

ABE Petroleum LLC 17715 Mission Boulevard Hayward, California 94539

> Prepared for Mr. Paul Garg ABE Petroleum LLC

Prepared by Sierra Environmental, Inc.

Sierra Environmental, Inc. Environmental Consultants

April 05, 2004 Project 03-103.07

Mr. Paul Garg ABE Petroleum LLC 33090 Mission Boulevard Union City, California 94587

Subject:

Report for First Quarter 2004 Groundwater Monitoring, ABE Petroleum

LLC, 17715 Mission Boulevard, Hayward, California

Dear Mr. Garg:

Sierra Environmental, Inc. (Sierra) is pleased to present this report summarizing the results of the first quarter 2004 groundwater monitoring at the subject location, hereafter, referred to as Site. Figure 1 shows the Site location. The groundwater monitoring was concurred by Alameda County Health Care Services (ACHCS) in a letter dated February 16, 2000, as result of gasoline impact to groundwater beneath the Site.

On March 9, 2004, Sierra obtained and recorded groundwater data, and collected groundwater samples from three groundwater monitoring wells (MW1 through MW3) at the Site for chemical analysis. Sierra submitted the samples to Entech Analytical Labs, Inc. (Entech) of Santa Clara, California for chemical analysis. Entech is an independent State-certified analytical laboratory (# 2346).

BACKGROUND

On September 16, 1997, Balch Petroleum Contractors & Builders, Inc. (Balch) of Milpitas, California, removed one 2,000-gallon, two 6,000-gallon, one 10,000-gallon single-wall steel gasoline, and one 500-gallon single-wall steel waste oil USTs from the Site. Former UST locations are shown in Figure 2. No hole or damage was observed in the tanks. No groundwater was encountered in the tank excavations. After UST removal, Sierra collected soil samples from the tank excavations for chemical analysis.

Up to 2,300 parts per million (ppm) total petroleum hydrocarbons as gasoline (TPHG) was detected in the soil samples collected from beneath the tanks at approximately 14 feet below ground surface (bgs). The soil sample locations are shown in Figure 2.

On August 14, 2000, Sierra drilled three exploratory borings and converted them to groundwater monitoring well MW1 through MW3. The wells are approximately 35 feet deep. Sierra collected soil and groundwater samples from the borings/wells for chemical analysis. The analytical results showed up to 720 ppm TPHG, 2.2 ppm benzene, and 3.4 ppm MTBE in the soil samples. Up to 290000 ppb TPHG, 10000 ppb benzene, and 4300 ppb MTBE were detected in the groundwater samples. Gasoline constituents were detected in groundwater samples collected from all three monitoring wells. Groundwater monitoring well locations are shown on Figure 3.

On March 30, 2001, Sierra performed first quarter 2001 groundwater monitoring at the Site. The field and analytical results are presented in Table I and II. Groundwater was measured at approximately 20 to 21 feet from top of the well casing (TOC) at the Site with a northwesterly flow direction.

On June 22, 2001, Sierra performed second quarter 2001 groundwater monitoring at the Site. Groundwater levels were measured at approximately 22 to 23 feet below TOC with a northwesterly flow direction during this monitoring event.

On September 20, 2001, Sierra performed third quarter 2001 groundwater monitoring at the Site. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 24 to 25 feet below TOC with a northwesterly flow direction during this monitoring event.

On December 27, 2001, Sierra performed fourth quarter 2001 groundwater monitoring at the Site. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 22.59 to 23.82 feet below TOC with a northwesterly flow direction during this monitoring event.

On September 24, 2002, Sierra performed third quarter 2002 groundwater monitoring at the Site. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 23.69 to 24.89 feet below TOC with a northwesterly flow direction during this monitoring event.

On December 17, 2002, Sierra performed fourth quarter 2002 groundwater monitoring at the Site. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 22.75 to 23.99 feet below TOC with a northwesterly flow direction during this monitoring event.

On April 2, 2003, Sierra performed first quarter 2003 groundwater monitoring at the Site. Depth of groundwater was measured to the TOC. Groundwater levels were measured

at approximately 21.25 to 22.32 feet below TOC with a westerly flow direction during this monitoring event.

On June 12, 2003, Sierra performed second quarter 2003 groundwater monitoring at the site. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 20.64 to 20.94 feet below TOC with a westerly flow direction during this monitoring event.

Sierra prepared soil and Groundwater investigation plan and addendum to the plan dated May 27 and September 10, 2003 respectively for the site. The Addendum to the plan dated September 10, 2003 is being reviewed by ACHCS.

On September 29, 2003, Sierra performed third quarter 2003 groundwater monitoring at the site. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 22.95 to 24.15 feet below TOC with a westerly flow direction during this monitoring event.

On December 4, 2003, Sierra performed third quarter 2003 groundwater monitoring at the site. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 23.70 to 24.91 feet below TOC with a westerly flow direction during this monitoring event.

GROUNDWATER MONITORING

On March 9, 2004, Sierra performed first quarter 2004 groundwater monitoring at the Site. Sierra's field personnel measured the groundwater levels at MW1 through MW3 (Figure 3) using an electronic sounder. Depth of groundwater was measured to the TOC. Groundwater levels were measured at approximately 19.80 to 20.20 feet below TOC with a northwesterly flow direction during this monitoring event. Table I presents the groundwater measurement data.

Sierra's field personnel purged the wells using bailers. pH, temperature, and electrical conductivity of groundwater was recorded during the purging activities to affirm that groundwater in the wells have stabilized. After completion of the purging, groundwater samples MW-1 through MW-3 were collected from the wells. After collection, the groundwater from each well was transferred into clean volatile organic analysis (VOA) vials. The VOAs were sealed with Teflon-septum screw caps, labeled, placed in a cooler, and delivered to Entech with chain-of-custody documentation.

All sampling and measurement equipment were washed with Liqui-Nox® (a phosphate free laboratory detergent), and rinsed with tap water at each measurement and sampling interval. Purged and wash water was stored in 55-gallon drums at a designated location at the Site. Sierra's quality assurance/quality control (QA/QC) protocol is presented in Appendix A.

CHEMICAL ANALYSIS

The samples were analyzed for TPHG using the United States Environmental Protection Agency (EPA) modified method 8015, and for benzene, toluene, ethyl benzene, and total xylenes (BTEX) using EPA method 8020. Additionally, the samples were analyzed for fuel oxygenates using EPA method 8260B. Copies of certified analytical results and chain-of-custody documentation are presented in Appendix B. Copies of the field notes are presented in Appendix C.

Sierra has submitted the analytical results to the State Water Board via Geotracker. Electronic Data Delivery Confirmation is presented in Appendix D.

ANALYTICAL RESULTS

Table II presents Summary of the analytical results.

CONCLUSION AND RECOMMENDATIONS

The analytical results obtained during this monitoring event show consistent high concentrations of the gasoline constituents in the groundwater beneath the Site.

Sierra recommends proceeding with the soil and groundwater investigation, and corrective action at the site as soon as possible. Sierra is awaiting a response from ACHSA regarding its addendum to work plan for soil and groundwater investigation.

LIMITATIONS

The content and conclusion provided by Sierra in this report are based on information collected during its assessment/monitoring, which include, but are not limited to field observations and analytical results for the groundwater samples collected at the Site.

Sierra assumes that the samples collected and laboratory results are reasonably representative of the whole Site, which may not be the case at unsampled areas.

This assessment/monitoring was performed in accordance with generally accepted principles and practices of environmental engineering and assessment in Northern California at the time of the work. This report presents our professional opinion based on our findings, technical knowledge, and experience working on similar projects. No warranty, either expressed or implied, is made. The conclusions presented are based on the analytical results and current regulatory requirements. We are not responsible for the impact of any changes in environmental standards or regulations in the future.

Please feel welcome to call us if you have questions.

Very Truly Yours, Sierra Environmental, Inc.

APR 5- 200

Reza Baradaran, PE, G₽

Principal

Mitch Hajiaghai, REA II, CAC Principal

Attachments:

Table I - Groundwater Elevation Data

Table II - Analytical Results for Groundwater Samples

Figure 1 - Site Location Map

Figure 2 - Former UST and Soil Sample Locations
Figure 3 - Groundwater Monitoring Well Locations

Appendix A - QA/QC Protocol

Appendix B - Certified Analytical Results and Chain-of-Custody Documentation

Appendix C - Field Notes

Appendix D - Electronic Data Delivery Confirmation

cc: Mr.Scott O. Seery, ACHCS (1 Copy)

R03-103.06\1stQ2004GWMH04052004

TABLE I **GROUNDWATER ELEVATION DATA**

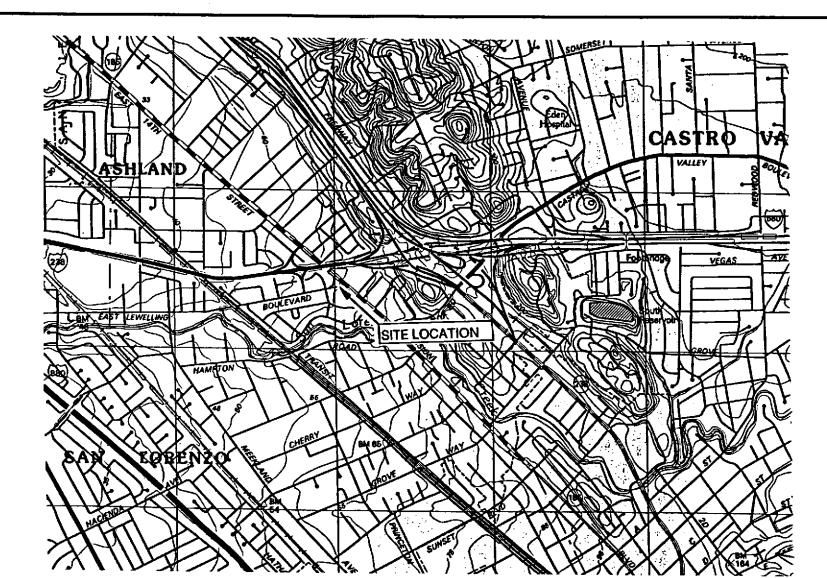
Well ID	Measurement Date	Well Casing Diameter (in)	Well Casing Elevation (ft)	Depth to Water! (ft)	Water Table ² Elevation (ft)
MW1	8-18-00	2	99.46	20.32	79.14
IAIAA I	3-30-01	_ [33.40	20.30	79.16
	6-22-01			21.91	77.55
	9-20-01			23.56	75.90
	12-27-01			22.59	76.87
	9-24-02			23.69	75.77
	12-17-02			22.75	76.71
	4-2-03			21.15	78.31
	6-12-03			20.64	78.82
	9-29-03			22.95	76.51
	12-04-03			23.70	75.76
	03-09-04			19.80	79.66
MW2	8-18-00	2	100.58	21.55	79.03
141447	3-30-01	-	100.00	21.55	79.03
	6-22-01			23.15	77.43
	9-20-01			24.78	75.80
	12-27-01			23.82	76.76
	9-24-02			24.89	75.69
	12-17-02			23.99	76.5 9
	4-2-03			22.32	78.26
	6-12-03			21.84	78.74
	9-29-03			24.15	76.43
	12-04-03			24.91	75.67
	03-09-04			21.05	79.53
MW3	8-18-00	2	99.69	20.68	79.01
INIAAO	3-30-01	2	99.00	20.68	79.01
	6-22-01			22.31	77.38
	9-20-01			23.92	75.77
	12-27-01			22.95	76.74
	9-24-02			24.03	75.66
	12-17-02			23.09	76.60
	4-2-03			21.46	78.23
	6-12-03			20.99	78.70
	9-29-03			23.30	76.39
	12-04-03			24.05	75.64
	03-09-04			20.20	79.49

^{1.}

Depths to groundwater were measured to the top of the well casings Water table elevations were measured in relation to an assumed datum (100') relative elevation 2.

TABLE II
ANALYTICAL RESULTS FOR GROUNDWATER SAMPLES

Sample	Sample Date	Sample	TPHG ¹ ppb ³	Benzene	Toluene ppb	Ethylbenzene ppb	Xylenes ppb	MTBE ² ppb
ID *	Date	Location	ppo	ppb	ppo	, and	РРМ	PPE
MW-1	8-18-00	MW1	280,000	10,000	16,000	11,000	49,000	4,000
*	3-30-01	IAIAA I	98,000	8,600	14,000	6,300	26,000	7,600
*	6-22-01		110,000	7,500	12,000	5,700	24,000	3,800
*	9-20-01		93,000	8,700	11,000	6,300	27,000	4,600
*	12-27-01		140,000	7,700	11,000	6,500	28,000	7,700
•	9-24-02		110,000	4,600	4,000	4,000	18,000	3,400
*	12-17-02		110,000	6,600	6,700	5,400	23,000	2,900
*	4-2-03		89,000	4,800	6,000	4,600	20,000	5,900
*	6-12-03		69,000	4,100	4,300	3,900	17,000	4,700
*	9-29-03		96,000	7,000	7,700	5,100	22,000	6,200
*	12-04-03		110,000	5,800	5,900	4,300	18,000	4,500
*	03-09-04		130,000	5,900	9,700	4,900	22,000	6,000
MW-2	8-18-00	MW2	290,000	3700	990	7,300	26,000	ND⁴
*	3-30-01		47,000	3,200	470	4,500	13,000	3,100
*	6-22-01		57,000	2,500	350	4,200	12,000	1,800
*	9-20-01		42,000	2,300	230	4,300	12,000	2,200
*	12-27-01		70,000	2,900	390	4,800	14,000	2,400
*	9-24-02		110,000	1,600	200	3,400	9,100	2,500
*	12-17-02		66,000	2,400	340	4,600	13,000	1,900
*	4-2-03	ļ	29,000	1,000	130	2,300	5,100	2,000
*	6-12-03		8,700	380	52	790	2,000	2,200
*	9-29-03		52,000	1,700	200	4,500	9,800	2,300
*	12-04-03		66,000	1,500	210	4,500	9,200	1,900
*	03-09-04		61,000	1,500	2,000	4,200	8,500	2,200
MW-3	8-18-00	мwз	46,000	3,200	550	3,700	14,000	2,200
* [3-30-01		30,000	3,300	340	2,800	9,100	4,700
*	6-22-01		35,000	4,000	340	2,900	7,600	4,100
*	9-20-01		30,000	3,800	260	2,500	6,600	5,300
*	12-27-01		39,000	4,400	340	3,000	6,700	5,500
*	9-24-02		53,000	4,100	270	3,100	6,600	6,400
*	12-17-02		40,000	3,600	240	2,200	5,700	5,200
*	4-2-03		24,000	2,000	130	1,800	3,300	3,000
*	6-12-03		26,000	2,700	180	2,000	4,200	5,500
*	9-29-03		39,000	4,000	220	3,200	5,300	4,800 4,400
*	12-04-03		40,000	3,200	180	2,200	4,300	4,400 4,000
*	03-09-04		39,000	3,100	160	2,100	4,400	4,000


1. TPHG = Total Petroleum Hydrocarbons as Gasoline

2. MTBE = Methyl Tertiary Butyl Ether

3. ppb = Parts Per Billion [ppb (µg/liter)

4. ND = Not Detected

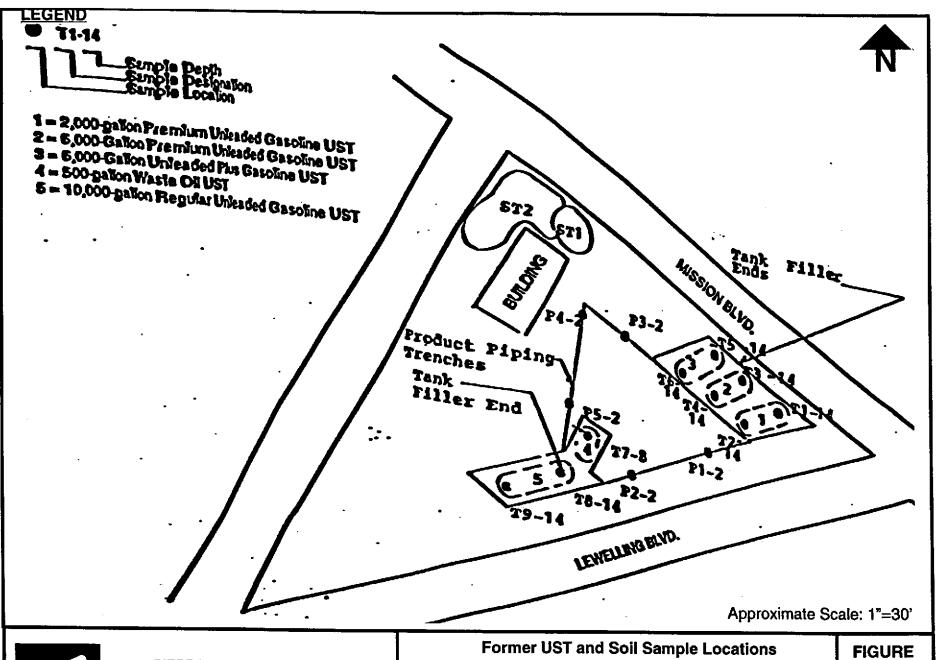
The Sample was analyzed for Fuel Oxygenates using EPA Method 8260B. Analytical result is for MTBE

Source: Hayward Quadrangle, California, 7.5-Minute Series (Topographic)

0' 1,000' 2,000'

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

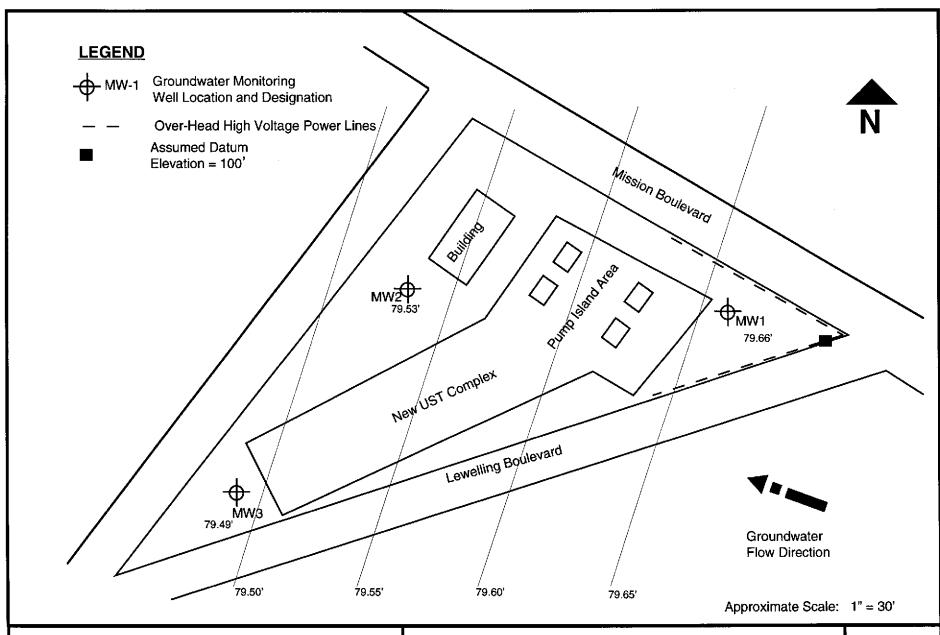
980 W. Taylor St.,San Jose, CA 95126 Phone [408]971-6758 • Fax [408] 971-6759


Site Location Map

First Quarter 2004 Groundwater Monitoring ABE Petroleum LLC

17715 Mission Boulevard • Hayward • California

FIGURE



SIERRA ENVIRONMENTAL, INC. Environmental Consultants

980 W. Taylor Street, San Jose, CA 95126 Phone [408]248-3700 • Fax [408] 248-4700 First Quarter 2004 Groundwater Monitoring
ABE Petroleum LLC

17715 Mission Boulevard • Hayward • California

2

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

980 W. Taylor St., San Jose, CA 95126 Phone [408]971-6758 • Fax [408] 971-6759 **Groundwater Monitoring Well Locations**

First Quarter 2004 Groundwater Monitoring ABE Petroleum LLC

17715 Mission Boulevard • Hayward • California

FIGURE

Appendix A QA/QC PROTOCOL

QA/QC PROTOCOL

Groundwater Level and Well Depth Measurements

Groundwater level and well depths are measured using electrical sounder. An electrical sounder consists of a reel, two-conductor cable, a water sensor, and a control panel with a buzzer. To measure groundwater level, the sensor is lowered into a well. A low current circuit is completed when the sensor makes contact with water. The current in the circuit is then amplified and activates a buzzer which produce an audible signal. Cable markings are divided at 0.05-foot increments. Well depths are measured to the nearest 0.01 foot. Groundwater levels are measured before and after sample collection to ensure data accuracy.

Well Purging

Low flow submersible electrical pumps or bailers are used to purge groundwater monitoring wells. Approximately 3 to 5 well casing volume of water is removed from the well as a measure to stabilize natural, and representative groundwater in each well. pH, electrical conductivity, and temperature of the purged water is measured and recorded at approximately each casing volume interval. Purge water is stabilized when pH is recorded within 0.5 unit, electrical conductivity is within 5 percent, and temperature is within 1.0 degree Celsius.

Groundwater Sampling

Groundwater samples are transferred into appropriate containers provided by certified analytical laboratories. The containers include proper preservatives, and labels with appropriate project information. Groundwater is transferred into the containers with as little agitation as possible. After collection, containers are sealed and checked to ensure that no head space or air bubbles are present in the sample.

After collection, if required, samples are kept in a cooler to be delivered to analytical laboratory with chain-of-custody documentation.

Equipment Decontamination

All sampling equipment are washed with Liqui-Nox® (a phosphate free laboratory detergent), and rinsed with tap water before each sampling event, and at each sampling interval. To reduce the risk of cross contamination, wells which have shown lower levels of contamination historically are purged and sampled first.

Analytical Procedures

Samples are analyzed by an accredited State-certified analytical laboratory using procedures prescribed by United State Environmental Protection Agency (EPA) and other Federal, State, and Local agencies. At minimum a field blank is analyzed with each group of samples for quality assurance measures. At minimum two qualified personnel review analytical results and compare them with historical data for consistency and accuracy.

Field Reports

All field observations are documented in field reports. A field report contain project information, climatic condition, contractor/subcontractor information, field observation, discussions and communications during each particular field activity. Field reports are stored in appropriate project files. Project managers review field reports to obtain necessary information regarding the status of each project on daily basis.

Appendix B CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

March 24, 2004

Mitch Hajiaghai

Sierra Environmental, Inc.

980 West Taylor Street

San Jose, CA 95126

Order:

38167

Date Collected:

3/9/2004

Project Name:

ABE

Date Received:

3/9/2004

Project Number: 03-103.07 P.O. Number:

03-103.07

Project Notes:

On March 09, 2004, samples were received under documentented chain of custody. Results for the following analyses are attached:

<u>Matrix</u>

Method

Comments

Liquid

8260Petroleum

EPA 8260B

EDF

TPH as Gasoline

EPA 8015 MOD. (Purge

BTEX

Test

EDF

EPA 8020

Chemical analysis of these samples has been completed. Summaries of the data are contained on the following pages. USEPA protocols for sample storage and preservation were followed.

Entech Analytical Labs, Inc. is certified by the State of California (#2346). If you have any questions regarding procedures or results, please call me at 408-588-0200.

Sincerely,

Patti Sandrock

QA/QC Manager

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126 Attn: Mitch Hajiaghai Date: 3/17/04
Date Received: 3/9/04
Project Name: ABE
Project Number: 03-103.07
P.O. Number: 03-103.07
Sampled By: Mike Hajiaghai

Certified Analytical Report

Order ID: 38167		Lab Sam	ple ID:	38167-0	001	Clie	Client Sample ID: MW-1				
Sample Time:		Sample Date: 3/9/04					Matrix: Liquid				
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method		
Diisopropyl Ether	ND	5	200	5	1000	μg/L	3/16/04	WMS110576	EPA 8260B		
Ethyl-t-butyl Ether	ND		200	5	1000	μg/L	3/16/04	WMS110576	EPA 8260B		
Methyl-t-butyl Ether	6000		200	1	200	μg/L	3/16/04	WMS110576	EPA 8260B		
tert-Amyl Methyl Ether	ND		200	5	1000	μg/L	3/16/04	WMS110576	EPA 8260B		
tert-Butanol (TBA)	ND		200	10	2000	μg/L	3/16/04	WMS110576	EPA 8260B		
	Surrogate	2		Surroga	te Recover	Y	Control Limits	(%)			
	4-Bromofl	uorobenzen	e	1	06.0		64 - 125				
	Dibromofl	uoromethan	е	1	03.0		23 - 172				
	Toluene-d			1	02.0		70 - 134				

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Analyzed by:

Reviewed by: WE

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126 Attn: Mitch Hajiaghai Date: 3/17/04
Date Received: 3/9/04
Project Name: ABE
Project Number: 03-103.07
P.O. Number: 03-103.07
Sampled By: Mike Hajiaghai

Certified Analytical Report

Order ID: 38167	ple ID:	38167-0	002	Clie	nt Sample ID:	MW-2				
Sample Time:	Sample Date: 3/9/04						Matrix: Liquid			
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method	
Diisopropyl Ether	ND	_	100	5	500	μg/L	3/17/04	WMS110576	EPA 8260B	
Ethyl-t-butyl Ether	ND		100	5	500	μg/L	3/17/04	WMS110576	EPA 8260B	
Methyl-t-butyl Ether	2200		100	l	100	μ g/L	3/17/04	WMS110576	EPA 8260B	
tert-Amyl Methyl Ether	ND		100	5	500	μg/L	3/17/04	WMS110576	EPA 8260B	
tert-Butanol (TBA)	ND		100	10	1000	μg/L	3/17/04	WMS110576	EPA 8260B	
	Surrogate	:		Surrogat	te Recover	y	Control Limits ((%)		
	4-Bromofl	luorobenzene	:	- 9	99.8		64 - 125			
	Dibromofl	luoromethane	e	ç	98.4		23 - 172			
	Toluene-d	8		1	02.0		70 - 134			

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Analyzed by:

Reviewed by: _____

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126 Attn: Mitch Hajiaghai Date: 3/17/04
Date Received: 3/9/04
Project Name: ABE
Project Number: 03-103.07
P.O. Number: 03-103.07
Sampled By: Mike Hajiaghai

Certified Analytical Report

Order ID: 38167	-	Lab Sam	ple ID:	38167-0	03	Clie	Client Sample ID: MW-3				
Sample Time:	Sample Date: 3/9/04						Matrix: Liquid				
Parameter	Result	Flag	DF	PQL	DLR	Units	Analysis Date	QC Batch ID	Method		
Diisopropyl Ether	ND	_	100	5	500	μg/L	3/17/04	WMS110576	EPA 8260B		
Ethyl-t-butyl Ether	ND		100	5	500	μg/L	3/17/04	WMS110576	EPA 8260B		
Methyl-t-butyl Ether	4000		100	1	100	μg/L	3/17/04	WMS110576	EPA 8260B		
tert-Amyl Methyl Ether	ND		100	5	500	μg/L	3/17/04	WMS110576	EPA 8260B		
tert-Butanol (TBA)	ND		100	10	1000	μg/L	3/17/04	WMS110576	EPA 8260B		
	Surrogate	:		Surroga	te Recover	y	Control Limits ((%)			
	4-Bromoff	luorobenzen	e	t	05.0		64 - 125				
	Dibromoff	luoromethan	e	t	02.0		23 - 172				
	Toluene-d	8		t	01.0		70 - 134				

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Analyzed by:

Reviewed by: _____

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126 Attn: Mitch Hajiaghai

Date: 3/10/04 Date Received: 3/9/04 Project Name: ABE Project Number: 03-103.07 P.O. Number: 03-103.07

Sampled By: Mike Hajiaghai

Certified Analytical Report

Order ID: 38167		Lab Sa	ample II	D: 3816	7-001		Client San	iple ID: MV	V-1	
Sample Time:		Sam	ple Dat	e: 3/9/0	14					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method
Benzene	5900		500	0.5	250	μg/L	N/A	3/9/04	WGC43078	EPA 8020
Toluene	9700		500	0.5	250	μg/L	N/A	3/9/04	WGC43078	EPA 8020
Ethyl Benzene	4900		500	0.5	250	μg/L	N/A	3/9/04	WGC43078	EPA 8020
Xylenes, Total	22000		500	1	500	μg/L	N/A	3/9/04	WGC43078	EPA 8020
•					Surroga	ate	Surr	ogate Recovery	Cont	rol Limits (%)
				4-B	romofluore	obenzene		111.5	6	5 - 135
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	OC Batch ID	Method
TPH as Gasoline	130000	Х	500	50	25000	μg/L	N/A	3/9/04	WGC43078	EPA 8015 MOD (Purgeable)
					Surroga	ate	Surr	ogate Recovery	Cont	rol Limits (%)
				4-B	romofluore	obenzene		116.3	6.	5 - 135
Comments TPM as	Gasolina valua	espected p	ooribly no	ad Casalir						

Comment:

TPH as Gasoline value reported possibly aged Gasoline.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

031/6104 Date Analyst

D3/10/04

Supervisor

Date

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126

Attn: Mitch Hajiaghai

Date: 3/10/04
Date Received: 3/9/04
Project Name: ABE
Project Number: 03-103.07
P.O. Number: 03-103.07

Sampled By: Mike Hajiaghai

Certified Analytical Report

Order ID: 38167		Lab Sa	mple I	D: 3816	7-002		Client San	ple ID: MV	7-2		
Sample Time:		Sam	ple Dat	e: 3/9/0	14		Matrix: Liquid				
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method	
Benzene	1500	v	200	0.5	100	μg/L	N/A	3/9/04	WGC43078	EPA 8020	
Toluene	2000		200	0.5	100	μg/L	N/A	3/9/04	WGC43078	EPA 8020	
Ethyl Benzene	4200		200	0.5	100	μg/L	N/A	3/9/04	WGC43078	EPA 8020	
Xylenes, Total	8500		200	1	200	μg/L	N/A	3/9/04	WGC43078	EPA 8020	
					Surroga		Surr	ogate Recovery	Conti	ol Limits (%)	
				4-B	romofluore			119.3	6	5 - 135	
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	OC Batch ID	Method	
TPH as Gasoline	61000	X	200	50	10000	μg/L	N/A	3/9/04	WGC43078	EPA 8015 MOD (Purgeable)	
					Surroga	ite	Surre	ogate Recovery	Conti	ol Limits (%)	
				4-B	romofluoro			135.0	6	5 - 135	

Comment:

TPH as Gasoline value reported possibly aged Gasoline.

DF = Dilution Factor ND = Not Detected DLR = Detection Limit Reported PQL = Practical Quantitation Limit

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

Analyst Date Supervisor Date

Environmental Analysis Since 1983

3334 Victor Court, Santa Clara, CA 95054

Phone: (408) 588-0200 Fax: (408) 588-0201

Sierra Environmental, Inc. 980 West Taylor Street San Jose, CA 95126 Attn: Mitch Hajiaghai

Date: 3/24/2004 Date Received: 3/9/2004 Project Name: ABE Project Number: 03-103.07 P.O. Number: 03-103.07 Sampled By: Mike Hajiaghai

Certified Analytical Report

Order ID: 38167	mple II): 3816	7-003		Client Sam	iple ID: MV	7-3					
Sample Time:	Sample Date: 3/9/2004						Matrix: Liquid					
Parameter	Result	Flag	DF	PQL	DLR	Units	Extraction Date	Analysis Date	QC Batch ID	Method		
Benzene	3100	-	100	0.5	50	μg/L	N/A	3/23/2004	WGC43089	EPA 8020		
Toluene	160		100	0.5	50	μg/L	N/A	3/23/2004	WGC43089	EPA 8020		
Ethyl Benzene	2100		100	0.5	50	μg/L	N/A	3/23/2004	WGC43089	EPA 8020		
Xylenes, Total	4400		100	1	100	μg/L	N/A	3/23/2004	WGC43089	EPA 8020		
Alfonos, rous					Surroga		Surr	ogate Recovery	Cont	rol Limits (%)		
				4-B	romofluoro			126.6	6	5 - 135		
							Extraction	Analysis	OC Batch ID	Method		
Parameter	Result	Flag	DF	PQL	DLR	Units	Date	Date	-			
TPH as Gasoline	39000		100	50	5000	μg/Ĺ	N/A	3/23/2004	WGC43089	EPA 8015 MOD (Purgeable)		
					Surroga	ite	Surr	ogate Recovery	Conti	rol Limits (%)		
				4-Bı	romofluoro			145.4	6.	5 - 135		

Comment:

Comment:

Surrogate recovery was outside QC limit due to matrix interference.

DF = Dilution Factor

ND = Not Detected

DLR = Detection Limit Reported

PQL = Practical Quantitation Limit

Analyst

Supervisor

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

		Q	uality	Conti	rol - Method Blani	(
Prep Batch ID: Prep Date:						QC Batch ID: Matrix:	
Method: EPA 8260B						Analysis Date:	3/16/2004
Parameter	Result	DF	PQL	DLR	Units		
1,2-Dibromoethane (EDB)	ND	1	0.5	0.5	μg/L		
1,2-Dichloroethane	ND	1	0.5	0.5	μg/L		
Benzene	ND	1	0.5	0.5	μg/L		
Diisopropyl Ether	ND	1	5	5	μg/L		
Ethyl Benzene	ND	1	0.5	0.5	μg/L		
Ethyl-t-butyl Ether	ND	1	5	5	μg/L		
Methyl-t-butyl Ether	ND	1	1	1	μg/L		
tert-Amyl Methyl Ether	ND	1	5	5	μg/L		
tert-Butanol (TBA)	ND	1	10	10	μg/L		
Toluene	ND	1	0.5	0.5	μg/L		
Xylene, m+p	ND	1	1	1	μg/L		
Xylene, o	ND	1	0.5	0.5	μg/L		
Analysis performed by Entech A	Analytical Labs,	lnc. (CA	ELAP #2	346)	Surrogate 4-Bromofluorobenzene	Surrogate Recovery 113.0	Control Limits (% 64 - 125
() ₋					Dibromofluoromethane	117.0	23 - 172
QC Reviewed by:	_				Toluene-d8	107.0	70 - 134

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control - Laboratory Control Spike / Duplicate Results

Prep Batch ID:

Conc. Units: µg/L

QC Batch ID: WMS110576

Prep Date:

Analysis Date: 3/16/2004

Matrix: Liquid

Method EPA 8260B	Blank Result	Spike Amount	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
LCS								
1.1-Dichloroethene	ND	20.	18.3	LCS	91.5			60 - 132
Benzene	ND	20.	23.5	LCS	117.5			77 - 154
Chlorobenzene	ND	20.	20.8	LCS	104.0			66 - 14l
Methyl-t-butyl Ether	ND	20.	25.	LCS	125.0			58 - 127
Toluene	ND	20.	20.1	LCS	100.5			47 - 137
Trichloroethene	ND	20.	20.3	LCS	101.5			57 - 159
Surrogate	Surrogate Reco	overy	Control Limit	s (%)				
4-Bromofluorobenzene	110.0		64 - 125	5				
Dibromofluoromethane	113.0		23 - 172	!				
Toluene-d8	99.6		70 - 134	ļ				
LCSD								
1,1-Dichloroethene	ND	20.	19.7	LCSD	98.5	7.4	25	60 - 132
Benzene	ND	20.	25.1	LCSD	125.5	6.6	25	77 - 154
Chlorobenzene	ND	20.	22.6	LCSD	113.0	8.3	25	66 - 141
Methyl-t-butyl Ether	ND	20.	25.2	LCSD	126.0	0.8	25	58 - 127
Toluene	ND	20.	21.6	LCSD	108.0	7.2	25	47 - 137
Trichloroethene	ND	20.	21.6	LCSD	108.0	6.2	25	57 - 159
Surrogate	Surrogate Reco	overy	Control Limit	s (%)				
4-Bromofluorobenzene	108.0		64 - 125	i				
Dibromofluoromethane	112.0		23 - 172	!				
Toluene-d8	99.6		70 - 134					

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

QC Reviewed by:

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

		Q	uality	Cont			
Prep Batch ID: Prep Date:						QC Batch ID: Matrix:	
Method: EPA 8015 MC	D. (Purgeat	ole)				Analysis Date:	3/9/2004
Parameter	Result	DF	PQL	DLR	Units		
TPH as Gasoline	ND	1	50	50	μg/L		
Analysis performed by Entech	Analytical Labs	, Inc. (CA	ELAP #2	346)	Surrogate 4-Bromofluorobenzene	Surrogate Recovery 97.0	Control Limits (% 65 - 135
QC Reviewed by:							2/0/2004
Method: EPA 8020						Analysis Date:	3/9/2004
Parameter	Result	DF	PQL	DLR	Units		
Benzene	ND	1	0.5	0.5	μg/Ł		
Ethyl Benzene	ND	1	0.5	0.5	μg/L		
Toluene	ND	1	0.5	0.5	μg/L		
Xylenes, Total	ND	1	1	l	μg/L		
Analysis performed by Entech	Analytical Labs	, Inc. (CA	ELAP #2	346)	Surrogate 4-Bromofluorobenzene	Surrogate Recovery 101.1	Control Limits (% 65 - 135
QC Reviewed by:							

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control - Laboratory Control Spike / Duplicate Results

Prep Batch ID:

Conc. Units: µg/L

QC Batch ID: WGC43078

Prep Date:

Analysis Date: 3/9/2004

Matrix: Liquid

_	Blank	Spike	Spike				RPD	Recover
Parameter	Result	Amount	Result	QC Type	% Recovery	RPD	Limits	Limits
LCS								
TPH as Gasoline	ND	250.	239.	LCS	95.6			65 - 135
Surrogate	Surrogate Rec	covery	Control Limi	ts (%)				
4-Bromofluorobenzene	90.2		65 - 13	5				
LCSD								
TPH as Gasoline	ND	250.	235.	LCSD	94.0	1.7	25	65 - 135
Surrogate	Surrogate Rec	covery	Control Limit	ts (%)				
4-Bromofluorobenzene	87.4		65 - 13 :	5				
Method EPA 8020								
	Blank	Spike	Spike				RPD	Recovery
Parameter	Result	Amount	Result	QC Type	% Recovery	RPD	Limits	Limits
LCS								
Benzene	ND	8.	7.28	LCS	91.0			65 - 135
Ethyl Benzene	ND	8.	7.33	LCS	91.6			65 - 135
Foluene Coluene	ND	8.	7.56	LCS	94.5			65 - 135
(ylenes, total	ND	24.	22.4	LCS	93.3			65 - 135
Surrogate	Surrogate Rec	overy	Control Limit	s (%)				
4-Bromofluorobenzene	101.3		65 - 135	5				
.CSD			-					
Benzene	ND	8.	7.18	LCSD	89.8	1.4	25	65 - 135
thyl Benzene	ND	8.	7.15	LCSD	89.4	2.5	25	65 - 135
`oluene	ND	8.	7.31	LCSD	91.4	3.4	25	65 - 135
(ylenes, total	ND	24.	21.6	LCSD	90.0	3.6	25	65 - 135
Surrogate	Surrogate Reco	overy	Control Limits	s (%)				
4-Bromofluorobenzene	101.3	-	65 - 135					

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

QC Reviewed by:

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control - Matrix Spike / Duplicate Results

Prep Batch ID:

Conc. Units: µg/L

QC Batch ID: WGC43078

Prep Date:

Analysis Date: 3/9/2004

Matrix: Liquid

Prep Date:		Anaiysis i	Date: 3/9/20	04	Matrix: Liquid			
Method EPA 8015 MOD. (Pur	geable)							
Parameter	Blank Result	Spike Amount	Spike Result	QC Type	% Recovery	RPD	RPD Limits	Recovery Limits
MS SampleNumber: 38113-	009							
TPH as Gasoline	ND	250.	248.2	MS	99.3			65 - 135
Surrogate	Surrogate Re	covery	Control Limi	ts (%)				
4-Bromofluorobenzene	87.7		65 - 13	5				
MSD SampleNumber: 38113-	009							
TPH as Gasoline	ND	250.	246.8	MSD	98.7	0.6	25	65 - 135
Surrogate	Surrogate Rec	covery	Control Limi	ts (%)				
4-Bromofluorobenzene	87.6		65 - 13	5				
Method EPA 8020								
Parameter	Biank Result	Spike Amount	Spike Result	QC Туре	% Recovery	RPD	RPD Limits	Recovery Limits
MS SampleNumber: 38113-4	009							
Benzene	ND	2.8	2.54	MS	90.3			65 - 135
Ethyl Benzene	ND	3.7	3.25	MS	88.6			65 - 135
Toluene	ND	16.4	16.01	MS	97.4			65 - 135
Xylenes, total	ND	19.5	17.36	MS	88.8			65 - 135
Surrogate	Surrogate Rec	overy	Control Limit	ts (%)	*			
4-Bromofluorobenzene	103.3		65 - 13	5				
MSD SampleNumber: 38113-0	009							
Benzene	ND	2.8	2.53	MSD	90.0	0.4	25	65 - 135
Ethyl Benzene	ND	3.7	3.27	MSD	89.1	0.6	25	65 - 135
Foluene Foluene	ND	16.4	15.98	MSD	97.3	0.2	25	65 - 135
Xylenes, total	ND	19.5	17.46	MSD	89.4	0.6	25	65 - 135
Surrogate	Surrogate Rec	overy	Control Limit	s (%)				

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

103.8

4-Bromofluorobenzene

QC Reviewed by:

65 - 135

3334 Victor Court • Santa Clara, CA 95054 • (408) 588-0200 • Fax (408) 588-0201

Quality Control - Method Blank										
Prep Batch ID: Prep Date:		QC Batch ID: Matrix:								
Method: EPA 8015 MC	D. (Purgeal	ole)				Analysis Date:	3/23/2004			
Parameter	Result	DF	PQL	DLR	Units	-				
TPH as Gasoline	ND	1	50	50	μg/L					
Analysis performed by Entech	Analytical Labs	, Inc. (CA	ELAP #2	346)						
QC Reviewed by:										
Method: EPA 8020						Analysis Date:	3/23/2004			
Parameter	Result	DF	PQL	DLR	Units					
Benzene	ND	1	0.5	0.5	μg/L					
Ethyl Benzene	ND	1	0.5	0.5	μg/L					
Toluene	ND	1	0.5	0.5	ua/l					

Analysis performed by Entech Analytical Labs, Inc. (CA ELAP #2346)

QC Reviewed by:

Xylenes, Total

Project Name: ABE Project No: 03-103.07 Date: 3-09-04 Project Location: 17715 Mission BLVD. Client: ABE Sampler: Mills the Singlese										inglue.	
Sample ID	Date Sampled	Sampling Time	Matrix	Nº of Containers	Analysis Requested				Turna	round Time	
					8015/8020 TPHG BTEX	8015 TPHD	Fuel Oxygenate 8260B			The second secon	
110-1	3/9/04		Water	4			\times	381	67-001	24-hour Other	Normal
1W~ 2		,		X			>		002	24-hour Other	Nortnal
1W~7 YW~3	/	_		•	><		\times		003	24-hour Other	Normat *
									:	24-hour Other	Normal
										24-hour Other	Normal
										24-hour Other	Normal
										24-hour Other	Normal
emarks:	uples	Con	tain	Prese	ervet	ive					
elinquish	edby	of Han	in the	Prese	4 12	Time 2,130	Redeived by	had		Date 3 9 6 4	Tin 久3

Appendix C FIELD NOTES

GROUNDWATER MONITORING DATA FORM Project No: 40-4 03-103-03 Date: _ **Project Name:** _ABE Well Nº: Mike & Mazyar Field Personnel: Sunny Weather: **Project Location:** PURGE Total Well Depth to Water Column Multiplier Casing Volume Purged **WATER VOLUME** Depth (ft) Water (ft (ft) **Casing Diameter** Volume (gal) (gal) CALCULATION 33.25 19.80' 2" 6" 13.45 2.2 6.6 0.16^{-1} 0.64 1.44 Bailer Measuring Reference: Purge Method: Time Volume Purged (gal) 2.2 4.1 6,6 0 Temperature (° F) 73.8 728 72.1 72,5 рH 6.05 6.15 6113 6.10 Specific Conductivity (umhos/cm) 4300 4000 OUPY 4300 Sarry. Turbidity/Color 4 Odor Yes 9 Comments: Sheins and Hic soler were detected/obserned

GROUNDWATER MONITORING DATA FORM

Project No: _03-14	03.03.			Date: 3 - 9 - 04							
Project Name: _A	BE			Well Nº: MW2							
Field Personnel:	Mik	e & MAZ	2.yar	Weather: Sunny							
Project Location:											
PURGE WATER VOLUME	Total Well Depth (ft)	Depth to Water (ft	Water Column (ft)	Multip Casing Di		Casing Volume (gal)	Purged Volume (gal)				
CALCULATION	33.75'	21.05	17 47	2" 4"	6"	20	6.0				
		21.03	10.1	0.16 0.64	1.44	α					
Purge Method: Bailer Measuring Reference: TOC											
Time											
Volume Purged (gal)		6	2	y	6						
Temperature (° F)		74.6	72.1	3 71.3	71-0						
рН		5.74	6.05	610	6.05						
Specific Conductivity (u	mhos/cm)	4000	3700	4300	4300						
Turbidity/Color		LZM	-	-)	一						
Odor		Xes	>	→	-						
comments: Sheen and odor were detected and observed											

SIERRA ENVIRONMENTAL, INC. Environmental Consultants

GROUNDWATER MONITORING DATA FORM

Project No: _ 03-103.03						Date:						
BE			Well Nº: MW3									
Field Personnel: Mike & Mazzar						Weather:						
	•											
						<u> </u>						
Total Well Depth (ft)	Depth to Water (ft	Water Column (ft)	Multiplier Casing Diameter			Casing Volume (gal)	Purged Volume (gal)					
33.75'	20201	13.6	2"	4"	6"	2.2	6.6					
			0.16	0.64	1.44							
(Za)	10-					<u>ጉ</u>						
	<u>(ei</u>	Measuri	ng Refe	rence:		<u> </u>						
						1						
					·····		_					
	0	2.2	- 4	.4	6.6							
	71.4	71.2	, To	٦ · ا	70.5		·					
	5.80	5.97	6	15.	6.18		·					
mhos/cm)	530c	450c	5/	100	5300							
	Lichtgra		>	>	->							
	Yes		> _	->	>							
heen	and HO	C Odor	<u> </u>	vere	obser	red/Det	Leted					
	Total Well Depth (ft) 33.75'	Total Well Depth to Depth (ft) Sailer Co 71.4 5.80 Thos/cm) Sacception	Total Well Depth to Water Column (ft)	### Well Nº M:Kc c Mazar Weather	### Well No. :	Measuring Reference:	Measuring Reference: Measuring Reference:					

Appendix D ELECTRONIC DATA DELIVERY CONFIRMATION

AB2886 Electronic Delivery

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 8067213594

Date/Time of Submittal: 3/29/2004 10:20:50 AM

Facility Global ID: T0600102154

Facility Name: ABE PETROLEUM

Submittal Title: First Quarter 2004 Groundwater Monitoring

Submittal Type: GW Monitoring Report

Logged in as MITCHHAJIAGHAI (AUTH_RP)

CONTACT SITE ADMINISTRATOR.