

James P. Kiernan, P.E. Project Manager

Chevron Environmental Management Company 6001 Bollinger Canyon Road Room C2102 San Ramon, CA 94583 Tel (925) 842-3220 jkiernan@chevron.com

December 21, 2017

RECEIVED

By Alameda County Environmental Health 10:59 am, Jan 12, 2018

Alameda County Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

Re: Unocal No. 5781 (351640)

Semi-Annual Status Report and Low-Threat Closure Review - Fourth Quarter 2017

3535 Pierson Street, Oakland, California

Fuel Leak Case No.: RO0000253 GeoTracker Global ID #T0600101467

I have read and acknowledge the content, recommendations and/or conclusions contained in the attached document or report submitted on my behalf to ACDEH's FTP server and the SWRCB's GeoTracker website.

The information in this report is accurate to the best of my knowledge. This report was prepared by Arcadis, upon whose assistance and advice I have relied.

Sincerely,

James P. Kiernan, P.E.

Project Manager

Attachment: Semi-Annual Status Report and Low-Threat Closure Review – Fourth Quarter 2017 by Arcadis

Arcadis U.S., Inc. 100 Montgomery Street

Suite 300 San Francisco CA 94104 Tel 415-374-2744 Fax 415-374-2745

www.arcadis-us.com

Mr. Keith Nowell Alameda County Health Care Services Agency Department of Environmental Health (ACDEH) 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

ENVIRONMENT

Subject:

Semi-Annual Status Report and Low Threat Closure Review, Fourth Quarter 2017

Dear Mr. Nowell,

On behalf of Chevron Environmental Management Company's (CEMC's) affiliate, Union Oil Company of California (Union Oil), Arcadis has prepared the attached Semi-Annual Status Report and Low Threat Closure Review, Fourth Quarter 2017 for the following facility:

76 Station No.	Case No.	<u>Location</u>
Unocal #5781	RO0000253	3535 Pierson Street
		Oakland, CA

If you have any questions, please do not hesitate to contact me.

Sincerely,

Arcadis U.S., Inc.

Carl 3/mid

Carl Edwards Project Manager

Copies:

Geotracker Database

Mr. James Kiernan, CEMC (electronic)

Dr. Delong Liu, United Brothers Enterprise Inc. (2501 North Main Street, Walnut Creek,

CA 94597)

Mr. Ed Ralston, Phillips 66 (electronic)

Date:

December 21, 2017

Contact:

Carl Edwards

Phone:

415.432.6945

Emai

Carl.Edwards@arcadis.com

Our ref:

GMR35135.1640

Semi-Annual Status Report and Low Threat Closure Review Fourth Quarter 2017 December 21, 2017

Facility No: Unocal #5781	Address: <u>3535 Pierson Street, Oakland, CA</u>
Arcadis Contact Person / Phone No.:	Carl Edwards / 415.432.6945
Arcadis Project No.:	GMR35135.1640
Primary Agency/Regulatory ID No.:	Alameda County LOP (ACDEH) Case # RO0000253: Keith Nowell / San Francisco Bay RWQCB (Region 2) – Case # 01- 1592

WORK CONDUCTED THIS QUARTER [Fourth Quarter 2017]:

- 1. Switched to a second and fourth quarter semi-annual groundwater monitoring and sampling schedule.
- 2. Conducted groundwater monitoring activities on November 10, 2017.
- 3. Prepared the Semi-Annual Status Report and Low Threat Closure Review, Fourth Quarter 2017.

WORK PROPOSED NEXT PERIOD [First and Second Quarter 2018]:

- 1. If required, conduct semi-annual groundwater monitoring activities in second quarter 2018.
- 2. If required, prepare the Semi-Annual Status Report, Second Quarter 2018.

Current Phase of Project:	Monitoring/closure review	
Frequency of Monitoring / Sampling:	Semi-Annual	
Are Phase Separate Hydrocarbons (PSH) Present On-site:	No	
Cumulative PSH Recovered to Date:	None	(gallons)
Approximate Depth to Groundwater:	13.31 to 16.08	(feet below top of casing)
Approximate Groundwater Elevation:	139.30 to 140.17	(feet above mean sea level)

Groundwater Flow Direction	North-Northeast	_
Groundwater Gradient	0.026	(feet per foot)
Current Remediation Techniques:	None	
Permits for Discharge:	N/A	
Summary of Unusual Activity:	N/A	
Agency Directive Requirements:	None	

DISCUSSION

Gettler-Ryan, Inc. (G-R) conducted groundwater monitoring and sampling activities on November 10, 2017. Field data sheets and general procedures are included as Attachment A. Seven (7) monitoring wells (MW-A and MW-4 through MW-9) were gauged, purged, and sampled by G-R representatives.

Groundwater samples were submitted to BC Laboratories, Inc. of Bakersfield, California (BC Labs) under standard chain-of-custody protocols. Gauging and analytical data obtained by G-R for this event are summarized in Table 1. Historical gauging and analytical data for the site are summarized in Table 2, and included as Attachment B. The site location map and site plan are presented as Figures 1 and 2, respectively; the groundwater elevation contour map for the site on November 10, 2017 is presented as Figure 3. Isoconcentration maps for total petroleum hydrocarbons as gasoline (TPH-g) and total petroleum hydrocarbons as diesel (TPH-d) are presented on Figures 4 and 5, respectively. Concentration maps for benzene, methyl tertiary butyl ether (MTBE), and tertiary butyl alcohol (TBA) are presented on Figures 6 through 8, respectively. A historical groundwater flow direction rose diagram is presented on Figure 9. A copy of the laboratory analytical report and chain-of-custody documentation is included as Attachment C.

The estimated groundwater flow direction was to the north-northeast with a calculated gradient of 0.026 (feet/foot). This flow direction is consistent with previous monitoring events where the flow direction is often in a northeasterly direction. Residual dissolved petroleum hydrocarbons are primarily limited to onsite monitoring well MW-5, and overall are declining. Analytical results indicated that TPH-d (68 micrograms per liter [μ g/L] following silica gel cleanup), TPH-g (5,400 μ g/L), ethylbenzene (14 μ g/L), total xylenes (56 μ g/L), and MTBE (3.7 μ g/L) were detected in the groundwater sample collected from MW-5.

Only TPH-d (51 μ g/L in MW-A) and low concentrations of MTBE (MW-4 [1.1 μ g/L], MW-8 [2.2 μ g/L], and MW-9 [0.54 μ g/L]) were detected in the remaining site wells. The detected concentrations were generally within the historical ranges in the wells. No other constituents of concern (COCs) were detected above laboratory reporting limits in any of the wells during this sampling event.

LOW THREAT CLOSURE POLICY REVIEW

ACDEH directed Arcadis to evaluate the site against the State Water Resources Control Board (SWRCB) Low Threat Closure Policy (LTCP; SWRCB 2012a) during phone correspondence on October 3, 2017, Follow-up correspondence confirming this review is included as Attachment D. The review is presented below.

GENERAL CRITERIA

Criterion A - The unauthorized release is located within the service area of a public water system.

Drinking water is supplied to the area by the East Bay Municipal Utility District (EBMUD; AECOM 2015b).

Criterion B - The unauthorized release consists only of petroleum.

The first identified soil impacts occurred as a result of a release from the first-generation 280-gallon waste-oil underground storage tank (UST; Delta 2008). Additional soil and groundwater impacts occurred as a result of unauthorized release(s) of petroleum from the first-generation gasoline USTs (Delta 2008). Only trace concentrations of select volatile organic compounds (VOCs) were detected in a few of the historical soil samples. No other non-hydrocarbon releases have been documented at the site.

Criterion C - The unauthorized ("primary") release from the UST system has been stopped.

The first-generation waste-oil and gasoline USTs were removed and replaced in 1989 (Delta 2008).

Criterion D - Free product has been removed to the maximum extent practicable.

Site monitoring wells have been gauged for free product since December 1990. The only observation of free product occurred in the fourth quarter 2012. Approximately 0.39 feet of free product was detected in MW-5 in October 2012. Follow-up free product monitoring events were conducted in November and December 2012, and none was detected. No free product has since been observed in any site monitoring wells.

Criterion E - A conceptual site model that addresses the nature, extent, and mobility of the release has been developed.

The most recent CSM for the site was submitted by AECOM on December 16, 2015 (AECOM 2015b).

Criterion F - Secondary source has been removed to the extent practicable.

Secondary source removal was achieved by over-excavation in February 1990, following removal of the first-generation gasoline and waste-oil USTs in December 1989. A visual inspection of the gasoline USTs following removal indicated no holes or cracks were present (Delta 2010). TPH-g and benzene were detected in a few of the soil samples collected from the floor and sidewalls of the gasoline UST pit; however, the concentrations were low and did not warrant further excavation. TPH-g detections ranged from 3.5 to 46 milligrams per kilogram (mg/kg) and the benzene detections were 0.1 and 0.65 mg/kg (Delta 2010).

An approximate 1.25-square-inch hole was observed during removal of the first-generation waste-oil UST (Delta 2010). Elevated concentrations of TPH-d (8,300 mg/kg) and total oil and grease (TOG; 48,000 mg/kg) were detected in a soil sample (WO1[1989]) collected beneath the waste-oil UST at approximately 6 feet below ground surface (bgs; Figure 10; Delta 2010). The waste-oil UST pit was subsequently over-excavated both laterally and deeper (16 feet bgs) and significantly lower concentrations of TPH-d (74 mg/kg) and TOG (910 mg/kg) were detected in a sample (WO1[16]) collected from the floor of the excavation. The lateral extent of excavation was limited by the presence of subsurface sewer and gas lines to the south and west, and the station building to the north (Delta 2010). Soil sampling locations and the approximate excavation extents are shown on Figure 10.

During removal of the second-generation waste-oil UST in 2008, one soil sample (WO1[2008]) was collected from the base of the excavation (9 feet bgs) along with three sidewall samples at 6.5 or 7 feet bgs (WO2 through WO4; Figure 10; Delta 2010). The samples did not contain detectable concentrations of petroleum hydrocarbons (including TPH-d and TOG), VOCs, semi-VOCs, or polychlorinated biphenyls (PCBs).

Based on the above information and the general declining concentrations in groundwater, secondary source material has been removed to the extent practicable.

Criterion G - Soil and groundwater has been tested for MTBE and results reported in accordance with Health and Safety Code section 25296.15.

Soil samples were collected and tested for MTBE beginning in 2003. Post-2003 soil assessment activities have included soil sampling during the 2008 waste oil UST removal, the installation of monitoring wells MW-4 through MW-9, and the advancement of soil borings SWC-2, SWD-2, SB-6 through SB-8 and SB-10 through SB-19 (Delta 2010; AECOM 2015a; Arcadis 2017). Groundwater samples collected between

February 2002 and December 2017 have also been analyzed for MTBE (Arcadis 2017). Soil and groundwater analytical results were routinely summarized in reports and uploaded to the SWRCB's GeoTracker website.

Criterion H - Nuisance as defined by Water Code section 13050 does not exist at the site.

Nuisance does not exist at the site. Site conditions and the treatment and disposal of site wastes are not injurious to health, indecent or offensive to the senses, do not obstruct free use of property or interfere with the comfortable enjoyment of life or property. Site conditions and the treatment and disposal of site wastes do not affect an entire community or neighborhood or any considerable number of persons. Site impacts are restricted to the subsurface and are present in a limited area that does not adversely affect the community at large.

Media-Specific Criteria

The following sections outline the LTCP media-specific criteria at the site.

The LTCP states that "the contaminant plume that exceeds [water quality objectives] WQOs must be stable or decreasing in areal extent, and meet all of the additional characteristics of one of the five classes of sites." The following section summarizes the plume stability and additional groundwater-specific criteria.

Plume Stability

According to the SWRCB *Technical Justification for Groundwater Media-Specific Criteria* (SWRCB 2012b), plume stability can be demonstrated in one of two ways: 1) "routinely observed non-detect values for groundwater parameters in down-gradient wells" or 2) "stable or decreasing concentration levels in down-gradient wells." Based on historical groundwater flow, downgradient wells include MW-A, MW-4, MW-5, MW-8 and MW-9. Petroleum hydrocarbons generally have not been detected in groundwater samples collected from MW-A, MW-4, MW-8 and MW-9, with the exception of periodic low concentrations of MTBE.

Groundwater samples collected from monitoring well MW-5 have routinely contained TPH-g and TPH-d at concentrations above the San Francisco Bay Regional Water Quality Control Board Tier 1 Environmental Screening Levels (ESLs) of 100 µg/L. The current remaining concentrations are significantly below the historical maximums. In order to evaluate stable or decreasing TPH-g and TPH-d trends at the site, Arcadis performed linear regression analyses using available historical groundwater analytical data. Groundwater analytical data are available from MW-5 since 2010 when it was installed. Since remediation activities consisted of excavations prior to 2010, the monitoring data represents natural attenuation conditions at the site and were considered for the linear regression analysis.

Linear regression analyses using natural log normalized concentration data were conducted to evaluate trend direction and to estimate attenuation rates for the locations with significant decreasing concentration trends (USEPA 2002). The p-value of the correlation provides a measure of the significance of the slope, or the correlation between the x and y variables. Correlations were accepted as significant at the 90 percent confidence level, indicated by a p-value of 0.10 or less. The trend direction was defined as decreasing if the slope of the trend line was negative, and increasing if the slope of the trend line was positive. The R² value is a measure of how well the linear regression fits the site data; R² values closer to zero indicate weak model fits, while R² values closer to 1 indicate stronger model fits. Results with R² values less than 0.1, indicating substantial variability in the data, were defined as having no apparent trend. Where non-detect results were included in linear regression analyses, the reporting limit was substituted. The linear regression analyses were conducted in Microsoft® Excel following USEPA (2002, 2009) guidance.

Results of the linear regression analysis are summarized in Attachment E. Statistically significant decreasing trends were observed for TPH-g and TPH-d in monitoring well MW-5, indicating the hydrocarbon plume is decreasing in aerial extent.

Additional Groundwater-Specific Criteria

As described in the LTCP, a site can meet the groundwater media-specific criteria through one of five main classes. Site conditions meet the characteristics of groundwater-specific criteria for *Class 1* as described in detail below:

Class 1, Criterion A: The contaminant plume that exceeds water quality objectives is less than 100 feet in length.

For the determination of the classification of groundwater impacts, the length of the plume exceeding WQOs for each COC was estimated from the most recent isoconcentration maps. Plume lengths were calculated from the suspected source area (most upgradient source) to the further downgradient edge of the plume exceeding their respective WQO.

• The TPH-g and TPH-d plume exceeding 100 μ g/L is limited to the area of on-site well MW-5 and is less than 100 feet in length (Figures 4 and 5).

Class 1, Criterion B: There is no free-product.

As discussed above, free product has not been observed in site monitoring wells with the exception of one event in October 2012.

Class 1, Criterion C: The nearest existing water supply well or surface water body is greater than 250 feet from the defined plume boundary.

AECOM's CSM indicated the closest surface water bodies are Damon Slough, located 775 feet south of the site, and Lion Creek, located 525 feet southeast of the site (AECOM 2015b).

A file search of both the California Department of Water Resources (DWR) well database in 2013 and the Alameda County Public Works Agency (ACPWA) database in February 2014 identified four irrigation wells located 2,200 feet northeast of the site as the nearest existing water supply wells (AECOM 2015b). No other wells (domestic or municipal) were identified within a 1-mile radius of the site.

Petroleum Vapor Intrusion to Indoor Air

As described in the LTCP, satisfaction of the media-specific criteria for petroleum vapor intrusion to indoor air is not required at active commercial petroleum fueling facilities where there are no site-specific characteristics that would pose an unacceptable health risk. The site is an active fueling facility with no unacceptable risk characteristics, and is therefore subject to the stated exemption to the media-specific criteria for petroleum vapor intrusion to indoor air.

Direct Contact and Outdoor Air Exposure

As described in the LTCP, sites will meet the Media-Specific Criteria for direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air if one of the following three criteria are met:

- 1. The maximum concentrations of COCs in soil are less than or equal to the criteria listed in Table 1 of the LTCP.
- 2. A site-specific risk assessment shows that COCs present in soil will not adversely affect human health.
- 3. Exposure to COCs is mitigated through engineering or institutional controls.

This site meets the first criteria listed above for commercial/industrial land use as summarized below:

Comparison of maximum concentrations of benzene, ethylbenzene, and naphthalene in remaining soil against the

No Significant Risk Values

		Commercia	al/Industrial		Utility \	Worker
Chemical	0 to 5 fe mg/l		Volatilization air (5 to 10 t mg/k	feet bgs)	0 to 10 f mg	
	LTCP Table 1	Site Maximum	LTCP Table 1	Site Maximum	LTCP Table 1	Site Maximum
Benzene	8.2	<0.010	12	2.3	14	2.3
Ethylbenzene	89	<0.010	134	7.3	314	7.3
Naphthalene	45	<0.005	45	<0.005	219	<0.005
PAHs	0.68	ND	NA	NA	4.5	ND

Notes:

NA = not applicable

mg/kg = milligrams per kilogram

PAH = polycyclic aromatic hydrocarbons

ND = not detected; reporting limits vary

As shown in the table above, a review of historical soil data collected from 0 to 10 feet bgs shows site soil conditions meet the media-specific criteria for direct contact with contaminated soil or inhalation of contaminants volatized to outdoor air under a commercial/industrial land use scenario. The concentrations also meet the criteria under the more conservative residential land use scenario. Soil sample and boring locations are shown on Figure 10.

CONCLUSIONS AND RECOMMENDATIONS

Based on the site conditions and available historical data and reports, the site meets the low-threat closure criteria. Arcadis respectfully requests that the ACDEH grant low-threat closure because site conditions meet the general and media-specific criteria, and therefore, the site poses a low threat to human health, safety, and the environment, and satisfies the case closure requirements of Health and Safety Code Section 25296.10. Analytical data presented support a conclusion that residual concentrations of COCs in soil and groundwater at the site are not expected to pose a significant threat to human health or the environment.

LIMITATIONS

This report was prepared in accordance with the scope of work outlined in Arcadis' contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of Chevron Environmental Management Company's affiliate, Union Oil Company of California ("Union Oil"), for the express purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Arcadis. To the extent that this report is based on information provided to Arcadis by third parties, Arcadis may have made efforts to verify this third party information, but Arcadis cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied are made by Arcadis.

Nasrin Erdelyi, P.G. OF CALIFORNIA December 21, 2017

Staff Geologist

Date: December 21, 2017

Carl Edwards
Project Manager

ATTACHMENTS:

Table 1	Current Groundwater Gauging and Analytical Results
Table 2	Historical Groundwater Gauging and Analytical Results, Fourth Quarter 1990 to Current
Figure 1	Site Location Map
Figure 2	Site Plan
Figure 3	Groundwater Elevation Contour Map, November 10, 2017
Figure 4	TPH-g Isoconcentration Map, November 10, 2017
Figure 5	TPH-d Concentration Map, November 10, 2017
Figure 6	Benzene Concentration Map, November 10, 2017
Figure 7	MTBE Concentration Map, November 10, 2017
Figure 8	TBA Concentration Map, November 10, 2017
Figure 9	Groundwater Flow Direction Rose Diagram
Figure 10	Site Plan Showing Boring Locations
Attachment A	Field Data Sheets and General Procedures
Attachment B	Historical Groundwater Analytical Data
Attachment C	Laboratory Report and Chain-of-Custody Documentation
Attachment D	Arcadis Correspondence
Attachment E	Linear Regressions

REFERENCES:

AECOM. 2015a. Site Assessment Report, Unocal No. 5781 (351640), 3535 Pierson Street, Oakland, California. July 13.

AECOM. 2015b. Site Conceptual Model, Unocal No. 5781 (351640), 3535 Pierson Street, Oakland California. December 16.

Delta Consultants, Inc. (Delta). 2008. Site Conceptual Model, 76 Service Station No. 5781, 3535 Pierson Street, Oakland, California. November 20.

Delta. 2010. Assessment Report, Site Conceptual Model Update, and Additional Assessment Workplan, 76 Station No. 5781, 3535 Pierson Street, Oakland, CA. July 30.

State Water Resources Control Board (SWRCB). 2012a. Low-Threat Underground Storage Tank Case Closure Policy. Adopted May 1, 2012, Effective August 17, 2012.

(http://www.swrcb.ca.gov/ust/lt_cls_plcy.shtml)

SWRCB. 2012b. Technical Justification for Groundwater Media Specific Criteria. April 24.

United States Environmental Protection Agency (USEPA). 2002. Calculation and Use of First-Order Rate Constants for Monitored Natural Attenuation Studies. EPA/540/S-02/500.

USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Office of Resource Conservation and Recovery. Unified Guidance. EPA 530-R-09-007.

TABLES

Table 1. Current Groundwater Gauging and Analytical Results

Union Oil Company of California Unocal No. 5781 (351640)

3535 Pierson Street, Oakland, California

	Sample	TOC	DTW	GW Elev	TPH-d	TPH-d (w/SGC)	TPH-q	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	EDB	EDC	DIPE	ETBE	TAME	Ethanol	Comment
Well ID	Date	(ft amsl)	(ft bTOC)	(ft amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
MW-A	11/10/2017	154.79	15.19	139.60	51		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	A52
MW-4	11/10/2017	153.48	13.31	140.17	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	1.1	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
MW-5	11/10/2017	153.66	14.18	139.48	620	68	5,400	< 0.50	< 0.50	14	56	3.7	<10	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	Z1, A52
MW-6	11/10/2017	154.62	15.13	139.49	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
MW-7	11/10/2017	155.38	16.08	139.30	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
MW-8	11/10/2017	153.71	13.75	139.96	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	2.2	<10	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
MW-9	11/10/2017	153.37	13.65	139.72	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	0.54	<10	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
QA	11/10/2017						<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	

Notes:

MW = Groundwater monitoring well

TOC = Top of casing

ft amsl = Feet above mean sea level

DTW = Depth to groundwater

ft bTOC = Feet below top of casing

-- = Not sampled/not measured

ft = Feet

Samples analyzed by EPA Method 8260B:

GW Elev = Groundwater elevation

μg/L = Micrograms per liter

Bold = Value exceeds laboratory reporting limits

<0.50 = Not detected at or above the laboratory detection limit

TPH-g = Total petroleum hydrocarbons, gasoline range by LUFT GC/MS according to Environmental Protection Agency (EPA) Method 8015

TPH-d = Total petroleum hydrocarbons, diesel range by LUFT GC/MS according to EPA Method 8015B

TPH-d (w/SGC) = Total petroleum hydrocarbons, diesel with Silica Gel Cleanup, by LUFT method

Benzene, toluene, ethylbenzene and total xylenes (collectively BTEX)

MTBE = Methyl tert-butyl ether

TBA = Tert-butanol or tertiary butyl alcohol

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = Tert-amyl methyl ether

A52 = Chromatogram not typical of diesel

Z1 = 10uL of antifoamer solution added to the sample VOA.

Data QA/QC by: IC 11.24.2017

	Sample	тос	DTW	PSH thickness	PSH recovered	GW Elev	TPH-d	TPH-d (w/SGC)	TPH-g	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	TBA	EDB	EDC	DIPE	ETBE	TAME	Ethanol	Comments
Well ID	Date	(ft amsl)	(ft bTOC)	(ft)	(gal)	(ft amsl)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
MW-A	12/18/1990	-	-	-	-		73		ND	ND	ND	ND	ND	-		-	-	-				
	5/3/1991				-		ND		ND	ND	ND	ND	ND									
	8/7/1991				-		ND		ND	ND	ND	ND	ND	-		-		-				
	11/8/1991						ND		ND	ND	ND	ND	ND			-		-				
	2/6/1992	151.80	19.88	0	0	131.92	ND		ND	ND	ND	ND	ND									
	8/4/1992	151.80	18.95	0	0	132.85	ND		ND	ND	ND	ND	0.51			-						
	2/10/1993	151.80	17.71	0	0	134.09	ND		ND	ND	ND	ND	ND									
	2/10/1994	151.80	15.25	0	0	136.55	ND		ND	ND	0.52	ND	0.92	-		-		-				
	2/9/1995	151.80	15.68	0	0	136.12	ND		ND	ND	ND	ND	ND			-		-				
	2/6/1996	151.80	12.52	0	0	139.28	120		ND	ND	ND	ND	2.1		-	-		-				
	2/5/1997	151.80	13.01	0	0	138.79	61		ND	ND	ND	ND	ND	ND				-				
	2/2/1998	151.80	11.91	0	0	139.89	ND		ND	ND	ND	ND	ND	ND		-						
	2/22/1999	151.80	11.24	0	0	140.56	ND		ND	ND	ND	ND	ND	ND		-		-				
	2/26/2000	151.80	12.16	0	0	139.64	ND		ND	ND	1.01	ND	ND	ND		-						
	3/7/2001	151.80	11.91	0	0	139.89	131		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
	2/22/2002	151.80	14.08	0	0	137.72	<50		<50	<0.50	<0.50	<0.50	<0.50	<0.50		-		-				
	2/22/2003	151.80	14.41	0	0	137.39	93		<50	<0.50	<0.50	<0.50	<0.50	<2.0	<100	<2.0	<0.50	<2.0	<2.0	<2.0	<500	
	2/3/2004	151.80	14.32	0	0	137.48	60		<50	<0.50	<0.50	<0.50	<0.50	<2.0	<5.0	<0.50	<0.50	<0.50	<0.50	<0.50	<50	
	2/18/2005	151.80	14.21	0	0	137.59	<50		<50	<0.50	<0.50	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/29/2006	151.80	12.72	0	0	139.08	<200		<50	<0.30	<0.30	<0.30	<0.60	0.54	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/28/2007	151.80	13.98	0	0	137.82	92		<50	<0.30	<0.30	<0.30	<0.60	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/22/2008	151.80	12.68	0	0	139.12	<50		<50	<0.30	<0.30	<0.30	<0.60	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/27/2009	151.80	14.35	0	0	137.45 132.25	53		<50	<0.30	<0.30	<0.30	<0.60	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/23/2010	151.80	19.55	0	0	136.94	<58 <50		<50	<0.50	<0.50	<0.50	 <1.0			<0.50						
	6/16/2010 9/29/2010	154.79 154.79	17.85 15.50	0	0	139.29	<1200		<50	<0.50	<0.50	<0.50	<1.0	<0.50 0.63	<10 <10	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<250 <250	
	12/21/2010	154.79	14.43	0	0	140.36	<1200 <50		<50	<0.50	<0.50	<0.50	<1.0	0.65	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/10/2011	154.79	17.70	0	0	137.09	<50		<50	<0.50	<0.50	<0.50	<1.0	0.56	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	06/07/2011	154.79	13.92	0	0	140.87	<40		<50	<0.50	<0.50	<0.50	<1.0	0.57	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	08/18/2011	154.79	18.83	0	0	135.96	<40		<50	<0.50	<0.50	<0.50	<1.0	0.61	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/04/2011	154.79	14.67	0	0	140.12	<40		<50	<0.50	<0.50	<0.50	<1.0	0.72	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	01/24/2012	154.79	16.75	0	0	138.04	<40		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	04/06/2012	154.79	17.14	0	0	137.65	<40		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	07/02/2012	154.79	14.79	0	0	140.00	<40		<50	<0.50	<0.50	<0.50	<1.0	0.56	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/4/2012	154.79	17.52	0	0	137.27	<50		<50	<0.50	<0.50	<0.50	<1.0	0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	1/23/2013	154.79	15.08	0	0	139.71	<50		<50	<0.50	<0.50	<0.50	<1.0	0.55	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	4/22/2013	154.79	15.60	0	0	139.19	<50	_	<50	<0.50	<0.50	<0.50	<1.0	0.59	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	7/31/2013	154.79	16.42	0	0	138.37	<50	_	<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/17/2013	154.79	16.57	0	0	138.22	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	2/24/2014	154.79	17.33	0	0	137.46	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	4/17/2014	154.79	16.65	0	0	138.14	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	7/18/2014	154.79	18.02	0	0	136.77			<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/21/2014	154.79	18.41	0	0	136.38	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	1/20/2015	154.79	17.95	0	0	136.84	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	pre-purç
	1/20/2015	154.79	-				<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	<0.50	<250	post-pur
	6/3/2015	154.79	18.70	0	0	136.09	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	9/7/2015	154.79	18.18	0	0	136.61	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	<0.50	<250	
	12/22/2015	154.79	18.50	0	0	136.29	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	3/15/2016	154.79	18.27	0	0	136.52	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	6/22/2016	154.79	15.48	0	0	139.31	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	<0.50	<250	
	8/25/2016	154.79	17.30	0	0	137.49	<50		<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	<0.50	<250	
	11/23/2016	154.79	18.09	0	0	136.70	<50		<50	< 0.50	<0.50	< 0.50	<1.0	<0.50	47	<0.50	<0.50	< 0.50	< 0.50	<0.50	<250	
	2/10/2017	154.79	15.98	0	0	138.81	<50		<50	< 0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	<0.50	<250	
	8/1/2017	154.79	13.41	0	0	141.38	<50		<50	< 0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	< 0.50	<250	S1

	Sample	тос	DTW	PSH thickness	PSH recovered	GW Elev	TPH-d	TPH-d (w/SGC)	TPH-g	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	ТВА	EDB	EDC	DIPE	ETBE	TAME	Ethanol	Comments
	11/10/2017	154.79	15.19	0	0	139.60	51		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	A52
/IW-4	6/16/2010	153.48	11.13	0	0	142.35	<50		58	<0.50	9.7	1.3	16	5.4	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	9/29/2010	153.48	12.62	0	0	140.86	<50		<50	< 0.50	<0.50	< 0.50	<1.0	7.3	<10	<0.50	<0.50	< 0.50	< 0.50	<0.50	<250	
	12/21/2010	153.48	11.17	0	0	142.31	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	< 0.50	<0.50	<250	
	3/10/2011	153.48	10.57	0	0	142.91	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	2.2	<10	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	06/07/2011	153.48	10.94	0	0	142.54	<40		<50	< 0.50	<0.50	<0.50	<1.0	1.6	<10	<0.50	<0.50	< 0.50	<0.50	< 0.50	<250	
	08/18/2011	153.48	12.07	0	0	141.41	<40		<50	<0.50	<0.50	<0.50	<1.0	4	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/04/2011	153.48	12.70	0	0	140.78	<40		<50	<0.50	<0.50	<0.50	<1.0	3.8	<10	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	01/24/2012	153.48	12.40	0	0	141.08	<40		<50	<0.50	<0.50	<0.50	<1.0	1.5	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	04/06/2012	153.48	11.10	0	0	142.38	<40		390	<0.50	3.8	11	150	2.2	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	07/02/2012	153.48	12.14	0	0	141.34	<40	-	<50	<0.50	<0.50	<0.50	<1.0	2.4	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/4/2012	153.48	13.43	0	0	140.05	<50		<50	<0.50	<0.50	<0.50	<1.0	1.3	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	1/23/2013	153.48	11.64	0	0	141.84	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	4/22/2013	153.48	12.22	0	0	141.26	<50		<50	<0.50	<0.50	<0.50	<1.0	2.5	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	7/31/2013 10/17/2013	153.48 153.48	13.24 13.85	0	0	140.24 139.63	<50 <50		<50 <50	<0.50 <0.50	<0.50	<0.50	<1.0 <1.0	0.95 <0.50	<10 <10	<0.50	<0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<250 <250	
			13.85	0	0		<50 <50		<50 <50	<0.50	<0.50 <0.50	<0.50	<1.0 <1.0	<0.50	<10 <10	<0.50	<0.50	<0.50	<0.50	<0.50 <0.50	<250 <250	
	2/24/2014 4/17/2014	153.48 153.48	11.96	0	0	140.42 141.52	<50 <50		<50 <50	<0.50	<0.50	<0.50 <0.50	<1.0	<0.50	<10	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50	<250	
	7/18/2014	153.48	12.90	0	0	141.52	<50 <50		<50 <50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/21/2014	153.48	13.68	0	0	139.80	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	1/20/2015	153.48	11.98	0	0	141.50	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	pre-purg
	1/20/2015	153.48					<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	post-purg
	6/3/2015	153.48	12.42	0	0	141.06	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	poor parg
	9/7/2015	153.48	13.18	0	0	140.30	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	12/22/2015	153.48	12.38	0	0	141.10	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/15/2016	153.48	10.71	0	0	142.77	<50		<50	< 0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	6/22/2016	153.48	12.05	0	0	141.43	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	8/25/2016	153.48	13.08	0	0	140.40	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	11/23/2016	153.48	12.43	0	0	141.05	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	2/10/2017	153.48	9.80	0	0	143.68	<50		<50	< 0.50	<0.50	< 0.50	<1.0	0.93	<10	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	8/1/2017	153.48	12.33	0	0	141.15	<50		<50	<0.50	<0.50	< 0.50	<1.0	1.7	<10	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	S1
	11/10/2017	153.48	13.31	0	0	140.17	<50		<50	<0.50	<0.50	<0.50	<1.0	1.1	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
/IW-5	6/16/2010	153.66	11.95	0	0	141.71	3,000		29,000	580	6,800	850	7,200	<50	<1000	<50	<50	<50	<50	<50	<25000	
	9/29/2010	153.66	13.67	0	0	139.99	64,000		29,000	220	4,100	2,500	23,000	52	<1000	<50	<50	<50	<50	<50	<25000	
	12/21/2010	153.66	11.17	0	0	142.49	11,000		50,000	81	4,800	2,200	22,000	<50	<1000	<50	<50	<50	<50	<50	<25000	
	3/10/2011	153.66	11.35	0	0	142.31	4,900		48,000	69	3,600	1,700	20,000	<50	<1000	<50	<50	<50	<50	<50	<25000	
	06/07/2011	153.66	11.45	0	0	142.21	3,700		40,000	32	2,300	1,500	16,000	24	150	<0.50	<0.50	<0.50	< 0.50	< 0.50	330	
	08/18/2011	153.66	12.30	0	0	141.36	5,400		30,000	29	1,000	980	7,200	56	44	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	10/04/2011	153.66	13.72	0	0	139.94	20,000		42,000	21	2,400	2,400	20,000	42	<250	<12	<12	<12	<12	<12	<6,200	
	01/24/2012	153.66	12.20	0	0	141.46	46,000		71,000	<25	1,100	1,400	10,000	<25	<500	<25	<25	<25	<25	<25	<12,000	
	04/06/2012	153.66	11.88	0	0	141.78	21,000		58,000	9.9	880	660	9,800	12	<120	<6.2	<6.2	<6.2	<6.2	<6.2	<3,100	
	07/02/2012	153.66	12.75	0	0	140.91	30,000		53,000	89	590	1,000	12,000	26 le Collected -	<500 Free Product	<25	<25	<25	<25	<25	<12,000	
	10/4/2012	153.66	16.03	0.39	-	137.34	00.000	_	54.000	.05	400	4.400								-		
	1/23/2013	153.66	12.02	0	0	141.64	22,000		54,000	<25	160	1,100	13,000	<25	<500	<25	<25	<25	<25	<25	<12,000	
	4/22/2013	153.66	12.37	0	0	141.29 138.04	7,600 11,000	-	39,000 35,000	0.7 1	65 59	330 470	4,500 3,500	2.9	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	7/31/2013	153.66 153.66	15.62	0	0	137.25	<50	-	86,000	<10	59 66	770	9,300	9.8	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/17/2013 2/24/2014	153.66	16.41 15.27	0	0	137.25	1,700		3,900	<0.50	4.5	240	1,800	<10 1.7	<200 <10	<10 <0.50	<10 <0.50	<10 <0.50	<10 <0.50	<10 <0.50	<5,000 <250	
	4/17/2014	153.66	15.27	0	0	141.64	960		27,000	<0.50	2.5	160	1,100	1.7	310	<0.50	<0.50 <0.50	<0.50	<0.50	<0.50	<250 <250	
	7/18/2014	153.66	15.28	0	0	138.38	2,100	_	6,600	<0.50	0.97	84	330	3.6	<10	<0.50	<0.50 <0.50	<0.50	<0.50	<0.50 <0.50	<250 <250	
		100.00	10.20	U	U																	
		153.66	17.03	0	0	136 63	3 000		27 000	<0.50	40	370	2 900	77	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/21/2014	153.66 153.66	17.03 12.24	0	0	136.63 141.42	3,000 880		27,000 9,100	<0.50 <0.50	40 0.65	370 85	2,900 400	7.7 2.2	<10 <10	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<250 <250	pre-purge

-				PSH	PSH			TPH-d				Ethyl-	Total									
	Sample	TOC	DTW		recovered	GW Elev	TPH-d	(w/SGC)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	EDB	EDC	DIPE	ETBE	TAME	Ethanol	Comments
	6/3/2015	153.66	14.70	0	0	138.96	760		5,100	< 0.50	<0.50	39	120	<0.50	<10	< 0.50	< 0.50	<0.50	<0.50	< 0.50	<250	
	9/7/2015	153.66	16.63	0	0	137.03	3,800		4,100	<5.0	<5.0	130	540	<5.0	<100	<5.0	<5.0	<5.0	<5.0	<5.0	<2,500	
	12/22/2015	153.66	11.82	0	0	141.84	1,700		5,600	16	63	53	320	<5.0	<100	<5.0	<5.0	<5.0	<5.0	<5.0	<2,500	
	3/15/2016	153.66	11.54	0	0	142.12	1,300		2,200	2.8	1	13	9.4	0.7	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	6/22/2016	153.66	12.35	0	0	141.31			1,600	0.55	<0.50	8.6	2.3	3.3	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	8/25/2016	153.66	15.18	0	0	138.48	880		2,600	<0.50	0.66	6.6	14	4.4	180	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	11/23/2016	153.66	12.31	0	0	141.35	4,300	-	10,000	<0.50	0.99	89	260	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	2/10/2017	153.66	10.93	0	0	142.73	690		2,100	<0.50	<0.50	9.1	12	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	8/1/2017	153.66	12.73	0	0	140.93	450	310	1,600	<0.50	0.70	8.6	19	1.9	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	11/10/2017	153.66	14.18	0	0	139.48	620	68	5,400	<0.50	<0.50	14	56	3.7	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	Z1, A52
MW-6	12/21/2010	154.62	12.10	0	0	142.52	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
11111-0	3/10/2011	154.62	11.36	0	0	143.26	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	06/07/2011	154.62	11.33	0	0	143.29	<40		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	08/18/2011	154.62	13.00	0	0	141.62	<40		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	< 0.50	<250	
	10/04/2011	154.62	14.02	0	0	140.60	<40		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	01/24/2012	154.62	11.94	0	0	142.68	<40		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	04/06/2012	154.62	11.39	0	0	143.23	<40		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	07/02/2012	154.62	11.49	0	0	143.13	<40		<50	< 0.50	<0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	10/4/2012	154.62	16.09	0	0	138.53	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	1/23/2013	154.62	11.41	0	0	143.21	<50		<50	< 0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	4/22/2013	154.62	11.43	0	0	143.19	<50		<50	< 0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	7/31/2013	154.62	15.71	0	0	138.91	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	10/17/2013	154.62	16.83	0	0	137.79	<50	-	<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	<0.50	<0.50	< 0.50	<250	
	2/24/2014	154.62	15.22	0	0	139.40	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	4/17/2014	154.62	11.43	0	0	143.19	<50	-	<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	< 0.50	<0.50	<0.50	< 0.50	<250	
	7/18/2014	154.62	14.96	0	0	139.66	<50	-	<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	< 0.50	<0.50	<0.50	< 0.50	<250	
	10/21/2014	154.62	16.70	0	0	137.92	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	1/20/2015	154.62	11.61	0	0	143.01	<50	-	<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	pre-purge
	1/20/2015	154.62				142.86	<50 <50		<50 <50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	post-purge
	6/3/2015	154.62	11.76	0	0	138.54				<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	9/7/2015	154.62 154.62	16.08 15.55	0	0	139.07	<50 <50		<50 <50	<0.50	<0.50	<0.50	<1.0 <1.0	<10 <10	<250	<0.50	<0.50	<0.50 <0.50	<0.50	<0.50	<250	
	12/22/2015 3/15/2016	154.62	11.33	0	0	143.29	<50 <50		<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0	<10	<250 <250	<0.50 <0.50	<0.50 <0.50	<0.50	<0.50 <0.50	<0.50 <0.50	<250 <250	
	6/22/2016	154.62	11.50	0	0	143.12	<50 <50		<50 <50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	8/25/2016	154.62	13.98	0	0	140.64	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	11/23/2016	154.62	11.46	0	0	143.16	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	2/10/2017	154.62	11.25	0	0	143.37	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	8/1/2017	154.62	11.53	0	0	143.09	<50		<50	<0.50	<0.50	<0.50	<1.0	1.3	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	S1
	11/10/2017	154.62	15.13	0	0	139.49	<50		<50	<0.50	< 0.50	<0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
MW-7	12/21/2010	155.38	13.46	0	0	141.92	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/10/2011	155.38	12.07	0	0	143.31	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	<0.50	<250	
	06/07/2011	155.38	12.59	0	0	142.79	<40		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	08/18/2011	155.38	14.37	0	0	141.01	<40		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/04/2011	155.38	15.22	0	0	140.16	<40		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	01/24/2012	155.38	15.32	0	0	140.06	<40		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	04/06/2012	155.38	13.09	0	0	142.29	<49		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	07/02/2012	155.38	14.42	0	0	140.96	<40	-	<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/4/2012	155.38	16.20	0	0	139.18	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	1/23/2013	155.38	13.27	0	0	142.11	<50		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	4/22/2013	155.38	14.30	0	0	141.08	<50		52	<0.50	<0.50	<0.50	<1.0	<10 sufficient Wa	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	7/31/2013	155.38	16.30	0	0	139.08	4 E0			40 FC	40 FC	40 F0					-0.50	-0.50	-0.50	-0.50	-050	
	10/17/2013	155.38	16.77 15.33	0	0	138.61 140.05	<50 <50		<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	2/24/2014	155.38	15.33	U	U	140.05	< 00		\0 0	<u.5u< td=""><td><u.5u< td=""><td><u.5u< td=""><td>< 1.U</td><td><10</td><td><250</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><250</td><td></td></u.5u<></td></u.5u<></td></u.5u<>	<u.5u< td=""><td><u.5u< td=""><td>< 1.U</td><td><10</td><td><250</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><250</td><td></td></u.5u<></td></u.5u<>	<u.5u< td=""><td>< 1.U</td><td><10</td><td><250</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><0.50</td><td><250</td><td></td></u.5u<>	< 1.U	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	

	Sample	тос	DTW	PSH thickness	PSH recovered	GW Elev	TPH-d	TPH-d (w/SGC)	TPH-g	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE	ТВА	EDB	EDC	DIPE	ETBE	TAME	Ethanol	Comments
	4/17/2014	155.38	13.82	0	0	141.56	<50		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	7/18/2014	155.38	15.70	0	0	139.68	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	10/21/2014	155.38	16.67	0	0	138.71	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	< 0.50	<250	
	1/20/2015	155.38	14.13	0	0	141.25	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	pre-purge
	1/20/2015	155.38		-	-		<50		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	post-purge
	6/3/2015	155.38	15.13	0	0	140.25	<50		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	9/7/2015	155.38	16.17	0	0	139.21	<50		<50	<0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	12/22/2015	155.38	15.58	0	0	139.80	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	3/15/2016	155.38	12.83	0	0	142.55	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	6/22/2016	155.38	14.20	0	0	141.18	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	8/25/2016	155.38	15.67	0	0	139.71	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/23/2016	155.38	14.87	0	0	140.51	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	2/10/2017	155.38	11.32	0	0	144.06	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	8/1/2017	155.38	14.38	0	0	141.00	<50		<50	<0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	S1
	11/10/2017	155.38	16.08	0	0	139.30	<50		<50	<0.50	<0.50	<0.50	<1.0	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
W-8	12/21/2010	153.71	11.63	0	0	142.08	81		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/10/2011	153.71	11.38	0	0	142.33	61		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	06/07/2011	153.71	11.54	0	0	142.17	71		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	08/18/2011	153.71	12.47	0	0	141.24	<40		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	10/04/2011	153.71	12.90	0	0	140.81	<40		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	01/24/2012	153.71	12.52	0	0	141.19	<40		<50	< 0.50	< 0.50	<0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	04/06/2012	153.71	11.35	0	0	142.36	160		270	< 0.50	3.7	7.8	91	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	07/02/2012	153.71	12.50	0	0	141.21	<40		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	10/4/2012	153.71	13.89	0	0	139.82	<50		<50	< 0.50	< 0.50	<0.50	2.4	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	1/23/2013	153.71	13.06	0	0	140.65	<50		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	4/22/2013	153.71	12.82	0	0	140.89	<50		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	7/31/2013	153.71	13.63	0	0	140.08	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	10/17/2013	153.71	14.48	0	0	139.23	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	2/24/2014	153.71	13.56	0	0	140.15	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	4/17/2014	153.71	11.90	0	0	141.81	<50		<50	< 0.50	< 0.50	<0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	7/18/2014	153.71	13.78	0	0	139.93	<50		<50	< 0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	10/21/2014	153.71	14.38	0	0	139.33	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	< 0.50	<250	
	1/20/2015	153.71	13.28	0	0	140.43	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	pre-purge
	1/20/2015	153.71					<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	post-purge
	6/3/2015	153.71	12.88	0	0	140.83	<50		<50	< 0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	9/7/2015	153.71	14.19	0	0	139.52	<50		<50	<0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	< 0.50	< 0.50	<250	
	12/22/2015	153.71	12.90	0	0	140.81	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	3/15/2016	153.71	13.14	0	0	140.57	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	6/22/2016	153.71	12.32	0	0	141.39	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	0.97	<10	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	8/25/2016	153.71	13.57	0	0	140.14	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	11/23/2016	153.71	13.46	0	0	140.25	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	2/10/2017	153.71	9.60	0	0	144.11	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	<0.50	<0.50	< 0.50	< 0.50	< 0.50	<250	
	8/1/2017	153.71	12.10	0	0	141.61	680		<50	< 0.50	< 0.50	< 0.50	<1.0	0.63	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/10/2017	153.71	13.75	0	0	139.96	<50		<50	<0.50	<0.50	<0.50	<1.0	2.2	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
IW-9	12/21/2010	153.37	10.53	0	0	142.84	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/10/2011	153.37	10.86	0	0	142.51	<50		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	06/07/2011	153.37	11.36	0	0	142.01	<40		<50	<0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	08/18/2011	153.37	12.52	0	0	140.85	<40		<50	<0.50	< 0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/04/2011	153.37	13.32	0	0	140.05	<40		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	01/24/2012	153.37	11.23	0	0	142.14	<40		<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	04/06/2012	153.37	10.98	0	0	142.39	<40		340	<0.50	4.4	9	120	<10	<250	<0.50	<0.50	< 0.50	<0.50	<0.50	<250	
	07/02/2012	153.37	12.58	0	0	140.79	<40		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	10/4/2012	153.37	14.31	0	0	139.06	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	

Table 2. Historical Groundwater Gauging and Analytical Results Fourth Quarter 1990 to Current

Union Oil Company of California Unocal No. 5781 (351640) 3535 Pierson Street, Oakland, California

				PSH	PSH			TPH-d				Ethyl-	Total									
	Sample	TOC	DTW	thickness	recovered	GW Elev	TPH-d	(w/SGC)	TPH-g	Benzene	Toluene	benzene	Xylenes	MTBE	TBA	EDB	EDC	DIPE	ETBE	TAME	Ethanol	Comments
	1/23/2013	153.37	11.11	0	0	142.26	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	4/22/2013	153.37	12.22	0	0	141.15	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	7/31/2013	153.37	14.10	0	0	139.27	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	10/17/2013	153.37	14.56	0	0	138.81	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	2/24/2014	153.37	12.85	0	0	140.52	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	4/17/2014	153.37	11.73	0	0	141.64	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	7/18/2014	153.37	13.69	0	0	139.68	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	10/21/2014	153.37	14.32	0	0	139.05	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	1/20/2015	153.37	11.80	0	0	141.57	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	pre-purge
	1/20/2015	153.37		-	-		<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	post-purge
	6/3/2015	153.37	13.30	0	0	140.07	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	9/7/2015	153.37	14.05	0	0	139.32	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	<0.50	<0.50	<0.50	< 0.50	<250	
	12/22/2015	153.37	10.50	0	0	142.87	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	3/15/2016	153.37	10.26	0	0	143.11	<50		<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	6/22/2016	153.37	11.92	0	0	141.45	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	8/25/2016	153.37	13.75	0	0	139.62	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/23/2016	153.37	11.62	0	0	141.75	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	2/10/2017	153.37	9.79	0	0	143.58	60		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	8/1/2017	153.37	11.97	0	0	141.40	<50		<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/10/2017	153.37	13.65	0	0	139.72	<50		<50	<0.50	<0.50	<0.50	<1.0	0.54	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
QA	1/23/2013				_				<50	<0.50	<0.50	<0.50	<1.0	<10	<250	<0.50	<0.50	<0.50	<0.50	<0.50	<250	
	4/22/2013	_	_		_				<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	7/31/2013				_				<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	10/17/2013								<50	<0.50	< 0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	2/24/2014				-				<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	4/17/2014								<50	<0.50	<0.50	< 0.50	<1.0	<10	<250	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	7/18/2014								<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	10/21/2014				-				<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	9/7/2015				-				<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	12/22/2015				-				<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	3/15/2016	-							<50	< 0.50	< 0.50	< 0.50	<1.0	<10	<250	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	6/22/2016								<50	< 0.50	< 0.50	< 0.50	<1.0	< 0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	8/25/2016				-				<50	< 0.50	< 0.50	< 0.50	<1.0	<0.50	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<250	
	11/23/2016								<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	2/10/2017								<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	8/1/2017								<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	
	11/10/2017								<50	<0.50	<0.50	< 0.50	<1.0	<0.50	<10	<0.50	< 0.50	<0.50	< 0.50	< 0.50	<250	

Notes: MW = Groundwater monitoring well

TOC = Top of casing

ft amsl = Feet above mean sea level DTW = Depth to groundwater

ft bTOC = Feet below top of casing PSH = Phase separate hydrocarbons

ft = Feet

gal = Gallons

GW Elev = Groundwater elevation

μg/L = Micrograms per liter

Bold = Value exceeds laboratory reporting limits; PSH thickness is greater than 0.00 ft

<0.50 = Not detected at or above the stated limit

-- = Not sampled/Not measured

A52 = Chromatogram not typical of diesel

TPH-g = Total petroleum hydrocarbons, gasoline range by LUFT GC/MS according to Environmental Protection Agency (EPA) Method 8015

TPH-d = Total petroleum hydrocarbons, diesel range by LUFT GC/MS according to EPA Method 8015B

TPH-d (w/SGC) = Total petroleum hydrocarbons, diesel with Silica Gel Cleanup, by LUFT method

Benzene, toluene, ethylbenzene, and total xylenes (collectively BTEX)

MTBE = Methyl tert-butyl ether

TBA = Tert-butanol or tertiary butyl alcohol

EDB = 1,2-Dibromoethane

EDC = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

ETBE = Ethyl tert-butyl ether

TAME = Tert-amyl methyl ether

S1 - TPH-g was analyzed after hold time expired to confirm initial TPH-g carry over in original run.

Z1 = 10uL of antifoamer solution added to sample VOA

Data QA/QC by: IC 11.24.2017

FIGURES

■ Groundwater Flow Direction

Legend N=North NNE= North Northeast NE= Northeast ENE= East Northeast E= East ESE= East Southeast SE=Southeast SSE= South Southeast S= South SW= Southwest SSW= South Southwest WSW= West South West W= West WNW= West Northwest NW=Northwest NNW= North Northwest

Note

Rose diagram based on gradient direction calculations from groundwater monitoring events conducted by Arcadis from 2012 to 2017. Prior to 2012, monitoring events were conducted by Stantec, TRC and ATC Associates.

Number of Events Observed = 45

UNOCAL NO. 5781 (351640) 3535 PIERSON STREET OAKLAND, CALIFORNIA

GROUNDWATER FLOW DIRECTION ROSE DIAGRAM

FIGURE

ATTACHMENT A

Field Data Sheets and General Procedures

TRANSMITTAL

 $c_{i_1,j_2}^{\alpha_{i_1}}$

November 15, 2017 G-R #17155641

TO:

Ms. Jennifer Granborg

Arcadis

100 Smith Ranch Road, Suite 329 San Rafeal, California 94903

FROM:

Deanna L. Harding

Project Manager Gettler-Ryan Inc.

6805 Sierra Court, Suite G Dublin, California 94568 RE: Chevron Facility

#351640/5781

3535 Pierson Street Oakland, California

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DESCRIPTION					
VIA PDF	Groundwater Monitoring and Sampling Data Package Special Event of November 10, 2017					

COMMENTS:

Pursuant to your request, we are providing you with copies of the above referenced data for your use.

Please provide us the updated historical data prior to the next monitoring and sampling event for our field use.

Please feel free to contact me if you have any comments/questions.

trans/351640 5781

WELL CONDITION STATUS SHEET

Client/ Facility #: Site Address:	Chevron #351640 / 5781 3535 Pierson Street					- -	Job #: Event Date: Sampler:	17	17155641				
City:	Oakland, CA				FT								
WELL ID	Vault Frame Condition	Gasket/ O-Ring (M) Missing (R) Replaced	Bolts (M) Missing (R) Replaced	Bolt Flanges B=Broken S=Stripped R=Retaped	Apron Condition C=Cracked B=Broken G=Gone		Casing (Condition prevents tight cap seal)	REPLACE R				WELL VAULT Manufacture/Size/ # of Bolts	Pictures Taken
MW-A	OL		>	5=1	OK		>					Emil O'la	
MW-4	DIL						->					Emco 12" 2	
MW-5	OL		>	BBIF-1	OK		>					i 1	
MW-L	OL						>						
	04		>	571	DIL		>						
MW-7 MW-8 MW-9	OL						>						
MW-9	OU	-					>				,		
				ii				4	1	4			
							-						
							=						
DRUMS PRE	SENT ONS	ITE? Y (N)	#:		ARE DRUI	MS PROPER	RLY LABELE	DS NH	Y/N			LOCATION OF DRUMS:	
Comments						······································							

STANDARD OPERATING PROCEDURE GROUNDWATER SAMPLING

Gettler-Ryan Inc. (GR) field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. All work is performed in accordance with the GR Health & Safety Plan and all client-specific programs. The scope of work and type of analysis to be performed is determined prior to commencing field work.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, all depth to water level measurements are collected with a static water level indicator and are also recorded in the field notes, prior to purging and sampling any wells. Total well depths are measured annually.

After water levels are collected and prior to sampling, if purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, peristaltic or Grundfos), or disposable bailers. Temperature, pH and electrical conductivity are measured a minimum of three times during the purging (additional parameters such as dissolved oxygen, oxidation reduction potential, turbidity may also be measured, depending on specific scope of work.). Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards, as directed by the scope of work. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Chevron Environmental Management Company, the purge water and decontamination water generated during sampling activities is transported by Clean Harbors Environmental Services to Seaport Environmental located in Redwood City, California.

WELL MONITORING/SAMPLING FIELD DATA SHEET

Client/Facility#:	Chevron #35	1640 / 57	781	Job Number:	17155641				
Site Address:	3535 Pierson	Street		Event Date:	11.10.17	(inclusive)			
City:	Oakland, CA			Sampler:	FT				
Well ID	MW- Д			Date Monitored:	11.10.17				
Well Diameter	(2)/4 in.	•		L					
Total Depth	45.00 ft.	•		lume 3/4"= 0 ctor (VF) 4"= 0		0.38 5.80			
Depth to Water	15.19 ft.	По	ـــــا heck if water colur	nn is less then 0.50) ft				
•		The same of the sa			Estimated Purge Volume: 15.0	gal.			
Depth to Water v	w/ 80% Recharge								
-	_		•	2.	Time Started:	(2400 hrs)			
Purge Equipment:		S	ampling Equipment	: /	Time Completed:	(2400 hrs)			
Disposable Bailer			isposable Bailer		Depth to Product: Depth to Water:	ft			
Stainless Steel Baile	·		ressure Bailer		Hydrocarbon Thickness:				
Stack Pump			etal Filters		Visual Confirmation/Descrip				
Peristaltic Pump			eristaltic Pump						
QED Bladder Pump Other:			ED Bladder Pump		Skimmer / Absorbant Sock				
Other.		U	ther:		Amt Removed from Skimme				
					Amt Removed from Well: Water Removed:				
					Water Nemoved.				
Start Time (purge	e): 1\00		Weather Co	anditions:	0.40.0	****			
Sample Time/Da		10.12		r: <u>Cl</u>	0dor: Y 14P				
Approx. Flow Ra			Sediment D						
Did well de-water		gpm.		_	NONE	16.15			
Did Well de-Wate	r? <u>No</u>	ii yes, iii	nev	olurrie.	gal. DTW @ Sampling:	19.15			
Time	Volumo (gal.)	5 LJ	Conductivity	Temperature	D.O. ORP				
(2400 hr.)	Volume (gal.)	pН	μS mS μmhos/cm)	(② / F)	(mg/L) (mV)				
1105	5.0	7.21	544	21.2					
1110	10.0	7.24	562	20.9		_			
1115	15.0	7.28	572	20.5		<u> </u>			
			ABORATORY	NEODMATION					
SAMPLE ID	(#) CONTAINER	REFRIG.	LABORATORY I PRESERV. TYPE		ANALYSE	<u> </u>			
MW- 🔼	6 x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE(820				
	2x 1 liter ambers	YES	NP	BC LABS	TPH-DRO(8015M)				
	x 1 liter ambers	YES	NP	BC LABS	TPH-DRO w/sgc(8015M)				
			ļ						
L					L				
COMMENTS:			560W	Recovery					
WERE PRE PUR	GE SAMPLES SU	JBMITTE	TO THE LAB?	Y (N) DTW RE	ADING: TIME:				
Add/Replaced Ga	sket:	Add/Replace	d Bolt:	Add/Replaced Loc	ck: Add/Replaced Pl	ug:			

Client/Facility#:	Chevron #35	1640 / 5	781	Job Number:	17155641	
Site Address:	Address: 3535 Pierson Street Oakland, CA ID		Event Date:	11.10.17	(inclusive)	
City:	Oakland, CA			Sampler:	FT	
Vell ID				ate Monitored:	11.10.17	
Vell Diameter	2 /4 in	<u>.</u>	Volui	me 3/4"= 0.	.02 1"= 0.04 2"= 0.17 3	"= 0.38
otal Depth	24.74 ft.			or (VF) 4"= 0		"= 5.80
epth to Water	13. 31 ft.	- Termina	theck if water column			Q nal
epth to Water	w/ 80% Recharge					(2400 hrs)
urge Equipment:		s	ampling Equipment:	,	Time Completed:	
isposable Bailer					Depth to Product:	ft
tainless Steel Baile	er /		•		Depth to Water:	ft
tack Pump					Hydrocarbon Thickness:_	ft
eristaltic Pump		P	eristaltic Pump		Visual Confirmation/Des	ription:
ED Bladder Pump		Q	ED Bladder Pump		Skimmer / Absorbant Soc	k (circle one)
Other:		0	ther:		Amt Reproved from Skimi	
					Amt Removed from Well:	
					Water Removed:	
			Weather Con		LT- RAIN	
•				CLES	_Odor: Y /🐠	
pprox. Flow Ra	ate: <u>~ 2.0</u>	gpm.	Sediment De	scription:	NOTE	
id well de-wate	r? uss	If yes, Tir	ne: <u>1208</u> Vo	lume: <u> </u>	gal. DTW @ Sampling:	13.31
Time			Conductivity	T	0.00	
	Volume (gal.)	pН		Temperature	D.O. ORP (mg/L) (mV)	
	0 -		·		(114)	
		6.90		21.3		
1708	16.0	6.78	5/5	209		

			LABORATORY IN	FORMATION		
SAMPLE ID			PRESERV. TYPE	LABORATORY	ANALYS	ES
MW- 4				BC LABS	TPH-GRO(8015)/BTEX+MTBE(8	3260)/8 OXYS(8260)
				BC LABS	TPH-DRO(8015M)	
	x 1 liter ambers	YES	NP NP	BC LABS	TPH-DRO w/sgc(8015M)	
OMMENTS:			<u> </u>			
EDE DOE DUI	OCE CAMPI ES CI	IDMTTC	TO THE LABOA)(N P=+	ADINO 14 and and	
				2000	ADING: 16.58 TIME:	1405
Add/Replaced Ga	asket:	Add/Replace	d Bolt:	Add/Replaced Loc	ck: Add/Replaced	Plug:

Client/Facility#:	Chevron #35	1640 / 57	' 81	Job Number:		
Site Address:	3535 Pierson	Street	1000	Event Date:	11.10.17	(inclusive)
City:	Oakland, CA			Sampler:	FT	`
Well ID	MW-5	4 2	D	ate Monitored:	11.10.17	
Well Diameter	2	•	Volum	me 3/4"= 0.	.02 1"= 0.04 2"= 0.17 3"=	0.38
Total Depth	19.89 ft.	THE		or (VF) 4"= 0		5.80
Depth to Water	14.18 ft.	Torrespond	heck if water column			
Depth to Water	w/ 80% Recharge				Estimated Purge Volume: 11.0	gal.
Bures Environment					Time Started: Time Completed:	(2400 hrs) (2400 hrs)
Purge Equipment:			ampling Equipment:		Depth to Product:	(2+00 1113)
Disposable Bailer Stainless Steel Baile	or .		sposable Bailer		Depth to Water:	ft
Stack Pump			essure Bailer etal Filters		Hydrocarbon Thickness.	ft
Peristaltic Pump			eristaltic Pump		Visual Confirmation/Descrip	otion:
QED Bladder Pump)		ED Bladder Pump			······································
Other:	<u> </u>		her:		Skimmer / Absorbant Sock	
		-			Amt/Removed from Skimme Amt Removed from Well:	
					Water Removed:	
Start Time (purg	e): 1315		Weather Con	ditions:	LT. RAIY	
Sample Time/Da		1017	Water Color:	_		
Approx. Flow Ra		gpm.	Sediment De		_Cdol:807 NRBE	engts
					Nove	11.0
Did well de-water	er? <u>yes</u>	ir yes, rin	ne: <u>1321</u> Vo	iume: <u>6.0</u>	gal. DTW @ Sampling: _	14.18
Time	Malana (nal)		Conductivity	Temperature	D.O. ORP	
(2400 hr.)	Volume (gal.)	pН	∠∫SV mS μmhos/cm)	(🐼 / F)	(mg/L) (mV)	
1319	3.5	6.81	547	21.6		
MAT.						
			ABORATORY IN	FORMATION		
SAMPLE ID	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY		
MW-5	x voa vial	YES YES	HCL NP	BC LABS	TPH-GRO(8015)/BTEX+MTBE(82	6U)/8 OXYS(8260)
	2 x 1 liter ambers	YES	NP NP	BC LABS BC LABS	TPH-DRO(8015M) TPH-DRO w/sgc(8015M)	
	X Tittel difficient	120		BO LABO	TETE-DICO Wisgc(80 (5)WI)	
				1		
COMMENTS				· · · · · · · · · · · · · · · · · · ·		
COMMENTS:						
WEDE DDE D''	DOE 644401 = 6 61	15161777	TO THE	X/II =====		
WERE PRE PUI	KGE SAMPLES SI	PRMITTEL	TO THE LAB?	P/N DTW RE	ADING: 17. Z3 TIME:	1420
Add/Replaced Ga	asket:	Add/Replace	d Bolt:	Add/Replaced Loc	k: Add/Replaced Pl	ug:

Client/Facility#:	Chevron #35	1640 / 57	781	Job Number:	17155641	
Site Address:	3535 Piersor	Street		Event Date:	11.10.17	(inclusive)
City:	Oakland, CA			Sampler:	FT	,
Well ID	MW-6		D	ate Monitored:	11.10.17	
Well Diameter	2 /4 in	-	Volum	ne 3/4"= 0.		
Total Depth	19.95 ft.	-		or (VF) 4"= 0.		'= 0.38 '= 5.80
Depth to Water	15.13 ft.		ـــــــا heck if water column	is less then 0.50) ft	
•	4.82	xVF17			Estimated Purge Volume: 2.	gal.
Depth to Water	w/ 80% Recharge	[(Height of W	/ater Column x 0.20) +	DTW]: 16.09	Time Started:	(2400 hrs)
Purge Equipment:		Q.	ampling Equipment:		Time Completed:	
Disposable Bailer			isposable Bailer		Depth to Product:	
Stainless Steel Baile			ressure Bailer		Depth to Water:	
Stack Pump	er		etal Filters		Hydrocarbon Thickness:	ft
Peristaltic Pump			eristaltic Pump		Visual Confirmation/Desc	ription:
QED Bladder Pump			ED Bladder Pump			
Other:			ther:		Skimmer Absorbant Soc	
	-	Ū			Amt Removed from Skimi	
					Amt Removed from Well: Water Removed:	
					vvater Kernoved.	
Start Time (purge	e): 124G		Weather Con	ditions:	LT. RAID	
Sample Time/Da		1.1017			Odor: Y / 🐠	
Approx. Flow Ra			Sediment Des			The second second
	***************************************	gpm.			S. SILTY	
Did well de-wate	r? <u>Ho</u>	ir yes, iin	ne: Vol	iume:	gal. DTW @ Sampling:	15.13
Time			Conductivity	Temperature	D.O. ORP	
(2400 hr.)	Volume (gal.)	рН	MS mS	(6) / F)	(mg/L) (mV)	
12=1	76	1 02	μmhos/cm)		,	
1251	- <u>- / </u>	6.83	322	21.1		_
1254	1.3	6.83	326	21.0		_
1257	2.0	6.86	329	20.8	// /	
SAMDLEID	(#) CONTAINED		LABORATORY IN		ANAL VO	
SAMPLE ID MW-	(#) CONTAINER x voa vial	REFRIG. YES	PRESERV. TYPE HCL	BC LABS	TPU CPO/9015\/PTEY+MTPE/9	
1414.4-	2-x 1 liter ambers	YES	NP	BC LABS	TPH-GRO(8015)/BTEX+MTBE(8 TPH-DRO(8015M)	200)/8 OXTS(8260)
·	x 1 liter ambers	YES	NP NP	BC LABS	TPH-DRO w/sgc(8015M)	
				302.33	III W BITCO Winggo(CO TOWN)	·
COMMENTS:			6	000		
COMMEN 12:			<u> </u>	RECOVER)	-,
WERE PRE PUF	RGE SAMPLES S	UBMITTE	TO THE LAB?	N DTW RE	ADING: 16.23 TIME:	1415
Auu/Repiaced Ga	sket:	Add/Keplace	d Bolt:	Add/Replaced Loc	ck: Add/Replaced I	riug:

Vell ID Vell Diameter Total Depth Depth to Water Depth to Water w/ Urge Equipment: Depth to Water w/ Urge Equipment: Depth to Water w/ Dep		xVF 17 (Height of W	Volum Facto heck if water column	r (VF) 4"= 0.6 is less then 0.50 x3 case volume =	66 5"= 1.02 6"= 1.50 12"= ft. Estimated Purge Volume: 2.0	(inclusive) = 0.38 = 5.80 gal.
Vell ID Vell Diameter otal Depth Depth to Water Depth to Water w/ Urge Equipment: Disposable Bailer Detainless Steel Bailer Date of the Compension of the Co	MW-7 Ø14 in. 19.69 ft. 16.08 ft. 3.61	xVF	Volum Facto heck if water column	ate Monitored: ne 3/4"= 0.6 or (VF) 4"= 0.6 is less then 0.50 x3 case volume =	02 1"= 0.04 2"= 0.17 3"= 66 5"= 1.02 6"= 1.50 12"= ft. Estimated Purge Volume: 2.0	= 5.80
/ell Diameter otal Depth epth to Water epth to Water w/ rge Equipment: sposable Bailer ainless Steel Bailer ack Pump eristaltic Pump	@14 in. 19.69 ft. 16.08 ft. 3.61	xVF	Volum Facto heck if water column	ne 3/4"= 0.0 r (VF) 4"= 0.6 is less then 0.50 x3 case volume =	02 1"= 0.04 2"= 0.17 3"= 66 5"= 1.02 6"= 1.50 12"= ft. Estimated Purge Volume: 2.0	= 5.80
Vell Diameter otal Depth epth to Water epth to Water w/ epth to Water w/ urge Equipment: sposable Bailer ainless Steel Bailer ack Pump eristaltic Pump	@14 in. 19.69 ft. 16.08 ft. 3.61	xVF	Volum Facto heck if water column	ne 3/4"= 0.0 r (VF) 4"= 0.6 is less then 0.50 x3 case volume =	02 1"= 0.04 2"= 0.17 3"= 66 5"= 1.02 6"= 1.50 12"= ft. Estimated Purge Volume: 2.0	= 5.80
otal Depth Depth to Water Depth to Water w/ Depth to Water Depth t	19.69 ft. 16.08 ft. 3.61	xVF	Facto heck if water column = /ater Column x 0.20) +	r (VF) 4"= 0.6 is less then 0.50 x3 case volume =	66 5"= 1.02 6"= 1.50 12"= ft. Estimated Purge Volume: 2.0	= 5.80
Depth to Water Depth to Water w/ Urge Equipment: Disposable Bailer Depth to Water w/ Urge Equipment: Depth to Water w/ Depth to Water w/ Urge Equipment: Depth to Water w/ Urge	16.08 ft. 3.61	xVF	heck if water column	is less then 0.50 x3 case volume =	ft. Estimated Purge Volume: 2.0	
epth to Water w/ urge Equipment: sposable Bailer ainless Steel Bailer ack Pump eristaltic Pump	3.61	xVF	=	x3 case volume =	Estimated Purge Volume: 2.0	gal.
urge Equipment: sposable Bailer ainless Steel Bailer ack Pump eristaltic Pump		(Height of W	/ater Column x 0.20) +			yaı.
urge Equipment: isposable Bailer tainless Steel Bailer tack Pump eristaltic Pump		Sa				
tainless Steel Bailer tack Pump eristaltic Pump			seculture Carrieron on t		Time Started:	(2400 hrs
Disposable Bailer Stainless Steel Bailer Stack Pump Peristaltic Pump		Die	ampling Equipment:		Time Completed:	
stack Pump Peristaltic Pump		D).	isposable Bailer		Depth to Product: Depth to Water:	
eristaltic Pump		Pr	ressure Bailer		Hydrocarbon Thickness:	
			etal Filters eristaltic Pump		Visual Confirmation/Descri	
(ED Bladder Pump		QI	ED Bladder Pump		Skimmer / Absorbant Sock	(circle one)
Other:		Ot	ther:		Amt Removed from Skimm	
					Amt Removed from Well:_	
					Water Removed:	Itr
Time (2400 hr.)	Volume (gal.)	рН 7.1 %	Conductivity (IS) ms µmhos/cm)	Temperature (F)	D.O. ORP (mg/L) (mV)	
			LABORATORY IN	FORMATION		
	(#) CONTAINER	REFRIG.	PRESERV. TYPE	LABORATORY	ANALYSI	ES
MW- /	x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE(82	260)/8 OXYS(8260)
	x 1 liter ambers	YES	NP	BC LABS	TPH-DRO(8015M)	
	x 1 liter ambers	YES	NP NP	BC LABS	TPH-DRO w/sgc(8015M)	
	-			4	I	
OMMENTS:						

Client/Facility#:	Chevron #35	1640 / 5	781	Job Number:	17155641			
Site Address:	3535 Piersor	Street		Event Date:	11.10.17	(inclusive)		
City:	Oakland, CA			Sampler:	FT	` ′		
Well ID	MW-8		D	ate Monitored:	11.10.17			
Well Diameter	2 /4 in	-	Volum					
Total Depth	19.92 ft.	-		ne 3/4"= 0. or (VF) 4"= 0.		3"= 0.38 2"= 5.80		
Depth to Water	13.75 ft.	_	ــــــ heck if water columr	is less then 0.50) ft			
- op	6.17	-			Estimated Purge Volume: 3.	Ogal.		
Depth to Water	w/ 80% Recharge	- {(Height of V	vater Column x 0.20) +	DTW]: 14.95	ž Timo Otrada	(0.001		
B		_			Time Started: Time Completed:			
Purge Equipment:			ampling Equipment:		Depth to Product:			
Disposable Bailer			isposable Bailer		Depth to Water:	ft		
Stainless Steel Baile	er		ressure Bailer		Hydrocarbon Thickness			
Stack Pump Peristaltic Pump	* .		letal Filters		Visual Confirmation/Des			
QED Bladder Pump			eristaltic Pump ED Bladder Pump					
Other:	-		ther:		Skimmer / Absorbant So			
outor.		O			Amt Removed from Skin			
					Amt Removed from Wel Water Removed:			
					1101011101101			
Start Time (purge	e): 1130		Weather Con	ditions:	LT. RAIN			
Sample Time/Da		1 1017-		CLBAN				
Approx. Flow Ra			Sediment De					
Did well de-wate		gpm.		_	علم صلع	14.16		
Did well de-wate	ets ho	ii yes, iii	ne:vo	iume:	_ gal. DTW @ Sampling:	14.18		
Time			Conductivity	Temperature	D.O. ORF)		
(2400 hr.)	Volume (gal.)	pН	μS mS μmhos/cm)	(© /F)	(mg/L) (mV			
1133	1.0	1-92-	486	21.4				
1136	2.0	6.53	490	21.2				
1139	3.0	6.95	495	20.9	-//			
			LABORATORY	FORMATION				
SAMPLE ID	(#) CONTAINER	REFRIG.	LABORATORY IN PRESERV. TYPE	LABORATORY	ANALY	SES		
MW-8	6 x voa vial	YES	HCL	BC LABS	TPH-GRO(8015)/BTEX+MTBE			
	2-x 1 liter ambers	YES	NP	BC LABS	TPH-DRO(8015M)			
	x 1 liter ambers	YES	NP	BC LABS	TPH-DRO w/sgc(8015M)			
	+							
		**						
COMMENTS:			SLOW RE	COVERY				
WERE PRE PUF	RGE SAMPLES S	UBMITTE	TO THE LAB?	DTW RE	ADING: TIME	:		
Auu/Replaced Ga	asket:	Auu/Replace	ed Bolt:	Add/Replaced Loc	k: Add/Replaced	riug:		

Client/Facility#:	Chevron #35164	10 / 5781	Job Number:	ber: 17155641			
Site Address:	3535 Pierson St	reet	Event Date:	11.10.17	(inclusive)		
City:	Oakland, CA		Sampler:	FT			
· · · · · · · · · · · · · · · · · · ·							
Well ID	MW- 9		Date Monitored:	11.10.17			
Well Diameter	2 /4 in.	[Vo	lume 3/4"= 0.	.02 1"= 0.04 2"= 0.17 3"=	0.38		
Total Depth	19.65 ft.		ctor (VF) 4"= 0.		5.80		
Depth to Water	13.65 ft.	Check if water colur	nn is less then 0.50) ft.	115.41		
	(0.00 xVF	- American		Estimated Purge Volume: 3.6	gal.		
Depth to Water	w/ 80% Recharge [(He	ght of Water Column x 0.20)	+ DTW]: 14.85				
				Time Started: Time Completed:			
Purge Equipment:		Sampling Equipment	: /	Depth to Product:			
Disposable Bailer		Disposable Bailer		Depth to Water:			
Stainless Steel Baile	er	Pressure Bailer		Hydrocarbon Thickness:	ft		
Stack Pump		Metal Filters		Visual Confirmation/Descri	otion:		
Peristaltic Pump QED Bladder Pump		Peristaltic Pump QED Bladder Pump					
Other:		Other:		Skimmer / Absorbant Sock			
Other.		Other		Amt Removed from Skimm			
				Amt Removed from Well: Water Removed:			
				vvater Removed.			
Start Time (purg	e): 1225	Weather Co	anditions:				
Sample Time/Da				27. RAIN			
-			r: <u>Clear</u>	_Odor: Y /🐠			
Approx. Flow Ra			· -	NONE			
Did well de-wate	er? <u>No</u> If y	es, Time:V	/olume:	gal. DTW @ Sampling: _	13.65		
Time		Conductivity	Temperature	D.O. ORP			
(2400 hr.)	Volume (gal.)	H (is) ms	(6) F)	(mg/L) (mV)			
1000	10 40	μmhos/cm) 8L 374	7.1				
1228	1.0 6:		21.6				
1234		87 <u>379</u> 89 385	21,4				
12 34	3.0 6	505	21.2				

		LABORATORY					
SAMPLE ID		YES HCL					
IVIV-	+	YES HCL YES NP	BC LABS BC LABS	TPH-GRO(8015)/BTEX+MTBE(82 TPH-DRO(8015M)	(60)/8 OXYS(8260)		
		YES NP	BC LABS	TPH-DRO (8015M)			
			302.50	THE BITCO WOODS (SO FORM)			
			1				
COMMENTS:		S	Decous	-			
Juliani III.		JLOV	RECOVERY	CONTINUENTO NO			
WERE PRE PUI	RGE SAMPLES SUBI	MITTED TO THE LAB?	(2) N DTW RE	ADING: 14.40 TIME:	1410		
•		A	•				
Add/Replaced Ga	asket: Add/	Replaced Bolt:	Add/Replaced Loc	ck: Add/Replaced P	lug:		

CHAIN OF CUSTODY FORM

Union Oil Company of California ■ 6101 Bollinger Canyon Road ■ San Ramon, CA 94583

			Official Official	inparty of Camornia - 0101	Dominger Carryon Hoad	Joan	Han	ilon, v	JA 3-	1000						0	<u> </u>	JI
Union Oil Site ID: 57	81			Union Oil Consultant: A	IR CADIS							ANAL	YSES	SRE	QUIR	ED		es 167
	01010			Consultant Contact:ブビット							7						Turnaround ¹	Time (TAT):
Site Address: 3535	PIE	uson ST	- ,	Consultant Phone No.:	51491-4530						5					.	Standard 🗵	24 Hours 🗌
DAILLA				Sampling Company: (عَامِي)	TTLEN- 12407 It.						801						48 Hours 🔲	72 Hours 🗌
		LIEUNAY		Sampled By (PRINT):						0						.	Special Ins	structions
Union Oil PM Phone No.: (9	25) 8	42. 322	0	Filade To	ELLICITON,		2)	260			k					ŀ	ı	
Charge Code: NWRTB- 03	<u>5 (6 2</u>	40-0-LAB		Sampler Signature:	stories Inc	18015 H	(801	by EPA 82608	90	with OXYS	25/21							
This is a LEGAL document. A	<u>ALL</u> fields n	nust be filled ou	t CORRECTLY and	Project Manage	er: Molly Meyers akersfield, CA 93308	Diesel by EPA	by economic	BTEX/MTBE/	Ethanol by EPA 8260B		DRO							
	SAMPLE	: ID					ڻ ا	S	힐	826(PH-							
Field Point Name	Matrix	Depth	Date (yymmdd)	Sample Time	# of Containers	TPH	TPH	BTE	Ethai	EPA 8260B	7						Notes / Co	omments
AQ	WS-A		Pr. 11.10		2		X	X										
MW- A	W-S-A		+	1345	8	X	X	X		X								:
MW-4	W-S-A			1155	8			1										
MW. 5	W-S-A			1310	10						X							
MW-6	W-S-A			1248	8					Ш						\Box		
MW-7	W-S-A			1035	8											`		
MW-8	W-S-A			1335	8													
MW-9	W-S-A		1	1225	8	1	V	V		V								
<u>.</u>	W-S-A																	
	W-S-A																	
	W-S-A																	
	W-S-A																	
111	ipany レエル	Date / Time:	0 (1630)		pany Date / Time : Date / Time : Date / Time :	マ	111	, -	Relin	nquish	ed By		Coi	mpan	iy	Di	ate / Time:	
Received By Comp	bany	Date / Time:		1 .					Rece	eived E	Зу		Co	ompa	ny	D	ate / Time:	
GETTIED NY	ر د د د	 	11-12 1 187.0	Drug Bring	Balah 11=131-	7	111	5	1									

ATTACHMENT B

Historical Groundwater Analytical Data

Table 3 - Historical Groundwater Analytical Data February 2004 - March 2009 Unocal No. 5781 (351640) 3535 Pierson Street Oakland, California

WELL ID	DATE	DICHLORO- dIFLUORO- METHANE	1,1-DCA	1,1-DCE	cis- 1,2-DCE	trans- 1,2-DCE	1,2- DICHLORO- PROPANE	cis-1,3- DICHLORO- PROPANE	1,1,2,2- TETRACHLORO ETHANE	TETRACHLORO-	TRICHLORO- TRIFLUORO- ETHANE	1,1,1- TRICHLORO- ETHANE	1,1,2- TRICHLORO- ETHANE	TRICHLORO- ETHENE	TRICHLORO- FLUORO- METHANE	VINYL CHLORIDE
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
MW-A	2/3/2004	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50
	2/18/2005	ND<1.0	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50
	3/29/2006	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	3/28/2007	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	3/22/2008	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
	3/27/2009	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

NOTES:

μg/L = Micrograms per liter ID = Identification

ND<# = Analyte not detected at or above indicated laboratory practical quantitation limit

ATTACHMENT C

Laboratory Report and Chain-of-Custody Documentation

B285636

Date of Report: 11/17/2017

Tamera Rogers

Invoice ID:

Arcadis- San Jose

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Client Project: 351640 5781 **BCL Project:** 1732381 **BCL Work Order:**

Enclosed are the results of analyses for samples received by the laboratory on 11/13/2017. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

molly meyers

Client Service Rep

Stuart Buttram **Technical Director**

Certifications: CA ELAP #1186; NV #CA00014; OR ELAP #4032-001; AK UST101

Report ID: 1000673170

Page 1 of 46

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	4
Laboratory / Client Sample Cross Reference	7
Sample Results	
1732381-01 - QA-W-171110	
Volatile Organic Analysis (EPA Method 8260B)	10
Purgeable Aromatics and Total Petroleum Hydrocarbons	
1732381-02 - MW-A-W-171110	
Volatile Organic Analysis (EPA Method 8260B)	12
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1732381-03 - MW-4-W-171110	
Volatile Organic Analysis (EPA Method 8260B)	15
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1732381-04 - MW-5-W-171110	•••••••••••••••••••••••••••••••••••••••
Volatile Organic Analysis (EPA Method 8260B)	18
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons (Silica Gel Treated)	
1732381-05 - MW-6-W-171110	
Volatile Organic Analysis (EPA Method 8260B)	22
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1732381-06 - MW-7-W-171110	
Volatile Organic Analysis (EPA Method 8260B)	25
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1732381-07 - MW-8-W-171110	
Volatile Organic Analysis (EPA Method 8260B)	28
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
1732381-08 - MW-9-W-171110	
Volatile Organic Analysis (EPA Method 8260B)	31
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Total Petroleum Hydrocarbons	
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260B)	
Method Blank Analysis	3/
Laboratory Control Sample	
Precision and Accuracy	
Purgeable Aromatics and Total Petroleum Hydrocarbons	
Method Blank Analysis	37
Laboratory Control Sample	
Precision and Accuracy	
Total Petroleum Hydrocarbons	
Method Blank Analysis	40
Laboratory Control Sample	
Precision and Accuracy	
Total Petroleum Hydrocarbons (Silica Gel Treated)	
Method Blank Analysis	43
Laboratory Control Sample	
Precision and Accuracy	
Notes	
110103	

Table of Contents

lotes and Definitions

Page 3 of 46 Report ID: 1000673170

Chain of Custody and Cooler Receipt Form for 1732381 Page 1 of 3 24 Hours
72 Hours Turnaround Time (TAT): Special Instructions Notes / Comments RIBUTION SUB-OUT Standard X 48 Hours 1-3-17 Date / Time: 1131 BCAB RCLNB 7-3238 TPH-DRO W/392 (8015M) Relinquished By Union Oil Company of California 🛢 6101 Bollinger Canyon Road 🗷 San Ramon, CA 94583 EPA 8260B Ethanol by EPA 8260B BTEX/MTBE/ py EPA 8260 (2012) TPH - Diesel by EPA 8015 H CHAIN OF CUSTODY FORM Sampling Company: (SETT) EM - 2-442 EX Date / Time Consultant Contact: JEyn Cen GrayBolf Consultant Phone No.: (45)441-4530 # of Containers Project Manager: Molly Meyers 4100 Atlas Court, Bakersfield, CA 93308 Phone No. 661-327-4911 0 00 00 Q ARCADIS B Berow BclA) FRANK Union Oil Consultant: Sampled By (PRINT): Sample Time 1248 1310 1335 035 Refinquished By (1630) This is a LEGAL document. <u>ALL</u> fields must be filled out CORRECTLY and COMPLETELY. Date (yymmdd) S. 17.11.10 Union Oil PM Phone No.: (925) 841- 3220 Date / Time: Date / Time: Charge Code: NWRTB- 035 (6 40 -0- LAB PIEUSON 060010146 SAMPLE A-S-A W-S-A W-S-A W-S-A Matrix Y-S-S-A Ą. Y-S-A-S--S-A ラナガガ. KER-RYAD Company OAKLAND 572 Janes 3535 シーろこ オンシーキ いろエ JW-なくなれ Field Point Name エピ Union Oil Site ID: Relinquished By Site Global ID: Union Oil PM: Site Address

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 4 of 46

Chain of Custody and Cooler Receipt Form for 1732381 Page 2 of 3

		-								0.
BC LABORATORIES INC.		C	OOLER	RECEIPT	FORM			Page	01	12
Submission #: \7-3236\										
SHIPPING INFORM	ATION			S	HIPPING	CONTAIL	NER	F	REE LIQU	ID
Fed Ex □ UPS □ Ontrac □	l Hand	d Delivery	<i>,</i> 🗆	Ice Che	st-E	None □		Y	ES D NO	
BC Lab Field Service Other	(Specify	')		Othe	er 🗆 (Spe	cify)		- /	`W)/ S	•
Refrigerant: Ice ☑ Blue Ice □	None		045	Cama	nents:		•		/	
			Other 🗆							·
	Containe		None	☑ Com	ments:					
				es I No			tion(s) mate			
COC Received Emis	șivity: <u>O</u>	<u>.99</u>) ,	Container:	<u>annika</u>	Thermor	neter ID:	206	Date/Tim	· 11130	ZZIS
ZÍYES □ NO Ten	nperature:	(4)	.27	°c /	(0)	3	°C	Analyst li	nit YUC	
7	I ·	12/								
SAMPLE CONTAINERS	<u></u>		T		SAMPLI	NUMBERS				
	1 1	2	3	4	5	1 6	<u> 7 </u>	8	9	10
OT PE UNPRES 4oz / 8oz / 16oz PE UNPRES	<u> </u>	 	 			<u> </u>		<u> </u>		
personal description of the contract of the co							A CONTRACTOR OF THE PARTY OF TH			
207 CT-16			 	1	 	1	1			
OT INORGANIC CHEMICAL METALS INORGANIC CHEMICAL METALS 40z / 80z / 160z		1	 	 		†	1			
PT CYANIDE	l	1	1	 		†	†·			
T CYANIDE T NITROGEN FORMS	<u> </u>		1		 	1	1			
T TOTAL SULFIDE	l		1			l .				
20z. NITRATE / NITRITE						1				•
PT TOTAL ORGANIC CARBON										
PT CHEMICAL OXYGEN DEMAND					ļ					
PIA PHENOLICS										
0ml VOA VIAL TRAVEL BLANK	K10									
Oml VOA VIAL		A-F	A-F	A-F	AF	A-F	A-F	A-F	·	
T EPA 1664										
PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL						ļ				
40 ml VOA VIAL- 504										
QT EPA 508/608/8080										
QT EPA 515.1/8150 .										
OT EPA 525										
OT EPA 525 TRAVEL BLANK				L						
10ml EPA 547										
10ml EPA 531.1										
30z EPA 548										
OT EPA 549										
OT EPA 8015M		G	-			GH				
OT EPA 8270										
Soz/16oz/32oz AMBER										
oz / 160ż / 320z JAR										
OIL SLEEVE		I								
PCB VIAL	******									
PLASTIC BAG							1			
TEDLAR BAG							1			
FERROUS IRON										
ENCORE						T				
				 		 	 			,
MART KIT			 				 			
jumma canister		1	1	i	i	1		1 1		

Report ID: 1000673170

Chain of Custody and Cooler Receipt Form for 1732381 Page 3 of 3

											
BC LABORATORIES INC.			C	COOLER I	RECEIPT	FORM			Page	Of	<u></u>
Submission #: 17-32361		T									
					V 01	UDDINIO	CONTAIN	IED	1 -	REE LIQU	מו
	rac 🗆		d Deliver	у 🗆	Ice Che		None 🗆			ES D NO	
Refrigerant: Ice 🗹 Blue le		None		Other □	Comm	ents:	•				
Custody Seals lice Chest ☐	Jn	Contain tect? Yes	ers.□ □ No □	None	Ø Comr	ments:					
All samples received? Yes 🗵 No 🗆	Al	l samples	container	s intact? Y	es 🗹 No		Descript	ion(s) mate		es Ø No C	
COC Received	Emis	sivity: (.94)	Containet:	MYXX	Thermon	neter ID:	200	Date/Tim	e 11120	SZB
✓ YES □ NO				V E	°C /			°C	Analyst i	nit YUK	
ZI IES BIKE	Ten	perature	: (A)	0.5	*C /	(6) ()	.)	C	Allalyse	int_jost=	
		<u> </u>				SAMPLI	E NUMBERS				
SAMPLE CONTAINERS		1	1 /3	13	4	5	6	7	8	9	10
OT PE UNPRES				<u> </u>	ļ		 		-		
4oz/8oz/16oz PE UNPRES		Marie Control of the Control				-paper-ministratelyleness-			***************************************		*****************
20z Cr+6									 		
OT INORGANIC CHEMICAL METALS					<u> </u>		 		 		
NORGANIC CHEMICAL METALS 40z / 80z	/16oz			+	<u> </u>						
T CYANIDE			-	<u> </u>							
PT NITROGEN FORMS				 			1				
PT TOTAL SULFIDE POZ. NITRATE / NITRITE			1	1							
PT TOTAL ORGANIC CARBON											
PT CHEMICAL OXYGEN DEMAND				1							
PIA PHENOLICS											
10ml VOA VIAL TRAVEL BLANK											
Omi VOA VIAL										·	
OT EPA 1664									<u> </u>		
PT ODOR (<u> </u>						
RADIOLOGICAL					ļ				<u> </u>		
BACTERIOLOGICAL								ļ			
40 ml VOA VIAL- 504	·				 						
QT EPA 508/608/8080				<u> </u>	 				 		
QT EPA 515.1/8150 .		<u>.</u>		<u> </u>	_			ļ			
QT EPA 525					 -		-				
QT EPA 525 TRAVEL BLANK				 	 	 	 			 	
40ml EPA 547				_	_	ļ	 		-	 	
40ml EPA 531.1		ļ			-	ļ					
80z EPA 548		 			-	 	 				
QT EPA 549		 	+	GH	G-5	GH	Cott	GH	GH		
QT EPA 8015M			14	15171	19-2	167	W.V.	CIFL	1617		
QT EPA 8270		 			-	 	W. 13		-		
8oz/16oz/32oz AMBER		ļ			 	 	 		-		
30z / 160ż / 320z JAR		<u> </u>			 	 	 		-		
SOIL SLEEVE		 			 	 	 	 			
PCB VIAL			_	-	1	 	 		 		
PLASTIC BAG		 			 	 	 	 	 		
TEDLAR BAG . F		 	+	-	 	 	 	 	1		
FERROUS IRON		 	+	-	 	 	1		1	 	
ENCORE		 		 	-	-	 	 	 	 	
SMART KIT]		 	 	ļ	_	ļ	 	ļ	
SUMMA CANISTER		<u> </u>		\perp	<u> </u>	<u></u>		<u> </u>	<u> </u>		
					7						

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640

Project Manager: Tamera Rogers

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1732381-01 COC Number:

> **Project Number:** 5781 Sampling Location:

Sampling Point: QA-W-171110

Sampled By:

GRD

11/13/2017 22:15 Receive Date: Sampling Date: 11/10/2017 00:00

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order: Global ID: T0600101467 Location ID (FieldPoint): QA

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1732381-02 **COC Number:**

> **Project Number:** 5781 Sampling Location:

MW-A-W-171110 Sampling Point:

GRD

Sampled By:

11/13/2017 22:15 Receive Date: Sampling Date: 11/10/2017 13:45

Sample Depth: Lab Matrix: Water Water Sample Type: Delivery Work Order:

Global ID: T0600101467 Location ID (FieldPoint): MW-A

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1732381-03 COC Number:

> 5781 **Project Number:** Sampling Location:

MW-4-W-171110 Sampling Point:

GRD Sampled By:

Receive Date: 11/13/2017 22:15 11/10/2017 11:55 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID: T0600101467 Location ID (FieldPoint): MW-4

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640

Project Manager: Tamera Rogers

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1732381-04 COC Number:

> **Project Number:** 5781 **Sampling Location:**

Sampling Point: MW-5-W-171110

Sampled By:

GRD

11/13/2017 22:15 Receive Date: Sampling Date: 11/10/2017 13:10

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order: Global ID: T0600101467 Location ID (FieldPoint): MW-5

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1732381-05 **COC Number:**

> **Project Number:** 5781 Sampling Location:

Sampling Point: MW-6-W-171110

GRD

Sampled By:

11/13/2017 22:15 Receive Date: 11/10/2017 12:48

Sampling Date: Sample Depth:

Lab Matrix: Water Water Sample Type: Delivery Work Order: Global ID: T0600101467

Location ID (FieldPoint): MW-6 Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1732381-06 COC Number:

> 5781 **Project Number:** Sampling Location:

MW-7-W-171110 Sampling Point:

Sampled By: GRD **Receive Date:** 11/13/2017 22:15

11/10/2017 10:35 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order: Global ID: T0600101467

Matrix: W

Sample QC Type (SACode): CS

Location ID (FieldPoint): MW-7

Cooler ID:

Report ID: 1000673170

Page 8 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640

Project Manager: Tamera Rogers

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1732381-07 COC Number:

> **Project Number:** 5781 Sampling Location:

Sampling Point: MW-8-W-171110

Sampled By: **GRD**

11/13/2017 22:15 Receive Date: Sampling Date: 11/10/2017 13:35

Sample Depth: Lab Matrix: Water

Water Sample Type: Delivery Work Order:

Global ID: T0600101467 Location ID (FieldPoint): MW-8

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1732381-08 **COC Number:**

> **Project Number:** 5781 Sampling Location:

MW-9-W-171110 Sampling Point:

GRD Sampled By:

11/13/2017 22:15 Receive Date: 11/10/2017 12:25 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID: T0600101467 Location ID (FieldPoint): MW-9

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

Report ID: 1000673170 Page 9 of 46

San Jose, CA 95119

6296 San Ignacio Ave, Suite C&D

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 17	732381-01	Client Sampl	e Name:	5781, QA-W-1	171110,	11/10/2017 12	2:00:00AM		
Constituent		Result	Units	PQL I	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	105	%	75 - 125 (LCL - U	JCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	80 - 120 (LCL - U	JCL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	ogate)	97.3	%	80 - 120 (LCL - U	JCL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/16/17	11/17/17 04:55	AKM	MS-V14	1	B[K1679	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 10 of 46

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-01	Client Sampl	e Name:	5781, QA	-W-171110), 11/10/2017 12	:00:00AM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	111	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/15/17	11/15/17 16:37	TDH	GC-V9	1	B[K1363	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 11 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	1732381-02	Client Sample	e Name:	5781, MW-A-	W-1711	110, 11/10/2017	1:45:00PM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	111	%	75 - 125 (LCL - L	JCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		104	%	80 - 120 (LCL - L	JCL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	101	%	80 - 120 (LCL - L	JCL)	EPA-8260B			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/16/17	11/17/17 01:04	AKM	MS-V14	1	B[K1679	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-02	Client Sampl	e Name:	5781, MW	/-A-W-171	110, 11/10/2017	1:45:00PM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	108	%	70 - 130 (LC	L - UCL)	EPA-8015B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/15/17	11/15/17 16:57	TDH	GC-V9	1	B[K1363	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 13 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-02	Client Sampl	5781, MW	V-A-W-171	110, 11/10/2017	1:45:00PM			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	51	ug/L	50		EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	te)	105	%	40 - 140 (LC	CL - UCL)	EPA-8015B/TPH d			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	11/14/17	11/15/17 21:55	RSM	GC-5	1	B[K1816	

Page 14 of 46 Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	1732381-03	Client Sample	e Name:	5781, MW-4-W	V-1711	10, 11/10/2017	11:55:00AM		
Constituent		Result	Units	PQL N	MDL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		1.1	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	106	%	75 - 125 (LCL - U	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		99.7	%	80 - 120 (LCL - U	CL)	EPA-8260B			1
4-Bromofluorobenzene (Sui	rrogate)	99.8	%	80 - 120 (LCL - U	CL)	EPA-8260B			1

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/16/17	11/17/17 05:18	AKM	MS-V14	1	B[K1679	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-03	Client Sampl	e Name:	5781, MW	/-4-W-171	110, 11/10/2017			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	99.9	%	70 - 130 (LC	L - UCL)	EPA-8015B			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/15/17	11/15/17 17:18	TDH	GC-V9	1	B[K1363	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 16 of 46

San Jose, CA 95119

6296 San Ignacio Ave, Suite C&D

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640 Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-03	Client Sampl	e Name:	5781, MW	5781, MW-4-W-171110, 11/10/2017 11:55:00AM						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50		EPA-8015B/TPH d	ND		1		
Tetracosane (Surroga	te)	110	%	40 - 140 (LC	CL - UCL)	EPA-8015B/TPH d			1		

			Run			QC				
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B/TPHd	11/14/17	11/15/17 22:08	RSM	GC-5	0.950	B[K1816			

Page 17 of 46 Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	1732381-04	Client Sample	e Name:	5781, MW-5-W	V-1711	10, 11/10/2017	1:10:00PM		
Constituent		Result	Units	PQL N	NDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND	Z1	1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND	Z1	1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND	Z1	1
Ethylbenzene		14	ug/L	0.50		EPA-8260B	ND	Z 1	1
Methyl t-butyl ether		3.7	ug/L	0.50		EPA-8260B	ND	Z 1	1
Toluene		ND	ug/L	0.50		EPA-8260B	ND	Z1	1
Total Xylenes		56	ug/L	1.0		EPA-8260B	ND	Z 1	1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND	Z1	1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND	Z1	1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND	Z1	1
Ethanol		ND	ug/L	250		EPA-8260B	ND	Z1	1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND	Z1	1
1,2-Dichloroethane-d4 (Sur	rogate)	110	%	75 - 125 (LCL - U	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		100	%	80 - 120 (LCL - U	CL)	EPA-8260B			1
4-Bromofluorobenzene (Su	rrogate)	101	%	80 - 120 (LCL - U	CL)	EPA-8260B			1

		Run				QC	
Run # Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1 EPA-8260	11/16/17 1	1/17/17 09:32	AKM	MS-V14	1	B[K1679	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000673170

Page 18 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID: 1732381-04 Client Sample Name:				5781, MW	5781, MW-5-W-171110, 11/10/2017 1:10:00PM							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #			
Gasoline Range Orga	nics (C4 - C12)	5400	ug/L	500		EPA-8015B	ND	A01	1			
a,a,a-Trifluorotoluene	(FID Surrogate)	116	%	70 - 130 (LC	L - UCL)	EPA-8015B			1			

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/15/17	11/16/17 11:26	TDH	GC-V9	10	B[K1363	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 19 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640 Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-04	Client Sampl	Client Sample Name: 5781, MW-5-W-171110, 11/10/2017 1:10:00						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organio	cs (C12 - C24)	620	ug/L	50		EPA-8015B/TPH d	ND	A52	1
Tetracosane (Surroga	te)	89.9	%	40 - 140 (LC	CL - UCL)	EPA-8015B/TPH d			1

			Run			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B/TPHd	11/14/17	11/15/17 22:23	RSM	GC-5	0.960	B[K1816			

Page 20 of 46 Report ID: 1000673170

Reported: 11/17/2017 15:05

Project Number: 351640
Project Manager: Tamera Rogers

Arcadis- San Jose 6296 San Ignacio Ave, Suite C&D San Jose, CA 95119

Total Petroleum Hydrocarbons (Silica Gel Treated)

BCL Sample ID:	e Name:	5781, MW-5-W-171110, 11/10/2017 1:10:00PM							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Diesel Range Organic	cs (C12 - C24)	68	ug/L	50		Luft/TPHd	ND	A52	1
Tetracosane (Surroga	te)	49.5	%	40 - 140 (LC	CL - UCL)	Luft/TPHd			1
Capric acid (Reverse	Surrogate)	0	%	0 - 1 (LCL -	UCL)	Luft/TPHd			1

			Run		QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	Luft/TPHd	11/14/17	11/16/17 03:40	RSM	GC-5	1	B[K1574		

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 21 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	1732381-05	Client Sample	e Name:	5781, MW-6-V	N-1711	10, 11/10/2017	12:48:00PM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	110	%	75 - 125 (LCL - U	JCL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	80 - 120 (LCL - U	JCL)	EPA-8260B			1
4-Bromofluorobenzene (Sui	rrogate)	99.8	%	80 - 120 (LCL - U	JCL)	EPA-8260B			1

Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/16/17	11/17/17 05:41	AKM	MS-V14	1	B[K1679	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, generation, detachment or third party interpretation.

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-05	Client Sampl	e Name:	5781, MW	/-6-W-171	110, 11/10/2017			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	94.5	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/15/17	11/15/17 17:38	TDH	GC-V9	1	B[K1363	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 23 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

BCL Sample ID:	e Name:	5781, MW-6-W-171110, 11/10/2017 12:48:00PM							
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	es (C12 - C24)	ND	ug/L	50		EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	101	%	40 - 140 (LC	L - UCL)	EPA-8015B/TPH d			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/TPHd	11/14/17	11/15/17 22:37	RSM	GC-5	0.980	B[K1816

Page 24 of 46 Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 17	732381-06	Client Sampl	e Name:	5781, MW-7-W	V-1711	10, 11/10/2017	10:35:00AM		
Constituent		Result	Units	PQL N	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surro	ogate)	105	%	75 - 125 (LCL - U	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		103	%	80 - 120 (LCL - U	CL)	EPA-8260B			1
4-Bromofluorobenzene (Surr	rogate)	98.8	%	80 - 120 (LCL - U	CL)	EPA-8260B			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/16/17	11/17/17 06:04	AKM	MS-V14	1	B[K1679	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation. Page 25 of 46

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-06	Client Sampl	e Name:	5781, MW	/-7-W-171	110, 11/10/2017			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	99.6	%	70 - 130 (LC	L - UCL)	EPA-8015B			1

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B	11/15/17	11/15/17 17:58	TDH	GC-V9	1	B[K1363	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 26 of 46

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640 Project Manager: Tamera Rogers

6296 San Ignacio Ave, Suite C&D San Jose, CA 95119

Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-06	Client Sampl	e Name:	5781, MW	5781, MW-7-W-171110, 11/10/2017 10:35:00AM						
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #		
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50		EPA-8015B/TPH d	ND		1		
Tetracosane (Surroga	te)	95.2	%	40 - 140 (LC	L - UCL)	EPA-8015B/TPH d			1		

			Run	QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8015B/TPHd	11/14/17	11/15/17 23:32	RSM	GC-5	0.960	B[K1816	

Page 27 of 46 Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID: 1	732381-07	Client Sample	e Name:	5781, MW-8-W	V-1711	10, 11/10/2017	1:35:00PM		
Constituent		Result	Units	PQL N	/IDL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		2.2	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surr	rogate)	104	%	75 - 125 (LCL - U	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		102	%	80 - 120 (LCL - U	CL)	EPA-8260B			1
4-Bromofluorobenzene (Sur	rogate)	103	%	80 - 120 (LCL - U	CL)	EPA-8260B			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260B	11/16/17	11/17/17 06:27	AKM	MS-V14	1	B[K1679	

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-07	Client Sampl	e Name:	5781, MW	/-8-W-171	110, 11/10/2017	1:35:00PM		
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	102	%	70 - 130 (LC	L - UCL)	EPA-8015B			1

			Run			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	11/15/17	11/15/17 18:18	TDH	GC-V9	1	B[K1363			

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 29 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

BCL Sample ID:	Client Sampl	e Name:	5781, MW	5781, MW-8-W-171110, 11/10/2017 1:35:00PM					
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50		EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	90.7	%	40 - 140 (LC	L - UCL)	EPA-8015B/TPH d			1

			Run		QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID		
1	EPA-8015B/TPHd	11/14/17	11/15/17 23:46	RSM	GC-5	0.970	B[K1816		

Page 30 of 46 Report ID: 1000673170

San Jose, CA 95119

6296 San Ignacio Ave, Suite C&D

Reported: 11/17/2017 15:05

Project Number: 351640
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

BCL Sample ID:	1732381-08	Client Sampl	e Name:	5781, MW-9-V	V-1711	10, 11/10/2017	12:25:00PM		
Constituent		Result	Units	PQL N	MDL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dibromoethane		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260B	ND		1
Ethylbenzene		ND	ug/L	0.50		EPA-8260B	ND		1
Methyl t-butyl ether		0.54	ug/L	0.50		EPA-8260B	ND		1
Toluene		ND	ug/L	0.50		EPA-8260B	ND		1
Total Xylenes		ND	ug/L	1.0		EPA-8260B	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
t-Butyl alcohol		ND	ug/L	10		EPA-8260B	ND		1
Diisopropyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
Ethanol		ND	ug/L	250		EPA-8260B	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50		EPA-8260B	ND		1
1,2-Dichloroethane-d4 (Surrogate)	106	%	75 - 125 (LCL - U	CL)	EPA-8260B			1
Toluene-d8 (Surrogate)		101	%	80 - 120 (LCL - U	CL)	EPA-8260B			1
4-Bromofluorobenzene	(Surrogate)	99.8	%	80 - 120 (LCL - U	CL)	EPA-8260B			1

		Run				QC
Run # Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1 EPA-8260B	11/16/17	11/17/17 06:51	AKM	MS-V14	1	B[K1679

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

All results listed in this report are for the exclusive use of the submitting party. BC Laboratories, Inc. assumes no responsibility for report alteration, separation, detachment or third party interpretation.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

BCL Sample ID:	1732381-08	Client Sampl	e Name:	5781, MW	/-9-W-171	110, 11/10/2017			
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Gasoline Range Organ	nics (C4 - C12)	ND	ug/L	50		EPA-8015B	ND		1
a,a,a-Trifluorotoluene	(FID Surrogate)	98.3	%	70 - 130 (LC	CL - UCL)	EPA-8015B			1

			Run			QC				
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8015B	11/15/17	11/15/17 18:38	TDH	GC-V9	1	B[K1363			

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 32 of 46

Reported: 11/17/2017 15:05

Project: 5781 Project Number: 351640 Project Manager: Tamera Rogers

6296 San Ignacio Ave, Suite C&D San Jose, CA 95119

Arcadis- San Jose

Total Petroleum Hydrocarbons

BCL Sample ID: 1732381-08 Client Sample Name: 5781, MW-9-W-171110, 11/10/2017 12:25:00PM									
Constituent		Result	Units	PQL	MDL	Method	MB Bias	Lab Quals	Run #
Diesel Range Organic	s (C12 - C24)	ND	ug/L	50		EPA-8015B/TPH d	ND		1
Tetracosane (Surroga	te)	77.5	%	40 - 140 (LC	L - UCL)	EPA-8015B/TPH d			1

			Run			QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8015B/TPHd	11/14/17	11/15/17 23:59	RSM	GC-5	0.970	B[K1816

Page 33 of 46 Report ID: 1000673170

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

11/17/2017 15:05 Reported:

Project: 5781 Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B[K1679						
Benzene	B[K1679-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	B[K1679-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	B[K1679-BLK1	ND	ug/L	0.50		
Ethylbenzene	B[K1679-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	B[K1679-BLK1	ND	ug/L	0.50		
Toluene	B[K1679-BLK1	ND	ug/L	0.50		
Total Xylenes	B[K1679-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	B[K1679-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	B[K1679-BLK1	ND	ug/L	10		
Diisopropyl ether	B[K1679-BLK1	ND	ug/L	0.50		
Ethanol	B[K1679-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	B[K1679-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	B[K1679-BLK1	109	%	75 - 12	5 (LCL - UCL)	
Toluene-d8 (Surrogate)	B[K1679-BLK1	102	%	80 - 12	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	B[K1679-BLK1	102	%	80 - 12	0 (LCL - UCL)	

Page 34 of 46 Report ID: 1000673170

San Jose, CA 95119

6296 San Ignacio Ave, Suite C&D

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640
Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Laboratory Control Sample

							Control Limits				
				Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: B[K1679											
Benzene	B[K1679-BS1	LCS	24.977	25.000	ug/L	99.9		70 - 130			
Toluene	B[K1679-BS1	LCS	25.022	25.000	ug/L	100		70 - 130			
1,2-Dichloroethane-d4 (Surrogate)	B[K1679-BS1	LCS	11.260	10.000	ug/L	113		75 - 125			
Toluene-d8 (Surrogate)	B[K1679-BS1	LCS	10.310	10.000	ug/L	103		80 - 120			
4-Bromofluorobenzene (Surrogate)	B[K1679-BS1	LCS	10.460	10.000	ug/L	105		80 - 120			

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 35 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Volatile Organic Analysis (EPA Method 8260B)

Quality Control Report - Precision & Accuracy

									rol Limits		
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: B[K1679	Use	d client samp	le: Y - Des	cription: MV	V-A-W-1711	10, 11/10/	2017 13	3:45			
Benzene	MS	1732381-02	ND	24.326	25.000	ug/L		97.3		70 - 130	
	MSD	1732381-02	ND	24.399	25.000	ug/L	0.3	97.6	20	70 - 130	
Toluene	MS	1732381-02	ND	24.059	25.000	ug/L		96.2		70 - 130	
	MSD	1732381-02	ND	24.521	25.000	ug/L	1.9	98.1	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1732381-02	ND	11.430	10.000	ug/L		114		75 - 125	
	MSD	1732381-02	ND	11.170	10.000	ug/L	2.3	112		75 - 125	
Toluene-d8 (Surrogate)	MS	1732381-02	ND	10.070	10.000	ug/L		101		80 - 120	
	MSD	1732381-02	ND	10.030	10.000	ug/L	0.4	100		80 - 120	
4-Bromofluorobenzene (Surrogate)	MS	1732381-02	ND	10.090	10.000	ug/L		101		80 - 120	
	MSD	1732381-02	ND	10.000	10.000	ug/L	0.9	100		80 - 120	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 36 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B[K1363						
Gasoline Range Organics (C4 - C12)	B[K1363-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (FID Surrogate)	B[K1363-BLK1	103	%	70 - 130	(LCL - UCL)	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 37 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640
Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control L		
				Spike		Percent		Percent		Lab
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals
QC Batch ID: B[K1363										
Gasoline Range Organics (C4 - C12)	B[K1363-BS1	LCS	939.08	1000.0	ug/L	93.9		85 - 115		
a,a,a-Trifluorotoluene (FID Surrogate)	B[K1363-BS1	LCS	39.685	40.000	ug/L	99.2		70 - 130		

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 38 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

									Cont		
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: B[K1363	Use	d client samp	ole: N								
Gasoline Range Organics (C4 - C12)	MS	1730221-56	ND	1032.8	1000.0	ug/L		103		70 - 130	
	MSD	1730221-56	ND	1040.0	1000.0	ug/L	0.7	104	20	70 - 130	
a,a,a-Trifluorotoluene (FID Surrogate)	MS	1730221-56	ND	40.349	40.000	ug/L		101		70 - 130	
	MSD	1730221-56	ND	40.473	40.000	ug/L	0.3	101		70 - 130	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 39 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640
Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B[K1816						
Diesel Range Organics (C12 - C24)	B[K1816-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	B[K1816-BLK1	72.3	%	40 - 14	0 (LCL - UCL)	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 40 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

								Control L	imits		
		_	- "	Spike		Percent		Percent		Lab	
Constituent	QC Sample ID	Type	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals	
QC Batch ID: B[K1816											
Diesel Range Organics (C12 - C24)	B[K1816-BS1	LCS	444.23	500.00	ug/L	88.8		50 - 120			

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 41 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640
Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

				•	•	·		•	Cont	rol Limits	<u>i</u>	
		Source	Source		Spike			Percent		Percent	Lab	
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals	
QC Batch ID: B[K1816	Use	d client samp	le: N									
Diesel Range Organics (C12 - C24)	MS	1730221-82	ND	490.65	500.00	ug/L		98.1		50 - 120		
	MSD	1730221-82	ND	468.32	500.00	ug/L	4.7	93.7	30	50 - 120		
Tetracosane (Surrogate)	MS	1730221-82	ND	20.390	20.008	ug/L		102		40 - 140		
	MSD	1730221-82	ND	18.487	20.008	ug/L	9.8	92.4		40 - 140		

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 42 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640

Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: B[K1574						
Diesel Range Organics (C12 - C24)	B[K1574-BLK1	ND	ug/L	50		
Tetracosane (Surrogate)	B[K1574-BLK1	60.8	%	40 - 140	(LCL - UCL)	
Capric acid (Reverse Surrogate)	B[K1574-BLK1	0	%	0 - 1	1 (LCL - UCL)	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 43 of 46

Arcadis- San Jose Reported: 11/17/2017 15:05

6296 San Ignacio Ave, Suite C&D Project: 5781
San Jose, CA 95119 Project Number: 351640
Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Laboratory Control Sample

								Control L	imits	
Constituent	QC Sample ID	Туре	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: B[K1574										
Diesel Range Organics (C12 - C24)	B[K1574-BS1	LCS	201.79	500.00	ug/L	40.4		20 - 110		
Tetracosane (Surrogate)	B[K1574-BS1	LCS	8.7590	20.008	ug/L	43.8		40 - 140		
Capric acid (Reverse Surrogate)	B[K1574-BS1	LCS	ND	100.00	ug/L	0		0 - 1		

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 44 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781

Project Number: 351640
Project Manager: Tamera Rogers

Total Petroleum Hydrocarbons (Silica Gel Treated)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: B[K1574	Use	ed client samp	ole: N								
Diesel Range Organics (C12 - C24)	MS	1728746-82	ND	242.03	500.00	ug/L		48.4		20 - 110	
	MSD	1728746-82	ND	211.69	500.00	ug/L	13.4	42.3	30	20 - 110	
Tetracosane (Surrogate)	MS	1728746-82	ND	10.620	20.008	ug/L		53.1		40 - 140	
	MSD	1728746-82	ND	9.2110	20.008	ug/L	14.2	46.0		40 - 140	
Capric acid (Reverse Surrogate)	MS	1728746-82	ND	ND	100.00	ug/L		0		0 - 1	
	MSD	1728746-82	ND	ND	100.00	ug/L		0		0 - 1	

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com Page 45 of 46

6296 San Ignacio Ave, Suite C&D

San Jose, CA 95119

Reported: 11/17/2017 15:05

Project: 5781
Project Number: 351640

Project Manager: Tamera Rogers

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected

PQL Practical Quantitation Limit

A01 Detection and quantitation limits are raised due to sample dilution.

A52 Chromatogram not typical of diesel.

Z1 10uL OF ANTIFOAMER SOLUTION ADDED TO THE SAMPLE VOA

Page 46 of 46

Report ID: 1000673170 4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918 www.bclabs.com

ATTACHMENT D

Arcadis Correspondence

Edwards, Carl

From: Edwards, Carl

Sent: Tuesday, October 3, 2017 4:05 PM

To: 'Nowell, Keith, Env. Health'

Cc: James Kiernan; Khatri, Paresh, Env. Health; Roe, Dilan, Env. Health; Rogers, Tamera

Subject: RE: Fuel Leak Case RO253 Unocal #5781, 3535 Pierson St., Oakland

Hi Keith,

Arcadis will proceed with scheduling groundwater sampling for 4Q17 and assess the data against the Low Threat Closure Policy Criteria as part of the 4Q17 groundwater monitoring report submittal.

Given the additional requirements for the report, and that our subcontractor cannot sample the site until mid-November, we are requesting a report submittal deadline of 45 days after quarter end, if that is acceptable.

Thanks, Carl

From: Nowell, Keith, Env. Health [mailto:Keith.Nowell@acgov.org]

Sent: Thursday, September 28, 2017 3:23 PM **To:** Edwards, Carl < Carl. Edwards@arcadis.com>

Cc: Little, Jason <Jason.Little@arcadis.com>; James Kiernan <JKiernan@chevron.com>; Brandt, Katherine <Katherine.Brandt@arcadis.com>; Khatri, Paresh, Env. Health <paresh.khatri@acgov.org>; Roe, Dilan, Env. Health <Dilan.Roe@acgov.org>

Subject: Fuel Leak Case RO253 Unocal #5781, 3535 Pierson St., Oakland

Carl,

Thank you for this follow up email. I received your voice mail message but our outside lines appear down, and I am currently unable to return calls.

I can deny the report entitled *Semi-Annual Status Report, Third Quarter 2017* and the associated monitoring well EDF (confirmation number 3055284500) on GeoTracker for file resubmittal. I have a problem with the hold time exceedance, however, as we'd be trading one potentially bad analysis for another. Perhaps we can adjust the sampling dates to accommodate a well resampling in the near future. Let's discuss.

Does the potential lab contamination have any effect on the SB analyses for samples collected in May 22-23, 2017?

Regards, Keith Nowell

From: Edwards, Carl [mailto:Carl.Edwards@arcadis.com]

Sent: Thursday, September 28, 2017 2:58 PM

To: Nowell, Keith, Env. Health < Keith.Nowell@acgov.org>

Cc: Little, Jason <Jason.Little@arcadis.com>; James Kiernan <JKiernan@chevron.com>; Brandt, Katherine

<Katherine.Brandt@arcadis.com>

Subject: Case #RO0000253

Hi Keith,

We were notified by BC Labs about cross contamination associated with the groundwater samples collected at 3535 Pierson Street for the routine monitoring event conducted on August 1, 2017. The cross contamination occurred while BC Labs was running the sample analyses and is the likely cause of TPH-g detections in onsite wells (MW-A, MW-4, MW-6, MW-7) which have not had detectable TPH-g concentrations for many years. The report was already submitted based on the ACDEH's deadline of September 25, 2017, and we were not able to incorporate this new information into the report.

Arcadis is requesting to remove the current groundwater monitoring report from Geotracker, and upload a new version of the report by October 20, 2017. We are attempting to re-run the groundwater samples, although they are past holding time, to confirm that the lab machinery is indeed the likely source of cross contamination. Please advise if the new reporting deadline is acceptable. This is not to be confused with a separate email, sent on 9/27, requesting that we submit future groundwater monitoring reports 60 days following the sampling event.

Thanks, Carl

Carl Edwards | Environmental Scientist | Carl.Edwards@arcadis-us.com

ARCADIS U.S., Inc. | 100 Montgomery Street, STE 300 | San Francisco, CA, 94104 TM: 415 825 0759

Connect with us! www.arcadis-us.com | LinkedIn | Twitter | Facebook

ARCADIS, Imagine the result

Please consider the environment before printing this email.

This email and any files transmitted with it are the property of Arcadis and its affiliates. All rights, including without limitation copyright, are reserved. This email contains information that may be confidential and may also be privileged. It is for the exclusive use of the intended recipient(s). If you are not an intended recipient, please note that any form of distribution, copying or use of this communication or the information in it is strictly prohibited and may be unlawful. If you have received this communication in error, please return it to the sender and then delete the email and destroy any copies of it. While reasonable precautions have been taken to ensure that no software or viruses are present in our emails, we cannot guarantee that this email or any attachment is virus free or has not been intercepted or changed. Any opinions or other information in this email that do not relate to the official business of Arcadis are neither given nor endorsed by it.

ATTACHMENT E

Linear Regressions

Summary of Statistical Analysis of Groundwater Analytical Data Semi-Annual Status Report and Low Threat Closure Review, Fourth Quarter 2017 Union Oil Company of California, Unocal No. 5781 (351640) 3535 Pierson Street, Oakland, CA

					Data Range							Linear Regre	ssion Analysis		
Const	tituent	Well	Cleanup Goal/Screening Level/Remediation goal (μg/L) ¹	Minimum	Maximum Concentration (μg/L)	Concentration Measured Most Recently (μg/L)	% of Data Above Laboratory Reporting Limit	Start Date	End Date	Coefficient of Determination, R- squared ²	p-value of Correlation (Significance of Slope)	Attenuation Half-life (days)	Trend Direction	Significance of Trend ³	Projected Year to Screening Level
TP	PH-d	MW-5	100	50	64,000	620	97	6/16/2010	11/10/2017	0.40	<0.01	559	Decreasing	Significant	2021
TP	PH-g	MW-5	100	1,600	86,000	5,400	100	6/16/2010	11/10/2017	0.67	<0.01	536	Decreasing	Significant	2024

Notes, Abbreviations and Assumptions:

μg/L = micrograms per liter NS = not significant

NA = not applicable due to increasing trend or non-significant trend

¹ Mention source/reference of CGs/SLs/RGs here.

² Linear regression analysis with R² values <0.1 and no statistically significant trend were defined as having no apparent trend (No Trend).

The control of the c

Sample Information Semi-Annual Status Report, MW-5 Constituent TPH-d

Data Sample Date	Concentration	LN Concentration
Sample Date		LN Concentration
0/40/2040	(ug/L) 3000	8.01
6/16/2010		11.07
9/29/2010	64000	
12/21/2010	11000	9.31
3/10/2011	4900	8.50
6/7/2011	3700	8.22
8/18/2011	5400	8.59
10/4/2011	20000	9.90
1/24/2012	46000	10.74
4/6/2012	21000	9.95
7/2/2012	30000	10.31
1/23/2013	22000	10.00
4/22/2013	7600	8.94
7/31/2013	11000	9.31
10/17/2013	50	3.91
2/24/2014	1,700	7.44
4/17/2014	960	6.87
7/18/2014	2100	7.65
10/21/2014	3000	8.01
1/20/2015	880	6.78
1/20/2015	1800	7.50
6/3/2015	760	6.63
9/7/2015	3800	8.24
12/22/2015	1700	7.44
3/15/2016	1300	7.17
8/25/2016	880	6.78
11/23/2016	4300	8.37
2/10/2017	690	6.54
8/1/2017	450	6.11
11/10/2017	620	6.43

Data quality				
Total # of data points used in regression	29			
# of nondetects	1			
% of data as detects	97			

Results		
Coefficient of Determination (R ²) =	0.3969	
p-Value =	2.50E-04	
Attenuation Rate in Groundwater (K) =	0.0012	days ⁻¹
Attenuation Rate in Groundwater at 90% confidence (K) =	0.0006	days ⁻¹
Chemical Half Life in Groundwater (t _{1/2}) =	5.59E+02	days

Date Screening Level Reached	
Screening Level	100
LN Screening Level	4.6
Intercept	59.740
Slope	-0.0012
Date to Screening Level	2021

Abbreviations and Notes

ug/l = micrograms per liter LN = Natural Logarithm

Sample Information Semi-Annual Status Report, MW-5 Constituent TPH-g

Data		
Sample Date	Concentration	LN Concentration
	(ug/L)	
6/16/2010	29000	10.28
9/29/2010	29000	10.28
12/21/2010	50000	10.82
3/10/2011	48000	10.78
6/7/2011	40000	10.60
8/18/2011	30000	10.31
10/4/2011	42000	10.65
1/24/2012	71000	11.17
4/6/2012	58000	10.97
7/2/2012	53000	10.88
1/23/2013	54000	10.90
4/22/2013	39000	10.57
7/31/2013	35000	10.46
10/17/2013	86000	11.36
2/24/2014	3,900	8.27
4/17/2014	27000	10.20
7/18/2014	6600	8.79
10/21/2014	27000	10.20
1/20/2015	9100	9.12
1/20/2015	10000	9.21
6/3/2015	5100	8.54
9/7/2015	4100	8.32
12/22/2015	5600	8.63
3/15/2016	2200	7.70
6/22/2016	1600	7.38
8/25/2016	2600	7.86
11/23/2016	10000	9.21
2/10/2017	2100	7.65
8/1/2017	1600	7.38
11/10/2017	5400	8.59

Data quality					
30					
0					
100					

Results		
Coefficient of Determination (R ²) =	0.6744	
p-Value =	2.69E-08	
Attenuation Rate in Groundwater (K) =	0.0013	days ⁻¹
Attenuation Rate in Groundwater at 90% confi	dence (K) = 0.0009	days ⁻¹
Chemical Half Life in Groundwater (t _{1/2}) =	5.36E+02	days

Date Screening Level Reached	
Screening Level	100
LN Screening Level	4.6
Intercept	63.452
Slope	-0.0013
Date to Screening Level	2024

Abbreviations and Notes

ug/l = micrograms per liter LN = Natural Logarithm

USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Office of Resource Conservation and Recovery. Unified Guidance. EPA 530-R-09-007.

GeoTracker ESI Page 1 of 1

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_REPORT FILE

SUCCESS

Your GEO_REPORT file has been successfully submitted!

<u>Submittal Type:</u> GEO_REPORT

Semi-Annual Status Report and Low

Report Title: Threat Closure Review, Fourth Quarter

2017

Report Type: Request for Closure

Report Date: 12/21/2017

Facility Global

T0600101467

<u>ID:</u>

Facility Name: UNOCAL #5781

File Name: 351640 2SA17 GWMR Report FIN

12212017-signed.pdf

Organization

Name: ARCADIS

<u>Username:</u> ARCADIS76

<u>IP Address:</u> 199.19.248.121

<u>Submittal</u>

12/21/2017 5:11:59 PM

Date/Time:

Confirmation 4836282551

Number:

Copyright © 2017 State of California