloroethane	LDL	6.7	LDL	50.
Bromomethane	LDL	6.7	\mathtt{LDL}	50.
Vinyl chloride	LDL	6.7	$\Gamma D\Gamma$	50.
Chloromethane	LDL	6.7	\mathtt{LDL}	50.
Methylene chloride	LDL	6.7	\mathtt{LDL}	50.
Trichlorofluoromethane	\mathtt{LDL}	6.7	LDL	50.
1,1-Dichloroethene	LDL	6.7	LDL	50.
1,1-Dichloroethane	LDL	6.7	$\mathtt{L}\mathbf{D}\mathtt{L}$	50.
trans-1,2-Dichloroethene	LDL	6.7	LDL	50.
Chloroform	\mathtt{LDL}	6.7	\mathtt{LDL}	50.
1,2-Dichloroethane	\mathtt{LDL}	6.7	\mathtt{LDL}	50.
1,1,1-Trichloroethane	LDL	6.7	\mathtt{LDL}	50.
Carbon tetrachloride	LDL	6.7	LDL	50.
Bromodichloromethane	$FD\Gamma$	6.7	LDL	50.
1,2-Dichloropropane	\mathtt{LDL}	6.7	LDL	50.
trans-1,3-Dichloropropene	\mathtt{LDL}	6.7	LDL	5 0.
1,1,2-Trichloroethane	\mathtt{LDL}	6.7	LDL	5 0.
Trichloroethene	LDL	6.7	LDL	50.
Benzene	LDL	6.7	LDL	50.
2-Chloroethylvinyl ether	LDL	6.7	ĹDL	50.
Dibromochloromethane	\mathtt{LDL}	6.7	LDL	50.
cis-1,3-Dichloropropene	LDI.	6.7	LDL	50.
Bromoform	LDL	6.7	\mathtt{LDL}	50.
1,1,2,2-Tetrachloroethane	LDL	6.7	LDL	50.
Tetrachloroethene	LDL	6.7	LDL	50.
Toluene	\mathtt{LDL}	6.7	LDL	50.
Chlorobenzene	LDL	6.7	LDL	50.
Ethylbenzene	LDL	6.7	LDL	50.
1,3-Dichlorobenzene	\mathtt{LDL}	6.7	LDL	50,
1,2-Dichlorobenzene	LDL	6.7	LDL	50.
1,4-Dichlorobenzene	\mathtt{LDL}	6.7	LDL	50.

Surrogate Percent Recovery

Bromochloromethane:	82.	93.
1-Chloro, 2-Bromopropane:	93.	102.
1,4-Dichlorobutane:	78.	87.

LDL means results were less than detection limit.

CARTER ANALYTICAL LABORATORY, INC.

Environmental Data

Page 6 of 7 Order 12206 Project No. AHB1-100801

<u>Sample</u>	Customer Label	<u>Description</u>
L1 L2 L3 L4 L5 L6 L7	B1-2' B2-2' B3-2' B4-2' B5-2' B6-2' B7-2'	soil soil soil soil soil soil
Ľ8	B8-2'	soil

EPA 8240 Analysis

Compounds	L7 (ug/Kg)	Detection Limit (ug/Kg)	L8 <u>(ug/Kg)</u>	Detection Limit (ug/Kg)
Chloroethane	LDL	100.	LDL	10.
Bromomethane	\mathtt{LDL}	100.	\mathtt{LDL}	10.
Vinyl chloride	LDL	100.	\mathtt{LDL}	10.
Chloromethane	\mathtt{LDL}	100.	\mathtt{LDL}	10.
Methylene chloride	LDL	100.	\mathtt{LDL}	10.
Trichlorofluoromethane	LDL	100.	LDL .	10.
1,1-Dichloroethene	LDL	100.	LDL	10.
1,1-Dichloroethane	LDL	100.	\mathtt{LDL}	10.
trans-1,2-Dichloroethene	LDL	100.	\mathtt{LDL}	10.
Chloroform	\mathtt{LDL}	100.	$\mathtt{L}\mathtt{D}\mathtt{L}$	10.
1,2-Dichloroethane	LDL	100.	LDL	10.
1,1,1-Trichloroethane	\mathtt{LDL}	100.	LDL	10.
Carbon tetrachloride	\mathtt{LDL}	100.	LDL	10.
Bromodichloromethane	LDL	100.	\mathtt{LDL}	10.
1,2-Dichloropropane	\mathtt{LDL}	100.	LDL	10.
trans-1,3-Dichloropropene	LDL	100.	LDL	10.
1,1,2-Trichloroethane	LDL	100.	LDL	10.
Trichloroethene	\mathtt{LDL}	100.	LDL	10.
Benzene	LDL	100.	LDL	10.
2-Chloroethylvinyl ether	LDL	100.	LDL	10.
Dibromochloromethane	LDL	100.	LDL	10.
cis-1,3-Dichloropropene	\mathtt{LDL}	100.	\mathtt{LDL}	10.
Bromoform	LDL	100.	\mathtt{LDL}	10.
1,1,2,2-Tetrachloroethane	LDL	100.	\mathtt{LDL}	10.
Tetrachloroethene	LDL	100.	LDL	10.
Toluene	170.	100.	LDL	10.
Chlorobenzene	LDL	100.	LDL	10.
Ethylbenzene	LDL	100.	LDL	10.
1,3-Dichlorobenzene	LDL	100.	\mathtt{LDL}	10.
1,2-Dichlorobenzene	\mathtt{LDL}	100.	LDL	10.
1,4-Dichlorobenzene	rdr.	100.	LDL	10.

Surrogate Percent Recovery

Bromochloromethane:	92.	91.
1-Chloro,2-Bromopropane:	91.	99.
1,4-Dichlorobutane:	74.	78.

LDL means results were less than detection limit.

CARTER ANALYTICAL LABORATORY, INC.

Environmental Data

Page 7 of 7 Order 12206 Project No. AHB1-100801

<u>Sample</u>	<u>Customer Label</u>	<u>Description</u>
L1 L2 L3 L4 L5 L6 L7 L8	B1-2', B2-2', B3-2', B4-2', B5-2', B6-2', B7-2', B8-2'	soil soil soil soil soil soil soil

EPA 8240 Analysis

Compounds	Blank (ug/Kg)	Detection Limit (ug/Kg)
Chloroethane	LDL	6.7
Bromomethane	LDL	6.7
Vinyl chloride	\mathtt{LDL}	6.7
Chloromethane	ĽDĽ	6,7
Methylene chloride	7.8	6.7
Trichlorofluoromethane	\mathtt{LDL}	6.7
1,1-Dichloroethene	LDL	6.7
1,1-Dichloroethane	LDL	6.7
trans-1,2-Dichloroethene		6.7
Chloroform	\mathtt{LDL}	$\substack{6.7 \\ 6.7}$
1,2-Dichloroethane	\mathtt{LDL}	6.7
1,1,1-Trichloroethane	LDL	$\begin{array}{c} 6.7 \\ 6.7 \end{array}$
Cárbon tetrachloride	\mathtt{LDL}	6.7
Bromodichloromethane	\mathtt{LDL}	$\substack{6.7 \\ 6.7}$
1,2-Dichloropropane	\mathtt{LDL}	6.7
trans-1,3-Dichloropropene	LÐL	6.7
1,1,2-Trichloroethane	LDL	6.7
Trichloroethene	LDL	$\frac{6.7}{6.7}$
Benzene	LDL	6.7
2-Chloroethylvinyl ether	LDL	6.7
Dibromochloromethane	LDL	6.7
cis-1,3-Dichloropropene	\mathtt{LDL}	$\substack{6.7 \\ 6.7}$
Bromoform	\mathtt{LDL}	6.7
1,1,2,2-Tetrachloroethane	\mathtt{LDL}	6.7
Tetrachloroethene	\mathtt{LDL}	6.7
Toluene	LDL	$\begin{array}{c} 6.7 \\ 6.7 \end{array}$
Chlorobenzene	LDL	6.7
Ethylbenzene	LDL	6.7
1,3-Dichlorobenzene	LDL	$\substack{6.7 \\ 6.7}$
1,2-Dichlorobenzene	LDL	6.7
1,4-Dichlorobenzene	\mathtt{LDL}	6.7 6.7

Surrogate Percent Recovery

Bromochloromethane:	88.
1-Chloro, 2-Bromopropane:	90.
1,4-Dichlorobutane:	60.

LDL means results were less than detection limit.

CARTER ANALYTICAL LABORATORY

Dr. A. Edward Robinson Laboratory Manager

J.L. Carter MQC Manager

ADDRESS 1260 45# ST

80946 dil 10 ELVIE - 1/1/42

Ref. No. 80#1812

To: $SO^{\#}/\partial 2Ob^{-2}/-2\delta$ Carter Analytical Laboratory, Inc. (408) 364-3030 • (408) 866-0319 (FAX)

ENVIRONMENTAL ANALYSIS REPORT

CARTER ANALYTICAL LABORATORY, INC.

ANALYSIS REPORT

RGA Environmental Consulting 1260 45th Street Emeryville, CA 94608

CONTACT: Chris

Chris Nwabuzoh

DATE: 01-30-92

CHAIN OF CUSTODY ID NO:

AHB1-100801

ORDER NO: 12144-TD P.O. NO: AHB1-100801

SITE DESCRIPTION:

Harrison St. Crarafe, 1432

Harrison St. Daklantz

CA

SAMPLE DESCRIPTION:

Soil

Sampled: 01-16-92 Received: 01-17-92 Analyzed: 01-24-92 Number of Samples: 8

REQUESTED ANALYSIS:

Methods: Total Petroleum Hydrocarbons as Gasoline (TPH-G) as Diesel (TPH-D) and Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX), EPA 413.2, EPA 6010, EPA 8080

The analyses reported are considered accurate. Should you wish further support for the reported data, submit your requirements in writing within 10 days. It is Carter Analytical Labs Intent to give you complete satisfaction. Please reference the order number when communicating with us. The invoice is due and payable within 30 days from invoice date.

Hazardous Materials Certification No: 304 • Drinking Water Certification No: 953 from the

State of California • Department of Health Services

5-

CARTER ANALYTICAL LABORTORY, INC.

Environmental Data

Page 3 of 8 Order 12144 Project No. AHB1-100801

Sample	Customer Label	Description
L1 L2 L3 L4 L5 L6 L7	B1-2' B2-2' B3-2' B4-2' B5-2' B6-2' B7-2'	soil soil soil soil soil soil
L8	B8-2'	soil

Hydrocarbons and BTEX Analysis of Soil

					Ethyl	
Sample	TPH-G	TPH-D	Benzene	Toluene	Benzene	Xylenes
<u>Number</u>	(mg/Kg)	<u>(mg/Kg)</u>	(mg/Kg)	(mg/Kg)	<u>(mg/Kg)</u>	(mg/Kg)
L1	27.3	55.7	LDL	3.0	0.23	LDL
L2	LDL	1.5	LDL	0.10	LDL	LDL
L3	1.6	1.6	\mathtt{LDL}	1.1	LDL	LDL
L4	1.9	24.1	LDL	0.8	LDL	LDL
L5	LDL	2.5	LDL	0.4	LDL	LDL
L6	LDL	24.3	\mathtt{LDL}	0.4	LDL	LDL
L7	2.6	6.3	LDL	1.6	LDL	LDL
L8	LDL	2.9	LDL	0.04	LDL	LDL
DL:	1.0	1.0	0.005	0.005	0.005	0.005
AR (%):	82.6	86.9		$\begin{matrix} 0.005 \\ 122.8 \end{matrix}$	0.005 	0.005

LDL indicates results are less than detection limit.

DL = Detection Limit

AR = Average Recovery

-Environmental Data

Page 4 of 8 Order 12144 Project No. AHB1-100801

<u>Sample</u>	Customer Label	Description
L1 L2 L3 L4 L5 L6	B1-2' B2-2' B3-2' B4-2' B5-2' B6-2'	soil soil soil soil soil
L7 L8	B7-2' B8-2'	soil soil

EPA 413.2 Analysis

Sample	Concentration (mg/Kg)	Detection Limit (mg/Kg)
L1	54.2	20.0
L2	, LDL	20.0
L3	${f LDL}$	20.0
L4	54.8	20.0
L5	50.9	20.0
L6	\mathtt{LDL}	20.0
L7	221.	20.0
L8	55.1	20.0

Environmental Data

Page 5 of 8 Order 12144 Project No. AHB1-100801

<u>Sample</u>	Customer Label	<u>Description</u>
L1 L2 L3 L4 L5 L6 L7 L8	B1-2; B2-2; B3-2; B4-2; B5-2; B6-2; B7-2; B8-2;	soil soil soil soil soil soil soil

Sample Preparation

The samples were prepared according to Title 22, Section 66700; Total Threshold Limit Concentration (TTLC) procedures.

EPA 6010 Analysis

<u>Metal</u>	L1 (mg/Kg)	L2 (mg/Kg)	L3 <u>(mg/Kg)</u>	L4 (mg/Kg)	TTLC Regulatory Levels	Detection Limits (mg/Kg)
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	20.1 35.3 80.5 LDL 40.8 6.91 6.20 LDL 50.7 33.6 215.3 LDL 10.4 27.6 385.2	18.9 39.5 LDL LDL 25.3 2.0 LDL 49.7 9.81 16.9 LDL 12.8 11.0 21.2	18.7 40.2 32.6 LDL 43.6 4.87 LDL 54.2 34.8 33.0 LDL 12.5 19.9	23.8 42.9 39.2 LDL 49.2 8.28 5.35 LDL 66.5 39.4 45.6 19.2 LDL 19.2 23.2	500 500 10000 75 100 2500 8000 2500 1000 3500 2000 100 500 700 2400 5000	1.5 5.6 0.15 0.15 0.15 0.25 0.25 0.55 0.55 0.55 0.55 0.55 0.55 0.65 0.
<u>Metal</u>	L5 (mg/Kg)	L6 (mg/Kg)	L7 (mg/Kg)	L8 <u>(mg/Kg)</u>	TTLC Regulatory Levels	Detection Limits (mg/Kg)
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium Zinc	22.8 47.3 45.5 LDL 50.9 5.32 LDL 73.0 437.2 19.2 LDL 20.9 32.1	20.5 42.5 47.5 LDL 46.6 4.87 LDL 66.7 40.3 41.4 16.9 LDL 15.6 27.2 20.1	22.3 45.3 42.3 LDL 48.3 6.20 LDL 74.2 49.5 318.9 LDL 15.9 27.9	19.7 39.2 29.9 LDL 1DL 38.9 6.74 LDL 52.9 34.7 305.3 LDL 17.0 24.4	500 500 10000 75 100 2500 8000 2500 1000 3500 2000 100 500 700 2400 5000	1.5 66001553 0.1553 0.155 0.155 0.255 0.555 0.555 0.255 0.35

Environmental Data

Page 6 of 8 Order 12144 Project No. AHB1-100801

Sample	Customer Label	Description
L1 L2 L3 L4 L5 L6 L7 L8	B1-2', B2-2', B3-2', B4-2', B5-2', B6-2', B7-2', B8-2'	soil soil soil soil soil soil soil soil

EPA 8010 Analysis					
					Detection
	L1	L2	L3	L4	Limit
<u>Compound</u>	<u>(ug/Kg)</u>	<u>(ug/Kg)</u>	<u>(ug/Kg)</u>	(ug/Kg)	(ug/Kg)
Benzyl chloride	LDL	LDL	LDL	LDL	1.
Bis(2-chloroethoxy)methane	LDL	LDL	LDL		1.
Bromobenzene	LDL	LDL	LDL	LDL LDL	1.
Bromodichloromethane	LDL	LDL	LDL	LDL	0.10
Bromoform	LDL	LDL	LDL	LDL	0.20
Bromomethane	LDL	LDL	LDL	LDL	1.0
Carbon tetrachloride	LDL	LDL	LDL	LDL	0.12
Chlorobenzene	LDL	LDL	ŁD L	LDL	0.25
Chloroethane	LDL	LDL	LDL	LDL	0.52
2-Chloroethylvinyl ether	LDL	LDL	LDL	LDL	0.13
Chloroform	LDL	LDL	LDL	LDL	0.05
1-Chlorohexane	LDL	LDL	LDL	LDL	1.
Chloromethane	LDL	LDL	LDL	LDL	0.08
Chloromethyl methyl ether	LDL	LDL	LDL	LDL	1.
Chlorotoluene	LDL	LDL	LDL	LDL	1.
Dibromochloroethane	LDL	LDL	LDL	LDL	0.09
Dibromomethane	LDL	LDL	LDL	LDL	1.
1,2-Dichlorobenzene	LDL	LDL	LDL	LDL	0.15
1,3-Dichlorobenzene	LDL	ĹĎĹ	LDL	LDL	0.32
1,4-Dichlorobenzene	LDL	LDL	LDL	LDL	0.24
Dichlorodifluoromethane	LDL	LDL	LDL	LDL	1.
1,1-Dichloroethane	LDL	LDL	LDL	LDL	0.07
1,2-Dichloroethane	LDL	LDL	LDL	LDL	0.03
1,1-Dichloroethylene	LDL	LDL	LDL	LDL	0.13
trans-1,2-Dichloroethylene	LDL	LDL	LDL	LDL	0.10
Dichloromethane	ĹDĹ	LDL	LDL	LDL	1.
1,2-Dichloropropane	\mathtt{LDL}	LDL	LDL	LDL	0.04
trans-1,3-Dichloropropylene	\mathtt{LDL}	LDL	LDL	LDL	0.34
1,1,1,2-Tetrachloroethane	LDL	LDL	LDL	LDL	1.
1,1,2,2-Tetrachloroethane	\mathtt{LDL}	$_{ m LDL}$	LDL	LDL	0.03
Tetrachloroethylene	\mathtt{LDL}	LDL	LDL	LDL	0.03
1,1,1-Trichloroethane	LDL	\mathtt{LDL}	LDL	LDL	0.03
1,1,2-Trichloroethane	\mathtt{LDL}	\mathtt{LDL}	LDL	LDL	0.02
Trichloroethylene	LDL	LDL	LDL	LDL	0.12
Trichlorofluoromethane	LDL	LDL	$\mathtt{L}\mathtt{D}\mathtt{L}$	LDL	1.
Trichloropropane	LDL	LDL	LDL	LDL	1.
Vinyl chloride	\mathtt{LDL}	ĹDL	LDL	LDL	0.18

<u>Sample</u>	Customer Label	<u>Description</u>
L1 L2 L3 L4 L5 L6 L7 L8	B1-2', B2-2', B3-2', B4-2', B5-2', B6-2', B7-2',	soil soil soil soil soil soil soil soil

EPA 8010 Analysis - cont					
	L5	L6	L7	L8	Detection Limit
Compound	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)	(ug/Kg)
Benzyl chloride	LDL	LDL	LDL	LDL	1.
Bis(2-chloroethoxy)methane	\mathtt{LDL}	LDL	\mathtt{LDL}	$\mathbf{L}\mathbf{D}\mathbf{L}$	1.
Bromobenzene	LDL	\mathtt{LDL}	\mathtt{LDL}	LDL	1.
Bromodichloromethane	\mathtt{LDL}	LDL	LDL	LDL	0.10
Bromoform	LDL	\mathtt{LDL}	LDL	LDL	0.20
Bromomethane	\mathtt{LDL}	LDL	LDL	LDL	1.0
Carbon tetrachloride	$\mathbf{L}\mathbf{D}\mathbf{L}$	LDL	LDL	\mathtt{LDL}	0.12
Chlorobenzene	\mathtt{LDL}	\mathtt{LDL}	${ m LDL}$	LDL	0.25
Chloroethane	LDL	\mathtt{LDL}	LDL	\mathtt{LDL}	0.52
2-Chloroethylvinyl ether	LDL	\mathtt{LDL}	ĹDL	LDL	0.13
Chloroform	LDL	LDL	\mathtt{LDL}	LDL	0.05
1-Chlorohexane	\mathtt{LDL}	LDL	LDL	LDL	1.
Chloromethane	LDL	\mathtt{LDL}	\mathtt{LDL}	LDL	0.08
Chloromethyl methyl ether	\mathbf{LDL}	\mathtt{LDL}	\mathtt{LDL}	\mathtt{LDL}	1.
Chlorotoluene	\mathtt{LDL}	LDL	LDL	LDL	1.
Dibromochloroethane	LDL	LDL	\mathtt{LDL}	\mathtt{LDL}	0.09
Dibromomethane	LDL	LDL	LDL	LDL	1.
1,2-Dichlorobenzene	LDL	LDL	LDL	LDL	0.15
1,3-Dichlorobenzene	\mathtt{LDL}	LDL	\mathtt{LDL}	\mathtt{LDL}	0.32
1,4-Dichlorobenzene	\mathtt{LDL}	LDL	\mathtt{LDL}	\mathtt{LDL}	0.24
Dichlorodifluoromethane	LDL	\mathtt{LDL}	LDL	LDL	1.
1,1-Dichloroethane	LDL	\mathtt{LDL}	LDL	LDL	0.07
1,2-Dichloroethane	\mathtt{LDL}	LDL	LDL	LDL	0.03
1,1-Dichloroethylene	\mathtt{LDL}	LDL	\mathtt{LDL}	\mathtt{LDL}	0.13
trans-1,2-Dichloroethylene	\mathtt{LDL}	LDL	\mathtt{LDL}	\mathtt{LDL}	0.10
Dichloromethane	LDL	LDL	LDL	\mathtt{LDL}	1.
1,2-Dichloropropane	\mathtt{LDL}	\mathtt{LDL}	$\mathtt{L}\mathtt{D}\mathtt{L}$	\mathtt{LDL}	0.04
trans-1,3-Dichloropropylene	LDL	LDL	LDL	LDL	0.34
1,1,1,2-Tetrachloroethane	LDL	LDL	LDL	LDL	1.
1,1,2,2-Tetrachloroethane	LDL	\mathbf{LDL}	\mathtt{LDL}	LDL	0.03
Tetrachloroethylene	\mathtt{LDL}	\mathtt{LDL}	\mathtt{LDL}	LDL	0.03
1,1,1-Trichloroethane	\mathtt{LDL}	LDL	LDL	LDL	0.03
1,1,2-Trichloroethane	LDL	\mathtt{LDL}	\mathtt{LDL}	LDL	0.02
Trichloroethylene	LDL	LDL	${f L}{f D}{f L}$	\mathtt{LDL}	0.12
Trichlorofluoromethane	LDL	LDL	LDL	LDL	1.
Trichloropropane	LDL	LDL	\mathtt{LDL}	LDL	1.
Vinyl chloride	LDL	LDL	LDL	LDL	0.18

Average Percent Recovery for Chloroform: 89.2

Page 8 of 8 Order 12144 Project No. AHB1-100801

<u>Sample</u>	Customer Label	<u>Description</u>
L1	B1-2'	soil
L2 L3	B2-2' B3-2'	soil soil
L4	B4-2'	soil
L5	B5-2'	soil
L6	B6-2'	soil
L7 L8	B7-2' B8-2'	soil
ro.	B0-2	soil

EPA 8080 Analysis

Compound	L1 <u>(ug/Kg)</u>	L2 (ug/Kg)	L3 (ug/Kg)	L4 (ug/Kg)	Detection Limit (ug/Kg)
Arochlor 1242 (PCB) Arochlor 1254 (PCB) Arochlor 1221 (PCB) Arochlor 1232 (PCB) Arochlor 1248 (PCB) Arochlor 1260 (PCB) Arochlor 1016 (PCB)	LDL LDL LDL LDL LDL	LDL LDL LDL LDL LDL LDL LDL	LDL LDL LDL LDL LDL LDL LDL	LDL LDL LDL LDL LDL LDL	0.065 0.5 0.5 0.5 0.5 0.5
Compound	L5 (ug/Kg)	L6 <u>(ug/Kg)</u>	L7 (ug/Kg)	L8 (ug/Kg)	Detection Limit (ug/Kg)
Arochlor 1242 (PCB) Arochlor 1254 (PCB) Arochlor 1221 (PCB) Arochlor 1232 (PCB) Arochlor 1248 (PCB) Arochlor 1260 (PCB) Arochlor 1016 (PCB)	LDL LDL LDL LDL LDL LDL LDL	LDL LDL LDL LDL LDL LDL LDL	LDL LDL LDL LDL LDL LDL LDL	LDL LDL LDL LDL LDL LDL LDL	0.065 0.5 0.5 0.5 0.5 0.5

LDL indicates results were less than detection limits.

CARTER ANALYTICAL LABORATORY

Dr. A. Edward Robinson Laboratory Manager J.L. Carter

COMPANY_	R	6	A	<u>.</u>	
ADDRESS 💪	60	45	*S	+	
CITY 5m	eryl	illa	STA	ATE C4 ZIP 94608	~

Ref. No. 80#12144

TO: Carter Analytical Laboratory, Inc. (408) 364-3030 • (408) 866-0319 (FAX)

				<u>~ · · · · · · · · · · · · · · · · · · ·</u>									V*	······································
PROJECT NO.	CITE MAME	t ADDDCCC		Chai	D OI (Lusto						بيعيب	190	
PROJECT NO.	Farrison	« ADDRESS · ≤†	AMPLE EN			/	ANA PROMINE		SI 14	5 8 ⁸ 40	0 1	Colo for the	× 630	
AHBI -	tarole, tarrism	1432 St Davi	TAK TAK	, a ³	V/N		U VINST	13/ C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
B/- 2'	<u></u>	, , ,	2'	17			7 %			X	1		MARKS	· •
R3- 2'			17-78		V		<u> </u>		-	-		<u></u>		
B3 -2'			1-16	7	~			• •	_ _		•	 -		
KU - 2'		·	1-16	-	-		7		-	+				
B5-2'			1-16	7	<u> </u>	~				+	7	 	·	
86:21			1-16		~		<u> </u>			4-	-	 		·
B7 - 2'			+		*	~	V		╼┼╾╹	4-				
B8-2'	,		1-16	-	-	-	<u> </u>	<u> </u>		+	~	 		
		· · · · · · · · · · · · · · · · · · ·	1-16					¥		 	-			
	•		 						┽╴	-	-			
									-		1		,	
Relinquished By:	(Signature);	Date:	Receive	d By:√(ignatur	re):	Date:	11	Rema	rks:	$\frac{1}{2}$	amo	les	rocid
Chie North	Abuzek	1-17-62	lebo	rah	Kohn	nond	1/17/	92	Col	d	/9	ood	les /	tion
Relinquished By:	(Signature):	Date:	Receive	d By: (S	Signatur	·e):	Date:	ī	Rema	rks;				
Leborah Kihm	and	1/20/92	Juni	Ju	-	1/2	20/9	2	•					
Relinquished By: (Signature);	Date:	Received	1 By: (S	ignatur	e):	Date:	F	ема	cks:	-		·	
Juntue	1	129/92	lebore	ahki	shmo	md 1	12919)2						
Relinquished By: (Signature);	Date	Received				Date:	R	emai	rks:	· · · · · · · · · · · · · · · · · · ·			
		į				- 1								

ENVIRONMENTAL ANALYSIS REPORT

CARTER ANALYTICAL LABORATORY, INC.

ANALYSIS REPORT

RGA Environmental Consulting 1260 45th Street Emeryville, CA 94608

CONTACT: Chris Nwabuzoh

DATE: 02-28-92

CHAIN OF CUSTODY ID NO:

AHB1-100801

ORDER NO: 12281-TD

P.O. NO: AHB1-100801

SITE DESCRIPTION:

Harrison Garage 1432 Harrison St.

Oakland, CA

SAMPLE DESCRIPTION:

Soil

Sampled: 01-31-92 Received: 02-03-92 Analyzed: 02-13-92 Number of Samples:

REQUESTED ANALYSIS:

Methods: EPA 8240

The analyses reported are considered accurate. Should you wish further support for the reported data, submit your requirements in writing within 10 days. It is Carter Analytical Labs intent to give you complete satisfaction. Please reference the order number when communicating with us. The invoice is due and payable within 30 days from invoice date.

Hazardous Materials Certification No: 304 • Drinking Water Certification No: 953 from the State of California • Department of Health Services

CARTER ANALYTICAL LABORTORY, INC.

590 DIVISION STREET • CAMPBELL, CA 95008 • (408) 364-3030 • FAX (408) 866-0319

<u>Sample</u>	Customer Label	Description
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10	B15-5' B15-15' B16-5' B16-15' B13-5' B13-15' B14-5' B14-15' B9-5' B10-8'	soil soil soil soil soil soil soil soil

EPA 8240 Analysis

Compounds	L1 (ug/Kg)	Detection Limit (ug/Kg)	L2 (ug/Kg)	Detection Limit (ug/Kg)
Chloroethane	LDL	6.7	LDL	6.7
Bromomethane	LDL	6.7	LDL	6.7
Vinyl chloride	LDL	6.7	LDL	6.7
Chloromethane	LDL	6.7	LDL	6.7
Methylene chloride	LDL	390.	LDL	390.
Trichlorofluoromethane	LDL	6.7	LDL	6.7
1,1-Dichloroethene	LDL	6.7	LDL	6.7
1,1-Dichloroethane	LDL	6.7	LDL	6.7
trans-1,2-Dichloroethene	LDL	6.7	LDL	6.7
Chloroform	LDL	6.7	LDL	6.7
1,2-Dichloroethane	LDL	6.7	LDL	6.7
1,1,1-Trichloroethane	LDL	6.7	LDL	6.7
Carbon tetrachloride	LDL	6.7	LDL	6.7
Bromodichloromethane	LDL	6.7	LDL	6.7
1,2-Dichloropropane	LDL	6.7	LDL	6.7
trans-1,3-Dichloropropene	\mathtt{LDL}	6.7	LDL	6.7
1,1,2-Trichloroethane	LDL	6.7	LDL	6.7
Trichloroethene	LDL	6.7	LDL	6.7
Benzene	LDL	6.7	LDL	6.7
2-Chloroethylvinyl ether	LDL	6.7	LDL	6.7
Dibromochloromethane	LDL	6.7	LDŁ	6.7
cis-1,3-Dichloropropene	LDL	6.7	LDL	6.7
Bromoform	LDL	6.7	LDL	6.7
1,1,2,2-Tetrachloroethane	LDL	30.	LDL	30.
Tetrachloroethene	LDL	6.7	\mathtt{LDL}	6.7
Toluene	LDL	6.7	LDL	6.7
Chlorobenzene	$\mathbf{L}\mathbf{D}\mathbf{L}$	6.7	LDL	6.7
Ethylbenzene	LDL	6.7	LDL	6.7
1,3-Dichlorobenzene	LDL	6.7	LDL	6.7
1,2-Dichlorobenzene	LDL	6.7	LDL	6.7
1,4-Dichlorobenzene	LDL	6.7	LDL	6.7
Surrogate Percent Recovery				
Bromochloromethane:		113.		105
1-Chloro, 2-Bromopropane:		113. 126.		105.
1,4-Dichlorobutane:		124.		121.
		144.		117.

Bromochloromethane:	113.	105.
1-Chloro, 2-Bromopropane:	126.	121.
1,4-Dichlorobutane:	124.	117.

<u>Sample</u>	Customer Label	Description
L1 L2 L3 L4 L5 L6 L7 L8 L9	B15-5' B15-15' B16-5' B16-15' B13-5' B13-15' B14-5' B14-15' B9-5' B10-8'	soil soil soil soil soil soil soil soil

EPA 8240 Analysis - cont

<u>Compounds</u>	L3 (ug/Kg)	Detection Limit	L4	Detection Limit
	TUE/ RE/	(ug/Kg)	(ug/Kg)	<u>(ug/Kg)</u>
Chloroethane	LDL	6.7	LDL	e =
Bromomethane	LDL	6.7	LDL	6.7
Vinyl chloride	LDL	6.7	LDL	6.7
Chloromethane	LDL	6.7	LDL	6.7
Methylene chloride	LDL	390.	LDL	6.7
Trichlorofluoromethane	LDL	6.7	LDL	390.
1,1-Dichloroethene	LDL	6.7	LDL	6.7
1,1-Dichloroethane	LDL	6.7		6.7
trans-1,2-Dichloroethene	LDL	6.7	LDL	6.7
Chloroform	LDL	6.7	LDL	6.7
1,2-Dichloroethane	LDL	6.7	LDL	6.7
1,1,1-Trichloroethane	LDL	6.7	LDL	6.7
Carbon tetrachloride	LDL	6.7	LDL	6.7
Bromodichloromethane	LDL	6.7	LDL	6.7
1,2-Dichloropropane	ŁDĽ	6.7	LDL	6.7
trans-1,3-Dichloropropene	LDL	6.7	LDL	6.7
1,1,2-Trichloroethane	LDL	6.7	LDL	6.7
Trichloroethene	LDL	6.7	LDL	6.7
Benzene	LDL	6.7	LDL	6.7
2-Chloroethylvinyl ether	LDL	6.7	LDL	6.7
Dibromochloromethane	LDL	6.7	LDL	6.7
cis-1,3-Dichloropropene	LDL	6.7	LDL	6.7
Bromoform	LDL	6.7	LDL	6.7
1,1,2,2-Tetrachloroethane	LDL	30.	LDL	6.7
Tetrachloroethene	LDL	6.7	LDL	30.
Toluene	LDL	6.7	LDL	6.7
Chlorobenzene	LDL		LDL	6.7
Ethylbenzene	LDL	6.7	<u> LDL</u>	6.7
1,3-Dichlorobenzene	LDL	6.7	LDL	6.7
1,2-Dichlorobenzene	LDL	6.7	LDL	6.7
1,4-Dichlorobenzene	LDL	6.7	LDL	6.7
,	LUL	6.7	LDL	6.7
Surrogate Percent Recovery				
Bromochloromethane:		100		

Bromochloromethane: 1-Chloro,2-Bromopropane: 1,4-Dichlorobutane:	102. 96. 100.	112. 124.
<u></u>	100.	119.

<u>Sample</u>	Customer Label	<u>Description</u>
L1 L2 L3 L4 L5 L6 L7 L8 L9	B15-5' B15-15' B16-5' B16-15' B13-5' B13-15' B14-5' B14-15' B9-5' B10-8'	soil soil soil soil soil soil soil soil
		- -

EPA 8240 Analysis - cont

Compounds	L5 (ug/Kg)	Detection Limit (ug/Kg)	L6 (ug/Kg)	Detection Limit (ug/Kg)
Chloroethane	LDL	6.7	LDL	6.7
Bromomethane	LDL	6.7	LDL	6.7
Vinyl chloride	LDL	6.7	LDL	6.7
Chloromethane	LDL	6.7	LDL	6.7
Methylene chloride	LDL	390.	LDL	390.
Trichlorofluoromethane	LDL	6.7	LDL	6.7
1,1-Dichloroethene	LDL	6.7	LDL	6.7
1,1-Dichloroethane	LDL	6.7	LDL	6.7
trans-1,2-Dichloroethene	LDL	6.7	LDL	6.7
Chloroform	LDL	6.7	LDL	6.7
1,2-Dichloroethane	LDL	6.7	LDL	6.7
1,1,1-Trichloroethane	LDL	6.7	LDL	6.7
Carbon tetrachloride	LDL	6.7	LDL	6. 7
Bromodichloromethane	LDL	6.7	LDL	6.7
1,2-Dichloropropane	LDL	6.7	LDL	6.7
trans-1,3-Dichloropropene	LDL	6.7	LDL	6.7
1,1,2-Trichloroethane	\mathtt{LDL}	6.7	LDL	6.7
Trichloroethene	LDL	6.7	LDL	6.7
Benzene	LDL	6.7	LDL	6.7
2-Chloroethylvinyl ether	LDL	6.7	LDL	6.7
Dibromochloromethane	LDL	6.7	LDL	6.7
cis-1,3-Dichloropropene	LDL	6.7	LDL	6.7
Bromoform	\mathbf{LDL}	6.7	LDL	6.7
1,1,2,2-Tetrachloroethane	ĹDĹ	30.	LDL	30.
Tetrachloroethene	LDL	6.7	LDL	6.7
Toluene	LDL	6.7	LDL	6.7
Chlorobenzene	LDL	6.7	LDL	6.7
Ethylbenzene	LDL	6.7	LDL	6.7
1,3-Dichlorobenzene	LDL	6.7	LDL	6.7
1,2-Dichlorobenzene	LDL	6.7	LDL	6.7
1,4-Dichlorobenzene	\mathtt{LDL}	6.7	LDL	6.7
Surrogate Percent Recovery				
Bromochloromethane:		105.		110
1-Chloro, 2-Bromopropane:		106.		110. 150.
1,4-Dichlorobutane:		101.		
<u> </u>		101.		140.

<u>Sample</u>	<u>Customer Label</u>	Description
L1 L2 L3 L4 L5 L6 L7	B15-5' B15-15' B16-5' B16-15' B13-5' B13-15' B14-5' B14-15'	soil soil soil soil soil soil soil soil
L9 L10	B9-5' B10-8'	soil soil

EPA 8240 Analysis - cont

<u>Compounds</u>	L7 (ug/Kg)	Detection Limit (ug/Kg)	L8 <u>(ug/Kg)</u>	Detection Limit (ug/Kg)
Chloroethane	LDL	6.7	LDL	6.7
Bromomethane	LDL	6.7	LDL	6.7
Vinyl chloride	LDL	6.7	LDL	6.7
Chloromethane	LDL	6.7	LDL	6.7
Methylene chloride	LDL	390.	LDL	390.
Trichlorofluoromethane	\mathtt{LDL}	6.7	LDL	6.7
1,1-Dichloroethene	\mathtt{LDL}	6.7	LDL	6.7
1,1-Dichloroethane	LDL	6.7	LDL	6.7
trans-1,2-Dichloroethene	${f LDL}$	6.7	LDL	6.7
Chloroform	\mathtt{LDL}	6.7	LDL	6.7
1,2-Dichloroethane	\mathtt{LDL}	6.7	LDL	6.7
1,1,1-Trichloroethane	LDL	6.7	LDL	6.7
Carbon tetrachloride	LDL	6.7	LDL	6.7
Bromodichloromethane	LDL	6.7	LDL	6.7
1,2-Dichloropropane	LDL	6.7	\mathbf{LDL}	6.7
trans-1,3-Dichloropropene	$\mathtt{L}\mathtt{D}\mathtt{L}$	6.7	LDL	6.7
1,1,2-Trichloroethane	\mathtt{LDL}	6.7	LDL	6.7
Trichloroethene	\mathtt{LDL}	6.7	LDL	6.7
Benzene	LDL	6.7	LDL	6.7
2-Chloroethylvinyl ether	LDL	6.7	LDL	6.7
Dibromochloromethane	LDL	6.7	LDL	6.7
cis-1,3-Dichloropropene	LDL	6.7	LDL	6.7
Bromoform	LDL	6.7	LDL	6.7
1,1,2,2-Tetrachloroethane	LDL	30.	LDL	30.
Tetrachloroethene Toluene	LDL	$\frac{6.7}{7}$	LDL	6.7
Chlorobenzene	LDL	6.7	LDL	6.7
Ethylbenzene	LDL	6.7	LDL	6.7
1,3-Dichlorobenzene	LDL	6.7	LDL	6.7
1,2-Dichlorobenzene	LDL	6.7	LDL	6.7
1,4-Dichlorobenzene	LDL	6.7	LDL	6.7
1,4-bichiorobenzene	LDL	6.7	LDL	6.7
Surrogate Percent Recovery				
Bromochloromethane:		107.		104.
1-Chloro, 2-Bromopropane:		102.		117.
1.4-Dichlorobutane:		106		111.

Bromochloromethane: 1-Chloro,2-Bromopropane: 1,4-Dichlorobutane:	107. 102.	104. 117.
1,4-Dichioroputane:	106.	105.

<u>Sample</u>	Customer Label	<u>Description</u>
L1 L2 L3 L4 L5 L6 L7 L8 L9	B15-5' B15-15' B16-5' B16-15' B13-5' B13-15' B14-5' B14-15'	soil soil soil soil soil soil soil soil
L10	B10-8'	soil

EPA 8240 Analysis - cont

Compounds	L9 (ug/Kg)	Detection Limit (ug/Kg)	L10 (ug/Kg)	Detection Limit (ug/Kg)
Chloroethane	LDL	6.7	LDL	6.7
Bromomethane	LDL	6.7	LDL	
Vinyl chloride	LDL	6.7		6.7
Chloromethane	LDL	6.7	LDL LDL	6.7
Methylene chloride	LDL	390.	LDL	6.7 390.
Trichlorofluoromethane	LDL	6.7	LDL	6.7
1,1-Dichloroethene	LDL	6.7	LDL	6.7
1,1-Dichloroethane	LDL	6.7	LDL	6.7
trans-1,2-Dichloroethene	LDL	6.7	LDL	6.7
Chloroform	LDL	6.7	LDL	6.7
1,2-Dichloroethane	LDL	6.7	LDL	6.7
1,1,1-Trichloroethane	LDL	6.7	LDL	6.7
Carbon tetrachloride	ĹĎĹ	6.7	LDL	6.7
Bromodichloromethane	LDL	6.7	LDL	6.7
1,2-Dichloropropane	LDL	6.7	LDL LDL	6.7
trans-1,3-Dichloropropene	LDL	6.7	LDL	6.7
1,1,2-Trichloroethane	LDL	6.7	LDL	6.7
Trichloroethene	LDL	6.7	LDL	6.7
Benzene	LDL	6.7	LDL	6.7
2-Chloroethylvinyl ether	LDL	6.7	LDL	6.7
Dibromochloromethane	LDL	6.7	LDL	6.7
cis-1,3-Dichloropropene	LDL	6.7	LDL	6.7
Bromoform	LDL	6.7	LDL	6.7
1,1,2,2-Tetrachloroethane	\mathtt{LDL}	30.	$\overline{\text{LDL}}$	30.
Tetrachloroethene	\mathtt{LDL}	6.7	LDL	6.7
Toluene	LDL	6.7	LDL	6.7
Chlorobenzene	LDL	6.7	LDL	6.7
Ethylbenzene	LDL	6.7	LDL	6.7
1,3-Dichlorobenzene	\mathbf{LDL}	6.7	LDL	6.7
1,2-Dichlorobenzene	\mathtt{LDL}	6.7	LDL	6.7
1,4-Dichlorobenzene	LDL	6.7	LDL	6.7
Surrogate Percent Recovery				
Bromochloromethane:		107.		00
1-Chloro, 2-Bromopropane:		107.		98. 96.
1,4-Dichlorobutane:		107.		
4-		101.		84.

Environmental Data

Page 8 of 8 Order 12281 Project No.AHB1-100801

<u>Sample</u>	Customer Label	Description
L1 L2 L3 L4 L5 L6 L7 L8 L9	B15-5' B15-15' B16-5' B16-5' B13-5' B13-15' B14-5' B14-5' B9-5' B10-8'	soil soil soil soil soil soil soil soil

EPA 8240 Analysis - cont

Compounds	Blank (ug/Kg)	Detection Limit (ug/Kg)
Chloroethane Bromomethane Yinyl chloride	rdr rdr	$\substack{6.7 \\ 6.7}$
Chloromethane	LDL LDL	$\substack{6.7\\6.7}$
Methylene chloride Trichlorofluoromethane	LDL LDL	390.
1,1-Dichloroethene 1,1-Dichloroethane	LDL	$\substack{6.7 \\ 6.7}$
trans-1,2-Dichloroethene Chloroform	LDL LDL	$\substack{6.7\\6.7}$
1,2-Dichloroethane	LDL LDL	6.7 6.7 6.7 6.7
1,1,1-Trichloroethane Carbon tetrachloride	LDL	6.7
DCOMOGICA Coromethans	LDL LDL	6.7 6.7 6.7
1,2-Dichloropropane trans-1,3-Dichloropropene	LDL LDL	ĕ. Ż
1,1,2-Trichloroethane Trichloroethene	LDL	6.7 6.7 6.7
Benzene	LDL LDL	$\frac{6.7}{6.7}$
2-Chloroethylvinyl ether Dibromochloromethane	LDL LDL	6.7
cis-1,3-Dichloropropene Bromoform	LDL	6.7 6.7 6.7 6.7
1,1,2,2-Tetrachloroethane	LDL LDL	$\begin{smallmatrix} 6.7\\30.\end{smallmatrix}$
Toluene	LDL LDL	6.7
Chlorobenzene Ethylbenzene	LDL	$\substack{6.7 \\ 6.7}$
1.3-Dichlorohenzene	LDL LDL	6.7 6.7 6.7
1,2-Dichlorobenzene 1,4-Dichlorobenzene	LDL LDL	6.7 6.7
_	~~~	0.1

Surrogate Percent Recovery

Bromochloromethane: 94. 1-Chloro, 2-Bromopropane: 96. 1,4-Dichlorobutane: 84.

Sample L5-L10 exceeded their holding times prior to analysis.

LDL means results were less than detection limit.

CARTER ANALYTICAL LABORATORY

Dr. A. Edward Robinson Laboratory Manager J.L. Carter QAQC Manager R HINHETTICHE TEC:1-408-866-4757 Mar 11,92 14:04 No.007 P.O

ENVIRONMENTAL ANALYSIS REPORT

CARTER ANALYTICAL LABORATORY, INC.

ANALYSIS REPORT

RGA Environmental Consulting 1260 46th Street Emeryville, CA 94608

CONTACT: Chris Nwabuzoh

Revised 03-11-92

DATE: 03-02-92

CHAIN OF CUSTODY ID NO:

ARB1-100801

ORDER NO:

12192Ap. &DNO:

AHB1-100801

SITE DESCRIPTION:

Harrison Garage

1432-1435 Harrison St.

Oakland, CA

SAMPLE DESCRIPTION:

Soil

Sampled: 01-21-92 Received: 01-24-92 Analyzed: 02-21-92 Number of Samples:

6-

REQUESTED ANALYSIS:

Methods: Total Petroleum Hydrocarbons as Gasoline (TPH-G) as Diesel (TPH-D) and Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX), EPA 6010, EPA 8080.

The analyses reported are considered accurate. Should you wish further support for the reported data, submit your requirements in writing within 10 days. It is Corter Analytical Labs Intent to give you complete satisfaction. Piease reference the order number when communicating with us. The invoice is due and payable within 30 days from invoice date.

Hazardous Materials Certification No: 304 • Drinking Water Certification No: 953 from the

State of California • Department of Health Services

CARTER ANALYTICAL LABORTORY, INC.

590 DIVISION STREET . CAMPBELL, CA 95008 . (408) 364-3030 . FAX (408) 866-0319

Environmental Data

Page 3 of 6 Order 12192A Project No. AHB1-100801

<u>Sample</u>	<u>Customer Label</u>	Description
L1	B13-5'	soil
L2	B13-15'	soil
L3	B14-5'	soil
L4	B14-15'	soil
L5	B9-5	soil
L6	B10-8'	soil

Hydrocarbons and BTEX Analysis of Soil

Sample Number	TPH-G (mg/Kg)	TPH-D (mg/Kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl Benzene (mg/Kg)	Xylenes (mg/Kg)
L1 L2 L3 L4 L5 L6	83.2 135. LDL 2.5 2.44 LDL	1.63 LDL LDL 17.3 11.1	1999 191 191	.068 .71 ND LDL LDL	1.23 (A) (D) LDL (A)	10L 8.85 M M M
DL: AR (%):	1.0	1.0 50.5	0.005	0.005 94.5	0.005	0.005

LDL indicates results are less than detection limit.

L = Detection Limit

AR = Average Recovery

NT = Not Tested

Environmental Data

Page 4 of 6 Order 12192A Project No. AHB1-100801

<u>Sample</u>	Customer Label	Description
L1	B13-5'	soil
L2	B13-15'	soil
L3	B14-5'	soil
L4	B14-15 *	soil
L5	B9-5	soil
L6	B10-8'	soil

Sample Preparation

The sample was prepared according to Title 22, Section 66700 TTLC procedures.

Title 22 Waste Metals Analysis by EPA method 6010

<u>Metal</u>	L1 (mg/Kg)	L2 (mg/Kg)	L3 <u>(mg/Kg)</u>	STLC Regulatory <u>Levels</u>	TTLC Regulatory Levels	TTLC Detection Limits (mg/Kg)
Antimony	15.5	11.1	12.3	15.	500	1.50
Arsenic	47.3	27.4	27.5	5.0	500	1.5
Barium	67.4	59.1	52.9	100.	10000	0.3
Beryllium	LDL	LDL	LDL	0.75	75	0.15
Cadmium	LDL	1.1	LDL	1.0	100	0.15
Chromium	56.7	54.0	33.9	560.	2500	0.15
Cobalt	9.34	8.69	. 6.32	80.	8000	0.25
Copper	LDL	10.3	LDL	25.	2500	0.75
Lead	17.4	13.8	11.2	5.0	1000	2.2
Mercury	45.4	35.5	28.1	0.2	20	2.0
Molybdenum	19.4	18.7	15.7	350.	3500	0.55
Nickel ·	46.1	128.4	39.4	20.	2000	0.55
Selenium	21.9	15.5	12.3	1.0	100	7.5
Silver	LDL	LDL	LDL	5.	500	0.25
Thallium	17.5	19.9	12.8	7.0	700	3.25
Vanadium	34.8	41.9	28.9	24.	2400	1.6
Zinc	24.8	24.4	18.7	250.	5000	0.45

Environmental Data

Page 5 of 6 Order 12192A Project No. AHB1-100801

<u>Sample</u>	Customer Label	Description
L1	B13-5'	goil
$\mathbf{L2}$	B13-15'	soil
$\Gamma 3$	B14-5'	soi1
L4	B14-15'	soil
L 5	B9-5	soil
L6	B10-8'	soil

Sample Preparation

he sample was prepared according to Title 22, Section 66700 TTLC procedures.

Title 22 Waste Metals Analysis by EPA method 6010 - cont

ctal	L4 (mg/Kg)	L5 <u>(mg/Kg)</u>	L6 (mg/Kg)	STLC Regulatory Levels	TTLC Regulatory Levels	TTLC Detection Limits (mg/Kg)
Antimony	14.1	8.77	4.88	15.	500	1.50
rsenic	32.7	17.1	18.8	5.0	500	1.5
P arium	68.5	37.7	48.6	100.	10000	0.3
Beryllium	LDL	LDL	LDL	0.75	75	0.15
n admium	0.95	LDL	LDL	1.0	100	0.15
nromium	48.8	29.9	28.0	560.	2500	0.15
Cobalt	6.86	6.02	5.73	80.	8000	0.25
Copper	8.53	LDL	LDL	25.	2500	0.75
ead	13.2	7.53	5.63	5.0	1000	2.2
Hercury	32.8	21.5	15.5	0.2	20	2.0
Molybdenum	18.0	16.3	13.9	350.	3500	0.55
ickel 4	376.2	59.8	34.9	20.	2000	0.55
elenium	15.3	11.6	LDL	1.0	100	7.5
Silver	LDL	LDL	LDL	5.	500	0.25
<u> P</u> hallium	11.8	11.1	7.54	7.0	700	3.25
anadium	29.7	22.9	19.5	24.	2400	1.6
Finc	26.2	18.2	16.7	250.	5000	0.45

ENVIRONMENTAL ANALYSIS REPORT

CARTER ANALYTICAL LABORATORY, INC.

ANALYSIS REPORT

RGA Environmental Consulting 1260 45th Street Emeryville, CA 94608

CONTACT: Chris Nwabuzoh

DATE: 03-04-92

CHAIN OF CUSTODY ID NO:

AHB1-100801

ORDER NO:12292-MH

P.O. NO: AHB1-100801

SITE DESCRIPTION:

Harrison Garage

1432 Harrison Street

Oakland, CA

SAMPLE DESCRIPTION:

Soil

Sampled: 02-05-92 Received: 02-06-92 Analyzed: 02-27-92 Number of Samples: 11

5-

REQUESTED ANALYSIS:

Methods: Total Petroleum Hydrocarbons as Gasoline (TPH-G) as Diesel (TPH-D) and Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX), EPA 6010, EPA 413.1, EPA 8080, EPA 8240, Title 22, Section 66700

The analyses reported are considered accurate. Should you wish further support for the reported data, submit your requirements in writing within 10 days. It is Carter Analytical Labs Intent to give you complete satisfaction. Please reference the order number when communicating with us. The invoice is due and payable within 30 days from invoice date.

Hazardous Materials Certification No: 304 • Drinking Water Certification No: 953 from the

State of California • Department of Health Services

CARTER ANALYTICAL LABORTORY, INC.

Environmental Data

Page 3 of 7 Order 12292 Project No.AHB1-100801

Sample	<u>Customer Label</u>	<u>Description</u>
L1	B23-5*	soil
L2	B23-10'	soil
L3	B-20-15'	soil
L4	B22-5'	soil
L5	B22-10'	soil
L6	B-21-10'	soil
L7	B21-5'	soil
L8	B21-15'	soil
L9	B20-5'	soil
L10	B19-5'	soil
L11	B17-5'	soil

Hydrocarbons and BTEX Analysis of Soil

Sample Number	TPH-G (mg/Kg)	TPH-D (mg/kg)	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethyl Benzene (mg/Kg)	Xylenes (mg/Kg)
L1	2.5	26.0	LDL	. 027	LDL	LDL
L2	3.3	LDL	LDL	.034	LDL	LDL
L3	2.5	LDL	LDL	.034	LDL	LDL
L4	42.3	670.	LDL	.113	LDL	2.13
L5	1540.	175.	.987	11.7	1.67	2.88
L6	1.9	15.7	LDL	.021	LDL	.026
L7	2.1	16.7	LDL	.02	LDL	.01
L8	2.0	22.7	LDL	.03	LDL	LDL
L9	2.1	24.0	LDL	.03	LDL	0.01
L10	2.5	28.0	LDL	LDL	LDL	.01
DL:	1.0	1.0	0.005	0.005	0.005	0.005
AR (%):		78.8		95.7		0.000

LDL indicates results are less than detection limit.

DL = Detection Limit

AR = Average Recovery

Environmental Data

Page 4 of 7 Order 12292 Project No.AHB1-100801

<u>Sample</u>	Customer Label	Description
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10	B23-5' B23-10' B-20-15' B22-5' B22-10' B-21-10' B21-5' B21-5' B20-5' B19-5' B17-5'	soil soil soil soil soil soil soil soil
•		

Sample Preparation

The sample was prepared according to Title 22, Section 66700 TTLC procedures.

Title 22 Waste Metals Analysis by EPA method 6010

<u>Metal</u>	L3 (mg/Kg)	L11 (mg/Kg)	STLC Regulatory Levels	TTLC Regulatory Levels	TTLC Detection Limits (mg/Kg)
Antimony	8.06	12.5	15.	500	4 5
Arsenic	13.9	19.8	5.0	500	1.5
Barium	32.5	39.9	100.		1.5
Beryllium	LDL	LDL	0.75	10000	0.3
Cadmium	LDL	LDL	1.0	75	0.15
Chromium	23.2	30.1	560.	100	0.15
Cobalt	3.59	5.73	80.	2500	0.15
Copper	5.33	5.10	25.	8000	0.25
Lead	10.4	10.4		2500	0.75
Mercury	2.48	3.56	5.0	1000	2.2
Molybdenum	LDL	LDL	0.2	20	2.0
Nickel	224.8	329.2	350.	3500	0.55
Selenium	LDL		20.	2000	0.55
Silver	0.57	6.24	1.0	100	7.5
Thallium	5.33	0.92	5.	500	0.25
Vanadium	19.3	9.96	7.0	700	3.25
Zinc	18.1	24.5	24.	2400	1.6
LIIC	10.1	17.7	250.	5000	0.45

Environmental Data

Page 5 of 7 Order 12292 Project No.AHB1-100801

<u>Sample</u>	Customer Label	Description
L1	B23-5	soil
L2	B23-10'	soil
L3	B-20-15'	soil
L4	B22-5 *	soil
L5	B22-10'	soil
L6	B-21-10'	soil
L7	B21-5'	soil
L8	B21-15'	soil
L9	B20-5'	soil
L10	B19-5'	soil
L11	B17-5'	soil

EPA 413.1 Analysis

<u></u>

<u>Sample</u>	Concentration (mg/Kg)	Detection Limit (mg/Kg)	
L3	35.2	5.0	
L11	39.1	5.0	

EPA 8080 Analysis

<u>Compound</u>	L3 <u>(ug/kg)</u>	L11 (ug/kg)	Detection Limit (ug/kg)
Arochlor 1242 (PCB)	LDL	LDL	0.065
Arochlor 1254 (PCB)	\mathbf{LDL}	\mathbf{LDL}	0.5
Arochlor 1221 (PCB)	\mathbf{LDL}	LDL	0.5
Arochlor 1232 (PCB)	LDL	LDL	0.5
Arochlor 1248 (PCB)	LDL	LDL	0.5
Arochlor 1260 (PCB)	LDL	LDL	0.5
Arochlor 1016 (PCB)	LDL	LDL	0.5

Percent Recovery for Arochlor 1248: 40.7%

LDL indicates results were less than detection limits.

<u>Sample</u>	Customer Label	<u>Description</u>
$^{\bf L1}_{\bf L2}$	B23-5, B23-10,	soil soil
L3 L4	B-20-15, B22-5,	soil soil
L5 L6 L7	B22-10' B-21-10'	soil soil
Ľ8 Ľ9	B21-5' B21-15' B20-5'	soil soil soil
ĽĬO L11	B19-5, B17-5,	soil soil

EPA 8240 Analysis

Compounds	L11 (ug/Kg)	Detection Limit (ug/Kg)	Method Blank (ug/Kg)	Detection Limit (ug/Kg)
Chloroethane	LDL	73.	LDL	73.
Bromomethane	LDĹ	iš.	ĹĎĹ	73. 15.
Vinyl chloride	LDL	$\overline{73}$.	LDL	73. 15. 15. 15.
Chloromethane	LDL	15.	ĹĎĹ	15.
Methylene chloride	LDL	15.	$\overline{2}\overline{1}\overline{0}$.	15.
Trichlorofluoromethane	LDL	$\bar{1}\bar{5}$.	LDL	15.
1,1-Dichloroethene	LDL	15.	ĹĎĹ	15.
1,1-Dichloroethane	LDL	15.	ĨĎĹ	15. 15.
trans-1,2-Dichloroethene	LDL	15.	LDL	15.
Chloroform	LDL	Ī5.	ĹĎĹ	15. 15.
1,2-Dichloroethane	LDL	15.	LDL	15. 15.
l,l,l-Trichloroethane	LDL	15.	ĨĎĨ	ĨŠ.
Carbon tetrachloride	LDL	15.	LDL	15.
Bromodichloromethane	LDL	Ī5.	ĹĎĹ	15.
1,2-Dichloropropane	LDL	15.	LDL	15.
trans-1,3-Dichloropropene	LDL	ĪŠ.	ĹĎĹ	îš.
1.1.2-Trichloroethane	LDL	22.	ĹĎĹ	22.
Trichloroethene	LDL	15 .	ĨĎĹ	22. 15.
Benzene	LDL	15.	ĹĎĹ	15.
2-Chloroethylvinyl ether	LDL	$\bar{7}\bar{3}$.	ĹĎĹ	73.
Dibromochloromethane	LDL	15.	LDL	15.
cis-1,3-Dichloropropene	LDL	Ī5.	ĹĎĹ	15.
Bromoform	LDL	15.	ĹĎĹ	15.
1,1,2,2-Tetrachloroethane	LDL	22.	ĹĎĹ	22.
Tetrachloroethene	LDL	15. 15.	LDL	15.
Toluene	\mathbf{LDL}	Ĩ5.	LDL	15.
Chlorobenzene	LDL	15. 15.	LDL	Ī5.
Ethylbenzene	LDL	15.	LDL	15. 15.
1,3-Dichlorobenzene	\mathbf{LDL}	2 2.	ĹĎĹ	ŽŽ.
1,2-Dichlorobenzene	$TD\Gamma$	22.	LDL	$\bar{2}\bar{2}$.
1,4-Dichlorobenzene	LDL	22.	LDL	$\overline{2}\overline{2}$.

Surrogate Percent Recovery

Bromochloromethane: 112. 1-Chloro, 2-Bromopropane: 95. 1,4-Dichlorobutane: 87.

LDL means results were less than detection limit.

CARTER ANALYTICAL LABORATORY

Dr. A. Edward Robinson Laboratory Manager J.L. Carter QAQC Manager

					-
וממו					
Ι					
_}					•
Y					
1					
ה ה ה					
ו					
	_	ان.			
9			,		
•					
4					
,					
•					
١		•			
Pa					
1					
COULT NOT NAMED AND					•
		1		٠,	
۱ ۱	-				

	D so in									1 01 /
	COMPANY KGA		•	<u> </u>						Par No 50#
	COMPANY RGA ADDRESS 1260 45th Street		_							Ref. No. 50# ##### 18892-2
	CITY Emengrille STATE CA	1 am /	2461	7.S.	:	TO:				
	STATE									I Laboratory, Inc.
		S_o	ils	in 7	Pasti	۱۹ 08 ع/کی ح	3) 304 2010.	-3030 : [7]	• (Fal	(408) 866-0319 (FAX)
			Chair	of (usto	αy				$\mathcal{L}_{\mathcal{L}}}}}}}}}}$
	PROJECT NO. SITE NAME & ADDRESS, Harrison Garage 100801 Dale Land, CA	E SAMPLE PAKEN	The state of the s		17 17	AN A	XLYS	IS NAMES	X VO	2410 10 10 10 10 10 10 10 10 10 10 10 10 1
		DAT	\ \K	УÑ		1/43	~~^^		"/ ₆ .	REMARKS
4	823-5	2-5	~	✓.	,	V				TUMAKAS
LA	B33-10'	2-5	V	V		√				
13	B-20-151. 2-3	·	11	1	• . •	1	1.	: 1	7	See Attachment for Priceities.
4	822-5	2-1	V	V	•	γ	·			TO ALLEMAN THE TRICKINGS.
5	B22 - 10'	2-5	V	V		<i>y</i>			╁╌	
-6	B-21-10' 2-5								_	Do Not Analyze
	1821 - 3'	2-5	iv	7		~			-	MAIYZE
48	B21 - 15'	2-5	V	1		J			-	
49	820 - 5" 2-3	34	1	7		i			\vdash	
	B19-5' 2-3	D.K.	17	~		7				
۲1	B17 - 5' 2-3	Det !	17	√	~		7	√	7	See Attachment for Privations
	Relinquished By: (Signature): Date: Ohrus Asabazed 2-6-9 2 Relinquished By: (Signature): Date:		lantin	શ	-	Date:		marks:		
	aro Sper Dol 2/6/92	Received	سر نيا ما	ignatur Ch.MC		Date: 2/6/9	2 Real	parks: cum old	pl /	es rec'd.
أسر	Relinquished By: (Signature): Date:	Received	By: (Si	gnatur		Date:	Ren	uarks:		
	leborah lichmond 2/18/92	Luc		Dión	- Q/	18/92	۱			
1		Received	By: {Si	Eustale		Date:		iarks:		
}	Runda Kubin 3/4/92	lebbr	ah l	ighm	ond	3/4/	95		_	

- (**-**

ANALYSIS REPORT

RGA Environmental Consulting 1260 45th Street Emeryville, CA 94608

CONTACT: Chris Nwabuzoh

DATE: 03-04-92

CHAIN OF CUSTODY ID NO:

AHB1~100801

ORDER NO12251-MH

P.O. NO;AHB1-100801

SITE DESCRIPTION:

Harrison Garage

1432 Harrison Street

Oakland, CA

SAMPLE DESCRIPTION:

Water

Sampled: 02-05-92 Received: 02-06-92 Analyzed: 02-25-92 Number of Samples: 24

REQUESTED ANALYSIS:

Methods: Total Petroleum Hydrocarbons as Gasoline (TPH-G) as Diesel (TPH-D) and Benzene, Toluene, Ethyl Benzene, and Xylenes (BTEX), EPA 6010, EPA 413.1, EPA 8240, EPA 3050

The analyses reported are considered accurate. Should you wish further support for the reported data, submit your requirements in writing within 10 days. It is Carter Analytical Labs intent to give you complete satisfaction. Please reference the order number when communicating with us. The invoice is due and payable within 30 days from invoice date.

Hazardous Materials Certification No: 304 • Drinking Water Certification No: 953 from the State of California • Department of Health Services

CARTER ANALYTICAL LABORTORY, INC.

590 DIVISION STREET . CAMPBELL, CA 95008 . (408) 364-3030 . FAX (408) 866-0319

Environmental Data

Page 2 of 7 Order 12251 Project No. AHB1-100801

<u>Sample</u>	Customer Label	Description
Li	B-13 VOA	water
L2	B-13 VOA	water
L3	B-13 VOA	water
L4	B-17 VOA	water
L5	B-17 VOA	water
L6	B-17 LITER	water
L7	B-20 VOA	water
F8	B-20 VOA	water
L9	B-20 LITER	water
L10	B-21	
L11	B-21	water
L12	B-21 VOA	water
L13	B-21 VOA	water
L14	B-21 PLASTIC	water
L15	B-22 VOA	water
L16	B-22 VOA	water
L17	B-22 VOA B-22 VOA	water
L18		water
L19	B-22 VOA	water
L20	B-22 PLASTIC	water
L21	B-23 VOA	water
L22	B-23 VOA	water
L23	B-23 VOA	water
	B-23 VOA	water
L24	B-23 PLASTIC	Water

vdrocarbons and BTEX Analysis of Water

lample umber	TPH-G (vg/L)	TPH-D (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethyl Benzene (ug/L)	Xylenes (ug/L)
L1 L4 L67 L12 L15 L20	60200. LDL 96.0 LDL 72.0 1020	LDL LDL LDL LDL LDL	55.0 4.0 5.0 LDL 5.0 5.0	45.0 LDL 6.0 LDL 0.7 3.0	26.5 LDL LDL LDL LDL 2.0	242. LDL 1.0 LDL 3.0 7.9
k: (x):	50.0	50.0 72.5	0.5	0.5 92.7	0.6	0.5

DL indicates results are less than detection limit.

[■] Detection Limit

Average Recovery

ANALYTICAL LABORATORY, INC.

Environmental Data

Page 3 of 7 Order 12251 Project No. AHB1-100801

<u>Sample</u>	Customer Label	Description
L1 L2	B-13 VOA	water
L3.	B-13 VOA	water
	B-13 VOA	water
L4	B-17 VOA	water
L5	B-17 VOA	water
L6	B-17 LITER	water
L7	B-20 VOA	water
18	B-20 VOA	water
L9	B-20 LITER	water
Lio	B-21	water
L11	B-21	water
L12	B-21 VOA	water
L13	B-21 VOA	water
L14	B-21 PLASTIC	water
L15	B-22 VOA	Water
L16	B-22 VOA	water
L17	B-22 VOA	water
L18	B-22 VOA	water
L19	B-22 PLASTIC	water
120	B-23 VOA	water
L21	B-23 VOA	water
L22	B-23 VOA	water
L23	B-23 VOA	Water
L24	B-23 PLASTIC	water

Sample Preparation

he sample was prepared according to EPA 3050 procedures

Waste Metals Analysis by EPA Method 6010

<u>etal</u>	L4 (mg/L)	Detection Limits (mg/L)
-	_	
intimony	LDL	0.39
m senic	LDL	0.39
irium	LDL	0.08
3eryllium	LDL	0.04
Cadmium	LDL	0.04
-romium	LDL	0.04
balt	LDL	0.07
Opper	LDL	0.19
ead	LDL	0.58
rcury	LDL	0.53
lybdenum	LDL	0.14
ickel	LDL	
elenium	LDL	0.14
lver	LDL	1.9
allium	LDL	0.07
anadium		0.85
inc	LDL	0.42
	LDL L-	0.11

Environmental Data

Page 4 of 7 Order 12251 Project No. AHB1-100801

Sample	Customer Label	Description
L1	B-13 VOA	water
L2	B-13 VOA	water
L3	B-13 VOA	Water
L4	B-17 VOA	Water
L5	B-17 VOA	Water
L6	B-17 LITER	Water
L7	B-20 VOA	Water
L8	B-20 VOA	Water
L9	B-20 LITER	Water
L10	B-21	Water
L11	B-21	water
L12	B-21 VOA	water
L13	B-21 VOA	water
L14	B-21 PLASTIC	water
L15	B-22 VOA	Water
L16	B-22 VOA	water
L17	B-22 VOA	Water
L18	B-22 VOA	Water
L19	B-22 PLASTIC	Water
L20	B-23 VOA	Water
L21	B-23 VOA	water
L22	B-23 VOA	water
L23	B-23 VOA	Water
L24	B-23 PLASTIC	water

tle 22 Waste Metals Analysis by EPA method 6010 - cont

tal	L8 (pg/L)	L13 (mg/L)	Detection Limits _(mg/L)
ad	0.81	LDL	0.70
tal	L16 (mg/L)	L21 {mg/L}	Detection Limits (mg/L)
ad	1.38	8.29	0.70

Environmental Data

Page 5 of 7 Order 12251 Project No. AHB1-100801

Sample	Customer Label	Description
L1	B-13 VOA	water
L2	B-13 VOA	water
L3	B-13 VOA	water
L4	B-17 VOA	Water
L5	B-17 VOA	water
L6	B-17 LITER .	water
L7	B-20 VOA	water
L8	B-20 VOA	water
L9	B-20 LITER	water
L10	B-21	water
L11	B-21	Water
L12	B-21 VOA	water
L13	B-21 VOA	water
L14	B-21 PLASTIC	water
L15	B-22 VOA	water
L16	B-22 VOA	water
L17	B-22 VOA	Water
L18	B-22 VOA	Water
L19	B-22 PLASTIC	Water
L20	B-23 VOA	Water
L21	B-23 VOA	Water
L22	B-23 VOA	Water
L23	B-23 VOA	water
L24	B-23 PLASTIC	Water
		·

EPA 413.1 Analysis

<u>Bample</u>	Concentration (mg/L)	Detection Limit (mg/L)	
L2	9721.	5.0	

Environmental Data

Page 6 of 7 Order 12251 Project No. AHB1-100801

Sample	Customer Label	Description
L1	B-13 VOA	water
L2	B-13 VOA	water
L3	B-13 VOA	water
L4	B-17 VOA	water
L5	B-17 VOA	water
L6	B-17 LITER	water
L7	B-20 VOA	water
L8	B-20 VOA	water
L9	B-20 LITER	water
L10	B-21	water
L11	B-21	water
L12	B-21 VOA	water
L13	B-21 VOA	water
L14	B-21 PLASTIC	water
L15	B-22 VOA	
L16	B-22 VOA	water
L17		water
		water
L18	B-22 VOA	water
L19	B-22 PLASTIC	water
L20	B-23 VOA	water
L21	B-23 VOA	water
L22	B-23 VOA	water
L23	B-23 VOA	water
L24	B-23 PLASTIC	water

PA 8240 Analysis

_	L5	Detection Limit	Method Blank	Detection Limit
mpounds	(ug/L)	(ug/L)	(ug/L)	(ug/L)
Tiloroethane	LDL	10.	LDL	10.
<u>romomethane</u>	LDL	2.	LDL	2.
nyl chloride	LDL	10.	LDL	10.
loromethane	LDL	2.	LDL	Ž.
ethylene chloride	LDL	2.	28.	2.
richlorofluoromethane	LDL	2.	LDL	2:
1-Dichloroethene	LDL	2.	LDL	Ž.
1-Dichloroethane	LDL	2.	LDL	ž:
rans-1,2-Dichloroethene	LDL	2.	LDL	$\overline{2}$.
<u>h</u> loroform	30.	2.	LDL	Ž.
2-Dichloroethane	LDL	2.	LDL	2.
1,1-Trichloroethane	LDL	2. 2.	LDL	Ž.
arbon tetrachloride	LDL	2.	LDL	2.
romodichloromethane	2.4	2.	LDL	2.
2-Dichloropropane	LDL	2.	LDL	2.
ans-1,3-Dichloropropene	LDL	2.	LDL	2.
,1,2-Trichloroethane	LDL	3.	LDL	3.
r ichloroethene	LDL	2.	LDL	2.
nzene	LDL	2.	LDL	2.
Chloroethylvinyl ether	LDL	10.	LDL	10.
ibromochloromethane	LDL	2.	LDL	2.
is-1,3-Dichloropropene	LDL	2.	LDL	2.

.....

CAPTER ANALYTICAL LABORATORY, INC.

Environmental Data

Page 7 of 7 Order 12251 Project No. AHB1-100801

ì	Sa <u>mple</u>	Customer Label	Description
	L1 L2 L3 L4 L6 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21	B-13 VOA B-13 VOA B-13 VOA B-17 VOA B-17 VOA B-17 LITER B-20 VOA B-20 LITER B-21 B-21 B-21 VOA B-21 VOA B-21 PLASTIC B-22 VOA B-22 VOA B-22 VOA B-22 VOA B-22 VOA B-22 VOA B-23 VOA B-23 VOA	Description water
	L22 L23 L24	B-23 VOA B-23 VOA B-23 PLASTIC	water water water

EPA 8240 Analysis - cont

Compounds	L5 (ug/L)	Detection Limit (ug/L)	Method Blank (ug/L)	Detection Limit (ug/L)
Bromoform 1,1,2,2-Tetrachloroethane etrachloroethene oluene Chlorobenzene Ethylbenzene ,3-Dichlorobenzene 1,4-Dichlorobenzene	LDL	2. 2. 2. 2. 2. 3. 3.	LDL LDL LDL LDL LDL LDL LDL LDL	2. 2. 2. 2. 2. 3. 3.
urrogate Percent Recovery				
Bromochloromethane: 1-Chloro, 2-Bromopropane: 4-Dichlorobutane:		110. 116. 118.		104. 100. 100.

LDL means results were less than detection limit.

RTER ANALYTICAL LABORATORY

A. Edward Robinson lboratory Manager

