

QUARTERLY MONITORING REPORT Third Quarter 2004

PROJECT SITE: Express Gas & Mart 2951 High Street Oakland, California 94619

PREPARED FOR: Mr. Aziz Kandahari Himalaya Trading Company 2951 High Street Oakland, California 94619

And the state of t SUBMITTED TO: **Alameda County Health Care Services Environmental Health Services** 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

PREPARED BY: W.A. Craig, Inc. 6940 Tremont Road Dixon, California 95620 A,B, & Haz Lic. No. 455752

Project No. 3936

September 10, 2004

TABLE OF CONTENTS

INTRODUCTION	***************************************	*************
PHYSICAL SETTING	***************************************	••••
Site Location		
Topography and Drainage		*************
Geology and Soils		***********
Groundwater	***************************************	,
PROJECT BACKGROUND		
SCOPE OF WORK		
OZONE-SPARGE SYSTEM DESCRIPTION. Introduction		*****************
Ozone-sparge System Description	······································	
Ozone-sparge System Description Sparge Point Construction		5
Ozone-sparge System Start-up and Operation		······ (
Ozone-sparge Well Surveying	L	······································
FIELD PROCEDURES	••••••••••••••••••••••••••••••••••••••	······································
Groundwater Level Measurements	***************************************	
Monitoring Well Purging and Sampling	***************************************	7
Monitoring Well Purging and Sampling Laboratory Analyses	***************************************	
ATA EVALUATION	***************************************	8
Groundwater Levels and Gradient	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•••••••••••••••••••••••••••••••••••••••
Quarterly Groundwater Monitoring Results	***************************************	 U
GeoTracker Requirements	***************************************	بع م

LIST OF TABLES

Table 1	Monitoring and Ozone-sparge Well Construction Information
Table 2	Groundwater Levels in Monitoring Wells
Table 3	Analytical Results for Groundwater Samples
Table 4	Field Measurement of Dissolved Oxygen and Temperature

LIST OF FIGURES

Figure 1	Site Location Map
Figure 2	Site Features
Figure 3	Groundwater Elevations on April 29, 2004
Figure 4	Monitoring Well Hydrograph
Figure 5	MtBE Concentrations in Groundwater on April 29, 2004
Figure 6	MtBE Concentrations versus time in Wells MW-5 and MW-7
Figure 7	MtBE Concentrations versus time in Wells MW-1, MW-3, MW-8, MW-9, and MW-10
Figure 8	Benzene Concentrations versus time in Wells MW-5 and MW-7

LIST OF APPENDICES

Appendix A	Ozone Sparge Point Operating Pressures
Appendix B	Monitoring Well Sampling Logs
Appendix C	Laboratory Analytical Reports for Groundwater Monitoring

PROFESSIONAL CERTIFICATION

QUARTERLY MONITORING REPORT

Third Quarter 2004

Express Gas & Mart 2951 High Street Oakland, California 94619

> By: W.A. Craig, Inc. Project No. 3936 September 10, 2004

This document has been prepared by the staff of W.A. Craig, Inc. under the supervision of the licensed professional whose signature appears below. No warranty, either expressed or implied, is made as to the professional advice presented in this document. The data analysis, conclusions, and recommendations contained in this document are based upon site conditions at the time of our investigation. Site conditions are subject to change with time, and such changes may invalidate the interpretations and conclusions in this document.

The conclusions presented in this document are professional opinions based solely upon the stated scope of work and the interpretation of available information as described herein. Such information may include third party data that either has not, or could not be independently verified. W.A. Craig, Inc. recognizes that the limited scope of services performed in execution of this investigation may not be appropriate to satisfy the needs or requirements of other potential users, including public agencies not directly involved. Any use or reuse of this document or the findings, conclusions, and recommendations presented herein is at the sole risk of said user.

Brian Milton, P.E.

Principal Engineer

INTRODUCTION

This report presents the results of the corrective action and third quarter 2004 groundwater monitoring at Express Gas & Mart, located at 2951 High Street in Oakland, California (the "Site"). The sampling described herein is part of an ongoing characterization of subsurface contamination that was caused by accidental releases from an underground storage tank (UST) system that was replaced in 2001. The contaminant investigation and corrective action are being conducted by W.A. Craig, Inc. (WAC) on behalf of Mr. Aziz Kandahari. The lead regulatory agency overseeing the investigation is the Alameda County Health Care Services, Environmental Health Services, Environmental Protection (Alameda County). Groundwater monitoring this quarter was conducted on July 8, 2004. Installation of an ozone sparging (OS) system began on March 24, 2004, and initial startup of the system occurred on April 14, 2004. Four of the onsite monitoring wells were sampled bi-weekly after the OS system started operating. Treatment system inspection and maintenance are conducted bi-weekly to ensure it is operating properly and to make any necessary repairs or adjustments.

PHYSICAL SETTING

Site Location

The Site is a self-service gasoline station and convenience store located on the corner of High Street and Penniman Avenue, in southeastern Oakland, California. The Site location is shown on **Figure 1** and Site features are shown on **Figure 2**. The surrounding area is densely developed. Neighboring land uses include commercial and residential developments.

Topography and Drainage

The Site is located about 3½ miles east of the San Francisco Bay. The Site location is near the base of the Oakland Hills, at a surface elevation of approximately 132 feet above mean sea level (amsl). Hilly topography occurs directly southeast of the Site, a short distance beyond High Street. The ground surface at the Site slopes gently toward High Street, but the regional topographic slope is southwesterly away from the Oakland Hills. The nearest surface water body is Peralta Creek located approximately ½ mile north northeast of the Site.

Geology and Soils

The Site area is located on an alluvial apron that extends northwest and southeast between the San Francisco Bay on the west and the northern Diablo Range on the east. The active Hayward Fault forms a structural boundary between the alluvial apron and the Diablo Range. Surficial sediments at the Site have been classified as Holocene-age alluvial fan and fluvial deposits (Helley, E.J. and Graymer, R.W., 1997). These sediments are described as gravelly sand and

sandy gravel that grade into sand and silty clay. The nearby hilly areas directly southeast of the Site are underlain by similar, though older, deposits of Pleistocene age.

WAC drilled and sampled soil borings at the Site to install monitoring wells. Soils encountered in the 25-foot deep borings were predominantly gravelly to sandy silts with some interbedded silt and silty fine sand. Groundwater was positively identified in two of the four borings, at depths of 16 feet below grade (fbg) and 4 fbg. The latter boring was drilled offsite, within the High Street right-of-way.

Groundwater

The Site is within the San Francisco Bay regional watershed. The Quaternary alluvial deposits of the region host beneficial use aquifers. Slightly less than half the region's water supply is derived from groundwater. The balance is obtained from imported surface water. Confined groundwater occurs at a depth of approximately 21 fbg at the Site. The aquifer formation is primarily gravelly sandy silt. Static water levels in the onsite monitoring wells have generally ranged from about 5 to 9 fbg, depending upon the season. Water level data indicate the direction of groundwater flow is southerly. Field measurements of specific conductance (SC) among the monitoring wells have ranged from approximately 400 to 2,000 microsiemens, suggesting that the mineralogical quality of the groundwater is variable.

PROJECT BACKGROUND

The history of subsurface contamination investigations at the Site predates WAC's involvement, which began in 2001. Groundwater monitoring has been conducted periodically at the Site since early 1995. Groundwater quality is impacted by petroleum hydrocarbons such as benzene, toluene, ethylbenzene, xylenes (BTEX) and methyl tert-butyl ether (MtBE). A report by Aqua Science Engineers, Inc. (ASE), dated November 14, 2000, indicates that 2,550 pounds of an oxygen releasing compound (ORC®) slurry was injected into borings along the northern and eastern side of the former USTs in June 1997. The ORC® apparently increased the dissolved oxygen (DO) concentrations in the five nearby monitoring wells for approximately one year. Contaminant concentrations decreased slightly in well MW-5 during that period. ORC® socks were installed in wells MW-4 and MW-5 in August 1998 after the DO concentrations declined. The ORC® socks were removed in September 2000 after proving ineffective at reducing petroleum hydrocarbon concentrations in the groundwater.

A Tier 2 Risk-Based Corrective Action (RBCA) analysis was performed for the Site by Mr. Christopher Palmer in August 1997. The RBCA was conducted to develop site-specific threshold levels (SSTLs are listed in **Table 3**) for petroleum hydrocarbon contaminants in soil and groundwater. The RBCA was reviewed and commented on by Alameda County. Alameda County approved the RBCA in a letter dated October 21, 1997.

On February 28, 2001, WAC collected soil samples from along the product line leading to the gas pumps adjacent to High Street. All of the soil samples yielded detectable concentration of petroleum hydrocarbons. Total petroleum hydrocarbons as gasoline (TPH-g) was detected at concentrations ranging from 71 milligrams per kilogram (mg/kg) to 3,600 mg/kg. WAC subsequently prepared a *Site Investigation Workplan* dated March 26, 2001 to conduct a soil and groundwater investigation around the gas pumps. Alameda County approved the workplan and requested that the USTs and contaminated soils be removed and properly disposed.

Six soil borings were drilled and sampled by WAC in late April 2001. Sampling results from the borings yielded TPH-g concentrations in soil up to 4,000 mg/kg and in groundwater up to 78,000 micrograms per liter (μ g/L), confirming that petroleum hydrocarbons had impacted soil and groundwater. The dispenser pumps, product lines, and four steel gasoline USTs were excavated and removed from the Site by WAC in May 2001. The USTs were inspected and appeared to be in good condition. However, soil samples from the base and the sides of the UST excavation yielded TPH-g concentrations up to 1,700 mg/kg on the west sidewall of the excavation at 8 fbg. WAC excavated additional contaminated soil from the Site in a number of separate phases between May 9 and September 27, 2001. Approximately 3,700 tons of petroleum hydrocarbon contaminated soil was removed and disposed at B&J Class II landfill in Vacaville, California. The over-excavation area is shown on **Figure 2**.

Following Site restoration and re-opening of the Express Gas & Mart, little additional activity occurred until March 2003, when WAC installed four new monitoring wells to obtain further data on the extent of the MtBE contamination in groundwater. Monitoring well construction information is summarized in **Table 1**. WAC also resumed quarterly groundwater monitoring in April 2003, for the first time since the September 2000 sampling reported by ASE. The April 2003 analytical data indicated that MtBE was above the SSTL of 8,400 μ g/L in wells MW-5 and MW-7.

Based on the April 2003 groundwater sampling results, WAC recommended corrective action to remediate the subsurface contamination at the Site to below the SSTLs. WAC prepared a Feasibility Study/Corrective Action Plan dated July 28, 2003 and an Addendum to Corrective Action Plan dated September 10, 2003. Alameda County approved the installation of an OS system in a letter dated February 18, 2004.

An OS system consisting of ten ozone-sparge wells and a control panel was installed at the Site. Initial startup of the system occurred on April 14, 2004. Prior to the start up, four monitoring wells (MW-5, MW-7, MW-8, and MW-9) were purged and sampled to determine baseline concentrations in groundwater prior to operating the OS system. The system has operated at the Site since April 14, 2004. On July 8, 2004 quarterly groundwater sampling of eight monitoring wells was conducted.

SCOPE OF WORK

The scope of work performed during this quarter included the following tasks:

- Maintained GeoTracker database:
- Properly disposed of approximately 600 gallons of monitoring well purge water stored on site;
- Purged and sampled wells MW-5, MW-7, MW-8 and MW-9 twice per month in April and May 2004 and once in June 2004;
- Performed bi-weekly inspections and routine maintenance on the ozone sparge system;
- Measured static water levels in eight monitoring wells;
- Purged and sampled groundwater from eight monitoring wells;
- Installed barbed wire and slatted fencing on the treatment system compound;
- Collected field measurements from eight monitoring wells, including water level, DO concentrations, temperature, pH, and SC;
- Analyzed groundwater samples for the following compounds: TPH-g, MtBE, BTEX, DIPE, EtBE, tAME, tBA, methanol, ethanol, EDB, and 1,2-DCA (see *Laboratory Analyses* section of this report for chemical names and analytical methods used), and;
- Prepared this Corrective Action and Quarterly Groundwater Monitoring Report.

OZONE-SPARGE SYSTEM DESCRIPTION

Introduction

The proposed design and layout of the OS remediation system were initially described in WAC's Feasibility Study/Corrective Action Plan dated July 28, 2003 and Addendum to Corrective Action Plan dated September 10, 2003. Alameda County approved the work in a letter dated February 18, 2004. A C-SpargerTM OS system was subsequently purchased from Kerfoot Technology, Inc. The C-SpargerTM system is designed to operate up to 10 sparge points. Well permits were obtained from Alameda County prior to installing the OS wells. Installation of the system began on March 24, 2004 and initial startup of the system occurred on April 14, 2004.

Ozone-sparge System Description

The above ground components of the OS remediation system are mounted inside a locked, metal cabinet (the control panel). The equipment housed in the control panel includes an ozone generator, small air compressor, ozone leak detector, programmable timer, electrical wiring/circuits, pressure gauge, run-time clock, cooling fans, and manifold with electromagnetically-actuated solenoids for distributing the pressurized air/ozone mixture to individual sparge points. The ozone generator creates ozone by ionizing oxygen in either ambient air or with the aid of an optional oxygen concentrator. An oxygen concentrator was installed on this system to boost the amount of ozone delivered.

The operating schedule is controlled by an electronic timer. The OS points are operated one at a time for a programmed number of minutes. The timer cycles through all ten sparge points and then has a "rest" period to allow the compressor to cool. After the rest period, a new cycle starts. This process is repeated several times each day. The OS system can deliver ozone at a flow rate of approximately 3 cubic feet per minute (cfm) and a pressure of 50 pounds per square inch (psi). This delivery pressure is usually sufficient to overcome the hydraulic head and other resistive forces at the sparge point. With the oxygen concentrator installed, approximately 5 grams of ozone per hour can be injected into the subsurface.

The control panel was installed near the north corner of the Express Gas & Mart mini-mart as shown on Figure 2. The control panel was mounted on a plywood backboard mounted on two pieces of uni-strut bolted to the concrete with wedge anchors. An electrical power supply outlet and circuit breaker box for the system were installed on the plywood backboard alongside the control panel. The incoming electrical power line from the main electrical panel is enclosed within a galvanized steel conduit.

The working portion of an OS point is a 30-inch length of 2-inch diameter, porous PVC casing (diffuser) placed at the bottom of each sparge well. The sparge point section is analogous to a well screen, but has much finer openings (pores). A ¾-inch diameter PVC riser extends from the sparge point up to within 12 inches of ground surface. Fine-grained sand was placed in the annular space of the borehole around each of the sparge points. The tiny pores of the sparge point and the fine-grained filter pack combine to help create microbubbles during sparging. A bentonite plug was placed at the bottom of the borehole and hydrated to fill the space below the desired sparge point depth. Graded sand (#60) was placed in the annular space between the sparge point and the borehole wall from the top of the bentonite plug to approximately 2 feet above the top of the sparge point. A 2-foot thick bentonite seal was placed above the sand filter pack and hydrated prior to grouting the remainder of the annulus with Portland type I/II neat cement. A traffic-rated vault set slightly above grade protects the top of each riser pipe at the surface. TeflonTM and PVC fittings are used within the well vaults to connect the riser pipe of

each OS point to its supply line. An in-line check-valve within each vault prevents back flow out of the sparge point.

The existing concrete and asphalt pavement were sawcut and broken up with jackhammers in order to lay the sparge lines. Supply lines extend separately from the ozone generator panel to each sparge point within common trenches. The location of the trenches is shown on Figure 2. The supply lines consist of \(^3\frac{1}{8}\)-inch inside diameter (ID), flexible polyethylene tubing enclosed within a secondary protective conduit of \(^3\)-inch ID high-density polyethylene (HDPE) tubing. The lines were installed in 24-inch deep by 16-inch wide trenches. Approximately 120 feet of trench was sawcut in the existing concrete and asphalt at the Site. The asphalt and concrete were demolished, removed, loaded, and hauled to Davis Street Transfer Station in San Leandro, California for recycling. Controlled density fill was placed in the trench to approximately four inches below grade. The top four inches of the trench was filled with asphaltic concrete to match the existing surface grade.

WAC recommended installing barbed wire and slats on the fence of the OS system equipment compound to prevent tampering or vandalism. The recommendations were approved by Alameda County and the barbed wire and slats were installed August of 2004.

Sparge Point Construction

OS wells SP-1 through SP-10 were installed on March 24, 25, and 26, 2004. The well locations are shown on **Figure 2**. Resonant Sonic International (RSI, C-57 License No. 802334) installed the wells. The well borings were advanced by a sonic drill rig to a maximum of 37 fbg using 7-inch diameter casing. Well SP-3 was advanced using hollow stem augers. A California Professional Engineer supervised the drilling.

Ozone-sparge System Start-up and Operation

The OS system started initial operation on April 14, 2004. WAC staff visited the Site bi-weekly to ensure that the OS system was running normally and to monitor the operating pressures. On April 15, a leak was detected in the hose supplying SP-5 with ozone. SP-5 was shut off on April 15. On April 29, the hose to SP-5 was replaced and SP-5 was turned on and operated normally since then. The operating time was adjusted on April 29, 2004. A table of the operating pressures of each sparge point is included as **Appendix A**.

Ozone-sparge Well Surveying

The 10 new ozone-sparge wells were surveyed on April 22, 2004 by Virgil Chavez Land Surveying (PLS number 6323). The benchmark for the survey was a cut square in the southeasterly return of the southern corner of the intersection of High Street and MacArthur Boulevard. The horizontal control data are based on the California State Coordinate System,

Zone III (NAD83). The vertical control data are based on the benchmark elevation of 177.397 feet (NGVD 29).

FIELD PROCEDURES

Groundwater Level Measurements

WAC staff measured the static water level in all eight of the monitoring wells on July 8, 2004. The water levels in the monitoring wells were obtained using an electronic water level indicator and recorded on monitoring well sampling logs included in **Appendix B**. Prior to the measurements, the wells were uncapped and water levels were allowed to equilibrate with atmospheric pressure for at least 30 minutes. Water level measurements were referenced to the surveyed top of the well casings. The depth-to-water measurements were used to calculate the standing well volume and the amount of water to be purged prior to collecting groundwater samples. The depth to water and surveyed wellhead elevations are also used to determine the static groundwater elevation and flow direction.

Monitoring Well Purging and Sampling

WAC purged and samples wells MW-5, MW-7, MW-8, and MW-9 immediately prior to starting the ozone system on April 14, 2004 and bi-weekly on four occasions between April 29 and June 10, 2004. WAC staff purged and sampled all monitoring wells on July 8, 2004. At least three well casing volumes of water were purged from each well before collecting groundwater samples. Wells were purged using a clean disposable polyethylene bailer. The DO concentration, pH, temperature, and SC of the groundwater were intermittently monitored with portable instrumentation during purging. The DO concentration was measured in-situ immediately after uncapping the well, after purging one well casing volume, and after sampling the well. Field measurements were recorded on the monitoring well sampling logs.

The water level indicator and the instrument probes were decontaminated after each use by washing in an Alconox® detergent solution followed by a tap water rinse. Well purge water was placed into 55-gallon drums for temporary onsite storage. The drums are emptied as needed and the purge water is disposed of at a licensed disposal facility.

Upon completion of purging activities, groundwater samples were collected from each monitoring well using a disposable polyethylene bailer. The groundwater samples were decanted from the bailer into laboratory-supplied, 40-ml volatile organic analysis (VOA) vials, prepreserved with hydrochloric acid (HCl). Care was taken to ensure that the vials were completely filled, leaving no headspace. Each sample container was labeled with the well ID, project number, and date collected. Labeled samples were stored in an ice chest cooled with ice until delivery to the laboratory under chain-of-custody control.

Laboratory Analyses

The groundwater samples were submitted under chain-of-custody control to a California Department of Health Services (DHS) certified analytical laboratory. The samples were analyzed for TPH-g using EPA Method 8015C (modified), for BTEX and MtBE using EPA Method 8021B, and for MtBE, di-isopropyl ether (DIPE), ethyl tert-butyl ether (EtBE), tert-amyl methyl ether (tAME), tert-butanol (tBA), methanol, ethanol, ethylene dibromide (EDB), and 1,2-dichloroethane (DCA) using EPA Method 8260B. Discussions in this report will cite MtBE concentrations determined by EPA Method 8260B, which is considered a more accurate analysis than Method 8021B.

DATA EVALUATION

Groundwater Levels and Gradient

Water level data for the monitoring wells are summarized in **Table 2**. The surveyed top of casing (TOC) elevations and the depth to static water measurements in monitoring wells were used to calculate groundwater elevations at the Site. The depth to water on July 8, 2004 ranged from 7.45 feet below the TOC in MW-8 to 13.92 feet below the TOC in MW-7. Except for monitoring well MW-7, the groundwater elevations decreased in all monitoring wells since the last site visit, on June 10, 2004. Groundwater elevations in the monitoring wells on July 8, 2004 varied from 117.01 feet amsl in well MW-7 to 124.57 feet amsl in MW-6.

Groundwater elevations on July 8, 2004 are shown on Figure 3. Groundwater elevations indicate that the direction of groundwater flow is southerly. The groundwater gradient was calculated using static water elevations in wells MW-3, MW-8, and MW-9. On July 8, 2004 the groundwater flow direction was S23°W with a gradient of 0.0319 ft/ft. On April 29, 2004 the groundwater flow direction was S2°W with a gradient of 0.046 ft/ft. The groundwater flow and gradient this quarter are within the range of past monitoring events with the exception of well MW-7. Two weeks after starting up the ozone-sparge system, the groundwater elevation in well MW-7 decreased approximately 13.5 feet. Well MW-7 is located approximately four feet north of sparge well SP-1. Water levels in well MW-7 increased approximately 5.5 feet between June 10 and July 8, 2004. Water elevations in this well were consistently 7 to 10 feet lower than measurements recorded prior to the installation of the Ozone sparge system. The reason for the decrease is not clear. Graphs of groundwater elevations in the shallow aquifer at the Site since April 4, 2003 are presented on Figure 4.

Quarterly Groundwater Monitoring Results

MtBE was detected in all the monitoring wells this quarter except for MW-6. This was the first quarterly monitoring event in which all wells did not yield any hydrocarbons at concentrations above the SSTLs. Detected MtBE concentrations ranged from 7.3 µg/L in well MW-9 to

1,650 µg/L in well MW-10. These concentrations and their respective locations are illustrated on **Figure 5**. Graphs of MtBE concentrations in wells MW-5 and MW-7 are shown on **Figure 6**. Concentrations decreased dratically in wells MW-3, MW5, and MW-7 since the last regular quarterly event. For example, the MtBE concentration in well MW-5 decreased from 20,000 µg/L on April 14, 2004 to 9.6 µg/L on July 8, 2004. Graphs of MtBE concentrations in the less impacted wells (MW-1, MW-3, MW-8, MW-9, and MW-10) are shown on **Figure 7**. Wells MW-3, MW-5, MW-7, MW-8, and MW-9 all recorded record low levels of MTBE either on July 8, or during the treatment system startup monitoring performed in May and June. Except for wells MW-8 and MW-10, MtBE concentrations in all wells were lower than those measured during the July 2003 monitoring event.

Historically low BTEX concentrations were observed in wells MW-5 and MW-7 this quarter. BTEX constituents were not detected in any other wells. Well MW-5 yielded a benzene concentration of 1.5 μ g/L. In comparison, benzene was detected at a concentration of 2,700 μ g/L in this well on April 14, 2004. All other BTEX constituents in well MW-5 were below laboratory detection limits. A graph of the benzene concentrations versus time in wells MW-5 and MW-7 is shown on **Figure 8**.

The groundwater sample collected from monitoring well MW-7 did not contain detectable benzene or toluene. However, ethyl benzene and xylenes were detected in this well at $1.3~\mu g/L$ and $10~\mu g/L$, respectively. In comparison, all four BTEX constituents in this well were above the SSTLs for the site on April 14, 2004. Groundwater analytical results are summarized in **Table 3**. The laboratory analytical reports are included in **Appendix C**.

The DO concentration increased noticeably in wells MW-1, MW-3, MW-5 MW-7 and MW-9 since the ozone-sparge system began operation. On July 8, 2004 the DO concentrations in the Site monitoring wells ranged from 0.19 milligrams per liter (mg/L) in well MW-10 to 11.46 mg/L in well MW-5. The average DO concentration was 3.52 mg/L. The highest DO concentration observed in any of the wells prior to the installation of the ozone sparge system was 2.75 mg/L in well MW-10 on April 23, 2003. DO concentrations in the monitoring wells are summarized on **Table 4**.

GeoTracker Requirements

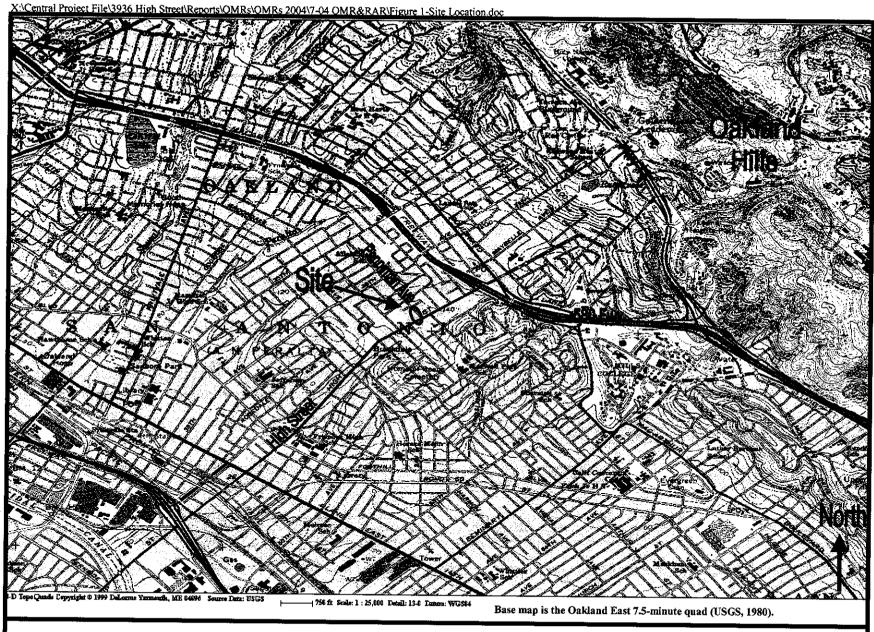
All chemical analysis data are submitted electronically to the California State Water Resources Control Board Geographical Environmental Information Management System (GeoTracker) database as required by AB2886 (Water Code Sections 13195-13198). Electronic analytical reports (EDF files) are prepared and formatted by the laboratory and submitted by WAC. Along with chemical analyses, well latitudes, longitudes (GEO_XY files) and elevations (GEO_Z files) are submitted to the database. Submittal of a well status and usage report (GEO_WELL file) is required for each monitoring event. Current maps (GEO_MAP files) are also submitted when site features are added or changed.

CONCLUSIONS

The OS system began operation on April 14, 2004, and with the exception of a few repairs, has run continuously.

On July 8, 2004 the direction of groundwater flow was southerly with a gradient of 0.0319 ft/ft. This is consistent with past measurements. The groundwater elevation in well MW-7 was apparently affected (lowered) by the OS system. The reason for the decrease is unclear.

DO concentrations have increased substantially in wells MW-3, MW-5 MW-7 and MW-9 since the OS system began operating. The increased DO concentrations are an indication that these wells are within the zone of influence of the ozone treatment system. Increased DO concentrations will stimulate biodegradation of hydrocarbons by soil microorganisms.


MtBE and benzene are the principal constituents of concern in shallow groundwater at the Site. The MtBE and benzene concentrations in well MW-5 this quarter were the lowest on record for that well.

BTEX constituents were detected above their respective SSTLs in well MW-7 on April 14, 2004, but concentrations decreased significantly by April 29. The benzene and MtBE concentrations in well MW-7 are the lowest since MW-7 was installed in April 2003. Historically low MtBE concentrations were also reported this quarter in wells MW-3, MW-5, MW-8, and MW-9.

Hydrocarbons in all Site wells have been below the SSTLs for the Site for at least three consecutive sampling events, including those conducted after the treatment system startup.

RECOMMENDATIONS

We recommend continued operation of the ozone-sparge system until the next scheduled quarterly monitoring event in October 2004. If the hydrocarbon concentrations in all wells are still below the SSTLs established for the Site, we recommend shutting off the sparge system for one month. After one month, WAC will sample wells MW-5, MW-7, MW-8, and MW-9. If hydrocarbon concentrations in these wells remain at or below the SSTLs we recommend petitioning Alameda County for Site Closure.

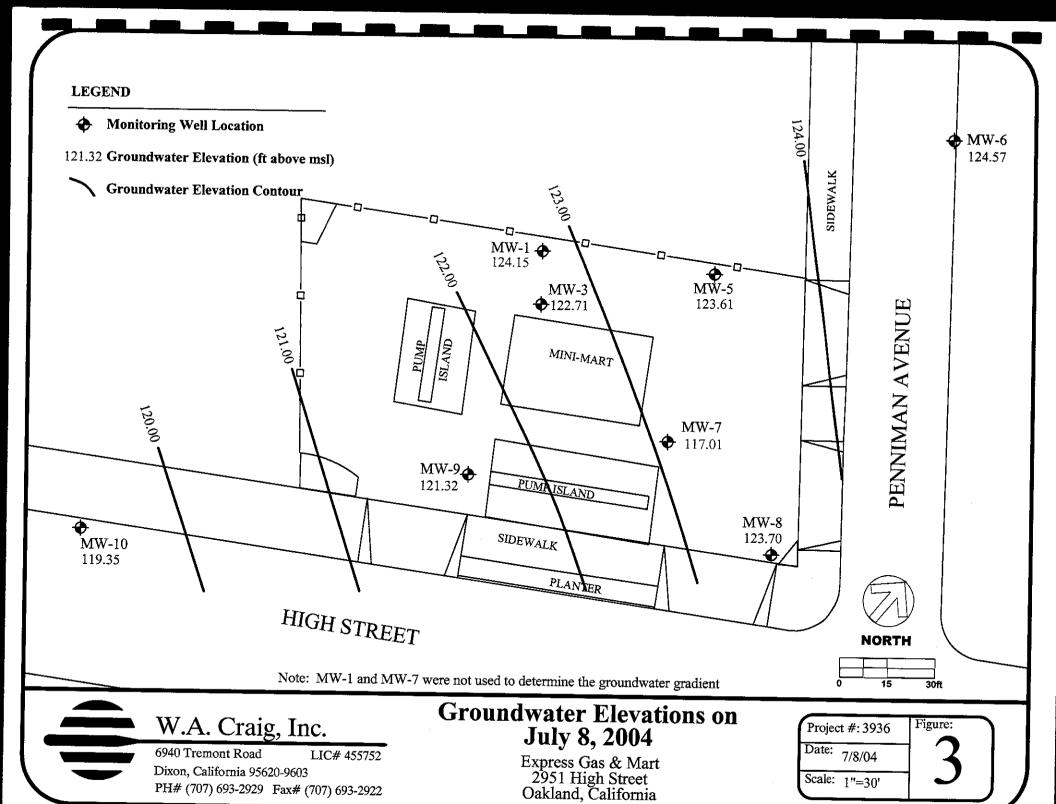
Site Location Map

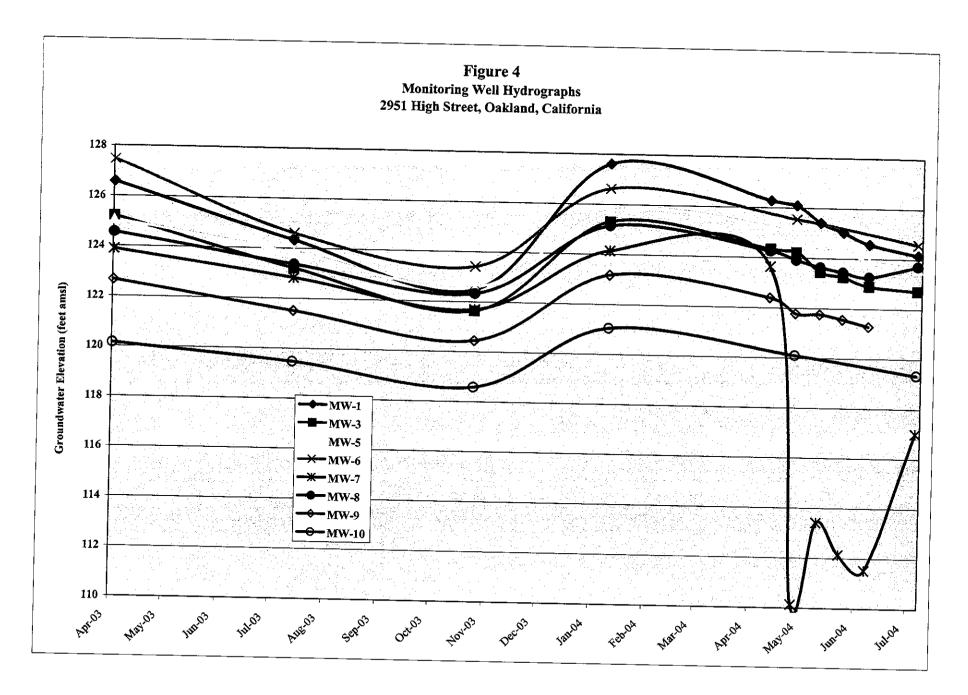
Express Gas & Mart 2951 High Street, Oakland, California Figure 1

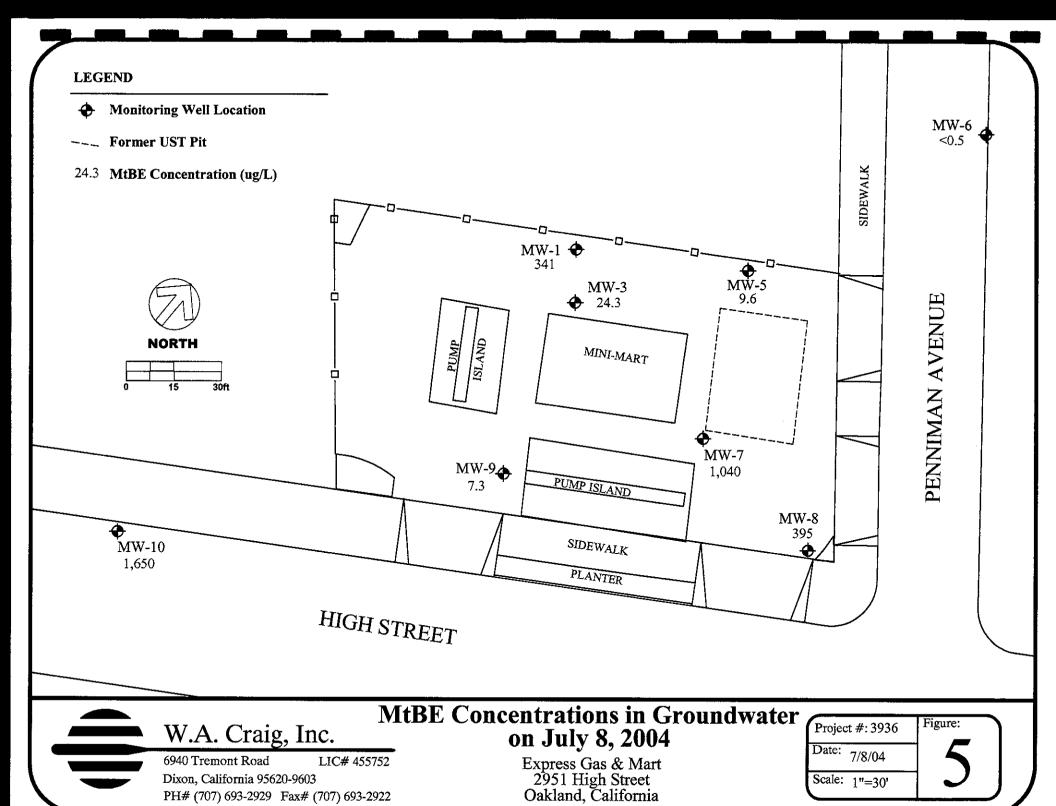
Job No. 3936

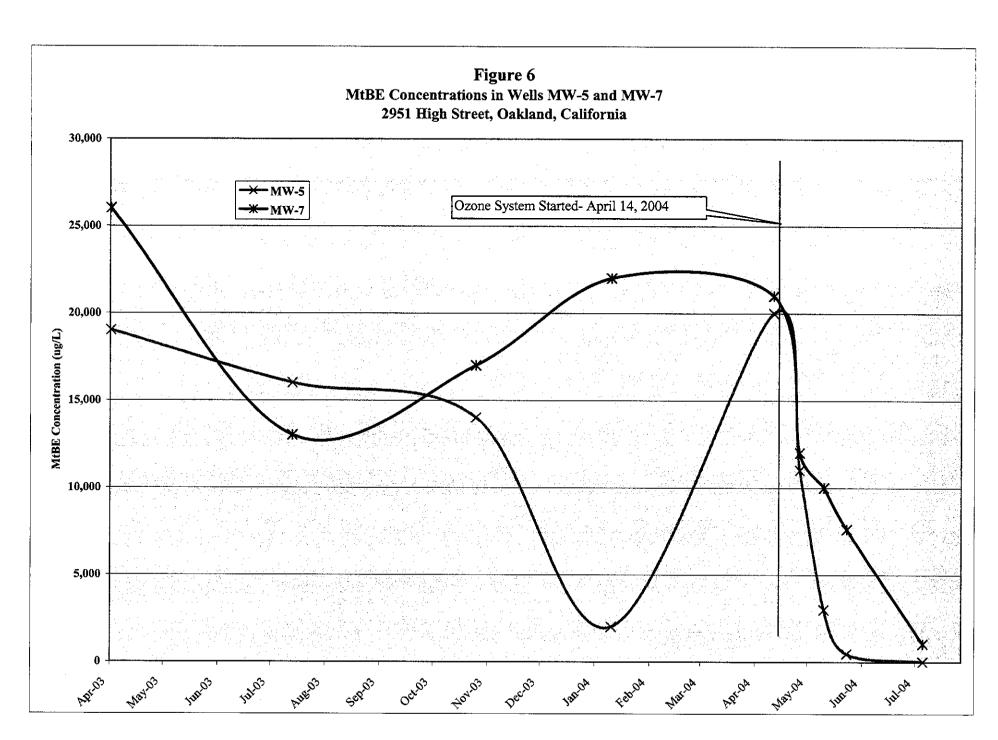
6940 Tremont Road

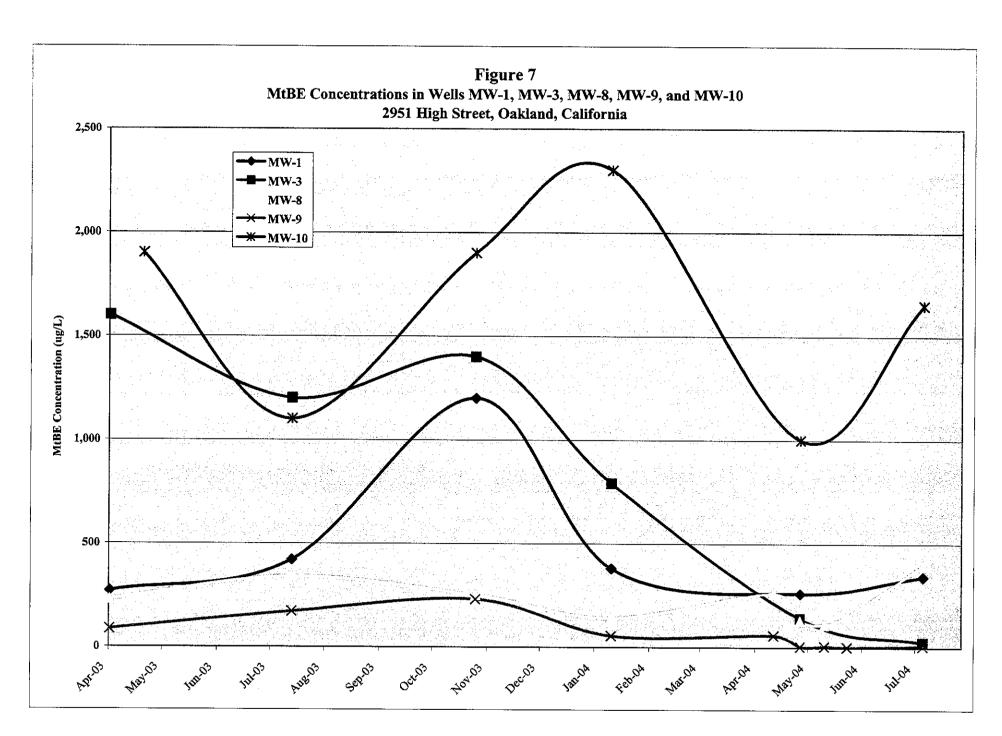
Dixon, California 95620


W.A. Craig, Inc.


6940 Tremont Road LIC# 455752 Dixon, California 95620-9603 PH# (707) 693-2929 Fax# (707) 693-2922


Site Features


Express Gas & Mart 2951 High Street Oakland, California


Project #: 3936	Figure:
Date: 7/8/04	7
Scale: 1"=30'	

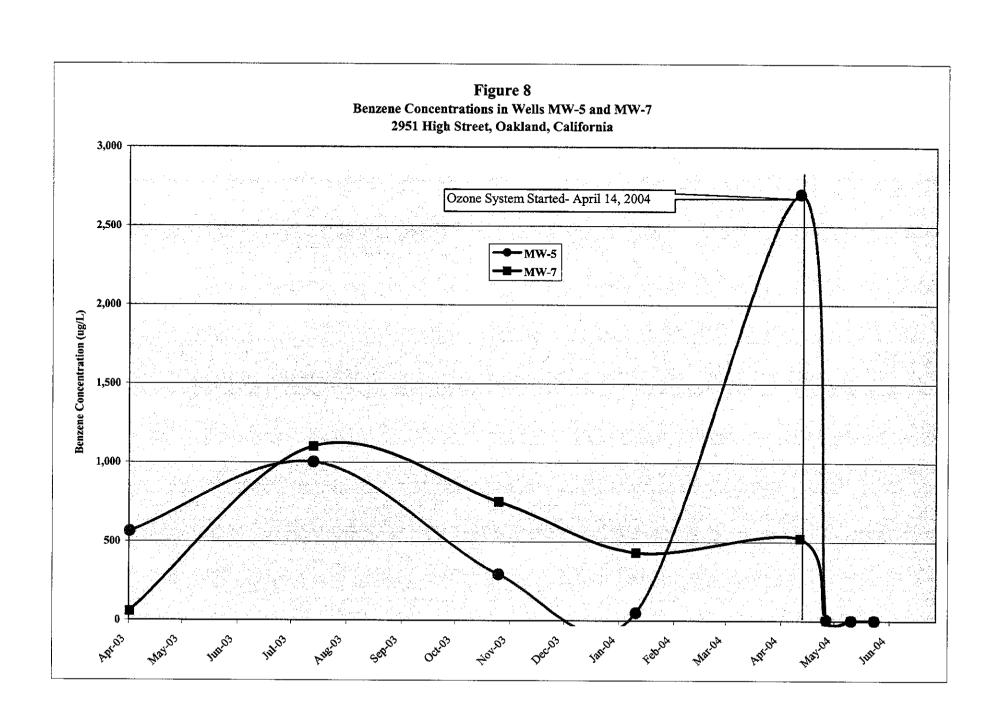


Table 1 Monitoring and Ozone-sparge Well Construction Information 2951 High Street Oakland, California

Well ID	Date Installed	Casing Diameter (inches)	Total Depth (fbg)	Screened Interval (fbg)	Water-Bearing Unit	Top of Casing Elevation (feet amsl)	Northing (feet)	Easting (feet)
MW-1	2/95	2	25	N/A	N/A	131.64	2,112,552.39	6,070,038.16
MW-3	2/95	2	25	N/A	N/A	131.05	2,112,539.60	6,070,048.55
MW-5	12/9/96	2	30	5-30	N/A	131.99	2,112,582.04	6,070,083.59
MW-6	1/7/97	2	30	5-30	N/A	132.58	2,112,662.53	6,070,113.49
MW-7	3/24/03	2	25	15-25	gravelly sandy silt	130.93	2,112,533.18	6,070,106.31
MW-8	3/24/03	2	25	15-25	gravelly sandy silt	131.15	2,112,527.86	6,070,153.72
MW-9	3/25/03	2	25	15-25	silty gravelly sand	130.00	2,112,484.75	6,070,065.55
MW-10	4/4/03	2	25	15-25	sandy silt	127.19	2,112,393.29	6,069,984.72
SP-1	3/25/04	3/4	37	30.5-33	clayey sand	130.39	2,112,529.17	6,070,105.65
SP-2	3/25/04	3/4	31	26.5-29	sandy clay	130.07	2,112,534.87	6,070,118.37
SP-3	3/24/04	3/4	32	28.5-31	gravelly sandy clay	130.66	2,112,541.87	6,070,131.76
SP-4	3/25/04	3/4	33	14.5-17	gravelly sandy clay	130.51	2,112,541.66	6,070,102.66
SP-5	3/26/04	3/4	30	20-22.5	clayey gravelly sand	130.55	2,112,553.75	6,070,115.66
SP-6	3/26/04	3/4	30	21.5-24	clayey sandy gravel	130.88	2,112,564.81	6,070,106.43
SP-7	3/26/04	3/4	30	25.5-28	gravelly sand	131.20	2,112,575.20	6,070,106.74
SP-8	3/26/04	3/4	31	28.5-31	gravelly sandy clay	130.98	2,112,569.95	6,070,091.53
SP-9	3/25/04	3/4	33	25-27.5	clayey sand	130.85	2,112,562.57	6,070,080.59
SP-10	3/26/04	3/4	30	21.5-24	gravelly clay	131.23	2,112,578.47	6,070,085.11

Notes:

fbg = feet below grade; amsl = above mean sea level; N/A = data not available.

Monitoring wells surveyed by Virgil Chavez Land Surveying on April 15, 2003.

Ozone-sparge wells surveyed by Virgil Chavez Land Surveying on April 22, 2004.

MW-1, MW-3, MW-5, and MW-6 were installed by Aqua Science Engineers, Inc.

MW-7, MW-8, MW-9, MW-10, and SP-1 through SP-10 were installed by W.A. Craig, Inc.

Table 2 Groundwater Levels in Monitoring Wells 2951 High Street Oakland, California

Well ID	Date	TOC Elevation	DTW	Groundwater Elevation
MW-1	04/04/03	131.64	5.07	126.57
	07/16/03		7.32	124.32
	10/28/03	ľ	9.16	122.48
	01/13/04	ļ	4.03	127.61
	04/14/04		5.37	126.27
	04/29/04		5.55	126.09
	05/13/04	ľ	6.24	125.40
	05/26/04	ļ	6.61	125.03
	06/10/04	ľ	7.08	124.56
	07/08/04		7.49	124.15
MW-3	04/04/03	131.05	5.86	125.19
	07/16/03		7.86	123.19
	10/28/03		9.43	121.62
	01/13/04	•	5.76	125.29
	04/14/04	ŀ	6.72	124.33
	04/29/04	ŀ	6.81	124.24
	05/13/04	}	7.62	123,43
	05/26/04	}	7.80	123.25
	06/10/04	ŀ	8.17	122.88
	07/08/04	ŀ	8.34	122.71
MW-5	04/04/03	131.99	6.94	125.05
MITT-5	07/16/03	131.77	8.17	123.82
	10/28/03	ł	9.43	122.56
	01/13/04	ŀ	6.27	125,72
	04/14/04	ŀ	6.79	125,20
	04/29/04	ŀ	7.35	124.64
	05/13/04	-	7.71	124.28
	05/26/04	-	7.66	124.33
	06/10/04	}	8.11	123.88
	07/08/04	-	8.38	123.61
MW-6	04/04/03	132.58	5.13	127.45
IVI VV -O		132.38		
	07/16/03		7.99	124.59
	10/28/03	-	9.18	123.40
	01/13/04	-	5.97	126.61
	04/29/04	-	7.05	125.53 124.57
3.4337.77	07/08/04	120.02	8.01	121,57
MW-7	04/04/03	130.93	7.06	123.87
	07/16/03	ļ	8.11	122.82
	10/28/03	ļ	9.25	121.68
	01/13/04	ļ	6.80	124.13
	04/14/04		7.30	123.63
	04/29/04	*	20.80	110.13
	05/13/04	*	17.51	113.42
	05/26/04	*	18.79	112.14
	06/10/04	*	19.41	111.52
	07/08/04	*	13.92	117.01

Table 2 Groundwater Levels in Monitoring Wells 2951 High Street Oakland, California

Well ID	Date	TOC Elevation	DTW	Groundwater Elevation
MW-8	04/04/03	131.15	6.60	124.55
	07/16/03		7.79	123.36
	10/28/03		8.83	122.32
	01/13/04		6.02	125.13
	04/14/04		6.90	124.25
	04/29/04		7.25	123.90
	05/13/04		7.52	123.63
	05/26/04	i	7.71	123,44
	06/10/04	Ī	7.89	123.26
	07/08/04		7.45	123.70
MW-9	04/04/03	130.00	7.35	122.65
	07/16/03		8.50	121.50
	10/28/03	Ī	9.56	120.44
	01/13/04		6.83	123.17
	04/14/04	ſ	7.61	122.39
	04/29/04	Ī	8.23	121,77
	05/13/04		8.25	121.75
	05/26/04	ľ	8.44	121.56
	06/10/04		8.71	121.29
	07/08/04		8.68	121.32
MW-10	04/23/03	127.19	7.06	120.13
	07/16/03	Ī	7.72	119.47
	10/28/03	Ţ	8.61	118.58
	01/13/04		6.15	121,04
	04/29/04	Ţ	7.09	120,10
	07/08/04	<u> </u>	7.84	119.35

Notes:

Elevations are in feet above mean sea level.

TOC, Top of casing. DTW, Depth to water in feet below TOC.

* Water level in MW-7 is apparently affected by ozone sparging.

Table 3 Analytical Results for Groundwater Samples 2951 High Street Oakland, California

Well ID	Date	TPH-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	EtBE	tAME	tBA	methanol	ethanol	EDB	DCA
MW-1	2/23/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	5/26/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	8/23/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4/4/03	<50	<0.5	<0.5	<0.5	<0.5	270	\(\)	\$	<5	<50	<5,000	<500	<5	<5
	7/16/03	<50	<0.5	<0.5	<0.5	<0.5	420	<10	<10	<10	<100	<10,000	<1,000	<10	<10
	10/28/03	<50	<0.5	<0.5	<0.5	<0.5	1,200	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	1/13/04	58	0.85	<0.5	3.1	8.4	380	<0.5	<0.5	<0.5	<5.0	<50	<5	<0.5	<0.5
	4/29/04	<50	<0.5	<0.5	<0.5	<0.5	260	<5	<5	<5	<50	<5,000	<500	<5	<5
	7/8/04	<50	<0.5	<0.5	<0.5	<1.0	341	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5
MW-3	2/23/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	5/26/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	8/23/95	<50	<0.5	<0.5	<0.5	<0.5	NT	NT	NT	NT	NT	NT	NT	NT	NT
	4/4/03	<50	<0.5	<0.5	<0.5	<0.5	1,600	<25	<25	<25	<250	<25,000	<2,500	<25	<25
	7/16/03	<50	<0.5	<0.5	<0.5	<0.5	1,200	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	10/28/03	<50	<0.5	< 0.5	< 0.5	<0.5	1,400	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	1/13/04	<200	<2	<2	<2	<2	790	. <2	<2	<2	<20	<200	<20	<2	<2
	4/29/04	<50	<0.5	<0.5	<0.5	<0.5	140	<5	<5	<5	<50	<5,000	<500	<5	<5
	7/8/04	<50	<0.5	<0.5	<0.5	<1.0	24.3	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5
MW-5	12/13/96	3,600	180	350	81	510	430	NT	NT	NT	NT	NT	NT	NT	NT
	3/27/97	120,000	28,000	16,000	2,600	10,000	64,000	NT	NT	NT	NT	NT	NT	NT	NT
*	6/27/97	6,300	10,000	2,400	290	4,500	43,000	NT	NT	NT	NT	NT	NT	NT	NT
	9/22/97	<50,000	7.9	3.3	0.6	3.3	30,000	NT	NT	NT	NT	NT	NT	NT	NT
	12/6/97	<5,000	33	12	<5	7.3	33,000	NT	NT	NT	NT	NT	NT	NT	NT
	3/23/98	29,000	150	160	130	320	34,000	NT	NT	NT	NT	NT	NT	NT	NT
	6/10/98	53,000	7,000	2,400	540	3,400	67,000	NT	NT	NT	NT	NT	NT	NT	NT
	7/23/98	36,000	1,000	270	<120	740	51,000	NT	NT	NT	NT	NT	NT	NT	NT
**	9/16/98	56,000	3,400	1,300	430	1,800	84,000	NT	NT	NT	NT	NT	NT	NT	NT
	11/23/98	63,000	5,700	2,900	500	2,200	87,000	NT	NT	NT	NT	NT	NT	NT	NT
	3/5/99	42,000	<250	<250	<250	<250	38,000	NT	NT	NT	NT	NT	NT	NT	NT
	6/17/99	37,000	510	85	5.6	89	61,000	NT	NT	NT	NT	NT	NT	NT	NT
*	9/15/99	54,000	8,500	1,800	420	2,400	55,000	NT	NT	NT	NT	NT	NT	NT	NT
	12/9/99	34,000	1,600	230	130	570	33,000	NT.	NT	NT	NT	NT	NT	NT	NT
	3/6/00	21,000	7,800	870	440	2,100	30,000	NT	NT	NT	NT	NT	NT	NT	NT
	6/7/00	<50,000	11,000	890	570	3,000	68,000	NT	NT	NT	NT	NT	NT	NT	NT
	9/18/00	40,000	4,900	<250	<250	1,700	46,000	NT	NT	NT	NT	NT	NT	NT	NT

Table 3
Analytical Results for Groundwater Samples
2951 High Street
Oakland, California

Well ID	Date	ТРН-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	EtBE	tAME	tBA	methanol	ethanol	EDB	DCA
MW-5	4/4/03	1,800	560	<5.0	<5.0	30	19,000	<330	<330	<330	<3,300	<330,000	<33,000	<330	<330
(cont.)	7/16/03	2,800	1,000	<5	10	80	16,000	<200	<200	<200	<2,000	<200,000	<20,000	<200	<200
	10/28/03	740	290	<5.0	<5.0	7.2	14,000	<170	<170	<170	<1,700	<170,000	<17,000	<170	<170
	1/13/04	<500	48	<5	<5	<5	2,000	<5	<5	<5	<50	<500	<50	<5	<5
	4/14/04	6,600	2,700	<50	<50	260	20,000	<500	<500	<500	<5,000	<500,000	<50,000	<500	<500
	4/29/04	<500	6.3	<5	<5	7.8	11,000	<250	<250	<250	<2,500	<250,000	<25,000	<250	<250
	5/13/04	<50	<0.5	<0.5	<0.5	<0.5	3,000	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	5/26/04	<50	<0.5	<0.5	<0.5	<0.5	460	<10	<10	<10	<100	<10,000	<1,000	<10	<10
	6/10/04	<50	<0.5	<0.5	<0.5	<0.5	38	< 0.5	<0.5	<0.5	<5.0	<50	<5.0	<0.5	<0.5
	7/8/04	<50	1.5	<0.5	<0.5	<1.0	9.6	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5
MW-6	1/13/97	<50	<0.5	<0.5	< 0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	3/27/97	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	6/27/97	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	9/22/97	<50	<0.5	<0.5	<0.5	<0.5	24	NT	NT	NT	NT	NT	NT	NT	NT
	12/6/97	94	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	3/23/98	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	6/10/98	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	7/23/98	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	9/16/98	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	3/5/99	55	<0.5	0.92	0.5	1.3	<5	NT	NT	NT	NT	NT	NT	NT	NT
	6/17/99	<50	<0.5	<0.5	<0.5	<0.5	8.0	NT	NT	NT	NT	NT	NT	NT	NT
	9/15/99	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	12/9/99	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	3/6/00	<50	<0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	6/7/00	<50	< 0.5	<0.5	<0.5	<0.5	<5	NT	NT	NT	NT	NT	NT	NT	NT
	4/4/03	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5.0	<500	<50	<0.5	<0.5
	7/16/03	<50	<0.5	<0.5	<0.5	<0.5	0.54	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	<0.5
	10/28/03	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	<0.5
	1/13/04	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<50	<5	<0.5	<0.5
	4/29/04	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	<0.5
	7/8/04	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5

Table 3
Analytical Results for Groundwater Samples
2951 High Street
Oakland, California

Well ID	Date	ТРН-g	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	EtBE	tAME	tBA	methanol	ethanol	EDB	DCA
MW-7	4/4/03	1,400	54	27	15	180	26,000	<500	<500	<500	<5,000	<500,000	<50,000	<500	<500
	7/16/03	18,000	1,100	630	1,100	2,000	13,000	<200	<200	<200	<2,000	<200,000	<20,000	<200	<200
	10/28/03	10,000	750	370	750	1,000	17,000	<500	<500	<500	<5,000	<500,000	<50,000	<500	<500
	1/13/04	7,200	430	150	560	550	22,000	<50	<50	<50	<500	<5000	<500	<50	<50
	4/14/04	8,900	520	360	640	1,100	21,000	<500	<500	<500	<5,000	<500,000	<50,000	<500	<500
	4/29/04	<500	<5	<5	<5	12	12,000	<250	<250	<250	<2,500	<250,000	<25,000	<250	<250
	5/13/04	660	<5.0	28	25	120	10,000	<170	<170	<170	<1,700	<170,000	<17,000	<170	<170
	5/26/04	380	<2.5	15	15	79	7,600	<200	<200	<200	<2,000	<200,000	<20,000	<200	<200
	6/10/04	<1,000	<10	<10	<10	<10	4,900	<10	<10	<10	300	<10,000	<100	<10	<10
	7/8/04	67	<0.5	<0.5	1.3	10	1,040	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5
MW-8	4/4/03	<50	<0.5	<0.5	<0.5	<0.5	230	<5	<5	<5	<50	<5,000	<500	<5	<5
	7/16/03	<50	<0.5	<0.5	<0.5	<0.5	340	<5	<5	<5	<50	<5,000	<500	<5	<5
	10/28/03	<50	<0.5	<0.5	< 0.5	<0.5	250	<5.0	<5.0	<5.0	<50	<5,000	<500	<5	<5.0
	1/13/04	<50	<0.5	<0.5	<0.5	<0.5	140	<0.5	<0.5	<0.5	<5.0	<50	<5	<0.5	<0.5
	4/14/04	<50	<0.5	<0.5	<0.5	<0.5	260	<5	<5	<5	<50	<5,000	<500	<5	<5
	4/29/04	<50	<0.5	<0.5	<0.5	<0.5	130	<5	<5	<5	<50	<5,000	<500	<5	<5
	5/13/04	<50	<0.5	<0.5	<0.5	<0.5	110	<2.5	<2.5	<2.5	<25	<2,500	<250	<2.5	<2.5
-	5/26/04	<50	<0.5	<0.5	<0.5	<0.5	150	<2.5	<2.5	<2.5	<25	<2,500	<250	<2.5	<2.5
	6/10/04	<50	<0.5	<0.5	<0.5	<0.5	290	<0.5	<0.5	<0.5	<5.0	<50	<5.0	<0.5	<0.5
	7/8/04	<50	<0.5	<0.5	<0.5	<1.0	395	<0.5	<1	<1	<10	NT	<100	<1.0	<0.5
MW-9	4/4/03	<50	<0.5	<0.5	< 0.5	<0.5	85	<1.5	<1.5	<1.5	<12	<1,200	<120	<1.5	2
	7/16/03	<50	<0.5	<0.5	<0.5	<0.5	170	<2.5	<2.5	3	- 27	<2,500	<250	<2.5	<2.5
	10/28/03	<50	<0.5	<0.5	<0.5	< 0.5	230	<5.0	<5.0	<5.0	57	<5,000	<500	<5.0	<5.0
	1/13/04	<50	<0.5	<0.5	<0.5	<0.5	55	< 0.5	<0.5	0.72	5.8	<50	<5	<0.5	1
	4/14/04	<50	<0.5	<0.5	<0.5	<0.5	58	<1	<1	<1	<10	<1,000	<100	<1	<1
	4/29/04	<50	<0.5	<0.5	<0.5	<0.5	4.7	<0.5	<0.5	<0.5	<5	<500	<50	<0.5	0.63
	5/13/04	<50	<0.5	<0.5	<0.5	<0.5	5.9	<0.5	<0.5	<0.5	<5.0	<50	<5.0	<0.5	0.66
	5/26/04	<50	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	<0.5	<0.5	<5.0	<500	<50	<0.5	0.53
	6/10/04	<50	<0.5	<0.5	<0.5	<0.5	14	<0.5	<0.5	<0.5	<5.0	<50	<5.0	<0.5	0.60
	7/8/04	<50	<0.5	<0.5	<0.5	<1.0	7.3	< 0.5	<1	<1	<10	NT	<100	<1.0	<0.5

Table 3 Analytical Results for Groundwater Samples 2951 High Street Oakland, California

Well ID	Date	ТРН-д	benzene	toluene	ethyl- benzene	xylenes	MtBE	DIPE	EtBE	tAME	tBA	methanol	ethanol	EDB	DCA
MW-10	4/23/03	79	<0.5	<0.5	<0.5	<0.5	1,900	<25	<25	58	<250	<25,000	<2,500	<25	<25
	7/16/03	73	20	<0.5	<0.5	<0.5	1,100	<20	<20	39	<200	<20,000	<2,000	<20	<20
	10/28/03	76	<0.5	<0.5	<0.5	<0.5	1,900	<50	<50	<50	<500	<50,000	<5,000	<50	<50
	1/13/04	<500	<5	<5	<5	<5	2,300	<5	<5	72	<50	<500	<50	<u>√√</u> <5	<5
	4/29/04	54	<0.5	<0.5	<0.5	<0.5	1,000	<17	<17	24	<170	<17,000	<1.700	<17	
	7/8/04	76	<0.5	<0.5	<0.5	<1.0	1,650	<0.5	<1	37	211	NT	<100	<1.0	<17 <0.5
SST	TL .	NE	34	270	180	470	8,400	NE	NE	NE	NE	NE	NE NE	NE	NE

Notes:

SSTLs are site-specific target levels developed for the site by Aqua Science Engineers, Inc. in 1997. Bold concentrations exceed the SSTL.

Concentrations are micrograms per liter (ug/L). NE, SSTL not established for this compound. NT, analyte not tested.

Data prior to April 2003 are from Groundwater Monitoring Report for September 2000 Sampling by Aqua Science Engineers, Inc. dated 11/14/2000.

* Oxygen Release Compound (ORC) was injected into borings on the south side of MW-5 in late June 1997.

** ORC socks were placed in MW-5 in August 1998 and removed in September 2000.

TPH-g Total Petroleum Hydrocarbons as gasoline

EtBE Ethyl tert-Butyl Ether

EDB Ethylene Dibromide

MtBE Methyl tert-Butyl Ether

tAME tert-Amyl Methyl Ether

DCA 1,2-Dichloroethane

DIPE Di-isopropyl Ether

tBA tert-Butanol

APPENDIX A OZONE SPARGE POINT OPERATING PRESSURES

Sparge Point	Date	Pressure	Average
SP-1	04/15/04	44	
!	04/29/04	30	
	04/29/04	30	
	05/04/04	28	•
	05/13/04	39	
	05/17/04	. 37	
	05/26/04	37	
	06/10/04	39	
	07/08/04	37.5	
	07/16/04	37	
	07/30/04	36	35.9
SP-2	04/15/04	44	
	04/29/04	24	
	04/29/04	37	
	05/04/04	36	
	05/13/04	40	
	05/17/04	40	
	05/26/04	39	
! [06/10/04	38	
	07/08/04	40.5	
	07/16/04	38	
	07/30/04	38	37.7
SP-3	04/15/04	38	
	04/29/04	23	
	04/29/04	38	
	05/04/04	34	
<u> </u>	05/13/04	29	
] [05/17/04	29	
	05/26/04	28	
	06/10/04	31.5	
<u>l</u>	07/08/04	_46	
	07/16/04	34	
	07/30/04	33	33.0
SP-4	04/15/04	28	
	04/29/04	17	
	04/29/04	24	
	05/04/04	27	
]	05/13/04	25	
	05/17/04	25	
1	05/26/04	26.5	
	06/10/04	26	
l L	07/08/04	33	
[07/16/04	26.5	
	07/30/04	26	25.8

Sparge Point	Date	Pressure	Average
SP-5	04/15/04	n/a	
	04/29/04	n/a	
	04/29/04	47	
	05/04/04	54	
	05/13/04	49	
	05/17/04	49	
	05/26/04	49	
	06/10/04	40	
<u> </u>	07/08/04	48	
	07/16/04	38	
	07/30/04	38	45.8
SP-6	04/15/04	30	
	04/29/04	17	
	04/29/04	22	
	05/04/04	24	
	05/13/04	24	
	05/17/04	24	
	05/26/04	24	
	06/10/04	22	
	07/08/04	26	
	07/16/04	23	•
	07/30/04	27	23.9
SP-7	04/15/04	34	
	04/29/04	26	
	04/29/04	41	
	05/04/04	40	
	05/13/04	33	
	05/17/04	33	
	05/26/04	38	
	06/10/04	36	
	07/08/04	36	
	07/16/04	36	
	07/30/04	n/a	35.3
SP-8	04/15/04	50	
]	04/29/04	26	
	04/29/04	42	
	05/04/04	43	
	05/13/04	40	
	05/17/04	41	
]	05/26/04	39	
	06/10/04	39	
	07/08/04	46	
	07/16/04	41	
	07/30/04	n/a	40.7

Sparge Point	Date	Pressure	Average
SP-9	04/15/04	40	
Ī	04/29/04	26	
Ī	04/29/04	36	
Γ	05/04/04	40	
Γ	05/13/04	40	
Γ	05/17/04	42.5	
Γ	05/26/04	46	
	06/10/04	40	
	07/08/04	47	
[07/16/04	44.5	
	07/30/04	n/a	40.2
SP-10	04/15/04	46	
Ī	04/29/04	23	
	04/29/04	38	
	05/04/04	37	
	05/13/04	36	
	05/17/04	37	
	05/26/04	35.5	
Ī	06/10/04	31	
	07/08/04	44	
	07/16/04	36	
Ī	07/30/04	n/a	36.4

APPENDIX B MONITORING WELL SAMPLING LOGS

MONITORING WELL SAMPLING LOG

SITE NAM	E/LOCATION	ON: 2,	igh -	5 h.		· · · · · · · · · · · · · · · · · · ·	JOB #: 3936
DATE:	5/3			-			SAMPLER'S INITIALS: CM
WELL ID:	MW-9		-	WELL DIAM	METER (in):	2	
WELL DEP	TH (ft):	25	_	DEPTH TO	WATER (ft):	3.44	WATER COLUMN Ht (ft): 16,50
	WATER VO	,		2.75 the water co			(gal): \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
PURGE METHOD: Pump or Baile circle method used			····	SAMPLING METHOD: Disposable Bailer			ETHOD: Disposable Bailer
				PU	RGE MEASUR	EMENTS	
Time	Gallons Purged	Temp (C)	рΗ	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
	2	2		4.35			6.16/19.9
	`~		6.50	Gi8			*
	(2)	21,2	7,00	636			
	8	-1, 7	7.04				
	G	71,2	7,01	<i>મ</i> ું ખું ધુ			
		<u> </u>					380/200
			/ Vigetalian				
WELL ID:	MW-3		_	WELL DIAM	METER (in):	_ Z	
WELL DEPTH (ft): Z S			-	DEPTH TO WATER (ft): 7,71 WATER COLUMN Ht (ft):			WATER COLUMN Ht (ft): 17,79
STANDING WATER VOLUME (gal): 2.4 3 VOLUMES (gal): 5.6 To obtain standing volume in gallons, multiply the water column height by 0.17 for 2-inch well or 0.66 for a 4-inch well.							
	•					SAMPLING M	
PURGE METHOD: Pump or Railer circle method used						JAMIF LING M	Disposable baller
				PÚ	RGE MEASUR	EMENTS	
Time	Gallons Purged	Temp (C)	ρН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
	こ	22-3	4.55	427			.64 20.5
	-1	221	6.57	504			
	صا	22.0	4.59	510			
	3	249	4.58	509			414
	ી	21,5	659	5:8			
							53.3 5 55.
İ	1	J					31/20 5

MONITORING WELL SAMPLING LOG

SITE NAME/LOCATION:			11/1	oh 3+			JOB #: 3936
DATE:	5/3	26/09	•				SAMPLER'S INITIALS: CM
WELL ID: MW-5				WELL DIAM	METER (in):		
WELL DEP	TH (ft):	30		DEPTH TO	WATER (ft):	7,65	WATER COLUMN Ht (ft): ごとっちっ
	STANDING WATER VOLUME (gal)			3.71	Numn haight hi	3 VOLUMES	(gal): 1/, 7/ h well or 0.66 for a 4-inch well.
	-		Bailer	the water co	Junit heighe o		ETHOD: Disposable Bailer
		circle meth		PU	RGE MEASURI		
	Gallons	Temp		sc	Turbidity	DO	
Time	Purged	(C)	pН	(uS)	(NTU)	(mg/L)	Comments
	۲_	245	7.71	£170			10.5 / 19.5
	ė	Z (v 🖔	1,71	2730			
	و	21.0	7,84	2780			
	8	21.0	7.38	2100			
	įO	20.9	7,81	2750	v		
	12	20.9	791	2770			
							10.73619,5
			en <u>. 188</u> . k.	THE ACCUSED AND	artini kalendari Ma		
WELL ID:	MW- 7			WELL DIAM	METER (in):		-
WELL DEPTH (ft): Z5 DEPTH TO WATER (ft): 18,77 WATER COLUMN Ht (ft): 6.21							WATER COLUMN Ht (ft): 6.21
STANDING	WATER VO	LUME (gal)	:	1.03		3 VOLUMES	(gal): 3 i
To obtain standing volume in gallons, multiply the water column height by 0.17 for 2-inch well or 0.66 for a 4-inch well.							
PURGE METHOD: Pump or Bailer SAMI				SAMPLING N	NETHOD: Disposable Bailer		
circle metho					•		
PURGE MEASUREMENTS							
Time	Gallons	Temp	рН	SC (uS)	Turbidity (NTU)	DO (mg/L)	Comments
	Purged	(C)	·n 1)	640	(110)	(itig/L)	12 22 / 6 6
	1,5	21.1	7.33	595			13,73/19,9
<u> </u>	7.25		1,32	_ ~	<u></u>		
	3	211	7,31	593			
		- [1	1 (-4")				
II		<u> </u>	 		 	 	

10,51020.0

SITE NAM	NE/LOCATION	ON:		1/19/1 3	5 <u>}</u>	PROJECT #: 3এরভ
DATE:	<u> </u>	-64	-			SAMPLER'S INITIALS:
WELL ID:	1000		_	WELL DIA	METER (in):	
	TH (ft):		_	DEPTH TO	WATER (ft):	WATER COLUMN Ht (ft): \\"), (3)
STANDING To obtain si	WATER VC	NLUME (gal) ne in gallons	: , multiply	the water	_ column height by	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well.
PURGE ME			ا بادوا le method	y 5	_	SAMPLING METHOD:
1		(CIIC	ie method		PURGE MEASUR	EMENTS
Time	Gallons Purged	Temp (C)	ρН	SC (uS)	DO (mg/L)	Comments
					.22 26.5	
	, ,	-24-7				
	12.00	22.3	4,50	গ্ৰহ		
		22.1	تعارفة ، عا	4/2:	250/2015	
	(2.	2.1	4.55	355		
	9,0	7 10		41.5		
		200	14-42 L	401	458 30.5	
	1		<u></u>	<u>L</u>		
				ide a C. Alama Marina Grandon and an Esta		
WELL ID:	143 kg = 7	CLASS COLORS		WELL DIA	METER (in):	
	74 (ft):					WATER COLUMN Ht (ft): 5.59
WELL DEP	TH (ft): WATER VO	LUME (gal)	:	DEPTH TO	WATER (ft):	3 VOLUMES (gal):
WELL DEP STANDING To obtain st	TH (ft): WATER VO anding volun	LUME (gal)	:	DEPTH TO	WATER (ft):	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well.
WELL DEP	TH (ft): WATER VO anding volun	LUME (gal) ne in gallons	:	DEPTH TO _ 의 3 the water o	WATER (ft):	3 VOLUMES (gal):
WELL DEP STANDING To obtain st	TH (ft): WATER VO anding volun	LUME (gal) ne in gallons	: , multiply	DEPTH TO	WATER (ft):	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD:
WELL DEP STANDING To obtain st	TH (ft): WATER VO anding volun	LUME (gal) ne in gallons	: , multiply	DEPTH TO	WATER (ft): - column height by	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD:
WELL DEP STANDING To obtain st PURGE ME	TH (ft): WATER VO anding volun THOD: Gallons	LUME (gal) ne in gallons (circl	: , multiply e method (DEPTH TO	WATER (ft): column height by URGE MEASURE	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD:
WELL DEP STANDING To obtain st PURGE ME	TH (ft): WATER VO anding volun THOD: Gallons	LUME (gal) ne in gallons (circl	: , multiply e method (DEPTH TO	O WATER (ft): Column height by CURGE MEASURE DO (mg/L)	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: EMENTS Comments
WELL DEP STANDING To obtain st PURGE ME	TH (ft): WATER VO anding volun THOD: Gallons Purged	CLUME (gal) Temp (C)	e method of pH	DEPTH TO	O WATER (ft): Column height by CURGE MEASURE DO (mg/L)	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: EMENTS Comments
WELL DEP STANDING To obtain st PURGE ME	TH (ft): WATER VO anding volun THOD: Gallons Purged	CLUME (gal) ne in gallons (circle Temp (C)	e method of pH	DEPTH TO	DO (mg/L)	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: EMENTS Comments Comments
WELL DEP STANDING To obtain st PURGE ME	TH (ft): WATER VO anding volun THOD: Gallons Purged	CLUME (gal) ne in gallons (circle Temp (C)	pH 7.73 7.54 7.54	DEPTH TO	DO (mg/L)	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: EMENTS Comments
WELL DEP STANDING To obtain st PURGE ME	TH (ft): WATER VO anding volun THOD: Gallons Purged	CLUME (gal) ne in gallons (circle Temp (C)	e method of pH	DEPTH TO	DO (mg/L)	3 VOLUMES (gal): 0.17 for 2-inch well or 0.66 for a 4-inch well. SAMPLING METHOD: EMENTS Comments Comments

SITE NA	ME/LOCAT	TION:		-ligh s	+		PROJECT #: 3936		
JATE:	7-8	04		·			SAMPLER'S INITIALS: CM		
WELL ID	: Mw	7		WELL DIA	METER (in):	7			
WELL DE	PTH (ft):	25	<u>-</u>	DEPTH TO	O WATER (ft):	13.92	WATER COLUMN Ht (ft): 140 \$		
	G WATER V		•	1.84 Iv the water o		3 VOLUMES (gal)			
PURGE M				xilal	_	SAMPLING METH	V		
			tie method	•	URGE MEASURI	MENTS			
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments		
		· · · · · · · · · · · · · · · · · · ·			10.5 700				
<u>'</u>	1,5	22.2							
	3,5		7.06		<u></u>				
	4.5	21.9	7.00	·					
17:00	5.5	21,01	7.07	·					
			1		1				
					5,7: 20.00		N		
WELL ID:	mw-8	3		WELL DIA	METER (in):	۲.			
WELL DEP	TH (ft):	25	-	DEPTH TO	WATER (ft):	7.45	WATER COLUMN Ht (ft): 17.55		
	WATER VC			7.91 the water co		3 VOLUMES (gal): .17 for 2-inch well o	•		
PURGE ME	THOD:		1/25	·		SAMPLING METHO	DD: bailer		
		(CIrc	le method	•	JRGE MEASURE	MENTS			
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments		
		·		1	wins				
	T	23.5	6.42	483					
	4	23_3	6,44		20/20.5				
	<i>y</i>	27.5	6.99	53					
	Ŋ	22.4	451	515			<u></u>		
1233	6			· _/\->	ı				
(2:3)	9	22.3	6,59	510					

SITE NAM	E/LOCATIO	ON:	Woody's High St				PROJECT #: 3936		
ATE:	7-8-	<i>04</i>					SAMPLER'S INITIALS:		
VATE:	6400 · 1	D	en e	WELL DIAM	ETER (in):	کــ			
WELL DEP		-	DEPTH TO WATER (ft):				WATER COLUMN Ht (ft): 17.16		
STANDING To obtain st			: multiply	7.85 the water co		3 VOLUMES (gal): 0.17 for 2-inch well or (
PURGE ME	THOD:	(circl	<u>රුදා.</u> e method u	sed)		SAMPLING METHOD	D: 600126		
			·····	Pl	JRGE MEASURE	EMENTS			
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments		
					19 15.0				
	2		6.74	577					
	£1	-	6.74	578 578	25/19,5				
	7		6,74 6,75				<u> </u>		
11.11	3,26	20.8	4.77	581					
11.77	9,23		<u> </u>						
					78/19,8				
	ri til segt kert i krið.		g Porpydi.	og utgert greet en tit en t	The state of the s				
WELL ID:	~~~a		•		METER (in):		1603		
_WELL DEP	TH (ft):	25	•	DEPTH TO	WATER (ft):	8.68	WATER COLUMN Ht (ft): 16.37		
STANDING	WATER VO	LUME (gal)	:	2.71		3 VOLUMES (gal):			
To obtain st	anding volun	ne in gallons	, multiply	the water c	olumn height by	0.17 for 2-inch well or	0.66 for a 4-inch well.		
PURGE ME	THOD:		bai			SAMPLING METHO	0: brûler		
_		(circ	le method i		URGE MEASUR	EMENTS			
] <u></u>	Ta		sc ·	DO				
Time	Gallons Purged	Temp (C)	рН	(uS)	(mg/L)		Comments		
					3,99 19,9				
	2	209	6.78	95_3					
	4	7(, 7	6.83	1663	67/184				
	Ĺ	21.3	15.98	1032					
	7	21:3	6.96	1085	<u> </u>				
	. 1		, ,	1 1 4517					
11:40	8	-Zi: 2	194	1083					
!! 4C	8	71:2	<u> </u>	1083	.56 19.°1				

ITE NAM	E/LOCATIO	N:	_	चिल्ला री	15 High	<u>57</u>	PROJECT #: 3936
	7-8-				,		SAMPLER'S INITIALS:
WELL ID:	inc 3	e a trada e tr	ည်းသော အမေ အပြ <u>ိုက်ပွဲတေ</u> း (WELL DIAM	ETER (in):	7_	
VELL DEP				DEPTH TO	WATER (ft):	8.34	WATER COLUMN Ht (ft): 16.06
STANDING o obtain sta	WATER VOI anding volum	LUME (gal): e in gallons,	: multiply	Z ₁ 77 the water co	olumn height by	3 VOLUMES (gal): 0.17 for 2-inch well or	<u>\$.3</u> 0.66 for a 4-inch well.
PURGE ME	THOD:	(circle	balle e method u	sed)		SAMPLING METHO	D: bailer
				Pl	JRGE MEASUR	EMENTS	
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments
					376 18.7		
	2		6.03	485			
	4	20,7	1	484	25/18.8		
	ے۔	ze, ~1					
	7	20.2	F			<u></u>	
10:30'	85	€3 €	B.16	513			
					-99/18.8)	
WELL ID:	mis-l			WELL DIAM	METER (in):		
WELL DEP		75	-	DEPTH TO	WATER (ft):	7.49	WATER COLUMN Ht (ft): 1761
STANDING	WATER VO	LUME (gal) ne in gallons	: . multiply	2.91 the water c	- olumn height by	3 VOLUMES (gai): 0.17 for 2-inch well or	$\frac{\mathcal{S}_{i}}{0.66}$ for a 4-inch well.
		5	baile			SAMPLING METHO	• .
PURGE ME	HOD:	(circ	le method		-	<u> </u>	
·		·		P	URGE MEASUR	REMENTS	
Time	Gailons Purged	Temp (C)	pН	SC (uS)	DO (mg/L)	REMENTS	Comments
Time	1	Temp	рН	sc	DO (mg/L)	REMENTS	Comments
Time	Purged	Temp		sc	DO	REMENTS	Comments
Time	1	Temp (C)	pH GZZ GZS	SC (uS)	DO (mg/L)	REMENTS	Comments
Time	Purged	Temp (C)	6.22	SC (uS)	DO (mg/L)	REMENTS	Comments
	Purged Z 4 6 7	Temp (C) 27.3	6.28	SC (US) 578 581 592 590	DO (mg/L)	REMENTS	Comments
Time	Purged Z	Temp (C) 27.3 23.	6.22	SC (US) 578 581 592	DO (mg/L)	REMENTS	Comments
	Purged Z 4 6 7	Temp (C) 22.3 21.7 21.7	6.28	SC (US) 578 581 592 590	DO (mg/L)	REMENTS	Comments

ITE NAM	E/LOCATIO	DN: 5	High	37			PROJECT #: 3936	
ATE:	7-8-6						SAMPLER'S INITIALS:	CiM_
WELL ID:	Min.	6	Alleger & London	WELL DIAM	ETER (in):	2		
WELL DEP			i	DEPTH TO	WATER (ft):	8.01	WATER COLUMN Ht (ft):	21.99
STANDING To obtain sta	WATER VO	LUME (gal): ne in gallons,	multiply (3,65 the water co		3 VOLUMES (gal):	0.66 for a 4-inch well.	
PURGE ME			フル・レイ e method u			SAMPLING METHOD		
		(circle	e method u		IRGE MEASURE	MENTS		
Time	Gallons Purged	Temp (C)	рН	SC (uS)	DO (mg/L)		Comments	_
					3:118	.3./19.0		
	2	709	672	529				
1	4	20,8	6,74	529		22/1911		
	6	20,6	6.13	525				
	8	20.4	6,73	524				
1:45	(0	2 0.3	4.74	526				
<u> </u>							6,70/107.0	
<u> </u>	<u> </u>		<u>l</u>		witho			
WELL ID:	MW	5		WELL DIAM	NETER (in):	<u> </u>		
WELL DEP	-	30		DEPTH TO	WATER (ft):	8,38	WATER COLUMN Ht (ft):	21.62
STANDING	WATER VC	ILUME (gal) ne in gallons	: , multiply	3,59 the water co	olumn height by 0	3 VOLUMES (gal): .17 for 2-inch well or	10,76 0.66 for a 4-inch well.	
			baile			SAMPLING METHO		
PURGE ME	THOU:		le method i		•			
_		(circ	te memon r					
		(circ	te metriou t		URGE MEASURE	MENTS		
Time	Gallons Purged	Temp (C)	pH		DO (mg/L)	MENTS	Comments	
Time	1	Temp		SC	DO	MENTS	Comments	
Time	1	Temp (C)	рН	SC	DO (mg/L)	MENTS	Comments	
Time	Purged	Temp	n.g2 7.95	SC (uS) 1939 1922	DO (mg/L)	MENTS	Comments	
Time	Purged	Temp (C)	pH n.g2	91 SC (uS) 19.34	DO (mg/L)	MENTS	Comments	
Time	Purged	Temp (C) 22.60 21.8 21.0 20.5	7.82 7.95 8.10	906 1906	DO (mg/L)	MENTS	Comments	
Time	Purged	Temp (C) 22-60 21.8 710	pH 7.82 7.98	SC (uS) 1939 1922 1922	DO (mg/L)	MENTS	Comments	
	Purged Z Gi	Temp (C) 22.60 21.8 21.0 20.5	7.82 7.95 8.10	906 1906	DO (mg/L)	MENTS	Comments	

OZONE-SPARGE SYSTEM STATUS CHECK

7-8 04	YOUR INIT	TALS:	Coy
tem running normally (circle), Yes No If not, explain:			
Ozlight an			
- Rail Authorite Comman Roman Me 185000	sell) Dermir	- Amas	
·			
I not find any significant leaks, increased og	son detector	sensit	ان علم
",			
1	tem running normally (circle), Yes No. If not, explain: Oz light on 12. Said system was running Duny, Me disconnersshared & had to reprogram timer, Check for leak	tem running normally (circle), Yes (10) If not, explain: Oz liquit on 12. Said system was running Runny. The disconnected recover 13. Said system was running Runny. The disconnected recover 13. Said system was running Runny. The disconnected recover 13. Said system was running Runny. The disconnected recover 14. Said system was running Runny. Check for leaks w/ Oz und 15. June 16. June 16. Significant leaks, inversed Oz sendeteter	tem running normally (circle), Yes (10) If not, explain: Ozliquet on 12. Said system was running framy. The disconnected rework hours, restarted & had to reprogram homer. Check for leaks w/ Ozmelin. Unot find any significant leaks, increased Oz son delector sensit

PRESSURE CHECK

			PNE	SSURE CHECK
Station (solenoid)	Sparge Well	Pressure Today (psi)	Average Pressure	Comments
1	OS-1	37.5	44	
2	OS-2	475	50	
3	OS-3	46	47	
4	OS-4	33	28-30	
5	OS-5	48	44	
6	OS-6	26	34	
7	OS-7	36	36	
8	OS-8	46	40	
9	OS-9	47	50	
10	OS-10	cul = 1	46	
		Run Time S	etting (hrs):	1424,72

APPENDIX C LABORATORY ANALYTICAL REPORTS

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig Inc.	Client Project ID: #3936; High St.	Date Sampled: 04/29/04
6940 Tremont Road		Date Received: 04/29/04
	Client Contact: Tim Cook	Date Reported: 05/06/04
Dixon, CA 95620-9603	Client P.O.:	Date Completed: 05/06/04

WorkOrder: 0404460

May 06, 2004

Dear Tim:

Enclosed are:

- 1), the results of 8 analyzed samples from your #3936; High St. project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Yourstrul

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Angela Rydelius, Lab Manager

W. A. Craig Inc.	Client Project ID: #3936; High St.	Date Sampled: 04/29/04
6940 Tremont Road		Date Received: 04/29/04
	Client Contact: Tim Cook	Date Extracted: 05/03/04-05/04/04
Dixon, CA 95620-9603	Client P.O.:	Date Analyzed: 05/03/04-05/04/04

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBI	drocarbons as Gasoline with BTEX and MTBE*
--	--

Extraction r	nethod: SW5030E	_	,- (,		methods: SW80211		th b i i i i and i	Work (Order: 04	404460
Lab ID	Client ID	Matrix	TPH(g)	мтве	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
001A	MW-1	w	ND	290	ND	ND	ND	ND	1	96.3
002A	MW-3	w	ND,i	170	ND	ND	ND	ND	1	99.6
003A	MW-5	- w	ND<500,j	13,000	6.3	ND<5.0	ND<5.0	7.8	. 10	95.1
004A	MW-6	W	ND	ND	ND	ND	ND	ND	1	97.1
005A	MW-7	w	ND<500.j	14,000	ND<5.0	ND<5.0	ND<5.0	12	10	95.6
006A	MW-8	W	ND	190	ND	ND	ND	ND	1	97.2
007A	MW-9	w	ND	6.6	ND	ND	ND	ND	1	96.1
008A	MW-10	W		1000	ND	ND	ND	ND	1	97.6
! !				· · · · · · · · · · · · · · · · · · ·	:			<u></u>		
					:				-	-
· · -		<u> </u>		· 				······		-
					-				-	-
 										-
i								v. na	-	:
				<u>:</u>)		-	
i	<u></u>	<u> </u>		<u> </u>		<u>i</u>				

Reporting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	μg/L
ND means not detected at or above the reporting limit	S	NA	NA	NA I	NA	NA	NA	1	mg/Kg

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig Inc.	Client Project ID: #3936; High St.	Date Sampled: 04/29/04						
_		Date Received: 04/29/04						
6940 Tremont Road	Client Contact: Tim Cook	Date Extracted: 05/01/04-05/04/04						
Dixon, CA 95620-9603	Client P.O.:	Date Analyzed: 05/01/04-05/04/04						
	CHeff 1.O.							

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B		alytical Method: SW8260	,2-DCA by F&T		Work Orde	r: 0404460		
Lab ID	0404460-001B	0404460-002B	0404460-003B	0404460-004B				
Client ID	MW-1	MW-3 MW-5		MW-6	Reporting DF	ng Limit for		
Matrix	W	W	W	W	Dr -1			
DF	10	10 10 500 I		S	W			
Compound		Conc	entration		ug/kg	μg/L		
ert-Amyl methyl ether (TAME)	ND<5.0	ND<5.0	ND<250	ND	NA	0.5		
-Butyl alcohol (TBA)	ND<50	ND<50	ND<2500	ND	NA	5.0		
1,2-Dibromoethane (EDB)	ND<5.0	ND<5.0	ND<250	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<5.0	ND<5.0	ND<250	ND	NA	0.5		
Diisopropyl ether (DIPE)	ND<5.0	ND<5.0	ND<250	ND	NA	0.5		
Ethanol	ND<500	ND<500	ND<25,000	ND	NA	50		
Ethyl tert-butyl ether (ETBE)	ND<5.0	ND<5.0	ND<250	ND	NA	0.5		
Methanol	ND<5000	ND<5000	ND<250,000	ND	NA	500		
Methyl-t-butyl ether (MTBE)	260	140	11,000	ND	NA	0.5		
	Sur	rogate Recoveri	es (%)					
%SS:	104	. 105	102	106				
Comments		i						

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Client Project ID: #3936; High St.	Date Sampled: 04/29/04				
	Date Received: 04/29/04				
Client Contact: Tim Cook	Date Extracted: 05/01/04-05/04/04				
Client P.O.:	Date Analyzed: 05/01/04-05/04/04				
	Client Contact: Tim Cook				

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

Extraction Method: SW5030B	-	alytical Method: SW8260	0B		Work Orde	er: 0404460	
Lab ID	0404460-005B	0404460-006B	0404460-007B				
Client ID	MW-7	MW-8	MW-9	MW-10	Reporting Limit for		
Matrix	W	W	W	W	DF	=i	
DF	500	10	l	33	S	W	
Compound		Conc	entration		ug/kg	μg/L	
tert-Amyl methyl ether (TAME)	ND<250	ND<5.0	ND	24	NA	0.5	
t-Butyl alcohol (TBA)	ND<2500	ND<50	ND	ND<170	NA	5.0	
1,2-Dibromoethane (EDB)	ND<250	ND<5.0	ND	ND<17	NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND<250	ND<5.0	0.63	ND<17	NA	0.5	
Diisopropyl ether (DIPE)	ND<250	ND<5.0	ND	ND<17	NA	0.5	
Ethanol	ND<25,000	ND<500	ND	ND<1700	NA	50	
Ethyl tert-butyl ether (ETBE)	ND<250	ND<5.0	ND	ND<17	NA	0.5	
Methanol	ND<250,000	ND<5000	ND	ND<17,000	NA	500	
Methyl-t-butyl ether (MTBE)	12,000	130	4.7	1000	NA	0.5	
	Surr	ogate Recoverie	s (%)				
%SS:	104	105	108	110			
Comments							

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

NONE

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7. Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0404460

EPA Method: SW802	21B/8015Cm E	xtraction:	SW5030E	3	BatchID:	11331	s	piked Sampl	e iD: 04044	56-003A
EPA Method. 344002	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	98.8	98.7	0.0789	100	100	0	70	130
мтве	ND	10	104	104	0	118	108	8.87	70	130
Benzene	ND	10	105	109	3.94	113	108	4.61	70	130
	ND -	10	101	103	2.51	106	102	4.07	70	130
Toluene	ND	10	106	111	4.69	113	109	4.08	70	130
Ethylbenzene	ND	30	95.7	100	4.43	100	96.3	3.74	70	130
Xylenes	98.3	10	101	102	0.586	104	102	1.86	70	130
%SS	98.3	10				1				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate, RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

*MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if; a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or exceeds 2x spike amount for water matrix or sample exceeds spike amount for soil matrix or

analyte content

QA/QC Officer

110 2nd Avenue South, #D7. Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.inccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0404460

EDA MANAGE SW/903	21B/8015Cm E	xtraction:	SW5030B		BatchID: 11349 Spiked Sample ID: 0404464-001A					
EPA Method: SW802	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
r	ND ND	60	101	96.7	4.05	99.5	98.6	0.895	70	130
TPH(btex) ^g	ND .	10	101	l. ∶ 103	1.17	106	101	5.14	70	130
MTBE	ND -	- · · · ·	109	107	1.92	111	105	5.38	70	130
Benzene	ND -	10	103	101	1.83	105	100	4.67	70	130
Toluene	, ND	10	109	108	1.58	110	106	3.46	70	130
Ethylbenzene	ND -	30	100	95.7	4.43	96.3	95.3	1.04	70	130
Xylenes	99.8	10	104	104	0	105	103	1.85	70	130
%SS	99.0	1 10		<u> </u>	<u>_!</u>	ᆚ——				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

DHS Certification No. 1644

QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / ((MS + MSD) / 2)

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0404460

EPA Method: SW8260B	E	xtraction:	SW5030E	3	BatchID:	11345	s	58-003B			
EPA Method: SW8260B	Sample	Spiked	MS*	MSD*	;MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%	
!	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec	% RPD	Low	High	
tert-Amyl methyl ether (TAME)	ND	10	81.9	77.7	5.33	90.3	88.3	2.26	70	130	
	ND .	50	79.6	92.2	14.7	97.7	92.2	5.76	70	130	
t-Butyl alcohol (TBA)	ND -	10	120	105	13.6	103	103	0	70	130	
1.2-Dibromoethane (EDB)	ND ND	10	92.2	91.1	1.23	102	98.8	2.85	70	130	
1,2-Dichloroethane (1,2-DCA)		10	101	90.8	10.4	91.7	91.8	0.0784	70	130	
Dissopropyl ether (DIPE)	ND	4	85	83	2.42	114	117	2.56	70	130	
Ethanol	ND	500	95.2	87.1	8.83	97	94.1	3.14	70	130	
Ethyl tert-butyl ether (ETBE)	ND	10		-	7.81	73.5	89.2	19.3	70	130	
Methanol	ND	2500	84.7	91.5		95.7	88.6	: . 7.67	70	130	
Methyl-t-butyl ether (MTBE)	ND	10	89.6	86.5	3.56	- -		1.58	70	130	
%SS1	121	10	118	116	1.84	103	101	1.36			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

M2 QA/QC Officer

DHS Certification No. 1644

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or

CHAIN-OF-CUSTODY RECORD

5 days

1110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0404460

ClientID: WACD

Report to:

Tim Cook W. A. Craig Inc. 6940 Tremont Road

(707) 693-2929 TFL: (707) 693-2922 FAX:

ProjectNo: #3936; High St.

PO:

Bill to:

Christine

W. A. Craig Inc. 6940 Tremont Road

Dixon, CA 95620-9603

4/29/04 Date Received:

Requested TAT:

4/29/04 Date Printed:

Dixon, CA 9		PO:							Dix	on, CA	1 930	20-90					2411					
							····			Red		d Test	s (Se	e lege	nd b	elow)	11	12	- -	13	14	15
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	. 2	3	4		<u> </u>	<u> </u>	'	j. •			l	-1	. 1	! -			l"
0404460-001	MW-1	Water	4/29/04		В	Α	 	ļ	_							 						
0404460-002	MW-3	Water	4/29/04		В	Α	<u> </u>	<u> </u>								ļ						
0404460-003	MW-5	Water	4/29/04		В	_ A		<u> </u>					·-			 						1
0404460-004	MW-6	Water	4/29/04		В	<u> </u>	ļ	·- 					-			 		 -				
0404460-005	MW-7	Water	4/29/04		В	A			-				 - -				+					
0404460-006	MW-8	Water	4/29/04		В	A		<u> </u>				ļ			- -	- -						
0404460-007	MW-9	Water	4/29/04		В	A													 -			
0404460-008	MW-10	Water	4/29/04		В	, A		<u> </u>	l			J <u>-</u> ,										ر <u>۔ ۔ ۔ ۔ </u>

Test Legend:

1	9-OXYS_W
6	
11	

2 G-MBTI	EX_W
7	
12	

and the second second second second	
3	
8	
C	
13	

4	
9	
14	

5	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCAMPBELL ANALYTICAL INC.						JN	IC.						T																RΕ	CC)R	<u>D</u>			
		MCCA	110 2nd A	VENUE SO)UTH	[, #1)7									Tu	rn 2	Aro	un				RU		2	4 H			8 HI		72	HR	5	DAY	<u> </u>		
			PACHE	CO, CA 94	553-5	560 Fax: (92	5) 7	QR_1	622	<u>.</u>						F						Yes		No												
	(92	5) 798-16	20			ill To: \								+						Į	Ana	lysi:	R	equ	est			 7	_ +		-		Con	nnen	ts	
Report To:	7 . 4	Cuois Iss				111 101																1														
Company: W Address: 694	Λ.Τ.	craig, inc	Dixon C	A 95620													Ì	ĺ	ļ			1					¦ l									
E-Mail: tech@			., DIAGII, C	,,,,,,,,,											<u> </u>	1						Ì				ł			i	İ						
Tel: (707) 69.					Fax:	(707) 6	593-	2922	}						8015IM)	1		=			<u>e</u>	Ŋ								Ì						
Project #: -	3-29. 3 <i>0</i> 17	<u> </u>				Name:				+				\perp	જ	Ì		(418	010	1	82	21100	`					1		ì	-					
Project #:	ion.	()ak	land CL	<u> </u>				7]	(8021B	l	<u>E</u>	Suc	28	<u>@</u>	EPA	. 1								Ì	- 1					
Sampler Sign			t an												(80	Í	/8&	arbo	09	0211) sat	OKA		<u> </u>	<u>@</u>			5		į	- 1					
SAMPLE II		DEPTH .		TIME	iners	Type Containers]	MAI	ΓRI	X	PR	IET ESE	HOI	ED	AIBE & TPH-8	TPH as Diesel (8015M)	Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	Halogenated VOCs (EPA 601 / 8010)	BTEX only (EPA 602 / 8021B)	Fuel Additives/Oxygenates (EPA 8260)	VOCs (EPA 8260) 70,	SVOCs (EPA 625/8270)	Pesticides (EPA 608/8081)	PCBs only (EPA 608/8080)	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)								
					# Containers	Type Co	Water	Soil			Ice	HC	HNO ₃	H,SO4	BTEX+MtBE	TPH as I	Oil & Gr	Total Per	Halogen	BTEX 01	Fuel Ad	VOCs (E	SVOCs	Pesticid	PCBs or	CAM-1	LUFTS	Lead (7								4c
-MU-1			4/14/01		3	Von	X				Х	4			X			, <u>-</u>				Χ		ļ <u>.</u> .	ļ .		ļ								_	
			1 - 4		1		1,				1	1			1											ļ	ļ		ļ	ļ		ļ				
1 mu-5			 	 	H	1	††	-	_			11														ļ <u>.</u>	<u> </u>	<u> </u>	ļ			ļ				
`			1	 	H-	1-	#	1	-+		11	11	1	-	17													1_								
A MW.O			 	 			-{-	+-		-	++	$\parallel \parallel$	 	-	11					-	† 	- -														
+ MW-7			 	_		-	+	 		-	+	+	-	-	╂	 					 -	+ -	 	1	1		1									
+ mw-8			1		#	1	11				+	#	+							·	+	++	-	 	-		-	+	-		T					
+ mwg				L	\coprod		- -			_	1+	-	┼-	-	╂┼	-		ļ	 	-		+			 -		+-	+	-	-	-	1				
10 ml m	>		1	<u> </u>	7	11	1	1 1	_			1	-	ļ	1	ļ <u>.</u>		-	 	+		1	-	+	-		+	+	+	+	+-	1				
1					1						1_	\perp	_	_	ļ		ļ	<u> </u>	ļ	-		 -	-				-				+	\dagger				
															_	1_				1_		1_	ļ					<u>-</u>			-	-				
					1	1												<u></u>						-	1	-			_		-					
		 	- 		1-	1	+																					1				1_				
		 	 		+-		╁				- -	+	-	\top	1	1	†-	-	-													_				
			<u> </u>		-			-		-			+	+	1-	 	+-	 			1		+	1	-				1							
7 7 7	M	ukri	Date: 4/79/04	Time:		eceived F	2	H		7						CE/C		<u> </u>	/ 	108	<u> </u>	⊥_ •	<u> </u>		RE	SER	.VA	TIC	v N	OAS	/ o	&G	MEI	ALS	отн	ER
Relinquished I	N	L_	Date:	Time:		eceived I		/	<u>//</u>	<u>e</u>	6	ar. ter		_	T.	OO IEA EC	D S	PAC	EA	BS	ENT	LA	J		AP PE	PRO ERSI	OPR ERV	UAT /ED	E C IN I	ON'	TAI	NEI	RS✓ 			

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig Inc.	Client Project ID: #3936; High Street	Date Sampled: 05/13/04
_		Date Received: 05/13/04
6940 Tremont Road	Client Contact: Tim Cook	Date Reported: 05/20/04
Dixon, CA 95620-9603	Client P.O.:	Date Completed: 05/20/04

WorkOrder: 0405206

May 20, 2004

Dear Tim:

Enclosed are:

- 1). the results of 4 analyzed samples from your #3936; High Street project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4), a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Yours truly,

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Client Project ID: #3936; High Street	Date Sampled: 05/13/04				
	Date Received: 05/13/04				
Client Contact: Tim Cook	Date Extracted: 05/17/04-05/19/04				
Client P.O.:	Date Analyzed: 05/17/04-05/19/04				
	Client Project ID: #3936; High Street Client Contact: Tim Cook Client P.O.:				

		ne Rang	e (C6-C12)	Volatile Hyd	rocardons as methods: SW80211	GaSUIIIE WI 3/8015Cm	th BTEX and I	Work C	order: 04	405206
ab ID	client ID	Matrix	TPH(g)	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	DF	% SS
	MW-5	w	ND	2700	ND	ND	ND	ND	1	97.9
001A		w	660,a,i	12,000	ND<5.0	28	25	120	10	99.
002A	MW-7	w	ND,i	130	ND	ND	ND	ND	1	105
003A	MW-8 MW-9	w		6.1	ND	ND	ND	ND	1	100
004A 	[M M -A	<u> </u>			<u>:</u>	!				
		-		!						
		 		1			,		-	
		· 		1		<u>:</u>				
				 	<u> </u>		-			
		<u> </u>				!				
						-				
:				<u> </u>						_
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	_				: :	+-
:					<u> </u>	<u> </u>		<u> </u>		-
				·				<u> </u>		-
				:				ļ .		
Danowi	ig Limit for DF ≖I;	w	50	5.0	0.5	0.5	0.5	0.5	1	μ
ND mea	ns not detected at or the reporting limit	- ' S	NA NA	NA	NA	NA	NA	NA	1	mg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig Inc.	Client Project ID: #3936; High Street	Date Sampled: 05/13/04						
		Date Received: 05/13/04						
6940 Tremont Road	Client Contact: Tim Cook	Date Extracted: 05/14/04						
Dixon, CA 95620-9603	Client P.O.:	Date Analyzed: 05/14/04						
Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*								

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS*

	Ana	alytical Method: SW8260)B		Work Orde	r: 0405206
Extraction Method: SW5030B Lab ID	0405206-001B	0405206-002B	0405206-003B	0405206-004B		_
Client ID	MW-5	MW-7	MW-8	MW-9	Reporting	
Matrix	W	W	W	W	DF	= [
DF	100	1	S	W		
Compound		ug/kg	μg/L			
ert-Amyl methyl ether (TAME)	ND<50	ND<170	ND<2.5	ND	NA	0.5
-Butyl alcohol (TBA)	ND<500	ND<1700	ND<25	ND	NA	5.0
1,2-Dibromoethane (EDB)	ND<50	ND<170	ND<2.5	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND<50	ND<170	ND<2.5	0.66	NA	0.5
	ND<50	ND<170	ND<2.5	ND	NA	0.5
Diisopropyl ether (DIPE)	ND<5000	ND<17,000	ND<250	ND	NA	50
Ethanol	ND<50	ND<170	ND<2.5	ND	NA	0.5
Ethyl tert-butyl ether (ETBE)	ND<50,000	ND<170,000	ND<2500	ND	NA	500
Methanol Methanol Methanol MTRE	3000	10,000	110	5.9	NA	0.5
Methyl-t-butyl ether (MTBE)		rogate Recoveri	es (%)		<u>. I </u>	
%SS:	118	90.5	89.3	113		
Comments			i	i		

Comments	1				l
* water and vapor samples and all TCLP &	CDI D extracts are ren	orted in ug/L, soil/sl	udge/solid samples in	μg/kg, wipe samples	in μg/wipe,
* water and vapor samples and all ICLP &	SPLF extracts are rep	отсе рв,	•		
product/oil/non-aqueous liquid samples in n	ıg/L.				

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

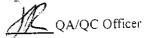
h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0405206 Spiked Sample ID: 0405228-001A BatchID: 11543 SW5030B EPA Method: SW8021B/8015Cm Extraction: LCSD LCS-LCSD Acceptance Criteria (%) MS-MSD LCS MS* MSD* Spiked Sample High % RPD Low % Rec. % RPD % Rec. % Rec. % Rec. μg/L μg/L 130 70 97.3 4.27 102 103 60 103 ND TPH(btex)[£] 70 130 0 101 2.37 101 105 10 102 ND MTBE 130 70 2.71 110 114 1.42 113 112 10 ND Benzene 130 70 105 6.78 113 0.391 108 107 ND 10 Toluene 130 5.39 70 110 116 2.10 10 112 115 ND Ethylbenzene 130 70 6.45 100 107 6.45 107 100 30 ND Xylenes 130 70 0 102 102 1.27 103 99.5 10


All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

%SS

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and for MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0405206

EPA Method: SW80)21B/8015Cm E	xtraction:	SW5030E	3	BatchID:	11529	S	piked Sampl	e ID: 04051	91-010A
2, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	98.7	103	3.84	104	91.9	12.5	70	130
МТВЕ	ND	10	89.5	83.8	6.55	89.6	89.3	0.404	70	130
Benzene	ND -	10	93.1	101	8.34	103	87.2	16.2	70	130
Toluene	0.58	10	93.9	106	11.4	106	102	3.95	70	130
Ethylbenzene	ND	10	117	114	2.49	118	104	12.4	70	130
Xylenes	ND	30	103	107	3.17	107	95.3	11.2	70	130
%SS:	99.8	10	106	104	1.96	105	106	0.367	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.inccampbell.com E-inail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0405206

EPA Method: SW8260B	SW5030E	3	BatchiD:	11492	S	piked Sampl	e ID: 04051	83-001A		
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	90.3	97.3	7.50	98.1	91.6	6.84	70	130
t-Butyl alcohol (TBA)	ND	50	84.6	90.4	6.61	100	84.8	16.6	70	130
1,2-Dibromoethane (EDB)	ND	. 10	101	105	4.07	110	104	5.11	70	130
1.2-Dichloroethane (1.2-DCA)	ND	. 10	107	110	2.59	114	107	7.04	70	130
Drisopropyl ether (DIPE)	ND	10	116	119	2.28	120	117	1.86	70	130
Ethanol	ND -	500	84	102	19.0	101	97.1	4.25	70	130
Ethyl tert-butyl ether (ETBE)	ND -	- 10	101	105	3.94	109	102	6.08	70	130
Methanol	ND	2500	88.4	88.1	0.308	91	82.i	10.2	70	130
Methyl-t-butyl other (MTBE)	ND	10	95.5	102	6.56	106	97.3	8.22	70	130
%SS1	86.9	- 10	100	102	1.73	102	96.5	5.10	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

AC QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page 1 of

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0405206

ClientID: WACD

Report to:

Tim Cook

W. A. Craig Inc.

6940 Tremont Road Dixon, CA 95620-9603 TEL: FAX: (707) 693-2929 (707) 693-2922

ProjectNo: #3936; High Street

PO:

Bill to:

Requested TAT:

reque

5 days

Christine

W. A. Craig Inc.

6940 Tremont Road Dixon, CA 95620-9603 Date Received:

5/13/04

Date Printed:

5/13/04

Sample ID	ClientSampID	Matrix	Collection Date	Hold	1_	2	3	4	5	Request	ed Test	s (See I	egend t	nelow)	11	12	13	14	15
0405206-001	MW-5	Water	5/13/04		В	Α	Α	Γ			Ţ				· · · · · · · · · · · · · · · · · · ·				
0405206-002	MW-7	Water	5/13/04		В	Α				<u> </u>				ļ. <u> </u>		ļ	_		
0405206-003	MW-8	Water	5/13/04		В	Α			1						ļ				
0405206-004	MW-9	Water	5/13/04		В	A	<u> </u>	ļ	.]		. 1	1	.]		_l				11

Test Legend:

1	9-OXYS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	
13	

4	
9	
14	

5
10
15

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	B# - C 4	MPBELI	ANAI	VT	TCAT	IN	C.						Γ					H	ΑI	N (<u>o</u> f	·C	U	<u>S1</u>	<u>O</u>	D۲	7 F	₹E	CC	R	D		
	IVICUA	110 2nd A	VENUE SO)UTH	[,#197		· ••						T	urr	n Ar	ou							4 H			8 HR		72	HR	<u>5</u>	DAY	₹	
		PACHE	CO, CA 945	553-55	560	E\ 7	00 1.	522							Re					Yes		_											
	25) 798-16	20			ax: (92				10				Ť							alysi		equ	est						\bot		Con	ımen	<u>ts</u>
Report To: Tim (Cook			B	ill To: \	<u>vv . </u>	ı. Ur	arg, In	, C.				1	Ţ	1		1				T	T			Ì			Ţ					
Company: W.A.	Craig, Inc	c.	05/00										1															ĺ					
	Address: 6940 Tremont Rd., Dixon, CA 95620											10							ļ								Ì						
E-Mail: thanield@		om		30.00	(707) (02 1	2022						8015M)		1	_	i		اء						ļ			Ì					
Tel: (707) 693-29	929				(707) 6 Name:								8 80			18.1	10)		826(1					1			 	1				
Project #: 3936		1.0			raine:	111	511 JI						⊣ જૂ	:	_	IS (4.	/ 80	_	PA	! !				ļ	ĺ								
Project Location		gn Street, O	akiand, C	<u>A</u>					· -				(8021B		1.82 F	Don.	109	218)	S.			_	اے		j	<u>5</u>							
Sampler Signatu	re: 4	10			 1	Γ			Т				٦ ۾	an l	EF/B	0car	PA (/ 802	ıate		6	081)	8080			2/60							
SAMPLE ID	DEPTH	DATE	TIME	Containers	Type Containers	<u> </u>	MAT	RIX			SER	IOD RVEI	ج چ	3 8	OH & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	Halogenated VOCs (EPA 601 / 8010)	BTEX only (EPA 602 / 8021B)	Fuel Additives/Oxygenates (EPA 8260)	VOCs (EPA 8260)	SVOCs (EPA 625/8270)	Pesticides (EPA 608/8081)	PCBs only (EPA 608/8080)	CAM-17 Metals	LUFT 5 Metals	Lead (7240/7421/239.2/6010)							
				# Cont	Type C	Water	Soil					HNO3	RTEX+MIRE	_	Oile	Tatel D	Haloge	BTEX	1	1	SVOC	Pestici	PCBs	CAM-	LUFT	Lead (
MW-5		5/13/04		3	VOA	X					X	_	1	X		-		+	X			-	<u> </u>										
MW-7		5/13/04		3	VOA	X				Х			i	X	-				X					-		-	-	-		_ -			
MW-8	T	5/13/04		3	VOA	X				X	X			X					X	+			-	 -		-		<u> </u>	├ 				
MW-9	1	5/13/04		3	VOA	Х				Х	X			X			_		_ \ X	1		ļ		ļ		ļ							
A+7 11 = 2	-	 	 	1-	1	1																		 		-	<u> </u>	 					
 	+	 	 	+	 	+	\forall	-	\vdash	\prod	-	-	1		_		-										ļ	<u> </u>	ļl	<u> </u>			
	_	-		+-		-	+-+	-	 	1		-	十	\dashv	_				1		T						1			.			
	1		 	+-	+		++		+	1	4	-	+	-			+	-		-	1	1	1	T	T	1	T						
		<u> </u>	<u></u>	_	-		+-+	-	 —	1	\sqcup		+	+			-				+	+-	-	-	+-	-	†-~	1		<u> </u>			
		L_				1_						-	}-	-	_	- -	+	+	-	+-	+-	+-	-	-	-		-		 				····-
			1			1										_	_		+	+	+	 	-		+-	+	-	-	-				
<u> </u>	1	1	1	T		Τ				1			_]									1_	-	+			-	-		ļ			
		 	†	1	1	1	17							T							_				_			1-	<u> </u>	 			
			+	+	+	+	+	-	+-	T	1	† †	-							T].			1_				
			 	-		- -	+		+-	1-	+	+-+	\dashv	-+	-+	-	+	+	-	+	+		1			7					_		
			7535	+	nacinal P						<u> </u>																		1				
Relinquished By:		Date: 5-13-04	Time: (2.56)	K	eceived P	M)	A							JCI	E/tº	v	1			-	<i>/</i>	P	RE	SER	ξVA	TIO	V N	OAS	/ 0	&G	ME7	ALS	OTHE
Relinquished By:		Date:	Time:		ecelved E				,				1	GO	aoc	CO	NDI	TIO	N	<u>√</u>						RIAT		ישטי	TAB	NER	s		
Inc	fr.	5/B	4115		UV			<u> </u>		X_	<u>ک</u>		4	HE	LAD :	SPA	XCE ≀ini 4	ABS	SEN DIN	Ι <u></u> Ι <u>Ι.Δ</u>	 B	-	AP PF	rku RSI	erv Erv	ÆD	INI	LAB					
Relinquished By:	<u> </u>	Date:	Time:		teceived I	3y:			-	٧			1	IJŁ	LHI.	uUI	WINE.	1 E	,, 11,												-		

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig Inc.	Client Project ID: #3936; High St.	Date Sampled: 05/26/04
6940 Tremont Road		Date Received: 05/26/04
Dixon, CA 95620-9603	Client Contact: Tim Cook	Date Reported: 06/01/04
	Client P.O.:	Date Completed: 06/01/04

WorkOrder: 0405426

June 01, 2004

Dear Tim:

Enclosed are:

- 1). the results of 4 analyzed samples from your #3936; High St. project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Exercise		2.4.0.6.10.4
	Client Project ID: #3936; High St.	Date Sampled: 05/26/04
W. A. Craig Inc.	Choir Project I	Date Received: 05/26/04
6940 Tremont Road	Client Contact: Tim Cook	Date Extracted: 05/28/04-05/29/04
Dixon, CA 95620-9603	Client P.O.:	Date Analyzed: 05/28/04-05/29/04
		oline with RTEX and MTBE*

Gasoline Range (C6-C12) Volatile Hydroca	rbons as Gasoline with BTEX and MTBE*
Gasoline Range (Co-C12) Volatile 11341 544	Wo

Extraction r	method: SW5030B				methods: SW8021F	Toluene	Ethylbenzene	Xylenes	DF	% SS
ab ID	Client ID	Matrix	TPH(g)	MTBE	Benzene	Tottlene	Lutytochizotte		+	
001A	MW-5	W	ND	400	ND	ND	ND	ND	1	96.3
002A	MW-7	. W	380,a,i	7000	ND<2.5	15	15	79	5	99.1
003A	MW-8	. į — — — — — — — — — — — — — — — —	ND	130	ND	ND	ND	ND	1	100
	MW-9	w	ND,i	ND	ND	ND	ND	ND	1	96.5
004A	[4] 44->			:					i	
		- <u>;</u> <u>;</u>		:					1	ļ
		·		<u> </u>						
!		<u> </u>		-						-
		<u> </u>						:		1
	 			<u> </u>						1
			· 	<u> </u>						
	1	!						1	<u> </u>	
ج بـــ . و. بير ي <u>ـــ</u>					:			<u> </u>	· 	
			:							
			:	<u> </u>			<u> </u>			
				-				!		
ļ ·		; 								
	1	<u> </u>	<u> </u>			0.5	0.5	0.5		lμg
Repor	ting Limit for DF =1; cans not detected at o	, W	50	5.0 NA	0.5 NA	NA	NA NA	NA NA		

Link Ga DE all	. 37	50	5.0	0.5	0.5	0.5	0.5	1	μg/Ľ
Reporting Limit for DF =1; ND means not detected at or		NA	NA	NA	NA	NA	NA	1	mg/Kg
above the reporting limit		D A CDI D outer	ots are reported in	ug/L. soi]/sludge	solid samples ir	mg/kg, wipe sa	mples in μg/wipe	,	

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

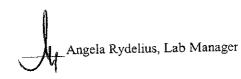
DHS Certification No. 1644

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

W. A. Craig Inc.	Client Project ID: #3936; High St.	Date Sampled: 05/26/04
		Date Received: 05/26/04
6940 Tremont Road	Client Contact: Tim Cook	Date Extracted: 05/27/04-05/28/04
Dixon, CA 95620-9603	Client P.O.:	Date Analyzed: 05/27/04-05/28/04

Oxygenated Volatile Organics + EDB and 1,2-DCA by P&T and GC/MS


• •	Ana	alytical Method: SW8260	B		Work Orde	r: 0405426
Extraction Method: SW5030B Lab ID	0405426-001B	0405426-002B	0405426-003B	0405426-004B		
Client ID	MW-5	MW-7	MW-8	MW-9	Reporting Limit fo	
Matrix	W	W	W	W	DF	=1
DF	20	400	5	l	S	W
Compound		Conc	entration		ug/kg	μg/L
ert-Amyl methyl ether (TAME)	ND<10	ND<200	ND<2.5	ND	NA	0.5
-Butyl alcohol (TBA)	ND<100	ND<2000	ND<25	ND	NA	5.0
1,2-Dibromoethane (EDB)	ND<10	ND<200	ND<2.5	ND	NA	0.5
1,2-Dichloroethane (1,2-DCA)	ND<10	ND<200	ND<2.5	0.53	NA	0.5
Diisopropyl ether (DIPE)	ND<10	ND<200	ND<2.5	ND	NA	0.5
Ethanol	ND<1000	ND<20,000	ND<250	ND	NA	50
Ethyl tert-butyl ether (ETBE)	ND<10	ND<200	ND<2.5	ND	NA	0.5
Methanol	ND<10,000	ND<200,000	ND<2500	ND	NA	500
Methyl-t-butyl ether (MTBE)	460	7600	150	2.5	NA	0.5
110007.	Sur	rogate Recoveri	es (%)			
%SS:	100	95.3	102	100		
Comments		i		i		

water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0405426

EPA Method: SW80	21B/8015Cm E	xtraction:	SW50306	3	BatchID:	11702	S	piked Sampl	e ID: 04054	126-004A
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	98.9	102	2.81	99.2	102	2.59	70	130
MTBE	ND	10	102	99.2	2.65	116	117	0.343	70	130
Benzene	ND ND	10	114	112	1.26	108	108	0	70	130
Toluene	ND	10	108	108	0	105	104	1.48	70	130
Ethylbenzene	ND	10	111	111	0	107	109	1.44	70	130
Xylenes	ND	30	100	100	0	96.3	100	3.74	70	130
%SS:	96.5	10	104	102	2.14	100	100	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample dijuted due to high matrix or enables content.

DHS Certification No. 1644

_QA/QC Officer

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(blex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

Matrix: W

WorkOrder: 0405426

<u></u>			SW5030B		BatchID:	11697	S	oiked Sampl	e iD: 04054	23-001C
EPA Method: SW8260B	Extraction:							LCS-LCSD	Acceptance Criteria (%	
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS		 		
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
tert-Amyl methyl ether (TAME)	ND	10	89.5	92.2	2.91	94.9	100	5.41	70	130
	ND	50	94	102	8.17	109	120	9.50	70	130
t-Butyl alcohol (TBA)	 	10	107	108	0.826	110	118	6.48	70	130
1,2-Dibromoethane (EDB)	ND			117	3.71	120	126	5.30	70	130
1,2-Dichloroethanc (1,2-DCA)	ND	10	113	 	 	 		2.89	70	130
Disopropyl ether (DIPE)	ND	10	118	119	0.393	121	124			ļ
Ethanol	ND	500	101	99.7	1.68	103	102	1.43	70	130
	ND	10	102	105	2.95	107	111	3.63	70	130
Ethyl tert-butyl ether (ETBE)	ND ND	2500	86.7	96.6	10.9	101	100	0.402	70	130
Methanol		 		 	5.57	104	111	6.28	70	130
Methyl-t-butyl ether (MTBE)	0.51	10	92.8	98.4					70	130
%SS1:	85.6	10	98.7	99	0.337	101	104	2.63		1

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

DHS Certification No. 1644

CHAIN-OF-CUSTODY RECORD

1110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0405426

ClientID: WACD

Report to:

Tim Cook W. A. Craig Inc. 6940 Tremont Road TEL:

(707) 693-2929 (707) 693-2922

FAX: ProjectNo: #3936; High St. Bill to:

Requested TAT:

5 days

Christine

W. A. Craig Inc.

6940 Tremont Road Dixon, CA 95620-9603 Date Received:

5/26/04

Date Printed:

5/26/04

Dixon, CA 9		PO:		Dixon, CA 93020-9003
Sample ID	ClientSampID	Matrix	Collection Date	Requested Tests (See legend below) Hold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0405426-001	MW-5	Water	5/26/04	BAAA
0405426-002	MW-7	Water	5/26/04	BA
0405426-003	MW-8	Water	5/26/04	D B A
0405426-004	MW-9	Water	5/26/04	BA

Test Legend:

1	9-OXYS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	
13	

4	
9	
14	

5	
10	
P-1-2-1	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Noc

0405420

CHAIN OF CUSTODY RECORD McCAMPBELL ANALYTICAL INC. 110 2nd AVENUE SOUTH, #D7 Turn Around Time: RUSH 24 HR 48 HR 72 HR 5 DAY ◀ PACHECO, CA 94553-5560 (Ves No EDF Required: Fax: (925) 798-1622 (925) 798-1620 Comments Bill To: W. A. Craig, Inc. Analysis Request Report To: Tim Cook Company: W.A. Craig, Inc. Address: 6940 Tremont Rd., Dixon, CA 95620 E-Mail: tech@wacraig.com & TPH-g (8021B & 8015M) Fax: (707) 693-2922 Tel: (707) 693-2929 Fuel Additives/Oxygenates (EPA 8260) Total Petroleum Hydrocarbons (418.1) Halogenated VOCs (EPA 601 / 8010) Proj. Name: High 51 Project #: 3436 Project Location: Oatland, CA Sampler Signature: Ata Oil & Grease (5520 E&F/B&F) BTEX only (EPA 602 / 8021B) Lead (7240/7421/239.2/6010) PCBs only (EPA 608/8080) Pesticides (EPA 608/8081) SVOCs (EPA 625/8270) TPH as Diesel (8015M) METHOD MATRIX VOCs (EPA 8260) Type Containers PRESERVED CAM-17 Metals LUFT 5 Metals # Containers BTEX+MtBE TIME DEPTH DATE SAMPLE ID Water H₂SO₄ HNO3 Ice X 5/21/04 Von MW-5 MW- 7 mw-8 mw . 9 Received By-Relinquished By: Date: Time: VOAS / O&G METALS OTHER Clayton Moker: 5/26/04 13:00 PRESERVATION \(\square\) ICE/t° Date; Received By: Relinquished By: Time: GOOD CONDITION 5/2 APPROPRIATE CONTAINERS_ HEAD SPACE ABSENT PERSERVED IN LAB DECHLORINATED IN LAB Date: Time: Received By: Relinquished By:

Date: 6/17/2004

Brian Milton W.A. Craig, Inc. 6940 Tremont Road Dixon, CA 95620

Subject: 4 Water Samples Project Name: High St Project Number: 3936 P.O. Number: 3936

Dear Mr. Milton,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 6/17/2004

Subject: 4 Water Samples

Project Name : High St Project Number : 3936 P.O. Number : 3936

Case Narrative

The Method Reporting Limit for Methanol has been increased due to the presence of an interfering compound for sample MW-7.

Approved By:

Joe Kiff

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

Project Name : High St

Project Number: 3936

Sample: MW-5

Matrix : Water

Lab Number : 38709-01

Sample Date :6/10/2004	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter			ug/L	EPA 8260B	6/16/2004
Benzene	< 0.50	0.50	_	EPA 8260B	6/16/2004
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Total Xylenes	< 0.50	0.50	ug/L	EPA 02000	0, 10,200
•		0.50	ug/L	EPA 8260B	6/16/2004
Methyl-t-butyl ether (MTBE)	38	0.50	ug/L	EPA 8260B	6/16/2004
Diisopropyl ether (DIPE)	< 0.50		ug/L	EPA 8260B	6/16/2004
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Tert-amyl methyl ether (TAME)	< 0.50	0.50	=	EPA 8260B	6/16/2004
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	6/16/2004
Methanol	< 50	50	ug/L	EPA 8260B	6/16/2004
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	6/16/2004
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 02000	0,10,200
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	6/16/2004
	09.0		% Recovery	EPA 8260B	6/16/2004
Toluene - d8 (Surr)	98.9		% Recovery		6/16/2004
4-Bromofluorobenzene (Surr)	94.1		70 11000Vary		

Approved By:

Joel Kiff

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800 \(\)

Date: 6/17/2004

Project Name: High St Project Number: 3936

Sample: MW-7

Matrix: Water

Lab Number : 38709-02

Sample Date :6/10/2004	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter		10	ug/L	EPA 8260B	6/16/2004
Benzene	< 10	10	ug/L	EPA 8260B	6/16/2004
Toluene	< 10	* *	ug/L	EPA 8260B	6/16/2004
Ethylbenzene	< 10	10	-	EPA 8260B	6/16/2004
Total Xylenes	< 10	10	ug/L	L(/(0200-	
-	4000	10	ug/L	EPA 8260B	6/16/2004
Methyl-t-butyl ether (MTBE)	4900	10	ug/L	EPA 8260B	6/16/2004
Diisopropyl ether (DIPE)	< 10	< 10 10 agr =	EPA 8260B	6/16/2004	
Ethyl-t-butyl ether (ETBE)	< 10	10	_	EPA 8260B	6/16/2004
Tert-amyl methyl ether (TAME)	< 10	10	ug/L	EPA 8260B	6/16/2004
Tert-Butanol	300	100	ug/L	EPA 8260B	6/16/2004
Methanol	< 10000	10000	ug/L	EPA 8260B	6/16/2004
Ethanol	< 100	100	ug/L	EPA 8260B	6/16/2004
1,2-Dichloroethane	< 10	10	ug/L		6/16/2004
	< 10	10	ug/L	EPA 8260B	0/10/2004
1,2-Dibromoethane		4000	ug/l	EPA 8260B	6/16/2004
TPH as Gasoline	< 1000	1000	ug/L	LI 7. 02002	
11 11 40	400		% Recovery	EPA 8260B	6/16/2004
Toluene - d8 (Surr)	102		% Recovery	A GOCOD	6/16/2004
4-Bromofluorobenzene (Surr)	103		10 Mecovery	2, 7, 0200	

Approved By:

oel Kiff

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

Project Name: High St Project Number: 3936

Sample: MW-8

Matrix : Water

Lab Number : 38709-03

Sample Date :6/10/2004	Measured	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter	Value			EPA 8260B	6/14/2004
Benzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Total Xylenes	< 0.50	0.50	ug/L	EFA 0200D	3, , , , , ,
•	000	0.50	ug/L	EPA 8260B	6/14/2004
Methyl-t-butyl ether (MTBE)	290	0.50	ug/L	EPA 8260B	6/14/2004
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Tert-amyl methyl ether (TAME)	< 0.50	- ·	ug/L ug/L	EPA 8260B	6/14/2004
Tert-Butanol	< 5.0	5.0	ug/L ug/L	EPA 8260B	6/15/2004
Methanol	< 50	50	-	EPA 8260B	6/14/2004
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	6/14/2004
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
1,2-Dibromoethane	< 0.50	0.50	ug/L	LI A 02000	2, ,
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	6/14/2004
1FII da Gaaciino			0/ Descuent	EPA 8260B	6/14/2004
Toluene - d8 (Surr)	107		% Recovery	A GOOOD	6/14/2004
4-Bromofluorobenzene (Surr)	93.3		% Recovery	EFA 0200D	J

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

Project Name: High St

Project Number: 3936

Sample: MW-9

Matrix : Water

Lab Number : 38709-04

Sample Date :6/10/2004

Sample Date :6/10/2004	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter			ug/L	EPA 8260B	6/14/2004
Benzene	< 0.50	0.50	-	EPA 8260B	6/14/2004
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Total Xylenes	< 0.50	0.50	ug/L	EPA 02000	O/ 1 200 .
-	4.4	0.50	ug/L	EPA 8260B	6/14/2004
Methyl-t-butyl ether (MTBE)	14	0.50	ug/L	EPA 8260B	6/14/2004
Dilsopropyl ether (DIPE)	< 0.50		ug/L	EPA 8260B	6/14/2004
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	-	EPA 8260B	6/14/2004
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	6/14/2004
Methanol	< 50	50	ug/L 	EPA 8260B	6/14/2004
	< 5.0	5.0	ug/L		6/14/2004
Ethanol	0.60	0.50	ug/L	EPA 8260B	6/14/2004
1,2-Dichloroethane 1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
1,2-Dipromoethane		50	ug/L	EPA 8260B	6/14/2004
TPH as Gasoline	< 50	50	ugre		
	107		% Recovery	EPA 8260B	6/14/2004
Toluene - d8 (Surr)			% Recovery		6/14/2004
4-Bromofluorobenzene (Surr)	91.7		,0,1,000,101,		

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800 \

Date: 6/17/2004

QC Report : Method Blank Data

Project Name: High St Project Number: 3936

	Measured Value	Method Reportin Limit	ng Units	Analysis Method	Date Analyzed
Parameter		D.50	ug/L	EPA 82608	6/16/2004
Benzene	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Total Xylenes	< 0.50		-	EPA 8260B	6/16/2004
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	6/16/2004
Methanol	< 50	50	ug/L		6/16/2004
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	6/16/2004
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	6/16/2004
Toluene - d8 (Surr)	98.7		%	EPA 8260B	6/16/2004
4-Bromofluorobenzene (Surr)	90.8		%	EPA 8260B	6/16/200
Benzene	< 0.50	0.50	ug/L	EPA 8260B	6/16/200
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/16/200
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/16/200
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	6/16/200
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260E	6/16/200
Diisopropyl ether (DIPE)	< 0.50	0,50	ug/L	EPA 8260E	6/16/200
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260E	6/16/200
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260E	6/16/200
Tert-Butanol	< 5.0	5.0	ug/L	EPA 82609	6/16/200
Methanol	< 50	50	ug/L	EPA 82608	3 6/16/200
Ethanol	< 5.0	5.0	ug/L	EPA 8260	6/16/200
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260	3 6/16/200
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260	3 · 6/16/200
TPH as Gasoline	< 50	50	ug/L	EPA 8260	3 6/16/20
Toluene - d8 (Surr)	104		%	EPA 8260	
4-Bromofluorobenzene (Surr)	105		%	EPA 8260	B 6/16/20

	Measured Value	Method Reporti Limit		Analysis Method	Date Analyzed
Parameter	< 0.50	0.50	ug/i.	EPA 8260B	6/14/2004
Benzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Total Xylenes			•	EPA 8260B	6/14/2004
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L		6/14/2004
Ten-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	
Methanol	< 50	50	ug/L	EPA 8260B	6/14/2004
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	6/14/2004
1.2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	6/14/2004
	109		%	EPA 8260B	6/14/2004
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	95.6		%	EPA 8260B	6/14/2004
Methanol	< 50	50	ug/L	EPA 8260B	6/14/2004

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC 2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : High St
Project Number : 3936

	Spiked	Sample Value	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	Units	Analysis Method	Date Analyzed	Spiked Sample Percent Recov.	Duplicate Spiked Sample Percent Recov.	Relative		Relative Percent Diff. Limit
Parameter	Sample			39.8	39.4	40.0	ug/L	EPA 8260B	6/16/04	98.3	100	2.16	70-130	25
Benzene	38737-01	<0.50	40.1	39.8	38.8	39.4	ug/L	EPA 8260B	6/16/04	96.8	98.8	1.98	70-130	25
Toluene	38737-01	<0.50	40.1		181	180	ug/L	EPA 8260B	6/16/04	90.4	90.4	0.0638	70-130	25
Tert-Butanol	38737-01	< 5.0	200	199		39.5	ug/L	EPA 8260B	6/16/04	98.6	99.2	0.598	70-130	25
Methyl-t-Butyl Ethe	r 38737-01	<0.50	40.1	39.8	39.5	38.3	ugrL	217102000						
		-0.50	40.0	40.0	38.8	37.9	ug/L	EPA 8260B	6/16/04	97.1	94.8	2.38	70-130	25
Benzene	38756-01	<0.50	40.0		40.0	39.2	ug/L	EPA 8260B	6/16/04	100	97.9	2.14	70-130	25
Toluene	38756-01	<0.50	40.0	40.0		198	ug/L	EPA 8260B	6/16/04	95.6	99.1	3.58	70-130	25
Tert-Butanol	38756-01	<5.0	200	200	191			EPA 8260B	6/16/04	104	103	0.672	70-130	25
Methyl-t-Butyl Ethe	r 38756-01	<0.50	40.0	40.0	41.6	41.3	ug/L	LI A 0200B	0/10/01					
		0.50	40.0	40.0	38.0	37.1	ug/L	EPA 8260B	6/14/04	94.9	92.8	2.26	70-130	25
Benzene	38699-01	<0.50	40.0		38.0	37.4	ug/L	EPA 8260B	6/14/04	95.0	93.5	1.58	70-130	25
Toluene	38699-01	<0.50	40.0	40.0	188	191	ug/L	EPA 8260B	6/14/04	94.0	95.3	1.42	70-130	25
Tert-Butanol	38699-01	<5.0	200	200			_	EPA 8260B	6/14/04	98.2	98.6	0.432	70-130	25
Methyl-t-Butyl Ethe	er 38699-01	<0.50	40.0	40.0	39.3	39.4	ug/L	LI A GEOOD	0, 1	•••				
		0.50	40.0	40.0	35.1	36.1	ug/L	EPA 8260B	6/14/04	87.8	90.2	2.65	70-130	25
Benzene	38723-01	<0.50	40.0	40.0		36.3	_	EPA 8260B	6/14/04	88.6	90.7	2.35	70-130	25
Toluene	38723-01	< 0.50	40.0	40.0	35.4		ug/L	EPA 8260B	6/14/04	88.7	95.0	6.85	70-130	25
Tert-Butanol	38723-01	<5.0	200	200	177	190	ug/L	EPA 8260B	6/14/04	88.2	89.4	1.41	70-130	25
Methyl-t-Butyl Ethe	er 38723-01	42	40.0	40.0	77.6	78.0	ug/L	EFA 02000	OI ITIOT	UU.L		,		

Approved By:

Joe Kiff

Date: 6/17/2004

QC Report : Laboratory Control Sample (LCS)

Project Name: High St Project Number: 3936

B T	arameter Jenzene Foluene Fert-Butanol Methyl-t-Butyl Ether	Spike Level 40.0 40.0 200 40.0	Units ug/L ug/L ug/L ug/L	Analysis Method EPA 8260B EPA 8260B EPA 8260B EPA 8260B	Date Analyzed 6/15/04 6/15/04 6/15/04	LCS Percent Recov. 97.6 98.0 88.3 99.0	LCS Percent Recov. Limit 70-130 70-130 70-130 70-130
1	Benzene Foluene Fert-Butanol Methyl-t-Butyl Ether	40.0 40.0 200 40.0	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/16/04 6/16/04 6/16/04 6/16/04	96.0 99.0 94.4 99.3	70-130 70-130 70-130 70-130
,	Benzene Toluene Tert-Butanol Methyl-t-Butyl Ether	40.0 40.0 200 40.0	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/14/04 6/14/04	91.0 91.8 90.6 95.0	70-130 70-130 70-130 70-130
	Benzene Toluene Tert-Butanol Methyl-t-Butyl Ether	40.0 40.0 200 40.0	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/14/04 6/14/04	95.1 95.6 94.2 97.8	70-130 70-130 70-130 70-130

KIFF	1	2795 2nd Davis, C/ Lab: 530. Fax: 530.	\ 95 .297	618 .48) 00	te 3	00								La			3												of sis l		uest		
relect Contact (Hardcopy or PD		Calif	om	ia E	EDF	Re	po	rt?	į	ď١	′ස	[ΝO	-		CII	all													\neg			
m Cook Brian milton		Recommen										ction	n:		1					- 1	Ana	alys	sis	Re	qu	est					1	¥		ĺ
m Cook Brian milton Company / Address:		Samplir	ig C	om	pan	y Lo	og C	ode): 	400 0					╁	Т	Т		7	1		_	_		(a)				T					İ
. A. Craig, INC., 6940 Tremont Rd, D	xon, CA	Global	D.				_						_		7)	- }	ଳ	- 1	- }	ı	- 1		Ì		92	l	ļ	H	1			12hr		l
hone No.: Fax No.: 707-693-292	,	1 1	06	00	10	00	92								4	- 1	동	Ì	ļ	l	- 1		ı		1,2 EDB - 8260B)		â	WET.				24hr	2	l
07-693-2929 707-693-292 Project Number: P.O. No.:		EDF De	live	rab	e T	o (E	mai	I Ac	idre	ıss)	:				1	1	ξį	- }		<u>@</u>	9	(B)			8	!	188	$ \Box $				0	ō	۱
3436 3436	•	İ	F Deliverable To (Email Address): Thanield@wacraig.com						ŀ	2			92	828	826			12,	1	A	۲		1		48hr	88	١							
Project Name:		Sample Signatu	ire:	C	ļ, f	1 p	_	<u>۔</u>									BE (80	15)	A8015	BE (8;	Gas (Gas (OB)	(B0	1	<u>ş</u>	S (EP	101				○ 72 hr	٩	l
High St	Sam	pling			nta	ne	\neg	Pr	es	BLA	ativ	/e	M	atri	x]		ξ	MBC	5	\₹	Hd	표	826	826	ă	=	ĮĒ	9.2)				0	5	١
Project Address: 2951 High 5+ Oakland Ca	Jani	ping_														BTEX (8021B)	BTEX/TPH Gas/MTBE (8021B/M8015)	TPH as Diesel (M8015)	TPH as Motor Oil (M8015)	TPH Gas/BTEX/MTBE (8260B)	5 Oxygenates/TPH Gas (8260B)	7 Oxygenates/TPH Gas (8260B)	5 Oxygenates (8260B)	7 Oxygenates (8260B)	Lead Scav. (1,2 DCA &	EPA 82608 (Full List)	Volatile Halocarbons (EPA 8260B)	Pad (7421/239.2) TOTAL			'	0 1wk ●	"	
Oaklano Ca		1	١Ş	ᄬ		œ			ا ا		ш	ſ	띪			86	5	as	as	Ü	ye	ye	8	8	Š	8	틡	10	;	•		2wk	1	ı
Sample		Į	40 ml VOA	SLEEVE	POLY	AMBER		5	HNO3	ш	NONE	1	WATER	SOIL	1	Ē	<u> </u>	표	Æ	표	ő	ő	Ő	Įõ	ğ	l a	👸	ã	}	-	1	0]
Designation	Date	Time	8	S	냳	₹	_		エ	 	Ž			Š	-	B	m X	-	-	┝	3		u)	×	_	_	1	1					01	
MU-5	6/10/04	<u> </u>	۴	╀	╀	┼	-	×	├-	×	\vdash		7			-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\dagger	├~	 	 	╁	T	h	1		1	1	T	1			02	
MU-7	1	 	$oxed{\sqcup}$		┼	\vdash	-	H	 	╁┼	-	\vdash	\vdash			┞┈	H	╁╴	-		╁	t	T	H		+	1	T			1		03	,
mu-8	_/_		\downarrow	4-	╁	╁	-	H	┡	╫	\vdash	H	H	-	_	-	H	+	 	╁╴	${\dagger}$	T	+-	†	1	十	+	+					04	٦ 1
mw-9	<u> </u>		╀	╁	+	+	-	F	1	-	-		-	-	-											1		1	1					_
	1	-	†	1	†	1		T										_	$oldsymbol{\perp}$	$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}$	_	_	-	-	_	-	\bot	-	_		+	↓		_
	1		1	1	1	1	1									_	_	\perp	_	1	_	_		\perp	+	+	-		4	+	-	╂—	╂-	
			1									_				1	-	_	_	\downarrow	_	-	_	\downarrow	\perp	+	+	+	+		+	╁-	╂	_
										4		_	_	_	_	1	_	\perp	\bot	-	- -	-	+	-	-	-	+	+	-	+		-	╁	-
		T	T					1.	K		*	1				1	1		\perp						<u> </u>			_L						_
		Date	+	LL Tim	e F	ece	ive	125	r. //	97	<u> </u>		_				R	ema	rks.															
Relinquished by: Clayfyff Moker;		6/10/0	- 1	Z:S	- 1	1			V.	/ ~	t							3	100	P	C 6	Sam	1,6	-										
Relinquisher by:	· · · · · · · · · · · · · · · · · · ·	Date	•	Tim	Θ [Acce.	jve evi	d by	<i>j</i> :																									
4/1/1		0610	1 1	. /	'1												_	1211 A																_
Relinquished by:		Date 06100	i		- 1	Rec	eive	d by	y La	bor	ator	y RH	•	,	, ,		- 1	Sill to) :															

Date: 6/17/2004

Brian Milton W.A. Craig, Inc. 6940 Tremont Road Dixon, CA 95620

Subject: 4 Water Samples Project Name: High St Project Number: 3936 P.O. Number: 3936

Dear Mr. Milton,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Date: 6/17/2004

Subject :

4 Water Samples

Project Name : Project Number : High St 3936

P.O. Number:

3936

Case Narrative

The Method Reporting Limit for Methanol has been increased due to the presence of an interfering compound for sample MW-7.

Approved By:

00

2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

Project Name : High St
Project Number : 3936

Sample: MW-5

Matrix : Water

Lab Number : 38709-01

Sample Date :6/10/2004	Measured	Method Reporting	Links	Analysis Method	Date Analyzed
Parameter	Value	Limit	Units	EPA 8260B	6/16/2004
Benzene	< 0.50 < 0.50	0.50 0.50	ug/L ug/L	EPA 8260B	6/16/2004
Toluene Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004 6/16/2004
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	
Methyl-t-butyl ether (MTBE)	38	0.50	ug/L	EPA 8260B EPA 8260B	6/16/2004 6/16/2004
Diisopropyl ether (DIPE)	< 0.50 < 0.50	0.50 0.50	ug/L ug/L	EPA 8260B	6/16/2004
Ethyl-t-butyl ether (ETBE) Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004 6/16/2004
Tert-Butanol	< 5.0	5.0 50	ug/L ug/L	EPA 8260B EPA 8260B	6/16/2004
Methanol	< 50 < 5.0	5.0	ug/L	EPA 8260B	6/16/2004 6/16/2004
Ethanol 1,2-Dichloroethane	< 0.50 < 0.50	0.50 0.50	ug/L ug/L	EPA 8260B EPA 8260B	6/16/2004
1,2-Dibromoethane TPH as Gasoline	< 50	50	ug/L	EPA 8260B	6/16/2004
	98.9		% Recovery		6/16/2004
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	94.1		% Recovery	EPA 8260B	6/16/2004

Approved By:

oel Kiff

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800 \(\sqrt{2} \)

Date: 6/17/2004

Project Name: High St Project Number: 3936

Sample: MW-7

Matrix : Water

Lab Number : 38709-02

Sample	Date	:6/10/2004
--------	------	------------

Sample Date :6/10/2004	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter Benzene Toluene Ethylbenzene Total Xylenes	< 10 < 10 < 10 < 10	10 10 10 10	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/16/2004 6/16/2004 6/16/2004 6/16/2004
Methyl-t-butyl ether (MTBE) Diisopropyl ether (DIPE) Ethyl-t-butyl ether (ETBE) Tert-amyl methyl ether (TAME) Tert-Butanol Methanol Ethanol 1,2-Dichloroethane	4900 < 10 < 10 < 10 300 < 10000 < 100 < 10	10 10 10 10 100 1000 1000 100	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/16/2004 6/16/2004 6/16/2004 6/16/2004 6/16/2004 6/16/2004 6/16/2004 6/16/2004
1,2-Dibromoethane TPH as Gasoline Toluene - d8 (Surr)	< 1000 102 103	1000	ug/L % Recovery % Recovery	EDA COCOD	6/16/2004 6/16/2004 6/16/2004
4-Bromofluorobenzene (Surr)	103				

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

Project Name: High St Project Number: 3936

Sample: MW-8

Matrix : Water

Lab Number : 38709-03

Sample	Date	:6/10/2004
--------	------	------------

Sample Date :6/10/2004	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter		0.50	ug/L	EPA 8260B	6/14/2004
Benzene	< 0.50		ug/L	EPA 8260B	6/14/2004
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethylbenzene	< 0.50	0.50	-	EPA 8260B	6/14/2004
Total Xylenes	< 0.50	0.50	ug/L	217102011	
-	000	0.50	ug/L	EPA 8260B	6/14/2004
Methyl-t-butyl ether (MTBE)	290	0.50	ug/L	EPA 8260B	6/14/2004
Diisopropyl ether (DIPE)	< 0.50		ug/L	EPA 8260B	6/14/2004
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Tert-Butanol	< 5.0	5.0	ug/L ug/L	EPA 8260B	6/15/2004
Methanol	< 50	50	_	EPA 8260B	6/14/2004
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	6/14/2004
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
1,2-Dibromoethane	< 0.50	0.50	ug/L	L17102002	
	< 50	50	ug/L	EPA 8260B	6/14/2004
TPH as Gasoline				EPA 8260B	6/14/2004
Talana de (Surr)	107		% Recovery	· · · · · · · · · · · · · · · · · ·	6/14/2004
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	93.3		% Recovery	EPA 8260B	J, (4)200 .

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

Project Name: High St

Project Number: 3936

Sample: MW-9

Matrix : Water

Lab Number : 38709-04

Gampio i ilita					
Sample Date :6/10/2004	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Parameter				EPA 8260B	6/14/2004
Benzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Toluene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
• = -	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethylbenzene	< 0.50	0.50	ug/L	EPA 02000	0,11,200
Total Xylenes Methyl-t-butyl ether (MTBE)	14 < 0.50	0.50 0.50	ug/L ug/L	EPA 8260B EPA 8260B	6/14/2004 6/14/2004
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Ethyl-t-butyl ether (ETBE)		0.50	ug/L	EPA 8260B	6/14/2004
Tert-amyl methyl ether (TAME)	< 0.50	5.0	ug/L	EPA 8260B	6/14/2004
Tert-Butanol	< 5.0		ug/L	EPA 8260B	6/14/2004
Methanol	< 50	50	-	EPA 8260B	6/14/2004
Ethanol	< 5.0	5.0	ug/L	EPA 8260B	6/14/2004
1,2-Dichloroethane	0.60	0.50	ug/L	EPA 8260B	6/14/2004
1,2-Dibromoethane	< 0.50	0.50	ug/L	EFA 0200B	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	6/14/2004
11 11 40 -45			% Recovery	EPA 8260B	6/14/2004
Toluene - d8 (Surr)	107		% Recovery	A 0000D	6/14/2004
4-Bromofluorobenzene (Surr)	91.7		70 NECOVERY		

Approved By:

2795 2nd St., Suite 300 Davis, CA 95616 530-297-4800 \

Date: 6/17/2004

QC Report : Method Blank Data

Project Name: High St Project Number: 3936

Benzene	Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed
Toluene	Parameter	< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Ethylbenzene		< 0.50	0.50	ug/L		
Companies Comp		< 0.50	0.50	ug/L	EPA 8260B	
Methyl-I-butyl ether (MTBE) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Diisopropyl ether (DIPE) < 0.50	•		0.50	ug/L	EPA 8260B	6/16/2004
Methyl-t-butyl ether (NTBE) Diisopropyl ether (DIPE) Co. 50 Diisopropyl ether (DIPE) Co. 50 Diisopropyl ether (DIPE) Co. 50 Diisopropyl ether (ETBE) Co. 50 Diisopropyl ether (TAME) Co. 50 Diisopropyl ether (DIPE) Co. 50 Diisopropyl ether (TAME) Co. 50 Diisopropyl ether (DIPE) Co. 50 Diisopropyl		< 0.50	0.50	ug/L	EPA 8260B	6/16/2004
Disapropyle etter (Cir C)			0.50	ug/L	EPA 8260B	6/16/2004
Ethyl-t-butyl ether (ELBE) Tert-amyl methyl ether (TAME) Tert-Butanol	Diisopropyl ether (DIPE)		0.50	ug/L	EPA 8260B	6/16/2004
Tert-Butanol	Ethyl-t-butyl ether (ETBE)			ug/L	EPA 8260B	
Methanol < 50				ug/L	EPA 82608	6/16/2004
Ethanol			50	ug/L	EPA 8260B	6/16/2004
Ethanol 1,2-Dichioroethane 1,2-Dichioroethane 1,2-Dichioroethane 1,2-Dibromoethane 1			5.0	ug/L	EPA 8260B	6/16/2004
1,2-Dichloroethane 1,2-Dibromoethane 1,2-Dibromo		= -		-	EPA 8260B	6/16/2004
1,2-Dibromoethane 1,2-Dibromoe				-	EPA 8260B	6/16/2004
TPH as Gasoline 7 oluene - d8 (Surr) 4-Bromofluorobenzene (Surr) 8 on 30	1,2-Dibromoethane			-	FPA 8260B	6/16/2004
Toluene - d8 (Surr) 98.7 % EPA 8260B 6/16/2004 Benzene < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Toluene < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Ethylbenzene < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Ethylbenzene < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Methyl-1-butyl ether (MTBE) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Methyl-1-butyl ether (DIPE) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Ethyl-t-butyl ether (ETBE) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Ethyl-1-butyl ether (TAME) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Tert-amyl methyl ether (TAME) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Methanol < 50 50 ug/L EPA 8260B 6/16/2004 Methanol < 50 50 ug/L EPA 8260B 6/16/2004 Methanol < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Ethanol < 0.50 0.50 ug/L EPA 8260B 6/16/2004 1,2-Dichloroethane < 0.50 0.50 ug/L EPA 8260B 6/16/2004 1,2-Dibromoethane < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Toluene - d8 (Surr) 104 % EPA 8260B 6/16/2004 TePA 8260B 6/16/2004	TPH as Gasoline		30	•		6/16/2004
4-Bromofluorobenzene (Surr) 90.8	Toluene - d8 (Surr)	• • • • • • • • • • • • • • • • • • • •			-	
Benzene < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Toluene < 0.50	4-Bromofluorobenzene (Surr)	90.8		%	EPA 8200B	0,10,200
Toluene	Description 1	< 0.50	0.50	ug/L		
Ethylbenzene		< 0.50	0.50	ug/L	EPA 8260B	
Total Xylenes < 0.50		< 0.50	0.50	ug/L	EPA 8260E	• • • • • • • • • • • • • • • • • • • •
Methyl-t-butyl ether (MTBE) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Diisopropyl ether (DIPE) < 0.50	•	< 0.50	0.50	ug/L	EPA 82605	6/16/2004
Methyl-t-butyl ether (NFBE) < 0.50 0.50 ug/L EPA 8260B 6/16/2004 Diisopropyl ether (DIPE) < 0.50	· •	c n 50	0.50	ug/L	EPA 8260E	3 6/16/2004
Disopropyl ether (OIPE) Ethyl-t-butyl ether (ETBE)		= "		-	EPA 82608	3 6/16/2004
Ethyl-t-butyl ether (ETBE) Tert-amyl methyl ether (TAME)				_	EPA 82609	3 6/16/2004
Tert-amyl methyl ether (TAME) Tert-Butanol				-	EPA 8260	3 6/16/2004
Tert-Butanol < 50 50 ug/L EPA 82608 6/16/200 Methanol < 5.0				_	EPA 8260	3 6/16/2004
Methanol < 5.0 5.0 ug/L EPA 8260B 6/16/200 Ethanol < 5.0				•	EPA 8260	B 6/16/2004
Ethanol 1,2-Dichloroethane		· -		_	EPA 8260	B 6/16/200
1,2-Dichloroethane				_	EPA 8260	B 6/16/200
1,2-Dipromoeinate TPH as Gasoline < 50 50 ug/L EPA 8260B 6/16/200 Toluene - d8 (Surr) 104 % EPA 8260B 6/16/200 FDA 8260B 6/16/200					EPA 8260	B 6/16/200
Toluene - d8 (Surr) 104 % EPA 8260B 6/16/200	•			=	EPA 8260	B 6/16/200
Tottene - do (3011)		104		%	EPA 8260	B 6/16/200
					EPA 8260	B 6/16/200

	Measured Value	Method Reporti Limit		Analysis Method	Date Analyzed
Parameter	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Benzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Totuene		0.50	ug/L	EPA 8260B	6/14/2004
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Diisopropyl ether (DIPE)	< 0.50		ug/L	EPA 8260B	6/14/2004
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	-	EPA 8260B	6/14/2004
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	6/14/2004
Methanol	< 50	50	ug/L	EPA 8260B	6/14/2004
Ethanol	< 5.0	5.0	ug/L		6/14/2004
1,2-Dichloroethane	< 0.50	0.50	ug/L	EPA 8260B	6/14/2004
1,2-Dibromoethane	< 0.50	0.50	ug/L	EPA 8260B	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	6/14/2004
	109		%	EPA 8260B	6/14/2004
Toluene - d8 (Surr) 4-Bromofluorobenzene (Surr)	95.6		%	EPA 8260B	6/14/2004
Methanol	< 50	50	ug/L	EPA 8260B	6/14/2004

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC 2795 2nd St, Suite 300 Davis, CA 95616 530-297-4800

Date: 6/17/2004

QC Report : Matrix Spike/ Matrix Spike Duplicate

Project Name : High St
Project Number : 3936

Project Number . 3	Spiked	Sample	Spike Level	Spike Dup. Level	Spiked Sample Value	Duplicate Spiked Sample Value	Units_	Analysis Method	Date Analyzed	Percent	Duplicate Spiked Sample Percent Recov.	Relative Percent Diff.	Percent Recov. Limit	Relative Percent Diff. Limit
Parameter Benzene Toluene Tert-Butanol Methyl-t-Butyl Ethe	38737-01 38737-01 38737-01 er 38737-01	Value <0.50 <0.50 <5.0 <0.50	40.1 40.1 200 40.1	39.8 39.8 199 39.8	39.4 38.8 181 39.5	40.0 39.4 180 39.5	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/16/04 6/16/04 6/16/04 6/16/04	98.3 96.8 90.4 98.6	100 98.8 90.4 99.2	2.16 1.98 0.0638 0.598	70-130 70-130 70-130 70-130	25 25 25 25
Benzene Toluene Tert-Butanol Methyl-t-Butyl Ethe	38756-01 38756-01 38756-01	<0.50 <0.50 <5.0 <0.50	40.0 40.0 200 40.0	40.0 40.0 200 40.0	38.8 40.0 191 41.6	37.9 39.2 198 41.3	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/16/04 6/16/04 6/16/04 6/16/04	97.1 100 95.6 104	94.8 97.9 99.1 103	2.38 2.14 3.58 0.672	70-130 70-130 70-130 70-130	25 25 25 25
Benzene Toluene Tert-Butanol Methyl-t-Butyl Eth	38699-01 38699-01 38699-01	<0.50 <0.50 <5.0 <0.50	40.0 40.0 200 40.0	40.0 40.0 200 40.0	38.0 38.0 188 39.3	37.1 37.4 191 39.4	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/14/04 6/14/04 6/14/04 6/14/04	94.9 95.0 94.0 98.2	92.8 93.5 95.3 98.6	2.26 1.58 1.42 0.432	70-130 70-130 70-130 70-130	25 25 25
Benzene Toluene Tert-Butanol Methyl-t-Butyl Eth	38723-01 38723-01 38723-01 ner 38723-01	<0.50 <5.0	40.0 40.0 200 40.0	40.0 40.0 200 40.0	35.1 35.4 177 77.6	36.1 36.3 190 78.0	ug/L ug/L ug/L ug/L		6/14/04 6/14/04	88.6 88.7	90.2 90.7 95.0 89.4	2.65 2.35 6.85 1.41	70-130 70-130 70-130 70-130	25 25

Approved By: Joe Kiff

KIFF ANALYTICAL, LLC

Date: 6/17/2004

QC Report : Laboratory Control Sample (LCS)

High St Project Name: Project Number: 3936

Parameter Benzene	Spike Level	Units ug/L	Analysis Method EPA 8260B EPA 8260B	Date Analyzed 6/15/04 6/15/04	LCS Percent Recov. 97.6 98.0	LCS Percent Recov. Limit 70-130 70-130
Toluene Tert-Butanol Methyl-t-Butyl Ether	40.0 200 40.0	ug/L ug/L ug/L	EPA 8260B EPA 8260B	6/15/04 6/15/04	88.3 99.0	70-130 70-130
Benzene Toluene Tert-Butanol Methyl-t-Butyl Ether	40.0 40.0 200 40.0	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/16/04 6/16/04 6/16/04 6/16/04	96.0 99.0 94.4 99.3	70-130 70-130 70-130 70-130
Benzene Toluene Tert-Butanol Methyl-t-Butyl Ether	40.0 40.0 200 40.0	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/14/04 6/14/04	91.0 91.8 90.6 95.0	70-130 70-130 70-130 70-130
Benzene Toluene Tert-Butanol Methyl-t-Butyl Ether	40.0 40.0 200 40.0	ug/L ug/L ug/L ug/L	EPA 8260B EPA 8260B EPA 8260B EPA 8260B	6/14/04 6/14/04	95.1 95.6 94.2 97.8	70-130 70-130 70-130 70-130

KIFF ANALYTICAL, LLC

KIFI	TICAL L	D L	795 2nd lavis, CA .ab: 530. ax: 530.	950 297.	616 .480	0	e 30	0							_	La															of _		uest	
Project Contact (Ha			Califo	mi	a E	DF	Re	por	t?	Į	ŹΥ	es	[<u>_</u> r	ło	+		GII	all													1		
im Cook Brian	ni Iton										_			1:	_	┪						٩na	ilys	sis	Re	qu	est					1	¥	
Company / Address	:	 [2]	Recomment Samplin	ded t	ome	SE ITS	Lo	a Co	ode			-		-		7														_		十	-	
	Towns Rd N	116	Offithm	2 U	O.L.P	,	,									_[- }	ł	1	- 1	- 1	1		1	(B)					Í	- 1	12hr	i
V. A. Craig, INC., 6940 Phone No.:	Fax No.:	2031, 071	Global II	D :													-	হ	1]	- 1		1	-		826	l	ļļ	H.		1		\circ	
707-693-2929	707-693-292	2	\mathcal{I}^{0}	<u> </u>	00	100	200	<u>12</u>								-	- 1	8	1	1	- 1					9-1		8	3		1	- 1	24hr	奆
	P.O. No.:		EDF De	ive	able	To	(En	nail	Ad	dre	88):					1		8	İ	į	@	8					1	88		1	ł	- 1	0	0
3936	3436	> _				_	rield			aic	.co	m		_		4	-	8	. 1	اڃ	326	82	(82			7.	ŀ	\d	1			ļ	48hr	S S
Project Name:	1		Sample Signatu	Г	1	11										Į		8	ြှေ		(E	SE	as	8	6	85	ءا	<u> </u>	Įδ	'		ł	0	For Lab Use Only
High	5+		Signatu	re: (4	1	70	$\overline{}$. 4 !	. T	84	. 4 - 1	커	1	E	801	ž	8	H	Œ	501	1002	ည်	E:	Š	2		1 1	1	72hr	7
Project Address:		Samp	oling	_(on	tai	ner	_	Pre	356	IV	ativ	e	LAI	au i	^		N/S	2	ō	×	뷥	15	8	8)	12	12	1 18	39	1	 	l	0	유
2951 Him 5+	. '				ı	- 1		-	1	-		ł	1	ļ	- }	ı	18)	20	ese	ğ	316	tes	ates	ate	譯	خ	m	욻	72		1		1wk	
2951 High St Oakland C	<u>~</u>	j		ð	114	ı	_1	1	Ì	1	١	ł	- 1	ايم	-	ı	802	핕	ă	ž	as	ě	Ĕ	l ii	l ii	Š	18	I S	(74.		1 1			
Sample		}		چَا		>	띪	١		റീ		빌	1	픠	SOIL	į	BTEX (8021B)	BTEX/TPH Gas/MTBE (80218/M8015)	TPH as Diesel (M8015)	TPH as Motor Oil (M8015)	TPH Gas/BTEX/MTBE (8260B)	5 Oxygenates/TPH Gas (8260B)	7 Oxygenates/TPH Gas (8260B)	5 Oxygenates (8260B)	Š	Lead Scav. (1,2 DCA & 1,2 EDB - 8260B)	EPA 8260B (Full List)	Volatile Hatocarbons (EPA 8260B)	Lead (7421/239.2) TOTAL W.E.T.	1			2wk	
Designation	1	Date	Time	40 ml VOA	SLEEVE	집	¥	ı	밁	Ž	빌	NONE		3	S		BT	П	르	<u>}</u>	E	5	1	20			Т	<u> </u>	╀Ӛ	╁	-			
		6/10/04							x		×			7				X	<u> </u>	L				_	\ <u>`</u>	Υ	_	╀	1	+-	 			01
MU-S		1-7-7	 	<i>}~</i>				7	<u>'</u> ,								Γ	Τ.			\	1			۱۱	11			<u>.</u>		<u> </u>		L	02
MU-7		 	 	H	-	-		-	-#	_	+			${\sf H}$	-	-	┪	H	1	\top	Γ		Τ	T	П			T		i			ļ	03
m-8			<u> </u>	$igcup_{i}$	-	_		_	\coprod		 		Н	H	-	\vdash	┢	╁	+-	+-	╁╴	\dagger	\dagger	+-	†]	<u> </u>	1	1	†					04
mw-9		<u> </u>		1	Ļ	_	Ш		2	<u> </u>	<u> -</u>	_		Ë	├-	-	╀	+	╁╌	╁╴	╁	╁	╁	十	十	+	+	十	+	1	1			
											L	_		<u> </u>	<u> </u>	<u> </u>	╀	+	┼-	+	\vdash	╀╌	╀	╁	+-	+	╁	+	╁	+	+-	1		1
		1		Τ	Γ						L			L			上	\perp	_	$oldsymbol{\perp}$	_	-	1	+	+-	+	+	+	+	+	+	┼-	├	╁╌
				T		Γ								L			L		_		┸	\bot	1	\perp	1	- -	-	\perp	+	+		┼-	 	┼╌
				T	1	T			Γ	Γ	Γ						L					_	\perp		\perp	_ _	_	4	_		╄	\vdash	-	
		-	+	十	+	1	1		1		厂		Γ	Γ										1	1	\perp	\perp	_ _	_	_	4-	-	├	-
		+		十	╁	†	\dagger	1	1	$/\!\!\!/$		1	T	T				T														L		
			Date	4,	Lime	+	ecej	ved	by.		<i>#</i>					<u> </u>		R	ema	ırks:														
Relinquished by:	PMOKET:		6/10/09	ł	2:5	1				[]-	/ ~	P							3	JEW	- P	er 8	5 <i>a</i>	۶٬۲۰	_									
Relinquished by:		<u> </u>	Date	, -	Time	9	ecej	v od	by																									
1/1//	_ 		06/00	11	. ,	١,																												
Relinguished by			Date 06100			-	ece	ivec	i by	La	bor	ator	y : ης:	r	1.	۔ ابرا	lica		Bill to	0:														

North State Labs

90 South Spruce Avenue, Suite W, South San Francisco, CA 94080

Phone: (650) 266-4563 Fax: (650) 266-4560

Chain of Custody / Request for Analysis Lab Job No.:_____Page_(_of(_

	``	-4303 1 42		to: Bria		Phone:	701- <i>0</i>	13 <u>24</u>	24	Turnaround Time				
Client: W.A. Crait	g Inc		Billing t		XI II C			Fax: 70			, i		\$	
Mailing Address: <i>ઉપ</i> યળ ૧જનાહ	nt Rd		Diming	.o. Saw	Ý.			email:				Date:	7-8 04	
Dixon CA								PO# 3	30136			Sampler: Cluy		
Project / Site Address	s / Global ID	ì	Toenni fi	co47	Analysi Requested	- /	Gen's m	2/11/2					EDF 🗹	
Sample ID	Sample Type	Container No. / Type	Pres.	Sa	mpling e / Time	17. X. X. X. X. X. X. X. X. X. X. X. X. X.	No.	/	_	_	_	1-1	Field Point ID	
MW-6	H20	3/10-1	HCL	7/8/64	9:45	×	K					-		
MW-5	11			118/04	10:10							 		
MW-3				7/8/04	10:30		+				-			
MW-1				7/8/04	10:50		_							
MW-10				1	11:11	╂╂╼╼╂								
MW.4		 	<u> </u>	7/8/04	j	+					+	1		
MW-7	11	1		7/5/04	ŀ	+								
MW 8	1	4		7/8/04	17:30						1			
	 				<u>42 4</u>	-		†						
	 	-	+	+										
			-											
	+		 											
											1,		12 7/	
Relinquished by:	tie			Date: ッ	104 Time	: 14:41		eived by		<u>/ </u>	Lie	1	Lab Comments/ Hazards	
Relinquished by:	4/1/			Date/	9-0-4 Time	: 18:3)	Rec	eived by:		parameter of	ry (,	Widd	1	
Relinquished by				Date:	Time			eived by:						

Laboratory Report Project Overview

Laboratory:

North State Environmental, South San Francisco, CA

Lab Report Number:

04-1052

Project Name:

2951 HIGH ST. OAKLAND

Work Order Number:

04-1052

Control Sheet Number:

T0600100092

Case Narrative

North State Environmental, South San Francisco, CA

Report Date:	07/21/2004	Project:	2951 HIGH ST. OAKLAND
Report Numbe	r: 04-1052	Order #:	04-1052
Report Numbe	1.01.100=		

Eight water samples were received under chain of custody control for the analysis of gasoline range hydrocarbons by method 8015M, BTEX by method 8021B and fuel oxygenates by GC/MS method 8260B. Results for all QC/QA samples were within acceptance limits. The LCS/LCSD results were reported instead of MS/MSD for 8015M/8021B analyses due to lack of sample volume submitted. No errors occurred during analysis.

Report Summary

rehour a	Summary		B.#6	QC	Anmcode	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
abreport	Sampid	Labsampid	Mtrx		8260FA			07/20/200	07/20/200	07204MLIST	1
4-1052	MW-1	04-1052-04	W	CS	8260FA	34400000		4	4		
, , , , , ,					ONIODODE	SW5030B		07/15/200	07/15/200	07154GBXW3	1
04-1052	MW-1	04-1052-04	W	CS	SW8020F	34430300	0 1, 0 0, == -	4	4		
04 1002						OMEGOOD	•	07/20/200	07/20/200	07204MLIST	1
04-1052	MW-10	04-1052-05	W	CS	8260FA	SW5030B	4	4	4		
04-1052	• • • • • • • • • • • • • • • • • • • •				_		•	07/15/200	07/15/200	07154GBXW3	1
04-1052	MW-10	04-1052-05	W	CS	SW8020F	SW5030B	•	4	4		
04-1032	••••						4	07/20/200	-	07204MLIST	1
04.4050	MW-3	04-1052-03	W	CS	8260FA	SW5030B	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4	4	•, = -	
04-1052	talaa 🔿						4	•	07/15/200	07154GBXW3	1
	MANA/ 2	04-1052-03	W	CS	SW8020F	SW5030B	07/08/200	07/15/200		011010	
04-1052	MW-3						4	4	4	07204MLIST	1
	AAVAL C	04-1052-02	W	ÇS	8260FA	SW5030B	07/08/200	07/20/200	07/20/200	07204WE101	•
04-1052	MW-5	J. 100m +-					4	4	4	07154GBXW3	1
	.414.5	04-1052-02	W	cs	SW8020F	SW5030B	07/08/200	07/15/200		U/ 104000XVV3	•
04-1052	MW-5	04-1032-02					4	4	4	-mag +3 #1 10T	4
		04.1052-01	W	cs	8260FA	SW5030B	07/08/200	07/20/200	07/20/200	07204MLIST	1
04-1052	MW-6	04-1052-01	**				4	4	4		
		0.4.4050.04	w	CS	SW8020F	SW5030B	07/08/200	07/15/200	07/15/200) 07154GBXW3	1
04-1052	MW-6	04-1052-01	VV		, 6110020.		4	4	4		
			101	CS	8260FA	SW5030B	07/08/200	07/20/200	07/20/200	07204MLIST	1
04-1052	MW-7	04-1052-07	W	U	5 02001A	0110000-	4	4	4		
				0.0	s sw8020F	SW5030B		07/15/200	07/15/200	0 07154GBXW3	3 1
04-1052	MW-7	04-1052-07	W	C	5 5000201	3W3000B	4	4	4		
				_		SW5030B			07/20/20	0 07204MLIST	1
04-1052	8-WM	04-1052-08	W	C	S 8260FA	24/20200	4	4	4		
V-1 1002					_	011150005			07/15/20	0 07154GBXW	3 1
04-1052	MW-8	04-1052-08	W	С	S SW8020F	SW5030E		4	4		
04-1002	,						4			0 07204MLIST	1
04-1052	MW-9	04-1052-06	W	C	S 8260FA	SW5030E			4		
04-1004	19174 0						4	4		0 07154GBXW	3 1
04.4000	MW-9	04-1052-06	W	<i>i</i> C	S SW8020F	SW5030E				,, 07.154GD/W	- ·
04-1052	MAN-A						4	4	4	00 07204MLIST	1
		04-1052-01	V	/ N	IC 8260FA	SW5030	в //	07/20/20		JU 01204WILIG1	•
		07 100E 01						4	4		10 1
		LCSD	٧	V F	3D1 SW8020	F SW5030	B //	07/15/20		00 07154GBXW	io l
		roon	•					4			,o 1
		1.00	٧	\ <i>/</i>	3S1 SW8020	F SW5030	в //	07/15/20	00 07/15/2	00 07154GBXV	/3 1
		LCS	V	v 1	J	·		4	4		
			1	۱ ۸	LB1 8260FA	SW5030	B //	07/20/20	00 07/20/2	200 07204MLIS	1
		BLK	V	√ !	בשו טבטטור	0,,,,,,					

Report Summary

uehour a				20	Armodo	Exmcode	Logdate	Extdate	Anadate	Lablotctl	Run Sub
Labreport	Sampid	Labsampid	Mirx	uc	Anmcode	EXINCOGE	20 3	4	4		
			147	101	SW8020F	SW5030B	11	07/15/200	07/15/200	07154GBXW3	1
		BLK	W	LDI	34400201	•		4	4		
			w	MS	8260FA	SW5030B	11	07/20/200	07/20/200	07204MLIST	1
		1052-01MS	Vu	1010	0200171	•		4	4		
		1050 04MCD	W	SD:	8260FA	SW5030B	11	07/20/200	07/20/200	07204MLIST	1
		1052-01MSD	VV	30	0200111			4	4		

Page: 1 Date: 07/21/2004 Lab Report No.: 04-1052 Volatile Organic Compounds by GC/MS Fuel Analysis: 2951 HIGH ST. Project Name: 8260FA Method: 04-1052 Project No: Prep Meth: SW5030B Lab Samp ID: 04-1052-04 MW-1 Field ID: 07/09/2004 Rec'd Date: MW-1 Descr/Location: 07/20/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/20/2004 1050 Sample Time: 07204MLIST QC Batch: Water Matrix: Notes: Wet Basis: Pvc Dil Units Result Note Rep Limit Det Limit 1 Analyte 341. UG/L EF PQL 0.5 0.314 Methyl-tert-butyl ether (MTBE) 1 UG/L ИD PQL 1. Ethyl tert-butyl ether (ETBE) 0.201 1 UG/L ND PQL 1. 0.284 tert-Amyl methyl ether (TAME) 1 UG/L ND PQL 0.5 0.189 Di-isopropyl ether (DIPE) 1 UG/L ND **PQL** 10. 4.956 tert-Butyl alcohol (TBA) 1 UG/L ND **PQL** 1. 0.167 1 UG/L 1,2-Dichloroethane ND PQL 0.5 0.216 1,2-Dibromoethane 1 ND UG/L PQL 100 9.10 Ethanol (EtOH) SURROGATE AND INTERNAL STANDARD RECOVERIES: 108% 78-121 SLSA 4-Bromofluorobenzene 102% 72-119 SLSA Toluene-d8 109% SLSA 67-129 Dibromofluoromethane 87% 85-115 SLSA 1,2-Dichloroethane-d4 EF: Compound quantitated at a different dilution

Approved by: _

Date:

Page: 3 Date: 07/21/2004 Lab Report No.: 04-1052 Volatile Organic Compounds by GC/MS Fuel Analysis: 2951 HIGH ST. Project Name: 8260FA Method: 04-1052 Project No: Prep Meth: SW5030B Lab Samp ID: 04-1052-03 MW-3 Field ID: 07/09/2004 Rec'd Date: MW-3 Descr/Location: 07/20/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/20/2004 1030 Sample Time: 07204MLIST QC Batch: Water Matrix: Notes: Wet Basis: Pvc Dil Units Result Note Rep Limit Det Limit UG/L 1 24.3 Analyte PQL 0.5 Methyl-tert-butyl ether (MTBE) 0.314 1 UG/L ND PQL 1. 0.201 Ethyl tert-butyl ether (ETBE) UG/L 1 ND PQL 1. 0.284 tert-Amyl methyl ether (TAME) 1 UG/L ND PQL 0.5 0.189 1 Di-isopropyl ether (DIPE) UG/L ND PQL 10. 4.956 1 tert-Butyl alcohol (TBA) UG/L ND PQL 1. 0.167 1 1,2-Dichloroethane ND UG/L PQL 0.5 0.216 1 UG/L 1,2-Dibromoethane ND PQL 100. 9.10 Ethanol (EtOH) SURROGATE AND INTERNAL STANDARD RECOVERIES: 1 106% 78-121 SLSA 1 4-Bromofluorobenzene 102% SLSA 72-119 1 Toluene-d8 107% SLSA 67-129 1 Dibromofluoromethane 87% 85-115 SLSA 1,2-Dichloroethane-d4

	Date:	
Approved by:		

Page: 2 Lab Report No.: 04-1052 Date: 07/21/2004 Volatile Organic Compounds by GC/MS Fuel Analysis: 2951 HIGH ST. Project Name: 8260FA Method: 04-1052 Project No: Prep Meth: SW5030B Lab Samp ID: 04-1052-05 MW-10 Field ID: 07/09/2004 Rec'd Date: Descr/Location: MW-10 07/20/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/20/2004 1111 Sample Time: 07204MLIST QC Batch: Water Matrix: Notes: Wet Basis: Pvc Dil Units Result Note Rep Limit Det Limit 1 Analyte UG/L 1650. EF 0.5 PQL 0.314 Methyl-tert-butyl ether (MTBE) 1 UG/L ND 1. PQL 0.201 Ethyl tert-butyl ether (ETBE) 1 UG/L 37. PQL 1. 0.284 tert-Amyl methyl ether (TAME) 1 UG/L ND PQL 0.5 0.189 Di-isopropyl ether (DIPE) 1 UG/L 211. PQL 10. 4.956 tert-Butyl alcohol (TBA) 1 UG/L ND PQL 1. 0.167 1,2-Dichloroethane UG/L 1 ND PQL 0.5 0.216 1,2-Dibromoethane 1 UG/L ND PQL 100. 9.10 Ethanol (EtOH) SURROGATE AND INTERNAL STANDARD RECOVERIES: 108% SLSA 78-121 4-Bromofluorobenzene 107% 72-119 SLSA Toluene-d8 106% SLSA 67-129 Dibromofluoromethane 86% 85-115 SLSA 1,2-Dichloroethane-d4 EF: Compound quantitated at a different dilution

Approved by: ______ Date: _____

Page: 4 Lab Report No.: 04-1052 Date: 07/21/2004 Volatile Organic Compounds by GC/MS Fuel Analysis: 2951 HIGH ST. Project Name: 8260FA Method: 04-1052 Project No: Prep Meth: SW5030B Lab Samp ID: 04-1052-02 MW-5 Field ID: 07/09/2004 Rec'd Date: MW-5 Descr/Location: 07/20/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/20/2004 1010 Sample Time: 07204MLIST QC Batch: Water Matrix: Notes: Wet Basis: Pvc Dil Units Result Note Rep Limit Det Limit UG/L Analyte 9.6 PQL 0.5 Methyl-tert-butyl ether (MTBE) 0.314 1 UG/L ND PQL 1. 0.201 Ethyl tert-butyl ether (ETBE) 1 UG/L ND PQL 1. tert-Amyl methyl ether (TAME) 0.284 1 UG/L ND PQL 0.5 0.189 Di-isopropyl ether (DIPE) 1 UG/L ND PQL 10. 4.956 tert-Butyl alcohol (TBA) 1 UG/L ND 1. PQL 0.167 1,2-Dichloroethane 1 UG/L ND PQL 0.5 0.216 1 1,2-Dibromoethane UG/L ND PQL 100. 9.10 Ethanol (EtOH) SURROGATE AND INTERNAL STANDARD RECOVERIES: 106% 78-121 SLSA 4-Bromofluorobenzene 102% SLSA 72-119 Toluene-d8 108% SLSA 67-129 Dibromofluoromethane 83%! SLSA 85-115 1,2-Dichloroethane-d4

Approved by:	Date:	
Approved by:		

Page: 5 Lab Report No.: 04-1052 Date: 07/21/2004 Volatile Organic Compounds by GC/MS Fuel Analysis: 2951 HIGH ST. Project Name: 8260FA Method: 04-1052 Project No: Prep Meth: SW5030B Lab Samp ID: 04-1052-01 MW-6 Field ID: 07/09/2004 Rec'd Date: Descr/Location: MW-6 07/20/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/20/2004 0945 Sample Time: 07204MLIST QC Batch: Water Matrix: Notes: Wet Basis: Pvc Dil Result Units Note Rep Limit Det Limit Analyte ŪG/L ND PQL 0.5 0.314 Methyl-tert-butyl ether (MTBE) UG/L 1 ND PQL 1. 0.201 Ethyl tert-butyl ether (ETBE) UG/L 1 ND PQL 1. 0.284 tert-Amyl methyl ether (TAME) 1 UG/L ND 0.5 PQL 0.189 Di-isopropyl ether (DIPE) 1 UG/L ND **PQL** 10. 4.956 tert-Butyl alcohol (TBA) 1 ND UG/L PQL 1. 0.167 1,2-Dichloroethane 1 UG/L ND PQL 0.5 0.216 1,2-Dibromoethane 1 ND UG/L PQL 100. 9.10 Ethanol (EtOH) SURROGATE AND INTERNAL STANDARD RECOVERIES: 105% SLSA 78-121 4-Bromofluorobenzene 100% 72-119 SLSA Toluene-d8 105% SLSA 67-129 Dibromofluoromethane 86% 85-115 SLSA 1,2-Dichloroethane-d4

Approved by: _____ Date: ____

Page: 6 Lab Report No.: 04-1052 Date: 07/21/2004 Volatile Organic Compounds by GC/MS Fuel Analysis: 2951 HIGH ST. Project Name: 8260FA Method: 04-1052 Project No: Prep Meth: SW5030B Lab Samp ID: 04-1052-07 MW-7 Field ID: 07/09/2004 Rec'd Date: MW-7 Descr/Location: 07/20/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/20/2004 1200 Sample Time: 07204MLIST QC Batch: Water Matrix: Notes: Wet Basis: Pvc Dil Units Result Note Rep Limit **Det Limit** Analyte UG/L 1 1040 EF PQL 0.5 0.314 Methyl-tert-butyl ether (MTBE) 1 UG/L ND PQL 1. 0.201 Ethyl tert-butyl ether (ETBE) UG/L 1 ND PQL 1. 0.284 tert-Amyl methyl ether (TAME) 1 UG/L ND PQL 0.5 0.189 Di-isopropyl ether (DIPE) 1 UG/L ND **PQL** 10. 4.956 tert-Butyl alcohol (TBA) 1 ND UG/L PQL 1. 0.167 1 1,2-Dichloroethane UG/L ND PQL 1. 0.216 1 1,2-Dibromoethane UG/L ND PQL 100. 9.10 Ethanol (EtOH) SURROGATE AND INTERNAL STANDARD RECOVERIES: 106% SLSA 78-121 4-Bromofluorobenzene 102% SLSA 72-119 Toluene-d8 113% SLSA 67-129 Dibromofluoromethane 90% 85-115 SLSA 1,2-Dichloroethane-d4 EF: Compound quantitated at a different dilution

Approved by:	Date:	
(pp/01010 -)		

Page: 7 Lab Report No.: 04-1052 Date: 07/21/2004 Volatile Organic Compounds by GC/MS Fuel Analysis: 2951 HIGH ST. Project Name: 8260FA Method: 04-1052 Project No: Prep Meth: SW5030B Lab Samp ID: 04-1052-08 8-WM Field ID: Rec'd Date: 07/09/2004 MW-8 Descr/Location: 07/20/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/20/2004 1230 Sample Time: 07204MLIST QC Batch: Water Matrix: Notes: Wet Basis: Pvc Dil Units Result Note Rep Limit Det Limit Analyte UG/L 395 EF 0.5 PQL Methyl-tert-butyl ether (MTBE) 0.314 1 UG/L ND 1. PQL 0.201 Ethyl tert-butyl ether (ETBE) UG/L 1 ND PQL 1. tert-Amyl methyl ether (TAME) 0.284 1 UG/L ND PQL 0.5 0.189 Di-isopropyl ether (DIPE) 1 UG/L ND PQL 10 4.956 tert-Butyl alcohol (TBA) UG/L 1 ND PQL 1. 0.167 1,2-Dichloroethane UG/L 1 ND PQL 0.5 0.216 1,2-Dibromoethane 1 UG/L ND PQL 100. 9.10 Ethanol (EtOH) SURROGATE AND INTERNAL STANDARD RECOVERIES: 105% SLSA 78-121 4-Bromofluorobenzene 99% SLSA 72-119 Toluene-d8 114% SLSA 67-129 Dibromofluoromethane 89% 85-115 SLSA 1,2-Dichloroethane-d4 EF: Compound quantitated at a different dilution

Approved by: ______ Date: _____

1

1

1

1

Approved by:	Date:	
ADDIOVEG OV.		

Lab Report No.: 04-1052 Date: 07/21/2004

Project Name:

2951 HIGH ST.

Analysis:

BTEX/Gasoline Range Organics (SW8020/8015)

Method:

SW8020F

Page: 9

Project No:

04-1052

Prep Meth: SW5030B

Field ID:

MW-1

MW-1

Rec'd Date:

Lab Samp ID: 04-1052-04

Descr/Location:

07/08/2004

07/09/2004

Sample Date:

07/15/2004

Sample Time:

1050

Prep Date:

Analysis Date: 07/15/2004

Matrix: Basis:

Water

QC Batch: Notes:

07154GBXW3

Wet

Analyte	Det Limit	Rep Limi	t	Note	Result	Units	Pvc Dil
Gasoline Range Organics	4.066	50.	PQL		ND	UG/L	1
Benzene	0.076	0.5	PQL		ND	UG/L	1
Toluene	0.160	0.5	PQL		ND	UG/L	1
Ethylbenzene	0.215	0.5	PQL		ND	UG/L	1
Xylenes	0.211	1.0	PQL		ND	UG/L	1

Date: _ Approved by: _

Page: 10 Lab Report No.: 04-1052 Date: 07/21/2004

Project Name:

2951 HIGH ST.

Analysis:

BTEX/Gasoline Range Organics (SW8020/8015)

Method:

SW8020F

Project No:

04-1052

Prep Meth: SW5030B

Field ID:

MW-10

MW-10

Rec'd Date:

Lab Samp ID: 04-1052-05

Descr/Location:

07/09/2004

Sample Date:

07/08/2004

Prep Date:

07/15/2004

Sample Time:

1111

Analysis Date: 07/15/2004

Matrix:

Water

QC Batch:

07154GBXW3

Basis:

Wet

Notes:

Analyte	Det Limit	Rep Limi	t	Note	Result	Units	Pvc Dil
Gasoline Range Organics	4.066	50.	PQL		76.	UG/L	1
Benzene	0.076	0.5	PQL		ND	UG/L	1
Toluene	0.160	0.5	PQL		ND	UG/L	1
Ethylbenzene	0.215	0.5	PQL	1	ND	UG/L	1
Xylenes	0.211	1.0	PQL		ND	UG/L	1

Approved by: Date: ____

Lab Report No.: 04-1052 Date: 07/21/2004

Page: 11

Project Name:

2951 HIGH ST.

04-1052

Analysis:

BTEX/Gasoline Range Organics (SW8020/8015)

Project No:

Method:

SW8020F

Prep Meth: SW5030B

Field ID:

Matrix:

MW-3

Descr/Location: Sample Date:

MW-3 07/08/2004

Sample Time:

1030

Water

Wet

Lab Samp ID: 04-1052-03

Rec'd Date: Prep Date:

07/09/2004 07/15/2004

Analysis Date: 07/15/2004 QC Batch:

07154GBXW3

Notes:

Basis: Wet		Notes	:				
Analyte	Det Limit	Rep Lim	it	Note	Result	Units	Pvc Dil
	4.066	50.	PQL		ND	UG/L	1
Gasoline Range Organics	0.076	0.5	PQL		ND	UG/L	1
Benzene	1	0.5	PQL		ND	UG/L	1
Toluene	0.160		PQL		ND	UG/L	1
Ethylbenzene	0.215	0.5			ND	UG/L	1
Xylenes	0.211	1.0	PQL	 	110	- 00/2	

Date: _ Approved by: __

Lab Report No.: 04-1052 Date: 07/21/2004

Page: 12

Project Name:

2951 HIGH ST.

Project No:

04-1052

Analysis:

BTEX/Gasoline Range Organics (SW8020/8015)

Method:

SW8020F

Prep Meth: SW5030B

Field ID:

MW-5

Descr/Location:

MW-5

Sample Date:

07/08/2004

Sample Time: Matrix:

Water

1010

Basis:

Wet

Lab Samp ID: 04-1052-02

Rec'd Date: Prep Date:

07/09/2004 07/15/2004

Analysis Date: 07/15/2004

QC Batch:

07154GBXW3

Notes:

	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Analyte		50.	PQL		ND	UG/L	1
Gasoline Range Organics	4.066 0.076	0.5	PQL]	1.5	UG/L	1
Benzene	0.160	0.5	PQL		ND	UG/L	1
Toluene	0.215	0.5	PQL		ND	UG/L	1
Ethylbenzene Xvlenes	0.211	1.0	PQL		ND	UG/L	1

Date: _ Approved by:

Lab Report No.: 04-1052 Date: 07/21/2004

Page: 13

Project Name:

2951 HIGH ST.

Analysis:

BTEX/Gasoline Range Organics (SW8020/8015)

Method:

SW8020F

Project No:

04-1052

Prep Meth: SW5030B

Field ID:

MW-6

Descr/Location: Sample Date:

MW-6 07/08/2004

Sample Time:

0945 Water

Matrix: Basis:

Wet

Lab Samp ID: 04-1052-01

Rec'd Date:

07/09/2004

Prep Date:

07/15/2004

QC Batch:

Analysis Date: 07/15/2004 07154GBXW3

Notes:

Analyte	Det Limit	Rep Lim	it	Note	Result	Units	Pvc Dil
	4.066	50.	PQL		ND	UG/L	1
Gasoline Range Organics	0.076	0.5	PQL		ND	UG/L	1
Benzene	1		PQL	1	ND	UG/L	1
Toluene	0.160	0.5				UG/L	4
Ethylbenzene	0.215	0.5	PQL		ND		,
Xylenes	0.211	1.0	PQL		ND	UG/L	<u> </u>

Date: _ Approved by: _

Page: 14 Lab Report No.: 04-1052 Date: 07/21/2004

2951 HIGH ST. Project Name:

Analysis:

BTEX/Gasoline Range Organics (SW8020/8015)

Project No:

04-1052

Method: SW8020F Prep Meth: SW5030B

Field ID:

MW-7

Lab Samp ID: 04-1052-07

Descr/Location: Sample Date:

Sample Time:

MW-7 07/08/2004

1200

Prep Date:

07/09/2004 07/15/2004

QC Batch:

Rec'd Date:

Analysis Date: 07/15/2004 07154GBXW3

Matrix: Basis:

Water Wet

Notes:

243.51								
	Det Limit	Rep Limi	t	Note	Result	Units	Pvc Dil	
Analyte			PQL		67.	UG/L	1	
Gasoline Range Organics	4.066	50.			ND	UG/L	1	
Benzene	0.076	0.5	PQL	}		UG/L	1	
Toluene	0.160	0.5	PQL		ND		,	
	0.215	0.5	PQL		1.3	UG/L	. I	
Ethylbenzene	0.211	1.0	PQL		10.	UG/L	1	
_l Xvlenes	0.21			 				

Approved by:	Date:	
Approved by:		

Page: 15 Lab Report No.: 04-1052 Date: 07/21/2004

BTEX/Gasoline Range Organics (SW8020/8015) Analysis: 2951 HIGH ST. Project Name: SW8020F Method:

04-1052 Project No: Prep Meth: SW5030B

Ethylbenzene

Xylenes

Lab Samp ID: 04-1052-08 8-WM Field ID: 07/09/2004 Rec'd Date: 8-WM Descr/Location: 07/15/2004 Prep Date: 07/08/2004 Sample Date:

Analysis Date: 07/15/2004 1230 Sample Time: 07154GBXW3 QC Batch: Water Matrix: Notes: Wet

0.215

0.211

Basis: Units Pvc Dil Result Note Det Limit Rep Limit Analyte 1 ND UG/L PQL 50. 4.066 Gasoline Range Organics 1 ND UG/L PQL 0.5 0.076 Benzene UG/L ND PQL 0.5 0.160 Toluene UG/L 1 ND PQL 0.5

1.0

PQL

1

UG/L

ND

Date: _ Approved by: __

Page: 16 Lab Report No.: 04-1052 Date: 07/21/2004

BTEX/Gasoline Range Organics (SW8020/8015) Analysis: 2951 HIGH ST. Project Name: SW8020F Method:

04-1052 Project No: Prep Meth: SW5030B

Lab Samp ID: 04-1052-06 MW-9 Field ID: 07/09/2004 Rec'd Date: MW-9 Descr/Location: 07/15/2004 Prep Date: 07/08/2004 Sample Date: Analysis Date: 07/15/2004

Sample Time: 1140 07154GBXW3 QC Batch: Water Matrix: Notes:

Wet

Basis: Wet		140162			_		
	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Analyte	4.066	50.	PQL		ND	UG/L	1
Gasoline Range Organics		0.5	PQL		ND	UG/L	1
Benzene	0.076	0.5	PQL	ļ	ND	UG/L	1
Toluene	0.160		PQL		ND	UG/L	1
Ethylbenzene	0.215	0.5	PQL		ND	UG/L	1
Xylenes	0.211	1.0	FQL	<u> </u>			

Date: _ Approved by: _

QA/QC Report Method Blank Summary

North State Environmental, South San Francisco, CA

Lab Report No.: 04-1052 Date: 07/21/2004

Page: 17

QC Batch:

07154GBXW3

Water

Lab Samp ID: BLK Analysis Date: 07/15/2004

Basis:

Matrix:

Wet

Analysis:

BTEX/Gasoline Range Organics

Method:

SW8020F

Prep Meth: SW5030B Prep Date: 07/15/2004

Material

Notes:

Det Limit	Rep Limit		Note	Resuit	Units	Pvc Dil	
	50	POL		ND	UG/L	1	
			ļ	ND	UG/L	1	
						1	
0.160			<u> </u>			1	
0.215	0.5					1	
0.211	1.0	PQL		ND	UG/L		
	t e	4.066 50. 0.076 0.5 0.160 0.5 0.215 0.5	4.066 50. PQL 0.076 0.5 PQL 0.160 0.5 PQL 0.215 0.5 PQL	4.066 50. PQL 0.076 0.5 PQL 0.160 0.5 PQL 0.215 0.5 PQL	4.066 50. PQL ND 0.076 0.5 PQL ND 0.160 0.5 PQL ND 0.215 0.5 PQL	4.066 50. PQL ND UG/L 0.076 0.5 PQL ND UG/L 0.160 0.5 PQL ND UG/L 0.215 0.5 PQL ND UG/L	4.066 50. PQL ND UG/L 1 0.076 0.5 PQL ND UG/L 1 0.160 0.5 PQL ND UG/L 1 0.215 0.5 PQL ND UG/L 1 ND UG/L 1 1 1

QA/QC Report Blank Spike/Duplicate Blank Spike Summary

North State Environmental, South San Francisco, CA

Lab Report No.: 04-1052 Date: 07/21/2004

Page: 18

QC Batch:

07154GBXW3

Matrix:

Water

Lab Samp ID: LCS

Analysis	Spike	E Level	Spike	Result			,			Criter	ia
1 1	LCS	LCD	LCS	LCD	Units		LCS	LCD	RPD		RPD
			114.	113.	UG/L	ww	114	113	0.88	123-59 MSA	21MSP
			1	107	UG/I	ww	120	107	11	130-76 MSA	15MSP
SW8020F							125	124	ი გი	133-64 MSA	25MSP
SW8020F					UG/L	ww	115	117	1.7	119-75 MSA	11MSP
1 - 1			376.	372.	UG/L	ww	125	124	0.80	129-78 MSA	11MSP
-	Analysis Method SW8020F SW8020F SW8020F SW8020F SW8020F SW8020F	Method LCS SW8020F 100. SW8020F 100. SW8020F 1000. SW8020F 1000.	Method LCS LCD SW8020F 100. 100. SW8020F 100. 100. SW8020F 1000. 1000. SW8020F 100. 100.	Method LCS LCD LCS SW8020F 100. 100. 114. SW8020F 100. 100. 120. SW8020F 1000. 1000. 1250. SW8020F 100. 100. 115.	Method LCS LCD LCS LCD SW8020F 100. 100. 114. 113. SW8020F 100. 100. 120. 107. SW8020F 1000. 1000. 1250. 1240. SW8020F 100. 100. 115. 117.	Method LCS LCD LCS LCD Units SW8020F 100. 100. 114. 113. UG/L SW8020F 100. 100. 120. 107. UG/L SW8020F 1000. 1000. 1250. 1240. UG/L SW8020F 100. 100. 115. 117. UG/L	Method LCS LCD LCS LCD Units SW8020F 100. 100. 114. 113. UG/L ww SW8020F 100. 100. 120. 107. UG/L ww SW8020F 1000. 1000. 1250. 1240. UG/L ww SW8020F 100. 100. 115. 117. UG/L ww	Analysis Spike Level Spike Result	Analysis Spike Level Spike Result LCS LCD Units LCS LCD LCS LCD Units LCS LCD Units LCS LCD SW8020F 100. 100. 114. 113. UG/L ww 114 113 UG/L ww 120 107 SW8020F 1000. 1000. 1250. 1240. UG/L ww 125 124 SW8020F 100. 100. 115. 117. UG/L ww 115 117 UG/L ww 125 124 UG/L ww 125 124 UG/L ww 125 124 UG/L ww 125 124 UG/L ww 125 124 UG/L www UG/L	Method LCS LCD LCS LCD Units LCS LCD RPD SW8020F 100. 100. 114. 113. UG/L ww 114 113 0.88 SW8020F 100. 100. 120. 107. UG/L ww 120 107 11 SW8020F 1000. 1000. 1250. 1240. UG/L ww 125 124 0.80 SW8020F 100. 100. 115. 117. UG/L ww 115 117 1.7	Analysis Spike Level Spike Result Units LCS LCD RPD %Rec

QA/QC Report Method Blank Summary

North State Environmental, South San Francisco, CA

Lab Report No.: 04-1052 Date: 07/21/2004 Page: 19

QC Batch: 07204MLIST Analysis: Volatile Organic Compounds by GC/MS Fuel

Matrix: Water Method: 8260FA
Lab Samp ID: BLK Prep Meth: SW5030B
Analysis Date: 07/20/2004 Prep Date: 07/20/2004

Analysis Date: 07/20/2004 Prep D
Rasis: Wet Notes:

Basis: Wet		Notes:					
Busio.	Det Limit	Rep Limit		Note	Result	Units	Pvc Dil
Analyte		0.5	PQL		ND	UG/L	1
Methyl-tert-butyl ether (MTBE)	0.314		PQL		ND	UG/L	1
Ethyl tert-butyl ether (ETBE)	0.201	1.			ND	UG/L	1
tert-Amyl methyl ether (TAME)	0.284	1.	PQL		ND	UG/L	1
Di-isopropyl ether (DIPE)	0.189	0.5	PQL			UG/L	1
tert-Butyl alcohol (TBA)	4.956	10.	PQL		ND		1
1,2-Dichloroethane	0.167	1.	PQL		ND	UG/L	1
1,2-Dibromoethane	0.216	0.5	PQL		ND	UG/L	1
l '	9.10	100.	PQL		ND	UG/L	1
Ethanol (EtOH)	0.176	0.5	PQL		ND	UG/L	1
Benzene	0.478	0.5	PQL		ND	UG/L	1
Toluene	0.101	1.	PQL		ND	UG/L	1
Chlorobenzene	l	0.5	PQL		ND	UG/L	1
1,1-Dichloroethene	0.139		PQL		ND	UG/L	1
Trichloroethene (TCE)	0.120	0.5	FUL				
SURROGATE AND INTERNAL STANE	ARD RECOV	/ERIES:	SLSA		106%		
4-Bromofluorobenzene		10-121			101%		
Toluene-d8		72-119	SLSA				
Dibromofluoromethane		67-129	SLSA	1	112%		
*		85-115	SLSA	\	86%		
1,2-Dichloroethane-d4							

QA/QC Report Matrix Spike/Duplicate Matrix Spike Summary

North State Environmental, South San Francisco, CA

Lab Report No.: 04-1052 Date: 07/21/2004

Page: 20

QC Batch:

07204MLIST

Matrix:

Water

Lab Samp ID: 1052-01MS

Basis:

Wet

Project Name: Lab Generated or Non COE Sample

Project No.:

Lab Generated or Non COE Sample

Field ID:

Lab Generated or Non COE Sample

Lab Ref ID:

04-1052-01

				0 1-	Snike	Result			% Re	ecove	ries		Accepta Crite	
A.v Iv. do	Analysis Method	Spike MS	e Level DMS	Sample Result	MS	DMS	Units		MS	DMS	RPD			RPD
Analyte			20.0	ND	12.8	13.3	UG/L	ww	64.0	66.5	3.8	128-61	MSA	25 MSP
1,1-Dichloroethene	8260FA	20.0		ND	20.	20.	UG/L	ww	100	100	0.00	135-74	MSA	21 MSP
Benzene	8260FA	20.0	20.0		24.	23.	UG/L	ww	120	115	4.3	139-70	MSA	19MSP
Chlorobenzene	8260FA	20.	20.	ND	1		UG/L	ww	113	112	0.89	141-61	MSA	19MSP
Toluene	8260FA	20.0	20.0	ND	22.5	22.4	1		107	106	0.94	129-69	MSA	20MSP
Trichloroethene (TCE)	8260FA	20.0	20.0	ND	21.4	21.2	UG/L	ww				115-85	SLSA	25 SLSP
	8260FA	100.	100.	82.	86.	87.	PERCEN	IT ww	86.0	87.0	1.2			
1,2-Dichloroethane-d4	1 - 1	100.	100.	105.	105.	106.	PERCEN	IT ww	105	106	0.95	121-78	SLSA	19SLSP
4-Bromofluorobenzene	8260FA			105.	106.	107.	PERCEN	IT ww	106	107	0.94	129-67	SLSA	21 SLSP
Dibromofluoromethane	8260FA	100.	100.	1	1		PERCEN		102	104	1.9	119-72	SLSA	16SLSP
 Toluene-d8	8260FA	100.	100.	100.	102.	104.	ILLIOLI	41 4044	1 .02			 		

Case Narrative

Client: W. A. Craig, Inc

Project: 2951 HIGH ST., OAKLAND

Lab No: 04-1052

Date Received: 07/09/2004

Date reported: 07/21/2004

Eight water samples were received under chain of custody control for the analysis of gasoline range hydrocarbons by method 8015M, BTEX by method 8021B and fuel oxygenates by GC/MS method 8260B. Results for all QC/QA samples were within acceptance limits. The LCS/LCSD results were reported instead of MS/MSD for 8015M/8021B analyses due to lack of sample volume submitted. No errors occurred during analysis.

John A. Murphy Laboratory Director

CERTIFICATE OF ANALYSIS

Lab Number: 04-1052

Client:

W.A. Craig, Inc.

roject:

2951 HIGH ST. OAKLAND

Pate Reported: 07/21/2004

Gasoline and BTEX by Methods 8015M/8021B

	Method	Result			Date Analyzed
Malyte	nt ID: MW-6		07/08/	2004	M
ample: 04-1052-01 Clier		ND<0.5	UG/L		07/15/2004
nzene	SW8020F		UG/L		07/15/2004
Ethylbenzene	SW8020F	ND<0.5			07/15/2004
msoline Range Organics	SW8020F	ND<50	UG/L		07/15/2004
luene	SW8020F	ND<0.5	UG/L		07/15/2004
(ylenes	SW8020F	ND<1.0	UG/L		0772372
	TD MALE		07/08/	2004	W
mple: 04-1052-02 Clie		1.5	UG/L		07/15/2004
Benzene	SW8020F		UG/L		07/15/2004
hylbenzene	SW8020F	ND<0.5			07/15/2004
Msoline Range Organics	SW8020F	ND<50	UG/L		07/15/2004
Coluene	SW8020F	ND<0.5	UG/L		07/15/2004
lenes	SW8020F	ND<1.0	UG/L		
	ent ID: MW-3		07/08	/2004	W
Sample: 04-1052-03 Clie		ND<0.5	UG/L		07/15/2004
nzene	SW8020F		UG/L		07/15/2004
Ethylbenzene	SW8020F	ND<0.5			07/15/2004
Asoline Range Organics	SW8020F	ND<50	UG/L		07/15/2004
lluene	SW8020F	ND<0.5	UG/L		07/15/2004
Kylenes	SW8020F	ND<1.0	UG/L		01/13/2301
ZATOTIOD					

CERTIFICATE OF ANALYSIS

ab Number:

04-1052

Client:

W.A. Craig, Inc.

roject:

2951 HIGH ST. OAKLAND

Date Reported: 07/21/2004

Gasoline and BTEX by Methods 8015M/8021B

	Method	Result	Unit !	Date Sampled	<u>Date Analyze</u> d
lample: 04-1052-04 Clien		1100440		07/08/2004	W
Sample: 04-1052-04 Clien		ND<0.5	UG/L		07/15/2004
nzene	SW8020F	ND<0.5	UG/L		07/15/2004
Rhylbenzene	SW8020F	ND<5.5	UG/L		07/15/2004
lasoline Range Organics	SW8020F			•	07/15/2004
luene	SW8020F	ND<0.5	UG/L		07/15/2004
<pre>{ylenes</pre>	SW8020F	ND<1.0	UG/L		
mple: 04-1052-05 Clien	t ID: MW-10			07/08/2004	W
mple: 04-1052-05 Clien		ND<0.5	UG/L		07/15/2004
Benzene	SW8020F	ND<0.5	UG/L		07/15/2004
# hylbenzene	SW8020F		UG/L		07/15/2004
soline Range Organics	SW8020F	76			07/15/2004
foluene	SW8020F	ND<0.5	UG/L		07/15/2004
lenes	SW8020F	ND<1.0	UG/L		0 / / 210 / = 1
Sample: 04-1052-06 Clien	nt ID: MW-9			07/08/2004	W
Jamp 20. 04 1032 01		ND<0.5	UG/L		07/15/2004
nzene	SW8020F	ND<0.5	UG/L		07/15/2004
H hylbenzene	SW8020F	ND<5.5	UG/L		07/15/2004
Rasoline Range Organics	SW8020F		UG/L		07/15/2004
luene	SW8020F	ND<0.5			07/15/2004
xylenes	SW8020F	ND<1.0	UG/L		

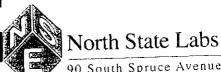
CERTIFICATE OF ANALYSIS

Lab Number:

04-1052

≅lient:

W.A. Craig, Inc.


roject:

2951 HIGH ST. OAKLAND

Pate Reported: 07/21/2004

Gasoline and BTEX by Methods 8015M/8021B

malyte Sample: 04-1052-07 Clier	Method nt ID: MW-7	Result	Unit Date Samples	<u>M</u> 07/15/2004
nzene Lthylbenzene Soline Range Organics Lluene Kylenes	SW8020F SW8020F SW8020F SW8020F SW8020F	ND<0.5 1.3 67 ND<0.5 10	UG/L UG/L UG/L UG/L UG/L	07/15/2004 07/15/2004 07/15/2004 07/15/2004
/ A T E II C D				
mple: 04-1052-08 Clie	nt ID: MW-8		07/08/2004	W 07/15/2004

CERTIFICATE OF ANALYSIS

Quality Control/Quality Assurance

ab Number:

04-1052

mient:

W.A. Craig, Inc.

> oject:

2951 HIGH ST. OAKLAND

te Reported: 07/21/2004

Gasoline and BTEX by Methods 8015M/8021B

					(NCCD	RPD
malyte	Method	Report: Limit	ing Unit	Blank	Avg MS/MSD Recovery	KPD
dialy cc		Li Till T				
oigg	SW8020F	50	UG/L	ND	125/124	1
asoline Range Organics	SW8020F	0.5	UG/L	ND	114/113	1
<u>}e</u> nzene	SW8020F	0.5	UG/L	ND	115/117	2
luene		0.5	UG/L	ND	120/107	11
Sthylbenzene	SW8020F			ND	125/124	1
lenes	SW8020F	1.0	UG/L	7/17		

LAP Certificate NO:1753 eviewed and Approved

John A.Murphy, Laboratory Director

Page 4 of 4

CERTIFICATE OF ANALYSIS

ob Number: 04-1052

Client : W.A. Craig, Inc.

roject : 2951 HIGH ST. OAKLAND

Date Sampled : 07/08/2004

Date Analyzed: 07/20/2004

Date Reported: 07/21/2004

Fuel Oxygenates by Method 8260B

nboratory Number Lient ID	04-1052-01 mw-6 w	04-1052-02 MW-5 W	04-1052-03 MW-3 W	04-1052-04 MW-1 W	04-1052-0 MW-10 W
atrix halyte	UG/L	UG/L	UG/L	UG/L	UG/L
ethyl-tert-butyl ether chyl tert-butyl ether risopropyl ether (DIPE) tert-Butyl alcohol 2-Dichloroethane 2-Dibromoethane chanol SUR-Dibromofluoromethane JR-Toluene-d8 JR-4-Bromofluorobenzene SUR-1,2-Dichloroethane-d4	ND<0.5 ND<1 ND<1 ND<0.5 ND<10 ND<1 ND<0.5 ND<100 105 100 105 86	9.6 ND<1 ND<1 ND<0.5 ND<10 ND<1 ND<0.5 ND<100 108 102 106 83	24.3 ND<1 ND<1 ND<0.5 ND<10 ND<1 ND<0.5 ND<100 107 102 106 87	341 ND<1 ND<0.5 ND<10 ND<10 ND<1 ND<0.5 ND<100 109 102 108 87	1650 ND<1 37 ND<0.5 211 ND<1 ND<10 106 107 108 86

CERTIFICATE OF ANALYSIS

b Number: 04-1052

Client : W.A. Craig, Inc.

oject : 2951 HIGH ST. OAKLAND

Date Sampled : 07/08/2004

Date Analyzed: 07/20/2004 Date Reported: 07/21/2004

Fuel Oxygenates by Method 8260B

Leboratory Number	04-1052-06	04-1052-07	04-1052-08
Lient ID	MW-9	MW-7	MW-8
Matrix	W	W	W
malyte thyl-tert-butyl ether Ethyl tert-butyl ether rt-Amyl methyl ether -isopropyl ether (DIPE) tert-Butyl alcohol 2-Dichloroethane 2-Dibromoethane Ethanol SUR-Dibromofluoromethane R-Toluene-d8 R-4-Bromofluorobenzene SUR-1,2-Dichloroethane-d4	UG/L 7.3 ND<1 ND<1 ND<0.5 ND<10 ND<1 ND<0.5 ND<10 102 102 109 90	UG/L 1040 ND<1 ND<1 ND<0.5 ND<10 ND<1 ND<0.5 ND<100 113 102 106 90	UG/L 395 ND<1 ND<1 ND<0.5 ND<10 ND<1 ND<0.5 ND<10 114 99 105 89

CERTIFICATE OF ANALYSIS

b Number: 04-1052

: W.A. Craig, Inc.

Project :

: 2951 HIGH ST. OAKLAND

Date Sampled : 07/08/2004

Date Analyzed: 07/20/2004

Date Reported: 07/21/2004

Fuel Oxygenates by Method 8260B Quality Control/Quality Assurance Summary

04-1052 Blank W	MS/MSD Recovery W	RPD	Recovery Limit	RPD Limit
Results UG/L	%Recoveries			
ND<100 ND<0.5 ND<0.5 ND<10 ND<1				
ND<1 ND<0.5	64/67	5	61-128	25
ND<1 ND<0.5	100/100	0	74-135	21
ND<0.5 ND<0.5 ND<1 112 101 106 86	107/106 113/112 120/115 106/107 102/104 105/106 86/87	1 1 4 1 2 1	69-129 61-141 70-139 67-129 72-119 78-121 85-115	20 19 19 21 16 19 25
	Blank W Results UG/L ND<100 ND<0.5 ND<0.5 ND<10 ND<1 ND<1 ND<1 ND<0.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1 112 101 106	Blank Recovery W W Results %Recoveries UG/L ND<100 ND<0.5 ND<0.5 ND<10 ND<1 ND<1 ND<1 ND<1 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND 0.5 N	04-1052 Blank Recovery W Results WSRecoveries UG/L ND<100 ND<0.5 ND<0.5 ND<1 ND<1 ND<1 ND<1 ND<1 ND<0.5 ND<1 ND<0.5 ND<1 ND<0.5 ND<1 ND<0.5 ND<1 ND<0.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND	04-1052 Blank Recovery W Results WSRecoveries UG/L ND<100 ND<0.5 ND<0.5 ND<10 ND<1 ND<1 ND<1 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<1 ND<0.5 ND<1 ND<0.5 ND<1 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND<0.5 ND 0.5

keviewed and Approved

John A Murphy Laboratory Director

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

INVOICE for ANALYTICAL SERVICES

Project Name: #3936; High Street

PO Number: Date Sampled: 5/13/04 Date Received: 5/13/04 Invoice No: 0405206

INV DATE:

May 20, 2004

Print DATE: September 07, 2004

Report To:

Tim Cook W. A. Craig Inc. 6940 Tremont Road Dixon, CA 95620-9603 Invoice To:

Christine

W. A. Craig Inc. 6940 Tremont Road Dixon, CA 95620-9603

or read to desire the research terror	TAT	Matrix	Qty	Mult	Unit Price	Test Total
Description	1771					
Tests: EPA 8260B (9 Oxygenates)	5 days 5 days	Water Water	4	1 1	\$90.00 \$45.00	\$360.00 \$180.00
TPH(g) + MBTEX Miscellaneous:			1	1	\$25.00	\$25.00
EDF Report			<u> </u>		SubTotal:	\$565.00
						(\$565.00)

Invoice Total: \$0.00

* ALL FAXED INVOICES ARE FOR YOUR INFORMATION ONLY - PLEASE PAY OFF ORIGINAL

Please include the invoice number with your check and remit to Accounts Receivable at the letter head address. MAI also accepts credit card (Visa/Master Card/Discover/American Express) payment. Please call Account Receivable for details on this service.

MAI's EDF charge does not include the EDF charge for subcontracted analyses. The minimum EDF charge per workorder is \$25.00. For invoice total greater than \$5000.00, EDF will be 2% of the total invoice. The EDF charge for subcontracted analyses will be identical to Subcontractor's fee.

Terms are net 30 days from the invoice date. After this period 1.5% interest per month will be charged. Overdue accounts are responsible for all legal and collection fees. If you have any questions about billing, please contact Accounts Receivable at McCampbell Analytical. I of I

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

INVOICE for ANALYTICAL SERVICES

Project Name: #3936; High St.

PO Number:

N/A

Date Sampled: 5/26/04 Date Received: 5/26/04

Invoice No: 0405426

INV DATE:

June 01, 2004

Print DATE: September 07, 2004

Report To:

Tim Cook

W. A. Craig Inc.

6940 Tremont Road

Dixon, CA 95620-9603

Invoice To:

Christine

W. A. Craig Inc.

6940 Tremont Road

Dixon, CA 95620-9603

	TAT	Matrix	Qty	Mult	Unit Price	Test Total
Description	17.11		<u> </u>			
Tests: EPA 8260B (9 Oxygenates) TPH(g) + MBTEX	5 days 5 days	Water Water	4	1 1	\$90.00 \$45.00	\$360.00 \$180.00
Miscellaneous:			1	1	\$25.00	\$25.00
EDF Report			<u> </u>	`	SubTotal:	\$565.00
						(\$565.00
Prepaid with check #: 12013 for \$565.00 THANK YOU.						

Invoice Total: \$0.00

* ALL FAXED INVOICES ARE FOR YOUR INFORMATION ONLY - PLEASE PAY OFF ORIGINAL

Please include the invoice number with your check and remit to Accounts Receivable at the letter head address. MAI also accepts credit card (Visa/Master Card/Discover/American Express) payment. Please call Account Receivable for details on this service.

MAI's EDF charge does not include the EDF charge for subcontracted analyses. The minimum EDF charge per workorder is \$25.00. For invoice total greater than \$5000.00, EDF will be 2% of the total invoice. The EDF charge for subcontracted analyses will be identical to Subcontractor's fee.

Terms are net 30 days from the invoice date. After this period 1.5% interest per month will be charged. Overdue accounts are responsible for all legal and collection fees. If you have any questions about billing, please contact Accounts Receivable at McCampbell Analytical.