ALCO HAZMAT

93 DEC 13 AM II: 36

December 10, 1993

Alameda County Health Care Services 80 Swan Way, Room 200 Oakland, CA 94621

RE: Unocal Service Station #6034

4700 First Street
Livermore, California

Gentlemen:

٠,-

Per the request of Ms. Tina Berry of Unocal Corporation, enclosed please find our report dated December 1, 1993, for the above referenced site.

If you should have any questions, please feel free to call our office at (510) 602-5100.

Sincerely,

Kaprealian Engineering, Inc.

Judy A. Dewey

jad\82

Enclosure

cc: Tina Berry, Unocal Corporation

KEI-P89-0801.QR14 December 1, 1993

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Ms. Tina Berry

RE: Quarterly Report

Unocal Service Station #6034

4700 First Street Livermore, California

Dear Ms. Berry:

This report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by Kaprealian Engineering, Inc. (KEI). The wells are currently monitored and sampled on a quarterly basis, except for well MW1, which is no longer sampled. This report covers the work performed by KEI in October of 1993.

BACKGROUND

The subject site contains a Unocal service station facility. Two underground gasoline storage tanks, one waste oil tank, and the product piping were removed from the site in August of 1989 during tank replacement activities. The fuel tank pit was subsequently overexcavated to a depth of 17.5 feet below grade (the ground water depth at that time) in order to remove contaminated soil. Seven monitoring wells have been installed at the site.

A site description, detailed background information including a summary of all of the soil and ground water subsurface investigation/remediation work conducted to date, site hydrogeologic conditions, and tables that summarize all of the soil and ground water sample analytical results are presented in KEI's quarterly report (KEI-P89-0801.QR8) dated May 4, 1992.

RECENT FIELD ACTIVITIES

The seven Unocal monitoring wells (MW1 through MW7) were monitored and sampled once during the quarter, except for well MW1, which is no longer sampled. Prior to sampling, the Unocal wells were checked for depth to water and the presence of free product or sheen. No free product or sheen was noted in any of the Unocal wells during the quarter. The monitoring data collected by KEI this quarter for the Unocal wells are summarized in Table 1.

KEI-P89-0801.QR14 December 1, 1993 Page 2

Ground water samples were collected by KEI from all of the Unocal wells (except MW1) on October 20, 1993. Prior to sampling, these wells were each purged of 8 gallons of water by the use of a surface pump. The samples were collected by the use of a clean Teflon bailer. The samples were decanted into clean VOA vials that were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

A joint monitoring and sampling event was conducted with the nearby Chevron service station on October 20, 1993. The monitoring data collected by Groundwater Technology, Inc. (GTI) for the Chevron monitoring wells are summarized in Table 2, and the ground water sample analytical results for the Chevron wells are summarized in Table 4.

HYDROLOGY

The measured depth to ground water at the Unocal site on October 20, 1993, ranged between 14.16 and 15.69 feet. The water levels in the Unocal wells have shown net increases ranging from 1.51 to 2.23 feet since July 20, 1993. Based on the joint monitoring ground water level data gathered on October 20, 1993, the ground water flow direction was to the northwest at the Unocal site and to the west and west-northwest in the vicinity of the Chevron site, as shown on the attached Potentiometric Surface Map, Figure 1. The flow direction reported this quarter is similar to the predominantly northwesterly flow direction reported in the previous 15 quarters. The average hydraulic gradient at the Unocal site on October 20, 1993, was approximately 0.006.

ANALYTICAL RESULTS

The ground water samples collected this quarter from the Unocal wells were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The samples were analyzed for total petroleum hydrocarbons (TPH) as gasoline by EPA method 5030/modified 8015, and benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA method 8020.

The analytical results for all of the ground water samples collected from the Unocal monitoring wells to date are summarized in Table 3. The ground water sample analytical results for the Chevron wells are summarized in Table 4. The concentrations of TPH as gasoline and benzene detected in the ground water samples collected this quarter from the Unocal and Chevron wells are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation for the Unocal samples are attached to this report.

KEI-P89-0801.QR14 December 1, 1993 Page 3

DISCUSSION AND RECOMMENDATIONS

Based on the analytical results of the ground water samples collected and evaluated from the Unocal wells to date, and no evidence of free product or sheen in any of the Unocal wells, KEI recommends a modification to the current quarterly ground water monitoring and sampling program. As shown in Table 2, the ground water samples collected from Unocal monitoring well MW3 since April of 1991 (11 consecutive quarters of sampling) have shown nondetectable concentrations of TPH as gasoline and BTEX. Therefore, KEI recommends that the sampling frequency for Unocal well MW3 will be reduced from quarterly to semi-annually. All of the Unocal monitoring wells will continue to be monitored quarterly; wells MW2, MW4, MW5, MW6, and MW7 will be sampled quarterly; and well MW3 will be sampled semi-annually. Unocal monitoring well MW1 is no longer sampled. Further recommendations for modification to or termination of the ground water monitoring and sampling program will be made as warranted. In addition, KEI recommends the continuation of the joint monitoring and sampling program with the nearby Chevron site.

DISTRIBUTION

A copy of this report should be sent to the Alameda County Health Care Services Agency, and to the Regional Water Quality Control Board, San Francisco Bay Region.

LIMITATIONS

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

Our studies assume that the field and laboratory data are reasonably representative of the site as a whole, and assume that subsurface conditions are reasonably conducive to interpolation and extrapolation.

The results of this study are based on the data obtained from the field and laboratory analyses obtained from a state-certified laboratory. We have analyzed these data using what we believe to be currently applicable engineering techniques and principles in the Northern California region. We make no warranty, either expressed or implied, regarding the above, including laboratory analyses, except that our services have been performed in accordance with generally accepted professional principles and practices existing for such work.

KEI-P89-0801.QR14 December 1, 1993 Page 4

If you have any questions regarding this report, please do not hesitate to call us at (510) 602-5100.

Sincerely,

Kaprealian Engineering, Inc.

Sarkis A. Soghomonian

Staff Engineer

Joel G. Greger, C.E.G.

Senior Engineering Geologist

thomas J. Bukins

Grel MM

License No. EG 1633 Exp. Date 6/30/94

Thomas J. Berkins Project Manager

/bp

Attachments:

Tables 1 through 4

Location Map

Potentiometric Surface Map - Figure 1

Concentrations of Petroleum Hydrocarbons - Figure 2

Laboratory Analyses

Chain of Custody documentation

TABLE 1
SUMMARY OF MONITORING DATA

UNOCAL MONITORING WELLS

Well #	Ground Water Elevation (feet)	Depth to Water <u>(feet)</u> ◆	Product Thickness (feet)	<u>Sheen</u>	Water Purged (gallons)
	(Monitored	and Sample	d on Octobe	r 20, 1	.993)
MW1*	504.95	15.69	0		0
MW2	504.74	15.08	0	No	8
MW3	505.24	14.42	0	ИО	8
MW4	505.45	14.16	0	No	8
MW5	504.71	15.56	0	No	8
MW6	504.55	14.20	0	ИО	8
MW7	504.54	14.29	0	No	8

Well #	Top of Casing Elevation in feet above <u>Mean Sea Level (MSL)**</u>
MW1	520.64
MM2	519.82
MW3	519.66
MW4	519.61
MW5	520.27
MW6	518.75
MW7	518.83

- ♦ The depth to water level measurement was taken from the top of the well casing. Prior to October 20, 1993, the water level measurement was taken from the top of the well cover.
- * Monitored only.
- ** Based on City of Livermore Benchmark No. C-18-5 (elevation = 551.77 MSL).
- -- Sheen determination was not performed.

TABLE 2
SUMMARY OF MONITORING DATA
CHEVRON MONITORING WELLS

<u>Well</u>	Ground Water Elevation (feet)	Depth to Water <u>(feet)</u>	Well Casing Elevation (feet above MSL)
	(Monitored on	October 20,	1993, by GTI)
C1	506.89	13.50	520.39
C2	506.92	13.84	520.76
C3	507.08	14.23	521.31
C5	506.72	14.10	520.82
C6	506.71	12.91	519.62
C7	506.89	13.41	520.30
C8	506.23	13.51	519.74
C9	506.76	12.96	519.72
C10	505.77	14.64	520.41
C11	505.58	14.46	520.04
C12	505.63	14.19	519.82
C13	507.11	15.13	522.24
C14	505.77	14.31	520.08
C15	507.17	15.24	522.41
C16	505.68	14.00	519.68
C17	505.73	15.09	520.82
C18	NOT MONITOR	ED - WELL PAVI	ED OVER
C19	505.76	15.23	520.99

TABLE 3
SUMMARY OF LABORATORY ANALYSES
WATER

UNOCAL MONITORING WELLS

<u>Date</u>	Sample Well #	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	<u>Xylenes</u>	MTBE
10/20/93	MW2		12,000	27	10	100	3,000	
•	EWM		ИD	ND	ИD	ND	ND	
	MW4		640	ИĎ	2.5	2.3	1.9	
	MW5		110	0.80	ND	ND	ND	
	MW6		ND	ND	ИD	ИD	ND	
	MW7		ND	ND	ND	ND	ND	
7/20/93	MW2		25,000	68	94	1,000	6,200	
	KW3		ND	ND	ND	ND	ND	
	MW4	NOT SAM			ESS DENIE			
	MW5		89	1.1	0.51	ND	1.8	2.2
	MW6	WELL WA	S OBSTRUCT			1770	N.D.	
	MW7		ND	ND	ND	ND	ND	
4/22/93	MW2		49,000	150	1,000	3,000	18,000	
• •	EWM		ND	ND	ND	ND	ND	
	MW4		1,100	8.8	1.0	7.2	6.0	
	MW5		94	1.2	ND	ND	1.3	0.82
	MW6	WELL W	AS OBSTRUC	TED				
	MW7		ND	ND	ND	ND	ND	
1/14/93	MW2		19,000	75	430	900	8,400	
	KWM3		ND	ND	ND	ND	ND	
	MW4		920	ND	6.3	12	3.9	
	MW5		91	ND	0.53	1.2	11	1.2
	MW6	\mathtt{WELL}	WAS OBSTRU					
	MW7		ND	ND	ND	ND	ND	
10/16/92			290	2.3	ND	5.1	15	
	MW3		ND	ND	ND	ND	ND	
	MW4		300	2.1	ND	4.8	13	
	MW5		180	7.8	1.1	17	6.4	2.0
	MW6		WAS OBSTRU			•••	MD	
	MW7		ND	ND	ND	ND	ND	
7/07/92	MW2		44,000	160	1,100	1,000	17,000	
, ,	MW3		ND	ND	ND	ND	ND	
	MW4		340	ИD	2.2	2.4	2.4	
	MW5		76	0.48	1.1	0.32	2 1.3	1.5
	МWб		ND	ND	ND	ND	ND	
	MW7		ND	ND	ND	ND	ND	

TABLE 3 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

UNOCAL MONITORING WELLS

<u>Date</u>	Sample Well #	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- benzene	Xylenes	MTBE
4/06/92	MW2	~~	760	6.3	2.1	ND	130	
	MW3		ND	ND	ND	ИD	ND	
	MW4		660	1.3	3.8	2.9	4.1	
	MW5		240♦	ND	ND	0.35	ND	
	MW 6		ND	ND	ND	ND	ND	
	MW7		ND	ND	ND	ND	ND	
1/14/92	MW2		5,600	36	120	450	2,600	
	МWЗ		ND	ND	ND	ИD	ND	
	MW4		1,500	4.2	7.1	18	9.2	
	MW5		99	1.0	1.2	ND	0.32	
	MW6		ND	ND	ND	ND	ND	
	MW7		ND	ND	ND	ND	ND	
10/14/91	MW2		11,000	79	130	660	4,700	
	MW3		ND	ND	ND	ND	ND	
	MW4		880	3.8	2.2	8.6	5.8	
	MW5		660	55	4.4	50	66	
	MW 6		ND	ND	ND	ND	ND	
	MW7		ИD	ND	ND	ИD	ND	
7/10/91	MW1*	ND	ND	ND	ND	ND	ND	
	MW2		14,000	70	160	570	5,400	
	MW3		ND	ND	ND	ND	ND	
	MW4		830	8.4	19	7.7	7.2	
	MW5		220	5.1	8.7	9.1	9.7	
	MW6		ND	ND	ND	ND	ND	
	MW7		ND	ND	ND	ND	ND	
4/10/91	MW1*	ND	ND	ND	ND	ND	ND	
	MW2		22,000	170	190	490	6,200	
	MW3		ND	ND	ND	ND	ND	
	MW4		950	0.84	4.3	9.6	5.0	
	MW5		630	35	14	47	30	
	MW6		ND	ND	ND	ND	ND	
	MW7		ND	ND	ND	ND	ND	
12/24/90	MW1*	ND	ND	ND	ND	ND	0.40	
	MW2		32,000	440	340	460	13,000	
	MW3		ND	ND	ND	ND	ND	
	MW4		1,400	ИD	8.7	15	10	

TABLE 3 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

UNOCAL MONITORING WELLS

<u>Date</u>	Sample Well #	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- benzene	<u>Xylenes</u>	<u>MTB</u> E
9/07/90	MW1*	ND	ND	ND	1.2	ND	ND	
	MW2		ND	ND	1.5	ND	ND	
	MW3		1,100	11	ND	6.6	16	
	MW4		15,000	100	140	210	4,600	
6/05/90	MW1*	ND	ND	ND	ND	ND	ND	
	MW2		31,000	250	460	950	9,200	
	EWM		ND	ND	ND	ND	ND	
	MW4		1,400	1.2	4.7	24	12	
3/08/90	MW1**	ND	ND	ND	ND	ND	ND	
	MW 2		26,000	230	410	1,300	2,100	
	MW3		ND	ND	ND	ND	ND	
	MW4		1,200	18	8.4	37	28	
11/18/89	MW1***	400	ND	ND	ND	ND	ND	
	MW2		53,000	540	500	130	22,000	
	EWM		ND	0.35	ND	ND	ND	
	MW4		990	9.8	10	7.1	4.7	

- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- * TOG and all EPA method 8010 constituents were non-detectable.
- ** TOG was detected at 4.7 ppm. All EPA method 8010 compounds were non-detectable.
- *** TOG was detected at 3.1 ppm. All EPA method 8010 compounds were nondetectable, except for trichloroethene at 0.55 ppb.
- ND = Non-detectable.
- -- Indicates analysis was not performed.

Results in parts per billion (ppb), unless otherwise indicated.

TABLE 4 SUMMARY OF LABORATORY ANALYSES WATER

CHEVRON MONITORING WELLS

	TPH as				
Well #	<u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Ethylbenzene</u>	<u>Xylenes</u>
	(Sam	pled on O	ctober 20, 1	.993, by GTI)	
C-1	880	19	26	260	190
C-2	1,600	140	18	22	27
C-3	ND	ND	1	ND	0.8
C-4	WELL DESTR		-	1.0	
C+5	2,200	7	5	3	15
C-6	77,000	290	790	2,500	7,600
C-7	5,500	72	26	250	160
C-8	ND	ND	ND	ND	ND
C-9	36,000	22	200	440	930
C-10	ND	ND	ND	ND	ND
C-11	ND	2	ND	ND	ND
C-12	ND	ND	ND	ND	ND
C-13	ND	ND	ND	ND	ND
C-14	INSUFFICIE				ND
C-15	ND	ND	ND ND	ND	ND
C-16	290	18	2	16	17
C-17	4,500	5	12	43	64
C-18	WELL PAVED		12	43	Q - T
C-19	ND	ND	ND	ND	ND
0 15	ND	NO	ND	ND	nD
	(Samp	oled on Jui	ly 20 & 21,	1993, by GTI)	
C-1	7,100	73	11	470	470
C-2	1,100	28	8	4	4
C-3	ND	ND	ND	ND	ND
C-4	WELL DESTROY				
C-5	970	18	5	8	14
C-6	32,000	130	490	1,000	4,900
C-7	1,900	35	18	61	87
C-8	ND	ND	ND	ND	ND
C-9	30,000	160	130	450	1,100
C-10	100	ND	ND	ND	ND
C-11	1,200	3	1	ND	1
C-12	ND	ИD	ND	ND	ND
C-13	99	4	1.3	2	7
C-14	NOT SAMPLED	•	***	~	•
C-15	ND ND	ND	ND	ND	ND
- 15	112	4130	11D	112	1112

TABLE 4 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

CHEVRON MONITORING WELLS

Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Ethylbenzene</u>	Xylenes
	(Sampled on	July 20	& 21, 1993,	by GTI - Continu	led)
C-16	NOT SAMPLED				
C-17	4,200	5	35	33	62
C-18	92	ND	0.5	ND	ND
C-19	390	ND	ND	0.8	2
	/	bel	3mmil 00 10	A A TOTAL	
	(Sa	шътес ой	April 22, 19	93, by GT1)	
C-1	18,000	26	44	330	580
C-2	2,000	12	12	29	28
C-3	ND	ND	ND	ND	ND
C-4	WELL DESTROY				
C-5	2,300	220	18	65	120
C-6	20,000	29	170	2,400	640
C-7	3,800	130	18	36	43
C-8	68	ND	0.6	0.8	0.6
C-9	7,300	60	40	98	68
C-10	ND	ND	ND	ND	ND
C-11	ND	0.8	ND	ND	ND
C-12	ND	ND	ND	ND	ND
C-13	ND	ND	ND	ND	ND
C-14 C-15	17,000 ND	840 ND	2,300	3,500 ND	130 ND
C-15	850	46	ND ND	MD 6	24
C-17	8,900	16	68	97	44
C-18	ND	ND	ND	ND	ND
C-19	250	0.6	1	1	1
	(San	pled on J	anuary 14, 1	.993, by GTI)	
C-1	2,000	24	ND	98	62
C-2	1,800	49	50	31	29
C-3	120	ND	ND	ND	1.3
C-4	WELL DESTROY				
C- 5	2,300	13	ND	110	10
C-6	19,000	ND	25	460	980
C-7	7,800	160	33	380	210

TABLE 4 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

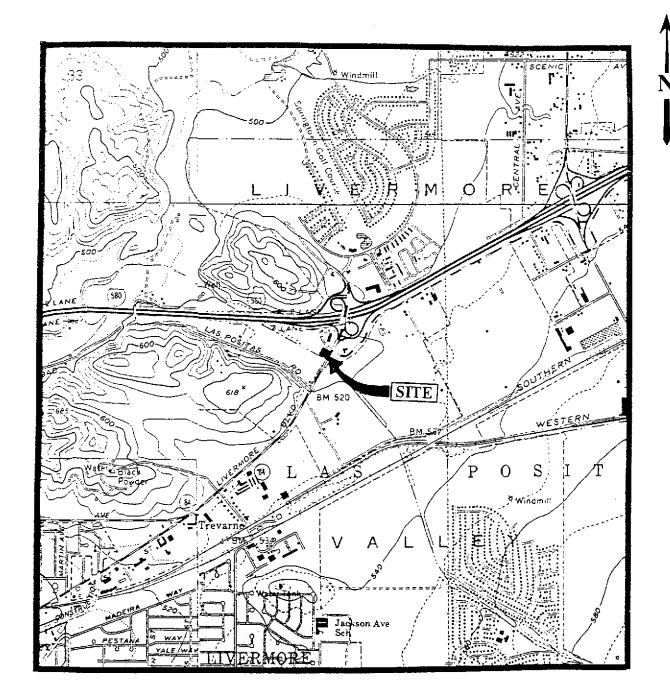
CHEVRON WELLS

Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Ethylbenzene</u>	<u>Xylenes</u>
	(Sampled	on January	14, 1993, by	GTI - Continu	led)
C-8	120	ND	1.6	1.0	3.5
C-9	2,200	ND	ND	27	77
C-10	88	4.7	ND	2.3	1.6
C-11	94	ND	1.3	0.7	6.0
C-12	65	ND	ND	ND	1.7
C-13	100	ND	ND	ND	1.3
C-14	27,000	220	790	220	2,700
C-15	61	ND	1.9	0.8	5.1
C-16	740	24	ND	36	21
C-17	3,500	9.3	9.1	23	34
C-18	56	ND	ND	ND	1.8
C-19	100	1.1	ND	0.9	0.9

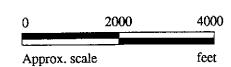
ND = Non-detectable.

Results in parts per billion (ppb), unless otherwise indicated.

TABLE 4 (Continued)

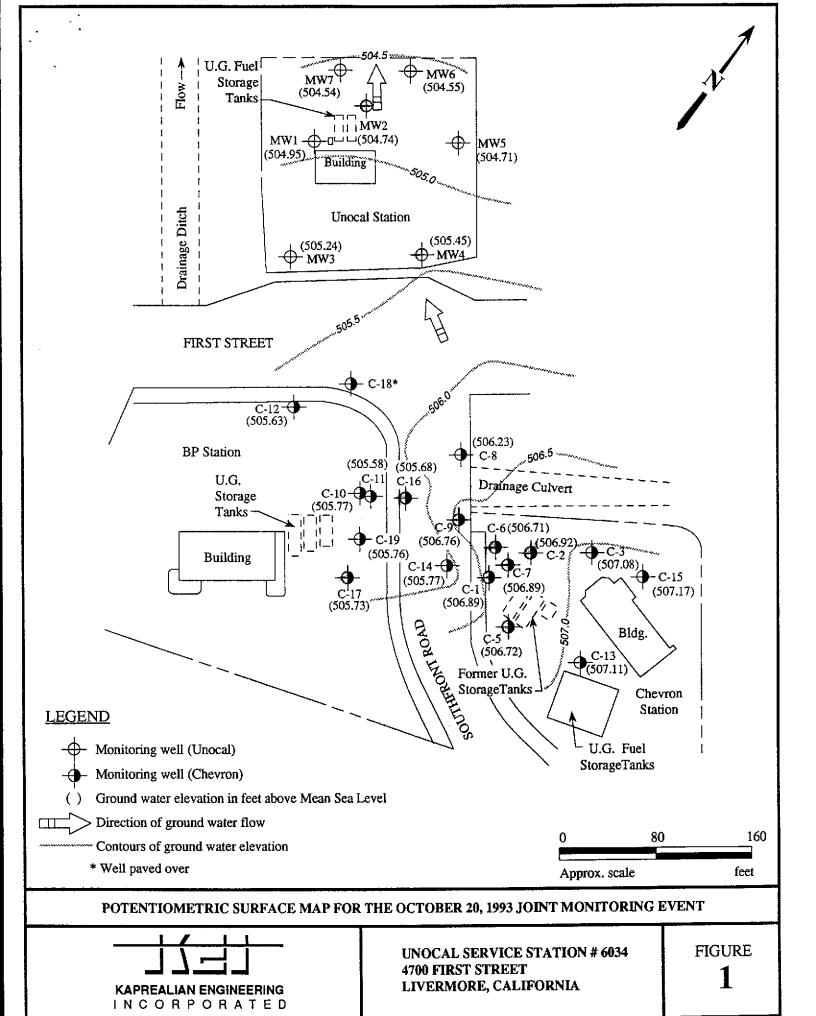

SUMMARY OF LABORATORY ANALYSES WATER

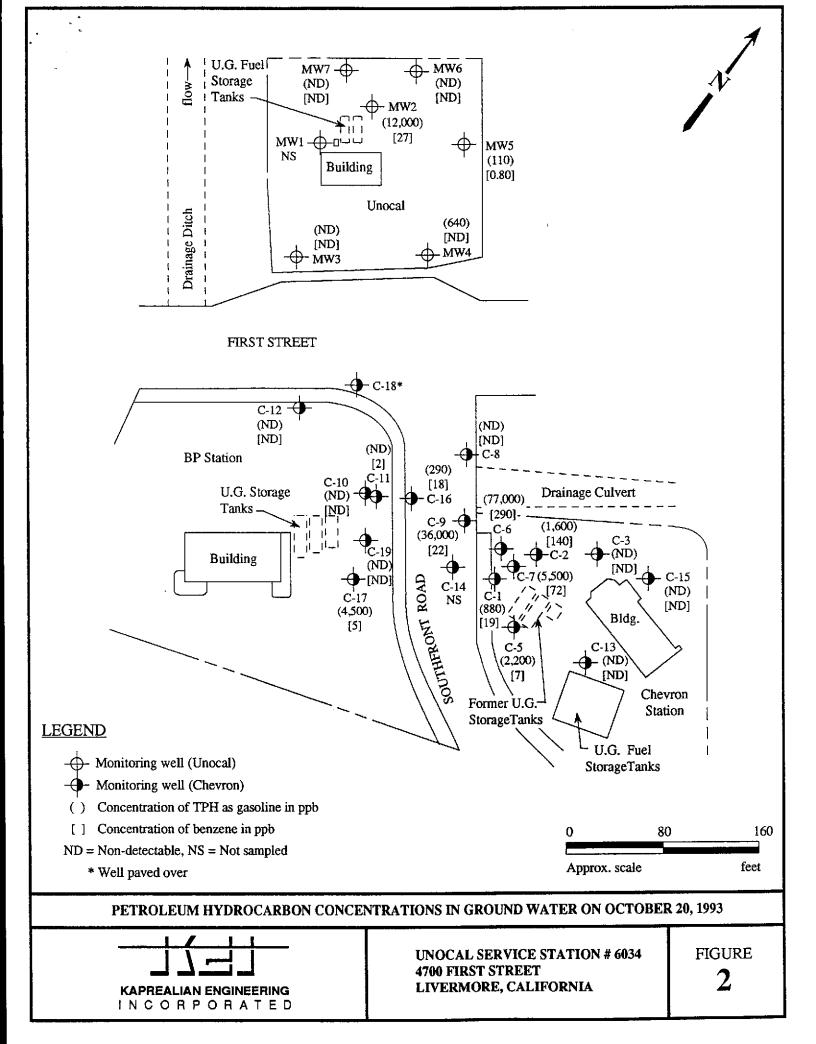
CHEVRON MONITORING WELLS


Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Ethylbenzene</u>	Xylenes
	(Sampled	on January	14, 1993, by	GTI - Continu	led)
C-8	120	ND	1.6	1.0	3.5
C-9	2,200	ND	ND	27	77
C-10	88	4.7	ND	2.3	1.6
C-11	94	ND	1.3	0.7	6.0
C-12	65	ND	ND	ND	1.7
C-13	100	ND	ND	ND	1.3
C-14	27,000	220	790	220	2,700
C-15	61	ND	1.9	0.8	5.1
C-16	740	24	ND	36	21
C-17	3,500	9.3	9.1	23	34
C-18	56	ND	ND	ND	1.8
C-19	100	1.1	ND	0.9	0.9

ND = Non-detectable.

Results in parts per billion (ppb), unless otherwise indicated.




Base modified from 7.5 minute U.S.G.S. Livermore and Altamont Quadrangles (photorevised 1980 and 1981, respectively)

UNOCAL SERVICE STATION # 6034 4700 FIRST STREET LIVERMORE, CA LOCATION MAP

Kaprealian Engineering, Inc. 2401 Stanwell Dr., Ste. 400 Concord, CA 94520

Attention: Avo Avedessian

Client Project ID: Sample Matrix:

First Sample #:

Unocal #6034, 4700 First St, Livermore

Sampled: Received: Oct 20, 1993 Oct 22, 1993

Water Analysis Method:

EPA 5030/8015/8020

310-1172

Reported: Nov 5, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 310-1172 MW2	Sample I.D. 310-1173 MW3	Sample I.D. 310-1174 MW4	Sample I.D. 310-1175 MW5	Sample I.D. 310-1176 MW6	Sample I.D. 310-1177 MW7
Purgeable Hydrocarbons	50	12,000	N.D.	640	110	N.D.	N.D.
Benzene	0.5	27	N.D.	N.D.	0.80	N.D.	N.D.
Toluene	0.5	10	N.D.	2.5	N.D.	N.D.	N.D.
Ethyl Benzene	0.5	100	N.D.	2.3	N.D.	N.D.	N.D.
Total Xylenes	0.5	3,000	N.D.	1.9	N.D.	N.D.	N.D.
Chromatogram Pat	tern:	Gasoline		Gasoline	Gasoline		

Quality Control Data

Report Limit Multiplication Factor:	20	1.0	1.0	1.0	1.0	1.0
Date Analyzed:	10/26/93	10/26/93	10/26/93	10/26/93	10/26/93	10/26/93
Instrument Identification:	HP-4	HP-4	HP-4	HP-4	HP-4	HP-5
Surrogate Recovery, %: (QC Limits = 70-130%)	. 89	98	90	105	101	108

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Alán B. Kemp Project Manager Kaprealian Engineering, Inc. 2401 Stanwell Dr., Ste. 400 Concord, CA 94520

Attention: Avo Avedessian

First Sample #:

Client Project ID: Unocal #6034, 4700 First St, Livermore

Sampled: Received:

Sample Matrix: Water Analysis Method:

EPA 5030/8015/8020

Reported:

Nov 5, 1993

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Blank

Analyte	Reporting Limit μg/L	Sample I.D. Matrix Blank		
Purgeable Hydrocarbons	50			
Benzene	0.5			
Toluene	0.5			
Ethyl Benzene	0.5			
Total Xylenes	0.5			
Chromatogram Patte	ern:			

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Analyzed:

10/26/93

Instrument Identification:

HP-5

Surrogate Recovery, %:

93

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Aten B. Kemp Project Manager Kaprealian Engineering, Inc. 2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedessian Client Project ID: Unocal #6034, 4700 First St, Livermore

Matrix: Wa

QC Sample Group: 3101172-1177

Reported: Nov 5, 1993

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-		
ANALITE	Benzen e	Taluene	Benzene	Xylenes	
	<u> </u>	, 0140,10	D4(1144)		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	J.F.	J.F.	J.F.	J.F.	
Conc. Spiked:	20	20	20	60	
Units:	μg/L	μg/L	μg/L	μg/L	
LCS Batch#:	2LCS102693	2LCS102693	2LCS102693	2LCS102693	
Date Prepared:	10/26/93	10/26/93	10/26/93	10/26/93	
Date Analyzed:	10/26/93	10/26/93	10/26/93	10/26/93	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
LCS %					
Recovery:	100	100	, 100	100	
Control Limits:	70-130	70-130	70-130	70-130	
MS/MSD					
Batch #:	3101169	3101169	3101169	3101169	
Date Prepared:	10/26/93	10/26/93	10/26/93	10/26/93	
Date Analyzed:	10/26/93	10/26/93	10/26/93	10/26/93	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Matrix Spike					
% Recovery:	100	100	100	102	
Matrix Spike					
Duplicate % Recovery:	100	100	100	102	
necovery:	100	100	100	102	
Relative %	0.0	0.0	0.0	0.0	
Difference:	0.0	0.0	0.0	0.0	

SEQUOIA ANALYTICAL

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation and analytical methods employed for the samples. The LCS % recovery data is used for validation of sample batch results. Due to matrix effects, the QC limits for MS/MSD's are advisory only and are not used to accept or reject batch results.

CHAIN OF CUSTODY

SAMPLER GADDING			SITE NAME & ADDRESS LOCAL # 6034 / LIVET MOTE LI700 FIRST St					ANALYSES REQUESTED						TURN AROUND TIME:		
		1						9	ļ	77				9		
SAMPLE ID NO.	DATE	TTME	SOIL	WATER	GRAB	СОМР	NO. OF CONT.	SAMPLING LOCATION	H.A.	15	기 !				REMARKS	
MWZ	10/10	13.30		v			DOU		v	V		· · · · · · · · · · · · · · · · · · ·			3101172 A-B	
мыз	11	14:45		~			١,		V	v	, <u> </u>				1 1173	
MWH	11	13:45		~	ļ		',		V	<i>\\</i>					1 1174	
MWS	t,	14:00		V			1,		V	~		·] 1175	
MWG	11	14:15		~			1,		V	/					1176	
MW7	,,	14:30		V			17		V	V					V 1177 V	
Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Relinquished by: (Signature) Date/Time Received by: (Signature) Received by: (Signature)								The following MUST BE completed by the laboratory accepting safer analysis: 1. Have all samples received for analysis been stored in ice? 2. Will samples remain refrigerated until analyzed? 3. Did any samples received for analysis have head space?					analysis been stored in ice? ed until analyzed?			
Relinquished by: (Signature) Date/Time						Receiv	ed by: (Signature)	4. Were samples in appropriate containers and properly packa Signature Title Da					1-3 10/22/43			