

RECEIVED

1:23 pm, Aug 02, 2010

Alameda County Environmental Health

July 30, 2010

Ms. Barbara Jakub Alameda County Health Agency 1131 Harbor Bay Parkway Alameda, California 94502

Re: Assessment Report, Site Conceptual Model Update, and Additional Assessment Workplan

76 Station no. 5781 3535 Pierson Street Oakland, CA

Dear Ms. Jakub,

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please contact me at (916) 558-7612.

Sincerely,

Bill Bough

Bill Borgh

Site Manager – Risk Management and Remediation

Attachment

July 30, 2010

Ms. Barbara Jakub Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502

RE: ASSESSMENT REPORT,
SITE CONCEPTUAL MODEL UPDATE, AND
ADDITIONAL ASSESSMENT WORKPLAN

76 Service Station NO. 5781 3535 Pierson Street Oakland, California

Dear Ms. Jakub,

On behalf of ConocoPhillips Company (COP), Delta consultants (Delta) has prepared and is submitting this Assessment Report, Site Conceptual Model Update, and Additional Assessment Workplan for 76 service station No. 5781 in Oakland, California. This report has been prepared in response to a Alameda County Environmental Health (ACEH) letter dated May 21, 2010.

Please Contact Jan Wagoner at (916) 503-1275 if you have any questions or comments.

Sincerely,

DELTA CONSULTANTS

Jan Wagoner Senior Project Manager

Enclosure:

Cc: Bill Borgh – COP (electronic copy only)

Mr. Keith Matthews, Oakland Fire Department

ASSESSMENT REPORT, SITE CONCEPTUAL MODEL UPDATE, AND ADDITIONAL ASSESSMENT WORKPLAN

76 SERVICE STATION NO. 5781 3535 PIERSON STREET OAKLAND, CALIFORNIA

July 30, 2010

Prepared for:

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

The material and data in this report were prepared under the supervision and direction of the undersigned.

DELTA CONSULTANTS

Alan Buehler

Staff Geologist

Caitlin Morgan Staff Scientist

Jan Wagoner

Senior Project Manager

ano B. Banard

James B. Barnard

California Registered Professional Geologist No. 7478

1.0 INTRODUCTION

Delta Consultants, Inc. (Delta), on behalf of ConocoPhillips (COP) has prepared this Assessment Report, Site Conceptual Model Update, and Additional Assessment Workplan for 76 Service Station No. 5781, located at 3535 Pierson Street in Oakland, California (site) (**Figure 1**). This report provides a summary of current and historical assessment and a discussion regarding current and future distribution of petroleum hydrocarbons reported in soil and groundwater beneath the site. The activities presented in this report are in response to an Alameda County Environmental Health (ACEH) letter dated May 21, 2010 (Appendix A).

The key elements of this report are:

- Site background and regional hydrogeologic setting
- Previous assessment activities
- Current storm drain and soil and groundwater assessment summary
- Site Conceptual Model including
 - Nature and extent of the petroleum hydrocarbon source(s)
 - Contaminant fate and transport characteristics
 - Potential exposure pathways
 - Potential receptors
 - Identification of data gaps and recommendations
- Additional Assessment Workplan

2.0 SITE BACKGROUND

2.1 SITE LOCATION

The site (Alameda County Assessor's Parcel No. 48A-7070-70-1) is located on a triangular shaped property formed by the intersection of Pierson Street and Highway 580 freeway off-ramp in Oakland, California.

2.2 SITE DESCRIPTION

The subject site is an active gasoline service station located on the northwest corner of Pierson Street and MacArthur Boulevard in Oakland, California. Current ownership is Mr. Delong Liu. Station facilities currently include two gasoline underground storage tanks (USTs), a 550-gallon waste oil UST, three dispenser islands under canopies, and a service station building. The product dispensers utilize a balanced vapor recovery system. Site improvements and current monitoring wells are presented on Figure 2.

Historical data indicates that the site has been a service station since 1947. Renovation of the site first occurred in 1967, when the size of the site expanded to its current configuration.

The site is bounded to the west by a church property, to the north by a Highway 580 off-ramp, to the east by MacArthur Boulevard, and to south by Pierson Street. The site is located in a primarily residential area, at an elevation of approximately 150 feet above mean sea level (MSL). The site is located in a small valley with a surface slope to the east. Regional topography slopes to the west-southwest towards San Francisco Bay, located approximately 3 miles to the west.

2.3 REGIONAL GEOLOGIC SETTING

The site is located near the base of the Berkeley Hills. Gettler-Ryan Inc., in their report dated July 14, 2003, provided the following description of the regional geologic setting;

Based on review of regional geologic maps, the site is underlain by undivided Quaternary deposits and is closely adjacent to a mapped geologic contact with the upper member of the Quaternary San Antonio Formation. In addition, the site is situated approximately 1,200 to 2,800 feet southwest of mapped splays of the active Hayward Fault Zone.

2.4 REGIONAL HYDROGEOLOGIC SETTING

The site is located at the eastern edge of the East Bay Plain Groundwater Subbasin (DWR Bulletin 118). The subbasin consists of a narrow area approximately 25 miles long and 2 to 7 miles wide along the eastern shore of San Francisco Bay. The East Bay Plain subbasin aguifer system consists of unconsolidated sediments of Quaternary age. Numerous creeks cross the subbasin capturing runoff from foothills east of the Hayward fault. groundwater flow direction is east to west, generally reflecting the local topography. Flow direction and velocity are influenced by buried stream channels that are typically oriented in an east-west direction (RWQCB, June The total depth of domestic wells within the subbasin reportedly ranges from 32 to 525 feet with an average of 206 feet. Total depth of municipal and irrigation wells range from 29 to 630 feet with an average of 191 feet (DWR Bulletin 118). The California Department of Water Resources GeoTracker database, prior to removal of well information, indicated the presence of four active water wells nearby the site. The four active wells are reported to be located in East Bay Regional Park District land, located approximately 2,193 feet northeast of the site.

2.5 HYDROGEOLOGIC CONDITIONS

The site is underlain by fine-grained silt and clay. Historical boring logs are presented in Appendix B. The fine-grained soil contains scattered deposits of

clayey sand and silty sand. The coarsest deposits were encountered in boring MW-2 located north of the fuel USTs. Boring MW-2 encountered two layers of silty gravel and gravel from 7 to 12 feet bgs and from 17.5 to 20.5 feet bgs. A site map with cross sections is shown as Figure 3. Geologic cross-sections A-A' through E-E' are shown as Figures 4 through 8.

During onsite activities, groundwater at the site has been encountered in borings between 15 and 33 feet bgs. Other site borings drilled to similar depths were dry upon completion.

During second quarter 2010 sampling activities on June 16, 2010, depth to groundwater ranged from 11.13 feet below top of casing (TOC) in well MW-4, to 17.85 feet below TOC in well MW-A. Groundwater flow direction based on the three existing wells (MW-A, MW-4, and MW-5) was northwest at a calculated hydraulic gradient of 0.1 feet per foot (ft/ft). This groundwater flow and gradient is suspect when compared to the topography in the vicinity of the site. This discrepancy may be related to different screen intervals for MW-4 and MW-5 (10-20 feet bgs and 15-25 feet bgs, respectively) when compared to previous well MW-A (25-45 feet bgs).

Groundwater flow direction and gradient beneath the site has not been assessed at this time. Perched zones of groundwater atop impermeable clayey soil materials may exist across the site, as indicated by the sporadic encountering of groundwater at depths of approximately 33 feet bgs (MW-A, EB-1, EB-2, SB-1, and SB-5). Groundwater may also be confined or semiconfined as indicated by conditions in well MW-A.

3.0 PREVIOUS ASSESSMENT

Historical sampling locations are shown on Figure 9. Historical soil analytical results are presented on Table 1. Historical grab groundwater analytical results are presented on Table 2. Historical groundwater monitoring and sampling results are included as Appendix C.

Historical and current soil analytical results exceeding Environmental Screening Levels (ESLs) are shown on Figure 10. Historical and current grab groundwater analytical results are shown on attached Figure 11.

3.1 REMOVAL OF FORMER USTS (1989)

Two 10,000-gallon fuel USTs, one 280-gallon waste oil UST, and associated product piping were removed in December 1989. No holes or cracks were observed in the gasoline USTs. The waste oil UST contained one hole of approximately 1.25 square inches in size. A total of seven soil samples were collected from the fuel UST cavity (A1, A2, B1, SW1, and SW2) and the

associated product piping (P1 and P2). One soil sample (WO1) was collected from beneath the waste oil UST.

Total petroleum hydrocarbon as gasoline (TPHg) was reported in sidewall samples from the UST pit at a depth of 10.5 feet below ground surface (bgs) at 15 milligrams per kilogram (mg/kg) and 46 mg/kg. Benzene was reported in one of the two samples at 0.65 mg/kg. TPHg was reported in two of three soil samples from the base of the excavation (12.5 feet bgs) at 3.5 mg/kg and 5.8 mg/kg. Benzene was reported in one of three samples at 0.10 mg/kg. TPHg and benzene were below laboratory reporting limits in the two soil samples from beneath the product piping.

The soil sample from beneath the waste oil tank contained 8,300 mg/kg total petroleum hydrocarbons as diesel (TPHd), 48,000 mg/kg total oil and grease (TOG), 670 mg/kg TPHg, and 5.4 mg/kg benzene. The sample also contained 10 parts per billion (ppb) 1,2-dichlorobenzene, 77 ppb tetrachloroethene, and 15 ppb 1,1,1-trichloroethane. The sample contained 8.3 mg/kg chromium, 340 mg/kg lead, and 70 mg/kg zinc.

3.2 WASTE OIL UST PIT OVER-EXCAVATION (1990)

In February 1990, the waste oil UST pit was over-excavated to 16 feet bgs and 35 feet to the east, 10 feet to the west, 15 feet to the south, and 2 feet to the north. Soil samples were collected from the base of the deepened excavation (W01-16) along with four sidewall samples (SWA through SWD). TOG was reported in samples SWA (adjacent to the site building) at 17,000 mg/kg, sample SWB at 4,100 mg/kg, and in sample SWD at 6,400 mg/kg. TOG was detected in sample WO-16 at 910 mg/kg. The highest concentrations of TPHd, TPHg, and benzene were reported in sample SWA at 1,400 mg/kg, 220 mg/kg, and 2.3 mg/kg, respectively. Further excavation was terminated due to the presence of underground sewer and gas lines to the south and west and the site building to the north side.

3.3 SOIL BORINGS (1990)

Three soil borings (MW-1 through MW-3) were drilled to collect soil samples in April 1990. Boring MW-1 was located adjacent to the former waste oil UST. Borings MW-2 and MW-3 were located adjacent to the gasoline USTs in the eastern portion of the site. Borings were drilled to depths of 50 feet, 39.5 feet, and 40 feet bgs, respectively. The borings had been intended to be converted to groundwater monitoring wells, however groundwater was not encountered and as a result, the boreholes were backfilled with grout. TPHd, TPHg, benzene, toluene, total xylenes, and ethylbenzene (BTEX compounds) were all below the laboratory's indicated reporting limits.

In July 1990, two additional borings (EB1 and EB2) were drilled in the area of the former waste oil UST. Borings were drilled to depths of 34.5 feet and 38 feet bgs. Groundwater was encountered at depths of 33.5 and 36.7 feet bgs. Water samples were collected from each boring. TPHd and TOG were below the laboratory's indicated reporting limits in all soil samples collected. TPHg and benzene were reported in only one sample at concentrations of 1.2 mg/kg and 0.009 mg/kg, respectively. 1,1,1-trichloroethane was reported in the 28.5-foot sample of boring EB1.

The groundwater sample from boring EB1 contained 6.7 micrograms per liter (μ g/L) TPHd. TPHg and benzene were below laboratory reporting limits. TPHg and TPHd were below the laboratory's indicated reporting limits in the sample from EB2. The sample contained 0.61 μ g/L benzene. TOG was below the laboratory's indicated reporting limits in both samples.

3.4 MONITORING WELL INSTALLATION (1990)

On December 11, 1990, one two-inch diameter monitoring well (MW-A) was installed approximately 15 feet south of the former waste oil UST. Groundwater was first encountered at a depth of approximately 33 feet bgs. The well was installed to a depth of 45 feet bgs and screened from 25 feet to 45 feet bgs. Depth to groundwater in the well on December 13, 1990 was 24 feet bgs and 19.40 feet on December 18, 1990. A groundwater sample collected on December 18, 1990 contained 73 $\mu g/L$ TPHd. TPHg , TOG, and BTEX compounds were below the laboratory's indicated reporting limits.

3.5 BASELINE SITE ASSESSMENT (2003)

A baseline site assessment was performed in October 2003 as part of property transfer. Five borings (SB-1 through SB-5) were drilled adjacent to the site dispensers, fuel USTs, and new waste oil UST. Borings SB-1 through SB-3 were drilled to depths of 44 feet, 54 feet, and 54 feet bgs, respectively. Borings SB-4 and SB-5 were drilled to depths of 24 feet and 29 feet, respectively. Total purgeable petroleum hydrocarbons (TPPH) was only reported in one soil sample (SB-3 @ 45') at 1,100 mg/kg. Boring SB-2 was located adjacent to the southern dispenser island. Benzene and fuel oxygenates were below the laboratory's indicated reporting limits in all soil samples.

Groundwater samples were collected from borings SB-1, SB-4, and SB-5. TPPH, BTEX compounds, and fuel oxygenates were below the laboratory reporting limits in the samples from borings SB-1 and SB-4. The groundwater sample from boring SB-5 located adjacent to the waste oil UST was analyzed for lead and TOG. Lead was reported at 0.18 milligrams per liter (mg/L). TOG was below the laboratory reporting limit.

3.6 REMOVAL OF WASTE OIL UST (2008)

The second generation waste oil tank (WOT) was removed in April 2008. A total of four soil samples were collected from the WOT cavity (WO1 - WO4). One base sample was collected from beneath the WOT at a depth of 9.0 feet bgs, and three sidewall samples were collected at a depth of either 6.5 or 7.0 feet bg. A fourth sidewall sample, from the southeast wall of the pit, was unable to be collected due to proximity of the station building. A composite soil sample (Composite) was also collected from materials stockpiled during removal and sampling activities.

No petroleum hydrocarbons (including TPHd) or fuel oxygenates, total oil and grease, VOCs, SVOCs, or PCBs were reported in any of the four soil samples, or the composite sample. Samples were also analyzed for CAM 17 metals, and each of the five samples contained arsenic at a concentration above the RWQCB ESL of 1.5 mg/kg (commercial). Concentrations ranged from 3.2 mg/kg to 6.2 mg/kg, and appear to represent background conditions at the site. All other reported CAM 17 metal concentrations were below the commercial ESLs set by the RWQCB.

No over-excavation activities were conducted, the WOT was not replaced, and the stockpiled materials were backfilled into the remaining cavity following receipt of laboratory results.

3.7 SOIL BORINGS (2010)

On March 11th and 12th, 2010, Delta oversaw the advancement of three soil borings in the vicinity of former waste oil underground storage tanks near the west corner of the station building (SB-7, SWC-2, SWD-2), and one soil boring to the east of the site's current fuel USTs (SB-6).

TPHg was present at 2,500 μ g/L in a grab groundwater sample collected from boring SB-6 indicating residual TPHg in the area southeast of the USTs.

TOG was present in soils samples collected at 10 feet bgs in samples collected from borings SWC-2 and SWD-2 near the former waste oil USTs at concentrations of 7,700 μ g/L and 870 μ g/L, respectively. However, samples collected from these borings at 15 ft bgs in these two borings were at or below the laboratory's indicated reporting limits. Also, groundwater samples collected from borings SB-7 and SWC-2 reported TOG levels below laboratory indicated reporting limits. The only other petroleum hydrocarbon reported in groundwater above the laboratory's indicated reporting limits was TPHd in borings SWC-2 and SB-7 at 200 μ g/L and 65 μ g/l, respectively. This indicates that petroleum hydrocarbons are not migrating vertically in soil or laterally in groundwater and no additional assessment is needed in the vicinity of the former waste oil USTs.

4.0 CURRENT ASSESSMENT

4.1 STORM DRAIN ASSESSMENT

On February 16^{th} , 2010, during utility locating activities prior to the March 2010 assessment activities detailed above (section 3.7), Delta and subcontractor personnel identified a hydrocarbon odor emanating from a storm drain manhole, now identified as Manhole #2 (MH-2), southwest of the fuel USTs in the sidewalk along Pierson Street. On March 5^{th} , an Unauthorized Release Report (URR) was submitted by ConocoPhillips to the Alameda County Department of Environmental Health (ACEH). Highest reported Photo-Ionization Detector (PID) readings from MH-2 were recorded at 500 ppm on February 22^{nd} , 2010.

On March 11th through 12th, 2010 Delta oversaw the advancement of four soil borings: SWC-2, SWD-2, SB-6 and SB-7. Details of the investigation were submitted to ACEH in the May 7th, 2010 Additional Assessment Report, Monitoring Well Installation Work Plan and Storm Sewer Repair Comments.

On April 8th, 2010, a portion of the sidewall of MH-2 was observed to be leaking liquid into the manhole. On April 28, 2010 Innovative Construction Solutions (ICS) placed a permanent patch on the portion of the storm drain manhole that had been identified to be seeping water into the storm drain. Mr. Mike Fahey of the Oakland Fire Department and representatives from Delta and ConocoPhillips were on-site to observe this repair. Details of this repair were reported in previously noted May 7, 2010 report. Follow-up inspections of the manhole repair indicated the repair was intact and no further water was seeping into the storm drain manhole.

4.1.1 Storm Drain Air Monitoring

As stated above, a PID reading of 500 ppm at MH-2 was recorded in February 2010. This prompted Delta, with the cooperation of the City of Oakland Fire Department, to initiate an air monitoring program in the surrounding storm drain system.

Air monitoring locations have been identified as Drain Inlet #1 (DI-1), MH-2, Manhole #3 (MH-3), Drain Inlet #4 (DI-4), Drain Inlet #5 (DI-4), Drain Inlet #6 (DI-6), and Manhole #7 (MH-7). These locations were initially monitored on March 17^{th} , 2010. Following the repair work to the sidewall in MH-2, the locations were monitored on June 24^{th} , July 13^{th} , and July 26^{th} , 2010. Air was monitored at 2 foot intervals from the surface to total depth of each location, using a PID meter in conjunction with a Lower Explosive Limit (LEL) meter. Locations of the air monitoring points are shown on Figure 2. Air monitoring results are on a table presented in Appendix D..

The most recent air monitoring, performed on July 26^{th} , 2010, reported all PID and LEL readings below the reporting limits of the meters (1 ppm for PID and 1 % LEL).

4.2 ADDITIONAL SOIL BORING AND MONITORING WELL INSTALLATION

Under concurrence granted in a letter from ACEH dated May 21, 2010, Gregg Drilling and Testing, Inc. (Gregg) under oversight from Delta, advanced one soil boring (SB-8) and installed two groundwater monitoring wells (MW-4 and MW-5) southwest of the UST pit at the site. The purpose of these activities was to evaluate subsurface geology and the lateral extent of petroleum hydrocarbon concentrations in the soil and groundwater to the east/southeast of the existing UST pit.

Locations of soil boring and monitoring wells advanced and installed during the June 2010 assessment activities are included on Figure 12. Soil analytical results and groundwater analytical results from the June 2010 assessment activities are presented on Tables 3 and 4, respectively.

4.2.1 Pre-Field Activities

Prior to field activities, Delta produced a Site Health and Safety Plan, which was reviewed daily by field personnel. Prior to drilling, Delta marked all proposed boring locations and contacted Underground Service Alert (USA) to request the locating and marking of all underground utilities at, or adjacent to, the proposed boring locations. Delta also employed a private utility locator (Cruz Brothers) to identify possible private underground utilities in vicinity of the proposed boring locations. Additionally, prior to drilling, all boring locations were cleared, utilizing air-vacuum technologies to depths of 5 feet bgs. The purpose of air-knife clearance was to ensure that no underground utilities were encountered during drilling. Drilling permits for the proposed boring locations were obtained from the Alameda County Public Works Agency (ACPWA), and are included in Appendix E.

4.2.2 Soil Boring Advancement

The soil boring was located just east of the UST tank pit, midway between the southern and northern property boundaries. The boring was advanced to a total depth of 24 feet bgs. Continuous soil samples were collected using a two-inch diameter dual-tube direct push rod equipped with 4-foot, 1.5-inch diameter acetate sampling liners. Soil samples were logged using the Unified Soil Classification System (USCS) for lithologic interpretation and field screened for the presence of volatile organic compounds at five foot intervals using a pre-calibrated PID. Observed groundwater levels, collected soil PID

readings, soil descriptions, and field observations were recorded on the boring logs. The soil boring log for boring SB-8 is presented in Appendix F.

At total depth, the drilling rods were retracted and a temporary polyvinyl chloride (PVC) well casing with a 10 foot screened interval was inserted into the borehole from 24 feet to 14 feet bgs. First encountered groundwater was at a depth of 15 feet bgs. Grab groundwater samples were collected.

Following sample collection, the borehole was backfilled with neat cement grout through a tremie pipe to approximately 20 feet bgs and then backfilled with additional neat cement grout introduced directly into the borehole to approximately one foot bgs. The remainder of the borehole was backfilled with concrete and dyed at the surface to match the existing surface conditions. Backfilling activities were conducted under the oversight of Ms. Victoria Hamlin, ESA, of the ACEH.

4.2.2.1 Soil and Groundwater Sampling

Soil samples were collected and submitted for analysis from 5 foot intervals from just below air-knife clearance to total depth.

Soil and groundwater samples collected were analysis for TPHg, and TPHd by EPA Method 8015M, BTEX, 8 fuel oxygenates [methyl tert butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), 1,2-dichloroethane (1,2-DCA), ethylene dibromide (EDB), and ethanol], and methanol by EPA method 8260B. Samples selected for laboratory analysis were placed in proper containers, properly labeled and placed on ice pending transportation to a California-certified laboratory and accompanied by appropriate chain-of-custody documentation during transportation to the laboratory. Laboratory reports are included in Appendix G.

4.2.3 Monitoring Well Installation

On June 3rd and June 4th, 2010, Gregg, under oversight from Delta, advanced two soil borings which were converted into monitoring wells MW-4 and MW-5. As with the soil boring SB-8, continuous soil samples were collected using a two-inch diameter, dual-tube direct push rod, equipped with 4-foot, 1.5-inch diameter acetate sampling liners. Soil samples were logged using the Unified Soil Classification System (USCS) for lithologic interpretation and field screened for the presence of volatile organic compounds at five foot intervals using a pre calibrated PID. Observed groundwater levels, collected soil PID readings, soil descriptions, and field observations were recorded on the boring logs. Boring logs and well construction details for monitoring wells MW-4 and MW-5 are presented in Appendix F.

Borings MW-4 and MW-5 were advanced to depths of 25 and 20 feet bgs respectively, and were completed as monitoring wells with 10 foot screened intervals. MW-4 was screened from 15 to 25 feet bgs while MW-5 was screened from 10 to 20 feet bgs. Monitoring wells were constructed using 4-inch schedule 40 polyvinyl chloride (PVC) with 0.010-inch slot size. The annular space was backfilled with RMC Lonestar #2/16 sand, from total depth to 2 feet above top of the screened interval. The holes were sealed with 2 feet of bentonite hydrated in place, with neat cement grout to approximately 1 foot below the surface. The wells were completed with a COP approved traffic-rated well box set in concrete dyed to match the surrounding surface conditions.

4.2.3.1 Soil Sampling

Soil samples were collected from 5 foot intervals (from just below air-knife clearance, to total depth), and were submitted for analysis of TPHg and TPHd, by EPA Method 8015M, BTEX, 8 fuel oxygenates [methyl tert butyl ether (MTBE), di-isopropyl ether (DIPE), ethyl tertiary butyl ether (ETBE), tertiary amyl methyl ether (TAME), tertiary butyl alcohol (TBA), 1,2-dichloroethane (1,2-DCA), ethylene dibromide (EDB), and ethanol], and methanol by EPA method 8260B. Samples selected for laboratory analysis were placed in proper containers, properly labeled and placed on ice pending transportation to a California-certified laboratory and accompanied by appropriate chain-of-custody documentation during transportation to the laboratory. Laboratory reports are included in Appendix G.

4.2.3.2 Monitoring Well Development and Sampling

Monitoring wells MW-4 and MW-5 were developed on June 9, 2010, a minimum of 72 hours after completion of the well installations. Approximately three well volumes (estimated 24 gallons) were purged from well MW-4, before the well went dry. Depth to water in MW-4 was 11.6 feet bgs, and the depth to the bottom of the well was measured to be 24.8 feet bgs. Ten well volumes (approximately 54 gallons) were purged from MW-5. Depth to water in MW-5 was 11.9 feet bgs, and the bottom of the well was measured to be 19.9 feet bgs. Well MW-5 did not pump dry during well development activities.

Groundwater was sampled from wells MW-4 and MW-5 on June 16, 2010 by TRC as part of the regularly scheduled Second Quarter 2010 monitoring and sampling program. Analytical results from this event are included as Appendix F.

4.2.3.3 Survey of Monitoring Wells

A survey of the two newly installed monitoring wells, as well as the one existing on-site well (MW-A) was performed on June 9, 2010 by Morrow Surveying. The survey data was successfully submitted to the State of California water Resources Control Board GeoTracker ESI database.

4.2.3.4 Handling of Generated Waste

Drill cuttings and wastewater generated during boring advancement and sampling activities were placed into properly labeled 55-gallon Department of Transportation (DOT) approved steel drums and stored on-site. These waste materials are pending transportation to and disposed of at a ConocoPhillips-approved facility.

4.2.3.5 Monitoring and Sampling Activities

Prior to the second quarter 2010, one groundwater monitoring well, MW-A, existed onsite. The well was sampled annually (beginning in December 1990) for TPHd, TPHq, BTEX compound, and methyl tert butyl ether (MTBE). In February 2003, groundwater samples were also analyzed for ethanol, ethylene dibromide, 1,2-dichloroethane, TOG, bromo-dichloromethane, bromoform, bromomethane, and carbon tetrachloride; and additionally, beginning in February 2004 through March 2009, MW-A was additionally analyzed for chlorobenzene, chloroethane, chloroform, chloromethane, dibromochloromethane, 1,2-dichlorobenzene, 1,3-dichlorobenzene, dichloro-difluoromethane, 1,1-dichloroethane, dichlorobenzene. dichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and 1,2dichloropropane. During the first quarter 2010 sampling event, MW-A was only analyzed for TPHd.

Additionally, a grab groundwater sample was collected from MW-4 on June 24th, 2010. Analytical results are included in Table 4

With the addition of MW-4 and MW-5 during the June 2010 assessment activities, a total of three wells now comprise the groundwater monitoring network. Beginning in the second quarter 2010 event, all wells will follow a quarterly sampling schedule until further notice.

5.0 SITE CONCEPTUAL MODEL UPDATE

5.1 PREFERENTIAL PATHWAYS

According to the most recent quarterly monitoring report (June, 2010), depth to groundwater is 11.13 feet below TOC in MW-4, 11.95 feet below TOC in MW-5, and 17.85 feet below TOC in MW-A. Depth to water in MW-A

historically ranges from approximately 12 feet below TOC to approximately 20 feet below TOC.

According to the utility survey performed in June 2010, with the exception of MH-2 and a section of storm drain line between MH-2 and DI#5, all of the storm drain and sewer lines on and adjacent to the site are at depths between approximately 3 feet bgs to approximately 10 feet bgs (above the historically observed groundwater levels) at the site. MH-2 measures approximately 13.5 feet deep. The storm drain line is approximately 12 feet bgs as it exits MH-2, and approximately 13 feet bgs at DI-5; potentially below the intersection with groundwater at the site.

This section of storm drain line between MH-2 and DI-5 is the only currently identified underground utility providing a potential preferential pathway at the site for groundwater migration. Locations and depths of these utilities are included on Figure 2.

During the utility survey performed in June 2010, no sewer line was identified in the sewer easement, noted on the site plan included as Figure 2, in the eastern portion of the service station property. An inspection performed of the sewer manhole located in Pierson Street did not identify an inlet emanating from the station property. A survey using ground penetrating radar (GPR) was also performed on the site, including the area identified as the sewer easement in the eastern portion of the station property. No anomalies were noted during the GPR survey to indicate any subsurface sewer line in this area. Also, a review of City of Oakland utility figures show this possible sewer line with a "dashed" line while other sewer lines identified during the June survey are shown as "solid" lines. Delta cannot speculate the origination of the sewer easement shown on various figures, but reports that no evidence of the sewer line was found during utility survey activities.

A sewer line was identified in the sewer easement noted in the western portion of the service station property and is shown on Figure 2.

Underground utility maps provided by the city of Oakland for the site and the immediate vicinity are presented as Appendix H.

5.2 SOIL MIGRATION PATHWAYS

Soils beneath the site area are generally fine-grained and do not provide pathways for rapid spread of contaminants. Soil analytical data indicates that migration of petroleum hydrocarbons from the former waste oil UST has been limited due to surrounding clay soil. The mass of soil containing residual petroleum hydrocarbons appears limited. In recent borings, (as of March 2010), TPHq has been below laboratory reporting limits except for 99

mg/kg at 24 feet bgs in MW-5, and 2.1 mg/kg and 2.4 mg/kg in SB-8 at 6 and 15 feet bgs, respectively. TPHd has also been below laboratory reporting limits except for 73 mg/kg at 24 feet bgs in MW-5. BTEX and MTBE have been near or below laboratory reporting limits in all recent borings as well, with the exception of 53 mg/kg MTBE at 24 feet bgs in MW-5.

The primary constituent that has shown recent concentrations is TOG. Boring SWC-2 contained 7,700 mg/kg TOG at 10 feet bgs and SWD-2 contained 870 mg/kg TOG at 10 feet bgs.

5.3 HYDROGEOLOGIC PATHWAYS

Migration of dissolved contaminants through generally fine grained soil appears to be limited. Following the June 2010 installation of groundwater monitoring wells MW-4 and MW-5, initial groundwater flow direction and gradient was established; yet appears suspect when compared to the topography in the vicinity of the site. This discrepancy may be related to different screen intervals for MW-4 and MW-5 (15-25 feet bgs and 10-20 feet bgs, respectively) when compared to previous well MW-A (25-45 feet bgs).

5.4 CONTAMINANT MIGRATION MODEL - POTENTIAL FATE AND TRANSPORT

It appears that a release occurred at some undetermined time from the former waste oil USTs removed in 1990 and possibly from the former or current gasoline USTs. Additionally, undocumented releases potentially could have occurred during fuel transfer operations either at the dispenser islands or the USTs. Based on current water depths measured in wells MW-4 and MW-5, the bottom of the UST pit could potentially intersect groundwater beneath the site. Once constituents entered the groundwater, they were dissolved and began migrating with the groundwater.

Differences in groundwater conditions observed in well MW-4 and MW-5 would indicate varied groundwater conditions in the eastern portion of the site. Groundwater flow in the area of MW-4 appears limited due to the slow recharge and the well pumping dry during development and sampling activities while groundwater conditions observed in well MW-5 would indicate higher permeability due to more rapid well recovery and the well not pumping dry during development.

During the advancement of MW-A, the capillary fringe of saturated soils was observed at a depth of approximately 30 feet bgs. At this time it is unclear if groundwater in well MW-A reported at approximately 12-18 feet bgs is confined or semi-confined groundwater from approximately 33 feet bgs or shallower water in an area of low permeability.

Results from the March and June 2010 assessment activities indicate petroleum hydrocarbons in groundwater beneath the site have not been assessed. Additional assessment is proposed surrounding the current USTs and dispenser islands. Additional assessment is also proposed in the vicinity of the storm drain line along the southern portion of the property between the USTs and DI#5 along Pierson Street, which at this time is a potential migration pathway for shallow groundwater at the site.

Results from this additional assessment will be used to provide additional data to evaluate potential contaminant fate and transport in the vicinity of the site.

5.5 CONCENTRATION TRENDS

Historically, petroleum hydrocarbons were only sporadically reported in groundwater of monitoring well MW-A. In June 2010, two additional wells, MW-4 and MW-5, were installed and incorporated into the second quarter 2010 sampling event.

Analytical groundwater results from the Second Quarter 2010 event are discussed below. All wells (MW-A, MW-4 and MW-5) were analyzed for TPHd, TPHg, and Methanol by Method 8015 as well as BTEX and Fuel Oxygenates including MTBE, Ethanol, EDB, and 1,2-DCA by Method 8260B.

TPHd: TPHd was reported in one well (MW-5) at a concentration of 3,000 μ g/L. During the previous annual sampling of well MW-A (03/23/10) TPHd was below the laboratory's indicated reporting limit.

TPHg: TPHg was reported in two wells MW-4 and MW-5 at concentrations of 58 μ g/L and 29,000 μ g/L, respectively. During the previous annual sampling event of well MW-A (03/23/10), TPHg was not analyzed, however the constituent had historically been below laboratory indicated reporting limits in well MW-A since the first quarter of 2002.

Benzene: Benzene was reported in one well MW-5 at a concentration of $580~\mu g/L$. During the previous annual sampling event of well MW-A (03/23/10), Benzene was not analyzed, however the constituent had historically been below laboratory indicated reporting limits in well MW-A since the first quarter of 2002.

MTBE: MTBE was reported in one well MW-4 at a concentration of 5.4 μ g/L. During the previous annual sampling event of well MW-A (03/23/10) MTBE was not analyzed, however the constituent had historically been below the laboratory's indicated reporting limits in well MW-A since the first quarter of 2002, with the exception of 0.54 μ g/L, reported during the first quarter of 2006.

Historic groundwater monitoring data is contained in Appendix C.

5.6 SITE REMEDIATION

In February 1990, the waste oil UST pit was over-excavated to 16 feet bgs and 35 feet to the east, 10 feet to the west, 15 feet to the south, and 2 feet to the north. Approximately 50 cubic yards of impacted soil were removed. Further soil excavation could not be performed due to underground utilities and the site building.

5.7 POTENTIAL SENSITIVE RECEPTORS

The following sections evaluate the various potential impacts to sensitive receptors from petroleum hydrocarbons detected in soil and groundwater.

5.7.1 Environmental Screening Levels

Historical soil and grab groundwater analytical results are included as Table 1 and Table 2.

The RWQCB has published Environmental Screening Levels (ESLs) for chemicals commonly found in soil and groundwater at sites where releases of chemicals have occurred. The RWQCB notes "The ESLs are considered to be conservative." The tables below compare site specific soil and groundwater concentrations for TPHg, TPHd, benzene, and tetrachloroethene (PCE) with ESLs for various potential sensitive receptors. The ESL tables for various sensitive receptors as found in the November 2007 publication are referenced.

	ESL	TPHg	TPHd	Benzene	PCE
	Table	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Maximum Concentration Detected in Soil Sample		220 (SWA @9')	1,400 (SWA @ 9')	2.3 (SWA @9')	160 (SWA @ 9')
Groundwater Protection (shallow soils <3 meters)*	Α	83	83	0.044	0.34
Groundwater Protection (deep soils >3 meters)*	С	83	83	0.044	0.70
Direct Exposure - Residential	K-1	110	110	0.12	0.34
Direct Exposure - Commercial	K-2	450	150	0.27	0.85
Direct Exposure – Construction/Trench Workers	K-3	4,200	150	12	22

^{*} Ingestion. Groundwater considered a current or potential source of drinking water.

	ESL Table	TPHg (µg/L)	TPHd (µg/L	Benzene (µg/L)	MTBE (µg/L)
Concentration Groundwater; MW-A, MW-4, and MW-5		29,000	3,000	580	5.4
Potential Vapor Intrusion - Residential	E-1	NA	NA	540	24,000
Potential Vapor Intrusion - Commercial	E-1	NA	NA	1,800	80,000
California Maximum Contaminant Level (MCL)	F-3	210*	210*	1.0	13

^{*} No MCL; determined as non-carcinogenic effects

The maximum soil concentrations for TPHg, TPHd, benzene, and PCE exceed the ESLs for leaching to groundwater considered as a current or potential source of drinking water and for direct exposure. The site is underlain by silt and clay that may impede contaminant leaching to groundwater.

Since March 2010, TPHg and TPHd in collected groundwater samples have been below ESL levels, except for 3,000 μ g/L TPHd in MW-5, 29,000 μ g/L TPHg in MW-5, and 2,500 μ g/L TPHg in SB-6. During this time, benzene in collected groundwater samples has been below ESL levels in all borings and wells except SB-6 (160 μ g/L) and MW-5 (580 μ g/L). MTBE in collected groundwater samples has been below ESL levels in all borings and wells except SB-8 (53 μ g/L).

The maximum groundwater concentrations for TPHg, TPHd, and benzene reported in well MW-5 and SB-6 exceed the ESLs for California MCL. The maximum groundwater concentrations for benzene also exceed the ELS for Potential Vapor Intrusion for both residential and commercial standards. The maximum MTBE concentration reported in SB-8 exceeds the ESL for California MCL.

Metals were detected in soil sample W01 from the initial base of the waste oil UST excavation (6 feet bgs). The following metals were detected: chromium at 8.3 mg/kg, lead at 340 mg/kg, and zinc at 70 mg/kg. The corresponding ESLs for soils at a depth of less than 10 feet overlying useable groundwater and residential land use are 750 mg/kg for chromium III, 8 mg/kg for chromium VI, 200 mg/kg for lead, and 600 mg/kg for zinc. The ESL is exceeded for lead, however, the excavation was later deepened to 16 feet bgs. Migration of residual lead would be limited by the clay soil underlying the area.

5.7.2 Indoor Air Inhalation from Impacted Soil

ESLs have not been established for protection of indoor air from impacted soil. The RWQCB recommends direct measurement of soil gas concentrations

July 30, 2010 Page 18

in soil. Impacted soil exceeding the TPHd and TPHg ESLs for indoor soil vapor inhalation may remain under the western portion of the site building. The upward migration of any petroleum hydrocarbons remaining in soil will be limited due to the silt/clay nature of site soils. Delta proposes to evaluate the potential for vapor intrusion after the additional assessment activities proposed later in this report are completed and current identified data gaps have been eliminated.

5.7.3 Impact to Drinking Water Supply Wells

The California Department of Water Resources GeoTracker database indicates the presence of four active water wells nearby the site. The four active wells are reported to be located in East Bay Regional Park District land, located approximately 2,193 feet northeast of the site.

5.8 CONCLUSIONS

Site soils are generally fine-grained consisting of silt and clay. Deposits of silty sand and silty gravel are scattered within the finer grained soil. It appears that the shallow groundwater encountered on-site represents a perched zone, or possibly confined conditions. Groundwater was typically first encountered in some site borings at a depth of approximately 33 feet bgs. Stabilized levels in the single monitoring well have risen from a depth of approximately 20 feet below top of casing initially to approximately 13 feet below TOC in March 2008. The well screen has been drowned since installation by at least 5 feet.

A release of chemicals from the site waste oil UST appears to have occurred prior to 1990. The UST was removed in December 1989. Soils in the excavation sidewalls contained TPHd (1,400 mg/kg), TOG (17,000 mg/kg), PCE (160 mg/kg), and 1,1,1-TCA (5.8 mg/kg). Approximately 50 cubic yards were removed from the excavation. A confirmation soil sample from the base of the excavation contained only 74 mg/kg TPHd, 910 mg/kg TOG. PCE and 1,1,1-TCA were not detected in the sample. Further soil excavation in the area of former waste oil UST could not be performed due to underground utilities to the south and the site building to the north.

A comparison of TPHg, TPHd, benzene, and PCE concentrations in site soil in 1990 indicates that a limited amount of soil in 1990 exceeded the RWQCB ESLs for groundwater protection and direct contact. Soil with TPHg, TPHd, benzene, and PCE may exist under the western portion of the site building. Current soil concentrations are unknown.

An area of residual impacted soil appears to exist in the immediate area beyond the excavation limits for the former waste oil UST. Impact to groundwater in the area of the former waste oil UST has been minimal.

Groundwater samples from well MW-A, located within approximately 25 feet of the former waste oil UST, have only contained TPHd at concentrations generally below 100 μ g/L. TPHg, BTEX compounds, fuel oxygenates, and volatile organic compounds have consistently been below the laboratory detection limit.

A release of petroleum hydrocarbons from the second generation fuel USTs appears to have occurred since installation in 1990, and prior to 2003. A soil sample collected in October 2003 from boring SB3, located immediately adjacent and east of the fuel USTs, contained 1,100 mg/kg of TPHg at a depth of 15 feet bgs. The extent of impacted soil in this area is undefined. Groundwater was not encountered in boring SB3. A grab groundwater sample collected in 2003 from boring SB5, located adjacent to the second generation WOT, contained 180 $\mu g/L$ TOG.

No soil impacts were observed during removal of the second generation WOT in April 2008.

The Site Conceptual Model dated November 20, 2008 proposed confirmation sampling, by advancing a total of four boreholes that would: (1) evaluate the mass of residual impacted soils in vicinity of the former waste oil tank/over excavation limits, (2) evaluate the detection of total oil and grease (TOG) in groundwater from boring SB-5, and (3) evaluate the detection of TPHg in soil boring SB-3. Without agency response, Delta then submitted the September 24, 2009 Workplan for Additional Assessment, in order to obtain confirmation samples before making a formal Case Closure Request.

In March 2010 additional assessment confirmed that residual petroleum hydrocarbon concentrations remain on-site. TPHg was reported at 2,500 $\mu g/L$ in a grab groundwater sample collected from boring SB-6 (near recently installed monitoring well MW-5) indicating the presence of petroleum hydrocarbons in the area southeast of the USTs. TOG was reported in soil samples collected at 10 feet bgs in borings SWC-2 and SWD-2 near the former waste oil USTs at concentrations of 7,700 $\mu g/L$ and 870 $\mu g/L$, respectively. It was noted that samples collected from these borings at 15 feet were at or below the laboratory indicated reporting limits. Also, groundwater samples collected from borings SB-7 and SWC-2 reported TOG levels below laboratory indicated reporting limits.

The identification of petroleum hydrocarbon odors emanating from a storm drain manhole along Pierson Street, combined with the need to further assess the area southwest of the gasoline USTs led to the June 2010 field activities, which included the installation of groundwater monitoring wells MW-4 and MW-5, and advancement of soil boring SB-8. A utility survey was performed to identify the location and depth of utilities in the vicinity of the service station.

June 2010 assessment, and subsequent groundwater monitoring events report residual petroleum hydrocarbons remain at 29,000 μ g/L TPHg, 580 μ g/L benzene, and 3,000 μ g/L TPHd in monitoring well MW-5.

The addition of the two groundwater monitoring wells also allows for the first established gradient and flow direction for the site. Continued M&S events, and the potential installation of additional monitoring wells, will allow for the development of a Groundwater Flow (Rose) Diagram and will also allow for the interpretation of historical groundwater flow across the site.

5.9 RECOMMENDATIONS

Based on the above detailed assessment and conclusions, Delta feels that there is a data gap in groundwater flow direction and gradient. This is based on the differing screened intervals of MW-4 and MW-5 as compared with MW-A, which provide a steep gradient and flow direction perpendicular to surface contour.

Also, based on the reported petroleum hydrocarbon concentrations in boring SB-6 and well MW-5, additional assessment is recommended along the northern, western and southern boundaries of the gasoline USTs and dispenser islands to assess the potential for petroleum hydrocarbon migration from these possible petroleum hydrocarbon sources.

Delta recommends the installation of three additional shallow groundwater monitoring wells surrounding the tank pit and dispenser islands as well as an additional groundwater monitoring well in the vicinity of DI-5. These wells will provide greater assessment of potential hydrocarbons in these areas and allow for more data to determine groundwater flow direction and gradient in the 11-25 feet zone beneath the site. The locations of these proposed wells are included in Figure 13.

Delta has also identified a data gap in the evaluation of potential vapor intrusion from impacted soil in along the southern end of the station building and between the pump islands and the station building. Delta proposes to evaluate the potential for vapor intrusion once the proposed additional assessment activities are performed. Once these activities have concluded, Delta can use the data collected to better assess the potential for vapor intrusion in this area.

Delta also recommends continued air monitoring of the storm drain system surrounding the site on a periodic basis until further notice.

6.0 <u>ADDITIONAL ASSESSMENT WORKPLAN - MONITORING WELL INSTALLATION</u>

6.1 PERMITTING, UTILITY NOTIFICATION, AND BOREHOLE CLEARANCE

Before commencing field activities Delta will prepare a Health and Safety Plan in accordance with state and federal requirements for use during on-site assessment activities. Drilling permits will be obtained for the groundwater monitoring wells from ACPWA. Prior to drilling, Delta will review available asbuilt drawings, notify Underground Service Alert (USA) and contract a private utility locator as required to clear the proposed drilling locations for underground utilities. Prior to drilling, air or water vacuum clearance will be completed to 5 feet bgs to minimize potential impact to underground utilities.

6.2 PROPOSED SCOPE OF WORK

Delta proposes to advance four monitoring wells using a truck mounted drill rig equipped with 8-inch hollow stem augers adjacent to the existing UST pit in the southeast corner of the station property. The borings, MW-6, MW-7, MW-8, and MW-9 will be advanced to depth of approximately 20 feet bgs, and completed as monitoring wells screened from 10 to 20 feet bgs, though these parameters may be adjusted based on field observations.

The monitoring wells will be constructed using 2-inch schedule 40 polyvinyl chloride (PVC) with 0.010-inch slot size. The annular space will be backfilled with RMC Lonestar #2/16 sand, or equivalent, from total depth to 1 feet above top of the screened interval (approximately 20 feet bgs to approximately 9 feet bgs). The holes will be sealed with 2 feet of bentonite placed from approximately 9 feet bgs to approximately 7 feet bgs and hydrated in place, with neat cement grout from approximately 7 feet bgs to approximately 1 foot below the surface. The wells will be completed with a COP approved traffic-rated well box set in concrete dyed to match the surrounding surface conditions. Proposed specifications may vary slightly based on field observations. A well construction diagram is included as Figure 6.

6.3 SOIL SAMPLING

Soils encountered in the boring will classified in accordance with the Unified Soil Classification System (USCS). Soil samples will be collected at 5-foot intervals from just below air-vacuum clearance to total depth (at approximately 5 feet, 10 feet, 15 feet, and 20 feet bgs), using a split-spoon sampler loaded with 2-inch stainless steel or brass liners. Samples will be pre-screened for hydrocarbons using a pre-calibrated Photo-Ionization Detector (PID). Collected soil samples will be capped with Teflon sheeting

and tight-fitting plastic end caps, labeled with an identification number, and placed on ice pending delivery to a California-certified analytical laboratory along with proper chain of custody documentation.

Samples exhibiting the highest PID readings will be selected for laboratory analysis for the following analytes: TPHg and TPHd by EPA Method 8015M, BTEX, MTBE, DIPE, ETBE, TAME, TBA, EDB, EDC and Ethanol by EPA Method 8260B.

6.4 WELL DEVELOPMENT, MONITORING, AND SAMPLING

The proposed wells will be developed a minimum of 72 hours after construction. A minimum of 10 casing volumes of groundwater will be removed from the monitoring wells during development.

Subsequent to installation and development of the monitoring wells, they will be incorporated into the existing monitoring and sampling program for this site, and will be monitored and sampled quarterly for at least one hydrogeologic cycle. Initial monitoring and sampling will be done a minimum of 48 hours after development.

Groundwater samples will be analyzed for TPHg by EPA Method 8015M, BTEX, MTBE, DIPE, ETBE, TAME, TBA, EDB, EDC and Ethanol by EPA Method 8260B, and TPHd with silica gel cleanup and Methanol by EPA Method 8015M.

6.5 WELL HEAD SURVEY

Following completion of the new monitoring wells, a California licensed surveyor will survey the northing and easting of the three on-site monitoring wells using positioning datum NAD83. The monitoring well elevations will be surveyed relative to elevation datum NAVD88. A global positioning system (GPS) will also be used to survey in the latitude and longitude of the wells to be uploaded into California's GeoTracker database system. The survey of the well locations will be to sub-meter accuracy.

DISPOSAL OF DRILL CUTTINGS AND WASTEWATER

Drill cuttings and any wastewater generated during field activities will be placed into properly labeled 55-gallon Department of Transportation (DOT)-approved steel drums and stored on the service station site. Representative samples of the drill cuttings and wastewater will be collected and submitted to a California-certified laboratory where they will be analyzed for TPHg and TPHd by EPA Method 8015M, BTEX and MTBE by EPA Test Method 8260B. Soil cuttings will also be analyzed for total California Title-22 (CAM 17) metals. Pending laboratory analytical results, the drummed drill cuttings and wastewater will be profiled, transported, and disposed at a COP-approved

facility. If available at the time of report submittal, a copy of the waste disposal manifest(s) will be included in the investigation report.

6.6 REPORT

Delta will prepare and submit a report summarizing the additional site characterization findings once all field activities have been completed and all laboratory results have been received. The report will contain a description of the activities performed, and will include a site plan showing the boring locations, copies of the boring logs, laboratory analytical reports, waste manifests, and recommendations for future activities at the site.

7.0 LIMITATIONS

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

Consultant: **DELTA CONSULTANTS**

Assessment Report Site Conceptual Model Update, and Additional Assessment Workplan

76 Service Station No. 5781 3535 Pierson St, Oakland, CA

FIGURES

_	Site Locator Site Map with Current Site Configuration and Monitoring Wells
Figure 3 –	Site Map with Cross Sections
Figure 4 –	Geologic Cross Section A-A'
Figure 5 –	Geologic Cross Section B-B'
Figure 6 –	Geologic Cross Section C-C'
Figure 7 –	Geologic Cross Section D-D'
Figure 8 –	Geologic Cross Section E-E'
Figure 9 –	Site Map with Historical Sampling Locations
Figure 10 -	Site Map with Historical and Current Soil Analytical Results Exceeding ESLs
Figure 11 -	Site Map with Historical and Current Groundwater Analytical Results Exceeding ESLs
_	Current Assessment Sampling Locations Site Map with Proposed Monitoring Well Locations

TABLES

- Table 1 Historical Soil Analytical Results
- Table 2 Historical Grab Groundwater Analytical Results
- Table 3 Current Soil Analytical Results
- Table 4 Current Groundwater Analytical Results

APPENDICES

- Appendix A ACEH Letter Dated May 21, 2010
- Appendix B Historical Boring Logs
- Appendix C Historical Groundwater Monitoring and Sampling Results
- Appendix D Air Monitoring Results
- Appendix E ACPWA Drilling Permits
- Appendix F Current Boring Logs
- Appendix G Certified Laboratory Analytical Reports
- Appendix H City of Oakland Utility Maps

FIGURES

FIGURE 1 SITE LOCATION MAP CONOCOPHILLIPS SITE NO. 5781 3535 PIERSON STREET OAKLAND, CALIFORNIA

PROJECT NO.	PREPARED BY	DRAWN BY
C105781	DB	DD
DATE	REVIEWED BY	FILE NAME
11/18/08		5781-SL

LEGEND:

→ FENCE

HYDRAULIC LIFT

- SOIL SAMPLE LOCATION (1989)
- SOIL SAMPLE LOCATION (FEBRUARY 1990)
- EXPLORATORY BORING (APRIL 1990) (NOT CONVERTED TO MONITORING WELL)
- EXPLORATORY BORING (JULY 1990)
- SOIL BORING (OCTOBER 2003)
- SOIL SAMPLE LOCATION (2008)
- SOIL BORING (MARCH/JUNE 2010)
- CURRENT MONITORING WELL

NOTES:
TPH-D = TOTAL PETROLEUM HYDROCARBONS AS DIESEL
TPH-G = TOTAL PETROLEUM HYDROCARBONS AS GASOLINE
MTBE = METHYL TERTIARY BUTYL ETHER NA = NOT ANALYZED

<1.0 = LESS THAN LABORATORY INDICATED REPORTING LIMIT MW (DATE) = INDICATES SAMPLE NAME AND DATE SAMPLED

- DEPTHS IN FEET BELOW GROUND SURFACE.
 - CONCENTRATIONS IN MICROGRAMS PER LITER (ug/L).
- BOLD INDICATES CONCENTRATIONS ARE ABOVE ENVIRONMENTAL SCREENING LEVELS (TPH=100 ug/L, BENZENE=1 ug/L, MTBE=1 ug/L).

FIGURE 11 SITE MAP WITH CURRENT AND HISTORICAL GROUNDWATER ANALYTICAL RESULTS EXCEEDING ESLS CONOCOPHILLIPS STATION NO. 5781 3535 PIERSON STREET OAKLAND, CALIFORNIA

PROJECT NO. C105781	PREPARED BY	DRAWN BY JH
DATE	REVIEWED BY	FILE NAME
07/29/10	JW	5781-SiteS

TABLES

TABLE 1 HISTORICAL SOIL ANALYTICAL DATA

ConocoPhillips Station No. 5781 3535 Pierson Street, Oakland, CA

		Comento	1					E4level	Total			ı	1	1	
Sample ID	Date	Sample Depth	TPH-D	TPH-G	TOG	BENZENE	TOLUENE	Ethyl- Benzene	Total Xylenes	MTBE	Oxygenates	1,2-DCA	EDB	ETHANOL	OTHER
		(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
UST and Prod	uct Piping Sa	mples													
A1	12/14/1989	12.5	NA	3.5	NA	< 0.05	< 0.1	< 0.1	< 0.1	NA	NA	NA	NA	NA	
B1	12/14/1989	12.5	NA	<1.0	NA	< 0.05	< 0.1	< 0.1	< 0.1	NA	NA	NA	NA	NA	
A2/B2	12/14/1989	12.5	NA	5.8	NA	0.1	< 0.1	< 0.1	< 0.1	NA	NA	NA	NA	NA	
SW1	12/14/1989	10.5	NA	15	NA	< 0.05	< 0.1	< 0.1	< 0.1	NA	NA	NA	NA	NA	
SW2	12/14/1989	10.5	NA	46	NA	0.65	< 0.1	< 0.1	< 0.1	NA	NA	NA	NA	NA	
P1	12/14/1989	5.5	NA	<1.0	NA	< 0.05	< 0.1	< 0.1	< 0.1	NA	NA	NA	NA	NA	
P2	12/14/1989	6	NA	<1.0	NA	< 0.05	< 0.1	< 0.1	< 0.1	NA	NA	NA	NA	NA	
WO1	12/14/1989	6	8,300	670	48,000	5.4	15	2.3	17		NA	NA	NA	NA	(Overexcavated) 1,2-DCB (10), PCE (77), 1,1,1-TCA (15), Cr (8.3), Pb (340), Zn (70)
Over-Excavat	ion Samples														
WO (16)	2/22/1990	16	74	15	910	0.06	<0.10	0.10	2	NA	NA	NA	NA	NA	(Post Overexcavation) All HVOCs below detection limit
SWA	2/22/1990	9	1,400	220	17,000	2.3	2.1	7.3	23	NA	NA	NA	NA	NA	PCE (160)
SWB	2/22/1990	10	<1	2	<50	< 0.05	< 0.10	< 0.10	0.1	NA	NA	NA	NA	NA	PCE (56); 1,1,-TCA (5.8)
SWC	2/22/1990	10	460	63	4,100	0.31	0.33	1.3	2.2	NA	NA	NA	NA	NA	PCE (56)
SWD	2/22/1990	10	360	40	6,400	0.32	< 0.10	0.49	4	NA	NA	NA	NA	NA	PCE (40), 1,1,1-TCA (5.8)
Northwest Wa	Oil Tamb	Dia													
WO1	4/23/2008	9	NA	< 0.25	NA	< 0.005	< 0.005	< 0.005	< 0.0099	< 0.005	See Note	< 0.005	< 0.005	<1.2	All Oxys below reportring limits
WO2	4/23/2008	7	NA NA	<0.23	NA NA	<.0048	<0.003	<0.003	< 0.0099	<0.003	See Note	<0.003	<0.003	<1.2	All Oxys below reportring limits All Oxys below reportring limits
WO3	4/23/2008	6.5	NA NA	<0.24	NA NA	<.0048	<0.0048	<0.0048	<.0095	<0.0048	See Note	<0.0048	<0.0048	<1.2	All Oxys below reportring limits All Oxys below reportring limits
WO4	4/23/2008	6.5	NA	<0.24	NA	<.0048	<0.0048	<0.0048	<.0095	<0.0048	See Note	<0.0048	<0.0048	<1.2	All Oxys below reporting limits All Oxys below reportring limits
WO4	4/23/2006	0.5	IVA	<0.24	IVA	<.0046	<0.0046	<0.0046	<.0096	<0.0046	See Note	<0.0046	<0.0046	< 1.2	All Oxys below reporting limits
Soil Borings															
MW1	4/9/1990	5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	9.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	15	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	20	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	25	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	30	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	35	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	40	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	45	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW1	4/9/1990	50	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
MW2	4/9/1990	5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW2	4/9/1990	9.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW2	4/9/1990	15	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW2	4/9/1990	20	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW2	4/9/1990	25	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW2	4/9/1990	30	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW2	4/9/1990	35	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW2	4/9/1990	39.5	<1.0	<1.0	ND	<0.005	< 0.005	< 0.005	<0.005	NA	NA	NA	NA	NA	
									0.005					L	
MW3	4/10/1990	5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW3	4/10/1990	10	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW3	4/10/1990	15	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW3	4/10/1990	20	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW3	4/10/1990	25	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW3	4/10/1990	30	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW3	4/10/1990	35	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW3	4/10/1990	40	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	

TABLE 1 HISTORICAL SOIL ANALYTICAL DATA

ConocoPhillips Station No. 5781 3535 Pierson Street, Oakland, CA

		Sample						Ethyl-	Total						
Sample ID	Date	Depth	TPH-D	TPH-G	TOG	BENZENE	TOLUENE	Benzene	Xylenes	MTBE	Oxygenates	1,2-DCA	EDB	ETHANOL	OTHER
	į į	(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
EB1	7/5/1990	8.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB1	7/5/1990	13.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB1	7/5/1990	18.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB1	7/5/1990	23.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB1	7/5/1990	28.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	1,1,1-TCA (6.2)
EB2	7/6/1990	9.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB2	7/6/1990	12.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB2	7/6/1990	16.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB2	7/6/1990	22	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB2	7/6/1990	26.5	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
EB2	7/6/1990	32.0	<1.0	<1.0	ND	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	
MW-A	12/11/1990	32.5	<1.0	<1.0	36	< 0.005	< 0.005	< 0.005	< 0.005	NA	NA	NA	NA	NA	All HVOCs below detection limit
SB-1	10/30/2003	35.0	<1.0	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	ND	< 0.005	< 0.005	< 0.1	
SB-2	10/30/2003	15.0	<1.0	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	ND	< 0.005	< 0.005	< 0.1	
SB-2	10/30/2003	50.0	<1.0	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	ND	< 0.005	< 0.005	< 0.1	
SB-3	10/30/2003	15.0	1,100	<1.0	NA	< 0.005	< 0.005	16	50	NA	ND	< 0.005	< 0.005	< 0.1	
SB-3	10/30/2003	45.0	<1.0	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	ND	< 0.005	< 0.005	< 0.1	
SB-4	10/30/2003	15.0	<1.0	<1.0	NA	< 0.005	< 0.005	< 0.005	< 0.005	NA	ND	< 0.005	< 0.005	< 0.1	
SB-5	10/30/2003	20.0	NA	NA	<5.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	
SWC-2	3/12/10	10.0	62	0.23	7700	< 0.005	< 0.005	< 0.005	0.025	< 0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
SWC-2	3/12/10	15.0	2.5	< 0.2	<50	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
SWC-2	3/12/10	20.0	< 2.0	< 0.2	<50	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
SWD-2	3/12/10	10.0	270	0.58	870	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
SWD-2	3/12/10	15.0	< 2.0	< 0.2	<50	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
SWD-2	3/12/10	20.0	<2.0	< 0.2	<50	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
SB-6	3/12/10	5.0	NA	< 0.2	NA	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	See Note	< 0.005	< 0.005	<1	All Oxy's below reporting limit
SB-6	3/12/10	10.0	NA	< 0.2	NA	< 0.005	< 0.005	< 0.005	< 0.01	< 0.005	See Note	< 0.005	< 0.005	<1	All Oxy's below reporting limit
SB-6	3/12/10	25.0	NA	< 0.2	NA	< 0.005	< 0.005	< 0.005	< 0.01	0.02	See Note	< 0.005	< 0.005	<1	All Oxy's, with exception of MTBE below reporting limit
SB-6	3/12/10	40.0	NA	< 0.2	NA	< 0.005	< 0.005	<0.005	< 0.01	< 0.005	See Note	< 0.005	< 0.005	<1	All Oxy's below reporting limit
SB-7	3/12/10	5.0	<2.0	<0.2	<50	<0.005	< 0.005	<0.005	< 0.01	< 0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
SB-7	3/12/10	10.0	<2.0	<0.2	<50	< 0.005	< 0.005	<0.005	< 0.01	<0.005	See Note	NA	NA	NA	All Oxy's below reporting limit
	├														TO STORE THAT DIRECTION
MW-4@5'	6/4/2010	5.0	<1.0	<2.0	NA	< 0.010	< 0.010	< 0.010	< 0.020	< 0.010	See Note	< 0.010	< 0.010	< 2.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
															TBA; ETBE; TAME; DIPE all below reporting limit. Methanol
MW4@10'	6/4/2010	10.0	<1.0	< 2.0	NA	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	See Note	<0.0050	< 0.0050	<1.0	also below reporting limit. Wethanor
MM 4@45!	((4 (004 5	45.0	1.0	2.0		0.0050	0.0050	0.0050	0.016	0.0055	C. N.	0.0050	0.0050	4.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol
MW-4@15'	6/4/2010	15.0	<1.0	<2.0	NA	<0.0050	<0.0050	<0.0050	<0.010	0.0051	See Note	<0.0050	<0.0050	<1.0	also below reporting limit.
MW-4@20'	6/4/2010	20.0	<1.0	<2.0	NA	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	See Note	< 0.0050	< 0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol
11111 4@20	5, 4, 2010	20.0	\ 1.U	\2.0	IVA	₹0.0000	₹0.0000	₹0.0000	₹0.010	₹0.0000	JCC NOTE	₹0.0000	₹0.0000	< 1.0	also below reporting limit.
MW-4@25'	6/4/2010	25.0	<1.0	< 2.0	NA	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	See Note	< 0.0050	< 0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol
				-			· · · · · · ·				_ · · · · · · · · · · · · · · ·				also below reporting limit.

TABLE 1 HISTORICAL SOIL ANALYTICAL DATA

ConocoPhillips Station No. 5781 3535 Pierson Street, Oakland, CA

Sample ID	Date	Sample Depth	TPH-D	TPH-G	TOG	BENZENE	TOLUENE	Ethyl- Benzene	Total Xylenes	MTBE	Oxygenates	1,2-DCA	EDB	ETHANOL	OTHER
		(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
MW-5@5'	6/3/2010	5.0	<1.0	<2.0	NA	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	See Note	<0.0050	<0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
MW5@12'	6/3/2010	12.0	<1.0	<2.0	NA	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	See Note	<0.0050	<0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
MW-5@15'	6/3/2010	15.0	<1.0	<2.0	NA	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	See Note	<0.0050	<0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
MW-5@20'	6/3/2010	20.0	<1.0	<2.0	NA	<0.050	<0.050	<0.050	<0.10	<0.050	See Note	<0.050	<0.050	<10	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
MW-5@24'	6/3/2010	24.0	73	99	NA	<0.50	<0.50	< 0.50	<1.0	53	See Note	0.50	0<0.50	<250	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
SB-8@6'	6/3/2010	6.0	<1.0	2.1	NA	<0.0050	<0.0050	< 0.0050	<0.010	<0.0050	See Note	<0.0050	<0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
SB-8@10'	6/3/2010	10.0	<1.0	<2.0	NA	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	See Note	<0.0050	<0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
SB-8@15'	6/3/2010	15.0	<1.0	2.4	NA	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	See Note	<0.0050	< 0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
SB-8@20'	6/3/2010	20.0	<1.0	<2.0	NA	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	See Note	<0.0050	<0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.
SB-8@24'	6/3/2010	24.0	<1.0	<2.0	NA	<0.0050	<0.0050	<0.0050	<0.010	<0.0050	See Note	<0.0050	<0.0050	<1.0	TBA; ETBE; TAME; DIPE all below reporting limit. Methanol also below reporting limit.

TPH-G= Total petroleum hydrocarbons as Gasoline Range Organics-C6-C12

TPH-D = Total petroleum hydrocarbons as Diesel Range Organics

TOG= Total oil and grease

Benzene, toluene, ethylbenzene, total xylenes by EPA Method 8260B BTEX =

Methyl tertiary butyl ether by EPA Method 8260B Tertiary butyl alcohol by EPA Method 8260B MTBE = TBA =

1,2,4 =

1,2,4- Trimethylbenzene Di-isopropyl ether by EPA Method 8260B DIPE = TAME =

Tertiary amyl methyl ether by EPA Method 8260B 1,2-dichloroethane (also known as ethylene dichloride) by EPA Method 8260B 1,2-DCA = EDB = Ethylene dibromide (also known as 1,2-dibromoethane) by EPA Method 8260B

1,1 DCB = 1,1-dichlorobromide PCE= tetrachloroethene 1,1,1-TCE= 1,1,1-trichloroethene

HVOCs= Halogenated volatile organic compounds by EPA Method 8010

NA = Not analyzed

ND = Not detected (detection limit not given)

TABLE 2 HISTORICAL GRAB GROUNDWATER ANALYTICAL DATA

ConocoPhillips Station No. 5781 3535 Pierson Street, Oakland, California

Sample ID	Date	TPPH	TPH-D	TPH-G	TOG	BENZENE	TOLUENE	Ethyl- Benzene	Total Xylenes	MTBE	TBA	ETBE	TAME	DIPE	1,2-DCA	EDB	ETHANOL	METHANOL
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
EB1	7/6/90	NA	6.7	<30	ND	< 0.3	1.5	< 0.3	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
EB2	7/6/90	NA	<50	<30	ND	0.61	1.5	< 0.3	1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-A	12/18/90	NA	73	<30	ND	< 0.3	< 0.3	< 0.3	< 0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-1	10/30/03	<50	NA	NA	NA	<0.05	< 0.05	< 0.05	<1.0	<2	<100	<2	<2	<2	<2	<2	<500	NA
SB-4	10/30/03	<50	NA	NA	NA	<0.05	< 0.05	<0.05	<1.0	<2	<100	<2	< 2	< 2	<2	<2	<500	NA
SB-5	10/30/03	<50	NA	NA	180	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SWC-2	3/12/10	NA	200	<50	<5	< 0.5	< 0.5	< 0.5	<1.0	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA
SB-6	3/12/10	NA	NA	2,500	NA	160	310	110	690	<2.5	<50	<2.5	<2.5	<2.5	<2.5	<2.5	<1200	NA
SB-7	3/12/10	NA	65	<50	<5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	NA	NA	NA	NA	NA	NA	NA	NA
SB-8	6/3/10	NA	99	73	NA	<0.50	<0.050	< 0.050	<1.0	53	<10	<0.50	<0.50	< 0.50	0.5	<0.50	<250	<100
MW-4	6/24/10	NA	<50	<50	NA	<0.50	<0.50	<0.50	<1.0	4.7	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	<100

TPPH = Total purgeable petroleum hydrocarbons

TPH-D = Total petroleum hydrocarbons as Diesel Range Organics

TPH-G= Total petroleum hydrocarbons as Gasoline Range Organics-C6-C12

TOG = Total oil and grease by method 1664

BTEX = Benzene, toluene, ethylbenzene, total xylenes by EPA Method 8260B

MTBE = Methyl tertiary butyl ether by EPA Method 8260B

TBA = Tertiary butyl alcohol by EPA Method 8260B
DIPE = Di-isopropyl ether by EPA Method 8260B
TAME = Tertiary amyl methyl ether by EPA Method 8260B

1,2-DCA : 1,2-dichloroethane (also known as ethylene dichloride) by EPA Method 8260B

EDB = Ethylene dibromide (also known as 1,2-dibromoethane) by EPA Method 8260B

Ethanol analyzed by EPA Method 8260B

ug/I = micrograms per liter

ND = not detected above the laboratory detection limit

NA = not applicable / not analyzed

Bold = detected compound concentration

Environmental Protection Agency EPA =

TABLE 3

CURRENT SOIL ANALYTICAL RESULTS

ConocoPhillips Station No. 5781 Oakland, California

Sample ID	Date	Time	Sample	TPH-G	TPH-D	Benzene	Toluene	Ethyl-	Total	MTBE	TBA	ETBE	TAME	DIPE	1,2-DCA	EDB	Ethanol	Methanol
			Depth					benzene	Xylenes									
			(feet)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Soil																		
MW-4@5'	6/4/10	12:28	5	<1.0	< 2.0	< 0.010	< 0.010	< 0.010	< 0.020	< 0.010	< 0.10	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	<2.0	< 0.51
MW-4@10'	6/4/10	12:32	10	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.49
MW-4@15'	6/4/10	12:39	15	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	0.0051	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.50
MW-4@20'	6/4/10	12:44	20	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.49
MW-4@25'	6/4/10	12:53	25	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.50
MW-5@5'	6/3/10	11:55	5	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.50
MW-5@12'	6/3/10	12:01	12	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.50
MW-5@15'	6/3/10	12:03	15	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.51
MW-5@20'	6/3/10	12:08	20	<1.0	< 2.0	< 0.050	< 0.050	< 0.050	< 0.10	< 0.050	< 0.50	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	<10	< 0.51
SB-8@24'	6/3/10	4:10	24	73	99	< 0.50	< 0.50	< 0.50	<1.0	53	<10	< 0.50	< 0.50	< 0.50	0.50	< 0.50	<250	< 0.50
SB-8@6'	6/3/10	3:48	6	<1.0	2.1	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.51
SB-8@10'	6/3/10	3:50	10	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.48
SB-8@15'	6/3/10	3:56	15	<1.0	2.4	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.50
SB-8@20'	6/3/10	4:00	20	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.50
SB-8@24'	6/3/10	4:03	24	<1.0	< 2.0	< 0.0050	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	< 0.0050	<1.0	< 0.49

TPPH = total purgeable petroleum hydrocarbons by EPA Method 8260B
BTEX = benzene, toluene, ethylbenzene, total xylenes by EPA Method 8260B
MTBE = methyl tertiary butyl ether by EPA Method 8260B
TBA = tertiary butyl alcohol by EPA Method 8260B
ETBE = ethyl tertiary butyl ether by EPA Method 8260B
TAME = tertiary amyl methyl ether by EPA Method 8260B
DIPE = di-isopropyl ether by EPA Method 8260B

1,2-DCA = 1,2-Dichloroethane (also known as ethylene dichloride) by EPA Method 8260B

 ${\rm EDB=}\qquad {\rm ethylene\ dibromide\ (also\ known\ as\ 1,2-Dibromoethane)\ by\ EPA\ method\ 8260B}$ Ethanol was analyzed by EPA Method\ 8260B

mg/kg = milligrams per kilogram

ND = not detected above the laboratory detection limit

Bold = detected compound concentration

EPA = US Environmental Protection Agency

TABLE 4

CURRENT GROUNDWATER SAMPLE ANALYTICAL DATA

ConocoPhillips Station No. 5781 Oakland, California

Sample	Date	TPH-D	TPH-G	Benzene	Toluene	Ethyl-	Total Xylenes	MTBE	TBA	ETBE	TAME	DIPE	1,2-DCA	EDB	Ethanol	Methanol
Location						benzene										
		(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Groundwate	r															
MW-4*	6/24/10	<50	<50	< 0.50	< 0.50	< 0.50	<1.0	4.7	<10	< 0.50	< 0.50	<.50	< 0.50	< 0.50	<250	<100
MW-4**	6/16/10	< 50	58	< 0.50	9.7	1	16	5.4	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	<100
MW-5**	6/16/10	3000	29000	580	6800	850	7200	<50	<25000	<50	< 50	<50	< 50	<50	<50	<100
SB-8*	6/3/10	99	73	< 0.50	<0.050	< 0.050	<1.0	53	<10	< 0.50	< 0.50	< 0.50	0.50	< 0.50	<250	<100

TPPH = total purgeable petroleum hydrocarbons by EPA Method 8260B

BTEX = benzene, toluene, ethylbenzene, total xylenes by EPA Method 8260B

MTBE = methyl tertiary butyl ether by EPA Method 8260B

TBA = tertiary butyl alcohol by EPA Method 8260B

ETBE = ethyl tertiary butyl ether by EPA Method 8260B

tertiary amyl methyl ether by EPA Method 8260B di-isopropyl ether by EPA Method 8260B TAME =

DIPE =

* Grab Groundwater Sample

1,2-DCA = 1,2-Dichloroethane (also known as ethylene dichloride) by EPA Method 8260B

ethylene dibromide (also known as 1,2-Dibromoethane) by EPA method 8260B

Ethanol was analyzed by EPA Method 8260B

mg/kg = milligrams per kilogram

ND = not detected above the laboratory detection limit

Bold = detected compound concentration

US Environmental Protection Agency

** Purge Groundwater Sample

APPENDIX A
ACEH Letter Dated May 21, 2010

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

May 21, 2010

Terry Grayson (sent via e-mail to Terry.L.Grayson@contractor.conocophillips.com)
ConocoPhillips
76 Broadway
Sacramento, CA 95818

United Brothers Enterprise, Inc. 3535 Pierson St. Oakland, CA 94619

Subject: ADDITIONAL ASSESSMENT REPORT, MONITORING WELL INSTALLATION WORK PLAN FOR Fuel Leak Case No. RO0000253 and GeoTracker Global ID T0600101467, Unocal #5781, 3535 Pierson St., Oakland, CA 94619

Dear Mr. Grayson. etal:

Thank you for the recently submitted document entitled, *Additional Assessment Report, Monitoring Well Installation Work Plan and Storm Sewer Repair Comments*, dated May 7, 2010, which was prepared by Delta Consultants for the subject site. Alameda County Environmental Health (ACEH) staff has reviewed the case file including the above-mentioned report/work plan for the above-referenced site. The investigation report/work plan was submitted to ACEH to detail the investigation that occurred on March 10, 2010 and to address contamination present in the storm drain as reported by Delta in their URF dated March 5, 2010 and per the subsequent neighborhood reports of petroleum hydrocarbon odors in the area in April 2010.

ACEH is not opposed to the well installation. However, the site has not been adequately characterized and installing monitoring wells is premature considering the available site data. Therefore ACEH requests that you address the following technical comments and send us the technical documents requested below.

TECHNICAL COMMENTS

Contaminant Source Area Characterization – ConocoPhillips has proposed installation of
two monitoring wells. As mentioned above, ACEH is not opposed to the well installation.
However, ACEH requests that you prepare a scope of work to characterize the source area
by performing an expedited site assessment using methods such as CPT, MIP or other
continuous logging method to evaluate the extent of petroleum hydrocarbons both on- and
off-site. We request that borings be advanced along transect(s). Once the source area has
been adequately defined, appropriate locations for the monitoring wells can be determined.

- Site Conceptual Model At this juncture, it may be advantageous to develop a site
 conceptual model (SCM), which synthesizes all the analytical data and evaluates all potential
 exposure pathways and potential receptors that may exist at the site, including identifying or
 developing site cleanup objectives and goals. At a minimum, the SCM should include:
 - a) Local and regional plan view maps that illustrate the location of sources (former facilities, piping, tanks, etc.) extent of contamination, direction and rate of groundwater flow, potential preferential pathways, and locations of receptors;
 - b) Geologic cross section maps that illustrate subsurface features, man-made conduits, and lateral and vertical extent of contamination;
 - c) Summary tables of chemical concentrations in different media (i.e. soil, groundwater, and soil vapor); and
 - d) Well logs, boring logs, and well survey maps;
 - e) Discussion of likely contaminant fate and transport.

If data gaps (i.e. potential contaminant volatilization to indoor air or contaminant migration along preferential pathways, etc.) are identified in the SCM, please include a proposed scope of work to address those data gaps in the work plan due by the date specified below. Please note that the work plan must address all data gaps identified in the SCM.

As part of your SCM, please complete a preferential pathway evaluation. There are two sewer easements on your map but there is no indication of whether a sewer line exists from your map and the depth of the sewer or if any other utilities are present. The purpose of the preferential pathway study is to locate potential migration pathways and conduits and determine the probability of the NAPL and/or plume encountering preferential pathways and conduits that could spread contamination. We request that you perform a preferential pathway study that details the potential migration pathways and potential conduits (wells, utilities, pipelines, etc.) for vertical and lateral migration that may be present in the vicinity of the site.

Discuss your analysis and interpretation of the results of the preferential pathway study and report your results in the work plan requested below. The results of your study shall contain all information required by California Code of Regulations, Title 23, Division 3, Chapter 16, §2654(b).

An evaluation of all utility lines and trenches (including sewers, storm drains, pipelines, trench backfill, etc.) within and near the site and plume area(s) is required as part of your study. Please include maps and add the utility locations to the previously submitted cross-sections illustrating the location and depth of all utility lines and trenches within and near the site as part of your study.

Mr. Grayson, etal RO0000253 May 21, 2010, Page 3

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Barbara Jakub), according to the following schedule:

• **June 30, 2010** – SCM with preferential pathway evaluation and work plan to address data gaps.

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please call me at (510) 639-1287 or send me an electronic mail message at barbara.jakub@acgov.org.

Sincerely,

Barbara J. Jakub, P.G. Hazardous Materials Specialist

Enclosures: Responsible Party(ies) Legal Requirements/Obligations
ACEH Electronic Report Upload (ftp) Instructions

cc: Jan Wagoner, Delta Consultants, 11050 White Rock Road, suite 110, Rancho Cordova, CA 95670 (Sent via e-mail to: JWagoner@deltaenv.com)

Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (Sent via E-mail to: lgriffin@oaklandnet.com)

Donna Drogos, ACEH (Sent via E-mail to: donna.drogos@acgov.org)
Barbara Jakub, ACEH (Sent via E-mail to: barbara.jakub@acgov.org)

GeoTracker

File

Responsible Party(ies) Legal Requirements/Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

ISSUE DATE: July 5, 2005

REVISION DATE: March 27, 2009

PREVIOUS REVISIONS: December 16, 2005,

October 31, 2005

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF)
 with no password protection. (Please do not submit reports as attachments to electronic mail.)
- It is **preferable** that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Additional Recommendations

A separate copy of the tables in the document should be submitted by e-mail to your Caseworker in Excel format.
 These are for use by assigned Caseworker only.

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org

Oı

- ii) Send a fax on company letterhead to (510) 337-9335, to the attention of My Le Huynh.
- b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape and Firefox browsers will not open the FTP site.
 - b) Click on File, then on Login As.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO# use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

Historical Boring Logs

,							
				во	RII	4 G L O G	
Project No. KEI-P89-120			В	oring 9"	& Cas	sing Diameter 2"	Logged By Delbaur
Project Nam Oakland - F			We	ell He	ead El	levation	Date Drilled 4/9/90
Boring No. MW1				rilli: ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level		:)	Stra graj USCS	phy	Desc	cription
			_			A. C. Pavement.	. Sand and Gravel
	N O		<u></u>	CL/		Clay with silt, moist, olive b	, 5-10% sand, soft, brown.
2/2/3	TENCOUNTERE			ML/ MH			O% clay, 5-10% coarse- soft to firm, moist, yish brown.
5/7/8	D D U R	_ _ 10 _		CL/ CH		moist, dark br	, except with gravel to
12/16/21	I N G	- - - -				Clay, 5-10% sar moist, dark br material	nd, very stiff, slightly cown, minor organic
8/16/20	D R I L L	 15 				Olava an abassa	+ wa co to 50 - 11 - 1 - 1
10/17/22	N G					Clay, as above, yellowish brow	, trace to 5% silt, dark
7/14/22		_ _ 20					

		(во	RII	NG LOG	
Project No. KEI-P89-120			Во	oring 9"	& Cas	sing Diameter 2"	Logged By Dall
Project Nam Oakland - 1			We	ell H	ead E N/A	levation	Date Drilled 4/9/90
Boring No. MW1				rilli ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level	· -	t)	gra USC	S	Desc	cription
10/16/21				GC GC		Clayey gravel,	t, dark yellowish brown. 5-10% sand, gravel to dense, moist, dark
9/12/18		_ _ _ _ 25		CL/			t and sand, stiff, brown, trace organic
9/12/19							
12/16/21		30					trace to 5% sand, live brown to dark brown
7/11/18						15-20% silt, 5% sand, dark yellowish brown.	
7/14/16		_ _ 35					
9/12/17					Silty clay, 5-1 stiff, slightl brown.	0% sand, stiff to very y moist, dark yellowish	
9/15/23		40					

	, <u>, , , , , , , , , , , , , , , , , , </u>) -	BOR	IN	IG LOG	
Project No. KEI-P89-120			В	oring &	Cas	sing Diameter 2"	Logged By Alban
Project Nam Oakland - I			W		d El N/A	evation	Date Drilled 4/9/90
Boring No. MW1				rilling ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6*	G. W. level		t)	strat graph uscs		Desc	cription
9/16/26				CL/ CH		sand is coarse stiff, slight! brown. Clay, with silt stiff, slight!	above. -15% silt, 30% sand, e to fine grained, very ly moist, dark yellowish c, trace sand, very ly moist, dark brown, reasing with depth.
11/18/32		55				TP C II	PAT. DEDTH • 501
		- 60				TOT	FAL DEPTH: 50'

				во	RI	G LOG	
Project No. KEI-P89-120			Вс	oring 9"	& Cas	sing Diameter 2"	Logged By D.L.
Project Nar Oakland - I			We	ell H	ead El	levation	Date Drilled 4/10/90
Boring No. MW2				rilli ethod		Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level	Depti (feet Samp	E)	stra graj USC		Desc	cription
						A. C. Pavement	and base rock.
2/2/4	N : O T			sc		sand is coarse	0-30% clay, 10-20% silt, e-to fine-grained, moist, yellowish brown wish brown.
2/2/4	E N C			CL/ CH		strong brown,	10% silt, firm, moist, pocketed with clayey soil, possible fill.
	U N T E R			GC		to 4" diameter	with sand, gravel 1 1/2" r, gap graded, 10-15% dense, moist, dark yel-
5/2/2	E D D	10 		GM		15% silt, loos ish brown, voi base of	ith sand, trace clay, se, moist, dark yellow- ids in sample. fill?
2/2/5	R I N G			МН	100		0-15% coarse sand, firm,
3/4/9	D R I L	— 15 —		CL/ CH		diameter, stif	10% gravel to 1/2" ff, moist, dark olive rk grayish brown below
	N G			GW- GM		trace to 5% cl moist, dakr ye	avel with silt and sand, lay, medium dense, ellowish brown. gravel below 19.5 feet.
5/7/10		20		GP		Clay below 20.	3 feet - See page 2.

				BORI	NG LOG	
Project No. KEI-P89-120			Во	oring & Ca	sing Diameter 2"	Logged By January
Project Nam Oakland - 1			We	ell Head E N/A		Date Drilled 4/10/90
Boring No. MW2		_		rilling ethod	Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level		t)	Strati- graphy USCS	Desc	cription
				CL/	Silty clay to o sand, very st ish brown to o	clay with silt, 5-15% iff, moist, dark yellow-olive brown.
7/10/18		25 			Clay, trace sile moist, olive le matter.	lt and sand, very stiff, brown, trace organic
9/16/23					Sandy clay, 5-3 diameter, hard brown.	10% gravel to 1/2" 1, moist, dark yellowish
9/13/19				CL/ CH	Sandy clay, trathan above, mobrown.	ace gravel, less sand bist, dark yellowish
8/12/14		- - 40			TO	ral DEPTH: 40'

	BORING LOG										
Project No. KEI-P89-120			В	oring	& Ca	sing Diameter 2"	Logged By W.W.				
Project Nam Oakland - 1			We	ell H	ead E	levation	Date Drilled 4/10/90				
Boring No.		1		rilli ethod		Hollow-stem Auger	Drilling Company EGI				
Penetration blows/6*	G. W. level	_	:)	gra	_	Desc	cription				
						A. C. Pavement Clay, sand and	gravel fill.				
	N O T	— — — —		sc		Clayey sand, ye brown, loose t	ellowish brown to olive to very loose, moist.				
2/2/3	N C O U N	_ 5 _ _ _		CL/ CH		Silty clay, sof lowish brown.	ft to firm, moist, yel-				
2/2/2	E RE D U R I	10	мн	мн			-10% sand, trace to 5% co firm, moist, black.				
4/8/13	N G R I L L	15		SC CL/ CH		diameter, medi yellowish brow Sandy clay, 30-	cace gravel to 1/4" lum dense, moist, dark vn35% sand, very stiff, ellowish brown.				
	И G					19 feet.	to 5/8" diameter at and and silt, stiff, brown.				

*				BORI	NG LOG	
Project No. KEI-P89-120			Вс	oring & Ca	sing Diameter 2"	Logged By
Project Nam Oakland - 1			We	e ll Hea d E N/A		Date Drilled 4/10/90
Boring No.				rilling ethod	Hollow-stem Auger	Drilling Company EGI
Penetration blows/6"	G. W. level		t) 📑	Strati- graphy USCS	Des	cription
4/7/12 8/10/12 9/12/17				CL/ CH	Clay, trace sicolive brown, l	lt, very stiff, moist, homogeneous. fine well rounded ace of silt, moist,
10/17/23		40			trace to 5% sabrown.	ace to 5% fine gravel, and, hard, moist, olive TAL DEPTH: 40'

				ВО	RII	NG LOG			
Project No. KEI-P89-120				В	oring	Diameter "	Logged By W.W.		
Project Nam Oakland - 3			We	ell H	ead E	levation	Date Drilled 7/5/90		
Boring No. EB1				rilli		Hollow-stem Auger	Drilling Company EGI		
Penetration blows/6	G. W. level		=)	gra		Desc	cription		
				CL/ CH		\base. Clay with silt,	over sand and gravel 5-10% sand, 10% fine dia., firm, moist,		
3/5/6				ML/ MH		Clayey silt, 30 grained sand, to 3/8" dia., Clayey silt, tr sand, moist, b Clay, trace sil	O% clay, 10% coarse- trace to 5% fine gravel moist, olive gray. race fine gravel, 5% brown. lt and sand, trace r, moist, stiff, orang-		
5/6/8				CL/ CH			and, trace silt, trace to 1/2" dia., moist, rown.		
8/13/18							ganic material, slightly tiff, dark yellowish		
9/12/17		— 15 — — — — — — —			\$ 100 miles 100	Clay, as above, tling.	with light gray mot-		

							
•				BORII	IG LOG		
Project No. KEI-P89-120				Boring 9	Diameter	Logged By W.W.	
Project Nam Oakland - 3	ne Uno 535 Pie	ocal erson	We	ell Head E N/A		Date Drilled 7/5/90	
Boring No. EB1				cilling ethod	Hollow-stem Auger	Drilling Company EGI	
Penetration blows/6"	G. W. level		t)	Strati- graphy USCS	Description		
7/13/18 8/15/21				CL/	fine-grained s slightly moist	ganic material, trace sand, trace silt, to hard, to hard, he brown with light gray,	
9/18/36	Ţ.				sand, trace of	, 15-20% silt, 5-15% rganic matter, hard, wet, dark yellowish	
		- 35 					
		_ _ _ 40			TO	TAL DEPTH: 34.5'	

				во	RII	G LOG							
Project No. KEI-P89-120				В	oring 9'	Diameter '	Logged By W.W.						
Project Nam Oakland - 3!			We	ell H	ead El	levation	Date Drilled 7/6/90						
Boring No. EB2				illi:		Hollow-stem Auger	Drilling Company EGI						
Penetration blows/6"	G. W. level		E)	gra		Desc	cription						
				GC		Clayey gravel :	over sand and gravel. 15% silt, 10% sand, " dia., moist, medium brown.						
4/4/5											CL gravel to 1/4" o		n gravel, 15% sand, " dia., trace organic to wet, firm, dark wn.
						sand, trace f	, 10% coarse-grained ine gravel to 1/4" dia., o stiff, olive brown.						
4/5/8		_ _ _ 10		CL/ CH		Clay, trace rootlets, stiff, slightly moist, dark yellowish brown with trace light gray mottling.							
7/14/18		- - - -		:		hard, slightly	, trace to 5% silt, y moist, dark yellowish ght gray mottling.						
8/15/19		— 15 — — — —					, trace to 15% silt, yellowish brown with ttling.						

	_ _			ВО	RII	IG LOG			
Project No. KEI-P89-120				Во	oring 9'	Diameter '	Logged By W.W.		
Project Nam Oakland - 35			We	ell H	ead El	levation	Date Drilled 7/6/90		
Boring No. EB2				rilli ethod		Hollow-stem Auger	Drilling Company EGI		
Penetration blows/6"	G. W. level		E)	graj		Desc	cription		
8/12/22		_ _ _ _ _		CL/ CH		hard, moist, d	ganic matter, trace silt lark yellowish brown my mottling, slight m, mottling.		
7/8/12		— 25 — -					t, trace to 5% organic t, very stiff, beige with ottling.		
8/14/20		— 30 — — — —		ML/ MH		up to 20% sand	th fine-grained sand, d, hard, moist, light crace light gray		
13/15/28	¥	— 35 —		sc			th silt, silt to 15%, wet, dense, light olive		
		_ _ _ _ 40				тот	TAL DEPTH: 38'		

<u>, , , , , , , , , , , , , , , , , , , </u>											
	BORING LOG										
Project No. KEI-P89-120			Во	oring 9"	& Cas	sing Diameter 2"	Logged By W.W.				
Project Nam 3535 Pierso			We	ell Ho	ead El N/A	Levation	Date Drilled 12/11/90				
Boring No.				cilli: ethod		Hollow-stem Auger	Drilling Company Woodward Drilling Co.				
Penetration blows/6"	G. W. level		=)	gra		Desc	cription				
,		v				Asphalt pavemer	t over sand and gravel.				
				CL/ CH		diameter, 5% s	el, gravel to 2-1/2" sand, moist, yellowish e of fill.				
			ML/ MH			Clayey silt, tr	race sand, trace fine diameter, moist, firm e brown to olive gray.				
4/4/6		5		CL/ CH			t, fine- to medium- moist, stiff, brown.				
4/9/15		10 				Clay, trace sub diameter, trac stiff, olive b	eangular gravel to 3/8" ee sand, moist, very erown.				
7/13/21		15 		CL/		silty clay, tra moist, hard, d	ce organic matter, lark yellowish brown.				
9/15			_	CH to ML/ MH			clayey silt, trace org- noist, hard, light				

Page 1 of 3

						
				BORI	NG LOG	
Project No. KEI-P89-120				ring & Ca	sing Diameter 2"	Logged By W.W.
Project Nam 3535 Pierso			We]	ll Head E N/A		Date Drilled 12/11/90
Boring No.				illing thod	Hollow-stem Auger	Drilling Company Woodward Drilling Co.
Penetration blows/6"	G. W. level		t)	Strati- graphy USCS	Desc	eription
/27			7	CL/ CH to ML/ MH	Silty clay to o anic matter, n yellowish brow	clayey silt, trace org- moist, hard, light wn.
11/18/29		25 		ML/ MH		y, trace organic matter, ard, light yellowish
6/12/20		— 30 —			moist, very st	trace organic matter, ciff to hard, light ottled with light yel-
11/24/28					Free water enco	ountered at 33'.
15/25/38		- 35 - 35 			trace fine- to moist to very	y, trace organic matter, o medium-grained sand, moist, hard, light yn mottled with yellow-
9/		- 40	<u> </u>			

						· · · · · · · · · · · · · · · · · · ·			
				во	RI	NG LOG			
Project No. KEI-P89-120			В	oring 9"	& Ca	sing Diameter 2"	Logged By W.W.		
	Project Name Unocal 3535 Pierson St. Oakl					levation	Date Drilled 12/11/90		
Boring No.				rilli ethod		Hollow-stem Auger	Drilling Company Woodward Drilling Co.		
Penetration blows/6"						Desc	cription		
18/26		Samp]		SW ML/ MH		ted, dense, yes	ded, trace silt, satura- ellowish brown. , trace organic matter, brown mottled with light		
		_ _ 60				тол	FAL DEPTH: 45'		

WELL COMPLETIO	ON DIAGRAM
PROJECT NAME: Unocal 3535 Pierson St. Oa	akland BORING/WELL NO. MWA
PROJECT NUMBER: KEI-P89-1204	
WELL PERMIT NO.:	
Flush-mounted Well Cover A	A. Total Depth: 45'
	B. Boring Diameter*: 9"
	Drilling Method: Hollow Stem
	Auger
D G	C. Casing Length: 45'
	Material: Schedule 40 PVC
	D. Casing Diameter: OD = 2.375"
E	$ID = 2.067^{II}$
I I I I I I I I I I I I I I I I I I I	E. Depth to Perforations: 25'
F	F. Perforated Length: 20'
À	Machined Perforation Type: Slot
	Perforation Size: 0.010"
i i	G. Surface Seal: 21'
c l -]	Seal Material: Concrete
	H. Seal: 2'
	Seal Material: Bentonite
	I. Gravel Pack: 221
	RMC Lonestar Pack Material: Sand
	Size: <u>#2/16</u>
	J. Bottom Seal: None
J J	Seal Material: N/A

*Boring diameter can vary from 8-1/4" to 9" depending on bit wear.

PROJECT NO.: 42-0102-01		DATE DR			
CLIENT: ConocoPhillip		LOGG APPROV			
LOCATION: 76 Service Sta	ation #5/81 Street, Oakland, California	DRILLIN			
			T		
	ILLING METHOD: 8-inch Hollow-Stem Auger SAMPLER TYPE: 2-inch Split Spoon				
(g H; ≻ xg — ,	TOTAL DEPTH: 44.0 feet	_	≿	BORII BACKE	
DE D	PTH TO WATER: 39.0 feet	_ ") Co	DETA	II.
PID/FID (ppm) BLOWS PER 6 INCHES RECOVERY SAMPLE DEPTH (feet below grade)	DESCRIPTION	——— sosn	ПТНОГОСУ	521,	"-
	DESCRIPTION			40 . 4	
SANI	ID (SM) (continued).				
		SM		4	- Grout
				<u> </u>	
				45—	
				\exists	
				50—	
				50—	
55				55—	
				60	
			!	1 3 1	
				60-	
1					
				65—	
]	
70				70	
				-	
				🚽	
			1	🚽	
				75—	
75				75—	
				80—	
	LOG OF EXPLORATORY BORI	NG	<u> </u>	SB PAGE 2	

.

PR	С	LIEN	T:	42-0102 Conoco	Phillips		3GE	D BY	: P. Kelleher
	LOCA	<u>ATIO</u>			rice Station #5781	APPRO DRILI			
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	v grade)	DRILLING METHOD: 8-inch Hollow-Stem Auger SAMPLER TYPE: 2-inch Split Spoon TOTAL DEPTH: 54.0 feet DEPTH TO WATER: Not applicable DESCRIPTION		uscs	птногосу	BORING BACKFILL DETAIL
O	8 11 13	1.5/ 1.5		0 5	Hand augered to 5'. CLAY (CL): Brownish yellow (10YR 5/4) with black mottles, 95% clay, 5% gravel, soft, damp.		CL		5 Grout
0	12 12 18	1.5/ 1.5	Williamority.	10	- @ 9': color change to black (10YR 2/1), 95 % clay, 5% sar very soft.	nd,			10 - 4
0	16 17 25	1.5/ 1.5		15 15		Transfer of the state of the st			15 — 4
0	14 14 19	1.5/ 1.5	and door.	20	GRAVELLY SAND (SW): Brownish yellow (10YR 5/6), 10 % clay, 60% sand, 30% gravel, soft, damp.		sw		20
0	21 20 26	1.5/ 1.5		25				<i>2777</i>	25 4 4
0	22 24 26	1.5/ 1.5	termestra.	30	CLAY WITH SAND (CL): Yellowish brown (10YR 4/4), 80 % clay, 15% sand, 5% gravel, soft, damp.	6	٥.		30
0	21 21 28	1.0/ 1.5		35			CL		35-4
0	23 27 22	0.5/ 1.5		F.,	SILTY SAND (SM): Yellowish brown (10YR 6/3), 20 % silt, clay, 70% sand, hard, damp.	10%	SM		40 -4
	22	· MERCON.		40 <u> </u>	LOG OF EXPLORATORY BORII	NG		11-15-14-14-1	SB-2 PAGE 1 OF 2

PF				42-0102		DATE			
				Conoco 76 Serv	Phillips ice Station #5781	APPF		D B	
					erson Street, Oakland, California			G CO	
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch Hollow-Stem Auger SAMPLER TYPE: 2-inch Split Spoon TOTAL DEPTH: 54.0 feet DEPTH TO WATER: Not applicable DESCRIPTION		nscs	ПТНОГОСУ	BORING BACKFILL DETAIL
0	25 22 27	1.5/ 1.5	TO A CONTRACT OF THE CONTRACT		SAND (SM) (continued).		SM		40
0	19 23 27	1.0/1.5		50	SILTY SAND WITH GRAVEL (SM): Yellowish brown (10Y 5/6), 20% silt, 5% clay, 60% sand, 15% gravel, hard, dam	rR up.			50
		R		80_	LOG OF EXPLORATORY BOR	ING	<u> </u>	1	SB-2 PAGE 2 OF 2

ı

				10.010	204	DATE	: DDI		D: 10/31/03
PR				42-0102 Conoco		LO	GGE	DB	Y: P. Kelleher
	LOCA	OITA	N:_		ice Station #5781 erson Street, Oakland, California	APPR	LING		
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	v grade)	DRILLING METHOD: 8-inch Hollow-Stem Auger SAMPLER TYPE: 2-inch Split Spoon TOTAL DEPTH: 54.0 feet DEPTH TO WATER: Not applicable DESCRIPTION		nscs	LITHOLOGY	BORING BACKFILL DETAIL
0	10 12 16 7 11 16	1.0/ 1.5 1.5/ 1.5			Hand augered to 5'. SILTY SAND (SM): Yellowish brown (10YR 5/4), 20 % silt, % sand, 10% gravel, soft, dry.	.70	SM		5 — Grout
1.7	13 15 15	1.0/ 1.5		15	SANDY GRAVEL WITH SILT (GM): Greenish gray (GLEY 4/5G), 20% silt, 30% sand, 50% gravel, soft, moist.	<u> </u>	GM		15 — 4
0	11 14 16	0.5/ 1.5	***************************************	20	SILTY SAND WITH GRAVEL (SM): Greenish gray (GLEY 4/5G), 20% silt, 60% sand, 20% gravel, soft, damp.	1	SM	200	20
0	14 16 27	1.5/ 1.5	Contact State Co	25 25	SILT (ML): Yellowish brown (10YR 5/4), 90 % silt, 10% clahard, damp.	ay,			25 4
0	12 12 15	1.5/ 1.5	positovištička	30	SANDY SILT (ML): Yellowish brown (10YR 5/6), 60 % silt sand, 10% gravel, hard, damp.	30%	МL		30 - 30 - 30 - 30 - 30 - 30 - 30 - 30 -
0	15 16 19	1,5/ 1.5	3941000000	35	SILT WITH SAND (ML): Yellowish brown (10YR 5/4), 80 9 20% sand.	% silt,			35 4
0	16 17 20	1.5/ 1.5		40					SB-3
		R			LOG OF EXPLORATORY BOR	ING			PAGE 1 OF 2

<u>PF</u>	С	LIEN	T: N:	76 Serv	2-01 pPhillips vice Station #5781 ierson Street, Oakland, California	DATE LOC APPRO DRIL	GGE OVE	DB'	Y: P. Kelleher Y: B.A. Moed, RG
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch Hollow-Stem Auger SAMPLER TYPE: 2-inch Split Spoon TOTAL DEPTH: 54.0 feet DEPTH TO WATER: Not applicable DESCRIPTION		nscs	LITHOLOGY	BORING BACKFILL DETAIL
0	20 14 23	1.5/ 1.5		45	SILT WITH SAND (ML) (continued).		ML		45
O	17 19 22	1.5/		50 	SILT (ML): Yellowish brown (10YR 6/4), 100 % silt.				55
		R			LOG OF EXPLORATORY BOR	NG			SB-3 PAGE 2 OF 2

PRO	DJEC	T NO).:	42-0102	2-01	DATE	DRI	LLED	: 10/31/03	
1110				Conoco		LO	GGE	D BY	: P. Kellehe	
L	_OCA	(TIO			ice Station #5781	APPR				
				3535 Pi	erson Street, Oakland, California	DRIL	LIN	G CO.	: Cascade	<u>Drilling</u>
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch Hollow-Stem Auger SAMPLER TYPE: 2-inch Split Spoon TOTAL DEPTH: 24.0 feet DEPTH TO WATER: 19.5 feet DESCRIPTION		nscs	ПТНОГОСУ	BORII BACKF DETA	TILL
0	12 12 15	1.0/	of towards.	0 1 1 5 1 1 1 1 1 1 1	Hand augered to 5'. SAND (SP): Yellowish brown (10YR 5/6), 90 % sand, 10% gravel, soft, damp.		SP		5	– Grout
0	5 4 9	1.0/ 1.5	WARRAN .	10	CLAY (CL): Black (10YR 2/1), 90 % clay, 10% sand, soft, moist.		CL		10	
	14 16 19	1.5/ 1.5	5 1 - 1 1 1 1 1 1 1 - 1 1 - 1	15 15	SILT WITH CLAY (ML): Yellowish brown (10YR 4/3), 70 % 20% clay, 10% gravel, soft, moist.	6 silt,	ML		15	
1 1	14 16 21	1.0/		20 25 30 35 35	SAND WITH GRAVEL (SW): Yellowish brown (10YR 4/4), 10% silt, 50% sand, 40% gravel, soft, moist.		SW .		25	
		7		_	LOG OF EXPLORATORY BOR	ING			SB- PAGE 1	

,

ŧ

DE	O IEC	T NO		42-010	2.01	DATE	: np	III ET	D: 10/31/0	
Fr					Phillips	LO	GGE	ED B	Y: P. Kelle	her
			N:	76 Serv	rice Station #5781	APPR				
	MADERIAN CONTRACTORS	·		3535 P	ierson Street, Oakland, California	_ טאוו	_LIN	G CO	:: Cascad	e Drilling
PID/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	DRILLING METHOD: 8-inch Hollow-Stem Auger SAMPLER TYPE: 2-inch Split Spoon TOTAL DEPTH: 29.0 feet DEPTH TO WATER: 24.6 feet DESCRIPTION		sosn	LITHOLOGY	BOF BACI DE	
0	11 11 13 13 14 17	1.5/ 1.5 1.5/ 1.5			Hand augered to 5'. CLAY (CL): Very dark gray (10YR 2/1), 90 % clay, 10% grayft, damp. - @ 9': color change to dark gray (10YR 4/1), 95 % clay, 8 gravel.		CL		5 - 4	Grout
0	12 16 17	1.5/ 1.5			SAND (SP): Yellowish brown (10YR 5/6), 10 % silt, 90% soft, moist.	sand,		////	15	4
0	15 15 19	1,5/ 1.5		20			SP		20	
0	14 16 19	0.5/ 1.5		25			\subseteq		25 4	
				30 					35 - 35 - 35 - 35 - 35 - 35 - 35 - 35 -	
					LOG OF EXPLORATORY BOR	ING			SE	3-5 1 OF 1

Logged By: Nadine Periat Log												
	-						ocoPhillips		/ell/ Boring ID: SB-6			
		•					535 Pierson Street, Oakland,	CA Pa	age 1 of 2			
Dalta	Driller: G		-	-	D	ate Drille	d: March 12, 2010	Location Map				
Delta	Drilling N	Method: Hol		-		ole Diame		See Site Map)			
	Samplin	g Method: S	Split Spoo	on	H	ole Depth	: 40 feet					
Consultants	Casing 7	Гуре: NA			W	ell Diame	eter: NA					
	Slot Size	e:NA			W	ell Depth	: NA		First encountered water			
	Gravel F	Pack: NA			C	asing Stic	kup: NA					
		Elevation			Northin	9	Easting					
Well		l .	1			-						
Completion Static	Ф т	PID Reading (ppm)	Penetration (blows/6")	et (Samp	e g						
Otatio	⊃ ຄ	ead om)	trati vs/6	Depth (feet)	<u>\</u>	Soil Type	1 11	HOLOGY / DI	ESCRIPTION			
Casing Mater Casing Cas	Gor doi:	P (P	enet olow	ptt	Recovery	Soil Ty		IIOLOGI / DI	LOCKII TION			
Ca Ba		붑	9 a	ă	Rec .	[]						
			1									
				1		sc	Clayey Sand,	d, tan, 15-20% clay, low plasticity,				
				' _			sand is mediur	n to coarse				
			*	2								
			5 feet									
			5	3								
								fractured grani	itic cobbles			
									. Red oxidation present			
				5			in fracture plar	es.				
			1]	4	SC SC	, ,		an, 15-20% clay,			
	Moist 0.6 2 6 15-20% grave						15-20% gravel	, low plasticity.	. Sand is well graded,			
			3	0—	1	7	gravel is angul	ar and medium	n sized, loose.			
				7								
					'							
				8								
			3	9—	4	`						
	Moist	0.9	2	_		sc			low plasticity, sand is			
			2	10-	1		well graded, ve	ery loose.				
				_								
				11								
				l '' _								
				12-								
				'								
\Box				13—								
				.5								
	Wet	1.3	9	14					green, no plasticity,			
			5	` _		☐ GP			re green quartzite,			
			5	15			approximately					
				_	+	_	Rocks stuck in	sampler, poor	recovery.			
				16	++							
				-	++	_						
				17	++	_						
				-	++	_						
				18	++							
			_	-	++,		No Desaver	0000 dos =!4:				
			1	19—	++	_	No Recovery,	oose density				
I ⊢			2 4	-	++	_						
			4	20 —	++'	_						
				-	+							
				21 —	+	-						
	22											
• J							Ī.					

		1									I			
			No: c10578						coPhillips	0.4	Well/ Boring ID: SB-6			
l	Sampling Method. Split Spoon								85 Pierson Street, Oakland,		Page 2 of 2			
ID OI	Drilling Method: Hollow Stem Auger Sampling Method: Split Spoon Casing Type: NA Ho We							Diamete	March 12, 2010	Location Map See Site I	Man			
	la	_			-					See Site i	viap			
				split Spot	on			Depth: 4						
Consulta	ints													
		Slot Size	e:ina Pack: NA					Depth: Nong Stick						
		Graver	Elevation					ig Slicki	Easting					
	Well ompletion Static 2 to the Sample a								Lasting					
			βι	Ē.	÷	San	nnle			•				
		Moisture Content	adir n)	atio s/6"	(fee			уре						
Backfill	Water Level	lois	Re (ppi	netr	btp]]	Interval	T lic	LII	HOLOGY	/ DESCRIPTION			
Bac Ca	Level	≥ 0	B □	Pe G	De	Recovery	Inte	Š						
					00									
										0% well graded sand,				
_	Wet 1.6 8 24 17								some gray root holes with					
			17 25 roots, very sti											
					_			i	•					
					26—									
					27—									
								i						
					28—									
-				9	29—			Ī	Lean Clay witl	h Sand, ta	n, 20% fine sand, low			
_		Wet	0.9	12	_			Ī	. ,		anic matter in ~1mm			
				18	30 —		*		spheres, very s	STITT.				
					31 —			,						
_					-			·						
					32—									
					33—			,						
				11	-		•	Ţ.	As above trace	a fina grav	٥١			
		Wet	0.9	13	34		+		As above, trace	e lille glav	ei 			
				16	35 —		*	,						
					-			,						
					36—	\vdash								
					37—									
					38									
				8	-				Lean Clav, tan	, 10% fine	sand, trace fine gravel,			
		Wet	2.1	10	39 —				low plasticity, v		· ·			
				10	40 —		*		D-41 (P	(46 '	Faat			
					-				Bottom of Bor	ing at 40	reet			
					41 —									
					42			,						
					_	\vdash								
				43										
					44	14								
					' -									

	_	No: c10578						coPhillips		Well/ Boring ID: SB-7			
		By: Nadine						35 Pierson Street, Oakland,	r	Page 1 of 1			
D~1+~		Gregg Drillin	-	-				March 12, 2010	Location Map	_			
Delta		Method: Hol					iamete	-	See Site M	1ap			
		g Method: S	Split Spoo	on				15 feet					
Consultants	Casing ⁻	Type: NA			V	/ell D	iamete	er: NA	∇	: First encountered water			
	Slot Size	e:NA			V	/ell D	epth: N	NA					
	Gravel F	Pack: NA			С	asing	Stick	ıp: NA					
		Elevation			Northin	ıg		Easting					
Well 1	1	1		ļ		1							
Well Completion Static	m +	PID Reading (ppm)	on (_	et (Samp	ole	Φ						
Otatio	Moisture Content	ead m)	Penetration (blows/6")	Depth (feet)	-		Soil Type		HUI UGV I	DESCRIPTION			
Water Casing Cas	/lois Son	Pp (pp	anet alow	pth	ove	Interval	 	LII	IIULUGI /	DESCRIPTION			
Ca	20	l ∏	Pe	Ď	Recovery	<u>r</u>	ഗ						
					 	\dagger							
						\exists	CL	Sandy Lean C	lay, mottled	d tan and orange, low			
				1—				plasticity, 45%					
						\Box		. ,					
			5 feet	2									
			5 6										
			Air Knife to 5	3		\neg							
			ife	, -									
			조	4	† †	\dashv							
			Ţ₽		† †	\dashv							
	Moist	0.4	`*	5—		<u> </u>		As above					
	1	•••					CL		n sand. bro	own, 20-25% fine to			
				6		$\downarrow \vdash \mid$		coarse sand, m					
				-	+ +	* 		Joan Joan Jana, II	.ou.um pido				
				7		\dashv							
				-	+	\dashv							
				8	++								
				<u> </u>		<u> </u>	CL	Lean Clay are	v 10-15%	well graded sand, low			
				9		1	CL			s of fractured quartzite.			
_				_		+		plasticity, inch	ong chunk	s of fractured quartzite.			
				10		*							
	N40:04	0.5		-	+	\dashv							
	Moist	0.5		11	+	\dashv							
				-	++								
				12	+	\dashv							
				_	₩.								
\Box				13		_							
					\sqcup								
] ,			14	<u> </u>		SP-	Poorly Graded					
	Wet	0.4		· ·		Щ	SC	plasticity, sand	is medium.				
				15	<u> </u>	∀			-				
								Bottom of bor	ing at 15 fe	eet			
				16—									
				l .									
				17—									
				' <i>'</i>									
				18—									
				19—									
				19									
				20									
				20—									
				21 —		\neg							
				22									
	1			22	1 	-							

		No: c10578						coPhillips		Well/ Boring ID:SWC-2				
		d By: Nadine						35 Pierson Street, Oakland,		Page 1 of 1				
	Driller:	Gregg Drillin	-	_				March 12, 2010	Location Map					
Delta	Drilling	Method: Ho		_			Diamete		See Site M	lap				
	Sampli	ng Method: S	Split Spoo	on			Depth: 2							
Consultants	_	Type: NA					Diamete			: First encountered water				
	Slot Si						Depth: N							
	Gravel	Pack: NA					ng Sticki							
		Elevation			Nort	hing		Easting						
Well			T _		T				<u>I</u>					
	tatic 🖁 🚡	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)		mple	/be							
∭ gu W	tatic Woisture Content	Res	etra ws/	Ē.	very	val	Soil Type	LIT	HOLOGY /	DESCRIPTION				
Backfill Casing Casing	evel ≥ ŏ	Ŏ,	Pen (blc	Dep	Recovery	Interval	So							
			<u> </u>	<u> </u>	凇	_=								
				_										
				1	-									
	Mois	. [_	1		l							
	IVIOIS	`[2	1									
			ě	_	+		sc	Clavey Sand w	vith Gravel	l, brown, 15-20% clay,				
-) fe	3—	+		30							
			= =	_	1		}		graded sand, 30% fine to medium gravel, ty, gravel is subrounded.					
			1	4	1			Suspected artif		i ouriuou.				
			ge	_	+			Suspected artif	iciai iiii.					
			Air Knife/ Hand Auger to 10 feet	5	+									
			pu	-	+		}							
			Ha	6	+									
			fe/	-	+		}							
			Ē	7										
			-		1		1							
			~	8										
	Wet			9	1									
			↓	10										
				10-										
				11—		_		As above						
	Wet	0.5		12-										
				12-		" _₩								
7	Z			13—										
				13										
				14			CL	Lean Clay witl	Sand and	d Gravel, mottled				
	Wet	0.4		'		Ш			6 well grade	ed sand, 15% fine gravel,				
				15—		*		low plasticity.						
				'5										
				16—										
				.5										
				17—										
				''										
				18—										
				.5		<u> </u>								
				19—		1				present when clay core				
	Wet	0.1				\sqcup		is broken open	. Black oxid	lation on fracture planes.				
				20		\ \								
				21—										
				- ' _										
				22—										
ı		1	1	1	1			Ī						

	Project N	No: c10578	1031			Clien	t: Conoc	coPhillips		Well/ Boring ID:SWD-2			
		By: Nadine						35 Pierson Street, Oakland,	CA	Page 1 of 1			
Dalta		Gregg Drillin						March 12, 2010	Location Map	_			
Delta	_	Method: Hol		•			Diamete		See Site N	Иар			
	-	g Method: S	Split Spoo	on			Depth: 2						
Consultants	_	Гуре: NA					Diamete		7				
	Slot Size						Depth: N						
	Gravel F	Pack: NA		1			ng Sticki						
		Elevation			North	ning		Easting					
Well		D	_	$\overline{}$. 1							
Completion Static	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)		mple	Soil Type		HOLOOY / DECODIDEION				
≣ b Water	oist	Re	netra	Ę.	ver	rval	Jii T	LIT	THOLOGY	/ DESCRIPTION			
Casing Mater Casing Cas	ΣO	<u>⊖</u>	Per (5	Dep	Recovery Interval Soil Ty								
		_	A		<u> </u>	1							
-				_	1		CL	Lean Clav. tan	n, 15% fine sand, low plasticity.				
				1 —			-		, ,	, p, -			
	Moist			_			•						
			اید	2—	l								
			fee	3-									
			10	3—									
			£	4									
			<u>je</u>										
	Wet 17.7 3 3 4 5 5 6 7 As above, or plasticity, tr												
			p b	_			1						
			lan	6									
				_			i						
	14/-1	477	nife	7—	-			A L L L	1 40	450/ ("			
	Wet	17.7	. <u>=</u>		+	-	,			-15% fine sand, medium			
						₹	8				plasticity, trace	gravei, so	ii is saturated
							_	+		,			
				9	+			As above light	tan not sa	aturated, no gravel.			
	Moist		↓	_			ı	A3 above, light	. tari, 110t 3c	itaratea, no gravei.			
	Wiolot		•	10-									
				_	1		,						
<u> </u>				11 —		A		As above, trace	e fine grave	el, gray root holes.			
	Moist	2.4		40		Ш	,		9	- , <u>G</u>			
				12-									
				12			i						
				13									
			9	14		<u></u>	SC	Clayey Sand,	tan, 20-25°	% clay, slight plasticity,			
	Damp	0.2	12	14-						lack organic material, veins			
			17	15—		*		of orange oxida	ation.				
									-				
				16—									
							,						
				17									
	Moist 2.4 12 — 13 — 13 — 13 — 15 — 16 — 17 — 18 — 18 — 18 — 18 — 18 — 18 — 18												
				18	-								
			0	_				A a a b a O T 0 /	olov see	المسال معملات المسالة			
	B B B 12					+			ciay, sand	d is well graded,			
	- $					low plasticity							
	16 20												
-				_	+		,						
				21 —									
				-	+								
				22—	+								

APPENDIX C

Historical Groundwater Monitoring and Sampling Results

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1990 Through June 2010
76 Station 5781

Date	TOC	Depth to	LPH		Change in									Comments
Sampled E	Elevation	Water	Thickness	water Elevation	Elevation		TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		TPH-D	8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	
MW-4			(Scre	en Interva	l in feet: 15	-25)								
6/16/2010	153.48	11.13	0.00	142.35		ND<50	58	ND<0.50	9.7	1.3	16		5.4	
MW-5			(Scre	en Interva	l in feet: 10-	-20)								
6/16/2010	153.66	11.95	0.00	141.71		3000	29000	580	6800	850	7200		ND<50	
MW-A			(Scre	en Interva	l in feet:)									
12/18/199	0					73	ND	ND	ND	ND	ND			
5/3/1991						ND	ND	ND	ND	ND	ND			
8/7/1991						ND	ND	ND	ND	ND	ND			
11/8/1991	1					ND	ND	ND	ND	ND	ND			
2/6/1992	151.80	19.88	0.00	131.92		ND	ND	ND	ND	ND	ND			
8/4/1992	151.80	18.95	0.00	132.85	0.93	ND	ND	ND	ND	ND	0.51			
2/10/1993	3 151.80	17.71	0.00	134.09	1.24	ND	ND	ND	ND	ND	ND			
2/10/1994	4 151.80	15.25	0.00	136.55	2.46	ND	ND	ND	0.52	ND	0.92			
2/9/1995	151.80	15.68	0.00	136.12	-0.43	ND	ND	ND	ND	ND	ND			
2/6/1996	151.80	12.52	0.00	139.28	3.16	120	ND	ND	ND	ND	2.1			
2/5/1997	151.80	13.01	0.00	138.79	-0.49	61	ND	ND	ND	ND	ND		ND	
2/2/1998	151.80	11.91	0.00	139.89	1.10	ND	ND	ND	ND	ND	ND		ND	
2/22/1999	9 151.80	11.24	0.00	140.56	0.67	ND	ND	ND	ND	ND	ND		ND	
2/26/2000	151.80	12.16	0.00	139.64	-0.92	ND	ND	ND	1.01	ND	ND		ND	
3/7/2001	151.80	11.91	0.00	139.89	0.25	131	ND	ND	ND	ND	ND	ND	ND	
2/22/2002	2 151.80	14.08	0.00	137.72	-2.17	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<5.0	
2/22/2003	3 151.80	14.41	0.00	137.39	-0.33	93	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0	ND<2.0	
2/3/2004	151.80	14.32	0.00	137.48	0.09	60	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<2.0	

CTRC

Page 1 of 2

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
December 1990 Through June 2010
76 Station 5781

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness		Elevation		TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		TPH-D	8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	
MW-A	continued	Į.												
2/18/20	05 151.80	14.21	0.00	137.59	0.11	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	
3/29/20	06 151.80	12.72	0.00	139.08	1.49	ND<200	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	0.54	
3/28/20	07 151.80	13.98	0.00	137.82	-1.26	92	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
3/22/20	08 151.80	12.68	0.00	139.12	1.30	ND<50	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
3/27/20	09 151.80) 14.35	0.00	137.45	-1.67	53	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
3/23/20	10 151.80) 19.55	0.00	132.25	-5.20	ND<58								
6/16/20	10 154.79	9 17.85	0.00	136.94	4.69	ND<50	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	

Page 2 of 2

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5781

Date Sampled	TPH-G (GC/MS) (μg/l)	TBΑ (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (µg/l)	TAME (µg/l)	Methanol (μg/l)	Total Oil and Grease (mg/l)	TRPH (mg/l)	Bromo- dichloro- methane (µg/l)
MW-4 6/16/2010		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100			
MW-5 6/16/2010		ND<1000	ND<25000	ND<50	ND<50	ND<50	ND<50	ND<50	ND<100			
MW-A 2/6/1996												
2/5/1997												
3/7/2001		ND	ND	ND	ND	ND	ND	ND				
2/22/2003		ND<100	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				
2/3/2004		ND<100	ND<500	ND<2.0	ND<0.50	ND<2.0	ND<2.0	ND<2.0			ND<1.0	ND<0.50
2/18/2005		ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<2.0		ND<0.50
3/29/2006		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50				ND<0.50
3/28/2007		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<5.0		ND<0.50
3/22/2008		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<5.0		ND<0.50
3/27/2009		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<5.0		ND<0.50
6/16/2010		ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<100			

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5781

Date			Carbon		2-				Dibromo-	1,2-	1,3-	1,4-
Sampled	Bromo-	Bromo-	Tetra-	Chloro-	Chloro-	Chloroethyl		Chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-
	form	methane	chloride	benzene	ethane	vinyl ether	Chloroform	methane	methane	benzene	benzene	benzene
	$(\mu g/l)$											
MW-A												
2/3/2004	ND<2.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<2.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
2/18/2005	ND<2.0	ND<1.0	ND<0.50	ND<0.50	ND<1.0		ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50
3/29/2006	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
3/28/2007	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
3/22/2008	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
3/27/2009	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50		ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 2 c
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5781

Date Sampled	Dichloro- difluoro- methane (µg/l)	1,1-DCA (μg/l)	1,1-DCE (μg/l)	cis- 1,2-DCE (μg/l)	trans- 1,2-DCE (μg/l)	1,2- Dichloro- propane (µg/l)	cis-1,3- Dichloro- propene (µg/l)	trans-1,3- Dichloro- propene (µg/l)	Methylene chloride (μg/l)	1,1,2,2- Tetrachloro- ethane (µg/l)	Tetrachloro- ethene (PCE) (µg/l)	Trichloro- trifluoro- ethane (µg/l)
MW-A												
2/3/2004	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50
2/18/2005	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	ND<0.50	ND<0.50	ND<0.50
3/29/2006	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50
3/28/2007	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50
3/22/2008	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50
3/27/2009	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	ND<0.50

Page 1 of 1

Table 2 d
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 5781

Date	1,1,1-	1,1,2-	Trichloro-	Trichloro-	
Sampled	Trichloro-	Trichloro-	ethene	fluoro-	Vinyl
	ethane	ethane	(TCE)	methane	chloride
	$(\mu g/l)$				
MW-A					
2/3/2004	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50
2/18/2005	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50
3/29/2006	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
3/28/2007	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
3/22/2008	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
3/27/2009	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

APPENDIX DAir Monitoring Results

Storm Drain PID Summary

SS# 5781 - 3535 Pierson Street, Oakland, CA

	Date	Time	Sample Point	Depth Below Surface	PID Reading (PPM)	LEL Reading (%LEL)
	2/22/2010		MH-2	Surface	500	0
	3/11/2010	12:45	MH-2	Surface	150	0
	3/17/2010	12:14	MH-2	Surface	85	0
	3/17/2010	12:17	MH-2	2	73.5	0
	3/17/2010	12:19	MH-2	4	170	0
	3/17/2010	12:21	MH-2	6	173	0
	3/17/2010	12:24	MH-2	8	165	0
	3/17/2010	12:26	MH-2	10	165	0
	3/17/2010	12:28	MH-2	12	187	0
	5/5/2010		MH-2	Surface	120-150	
	5/12/2010		MH-2	Surface	18	
	6/3/2010	9:12	MH-2	Surface	25.2	
	6/9/2010	Morning	MH-2	Surface	21	
	6/9/2010	Afternoon	MH-2	Surface	6.6	
	6/9/2010	Afternoon	MH-2	5	6.1	
	6/24/2010	Morning	MH-2	Surface	0	
	6/24/2010	Morning	MH-2	2	0	
	6/24/2010	Morning	MH-2	4	0	
Manhole	6/24/2010	Morning	MH-2	6	0	
#2	6/24/2010	Morning	MH-2	8	0	
	6/24/2010	Morning	MH-2	10	0	
	6/24/2010	Morning	MH-2	12	0	
	7/13/2010	Morning	MH-2	Surface	0	0
	7/13/2010	Morning	MH-2	2	0	0
	7/13/2010	Morning	MH-2	4	2	0
	7/13/2010	Morning	MH-2	6	2	0
	7/13/2010	Morning	MH-2	8	2	0
	7/13/2010	Morning	MH-2	10	0	0
	7/13/2010	Morning	MH-2	12	2	0
	7/13/2010	Morning	MH-2	13	0	0
	7/26/2010	9:00	MH-2	Surface	0	0
	7/26/2010	9:00	MH-2	2	0	0
	7/26/2010	9:00	MH-2	4	0	0
	7/26/2010	9:00	MH-2	6	0	0
	7/26/2010	9:00	MH-2	8	0	0
	7/26/2010	9:00	MH-2	10	0	0
	7/26/2010	9:00	MH-2	12	0	0
	7/26/2010	9:00	MH-2	13	0	0

	Data	T:	Commis Daint	Depth Below	DID Deciling (DDM)	LEL Desdiese (0/151)
	Date	Time	Sample Point	Surface	PID Reading (PPM)	LEL Reading (%LEL)
	3/11/2010	12:47	MH-3	Surface	82.1	
	3/17/2010	12:39	MH-3	Surface	92.5	0
	3/17/2010	12:43	MH-3	2	135	0
	3/17/2010	12:45	MH-3	4	242	0
	3/17/2010	12:47	MH-3	6	240	0
	3/17/2010	12:49	MH-3	8	220	0
	3/17/2010	12:51	MH-3	10	282	0
l L	5/12/2010		MH-3	Below MH	16.9	
Manhole	6/3/2010	9:15	MH-3	Surface	0	
#3	6/24/2010	Morning	MH-3	Surface	0	
#3	6/24/2010	Morning	MH-3	2	0	
	6/24/2010	Morning	MH-3	4	0	
	6/24/2010	Morning	MH-3	6	0	
	6/24/2010	Morning	MH-3	8	0	
	6/24/2010	Morning	MH-3	10	0	
					Unable to sample - car parked	Unable to sample - car parked over
l L	7/13/2010	Morning	MH-3		over manhole	manhole
					Unable to sample - car parked	Unable to sample - car parked over
	7/13/2010	Morning	MH-3		over manhole	manhole
	7/13/2010	Morning	MH-7	Surface	0	0
Manhole	7/13/2010	Morning	MH-7	1.5	0	0
#7	7/26/2010	9:30	MH-7	Surface	0	0
	7/26/2010	9:30	MH-7	1.5	0	0
				-		
	3/11/2010	12:43	DI-1	Surface	84.3	
	3/17/2010	1:24	DI-1	Surface	15	0
	3/17/2010	1:27	DI-1	1	175	0
	3/17/2010	1:30	DI-1	2.5	146	0
	6/3/2010	10:46	DI-1	Surface	22.6	
Drain Inlet	6/4/2010	12:12	DI-1	Surface	88.1	
#1	6/9/2010	Morning	DI-1	Surface	4.5	
<i>π</i> 1	6/24/2010	Morning	DI-1	Surface	0	
	6/24/2010	Morning	DI-1	2	0	
	7/13/2010	Morning	DI-1	Surface	2	0
	7/13/2010	Morning	DI-1	2	6	0
	7/26/2010	8:55	DI-1	Surface	0	0
	7/26/2010	8:55	DI-1	2	0	0

				Depth Below		
	Date	Time	Sample Point	Surface	PID Reading (PPM)	LEL Reading (%LEL)
	3/11/2010	12:51	DI-4	Surface	258	
	3/17/2010	1:14	DI-4	Surface	38.5	0
	3/17/2010	1:16	DI-4	2	43.6	0
	3/17/2010	1:18	DI-4	4	50	0
	5/12/2010		DI-4	Surface	36.9	
	6/4/2010		DI-4	Surface	1.1	
	6/9/2010	Morning	DI-4	Surface	3.9	
Drain Inlet	6/24/2010	Morning	DI-4	Surface	0	
#4	6/24/2010	Morning	DI-4	2	0	
	6/24/2010	Morning	DI-4	4	0	
	7/13/2010	Morning	DI-4	Surface	3	0
	7/13/2010	Morning	DI-4	2	2	0
	7/13/2010	Morning	DI-4	4	2	0
	7/26/2010	9:10	DI-4	Surface	0	0
	7/26/2010	9:10	DI-4	2	0	0
	7/26/2010	9:10	DI-4	4	0	0
1						
<u> </u>	3/11/2010	12:51	DI-5	Surface	11	
	3/17/2010	12:57	DI-5	Surface	118	0
	3/17/2010	12:59	DI-5	2	199	0
	3/17/2010	1:02	DI-5	4	95	0
	3/17/2010	1:04	DI-5	6	95	0
L	3/17/2010	1:06	DI-5	8	134	0
	3/17/2010	1:18	DI-5	10	104	0
L	3/17/2010	1:10	DI-5	12	224	0
	5/12/2010		DI-5	Surface	0	
	6/3/2010	9:07	DI-5	Surface	0.1	
	6/9/2010	Morning	DI-5	Surface	0	
	6/9/2010	Afternoon	DI-5	5	1.9	
	6/24/2010	Morning	DI-5	Surface	0	
	6/24/2010	Morning	DI-5	2	0	
	6/24/2010	Morning	DI-5	4	0	
Drain Inlet	6/24/2010	Morning	DI-5	6	0	
#5 —	6/24/2010	Morning	DI-5	8	0	
#3	6/24/2010	Morning	DI-5	10	0	
	6/24/2010	Morning	DI-5	12	0	
	7/13/2010	Morning	DI-5	Surface	0	0
	7/13/2010	Morning	DI-5	2	0	0
	7/13/2010	Morning	DI-5	4	0	0
	7/13/2010	Morning	DI-5	6	0	0
	7/13/2010	Morning	DI-5	8	0	0
	7/13/2010	Morning	DI-5	10	0	0
	7/13/2010	Morning	DI-5	12	0	0
	7/26/2010	9:05	DI-5	Surface	0	0
	7/26/2010	9:05	DI-5	2	0	0
	7/26/2010	9:05	DI-5	4	0	0
	7/26/2010	9:05	DI-5	6	0	0
 	7/26/2010	9:05	DI-5	8	0	0
 	7/26/2010	9:05	DI-5	10	0	0
 	7/26/2010	9:05	DI-5	12	0	0

	Date	Time	Sample Point	Depth Below Surface	PID Reading (PPM)	LEL Reading (%LEL)
	7/13/2010	Morning	DI-6	Surface	0	0
	7/13/2010	Morning	DI-6	2	0	0
Drain Inlet	7/13/2010	Morning	DI-6	3	0	0
#6	7/26/2010	9:20	DI-6	Surface	0	0
	7/26/2010	9:20	DI-6	2	0	0
	7/26/2010	9:20	DI-6	3.5	0	0

Manhole MH-2 repaired on April 28, 2010

Precipitation As Reported by Accuweather.com for Oakland, CA

i recipitation	As Reported b
5/9/2010	
5/10/2010	0.14
5/17/2010	0.11
5/18/2010	
5/19/2010	Trace
5/24/2010	Trace
5/25/2010	0.29
5/26/2010	0.03
5/27/2010	0.53
5/31/2010	Trace
6/24/2010	
6/25/2010	Trace
7/9/2010	Trace
	•

APPENDIX EACPWA Drilling Permits

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 05/19/2010 By jamesy Permit Numbers: W2010-0351 to W2010-0352 Permits Valid from 06/03/2010 to 06/08/2010

Application Id: 1274291500488 City of Project Site:Oakland

Site Location: 3535 Pierson St, Oakland, CA, 94619 (76 Service Station #5781)

Project Start Date: 06/03/2010 Completion Date:06/08/2010

Assigned Inspector: Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Applicant: Delta - Jan Wagoner Phone: 916-503-1275

11050 White Rock Rd, Ste 110, Rancho Cordova, CA 95670

Property Owner: United Bros. Enterprises Phone: 510-533-2439

3535 Pierson St., Öakland, CA 94619

Client: Conoco Phillips c/o Terry Grayson Phone: 916-558-7666

76 Broadway, Sacramento, CA 95818

Total Due: \$794.00

Receipt Number: WR2010-0176 Total Amount Paid: \$794.00

Payer Name : Delta Paid By: CHECK PAID IN FULL

Works Requesting Permits:

Well Construction-Monitoring-Monitoring - 2 Wells

Driller: Gregg Drilling - Lic #: 57932633 - Method: hstem Work Total: \$794.00

Specifications

Permit #	Issued Date	Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth
W2010- 0351	05/19/2010	09/01/2010	MW4	8.00 in.	4.00 in.	5.00 ft	25.00 ft
W2010- 0352	05/19/2010	09/01/2010	MW5	8.00 in.	4.00 in.	5.00 ft	25.00 ft

Specific Work Permit Conditions

- 1. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 2. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.
- 3. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 4. Compliance with the well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate State reporting-requirements related to well construction or destruction (Sections 13750 through 13755

(Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days. Including permit number and site map.

- 5. Applicant shall submit the copies of the approved encroachment permit to this office within 60 days.
- 6. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 7. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.
- 8. Minimum surface seal thickness is two inches of cement grout placed by tremie
- 9. Minimum seal (Neat Cement seal) depth for monitoring wells is 5 feet below ground surface(BGS) or the maximum depth practicable or 20 feet.
- 10. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 06/02/2010 By jamesy

Permit Numbers: W2010-0362

Permits Valid from 06/03/2010 to 06/08/2010

City of Project Site: Oakland

Application Id: 1274911304097

Site Location: 3535 Pierson St, Oakland, CA

(76 Service Station #5781)

Project Start Date: 06/03/2010

Completion Date: 06/08/2010 Contact Vicky Hamlin at (510) 670-5443 or vickyh@acpwa.org

Assigned Inspector:

Applicant: Delta - Jan Wagoner

11050 White Rock Rd., Ste 110, Rancho Cordova, CA 95670

Property Owner: United Bros. Enterprises

3535 Pierson St, Oakland, CA 94619

Client: Conoco Phillips, Terry Grayson

76 Broadway, Sacramento, CA 95818

Phone: 916-503-1275

Phone: 510-533-2439

Phone: 916-558-7666

Total Due: \$265.00 **Total Amount Paid:** \$265.00

Receipt Number: WR2010-0181 **PAID IN FULL** Payer Name : Delta Paid By: CHECK

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 1 Boreholes

Driller: Gregg - Lic #: 7932633 - Method: other Work Total: \$265.00

Specifications

Permit	Issued Dt	Expire Dt	#	Hole Diam	Max Depth
Number			Boreholes		
W2010-	06/02/2010	09/01/2010	1	6.00 in.	25.00 ft
0362					

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact Vicky Hamlin for an inspection time at 510-670-5443 or email to vickyh@acpwa.org at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.
- 7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX FCurrent Boring Logs

			Proiect N	lo: c105781	1051			Clien	t: Conoc	oPhillips	Well/ Boring ID: SB-8
				By: Caitlin N						5 Pierson Street, Oakland,	
		1~		regg Drillin		sting		Date	Drilled:	June 3, 2010	Location Map
lU	el	la	_	lethod: Dire					Diamete	r:	See Site Map
	onsulta		Sampling Casing T	g Method: G	Seoprobe				Depth:	r: NIA	
	nisuita	IIII	Slot Size			Well Diameter: NA Well Depth: NA					v . i iist cheddillered water
			Gravel P	ack: NA		Casing Stickup: NA					
				Elevation			Nort	hing		Easting	
	ring			D							<u> </u>
	letion –	Static	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)		mple —	ype		FUEL COV / DECODINE
	Backfill	Water Level	Moisture Content	J Re (ppi	enetr	epth	Recovery	Interval	Soil Type	LII	THOLOGY / DESCRIPTION
	Ра			II	9 =	ă	Rec	Int	0)		
	_				1	-			CL	Loan Clay do	rk brown to brown, some sands.
	_					1—			CL	Lean Clay, da	K blown to blown, some sames.
						2—					
	_				5 feet	-					
	_				to 5	3—					
	_				Air Knife to	, -					
					Ž	4—					
	_		N 4 - ' - 1	0	₹₹	5—				A	
	-		Moist	0		-		Ŧ	CL	As above.	h sand, light brown, 20-25% fine to
						6—			02		nedium plasticity.
						7—		Ш			
	_					-		Н		As above, with	increased clay at the 7 foot depth.
			Moist			8—		H	CL	Lean Clay wit	h sand, 35-40% fine to coarse sand.
						9—		V			
	-					-		Н		Lean Clay wit orange and tar	h sand and gravel, dark brown with
ä	_		Moist	0.1	SB-8	10—		\vdash		orange and tar	i sineanig.
Cement					@ 10	11—					
	_				3:50	' ' -		II.			
Neat	_					12—		*		As above with	increasing moisture at 12 feet bgs and
Z	_					13—		 			at 13 feet bgs.
						13—					
						14—		$\vdash\vdash$		As above with	sandy gravels.
						-		H			
			Wet	0	SB-8	15—		Ш			sand, gray with tan mottling,
	_				@ 15	16—		+		slight odor.	
	_				3:56	-		Н			
						17—				As above, clay	became increasingly firm.
						18—		\prod			
						-		\vdash			
						19—					
						20—		V			
						-				Same as above	e
						21—					
						22—					

	Logged		lin Morga	า		nt: Con tion: 3	nd, CA	Boring No: SB-8 Date Drilled: 06/03/10			
Delta	Driller: Drilling	Gregg E Method:	Drilling Directpu:	sh	Hole	Diame		Page 2 of 2			
	Sampli	ng Metho	d: Geopro			Depth		▽ =			
Consultants	Casing Slot Si	Type: NA ze: NA	4				Depth: NA r Depth: NA	▼ = Static Groundwater			
		Pack: NA			Well	Depth:	NA				
		Elevatio	n		Northing		Easting				
Boring Completion		ing	e tion	et)	Sample	ЭС					
Sta	er stur	Moisture Content ID Readin (ppm) Sample Entificatio			ery	Soil Type	LITHOLOGY / DESCRIPTION				
Wat Lev Backfill	el 800	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery - Analyzed	Soi					
Neat Cement				23—			Lean clay with s	sand, gra	y with tan mottling,		
Cen Cen				_	+		very mm.				
_	Moist	0	SB-8	24 —			Boring termina	ated at 2	4 feet bgs.		
			@ 24 4:03	25—							
				26—							
				27 							
				_							
		28-									
		29-									
				30—							
				31—							
				32 							
				33—							
				34—							
				35—							
				36—							
_				_							
				38—							
				39—							
				40—							
				41 							
					\vdash						
				42—							
		43-									
				44							

				Project No: C105781051						t: Conoc	coPhillips		٧	Vell/ Boring ID: MW-4	
			Logged By: Caitlin Morgan Driller: Gregg Drilling and Testing								reet, Oakland, C		age 1 of 1		
ΙГ	1	اد	ta				ing	ng Date Drilled: June 4, 2010 Hole Diameter: 8"					Location Map See Site Map	,	
╽┕	ノて	7 I	la	Drilling Method: Geoprobe Sampling Method: Direct push Casing Type: 4"						Depth: 2			☐ ∵ : First encountered water		
c	ons	ulta	nts							Diamete					
				Slot Size	:0.010			Well Depth: NA							
				Gravel P	ack: #30 me		Casing Stickup								
					Northing				Ea	asting					
Well Completion Static				e t	PID Reading (ppm)	uo (et)	Sa	mple	æ					
	-		Static Water	Moisture Content	кеас рт)	etrati ws/6	h (fe		-	Soil Type		LIT	HOLOGY / D	ESCRIPTION	
Backfill	Casing		Level	δο	d)	Penetration (blows/6")	Depth (feet)	Recovery	Interval	Soi		Ennozoon, Brookin Holl			
					ь	_		R.			Civ	inahaa af aa	nhalt ramava	d Variance approved	
						ΙŢ								ed. Variance approved er and electrical utility	
		-					1 —							. Original location	
						#	2							eter concrete beam,	
						5 feet	_							greater width to allow	
						10 2	3				for	full clearanc	e around the	area of the beam.	
		_				Air Knife to	_				Cla	avev sand (ta	n) in the first	3 feet, Clay (brown	
		-				조	4							ne angular to sub	
						₽								ell as small brick.	
Grout		-			1.3	MW-4	5		^				in the 3 to 5		
ō						@ 5	6-								
		_				12:28			-						
		-					7		Н		Cla	avev sand: h	rown and bla	ck, medium to firm;	
		-							Н			oist, no odor.	nown and bia	ck, mediam to iiii,	
		-					8								
							9		V						
		_				MW-4			1						
					5		10 —		\vdash						
				Э	@ 10	_		++							
- O	1	-				12:32	11		ш		As	above. More	gravel. At 12	2.5' bgs becomes	
tnite							12						sand, mediun		
Bentnite		_						<u> </u>							
Ш							13		l ¥			1 '41		1.0	
		_					_		┢		AS	above, with	increased cia	y and firmness.	
							14		H						
							15 —				Cla	ayey sand w	ith gravel; br	own to tan; moist.	
					2.4	MW-4	15								
						@ 15	16								
		_				12:39			\vdash						
	\vdash						17 —		*		۸۵	ahaya with i	ncreased san	do: rod and	
Sand	Н	_					_	1	H					e increased coarseness.	
Sa	H						18—				l oia	90 11101111119	. Canao nave		
							19 —		Ħ						
							19								
	Ш						20 —							• •	
	Щ				1.9	MW-4	_		\vdash		Cla	ayey Sand; b	ack, moist- v	ery moist.	
	Н					@ 20 12:44	21 —	1	X						
	Н	-				12.44	_		H						
	Н						22 —	1	H						

Consulta Well Completion	Static Water						Hole Hole Well Well First ning	tic Con tion: Diame Depth: Diame Depth: Water	assas Pierson Street, Oakla Page 2 of 2 er: □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □			
Sand Backfill Casing	Level	2324			Recovery	Interval	S0	As above.				
		Moist	1.7	MW-4 @ 25 12:53	25 — 26 — 27 — 28 — 30 — 31 — 32 — 33 — 34 — 35 — 36 — 37 — 38 — 40 — 41 — 42 — 44 — 44 — 44 — 44 — 44 — 44					nated at 25 feet bgs. No encountered.		

					lo: c105781					t: Conoc			Well/ Boring ID: MW-5	
Delta					By: Alan Bu						5 Pierson Street, Oakland, C	i e	Page 1 of 1	
			+		regg Drilling	-	ing				une 4, 2010	Location Map		
			la	_	lethod: Geo					Diamete	_	See Site M	ар	
Consultants					g Method: D	irect Push				Depth: 2			-	
С	ons	ulta	ints	Casing T						Diamete				
				Slot Size						Depth: N				
				Gravei P	ack: #30 Me Elevation	1	Nort		ng Sticku	p: NA Easting	-			
	Vell					TNOIL	illig		Lasting					
	pletic	on	Static	e +	PID Reading (ppm)	Penetration (blows/6")	eet)	Sa	mple	96				
=	D		Water	Moisture Content	keac pm)	etrat ws/6	Depth (feet)	SIZ.	<u>a</u>	Soil Type	LIT	THOLOGY /	DESCRIPTION	
Backfill	Casing		Level	SO		ene (blo	eptl	Recovery	Interval	Soil				
Ä	Ö				Δ.	п.		Re	直					
		_				1	_						some silt and gravel	
		_					1	-			present, with tra	ace roots at	approximately 4.5' bgs.	
		_					_							
		_				jě	2	-						
± '		-				5 feet	-	-						
Grout						t	3	-						
ص ا					Air Knife to	<u> </u>	+							
		-				~	4 —							
		-				: <u></u>		1						
		-			1.9	MW-5	5—		A					
						@ 5	_	1			Sandy clay; br	own; 15% s	and, damp, no odor.	
טַ		-				11:55	6						, , ,	
=		_												
Bentonite		-					'							
й —							8		V					
							° _				Same as above	€.		
							9							
		_												
							10 —							
		_					_							
		_					11 —							
		_								,	Same as above	e, increased	moisture.	
		_					12		+					
					1.0	MW-5	-		11					
						@ 12	13							
_	Ш					12:01	_	_	Ш					
Salid	Ш						14		Ш		On a decide		aliabt ada-	
ŏ	Ш						_	_	Ш		Sandy clay; br	own; moist;	slight odor.	
							15 —		Ш					
					4.5	MW-5	-							
						@ 15	16		₩			1001		
			∇			12:03	_		1		Sandy clay, br	own, 40% s	and, saturated, no odor.	
							17—		Ш					
							_		Ш					
							18 —		Ш					
							_		Ш					
							19 —		Ш					
							_		Ш		6	-		
1							20 —		₩		Clay; black; da	-		
					3.1	MW-5		1			Boring termina	ated at 20 f	aat baa	
					3.1				_	,	Dorning torring	ateu at 20 i	eei bys.	
					3.1	@ 20	21 —				Doming tormin	ateu at 20 i	eet bys.	
					3.1		21 —			,	Doming tomining	ateu at 20 i	eet bys.	

APPENDIX GCertified Laboratory Analytical Reports

Date of Report: 06/25/2010

Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

RE: 5781

BC Work Order: 1007798 Invoice ID: B082508

Enclosed are the results of analyses for samples received by the laboratory on 6/8/2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	4
Laboratory / Client Sample Cross Reference	8
Sample Results	
1007798-01 - MW-4@5	
Solvent Scan (EPA Method 8015)	12
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1007798-02 - MW-4@10	
Solvent Scan (EPA Method 8015)	16
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1007798-03 - MW-4@15	
Solvent Scan (EPA Method 8015)	20
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1007798-04 - MW-4@20	23
	24
Solvent Scan (EPA Method 8015)	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	21
1007798-05 - MW-4@25	20
Solvent Scan (EPA Method 8015)	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	31
1007798-06 - Comp A	00
Solvent Scan (EPA Method 8015)	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	35
1007798-07 - SB-8	00
Solvent Scan (EPA Method 8015)	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	39
1007798-08 - MW-5@5	40
Solvent Scan (EPA Method 8015)	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	43
1007798-09 - MW-5@12	د د
Solvent Scan (EPA Method 8015)	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	47
1007798-10 - MW-5@15	
Solvent Scan (EPA Method 8015)	
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	51

Table of Contents

1007798-11 - MW-5@20	
Solvent Scan (EPA Method 8015)	52
Volatile Organic Analysis (EPA Method 8260)	53
Purgeable Aromatics and Total Petroleum Hydrocarbons	54
Total Petroleum Hydrocarbons	55
1007798-12 - SB-8@6	
Solvent Scan (EPA Method 8015)	56
Volatile Organic Analysis (EPA Method 8260)	57
Purgeable Aromatics and Total Petroleum Hydrocarbons	58
Total Petroleum Hydrocarbons	59
1007798-13 - SB-8@10	
Solvent Scan (EPA Method 8015)	60
Volatile Organic Analysis (EPA Method 8260)	61
Purgeable Aromatics and Total Petroleum Hydrocarbons	62
Total Petroleum Hydrocarbons	
1007798-14 - SB-8@15	
Solvent Scan (EPA Method 8015)	64
Volatile Organic Analysis (EPA Method 8260)	65
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1007798-15 - SB-8@20	
Solvent Scan (EPA Method 8015)	68
Volatile Organic Analysis (EPA Method 8260)	69
Purgeable Aromatics and Total Petroleum Hydrocarbons	70
Total Petroleum Hydrocarbons	71
1007798-16 - SB-8@24	
Solvent Scan (EPA Method 8015)	72
Volatile Organic Analysis (EPA Method 8260)	73
Purgeable Aromatics and Total Petroleum Hydrocarbons	74
Total Petroleum Hydrocarbons	75
Quality Control Reports	
Solvent Scan (EPA Method 8015)	
Method Blank Analysis	76
Laboratory Control Sample	
Precision and Accuracy	
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	79
Laboratory Control Sample	80
Precision and Accuracy	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	82
Laboratory Control Sample	83
Precision and Accuracy	84
Total Petroleum Hydrocarbons	
Method Blank Analysis	85
Laboratory Control Sample	
Precision and Accuracy	
Notes	
Notes and Definitions	88

	ed	Su
	Ξ	S
	Ē.	ш
	S Te	m
	ğ	S
	7	£
	Гe	õ
_	for	7
Ξ	₽.	d
8	e e	Ž
⊳	XC.	0
Ħ	lus	m
S	Ve.	es
8	su	an
≧	e o	ğ
-	Ť	S
œ	1e :	a
꽂	Sur.	iai
Φ.	Ĕ.	V_Z
Sf	₽.	2
<u>Ф</u>	20	111
<u>,</u>	pai	ac
Q	₹	5
א	₩	7,0
93	C	an
3	2	ce
\approx	õ	¥
_	ato	ın
9	īė.	m
~	s, I	e (
$\tilde{\omega}$	nc	nc.
27	as	n
4	ms	Q
9	æ	ci
_	n s	isi
ш	0 7	,2
≳	esp	a
\hat{a}	ğ	20
66	аib	m
څ	Ħ	ie
ω	¥	ī.
27	5	I I
<u> </u>	ę,	S
9	t of	an
ω	<u>a</u>	aij
<	era	77.
⋛	E.	cal
.≤	ŗ	7.6
В	sep	$\dot{p}c$
a	are	77
S	1tic	m
2	Ĕ	ISV
4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com	ed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment	90
_	ac	97.
	H	(do
	eni	2

Pa	
ıge	
4	
of $\stackrel{\sim}{\sim}$	
88	

								Co	noco	Phill	line	Ch	ain	Of	Cı	iet	۸dı	, D	۸۸	۸r	M					
BC Labo	ratories, Inc.	Conocc	Phillips	Site Ma	nager;				Shelby				am	-		151	1					oject N	lumbe	e		
4100 /	Atlas Court	INVOICE	REMIT	TANCE A	ADDRE	SS:				CONC	СОРНІІ	LIDE												\neg	DA.	TE:
Bakersfi	eld, CA 93308	走	R	JS	H						Dee Hut	chinso		200			G	ConocoPhilips Requisition / Line Number				e Num	iber	1	GE: of	
(661) 327-4911	(661) 327-1918 fax	1			Santa Ana, CA. 92704																					
SAMPLING COMPANY:		Valid Value ID	:			CONOCOPHI	LUPS SITE	MUMBS	R.								_		1	LOSA	C IO N	0.:		$\overline{}$		
Delta Consultants						SS# 5781																				
ACORESO:		- 04 0507				SITE ADDRES	5 (Street a	nd City)	t .										- 1					MAGER:		
PROJECT CONTACT (Hards	ad #110, Rancho Cordov	a, CA 9567				900 High	way 1, B	lodeg	a Bay, CA										1	erry	Gra	yson				
Jan Wagoner	app or real responsing.					EDF DELIVER	MBLC TO (RP or D	azignos):						N.	ONE NO.		-		MAL:				4981	use ow	LY
TELEPHONE:	PAX:	E-MARL:				1	/D-								91	16-500	-1275					§della	en :	10	1	77700
(916) 503-1275	(916) 638-8385	wagoner(Ddellaenv.	9800		Jan Wago	oner (De	ш											¥	com	1			10	(TTTX
BAMPLER NAME(S) (PVHQ)		CONSULTANT	PROJECT NU	HIER										RE	QUE	STEI	ANA	I VS	ES							
1	in Morgan		C10569	7201										140	.uoc											
TURMAROUND TIME (C.							i	Т										:								
14 DAYS 7 DAYS	72 HOURS 48 HOURS	24 HDURS	L cess	THAN 24 H	oure		l																			
**8 Day turn around	ime					l	1			1 1												- 1				FIELD NOTES:
SPECIAL INSTRUCTION	NS OR NOTES:	СНЕСК	BOX IF EDD	8 NEEDED		1	١	1		1 1												- 1	- 1			Containen/Preservative
H2O 8260B BTEX	Oxys - VOAs with blue ca	ue caps					8 Oxys	10									l									or PID Readings or Laboratory Notes
1	nol - VOAs with gray caps					8015M - TPHg, TPHd	-втех,	8260B - Methanol																		
	only required if different from					8	ė	l ė	l	1 1												- 1		!	-	TEMPERATURE ON RECEIPT C*
035	ntification/Field Point Name*	DATE	TIME	MATRIX	NO. OF CONT.	ž	8260B	1 28		1 1													- 1		Ι.	EMPERATOR CHICAGO TO
CHLY	Name	DATE	Timic			×	×	X		1	-	-	\neg	+	\top	\top			\neg	\neg	\neg	\neg	\neg	\neg	\vdash	Various Preservatives
1	MW-4@5	6/4/10	12:28p	soil	1	^	<u> </u>	<u> </u>		-		_	_	_	_	_	-		_	_	_		_			Not Field Filtered Various Preservatives
121	MW-4@10	6/4/10	12:32p	Foe	١,	x	×	×		1 1			- 1										- 1			Not Field Filtered
-2	3111-472-10	0.4010	TE.OCP	- 001		×	×	×				_	\neg	\neg	\neg	\neg	+		\neg	\neg	\neg		\neg			Various Preservatives
	MW-4@15	6/4/10	12:39p	108	1	<u> </u>	_^	-		\longrightarrow	-	+	\rightarrow	-	-	+	├	Н		+	\rightarrow	-	\rightarrow		\vdash	Not Field Filtered Various Preservatives
-14-1	MW-4@20	6/4/10	12:44p	ice	1	×	X	×		1 1														!		Not Field Filtered
9					_	×	x	×		1		_				\neg			7	\neg	\neg					Various Preservatives
5	MW-4@25	6/4/10	12:53p	soil	1			+		+-+	-		-	-	-	-	-	-	-	TOTAL D	000	Ting and a	-	_	\vdash	Not Field Filtered
(b)	Comp A	6/4/10	1:58p	soil	1	X	X	×					¢	HK	ΒV		(N	STE	(IEk	M.	01	Į				
7	5B-8	6/3/10	4:10p	H2O	10	х	х	×					П	7		₫Ş	XI.	Q)	A	V						
Marie Comment													П		- 1	72		Ŝί	120	21	r i				\Box	
100 A							_	+		+	_	+		=		****	100	~	-		-	-	=#		\vdash	
1 - A			_	_	-		-	\vdash		\vdash	-	+	\dashv	+	+	+	1		+	\forall	\dashv	\dashv	\dashv	\neg	\vdash	
Reinquished by (Dignature)		-	_	Received by	r (Signature)	,	-	_	-6-1			_	_	7			_		Date:	-		-	_		Time:	
1	Sil	2					14	20		10	∞	000	0	X					(0	8		0			10.20
Relinquished by (Signallare)				Received by	/: (Signature))		-				-							CW16:			1			Time:	
					18											4										

Laboratories, Inc.
Environmental Testing Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 1007798 Page 1 of 4

Pa	
ıge	
5 0	
8	
œ	

BC Laboratories, Inc.	ConocoP	hillins 5	Site Mar	nager:				elby La						ody l			P Project	Numbe	1		
4100 Atlas Court	INVOICE			_							_									DATE:	
Bakersfield, CA 93308									ONOCOP ttn: Dee l					Const	ConocaPhilips Regulation / Line Number					DATE: _	
(661) 327-4911 (661) 327-1918 fax	7	PE (US	Attn: Dee Hutchinson 3611 South Harbor, Suite 200 Santa Ana, CA. 92704									cornings required a construction					PAGE:_	of		
RECING COMPANY:	Value Value ID:			CONOCOPHILURS SITE NUMBER									GLOSAL	10 NO.:							
Ita Consultants					SS# 5781																
DORESS:					SITE ADDRES	5 (Street a	nd City								\neg	COMOCO	PHILLIPS	SITE MA	MOER:		
050 White Rock Road #110, Rancho Cordova	, CA 95670				900 High	way 1, B	lodeg	y, CA							- 1	Terry (Grayso	n			
ROJECT CONTACT [Hardwayy or PDF Report to]:					EDF DEUNER	ABLE TO (RP or O	o(:					PHONE NO	-		E MAIL			LAB USE	OWLY	cast light throughout
n Wagoner surrent: Fas:	E-MAIL:				-			-					916-50	3-1275		wagor	ren@de	Itaen	16		7.700
16) 503-1275 (916) 638-8385	jwagoner@s	deltaenv.c	om		Jan Wago	oner (De	ilta)									y.com			10	0	7778
MATER HANNEDS GRAND:	CONSULTANT	MOJECT NUM	7381									DEC	UIERTE	D ANALY	ere						
Caitlin Morgan		C10569	7201		1							KEG	OESTE	UANALI	SES						
URNAROUND TIME (CALENDAR DAYS):		_					Т		\neg				T		П		\neg	П			
] 14 DAYS 7 DAYS 72 HOURS 48 HOURS	24 HOURS	LESS	THAN 24 H	OURS						1 1											
Day turn around time					1																FIELD NOTES:
PECIAL INSTRUCTIONS OR NOTES:	CHECK 8	OX IF EDO R	S NEEDED	2	1		1						1 1							- 4	Container/Preservative
	1				₽	8												ш		1	or PID Readings or Laboratory Notes
8260B BTEX/Oxys - VOAs with blue caps					Ĕ	8	2						1 1					1 1			or Laboratory notes
8260B Methanol - VOAs with gray caps					. ТРН9, ТРН	82608 - BTEX, 8 Oxys	6260B - Methanol											Ш			
* Field Point name only required if different from	Sample ID			-	l a	- i	13	- 1													
A9 Sample Identification/Field Point			XIRTAM	NO. OF	8015M	92	. 8													TEMPE	RATURE ON RECEIPT C°
Name*	DATE	TIME				-	+-	-		\vdash		_	++	++	+	\rightarrow	+	+	-	+ v	arious Preservatives
MW-5/85	6/3/10	11:55a	lice	1	, X	X	Х							1 1	\perp	_		\perp			Not Field Filtered
al	6/3/10	12:01p	lice			, x	×	- 1							11			П		"	arious Preservatives Not Field Filtered
ALL CORP.	6/3/10	12.010	501	<u> </u>	×	x	×						1		\top	\neg	\neg	\Box		V	arious Preservatives
Ø MW-5/⊠15	6/3/10	12:03p	soil	- 1		_^	╇	-	_				+	+	-	_	+	1	-		Not Field Filtered arious Preservatives
/ MW-5/020	6/3/10	12:08p	sol	١,	×	X	×						1 1					1 1		'	Not Field Filtered
2				10.	× .	х	×								1.					V	arious Preservatives
-	6/3/10	3:48p	soil	1	-	-	-						++	++	+	+	-	1	-+	+-	Not Field Filtered
.≾ se-a⊛10	8/3/10	3:50p	sol	1	×	X	×								\perp						
9 SB-8@15	8/3/10	3:56p	soil	1	×	х	×							11.				1 1			
12		-	. "		×	х	×														
SB-8@20	8/3/10	4:00p	soi	1	-	-	+			-		-	+-+		-		+	1	-	+	
6 <u>58-8m24</u>	8/3/10	4:03p	sol	1	×	X	×									_					
		-	,																		
innounted by (Safreture)			Received by	Signature	0		Ø	om		0	1)				Date		$\overline{a}I$	10	Tr	ime.	1020

Chain of Custody and Cooler Receipt Form for 1007798 Laboratories, Inc.
Environmental Testing Laboratory Since 1949

Page 2 of 4

Chain of Custody and Cooler Receipt Form for 1007798 Page 3 of 4

1/1 2/2		MINIPLE	RECEIPT	FORM	Rev.	No. 12	06/24/08	Page	01_2\	
ubmission #: 1 <i>0-07748</i>										
SHIPPING INFORM	nd Delive	ry 🗆		lo	e Chest D Box C	Ĺ	G CONT. None Other		fy)	
Refrigerant: Ice □ Blue Ice □	None 🗆	Oth	er□ C	omment	5:					
ustody Seals Ice Chest Intact? Yes No Intact?	ontainers act7 Yes 🗆	No 🗆	None)(- Cau- 1	
)					
COC Received Emit	ssivity:	95 c	ontainer: (c 1 c — 37Hua	hermomete 3.7	_ °C _ °C	77	Date/Time Analyst In	U 8 BLT	101020
					SAMPLE N				4	10
SAMPLE CONTAINERS	1	2	3	4	5	- 6	3	1		10
T GENERAL MINERAL/ GENERAL PHYSICAL										
T PE UNPRESERVED										
T INORGANIC CHEMICAL METALS										
T INORGANIC CHEMICAL METALS			l							
T CYANIDE										
T NITROGEN FORMS					1					
T TOTAL SULFIDE										
ez. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON										
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS										
HOMI VOA VIAL TRAVEL BLANK							101			
10ml ∀0a VlAL	t ·		1 1	1	1	1	A P			 '
OT EPA 413.1, 413.2, 418.1				-	ļ				-	
PT ODOR			-		-	-				-
RADIOLOGICAL					-	 	-			
BACTERIOLOGICAL					-		B3	-	1	
40 ml VOA VIAL- 504		ļ			-	-	175			1
OT EPA 508/608/8080				-		-	-		-	1
OT EPA 515.1/8150	-		-	-	-	-	1	-		1
OT EPA 525		-	+	 		-			1	
QT EPA 525 TRAVEL BLANK			-		+		1			1
100ml EPA 547			 	-	1	 				
100ml EPA 531.1		-		1		1				
QT EPA S48		 	1	1	1		1			
QT EPA 519	-		-		-					
QT EPA 632		-		1						
QT EPA 8015M		1	1				C			
QT AMBER		1								
8 OZ JAR										
SOIL SLEEVE PASSEL	A	A	Fil	14	iA			A	A	A
PCHYAI BRADS SO LOPGE			,,,			A			-	-
PLASTIC BAG						-	-	-	-	+
			-	-	-		-	+	+	
FERROUS IRON		1		1	1		1		1	

Chain of Custody and Cooler Receipt Form for 1007798 Page 4 of 4

S IN SOR A YORK S INC	S	AMPLE	RECEIPT	FORM	Rev. I	No. 12	06/24/08	Page 🗸	010	
C LABORATORIES INC.										
u bmission #:[0 - D7798	LATION					SHIPPIN	IG CONT	AINER		
SHIPPING INFORI edital Express D. UPS D. H	and Delive	rv D	- 1	lc	e Chest 🛭		None	. 🗆		
C Lab Field Service Other	(Specify)_	., _	_		Box □)	Other	r 🗀 (Speci	ify)	
								Andrew Control of the last	-	
Relrigerant: Ice ☐ Blue Ice ☐	None C	Othe	er 🗆 C	omments	5:					
	Container	s 🗆 📗	None X	Commer	its:					
d slody occiol ice office	ntact? Yes 🗆									
	II samples o	ontainers	intact? Yes	No D		Descripti	ion(s) mate	th COC? Yo	:: D/No 1	
II samples received? Yes Zi HOU A	ii sainpies c	05	-	1200						
COC Received Em	issivity: .	420	ontainer: 🔽	741.111.A	hermomete	ı ID: 特!	177	Date/Time	إعليه	1020
YOU TO NO I	nperature:	a 3	3.7°	: / C	3.7	*c		Analyst Ir	ii <u>(3)</u>	
	inperiora in							-	-	
THE CONTINUEDS	-	1	[]	. [4	SAMPLE N	UMBERS (6	,	T .	9	16
SAMPLE CONTAINERS	11111	1 2	13	14	1	1 0				
T GENERAL MINERAL/ GENERAL PHYSICAL										
T PE UNPRESERVED										
OT NORGANIC CHEMICAL METALS		-								
T INORGANIC CHEMICAL METALS										
PT_CVANIDE										
T MTROGEN FORMS										
T TOTAL SULFIDE										
PT TOTAL ORGANIC CARBON										-
PT TOX									-	-
PT CHEMICAL OXYGEN DEMAND										-
PIA PHENOLICS							-	-	-	
40ml VOA VIAL TRAVEL BLANK							-	-	1 .	+
4Bed VDA VLAL	1	1 1	· ·	t	 ' '		4	4	1	1
QT EPA 413.1, 413.2, 418.1			-		-					_
PT ODOR			-	-			+	-		1
RADIOLOGICAL	-		-	-		-		1		
BACTERIOLOGICAL	1									
40 ml VOA VIAL- 504	1									
OT EPA 508/608/8080	-		1	<u> </u>						
OT EPA 515.1/8150 OT EPA 525	1									
OT EPA 525 TRAVEL BLANK	9									
100m1EPA 547										
100ml EPA 531.1						1				
OT EPA 548						1				
OT EPA 549				-						-
OT EPA 632						-	-			
QT EPA 8015M	_					-			-	
OT AMBER		1		-			-		-	-
8 QZ JAR				-	-	-	-	-		-
32 OZ JAR	1	1	- 10	1-		1-2		-	-	
SOIL SLEEVE DYST-C	A	A	A	10	10	A		-		_
PCB VIAL		1-	-	-		-	+	-	+	
PL ASTIC BAG	-	-	-	+	-	-	-	-	1	-
FERROUS IRON	-	1	-	+	-	1	-		-	-
ENCORE						1	1	I		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1007798-01 COC Number: --

Project Number: 5781 Sampling Location: ---

Sampling Point: MW-4@5 Sampled By: DECR **Receive Date:** 06/08/2010 10:20 **Sampling Date:** 06/04/2010 12:28

Sample Depth: --Sample Matrix: Solids
Delivery Work Order:

Global ID:

Location ID (FieldPoint): MW-4

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1007798-02 COC Number: --

Project Number: 5781 Sampling Location: ---

Sampling Point: MW-4@10 Sampled By: DECR Receive Date: 06/08/2010 10:20 Sampling Date: 06/04/2010 12:32

Sample Depth: --Sample Matrix: Solids

Delivery Work Order: Global ID:

Location ID (FieldPoint): MW-4

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1007798-03 COC Number: --

Project Number: 5781
Sampling Location: ---

Sampling Point: MW-4@15 Sampled By: DECR **Receive Date:** 06/08/2010 10:20 **Sampling Date:** 06/04/2010 12:39

Sample Depth: --Sample Matrix: Solids
Delivery Work Order:

Global ID:

Location ID (FieldPoint): MW-4

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1007798-04 COC Number: --

Project Number: 5781
Sampling Location: ---

Sampling Point: MW-4@20 Sampled By: DECR **Receive Date:** 06/08/2010 10:20 **Sampling Date:** 06/04/2010 12:44

Sample Depth: --Sample Matrix: Solids
Delivery Work Order:

Global ID:

Location ID (FieldPoint): MW-4

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information** 1007798-05 06/08/2010 10:20 **COC Number:** Receive Date: 5781 06/04/2010 12:53 **Project Number:** Sampling Date: Sampling Location: Sample Depth: Sampling Point: MW-4@25 Solids Sample Matrix: Sampled By: **DECR** Delivery Work Order: Global ID: Location ID (FieldPoint): MW-4 Matrix: SO Sample QC Type (SACode): CS Cooler ID: 1007798-06 COC Number: Receive Date: 06/08/2010 10:20 **Project Number:** Sampling Date: 06/04/2010 13:58 5781 Sampling Location: Sample Depth: Solids Comp A Sampling Point: Sample Matrix: DECR Sampled By: Delivery Work Order: Global ID: Location ID (FieldPoint): Comp A Matrix: SO Sample QC Type (SACode): CS Cooler ID: 1007798-07 **COC Number:** 06/08/2010 10:20 Receive Date: 06/03/2010 16:10 **Project Number:** 5781 Sampling Date: Sampling Location: Sample Depth: SB-8 Sampling Point: Sample Matrix: Water Sampled By: **DECR** Delivery Work Order: Global ID: Location ID (FieldPoint): SB-8 Matrix: W Sample QC Type (SACode): CS Cooler ID: 1007798-08 **COC Number:** Receive Date: 06/08/2010 10:20 **Project Number:** 5781 Sampling Date: 06/03/2010 11:55 Sampling Location: Sample Depth: MW-5@5 Solids Sampling Point: Sample Matrix: **DECR** Delivery Work Order: Sampled By: Global ID: Location ID (FieldPoint): MW-5 Matrix: SO Sample QC Type (SACode): CS

Cooler ID:

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information** 1007798-09 06/08/2010 10:20 **COC Number:** Receive Date: 5781 06/03/2010 12:01 **Project Number:** Sampling Date: Sampling Location: Sample Depth: Sampling Point: MW-5@12 Solids Sample Matrix: Sampled By: **DECR** Delivery Work Order: Global ID: Location ID (FieldPoint): MW-5 Matrix: SO Sample QC Type (SACode): CS

1007798-10 COC Number: --- Receive Date: 06/08/2010 10:20

 Project Number:
 5781
 Sampling Date:
 06/03/2010 12:03

 Sampling Location:
 -- Sample Depth:
 --

 Sampling Point:
 MW-5@15
 Sample Matrix:
 Solids

 Sampling Point:
 MW-5@15
 Sample Matrix:
 Solids

 Sampled By:
 DECR
 Delivery Work Order:

Global ID:

Location ID (FieldPoint): MW-5
Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

Cooler ID:

 1007798-11
 COC Number:
 -- Receive Date:
 06/08/2010 10:20

 Project Number:
 5781
 Sampling Date:
 06/03/2010 12:08

 Sampling Location:
 -- Sample Depth:
 --

 Sampling Point:
 MW-5@20
 Sample Matrix:
 Solids

Sampled By: DECR Sample Matrix: Solids

Decrease Sample Matrix: Solids

Delivery Work Order:

Global ID: Location ID (FieldPoint): MW-5

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

 1007798-12
 COC Number:
 -- Receive Date:
 06/08/2010 10:20

 Project Number:
 5781
 Sampling Date:
 06/03/2010 15:48

Sampling Location:---Sample Depth:---Sampling Point:SB-8@6Sample Matrix:Solids

Sampled By: DECR Sample waters. Solids

Delivery Work Order:

Global ID: Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

OOOICI ID

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information** 1007798-13 06/08/2010 10:20 **COC Number:** Receive Date: 5781 06/03/2010 15:50 **Project Number:** Sampling Date: Sampling Location: Sample Depth: Sampling Point: SB-8@10 Solids Sample Matrix: Sampled By: **DECR** Delivery Work Order: Global ID: Location ID (FieldPoint): SB-8 Matrix: SO Sample QC Type (SACode): CS Cooler ID: 1007798-14 **COC Number:** Receive Date: 06/08/2010 10:20 **Project Number:** Sampling Date: 06/03/2010 15:56 5781 Sampling Location: Sample Depth: SB-8@15 Solids Sampling Point: Sample Matrix: **DECR** Sampled By: Delivery Work Order: Global ID: Location ID (FieldPoint): SB-8 Matrix: SO Sample QC Type (SACode): CS Cooler ID: 1007798-15 **COC Number:** 06/08/2010 10:20 Receive Date: 06/03/2010 16:00 **Project Number:** 5781 Sampling Date: Sampling Location: Sample Depth: SB-8@20 Sampling Point: Sample Matrix: Solids Sampled By: **DECR** Delivery Work Order: Global ID: Location ID (FieldPoint): SB-8 Matrix: SO Sample QC Type (SACode): CS Cooler ID: 1007798-16 **COC Number:** Receive Date: 06/08/2010 10:20 **Project Number:** 5781 Sampling Date: 06/03/2010 16:03 Sampling Location: Sample Depth: SB-8@24 Solids Sampling Point: Sample Matrix: DECR Sampled By: Delivery Work Order: Global ID: Location ID (FieldPoint): SB-8 Matrix: SO Sample QC Type (SACode): CS

Cooler ID:

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1007798-01	Client Sampl	e Name:	5781, MW-4@5, 6/4	1/2010 12:28:00PI	М			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Methanol		ND	mg/kg	0.51	EPA-8015B	ND	S05	1	
2-Chloroacrylonitrile (S	Surrogate)	74.9	%	60 - 140 (LCL - UCL)	EPA-8015B		S05,S09	1	

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/22/10 23:37	MWB	GC-12	5.128	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 100	7798-01 Client S	ample Name:	5781, MW-4@5, 6	6/4/2010 12:28:00PM	Л		
Constituent	Resu	ılt Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
1,2-Dibromoethane	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
1,2-Dichloroethane	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
Ethylbenzene	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
Methyl t-butyl ether	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
Toluene	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
Total Xylenes	ND	mg/kg	0.020	EPA-8260	ND	A10,Z1a	1
t-Amyl Methyl ether	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
t-Butyl alcohol	ND	mg/kg	0.10	EPA-8260	ND	A10,Z1a	1
Diisopropyl ether	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
Ethanol	ND	mg/kg	2.0	EPA-8260	ND	A10,Z1a	1
Ethyl t-butyl ether	ND	mg/kg	0.010	EPA-8260	ND	A10,Z1a	1
1,2-Dichloroethane-d4 (Surroga	ate) 105	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	99.1	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrog	ate) 103	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/14/10	06/14/10 10:50	ZZZ	MS-V2	2	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-01	Client Sampl	e Name:	5781, MW-4@5, 6/4	1/2010 12:28:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	81.8	%	70 - 130 (LCL - UCL)	Luft			1	

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/14/10 17:11	JJH	GC-V8	1	BTF1029	

Delta Environmental Consultants, Inc.

Reported: 06/25/2010 14:31
11050 White Rock Rd, Suite 110

Project: 5781

Rancho Cordova, CA 95670 Project Number: 4513503991
Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-01	Client Sampl	e Name:	5781, MW-4@5, 6/4	I/2010 12:28:00P	М			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	88.1	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 09:04	MWB	GC-5	0.990	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1007798-02	Client Sample	e Name:	5781, MW-4@10, 6	/4/2010 12:32:00F	PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Methanol		ND	mg/kg	0.49	EPA-8015B	ND	S05	1
2-Chloroacrylonitrile (S	Surrogate)	62.9	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1

		Run Wethod Bron Deta Deta Time Analyst					QC			
R	Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
	1	EPA-8015B	06/22/10	06/22/10 23:58	MWB	GC-12	4.878	BTF1790		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991
Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 10	07798-02	Client Sampl	e Name:	5781, MW-4@10, 6	/4/2010 12:32:00	PM		
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	106	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.8	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	95.6	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 00:15	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-02	Client Sampl	e Name:	5781, MW-4@10, 6	/4/2010 12:32:00)PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	93.8	%	70 - 130 (LCL - UCL)	Luft			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/15/10 16:08	JJH	GC-V8	1	BTF1029	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-02	Client Sampl	e Name:	5781, MW-4@10, 6	/4/2010 12:32:00	PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1
Tetracosane (Surrogat	re)	79.4	%	34 - 136 (LCL - UCL)	Luft/TPHd			1

				Run				QC
Ru	un#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
	1	Luft/TPHd	06/11/10	06/21/10 09:18	MWB	GC-5	0.993	BTF1337

Williertal resulting Eaboratory Since 1949

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 **Reported:** 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1007798-03	Client Sampl	e Name:	e: 5781, MW-4@15, 6/4/2010 12:39:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Methanol		ND	mg/kg	0.50	EPA-8015B	ND	S05	1	
2-Chloroacrylonitrile (S	Surrogate)	74.5	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1	

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 00:21	MWB	GC-12	5.025	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 100	07798-03	Client Sample	Name:	5781, MW-4@15, 6	/4/2010 12:39:00	PM		
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		0.0051	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	107	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	96.8	%	74 - 121 (LCL - UCL)	EPA-8260			1

	Run						QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8260	06/13/10	06/14/10 00:41	ZZZ	MS-V2	1	BTF0917		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-03	Client Sampl	e Name:	5781, MW-4@15, 6	5781, MW-4@15, 6/4/2010 12:39:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	89.8	%	70 - 130 (LCL - UCL)	Luft			1	

	Run					QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	Luft	06/14/10	06/14/10 19:44	JJH	GC-V8	1	BTF1029		

06/25/2010 14:31 Reported:

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-03	Client Sampl	e Name:	5781, MW-4@15, 6/4/2010 12:39:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	88.4	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/11/10	06/21/10 09:32	MWB	GC-5	0.993	BTF1337

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1007798-04	Client Sample	e Name:	5781, MW-4@20, 6/4/2010 12:44:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Methanol		ND	mg/kg	0.49	EPA-8015B	ND	S05	1
2-Chloroacrylonitrile (S	Surrogate)	68.5	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 00:42	MWB	GC-12	4.854	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 100779	8-04 Client Sam	ole Name:	5781, MW-4@20, 6	6/4/2010 12:44:00)PM		
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene	ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene	ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes	ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol	ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surrogate)	104	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	99.3	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	96.4	%	74 - 121 (LCL - UCL)	EPA-8260			1

	Run						QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-8260	06/13/10	06/14/10 01:06	ZZZ	MS-V2	1	BTF0917				

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-04	Client Sampl	e Name:	5781, MW-4@20, 6	5781, MW-4@20, 6/4/2010 12:44:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1		
a,a,a-Trifluorotoluene	(FID Surrogate)	90.0	%	70 - 130 (LCL - UCL)	Luft			1		

			Run			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft	06/14/10	06/14/10 20:14	JJH	GC-V8	1	BTF1029			

Delta Environmental Consultants, Inc.

Reported: 06/25/2010 14:31 11050 White Rock Rd, Suite 110 Project: 5781

Rancho Cordova, CA 95670 Project Number: 4513503991
Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	CL Sample ID: 1007798-04 Client Sample Name:				/4/2010 12:44:00	PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #			
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1			
Tetracosane (Surrogat	te)	79.7	%	34 - 136 (LCL - UCL)	Luft/TPHd			1			

	Run					QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft/TPHd	06/11/10	06/21/10 09:46	MWB	GC-5	0.997	BTF1337			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1007798-05	Client Sampl	e Name:	5781, MW-4@25, 6/4/2010 12:53:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Methanol		ND	mg/kg	0.50	EPA-8015B	ND	S05	1
2-Chloroacrylonitrile (S	Surrogate)	70.9	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1

			Run				QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	EPA-8015B	06/22/10	06/23/10 01:05	MWB	GC-12	4.975	BTF1790				

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 10	07798-05	Client Sample	Name:	5781, MW-4@25, 6	/4/2010 12:53:00	PM		
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	106	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.1	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	92.1	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 01:32	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-05	Client Sampl	e Name:	5781, MW-4@25, 6	/4/2010 12:53:00			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	92.5	%	70 - 130 (LCL - UCL)	Luft			1

	Run					QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft	06/14/10	06/14/10 20:45	JJH	GC-V8	1	BTF1029			

Delta Environmental Consultants, Inc. Reported: 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670 Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

06/25/2010 14:31

Project: 5781

BCL Sample ID:	1007798-05	Client Sampl	e Name:	5781, MW-4@25, 6	5781, MW-4@25, 6/4/2010 12:53:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1		
Tetracosane (Surroga	te)	86.0	%	34 - 136 (LCL - UCL)	Luft/TPHd			1		

	Run					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	Luft/TPHd	06/11/10	06/21/10 10:00	MWB	GC-5	0.950	BTF1337		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1007798-06	Client Sampl	e Name:	5781, Comp A, 6/4/2	2010 1:58:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Methanol		ND	mg/kg	0.48	EPA-8015B	ND	S05	1
2-Chloroacrylonitrile (S	Surrogate)	70.9	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 01:26	MWB	GC-12	4.785	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 100	07798-06 Clien	t Sample Name:	5781, Co	omp A, 6/4/2010 1:58:0	0PM		
Constituent	Re	sult Unit	s PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ı	ND mg/k	0.0050	EPA-8260	ND		1
1,2-Dibromoethane	1	ND mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane	1	ND mg/kạ	0.0050	EPA-8260	ND		1
Ethylbenzene	1	ND mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether	1	ND mg/kạ	0.0050	EPA-8260	ND		1
Toluene	1	ND mg/kạ	0.0050	EPA-8260	ND		1
Total Xylenes	ı	ND mg/ko	g 0.010	EPA-8260	ND		1
t-Amyl Methyl ether	ı	ND mg/kg	g 0.0050	EPA-8260	ND		1
t-Butyl alcohol	1	ND mg/kạ	9 0.050	EPA-8260	ND		1
Diisopropyl ether	ı	ND mg/ko	g 0.0050	EPA-8260	ND		1
Ethanol	ı	ND mg/kạ	g 1.0	EPA-8260	ND		1
Ethyl t-butyl ether	ı	ND mg/kį	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surrog	gate) 1	07 %	70 - 121 (L	CL - UCL) EPA-8260			1
Toluene-d8 (Surrogate)	9	9.0 %	81 - 117 (Lo	CL - UCL) EPA-8260			1
4-Bromofluorobenzene (Surro	gate) 8	1.5 %	74 - 121 (L	CL - UCL) EPA-8260			1

	Run						QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	06/13/10	06/14/10 01:58	ZZZ	MS-V2	1	BTF0917			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-06	Client Sampl	e Name:	5781, Comp A, 6/4/2	5781, Comp A, 6/4/2010 1:58:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	79.2	%	70 - 130 (LCL - UCL)	Luft			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/14/10 21:15	JJH	GC-V8	1	BTF1029	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-06	Client Sampl	e Name:	5781, Comp A, 6/4/2	2010 1:58:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1
Tetracosane (Surroga	te)	87.1	%	34 - 136 (LCL - UCL)	Luft/TPHd			1

Run					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 10:14	MWB	GC-5	0.997	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1007798-07	Client Sample	e Name:	5781, SB-8, 6/3/201	0 4:10:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Methanol		ND	ug/L	100	EPA-8015B	ND	S05	1	
2-Chloroacrylonitrile (S	Surrogate)	106	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1	

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
 1	EPA-8015B	06/17/10	06/18/10 00:20	MWB	GC-12	1	BTF1325

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 10	007798-07	Client Sampl	e Name:	5781, SB-8, 6/3/201	0 4:10:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND	Z1	1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND	Z1	1
1,2-Dichloroethane		0.50	ug/L	0.50	EPA-8260	ND	Z1	1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND	Z1	1
Methyl t-butyl ether		53	ug/L	0.50	EPA-8260	ND	Z 1	1
Toluene		ND	ug/L	0.50	EPA-8260	ND	Z1	1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND	Z1	1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND	Z1	1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND	Z1	1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND	Z1	1
Ethanol		ND	ug/L	250	EPA-8260	ND	Z1	1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND	Z1	1
1,2-Dichloroethane-d4 (Surro	ogate)	105	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		97.0	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surr	ogate)	98.0	%	86 - 115 (LCL - UCL)	EPA-8260			1

	Run						QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	06/14/10	06/14/10 12:40	KEA	MS-V10	1	BTF0938			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 1007798-07		Client Sample Name:		5781, SB-8, 6/3/2010 4:10:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Orga	nics (C4 - C12)	73	ug/L	50	Luft	ND	A91	1	
a,a,a-Trifluorotoluene	(FID Surrogate)	82.8	%	70 - 130 (LCL - UCL)	Luft			1	

			QC					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/16/10 11:01	jjh	GC-V4	1	BTF0895	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-07	Client Sampl	e Name:	5781, SB-8, 6/3/201	0 4:10:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Diesel Range Organio	cs (C12 - C24)	99	ug/L	50	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	77.6	%	28 - 139 (LCL - UCL)	Luft/TPHd			1	

			Run			QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	Luft/TPHd	06/11/10	06/16/10 17:43	MWB	GC-5	1	BTF1197		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-08	Client Sampl	e Name:	5781, MW-5@5, 6/3	3/2010 11:55:00Al	M					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #			
Methanol		ND	mg/kg	0.50	EPA-8015B	ND	S05	1			
2-Chloroacrylonitrile (S	Surrogate)	68.9	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1			

			Run			QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B	06/22/10	06/23/10 02:53	MWB	GC-12	4.975	BTF1790		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID: 10	07798-08	Client Sample	Name:	5781, MW-5@5, 6/3	3/2010 11:55:00AM			
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	103	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		98.4	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	92.7	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 02:23	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-08	Client Sampl	e Name:	5781, MW-5@5, 6/3	5781, MW-5@5, 6/3/2010 11:55:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	87.8	%	70 - 130 (LCL - UCL)	Luft			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/14/10 21:46	JJH	GC-V8	1	BTF1029	

06/25/2010 14:31 Reported:

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-08	Client Sampl	e Name:	5781, MW-5@5, 6/3	3/2010 11:55:00A	M			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	88.9	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft/TPHd	06/11/10	06/21/10 10:56	MWB	GC-5	0.947	BTF1337			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-09	Client Sample	e Name:	5781, MW-5@12, 6	5781, MW-5@12, 6/3/2010 12:01:00PM					
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Methanol		ND	mg/kg	0.50	EPA-8015B	ND	S05	1		
2-Chloroacrylonitrile (S	Surrogate)	63.5	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1		

			Run				QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	06/22/10	06/23/10 03:14	MWB	GC-12	4.950	BTF1790			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID: 10	07798-09 c	lient Sample	Name:	5781, MW-5@12, 6	/3/2010 12:01:00	PM		
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	105	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.8	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	98.5	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 02:49	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-09	Client Sampl	e Name:	5781, MW-5@12, 6	/3/2010 12:01:00)PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	89.0	%	70 - 130 (LCL - UCL)	Luft			1	

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/14/10 22:17	JJH	GC-V8	1	BTF1029	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991
Project Manager: Jan Wagoner

BCL Sample ID:	1007798-09	Client Sampl	Client Sample Name: 5781, MW-5@12, 6/3/2010 12:01:00			PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surrogat	te)	89.0	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run QC					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 11:10	MWB	GC-5	0.960	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-10	Client Sample	e Name:	5781, MW-5@15, 6	5781, MW-5@15, 6/3/2010 12:03:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Methanol		ND	mg/kg	0.51	EPA-8015B	ND	S05	1	
2-Chloroacrylonitrile (S	Surrogate)	86.0	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1	

			Run		QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	06/22/10	06/23/10 03:35	MWB	GC-12	5.102	BTF1790	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID: 10077	98-10 Client S	ample Name:	5781, MW-5@15	5781, MW-5@15, 6/3/2010 12:03:00PM			_
Constituent	Resu	It Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane	ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane	ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene	ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene	ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes	ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol	ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol	ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether	ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surrogate	102	%	70 - 121 (LCL - UCL) EPA-8260			1
Toluene-d8 (Surrogate)	100	%	81 - 117 (LCL - UCL) EPA-8260			1
4-Bromofluorobenzene (Surrogate	e) 95.7	%	74 - 121 (LCL - UCL) EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 03:15	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-10	Client Sampl	Client Sample Name: 5781, MW-5@15, 6/3/2010 12:03:00P						
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	94.0	%	70 - 130 (LCL - UCL)	Luft			1	

			Run				QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID				
1	Luft	06/14/10	06/15/10 16:38	JJH	GC-V8	1	BTF1029				

06/25/2010 14:31 Reported:

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-10	Client Sampl	e Name:	5781, MW-5@15, 6	/3/2010 12:03:00	PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surrogat	te)	80.9	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 11:23	MWB	GC-5	0.984	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-11	Client Sampl	e Name:	5781, MW-5@20, 6	/3/2010 12:08:00	PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Methanol		ND	mg/kg	0.51	EPA-8015B	ND	S05	1
2-Chloroacrylonitrile (S	Surrogate)	85.7	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	i
1	EPA-8015B	06/22/10	06/23/10 03:56	MWB	GC-12	5.076	BTF1790	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID: 100)7798-11 CI	ient Sample N	lame:	5781, MW-5@20, 6/	3/2010 12:08:00PM			
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
1,2-Dibromoethane		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
1,2-Dichloroethane		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
Ethylbenzene		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
Methyl t-butyl ether		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
Toluene		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
Total Xylenes		ND	mg/kg	0.10	EPA-8260	ND	A10,Z1a	1
t-Amyl Methyl ether		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
t-Butyl alcohol		ND	mg/kg	0.50	EPA-8260	ND	A10,Z1a	1
Diisopropyl ether		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
Ethanol		ND	mg/kg	10	EPA-8260	ND	A10,Z1a	1
Ethyl t-butyl ether		ND	mg/kg	0.050	EPA-8260	ND	A10,Z1a	1
1,2-Dichloroethane-d4 (Surrog	gate)	101	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.3	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	96.4	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/14/10	06/14/10 13:49	ZZZ	MS-V2	10	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-11	Client Sampl	e Name:	5781, MW-5@20, 6	/3/2010 12:08:00)PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	85.0	%	70 - 130 (LCL - UCL)	Luft			1	

	Run						QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft	06/14/10	06/14/10 23:18	JJH	GC-V8	1	BTF1029			

Delta Environmental Consultants, Inc.

Reported: 06/25/2010 14:31
11050 White Rock Rd, Suite 110

Project: 5781

Rancho Cordova, CA 95670 Project Number: 4513503991
Project Manager: Jan Wagoner

BCL Sample ID:	1007798-11	Client Sampl	e Name:	5781, MW-5@20, 6	/3/2010 12:08:00	PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	88.1	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 11:37	MWB	GC-5	0.974	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-12	Client Sampl	e Name:	5781, SB-8@6, 6/3/	2010 3:48:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Methanol		ND	mg/kg	0.51	EPA-8015B	ND	S05	1	
2-Chloroacrylonitrile (S	Surrogate)	73.3	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1	

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 04:17	MWB	GC-12	5.102	BTF1790

Delta Environmental Consultants, Inc.

Reported: 06/25/2010 14:31

11050 White Rock Rd, Suite 110 Project: 5781
Rancho Cordova, CA 95670 Project Number: 4513503991
Project Manager: Jan Wagoner

BCL Sample ID: 100)7798-12 Cli e	ent Sample Na	ame:	5781, SB-8@6, 6/3/	2010 3:48:00PM			
Constituent	F	Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surrog	gate)	109	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.2	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	93.6	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	06/13/10	06/14/10 04:07	ZZZ	MS-V2	1	BTF0917			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-12	Client Sampl	e Name:	5781, SB-8@6, 6/3/	2010 3:48:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	85.8	%	70 - 130 (LCL - UCL)	Luft			1	

		Run				QC					QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID						
1	Luft	06/14/10	06/14/10 23:49	JJH	GC-V8	1	BTF1029						

06/25/2010 14:31 Reported:

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-12	Client Sampl	e Name:	5781, SB-8@6, 6/3/	2010 3:48:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	2.1	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	98.1	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 12:32	MWB	GC-5	0.938	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-13	Client Sampl	e Name:	5781, SB-8@10, 6/3	3/2010 3:50:00PN	Л				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #		
Methanol		ND	mg/kg	0.48	EPA-8015B	ND	S05	1		
2-Chloroacrylonitrile (S	Surrogate)	61.6	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1		

			Run	QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 04:38	MWB	GC-12	4.831	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID: 100	07798-13 CI	ient Sample I	Name:	5781, SB-8@10, 6/3	3/2010 3:50:00PM			
Constituent	•	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surrog	gate)	106	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		98.7	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	96.4	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 04:33	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-13	Client Sampl	e Name:	5781, SB-8@10, 6/3	3/2010 3:50:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	90.8	%	70 - 130 (LCL - UCL)	Luft			1

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft	06/14/10	06/15/10 01:51	JJH	GC-V8	1	BTF1029			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991
Project Manager: Jan Wagoner

BCL Sample ID:	1007798-13	Client Sampl	e Name:	5781, SB-8@10, 6/3	3/2010 3:50:00PM	М			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	91.1	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 12:18	MWB	GC-5	0.990	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-14	Client Sample	e Name:	5781, SB-8@15, 6/3	3/2010 3:56:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Methanol		ND	mg/kg	0.50	EPA-8015B	ND	S05	1
2-Chloroacrylonitrile (S	Surrogate)	67.6	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 04:59	MWB	GC-12	5	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID: 100	7798-14 Client	Sample Name:	5781, SB-8@15	, 6/3/2010 3:56:00Pf	М		
Constituent	Re	sult Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	N	D mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane	N	D mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane	N	D mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene	N	D mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether	N	D mg/kg	0.0050	EPA-8260	ND		1
Toluene	N	D mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes	N	D mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether	N	D mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol	N	D mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether	N	D mg/kg	0.0050	EPA-8260	ND		1
Ethanol	N	D mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether	N	D mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surrog	ate) 10)8 %	70 - 121 (LCL - UCI	L) EPA-8260			1
Toluene-d8 (Surrogate)	99	0.3 %	81 - 117 (LCL - UCI	L) EPA-8260			1
4-Bromofluorobenzene (Surrog	gate) 97	7.4 %	74 - 121 (LCL - UCI	L) EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 04:58	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-14	Client Sampl	e Name:	5781, SB-8@15, 6/3	3/2010 3:56:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	79.5	%	70 - 130 (LCL - UCL)	Luft			1

	Run Prop Date Date/Time Analyst				QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/15/10 02:22	JJH	GC-V8	1	BTF1029	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-14	Client Sampl	e Name:	5781, SB-8@15, 6/3	3/2010 3:56:00P	M			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Diesel Range Organio	cs (C12 - C24)	2.4	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	95.1	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/11/10	06/21/10 12:46	MWB	GC-5	0.997	BTF1337	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-15	Client Sampl	e Name:	5781, SB-8@20, 6/3	3/2010 4:00:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Methanol		ND	mg/kg	0.50	EPA-8015B	ND	S05	1
2-Chloroacrylonitrile (S	Surrogate)	73.9	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1

	Run Pren Date Date/Time Analyst				QC			
	Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
	1	EPA-8015B	06/22/10	06/23/10 05:19	MWB	GC-12	4.950	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID: 1	007798-15	Client Sampl	e Name:	5781, SB-8@20, 6/3	3/2010 4:00:00P	M		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surr	ogate)	105	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Sur	rogate)	97.1	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 05:24	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-15	Client Sampl	e Name:	5781, SB-8@20, 6/3	3/2010 4:00:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1	
a,a,a-Trifluorotoluene	(FID Surrogate)	88.5	%	70 - 130 (LCL - UCL)	Luft			1	

	Run						QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft	06/14/10	06/15/10 02:53	JJH	GC-V8	1	BTF1029			

06/25/2010 14:31 Reported:

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

BCL Sample ID:	1007798-15	Client Sampl	e Name:	5781, SB-8@20, 6/3	3/2010 4:00:00PM	1			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1	
Tetracosane (Surrogat	e)	70.1	%	34 - 136 (LCL - UCL)	Luft/TPHd			1	

				QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/11/10	06/21/10 11:51	MWB	GC-5	0.977	BTF1337

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991
Project Manager: Jan Wagoner

BCL Sample ID:	1007798-16	Client Sample	e Name:	5781, SB-8@24, 6/3	3/2010 4:03:00PM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Methanol		ND	mg/kg	0.49	EPA-8015B	ND	S05	1	
2-Chloroacrylonitrile (S	Surrogate)	83.4	%	60 - 140 (LCL - UCL)	EPA-8015B		S05	1	

				QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 05:40	MWB	GC-12	4.902	BTF1790

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

1007798-16	Client Sampl	e Name:	5781, SB-8@24, 6/3	3/2010 4:03:00P	M		
	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.010	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	1.0	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
rrogate)	105	%	70 - 121 (LCL - UCL)	EPA-8260			1
	99.4	%	81 - 117 (LCL - UCL)	EPA-8260			1
ırrogate)	99.5	%	74 - 121 (LCL - UCL)	EPA-8260			1
	rrogate)	Result ND ND ND ND ND ND ND N	Result Units ND mg/kg Trogate) 105 % 99.4 %	Result Units PQL ND mg/kg 0.0050 rrogate) 105 % 70 - 121 (LCL - UCL) 99.4 % 81 - 117 (LCL - UCL)	Result Units PQL Method ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260	Result Units PQL Method Bias ND mg/kg 0.0050 EPA-8260 ND ND mg/kg 0.050 EPA-8260 ND ND mg/kg 0.050 EPA-8260 ND ND mg/kg 0.050 EPA-8260 ND ND mg/kg 0.0050 EPA-8260 ND ND mg/kg 0.0050 EPA-8260 ND ND mg/kg 0.0050 EPA-8260 ND ND mg/kg 0.	NB

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/13/10	06/14/10 05:50	ZZZ	MS-V2	1	BTF0917	

Reported: 06/25/2010 14:31

Project: 5781
Project Number: 4513503991
Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

BCL Sample ID:	1007798-16	Client Sampl	e Name:	5781, SB-8@24, 6/3	3/2010 4:03:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Organ	nics (C4 - C12)	ND	mg/kg	1.0	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	86.8	%	70 - 130 (LCL - UCL)	Luft			1

			Run				QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	Luft	06/14/10	06/15/10 03:24	JJH	GC-V8	1	BTF1029			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	1007798-16	Client Sampl	e Name:	5781, SB-8@24, 6/3	3/2010 4:03:00PM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Diesel Range Organic	s (C12 - C24)	ND	mg/kg	2.0	Luft/TPHd	ND		1
Tetracosane (Surrogat	te)	79.0	%	34 - 136 (LCL - UCL)	Luft/TPHd			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	Luft/TPHd	06/11/10	06/21/10 12:05	MWB	GC-5	0.987	BTF1337

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1325						
Methanol	BTF1325-BLK1	ND	ug/L	100		
2-Chloroacrylonitrile (Surrogate)	BTF1325-BLK1	102	%	60 - 140	(LCL - UCL)	
QC Batch ID: BTF1790						
Methanol	BTF1790-BLK1	ND	mg/kg	0.50		
2-Chloroacrylonitrile (Surrogate)	BTF1790-BLK1	85.8	%	60 - 140	(LCL - UCL)	S09

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

							Control Limits		
		_		Spike		Percent	Perc		
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD Reco	ery RPD	Lab Quals
QC Batch ID: BTF1325									
Methanol	BTF1325-BS1	LCS	2070.0	2000.0	ug/L	104	50 -	50	
2-Chloroacrylonitrile (Surrogate)	BTF1325-BS1	LCS	5349.0	4000.0	ug/L	134	60 -	40	
QC Batch ID: BTF1790									
Methanol	BTF1790-BS1	LCS	9.8750	10.000	mg/kg	98.8	50 -	50	
2-Chloroacrylonitrile (Surrogate)	BTF1790-BS1	LCS	14.690	20.000	mg/kg	73.4	60 -	40	S09

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

	•		·					•	Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1325	Used	client sample:	N								
Methanol	MS	1005654-98	ND	1825.0	2000.0	ug/L		91.2		50 - 150	
	MSD	1005654-98	ND	1941.0	2000.0	ug/L	6.2	97.0	30	50 - 150	
2-Chloroacrylonitrile (Surrogate)	MS	1005654-98	ND	4339.0	4000.0	ug/L		108		60 - 140	
	MSD	1005654-98	ND	5029.0	4000.0	ug/L		126		60 - 140	
QC Batch ID: BTF1790	Used	client sample:	N								
Methanol	MS	1007897-14	ND	13.010	10.000	mg/kg		130		50 - 150	
	MSD	1007897-14	ND	21.365	10.000	mg/kg	48.6	214	30	50 - 150	Q03
2-Chloroacrylonitrile (Surrogate)	MS	1007897-14	ND	10.100	20.000	mg/kg		50.5		60 - 140	S09
	MSD	1007897-14	ND	9.3150	20.000	mg/kg		46.6		60 - 140	S09

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF0917						
Benzene	BTF0917-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BTF0917-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BTF0917-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BTF0917-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BTF0917-BLK1	ND	mg/kg	0.0050		
Toluene	BTF0917-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BTF0917-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BTF0917-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BTF0917-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BTF0917-BLK1	ND	mg/kg	0.0050		
Ethanol	BTF0917-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BTF0917-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane-d4 (Surrogate)	BTF0917-BLK1	99.3	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BTF0917-BLK1	99.1	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTF0917-BLK1	98.4	%	74 - 121	(LCL - UCL)	
QC Batch ID: BTF0938						
Benzene	BTF0938-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BTF0938-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTF0938-BLK1	ND	ug/L	0.50		
Ethylbenzene	BTF0938-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BTF0938-BLK1	ND	ug/L	0.50		
Toluene	BTF0938-BLK1	ND	ug/L	0.50		
Total Xylenes	BTF0938-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BTF0938-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BTF0938-BLK1	ND	ug/L	10		
Diisopropyl ether	BTF0938-BLK1	ND	ug/L	0.50		
Ethanol	BTF0938-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BTF0938-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BTF0938-BLK1	103	%	76 - 114	· (LCL - UCL)	
Toluene-d8 (Surrogate)	BTF0938-BLK1	96.2	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTF0938-BLK1	96.5	%	86 - 115	(LCL - UCL)	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

								Control L	imits	
Comptituent	00.0	T	Danult	Spike	l luita	Percent	DDD	Percent	DDD	Lab Ossala
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Lab Quals
QC Batch ID: BTF0917										
Benzene	BTF0917-BS1	LCS	0.12822	0.12500	mg/kg	103		70 - 130		
Toluene	BTF0917-BS1	LCS	0.12935	0.12500	mg/kg	103		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BTF0917-BS1	LCS	0.049575	0.050000	mg/kg	99.2		70 - 121		
Toluene-d8 (Surrogate)	BTF0917-BS1	LCS	0.048953	0.050000	mg/kg	97.9		81 - 117		
4-Bromofluorobenzene (Surrogate)	BTF0917-BS1	LCS	0.050124	0.050000	mg/kg	100		74 - 121		
QC Batch ID: BTF0938										
Benzene	BTF0938-BS1	LCS	23.530	25.000	ug/L	94.1		70 - 130		
Toluene	BTF0938-BS1	LCS	23.570	25.000	ug/L	94.3		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BTF0938-BS1	LCS	10.080	10.000	ug/L	101		76 - 114		
Toluene-d8 (Surrogate)	BTF0938-BS1	LCS	9.9700	10.000	ug/L	99.7		88 - 110		
4-Bromofluorobenzene (Surrogate)	BTF0938-BS1	LCS	9.7000	10.000	ug/L	97.0		86 - 115		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF0917	Used	client sample	: N								
Benzene	MS	1007897-16	ND	0.12346	0.12500	mg/kg		98.8		70 - 130	
	MSD	1007897-16	ND	0.12915	0.12500	mg/kg	4.5	103	20	70 - 130	
Toluene	MS	1007897-16	ND	0.12854	0.12500	mg/kg		103		70 - 130	
	MSD	1007897-16	ND	0.13283	0.12500	mg/kg	3.3	106	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1007897-16	ND	0.049773	0.050000	mg/kg		99.5		70 - 121	
	MSD	1007897-16	ND	0.050475	0.050000	mg/kg		101		70 - 121	
Toluene-d8 (Surrogate)	MS	1007897-16	ND	0.049861	0.050000	mg/kg		99.7		81 - 117	
	MSD	1007897-16	ND	0.049873	0.050000	mg/kg		99.7		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1007897-16	ND	0.051394	0.050000	mg/kg		103		74 - 121	
	MSD	1007897-16	ND	0.051229	0.050000	mg/kg		102		74 - 121	
QC Batch ID: BTF0938	Used	client sample	: N								
Benzene	MS	1007829-02	ND	26.490	25.000	ug/L		106		70 - 130	
	MSD	1007829-02	ND	26.010	25.000	ug/L	1.8	104	20	70 - 130	
Toluene	MS	1007829-02	ND	25.230	25.000	ug/L		101		70 - 130	
	MSD	1007829-02	ND	25.280	25.000	ug/L	0.2	101	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1007829-02	ND	10.110	10.000	ug/L		101		76 - 114	
	MSD	1007829-02	ND	10.020	10.000	ug/L		100		76 - 114	
Toluene-d8 (Surrogate)	MS	1007829-02	ND	9.6800	10.000	ug/L		96.8		88 - 110	
	MSD	1007829-02	ND	10.060	10.000	ug/L		101		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1007829-02	ND	9.8300	10.000	ug/L		98.3		86 - 115	
. ,	MSD	1007829-02	ND	9.8900	10.000	ug/L		98.9		86 - 115	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF0895						
Gasoline Range Organics (C4 - C12)	BTF0895-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	BTF0895-BLK1	78.3	%	70 - 130	(LCL - UCL)	
QC Batch ID: BTF1029						
Gasoline Range Organics (C4 - C12)	BTF1029-BLK1	ND	mg/kg	1.0		
a,a,a-Trifluorotoluene (FID Surrogate)	BTF1029-BLK1	88.5	%	70 - 130	(LCL - UCL)	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

								Control L	imits.	
		_		Spike		Percent		Percent		
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Lab Quals
QC Batch ID: BTF0895										
Gasoline Range Organics (C4 - C12)	BTF0895-BS1	LCS	1021.3	1000.0	ug/L	102		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BTF0895-BS1	LCS	34.730	40.000	ug/L	86.8		70 - 130		
QC Batch ID: BTF1029										
Gasoline Range Organics (C4 - C12)	BTF1029-BS1	LCS	4.9698	5.0000	mg/kg	99.4		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	BTF1029-BS1	LCS	0.037200	0.040000	mg/kg	93.0		70 - 130		

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

Type Used (Source Sample ID	Source Result	Result	Spike Added			Percent		Percent	Lab
	•	Result	Result	habbΔ						
Used				Added	Units	RPD	Recovery	RPD	Recovery	Quals
	client sample:	N								
MS	1005654-95	ND	1068.4	1000.0	ug/L		107		70 - 130	
MSD	1005654-95	ND	1026.8	1000.0	ug/L	4.0	103	20	70 - 130	
MS	1005654-95	ND	34.899	40.000	ug/L		87.2		70 - 130	
MSD	1005654-95	ND	34.732	40.000	ug/L		86.8		70 - 130	
Used	client sample:	. N								
MS	1007897-09	ND	5.0340	5.0000	mg/kg		101		70 - 130	
MSD	1007897-09	ND	4.9391	5.0000	mg/kg	1.9	98.8	20	70 - 130	
MS	1007897-09	ND	0.037400	0.040000	mg/kg		93.5		70 - 130	
MSD	1007897-09	ND	0.037400	0.040000	mg/kg		93.5		70 - 130	
	MS MSD MS MSD MS MSD MS	MS 1005654-95 MSD 1005654-95 MSD 1005654-95 MSD 1005654-95 Used client sample: MS 1007897-09 MSD 1007897-09 MS 1007897-09	MS 1005654-95 ND MSD 1005654-95 ND MSD 1005654-95 ND MSD 1005654-95 ND Used client sample: N MS 1007897-09 ND MSD 1007897-09 ND MS 1007897-09 ND	MS 1005654-95 ND 1068.4 MSD 1005654-95 ND 1026.8 MS 1005654-95 ND 34.899 MSD 1005654-95 ND 34.732 Used client sample: N MS 1007897-09 ND 5.0340 MSD 1007897-09 ND 4.9391 MS 1007897-09 ND 0.037400	MS 1005654-95 ND 1068.4 1000.0 MSD 1005654-95 ND 1026.8 1000.0 MS 1005654-95 ND 34.899 40.000 MSD 1005654-95 ND 34.732 40.000 Used client sample: N MS 1007897-09 ND 5.0340 5.0000 MSD 1007897-09 ND 4.9391 5.0000 MS 1007897-09 ND 0.037400 0.040000	MS 1005654-95 ND 1068.4 1000.0 ug/L MSD 1005654-95 ND 1026.8 1000.0 ug/L MS 1005654-95 ND 34.899 40.000 ug/L MSD 1005654-95 ND 34.732 40.000 ug/L Used client sample: N MS 1007897-09 ND 5.0340 5.0000 mg/kg MSD 1007897-09 ND 4.9391 5.0000 mg/kg MS 1007897-09 ND 0.037400 0.040000 mg/kg	MS 1005654-95 ND 1068.4 1000.0 ug/L 4.0 MSD 1005654-95 ND 1026.8 1000.0 ug/L 4.0 MS 1005654-95 ND 34.899 40.000 ug/L MSD 1005654-95 ND 34.732 40.000 ug/L Used client sample: N MS 1007897-09 ND 5.0340 5.0000 mg/kg MSD 1007897-09 ND 4.9391 5.0000 mg/kg 1.9 MS 1007897-09 ND 0.037400 0.040000 mg/kg	MS 1005654-95 ND 1068.4 1000.0 ug/L 4.0 107 MSD 1005654-95 ND 1026.8 1000.0 ug/L 4.0 103 MS 1005654-95 ND 34.899 40.000 ug/L 87.2 MSD 1005654-95 ND 34.732 40.000 ug/L 86.8 Used client sample: N MS 1007897-09 ND 5.0340 5.0000 mg/kg 101 MSD 1007897-09 ND 4.9391 5.0000 mg/kg 1.9 98.8 MS 1007897-09 ND 0.037400 0.040000 mg/kg 93.5	MS 1005654-95 ND 1068.4 1000.0 ug/L 107 MSD 1005654-95 ND 1026.8 1000.0 ug/L 4.0 103 20 MS 1005654-95 ND 34.899 40.000 ug/L 87.2 MSD 1005654-95 ND 34.732 40.000 ug/L 86.8 Used client sample: N MS 1007897-09 ND 5.0340 5.0000 mg/kg 101 MSD 1007897-09 ND 4.9391 5.0000 mg/kg 1.9 98.8 20 MS 1007897-09 ND 0.037400 0.040000 mg/kg 93.5	MS 1005654-95 ND 1068.4 1000.0 ug/L 107 70 - 130 MSD 1005654-95 ND 1026.8 1000.0 ug/L 4.0 103 20 70 - 130 MS 1005654-95 ND 34.899 40.000 ug/L 87.2 70 - 130 MSD 1005654-95 ND 34.732 40.000 ug/L 86.8 70 - 130 Used client sample: N MS 1007897-09 ND 5.0340 5.0000 mg/kg 101 70 - 130 MSD 1007897-09 ND 4.9391 5.0000 mg/kg 1.9 98.8 20 70 - 130 MS 1007897-09 ND 0.037400 0.040000 mg/kg 93.5 70 - 130

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1197						
Diesel Range Organics (C12 - C24)	BTF1197-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BTF1197-BLK1	80.7	%	28 - 139	(LCL - UCL)	
QC Batch ID: BTF1337						
Diesel Range Organics (C12 - C24)	BTF1337-BLK1	ND	mg/kg	2.0		
Tetracosane (Surrogate)	BTF1337-BLK1	92.6	%	34 - 136	(LCL - UCL)	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

								Control L	Control Limits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BTF1197											
Diesel Range Organics (C12 - C24)	BTF1197-BS1	LCS	315.76	500.00	ug/L	63.2		48 - 125			
Tetracosane (Surrogate)	BTF1197-BS1	LCS	15.800	20.000	ug/L	79.0		28 - 139			
QC Batch ID: BTF1337											
Diesel Range Organics (C12 - C24)	BTF1337-BS1	LCS	13.329	16.667	mg/kg	80.0		50 - 136			
Tetracosane (Surrogate)	BTF1337-BS1	LCS	0.65740	0.66667	mg/kg	98.6		34 - 136			

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1197	Used	client sample:	N								
Diesel Range Organics (C12 - C24)	MS	1007897-30	ND	382.98	500.00	ug/L		76.6		36 - 130	
	MSD	1007897-30	ND	345.21	500.00	ug/L	10.4	69.0	30	36 - 130	
Tetracosane (Surrogate)	MS	1007897-30	ND	17.230	20.000	ug/L		86.2		28 - 139	
	MSD	1007897-30	ND	15.945	20.000	ug/L		79.7		28 - 139	
QC Batch ID: BTF1337	Used	client sample:	Y - Descr	iption: MW-	4@5, 06/04/	2010 12:2	8				
Diesel Range Organics (C12 - C24)	MS	1007798-01	0.99472	8.0941	16.667	mg/kg		42.6		40 - 137	
	MSD	1007798-01	0.99472	9.9253	16.667	mg/kg	22.8	53.6	30	40 - 137	
Tetracosane (Surrogate)	MS	1007798-01	ND	0.57487	0.66667	mg/kg		86.2		34 - 136	
	MSD	1007798-01	ND	0.57533	0.66667	mg/kg		86.3		34 - 136	

Reported: 06/25/2010 14:31

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

PQL's and MDL's were raised due to matrix interference. A10

A91 TPH does not exhibit a "gasoline" pattern. TPH is entirely due to MTBE.

Q03 Matrix spike recovery(s) is(are) not within the control limits.

S05 The sample holding time was exceeded.

S09 The surrogate recovery on the sample for this compound was not within the control limits.

Ζ1 Combined two VOAs for a complete sample.

Sample plugged at 5.0g Z1a

Date of Report: 06/30/2010

Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

RE: 5781

BC Work Order: 1008803 Invoice ID: B082751

Enclosed are the results of analyses for samples received by the laboratory on 6/25/2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	7
Sample Results	
1008803-01 - MW-4	
Solvent Scan (EPA Method 8015)	8
Volatile Organic Analysis (EPA Method 8260)	9
Purgeable Aromatics and Total Petroleum Hydrocarbons	10
Total Petroleum Hydrocarbons	11
Quality Control Reports	
Solvent Scan (EPA Method 8015)	
Method Blank Analysis	12
Laboratory Control Sample	13
Precision and Accuracy	14
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	15
Laboratory Control Sample	16
Precision and Accuracy	17
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	18
Laboratory Control Sample	19
Precision and Accuracy	20
Total Petroleum Hydrocarbons	
Method Blank Analysis	21
Laboratory Control Sample	22
Precision and Accuracy	23
Notes	
Notes and Definitions	24

\Box
g

Laboratories, Inc.

Chain of Custody and Cooler Receipt Form for 1008803 Page 1 of 4

	BC Labor	atories, Inc.							Со	noce	Phil	llips	Cha	in O	f Cı	usto	ody	Re	cor	rd							
		•	Conoc	oPhillips	Site M	anager:				Shelb	Lathro	pp qq						onocal	ellips 2	AP Pro	ject Num	ber					-
	4100 A	las Court	INVOIC	E REMIT	TANCE	ADDR	ESS:				CONC	COPHILI	.IPS						1513	5039	91		DAT	TE. (06z	tio	
	Bakersfie	d, CA 93308									Attn:	Dee Huto South Har	hinson				Con				/ Line M	umber			1	1	
(66	31) 327-4911	661) 327-1918 fax	1									Ana, CA.		10 200			0.000	000	1011	4246	-0000	NE.	PAG	3E:	<u>\</u> of	· ——	-
SAMPU	IG COMPANY:		ANN ANS C	H			соносаян	LLIPS SITE	Nunes	R								000		44, ID NO		15				· · · · · · · · · · · · · · · · · · ·	_
	Consultants		l				SS# 5781													0010							
11050		d #110, Rancho Cordov	o CA 9567	0			SITE ADDRE												COVO	COPHILL	IPS SITE N	ANAGER:		$\overline{}$			_
	ICT CONTACT [Hardoo;		a, on 8507				3535 Pie	rson Stn	eet, O	akland, I	A.								Terry	Gray	son						
Jan W	agoner	FAX:	E-WAL:				EOF DELINE	NABLE TO (RP or De	reignee):			-		Pie	ONE NO.			BMEL			LABO	se onl	Y			
	103-1275	(916) 63B-8385	jwagoners	Sdeltaenv	com		Jan Wag	oner (De	(ta)						91	6-503-	1275		ocewi noo.v		deltaen		u m	328	02		
	RANGISI (Print):	1(310) 030-0300	COMBULTANT																V.COI			F-150-0	10			KG 35 1975	8
1	Jody Do	mello-Rice		C1057	81051									R	EQUE	STED	ANAL	YSES									
	ANOUND TIME (CAL)										T		T	П	1			7		$\neg \tau$			T				-
□ :4	DAYS [] 7 DAYS [72 HOURS 48 HOURS	24 HOURS	☐ res	S THAN 24 P	OURS			1				1						H	- 1		1 1					
							J		Н							11							- 1	FI	ELD NO	TES:	
SPECI	AL INSTRUCTION	G OR NOTES:	CHECK	BOX IF EDO	IS NEEDED				H							11			11		-				ainer/Pres		
H2C	8260B BTEX/O	rys - VOAs with blue cap	18					0xys											Ш			1 1			r PID Read aboratory		
1								×,	2										11								
H2C	8260B Methano	l - VOAs with gray caps					Į Ĕ	E E	g g	升																	
		y required if different from							2	F						11							L				
OWLY		fication/Field Point Name*	DATE	TIME	MATRIX	NO. OF CONT.	8015M - TPHg	0260B - BTEX, 8	8015 - Methanol	8015 - TPHd													TE	MPERATU	IRE ON RE	CEIPT C*	1
5.55				773.00					-			_	+	 	_	11	-	+-	-	-	+-	\vdash	+				-
1							X.	×	x	х						11									reserved erved VC		1
		000/-4	2624W	1145	H2O	10 6																		unpre	served 1	L Amber	
230			,												\neg	17		\top					\top				1
1884					1				\vdash			$\overline{}$	+	\vdash	-	+	+	+	\vdash	\rightarrow		\vdash	-				4
853646									-		-		-	-	+	+		+	\vdash	-	\perp	\longrightarrow					4
382																Ш				\perp							
												-	11112			-											1
													7776	3.8	1	451	W.D.	110	N				\neg				1
313					-							-H	1		56	4	7	1		1		\rightarrow					1
2503									-		\vdash	-17	1/		4.	-		1			\Box	-	+				1
7020															-	13	75 C	14	4								
																											1
\	,								, 1						\top	+++	1		\vdash	\perp	\vdash		_				1
Neinguish	ed by (Dignesial)	7			Receipt by	(Signature)	لبب	$\overline{}$	7 .				-					Oute	-				ime:				4
1	$<\!$	1			10	20 I	Weed.	re	2									16	3/2	5//	8		12	220			1
Rendonas	A BY ISSUANCE	oso Dicka	. 16).	Meceived by	(500000)		X										ges	(1	~	7	ine:	7 - 0			1
Retinquish	ea by (Secretaria)	s so revery	6/65/	78	Received by	Gaggetien	my	السر	-									Q Date	25	- 18	0			<u> (3S</u>	7		l
RIGHT	ikhi	J-6-25	-10:	2030		1	-7											-	W1	しら	110) l'	(Ler	50		
	-																	-					2	919103 April	ion		å

Chain of Custody and Cooler Receipt Form for 1008803

hain of Custody and Cooler Receipt Form for 10	-
	Page LOV
	06/4/11/
SAMPLE RECEI	PTFORM
	SHIPPING None C
OBATORIES SO	SHIPPING None (Specify) Ice Chest (A Other (Specify)) Box (C)
ission #: UNFORMATION	Box 🗆
SHIPPING INFORMATION SHIPPING INFORMATION SHIPPING INFORMATION	The last two days are
ral Express Outher Olspecify Other Olspecify	Comments:
ab Fleid Wone O Other C	Comments:
ral Express DupS Other Dispecify) ab Field Service Dispecify Blue Ice None Other Disperimental None DupS DupS DupS DupS DupS DupS DupS DupS	Description(s) match COC? Yes No D
rigeraria Chest	Description October 10-25-50
stody Seals Ice Chest Intact? Yes Q No Q Intact? Yes Q No Q Intact? Yes Q No Q All samples containers inta	Cate Yes / No C
NOD All samples	ainer: ptp2 Thermometer ID: 13.3 Analyst Init JENES
samples received? Yes No D All samples control COC Received ON O Temperature: A 3,3	:c1c 3.8 ·c
- ac Pecelved	SAMPLE NUMBERS
□ YES NO Temperature.	SAMPLE
AAES 1 2 1	3 4
WINESS I I	
SAMPLE CONTAINERS	
STUEPAL MINERAL GENERAL	
OT GENERAL DE UN PRESERVED PT PE UN PRESERVED	
OT INORGANIC CHEMICAL METALS OT INORGANIC CHEMICAL METALS	
PT INORGANIC COM	
I NUTROGEN FORES	
PT TOTAL SOLPAGE	
291. NTRATE INTEGER PT TOTAL ORGANIC CARBON	
PT TOTAL STATE OF THE PT TOX	
OT CHEMICAL OXIVE	
PIA PHENOLICS	4-1-1-1-1
40ml VQA VIAL TKA	-+
OT EPA 413.1, 413.2, 418.1	
PT ODOR	
RABIOLOGICAL 153	
LO MI VOA VIAL 300	
OT SPA 508/605/8030	
OT EFA 515.118150	
OT EPA 515 TRAVEL BLANK	
100ml EPA 547	
100ml SPA 531.1	
OT 58A 548	
OT EPA 549	+-I+
OT EPA SOISM 8015	
OT AMBER 801	
8 OZ JAR	
32 OZ JAR	
SOILSLEEVE	
PCB YLAL	
PLASTIC BAG	Time: 10/25/10, 21/30 phidocsinipemilan pocsipoamsisamrecs.vipoj
FERROUS IRON	Date/Time: 10/25/10/21/30 In:000500F000LAB_BOCSFORMSISAMALO
ENCORE [NUM	
Comments: Sample Numbering Completed By: Sample Numbering Completed By: Sample Numbering Completed By: Sample Numbering Completed By: 10.00	

Golder Associates PROJECT NO.:	10083001	Golder Associates CHAIN OF CUSTODY	Page of
PROJECT NO.:	SITE NAME:	ANALYSE	S
053-7444-1 BAMPLER(S):	o Recology-	Hay N	EDD required?
(printed) CONTRACT LABORATO 'URN-AROUND TIME:	(signature) RY: BC CASS: Steender	Container Info 10 10 10 10 10 10 10 10 10 10 10 10 10	EDF required? Yes \(\sum \text{No} \)
Sample Lab —	Collection Date Time Matrix Depth	Type/Vol. You PEAR PEAR PEAR PEAR PEAR PEAR PEAR PEAR	Cont. Qty. Remarks
	25/10 BIO WATER ?	3 1 1 1	6
5w-3 -2 5w-4 -3 5w-5 -4 5w-7 -5	1235 WHOR / 1255 - 1305 - 1245 -	1 1	1 NO2-10 1 48 hr how 6 mm
	снкву		
evinquished by Angheture) innquished by Angheture) evinquished by (signature) evinquished by: (signature)	Received by: (signalus 25/16 Received by: (signalus Received by: (signalus 25-10 F	100 6/25/10/32 Dath/Time: 6/25-10 173	Golder Associates Inc.

Chain of Custody and Cooler Receipt Form for 1008803 Page 4 of 4

THE PLEASE WAS		S	AMPLE	RECEIP	TFORM	Rev.	No. 12 (6/24/08	Page]	_Of <u>\</u>	
C LABORATORIES INC.	_										
ubmission#: \UC8302		AATION					SHIPPIN	G CONT	AINER		
SHIPPING INFO ederal Express D UPS D C Lab Field Service Othe	H	and Delive (Specify)_	ry 🗆		lo	e Chest ⊠ Box □		None		cify)	
Refrigerant: Ice,⊠ Blue Ice		None 🗆			Comments						
ustody Seals Ice Chest □		Containers		None-2	Commen	its:					
ll samples received? Yes, Ø No □	А	ll samples o	ontainers	intact? Yo	es Ø^ No □		Descripti	on(s) mate	ch COC?	Yes∠⊡ N	2052
COC Received	Em	ieeivitu: O	98 c	ontainer:	ptpe_T	hermomete	er ID: <u>17-</u>	1	Date/Tin	10 <u>(0-23</u>	5-10
Ø'YES □ NO	Lini	issivity.			1-1-	4.7.	°C		Analyst	الله على Init	w l
у IES 2.10]	Ter	nperature:	۸	11	cic_	10.2				-	
THE RESIDENCE OF THE PARTY OF T						SAMPLEN	UMBERS		T -	T 9	10
SAMPLE CONTAINERS		1	2	3	4	5	6	7	8	1 3	10
OT GENERAL MINERAL/ GENERAL PHYSI	CAL			PT	A-	A					
PT PE UNPRESERVED		13	_A	1-4	1	17					
OT INORGANIC CHEMICAL METALS	_				1						
PT INORGANIC CHEMICAL METALS	_	C			1						
PT CYANIDE		D									
PT NITROGEN FORMS		1								-	
PT TOTAL SULFIDE									-	-	
201. NITRATE / NITRITE PT TOTAL ORGANIC CARBON								-	-	-	
PT TOX								-	-	+	_
PT CHEMICAL OXYGEN DEMAND							-	-	+	_	
PIA PHENOLICS	_			-	+	-	-		+	_	
40ml VOA VIAL TRAVEL BLANK		100		 	, ,	-	1	1) ()	1 1
40ml VOA VIAL	_	AB		1	\ \	 `	1	1			
QT EPA 413.1, 413.2, 418.1	_		-	+	1						
PT ODOR		-									
RADIOLOGICAL		+									
BACTERIOLOGICAL										_	
40 ml VOA VIAL-504											_
QT EPA 508/608/8080 QT EPA 515.1/8150								-		_	
OT EPA 525							-		_	_	
OT EPA 525 TRAVEL BLANK						+	-	+	_	_	
100ml EPA 547		-		-		-	+	+			
100ml EPA 531.1		-	-		_	+		_			
QT EPA 548		-	+			_					
OT EPA 549		-	+		_						
QT EPA 632		-	+								
QT EPA 8015M		1-	1								
OT AMBER	_										
8 OZ. JAR										_	
32 OZ. JAR							_		_	-	
PCB VIAL										_	
PLASTIC BAG							-	-	-	_	
FERROUS IRON						-	-		_		
ENCORÉ											

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1008803-01 COC Number: ---

Project Number: 5781
Sampling Location: --Sampling Point: MW-4
Sampled By: DECR

Receive Date: 06/25/2010 20:50 Sampling Date: 06/24/2010 11:45

Sample Depth: --Sample Matrix: Water
Delivery Work Order:

Global ID: T0600101467 Location ID (FieldPoint): MW-4

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

06/30/2010 14:16 Reported:

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1008803-01	Client Sampl	e Name:	5781, MW-4, 6/24/2	010 11:45:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Methanol		ND	ug/L	100	EPA-8015B	ND		1
2-Chloroacrylonitrile (S	Surrogate)	114	%	60 - 140 (LCL - UCL)	EPA-8015B			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/28/10	06/29/10 12:37	MWB	GC-12	1	BTF2025

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 10	08803-01	Client Sampl	e Name:	5781, MW-4, 6/24/2	010 11:45:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		4.7	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	104	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		101	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	96.9	%	86 - 115 (LCL - UCL)	EPA-8260			1

					QC			
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/28/10	06/28/10 11:44	KEA	MS-V12	1	BTF1896	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1008803-01	Client Sampl	e Name:	5781, MW-4, 6/24/2	010 11:45:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50	Luft	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	86.6	%	70 - 130 (LCL - UCL)	Luft			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/25/10	06/28/10 12:06	jjh	GC-V4	1	BTF1862	

06/30/2010 14:16 Reported:

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	1008803-01	Client Sample Name: 5781, MW-4, 6/24/2010 11:45:00AM							
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	84.3	%	28 - 139 (LCL - UCL)	Luft/TPHd			1	

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/28/10	06/29/10 09:30	MWB	GC-5	0.969	BTF1974	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF2025						
Methanol	BTF2025-BLK1	ND	ug/L	100		
2-Chloroacrylonitrile (Surrogate)	BTF2025-BLK1	107	%	60 - 140	(LCL - UCL)	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

								Control Limits			
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
QC Batch ID: BTF2025											
Methanol	BTF2025-BS1	LCS	1733.0	2000.0	ug/L	86.6		50 - 150			
2-Chloroacrylonitrile (Surrogate)	BTF2025-BS1	LCS	4339.0	4000.0	ug/L	108		60 - 140			

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

									Cont	rol Limits		
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BTF2025	Used	client sample	: N									
Methanol	- MS	1007897-40	ND	1571.0	2000.0	ug/L		78.6		50 - 150		
	MSD	1007897-40	ND	1742.0	2000.0	ug/L	10.3	87.1	30	50 - 150		
2-Chloroacrylonitrile (Surrogate)	MS	1007897-40	ND	4360.0	4000.0	ug/L		109		60 - 140		
	MSD	1007897-40	ND	4226.0	4000.0	ug/L		106		60 - 140		

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1896						
Benzene	BTF1896-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BTF1896-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTF1896-BLK1	ND	ug/L	0.50		
Ethylbenzene	BTF1896-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BTF1896-BLK1	ND	ug/L	0.50		
Toluene	BTF1896-BLK1	ND	ug/L	0.50		
Total Xylenes	BTF1896-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BTF1896-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BTF1896-BLK1	ND	ug/L	10		
Diisopropyl ether	BTF1896-BLK1	ND	ug/L	0.50		
Ethanol	BTF1896-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BTF1896-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BTF1896-BLK1	102	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BTF1896-BLK1	99.8	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTF1896-BLK1	98.8	%	86 - 115	(LCL - UCL)	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

							Control Limits			
		_	-	Spike		Percent		Percent		
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Lab Quals
QC Batch ID: BTF1896										
Benzene	BTF1896-BS1	LCS	25.600	25.000	ug/L	102		70 - 130		
Toluene	BTF1896-BS1	LCS	26.730	25.000	ug/L	107		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BTF1896-BS1	LCS	10.340	10.000	ug/L	103		76 - 114		
Toluene-d8 (Surrogate)	BTF1896-BS1	LCS	9.9900	10.000	ug/L	99.9		88 - 110		
4-Bromofluorobenzene (Surrogate)	BTF1896-BS1	LCS	10.240	10.000	ug/L	102		86 - 115		

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

				-							
					<u> </u>				Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1896	Used	client sample	: N								
Benzene	MS	1008762-01	ND	26.070	25.000	ug/L		104		70 - 130	
	MSD	1008762-01	ND	26.260	25.000	ug/L	0.7	105	20	70 - 130	
Toluene	MS	1008762-01	ND	27.150	25.000	ug/L		109		70 - 130	
	MSD	1008762-01	ND	25.890	25.000	ug/L	4.8	104	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1008762-01	ND	10.240	10.000	ug/L		102		76 - 114	
	MSD	1008762-01	ND	10.260	10.000	ug/L		103		76 - 114	
Toluene-d8 (Surrogate)	MS	1008762-01	ND	9.8100	10.000	ug/L		98.1		88 - 110	
	MSD	1008762-01	ND	9.7200	10.000	ug/L		97.2		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1008762-01	ND	10.190	10.000	ug/L		102		86 - 115	
	MSD	1008762-01	ND	10.210	10.000	ug/L		102		86 - 115	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1862						
Gasoline Range Organics (C4 - C12)	BTF1862-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	BTF1862-BLK1	87.3	%	70 - 130	(LCL - UCL)	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

							Control Limits			
				Spike		Percent	Perce			
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD Recov	ery RPD	Lab Quals	
QC Batch ID: BTF1862										
Gasoline Range Organics (C4 - C12)	BTF1862-BS1	LCS	1048.1	1000.0	ug/L	105	85 - 1	15		

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

			Source Result						Control Limits		
		Source Sample ID			Spike			Percent		Percent Recovery	Lab Quals
Constituent	Туре			Result	Added	Units	RPD	Recovery	RPD		
QC Batch ID: BTF1862	Used	client sample	: N								
Gasoline Range Organics (C4 - C12)	MS	1007897-40	ND	1059.8	1000.0	ug/L		106		70 - 130	
	MSD	1007897-40	ND	1028.8	1000.0	ug/L	3.0	103	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1007897-40	ND	37.584	40.000	ug/L		94.0		70 - 130	
	MSD	1007897-40	ND	37.297	40.000	ug/L		93.2		70 - 130	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1974						
Diesel Range Organics (C12 - C24)	BTF1974-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BTF1974-BLK1	85.6	%	28 - 139	(LCL - UCL)	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

								Control Limits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BTF1974										
Diesel Range Organics (C12 - C24)	BTF1974-BS1	LCS	364.47	500.00	ug/L	72.9		48 - 125		

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

			•	·	•	•	•	•	Cont	rol Limits	•
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1974	Used	client sample	: N								
Diesel Range Organics (C12 - C24)	MS	1007897-40	ND	316.98	500.00	ug/L		63.4		36 - 130	
	MSD	1007897-40	ND	396.84	500.00	ug/L	22.4	79.4	30	36 - 130	
Tetracosane (Surrogate)	MS	1007897-40	ND	14.573	20.000	ug/L		72.9		28 - 139	
	MSD	1007897-40	ND	17.504	20.000	ug/L		87.5		28 - 139	

Reported: 06/30/2010 14:16

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

Practical Quantitation Limit PQL RPD Relative Percent Difference

Date of Report: 06/25/2010

Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

5781 RE:

1008215 BC Work Order: B082502 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 6/14/2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	
Sample Results	
1008215-01 - COMP B	
Solvent Scan (EPA Method 8015)	6
Volatile Organic Analysis (EPA Method 8260)	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
Quality Control Reports	
Solvent Scan (EPA Method 8015)	
Method Blank Analysis	10
Laboratory Control Sample	
Precision and Accuracy	12
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	13
Laboratory Control Sample	
Precision and Accuracy	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	
Laboratory Control Sample	
Precision and Accuracy	18
Total Petroleum Hydrocarbons	
Method Blank Analysis	19
Laboratory Control Sample	20
Precision and Accuracy	
Notes	
Notes and Definitions	22

4100 Atlas C	All results listed in this report are for the exclusive use of the subm	the results in this report apply to the sa
ourt Bakersfield, C/	e of the submitting party.	ipies analyzea in acco
las Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com	mitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detach	iaiyncai report must be
	achment or third party interp	broducea in its entire

Page 3 of 22

4100 Atlas Court	s listed in this report are for the exclusive use of the submittin	e results in this report apply to the sample
Bakersfield, CA	the submitting party. BC Labor	nples analyzed in accordance with the
93308	BC Laborat	dance with
(661)	ories, I	the c
327-4911 FAX	Laboratories, Inc. assumes no responsibility for report	ne chain of custody document. This analytical r
(661) 327-1918	-	nt. This ana
7-1918 www.bclabs.com	alteration, separation, detachment or third party interpret	lytical report must be reproduced in its entirety.

BC Laboratories, Inc.	ConocoPh	nillips Site M	anager:				noco Shelby			_				401				Project N	umber		
		EMITTANCE	-				0110107		-		_									1	
Bakersfield, CA 93308								Attn:	Dee H South	utchir		e 200			Cone	oPhilip	s Requis	ition / Lin	n Number	8	ATE: of
(661) 327-4911 (661) 327-1918 fax	# 100	こんしょ							Ana,												/de or
PLING COMPANY:	Valid Value ID:			СОМОСОРИИ		NUMBE	я										aroaw.	B NO.:			
oness:				SS# 5781 SITE ADDRES		of City	,			-							nunnae	WE 1 195 G	TE MANAGE	91	
050 White Rock Road #110, Rancho Cordova,	CA 95670			1												- 1			10 2341400		
NOJEGT CONTACT (Hardcopy or PDF Report to):				_	-		a Bay, CA									- 1		rayson			
n Wagoner				EDF DELINES	BABLE TO (UP on De	enignes(c						7	HOW NO.		,	3944.7		LA	B USE ON	MLY - O -
1	E-MAIL: wagonen@de	Itaerv.com		Jan Wag	oner (De	lta)							1	916-503	-1275		wagon com	er@della	en	().	-N215
	CONSULTANT PRO												EOIII	COTER	ANALY	ere				,	
Caitlin Morgan		C105697201										P.		COTEL	ALC:	JES					
URNAROUND TIME (CALENDAR DAYS):														T							
14 DAYS 7 DAYS 72 HOURS 48 HOURS	24 HOURS	LESS THAN 24	HOURS	1																	
Day turn around time																					FIELD NOTES:
PECIAL INSTRUCTIONS OR NOTES:	CHECK BOX	IF EDD IS NEEDE	미교	1																	Container/Preservative
ı				2	8260B - BTEX, 8 Oxys																or PID Readings
H2O 8260B BTEX/Oxys - VOAs with blue caps				Ĭ Ĕ	2	1 2	1								1 1						or Laboratory Notes
130 0000 Wathard 1004				효	×	١ž	10			- 1			- 1		1						
H2O 8260B Methanol - VOAs with gray caps				₽.	84	≩	L ===	:					- 1								
Field Point name only required if different from :				- i	ė	₩	配 る		ΙI						1 1						
Sample Identification/Field Point Name*	SAMPLIN DATE	TIME MATRIX	NO. OF CONT.	8015M - TPHg. TPHd	8	BERDE-Methanol	8015 Barales		H				- 1								TEMPERATURE ON RECEIPT C
A	DATE	TIME	1 .	1/2	_	-4-	-			-		\vdash	\dashv	_		+	-	+	_	+	Various Preservative
Comp B	8/9/10 10	30a H2O	10 4	×	X	X			\sqcup							\perp				\perp	Not Field Filtered
		- 1	1	1	ı		1		H												Various Preservative Not Field Filtered
			1	_	_			_	\vdash	\neg			-	\neg		+	_	+	-	+	Various Preservative
\$30°			-					_	\vdash					_		+	-	+		+	Not Field Filtered
		- 1			0	HAK	BY _	0	ST	NB1	MQ	N	. 1							1 1	Various Preservative Not Field Filtered
-					1 7	1	2	X	3		1	į.	3			\top	\neg	\neg	\neg	\top	Various Preservative
	-		+		H A	10/1	1777	3.7	-		. 1. 1.75	Control of the	-	-		+	+	+	-	+	Not Field Filtered
			1	1		_'			S	JB-4	001	h			1 1	1 1					
			T		Tenantini (1	j		-							\Box	$\neg \vdash$	\top		\top	
10			 	-	-	\vdash		-	-	-		-	-	+	\vdash	+	_	-		+	
(a)																					
																	T				
	_		1			_		-	-				-	+	_	+-+	-	-		+-	
				<u> </u>	1																
individual discounting		Received	y (Symilar Lat A	م کرا لا	line											000	1/2	1/2		Time	/12 A
inhouse of Company	,	/Co	2/1	SIG	99											Care	117	110		Tens	//40
Residuaday 6/141	ro	R	ÜR.	~~	لسّ											C	1-1	ц.	vo		1823
Chu. L 6-14	102	115	ah (sakarus	71/	\triangle	\subseteq										1	· W	1.1)	Tirec	2115
					-	_	-	· ·												_	9/19/03 Revision

Laboratories, Inc.
Environmental Testing Laboratory Since 1949

Chain of Custody and Cooler Receipt Form for 1008215 Page 1 of 2

Chain of Custody and Cooler Receipt Form for 1008215 Page 2 of 2

ubmission #: 1008315					Rev.					
SHIPPING INFORM	MATION					SHIPPING	CONTA	AINER		l l
deral Express UPS Ha	and Delive	ry 🗆		lc	e Chest/的 Box □		None Other	□ □ (Speci	fy)	
efrigerant: Ice	None [omments						
ustody Seais ice officer	Containers		None/©	Commer	its:					
I samples received? Yes No D A	II samples o							COC? Ye	Elimber	
4.0	issivity: <u>C</u> nperature:		2	(QY) T		°C		Date/Time		2115
					SAMPLEN	UMBERS 6	7	8	9	10
SAMPLE CONTAINERS	1	2	3	4	5					
T GENERAL MINERAL/ GENERAL PHYSICAL										
T PE UNPRESERVED										
T INORGANIC CHEMICAL METALS										
T INORGANIC CHEMICAL METALS										-
T CYANIDE										
T NITROGEN FORMS										
T TOTAL SCLFIDE										
OZ NITRATE / NITRITE										
T TOTAL ORGANIC CARBON									-	+
PT TOX PT CHEMICAL OXYGEN DEMAND										
					-				-	-
PEA PHENOLICS VRIPTES COLOR FOR VIAL TRAVEL BLANK	B (3)							 	1	1 .,
40ml VOA VIAL	A 16	1	1	1	1	× 1 1		\ 	1	1
QT EPA 413.1, 413.2, 418.1	·			-	-	-			+	_
PT ODOR			-	+					 	_
RADIOLOGICAL		-				-		+		1
BACTERIOLOGICAL			-	-		-		-		
40 ml VOA VIAL-504				+	+	 			1	
OT EPA 508/608/8080		-	+		+		-	1		1
QT EPA 515.1/8150	-		-			+				7
QT EPA 525	_	-	-		-		-			
QT EPA 525 TRAVEL BLANK	-			-	-	-	+	1		
100ml EPA 547	-	+	+		-	1	1			
100ml EPA 534,1		-		+	-					
QT EPA 548	-	-	+	+						
QT EPA 549	1				_	1				
QT EPA 632	+	-	+	_						
OT EPA 8015M	-	+	-	-	-	1				
OT AMBER	1	-			1		1			
8 OZ. JAR	+	+	_	-						
32 OZ. JAR	+		_	_						
SOIL SLEEVE	-	-								_
PCB VIAL	-	-	_							
PLASTIC BAG	_	_								
	-	-								<u> </u>
FERROUS IRON ENCORE						THE RESERVE AND PERSONS ASSESSED.		100		

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1008215-01 COC Number: ---

Project Number: 5781 Sampling Location: ---

Sampling Point: COMP B Sampled By: DECR

Receive Date: 06/14/2010 21:15 **Sampling Date:** 06/09/2010 10:30

Sample Depth: --Sample Matrix: Water
Delivery Work Order:

Global ID:

Location ID (FieldPoint): COMP B

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

BCL Sample ID:	1008215-01	Client Sampl	e Name:	5781, COMP B, 6/9	/2010 10:30:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Methanol		ND	ug/L	100	EPA-8015B	ND		1	
2-Chloroacrylonitrile (S	Surrogate)	92.1	%	60 - 140 (LCL - UCL)	EPA-8015B			1	

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B	06/22/10	06/23/10 12:49	CKD	GC-12	1	BTF1791

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1008215-01	Client Sample	e Name:	5781, COMP B, 6/9	/2010 10:30:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		340	ug/L	2.5	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	ug/L	2.5	EPA-8260	ND	A01	1
1,2-Dichloroethane		ND	ug/L	2.5	EPA-8260	ND	A01	1
Ethylbenzene		490	ug/L	25	EPA-8260	ND	A01	2
Methyl t-butyl ether		17	ug/L	2.5	EPA-8260	ND	A01	1
Toluene		2700	ug/L	50	EPA-8260	ND	A01	3
Total Xylenes		5200	ug/L	50	EPA-8260	ND	A01	2
t-Amyl Methyl ether		ND	ug/L	2.5	EPA-8260	ND	A01	1
t-Butyl alcohol		ND	ug/L	50	EPA-8260	ND	A01	1
Diisopropyl ether		ND	ug/L	2.5	EPA-8260	ND	A01	1
Ethanol		100000	ug/L	1200	EPA-8260	ND	A01	1
Ethyl t-butyl ether		ND	ug/L	2.5	EPA-8260	ND	A01	1
1,2-Dichloroethane-d4 (S	urrogate)	102	%	76 - 114 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (S	urrogate)	103	%	76 - 114 (LCL - UCL)	EPA-8260			2
1,2-Dichloroethane-d4 (S	urrogate)	98.8	%	76 - 114 (LCL - UCL)	EPA-8260			3
Toluene-d8 (Surrogate)		100	%	88 - 110 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		102	%	88 - 110 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		103	%	88 - 110 (LCL - UCL)	EPA-8260			3
4-Bromofluorobenzene (S	Surrogate)	174	%	86 - 115 (LCL - UCL)	EPA-8260		S09	1
4-Bromofluorobenzene (S	Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (S	Surrogate)	100	%	86 - 115 (LCL - UCL)	EPA-8260			3

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	06/16/10	06/18/10 00:45	KEA	MS-V12	5	BTF1018	
2	EPA-8260	06/16/10	06/18/10 16:13	KEA	MS-V12	50	BTF1018	
3	EPA-8260	06/16/10	06/22/10 19:38	KEA	MS-V12	100	BTF1018	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1008215-01	Client Sampl	e Name:	5781, COMP B, 6/9	/2010 10:30:00AM				
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #	
Gasoline Range Orga	nics (C4 - C12)	17000	ug/L	2500	Luft	ND	A01	1	
a,a,a-Trifluorotoluene	(FID Surrogate)	83.5	%	70 - 130 (LCL - UCL)	Luft			1	

			Run			QC		
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft	06/14/10	06/16/10 16:43	jjh	GC-V4	50	BTF0895	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

BCL Sample ID:	1008215-01	Client Sampl	e Name:	5781, COMP B, 6/9	/2010 10:30:00AN	Л			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#	
Diesel Range Organio	cs (C12 - C24)	1200	ug/L	250	Luft/TPHd	ND		1	
Tetracosane (Surroga	te)	84.9	%	28 - 139 (LCL - UCL)	Luft/TPHd		V11	1	

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	Luft/TPHd	06/16/10	06/22/10 20:03	MWB	GC-5	5	BTF1338	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1791						
Methanol	BTF1791-BLK1	ND	ug/L	100		
2-Chloroacrylonitrile (Surrogate)	BTF1791-BLK1	60.9	%	60 - 140	(LCL - UCL)	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

Quality Control Report - Laboratory Control Sample

							Control	Control Limits		
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	Percent RPD Recovery	RPD	Lab Quals	
QC Batch ID: BTF1791										
Methanol	BTF1791-BS1	LCS	2762.0	2000.0	ug/L	138	50 - 150			
2-Chloroacrylonitrile (Surrogate)	BTF1791-BS1	LCS	1551.0	4000.0	ug/L	38.8	60 - 140		V11	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Solvent Scan (EPA Method 8015)

									Control Limits			
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BTF1791	Used	client sample	: N									
Methanol	MS	1007897-33	ND	2291.0	2000.0	ug/L		115		50 - 150		
	MSD	1007897-33	ND	2869.0	2000.0	ug/L	22.4	143	30	50 - 150		
2-Chloroacrylonitrile (Surrogate)	MS	1007897-33	ND	2819.0	4000.0	ug/L		70.5		60 - 140		
	MSD	1007897-33	ND	2038.0	4000.0	ug/L		51.0		60 - 140	V11	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1018						
Benzene	BTF1018-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BTF1018-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTF1018-BLK1	ND	ug/L	0.50		
Ethylbenzene	BTF1018-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BTF1018-BLK1	ND	ug/L	0.50		
Toluene	BTF1018-BLK1	ND	ug/L	0.50		
Total Xylenes	BTF1018-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BTF1018-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BTF1018-BLK1	ND	ug/L	10		
Diisopropyl ether	BTF1018-BLK1	ND	ug/L	0.50		
Ethanol	BTF1018-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BTF1018-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BTF1018-BLK1	101	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BTF1018-BLK1	100	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTF1018-BLK1	94.5	%	86 - 115	(LCL - UCL)	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

							Control Limits			
0	00.0	-	D 14	Spike	11.26	Percent		Percent	DDD	1 -1 -01
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Lab Quals
QC Batch ID: BTF1018										
Benzene	BTF1018-BS1	LCS	26.030	25.000	ug/L	104		70 - 130		
Toluene	BTF1018-BS1	LCS	27.490	25.000	ug/L	110		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BTF1018-BS1	LCS	9.9700	10.000	ug/L	99.7		76 - 114		
Toluene-d8 (Surrogate)	BTF1018-BS1	LCS	9.9400	10.000	ug/L	99.4		88 - 110		
4-Bromofluorobenzene (Surrogate)	BTF1018-BS1	LCS	10.130	10.000	ug/L	101		86 - 115		

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

							·		Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTF1018	Used	client sample	: N								
Benzene	MS	1007897-26	ND	27.370	25.000	ug/L		109		70 - 130	
	MSD	1007897-26	ND	23.790	25.000	ug/L	14.0	95.2	20	70 - 130	
Toluene	MS	1007897-26	ND	28.680	25.000	ug/L		115		70 - 130	
	MSD	1007897-26	ND	25.010	25.000	ug/L	13.7	100	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1007897-26	ND	10.070	10.000	ug/L		101		76 - 114	
	MSD	1007897-26	ND	9.8600	10.000	ug/L		98.6		76 - 114	
Toluene-d8 (Surrogate)	MS	1007897-26	ND	10.150	10.000	ug/L		102		88 - 110	
	MSD	1007897-26	ND	10.120	10.000	ug/L		101		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1007897-26	ND	10.170	10.000	ug/L		102		86 - 115	
	MSD	1007897-26	ND	9.9400	10.000	ug/L		99.4		86 - 115	
	MS MSD MS	1007897-26 1007897-26 1007897-26	ND ND	10.150 10.120 10.170	10.000 10.000 10.000	ug/L ug/L ug/L		102 101 102		88 - 110 88 - 110 86 - 115	_

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991
Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF0895						
Gasoline Range Organics (C4 - C12)	BTF0895-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	BTF0895-BLK1	78.3	%	70 - 130	(LCL - UCL)	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

							Contro		
				Spike		Percent	Percen	•	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD Recove	y RPD	Lab Quals
QC Batch ID: BTF0895									
Gasoline Range Organics (C4 - C12)	BTF0895-BS1	LCS	1021.3	1000.0	ug/L	102	85 - 11	i	
	BTF0895-BS1	LCS	34.730	40.000	ug/L	86.8	70 - 130		_

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Purgeable Aromatics and Total Petroleum Hydrocarbons

									Cont	rol Limits		
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: BTF0895	Used	client sample	: N									
Gasoline Range Organics (C4 - C12)	MS	1005654-95	ND	1068.4	1000.0	ug/L		107		70 - 130		
	MSD	1005654-95	ND	1026.8	1000.0	ug/L	4.0	103	20	70 - 130		
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1005654-95	ND	34.899	40.000	ug/L		87.2		70 - 130		
	MSD	1005654-95	ND	34.732	40.000	ug/L		86.8		70 - 130		

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991
Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTF1338						
Diesel Range Organics (C12 - C24)	BTF1338-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	BTF1338-BLK1	100	%	28 - 139	(LCL - UCL)	

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control Limits			
Constituent	QC Sample ID	Type	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals	
Constituent	QC Sample ID	Type	Resuit	Level	Ullits	Recovery	KFD	Recovery	KFD	Lab Quais	
QC Batch ID: BTF1338											
Diesel Range Organics (C12 - C24)	BTF1338-BS1	LCS	406.28	500.00	ug/L	81.3		48 - 125			

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Total Petroleum Hydrocarbons

		Source Sample ID	Source Result	•		•	•	·	Cont	Control Limits			
Constituent	Туре				Spike			Percent	RPD	Percent Recovery	Lab Quals		
				Result	Added	Units	RPD	Recovery					
QC Batch ID: BTF1338	Used	Used client sample: N											
Diesel Range Organics (C12 - C24)	MS	1005654-99	ND	394.99	500.00	ug/L		79.0		36 - 130			
	MSD	1005654-99	ND	331.52	500.00	ug/L	17.5	66.3	30	36 - 130			
Tetracosane (Surrogate)	MS	1005654-99	ND	20.718	20.000	ug/L		104		28 - 139			
	MSD	1005654-99	ND	18.257	20.000	ug/L		91.3		28 - 139			

Reported: 06/25/2010 14:33

Project: 5781

Project Number: 4513503991 Project Manager: Jan Wagoner

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

PQL's and MDL's are raised due to sample dilution. A01

S09 The surrogate recovery on the sample for this compound was not within the control limits. V11 The Continuing Calibration Verification (CCV) recovery is not within established control limits.

APPENDIX H
City of Oakland Utility Maps

