

Roya C. Kambin Project Manager Marketing Business Unit Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, CA 94583 Tel (925) 790-6270 RKambin@chevron.com

March 27, 2013

Alameda County Health Care Services Agency Environmental Health Services Environmental Protection 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 **RECEIVED**

By Alameda County Environmental Health at 8:46 am, Mar 28, 2013

Re: Chevron Facility No. 351642 (Former Unocal Service Station No. 3538) 411 West MacArthur Boulevard Oakland, California

I have reviewed the attached report dated March 27, 2013.

Poja & Kami

I agree with the conclusions and recommendations presented in the referenced report. The information in this report is accurate to the best of my knowledge and all local Agency/Regional Board guidelines have been followed. This report was prepared by AECOM, upon whose assistance and advice I have relied.

This letter is submitted pursuant to the requirements of California Water Code Section 13257(b)(1) and the regulating implementation entitled Appendix A pertaining thereto.

I declare under penalty of perjury that the foregoing is true and correct to the best of my knowledge.

Sincerely,

Roya Kambin Project Manager

Attachment: Low-Threat Case Closure Request by AECOM Environment, Inc.

March 27, 2013

Mr. Keith Nowell
Alameda County Health Care Services Agency (ACEH)
Environmental Health Services
Environmental Protection
1131 Harbor Bay Parkway, Suite 250
Alameda, California 94502

RE: Chevron Site No. 351642 (Former Unocal Service Station No. 3538)

411 West MacArthur Boulevard, Oakland, California

ACEH Case No. RO0000251

Subject: Low-Threat Case Closure Request

Dear Mr. Nowell:

On behalf of Chevron Environmental Management Company, for itself and as Attorney-in-Fact for Union Oil Company of California (Unocal), AECOM is pleased to submit this low-threat case closure request for Chevron Facility No. 351642 (Former Unocal Service Station No. 3538), located at 411 West MacArthur Boulevard, in Oakland, California.

1.0 Introduction

AECOM is requesting Low-Threat Case Closure for this site in accordance with State Water Resources Control Board (SWRCB) Resolution 2012-0016, Policy for Low-Threat Underground Storage Tank Case Closure (Policy) adopted on August 12, 2012. Low-threat closure is warranted because the site meets both the general- and media-specific criteria identified in the Policy as follows:

- Secondary source removal was completed in two excavations, the first in 1989 and then
 in 1998, removing all soil that exceeded the environmental screening levels (ESLs) for
 soil above 10 feet below ground surface (bgs).
- Groundwater concentrations are stable and/or decreasing across the Site.
- The nearest surface water bodies are located over 250 feet downgradient of the defined leading plume edge.
- Benzene was identified in site soils at a maximum concentration of 0.29 milligrams per kilogram (mg/kg) at 10 feet bgs which is below the direct contact and outdoor air exposure screening criteria for commercial/industrial worker scenarios (8.2 mg/kg and 12 mg/kg, respectively).
- The bioattenuation zone is sufficient to prevent vapor intrusion concerns associated with impacts from the former gasoline underground storage tank (UST) system in future land uses.

Attached to this closure request are the 2008 Site Conceptual Model and 2011 Additional Assessment Report, summarizing historical site activities and current status as part of the closure process for former Unocal Service Station No. 3538 (Attachment A). A list of reports associated with this site can be found in the reference section of the site conceptual model in Attachment A.

The following paragraphs and attachments present information and data that support AECOM's request for low threat closure under the Policy.

2.0 Site Description

The site is a former 76 Products service station located on the southwestern corner of the intersection of West MacArthur Boulevard and Webster Street in Oakland, California (**Figure 1**). Two generations of fuel station facilities have been removed from the site: the first in 1989 and the second in 1998 (**Figure 2**). The station building and canopy were left in place following station decommissioning. A small alternator repair/distribution shop currently uses the property. Land use in the vicinity consists of multiple-family residences to the south and west, a public church across the street to the north, and Mosswood Park to the east across Webster Street.

3.0 Conceptual Site Model

3.1 Site Geology and Hydrogeology

The site is located in the Santa Clara Valley Groundwater Basin and the East Bay Plain Subbasin, which is a northwest trending plain bounded on the north by San Pablo Bay, on the south by the Niles Cone Groundwater Basin, and on the east by the contact with Franciscan Basement rock. The East Bay Plain Basin extends beneath San Francisco Bay to the west. The subbasin aquifer system consists of unconsolidated Quaternary sediment. These deposits include the early Pleistocene Santa Clara Formation, the late Pleistocene Alameda Formation, the early Holocene Temescal Formation, and artificial fill. The cumulative thickness of the unconsolidated sediments is about 1,000 feet¹.

Silt and clay mixtures are encountered at the site from the surface to the total depth explored of 30 feet bgs. In some locations, these sediments are underlain by clayey sand and clayey gravel to 30 feet bgs. Intermittent, poorly graded sand layers are encountered from approximately 20 to 27 feet bgs.

Numerous creeks cross the subbasin capturing runoff from the foothills east of the Hayward fault. The groundwater flow is east to west, generally reflecting the local topography. Flow direction and velocity are influenced by buried stream channels that are typically oriented in east-west directions. The total depths of domestic wells within the subbasin reportedly range from 32 to 525 feet with an average of 206 feet. Total depth of municipal and irrigation wells range from 29 to 630 feet with an average of 191 feet¹.

Regional groundwater flow is typically to the southwest toward San Francisco Bay. Municipal drinking water in the area is provided by East Bay Municipal Utility District (EBMUD). No municipal wells have been identified within a ½-mile radius of the site². Designated beneficial uses for

¹ Department of Water Resources, 2004, *California's Groundwater Bulletin – Santa Clara Valley Groundwater Basin, East Bay Plain Subbasin*, February.

² Delta Consultants, Inc., 2008, Site Conceptual Model, November 21, 2008.

groundwater in this basin include municipal, industrial, and agricultural. However, EBMUD states on their website that "EBMUD's water supply begins at the Mokelumne River watershed in the Sierra Nevada and extends 90 miles to the East Bay." Nearly all drinking water in the area comes from surface water. The only groundwater use for EBMUD is at 2600 Grant Avenue in San Leandro, located over 15 miles south of the site. The site operates to supplement the surface water supply during prolonged drought periods and uses the deep aquifer at approximately 500 feet bgs³. There are no current or planned uses for shallow groundwater in the EBMUD service area. Therefore, the shallow groundwater aquifer at the site is not currently, or anticipated in the future to be, a potential source of drinking water.

The most recent groundwater monitoring event was conducted on February 14, 2013. Depth to groundwater measurements were recorded in six monitoring wells (MW-1 through MW-6). The depth to groundwater ranged from 13.66 to 17.98 feet below the top of well casings, and groundwater elevation ranged from 53.46 to 57.71 feet above mean sea level. The groundwater flow direction was calculated to flow to the south/southwest with an average hydraulic gradient of approximately 0.04 feet per foot (ft/ft) (**Figure 3**)⁴.

3.2 Summary of Previous Work

3.2.1 UST History

The former station facilities consisted of two gasoline USTs, a used-oil UST, dispenser islands, and associated product piping. In July 1989, Kaprealian Engineering, Inc. (KEI) oversaw replacement of two (one 10,000-gallon and one 12,000-gallon) gasoline USTs with two new 12,000-gallon gasoline USTs. One 550-gallon used-oil UST and the associated piping for all three tanks were also removed. No apparent holes or cracks were observed in the gasoline USTs; however, four small holes were observed in the used-oil UST. Groundwater encountered in the gasoline UST pit prohibited the collection of soil samples below the former fuel USTs. Six confirmation sidewall samples were collected from the gasoline UST pit at depths of 10 feet bgs. Additionally a soil sample was collected from the used-oil tank pit at 8.5 feet bgs. KEI also collected four soil samples from the piping trenches at depths of 5 to 10 bgs. The analytical results for the fuel tank pit soil samples indicated low concentrations of total petroleum hydrocarbons (TPH) as gasoline (TPHg) ranging from non-detectable to 11 parts per million (ppm), except for one sample, which had 3,100 ppm of TPHg. The soil sample collected from the used-oil pit had no detectable TPHg, TPH as diesel (TPHd), and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Following the sidewall sampling, 1,500-gallons of groundwater was removed from the gasoline UST pit. The groundwater did not recharge and no sample was collected. Subsequent overexcavation of the fuel UST pit was performed by removing 4 linear feet (calculated removal of 50 cubic yards) from the southern and eastern sidewalls, near the soil sample location with 3,100 ppm of TPHg. The postexcavation confirmation sample results were non-detect and 11 mg/kg for TPHg in two samples collected from SW-1(4) and SW4(2), respectively. The approximate amount of soil removed in 1989 was 450 cubic yards.

In September 1998, Gettler-Ryan, Inc. (G-R) oversaw removal of the second-generation fuel facilities including two 12,000-gallon gasoline USTs, two fuel dispenser islands, and associated product piping. No holes or cracks were observed in the USTs. Soil samples were collected from beneath the former fuel USTs and the former product piping. Soil samples contained a maximum TPHg concentration of 360 ppm and benzene of 1.5 ppm at 19.5 feet, and methyl tert-butyl ether (MTBE) was not detected in any of the soil samples. Approximately 380 cubic yards of trenching

³Ken Minn, East Bay Municipal Utility District, Engineering Department, telephone conversation on February 7, 2013.

⁴ AECOM, 2013, First Semi-Annual 2013 Groundwater Monitoring Report, March 13, 2013.

and UST backfill materials from the second station reconfiguration was stockpiled and later transported off-site during the 1998 station demolition.

3.2.2 Site Assessment History

Environmental investigation and assessment activities have been ongoing since 1989. There are currently seven monitoring wells installed at the site. The wells are monitored and sampled semi-annually in the first and third quarters. Remedial activities conducted at the site include the excavation of approximately 830 cubic yards of soil (450 cubic yards in 1989 and 380 cubic yards in 1998) and the removal of 1,500 gallons of groundwater in 1989.

3.3 Current Environmental Conditions

3.3.1 Soil

Hydrocarbon impacted soil is generally encountered at depths deeper than 15 feet bgs on the east side of the property near the former gasoline USTs. The horizontal extent of hydrocarbons in soil is defined by MW-3 to the north; SB-9 to the east; SB-10, SB-5, and SW1 (4) and SB-1 to the south; and SB-4 and MW-4 to the west as shown in **Figure 4** and the tables in **Attachment B**.

The maximum hydrocarbon concentrations in soil after the excavation activities are listed below and are limited to the area just east of the former gasoline USTs. TPHg, TPHd, and BTEX have been detected in soil above the May 2008 revision to the California Regional Water Quality Control Board, San Francisco Bay Region ESLs.

The maximum hydrocarbon concentrations in soil left in place from 0 to 5 feet bgs after excavation activities in 1989 are:

- TPHd: <1.0 mg/kg (MW-1 at 5 feet bgs)
- TPHg: 3.4 mg/kg; (MW-1 at 5 feet bgs)
- Benzene: <0.05 mg/kg (all borings)
- Toluene: <0.025 mg/kg (all borings)
- Ethylbenzene:0.10 mg/kg (SB-9 at 5 feet bgs)
- Total xylenes: 0.059 mg/kg (SB-9 at 5 feet bgs)

Maximum hydrocarbon concentrations detected in soil left in place from 5 to 10 feet after excavation activities in 1989 are:

- TPHd: <1.0 mg/kg (MW-1 at 10 feet bgs)
- TPHg: 17 mg/kg (MW-4 at 10 feet bgs)
- Benzene: 0.29 mg/kg (MW-3 at 10 feet bgs)
- Toluene: 0.011 mg/kg (SB-9 at 10 feet bgs)
- Ethylbenzene: 0.069 mg/kg (SB-9 at 10 feet bgs)
- Total xylenes: 0.28 mg/kg (SB-9 at 10 feet bgs)

Historic soil boring locations and maximum remaining soil detections are depicted on **Figure 4** and the tables in **Attachment B**. A comparison of soil concentrations to the Policy Direct Contact and Outdoor Air Exposure criteria is presented in Section 4.2.3.

3.3.2 Groundwater

The current monitoring well network indicates that residual hydrocarbon impacts are primarily located on-site and that concentrations are stable and decreasing. The groundwater concentrations are well below the ESLs for groundwater not currently a drinking water resource and mostly below the ESLs with groundwater as a potential drinking water resource (**Attachment C**).

	ESL Table	TPHg (µg/l)	Benzene (µg/l)	MTBE (µg/l)
Maximum Groundwater Concentrations on 2/14/2013		<50	<0.30	5.1
Environmental Screening Level – groundwater is potential drinking water resource	F-1a	100	1.0	5.0
Environmental Screening Level – groundwater is not currently a potential drinking water resource	F-1b	210	46	1,800

MTBE has been identified as the primary constituent of concern. MTBE concentrations are limited to the north-central portion of the site, for monitoring well MW-3. MTBE concentrations have significantly decreased since October 1995 to just above the ESL of 5.0 μ g/l as of the first semi-annual 2013 groundwater monitoring event (**Figure 5**). The plume is defined by well MW-5 to the east, MW-2 to the south, MW-1 to the west, and MW-4 and MW-6 to the northwest and northeast, respectively.

The most recent groundwater monitoring and sampling event was conducted in February 2013. Groundwater samples were collected from all the site wells (MW-1 through MW-6). MTBE was the only constituent above its respective ESL $(5.0 \, \mu g/l)$ at a concentration of $5.1 \, \mu g/l$ for monitoring well MW-3. TPHg and benzene were not detected above the laboratory reporting limits, which are below the respective ESLs.

Grab groundwater samples collected during March 2006 and December 2010 show significantly higher groundwater concentrations than groundwater samples collected at the same time from the monitoring well network (**Attachment D**). This difference is likely due to the fine-grained nature of site soil and presence of entrained sediments in the samples. The grab groundwater samples do confirm the groundwater impacts around the former gasoline UST pit and show decreasing concentrations with depth. The 2010 grab groundwater samples are much lower in the same area (SB-3 vs. SB-9 and SB-10 vs. SB-5) showing decreasing concentrations over time. SB-1 groundwater concentrations observed off-site in 2006 are below the conservative groundwater ESLs with groundwater not being a water drinking water resource.

3.3.3 Vapor

Soil vapor has not been investigated at this site. The majority of the site soil is not impacted, and hydrocarbon concentrations in groundwater did not warrant screening for vapor intrusion risk. BTEX and MTBE detected in groundwater are well below the ESLs for potential vapor intrusion concern. Oxygen in soil vapor has also not been measured at this site.

	ESL Table	TPHg (µg/l)	Benzene (µg/l)	MTBE (µg/l)
Maximum Groundwater Concentrations on 2/14/2013		<50	<0.30	5.1
Potential Vapor Intrusion – Residential	E-1	NA	540	24,000
Potential Vapor Intrusion – Commercial	E-1	NA	1,800	8x10 ⁶

In addition, the site has been redeveloped as a repair/distribution facility and a current petroleum source is not present. Petroleum vapor intrusion to indoor air is discussed in section 4.2.2.

3.4 Identification of Sensitive Receptors and Exposure Pathways

3.4.1 Surface Water

The nearest surface water body of concern is Lake Merritt, which is approximately 1 mile south (downgradient and crossgradient) of the site.

3.4.2 Water Supply Wells

No wells were identified within ½-mile of the Site according to DWR records reviewed by Delta Consultants, Inc. The nearest well identified was a private well located approximately 2,500 feet east/southeast of the site².

3.4.3 Potential Human Receptors

The site currently functions as a repair/distribution facility and direct human contact with the soil is prevented by a poured-concrete slab. Additionally, the impacted soil areas are stable in extent and occur primarily at depths greater than 15 feet bgs. No complete exposure pathways have been identified. In 2008, Delta Consultants, Inc. submitted a *Site Conceptual Model* (Attachment A) concluding that current hydrocarbon concentrations in groundwater and soil do not present a significant threat or risk to human health or the environment.

4.0 Request for Closure

4.1 General Criteria

The site-specific characteristics and contaminant trends at the site meet the criteria for closure described in the Policy as follows:

- The area surrounding the site is served by a public water system: East Bay Municipal Utility District.
- The release consisted only of petroleum: criteria met and described in section 3.2.1.
- The "primary" release from the UST system has been stopped: criteria met, leaks stopped in 1989 and 1998 when first and second generation USTs were removed.
- Free product has never been observed at the site.
- A Conceptual Site Model has been developed; see Attachment A and the update in section 3.0.
- Secondary source has been removed to the extent practicable: criteria met, excavations are described in section 3.2.2.
- Soil or groundwater has been tested for MTBE and results reported in accordance with the State of California Health and Safety Code section 25296.15: criteria met, since 1995 MTBE has been tested for in groundwater and in soil since 1998.
- There is no nuisance at this site as defined by Water Code section 13050.

4.2 Media-Specific Criteria

4.2.1 Groundwater-Specific Criteria

Per the Policy, to be considered "low threat," a plume that exceeds water quality objectives (WQOs) must be stable or decreasing in aerial extent and must meet the requirements of one of the five criteria classes. This site meets the criteria for a Class 1 site as described below. For the purpose of drawing plume extents, the ESL for groundwater as a potential drinking water resource is used as a

worst-case scenario. Based on the most recent groundwater monitoring data, the only constituent that exceeds WQOs is MTBE, and the estimated maximum extent of the plume is shown on **Figure 5**.

Well MW-3 is the only site well that currently has constituent concentrations above detection limits. Historically, MW-2 has also had elevated concentrations. MW-2 has exhibited a decline in benzene concentration since the highest concentration of 550 μ g/l was reported in April 1990. Since September 1995, the concentrations of benzene have stabilized near the ESL of 1.0 μ g/l. **Figures 6** and **7** include benzene and MTBE isocontours from four time periods, including the most recent data which illustrate the decrease in groundwater impacts. Hydrographs for MW-2 and MW-3 are included as **Chart 1** and **Chart 2**. These charts show the plume is stable and decreasing in extent. Groundwater concentrations are calculated to reach non-detect levels by 2016 for benzene and 2017 for MTBE.

Class 1 consideration:

- 1. Plume exceeding WQOs is less than 100 feet in length.
- 2. There is no free product.
- 3. The nearest water supply well or surface water body is greater than 250 feet from defined plume boundary.
- 4. Dissolved concentration of benzene is less than 3,000 μ g/l and the dissolved concentration of MTBE is less than 1,000 μ g/l.

The site meets these characteristics as follows:

- 1. Based on the most recent groundwater monitoring data, the largest possible site-related plume is that of MTBE. The exact dimensions of the MTBE plume are difficult to determine; concentrations for monitoring well MW-3 indicate that the plume has been stable in size since 2011 (slightly above the ESL of 5.0 μg/l). Based on the most recent data, the MTBE plume extends approximately 15 feet if measured from edge to edge in the direction of groundwater flow centered on monitoring well MW-3. The MTBE plume gives the worst-case or most-conservative scenario for plume size. The benzene plume meets the low-threat class 1 criteria of less than 100 feet in length. The current dissolved phase MTBE plume is presented on **Figure 5**.
- 2. Free product has never been detected at this site. Groundwater concentrations have never been indicative of phase-separated hydrocarbons.
- 3. The nearest surface water body of concern is Lake Merritt approximately 1 mile south (downgradient and crossgradient) of the site.
- 4. Currently, benzene is below the laboratory method detection limits of 0.30 μg/l for all wells (i.e., less than 3,000 μg/l). The only detected dissolved concentration of MTBE is 5.1 μg/l for MW-3 and all other site wells are below laboratory reporting limits of 1.0 μg/l (i.e., less than 1,000 μg/l). The historically highest benzene concentration was 1,300 μg/l (i.e., less than 3,000 μg/l) for monitoring well MW-3 in July 1991. The historically highest MTBE concentration-site-wide was 4,800 μg/l.

4.2.2 Petroleum Vapor Intrusion to Indoor Air

The Policy provides criteria for evaluating current and future land use scenarios. Soil gas oxygen data are not available for this site. The Policy defines a bioattenuation zone for sites without oxygen data as 5 feet or more of clean soil (less than 100 mg/kg of TPH) between the bottom of existing or

future building's foundation and the shallowest impacted groundwater with benzene concentration less than 100 μ g/l. The lateral extent of the bioattenuation zone is intended to extend 30 feet beyond the future building foundation.

The site is a paved parking lot with a commercial building and the soil data clearly define a bioattenuation zone as shown in scenario 3 of the Policy. The highest TPH detection in soil at 5 feet or shallower remaining after overexcavation is 3.4 mg/kg, which was detected on September 6, 1989. Benzene was not detected in groundwater and is therefore below the threshold concentration of 100 µg/l, which creates a sufficient bioattentuation zone.

Therefore, based on the low concentration and decreasing trend of benzene in groundwater and a sufficient bioattenuation zone, vapor intrusion is considered a low threat at this site.

4.2.3 Direct Contact and Outdoor Air Exposure

The direct contact and outdoor air exposure risk component of the Policy considers multiple exposure scenarios from 0 to 10 feet bgs. Of these, the residential direct contact exposure scenario is the most restrictive, and screening criteria are provided for benzene (1.9 mg/kg), ethylbenzene (21 mg/kg), naphthalene (9.7 mg/kg), and polycyclic aromatic hydrocarbons (PAHs) (0.063 mg/kg) at various depths.

The few residual hydrocarbon impacts that remain in the site soil are generally at depths deeper than 10 feet bgs. Benzene and ethylbenzene were not detected above the Policy criteria for residential, commercial, or utility worker direct contact exposure scenarios. PAHs and naphthalene have not been analyzed at this site. Because no impacts or evidence of a leak were observed below the used-oil UST, which would have been the only potential PAH and naphthalene source, the presence of PAHs or naphthalene above screening levels is unlikely.

As summarized in section 3.3.1, no remaining soil exceeds the Policy criteria for residential, commercial/industrial, or utility worker exposure scenarios. Therefore, direct contact and outdoor air exposure is considered a low threat at this site.

5.0 Conclusions and Recommendations

Site conditions meet all the general and media-specific criteria established in the Policy and, therefore, pose a low threat to human health, safety, and the environment, and satisfy the case-closure requirements of Health and Safety Code section 25296.10. Case closure is consistent with Resolution 92-49. Based on these criteria, AECOM is requesting low-threat closure for this site.

Groundwater data, as presented in this closure request, support the conclusion that the site and the impacted groundwater pose no significant threat to human health or the environment. Therefore, effective immediately, AECOM requests to cease groundwater monitoring and sampling activities pending a response to this request.

6.0 Limitations

Services performed by AECOM are consistent with the level of care and skill ordinarily exercised by members of the same profession currently practicing in the same locality under similar conditions. No expressed or implied representation or warranty is included or intended in our reports, except that our services were performed within the limits prescribed by our client, with the customary thoroughness and competence of our profession.

Should you have any questions or comments, please feel free to contact James Harms at (916) 361-6412 or by the email address listed below his signature.

Sincerely,

James Harms Project Manager

James.harms@aecom.com

Tiina Couture, P.E. Project Engineer

Tiina.Couture@aecom.com

Enclosures:

Figure 1 Site Location Map

Figure 2 Site Plan

Figure 3 Groundwater Contour Map

Figure 4 Maximum Soil Concentration Map Figure 5 Groundwater Concentration Map

Figure 6 Groundwater Dissolved Benzene Concentration Map Figure 7 Groundwater Dissolved MTBE Concentration Map

Chart 1 Point Attenuation for MW-2
Chart 2 Point Attenuation for MW-3

Attachment A Delta Consultants, Inc. 2008 Site Conceptual Model and 2011 Additional

Assessment Report

Attachment B Historical Soil Data
Attachment C Site Groundwater Data

Attachment D Historical Grab Groundwater Data

cc: Mr. Kevin Ma & Mr. Arthur Yu, Property Owners

Attachment A

Delta Consultants, Inc. 2008 Site Conceptual Model and 2011 Additional Assessment Report

October 15, 2008

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Site Conceptual Model (SCM)
76 Service Station # 3538 RO # 251
411 W MaCarthur Blvd.
Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

SITE CONCEPTUAL MODEL FORMER 76 SERVICE STATION NO. 3538 411 W. MAC ARTHUR BOULEVARD OAKLAND, CALIFORNIA

Prepared for:

ConocoPhillips Company 76 Broadway Sacramento, CA 95818

Prepared by:

Delta Consultants, Inc. 312 Piercy Road San Jose, California 95138

November 21, 2008

CERTIFICATION

The following report was prepared under the supervision and direction of the undersigned California Professional Geologist.

BRYAN NO. 7745

DELTA CONSULTANTS, INC.

Debbie Bryan

California Professional Geologist #7745

TABLE OF CONTENTS

CERTIFICATION	I
1.0 INTRODUCTION	1
2.0 SITE LOCATION AND DESCRIPTION	2
2.1 SITE LOCATION	2 2
3.0 SITE SETTING	3
3.1 Regional Geologic Setting	
4.0 NATURE AND EXTENT OF SOURCE	4
4.1 FORMER USTS	4 4 5
5.0 FATE AND TRANSPORT CHARACTERISTICS	6
5.1 Underground Utility Conduits	6 6 7
6.0 SITE REMEDIATION	8
7.0 POTENTIAL SENSITIVE RECEPTORS 7.1 Environmental Screening Levels 7.2 Indoor Air Inhalation - Soil 7.3 Impact to Drinking Water Supply Wells	9 10
8.0 SUMMARY	
9.0 RECOMMENDATIONS	
10.0 LIMITATIONS	13
11 A DEFEDENCES	14

LIST OF FIGURES

Figure 1 – Site Location Map

Figure 2 - Site Plan

Figure 3 – Regional Geologic Map

Figure 4 – Geologic Cross-Section A-A'

Figure 5 – Geologic Cross-Section B-B'

Figure 6 – TPH-G, MTBE Concentration Graph, Well MW-2

Figure 7 – TPH-G, MTBE Concentration Graph, Well MW-3

LIST OF APPENDICES

Appendix A - Historic Facility Plan

Appendix B – Historic Soil Analytical Data (1989 – 1998)

Appendix C – Historic Groundwater Monitoring Data

Appendix D - Soil and Groundwater Analytical Data - 2006

Appendix E – Boring Logs

Appendix F – Groundwater Flow Rose Diagram and Historic Maps

1.0 INTRODUCTION

Delta Consultants, Inc. (Delta), on behalf of ConocoPhillips (COP) has prepared this Site Conceptual Model (SCM) for the 76 Service Station No. 3538 site, located at 411 MacArthur Boulevard in Oakland, California (site) (Figures 1,2). The SCM provides a working hypothesis regarding the current and future distribution of total petroleum hydrocarbons as gasoline (TPH-G) and methyl tert-butyl ether (MTBE) detected in soil and groundwater beneath the site.

The key elements of the SCM are:

- Site history and description
- Regional hydrogeologic setting
- Nature and extent of the petroleum hydrocarbon source(s)
- Contaminant fate and transport characteristics
- Potential exposure pathways
- Potential receptors

2.0 SITE LOCATION AND DESCRIPTION

The following sections provide a description of the site and surrounding area.

2.1 Site Location

The site is located in the southwest corner of the intersection of MacArthur Blvd., and Webster Street in Oakland, California. (Figures 1 and 2)

2.2 Site Description

The subject site (Alameda County Assessor's Parcel # 12-945-46-1) is a former Tosco (76) service station. The site is currently a used car sales lot and is entirely fenced. All petroleum storage and dispensing equipment were removed in September of 1998, during station demolition activities. Six groundwater-monitoring wells are present at and in the site vicinity. The site elevation is approximately 70 feet above mean sea level (MSL).

2.3 Site Owner

The site property was formerly a service station since 1983 when records show the station facility was purchased by the Union Oil Company of California. In 1997 the station was purchased by the Tosco Corporation. The site was sold in 1999 to Arthur Yu and Kevin Ma, 411 W. MacArthur Blvd, Oakland.

3.0 SITE SETTING

The following sections provide a summary of the regional geologic and hydrogeologic setting.

3.1 Regional Geologic Setting

The site is located approximately 2 miles from the San Francisco Bay (Figure 3). Gettler-Ryan Inc., in their report dated December 18, 2000 for a nearby site, provided the following description of the regional geologic setting;

As mapped by E.J. Helley and others (1979), soil in the site vicinity consists of late Pleistocene alluvium consisting of weakly consolidated slightly weathered poorly sorted irregularly interbedded clay, silt, sand, and gravel. Based on the site topography, the regional groundwater flow in the vicinity of the site is inferred to be toward the southwest.

3.2 Regional Hydrogeologic Setting

The site is located at the eastern edge of the East Bay Plain Groundwater Subbasin (DWR Bulletin 118). The East Bay Plain subbasin aquifer system consists of unconsolidated sediments of Quaternary age. Numerous creeks cross the subbasin capturing runoff from foothills east of the Hayward fault. In the site area, streams discharge to San Francisco Bay. The total depth of domestic wells reportedly ranges from 32 to 525 feet with an average of 206 feet. Total depth of municipal and irrigation wells range from 29 to 630 feet with an average of 191 feet (DWR Bulletin 118). Groundwater flow is typically to the southwest toward San Francisco Bay. Water agencies in the area include East Bay Municipal Utility District (East Bay MUD) and Alameda County Flood Control and Water Conservation District. No municipal wells have been identified within a one-half mile radius of the site.

4.0 NATURE AND EXTENT OF SOURCE

The following sections describe the source(s) of the petroleum hydrocarbons that have been detected in soil and groundwater beneath and adjacent to the site.

4.1 Former USTs

A Union Oil Company of California drawing dated 11-21-89 shows the site's gasoline USTs to be located in the eastern corner of the site, and one waste oil UST located near the southeast corner of the station building (Appendix A).. No USTs have existed on the site since 1998.

4.2 UST Removal (1989)

In July of 1989, two gasoline USTs, one 10,000-gallon and one 12,000-gallon, were removed, along with a 550-gallon waste oil UST and all associated piping. The fuel USTs were removed and replaced with two 12,000-gallon USTs. The waste oil UST was not replaced.

No cracks or holes were found in the gasoline USTs, however, four small holes were found in 550-gallon waste oil UST. Soil samples from the fuel UST pit were collected by Kaprealian Engineering Inc., in July 1989. Water was observed in the pit at a depth of 10.5 feet, limiting the depth of soil samples. Samples taken from the sidewalls were collected at a depth of 10 feet below ground surface (bgs). Soil samples were collected at a depth of 8.5 feet bgs in the waste oil UST pit. Samples were also taken from beneath piping trenches to depths of 5 to 10 feet bgs. Soils samples were tested for total petroleum hydrocarbons as gasoline (TPH-G), benzene, toluene, xylenes and ethylbenzene (BTEX compounds). Samples from the waste oil pit were also tested for total petroleum hydrocarbons as diesel (TPH-D), total oil and grease (TOG).

TPH-G was detected in soil samples taken from the sidewalls of the fuel tank pit at a maximum concentration of 3,100 parts per million (ppm). TOG was detected in the soil sample from the waste oil pit showed a TOG at 36 ppm. All other parameters were found to be in low concentrations or not detected at the laboratory reporting limit (**Appendix B**). Areas of impacted soil were subsequently removed by over-excavation. No confirmation soil data is available.

Four monitoring wells (MW-1 through MW-4, Figure 2) were installed following the UST removals. Soil and groundwater analytical data from these wells is contained in Appendix B and Appendix C. Initial groundwater samples were collected on September 15, 1989. TPH-G was detected only in wells MW-2 and MW-3 at 290 micrograms per liter (ug/l) and 32 ug/l.

4.3 UST REMOVAL (1998)

In 1998, both 12,000-gallon fuel USTs and associated product piping were removed during site demolition. No holes or cracks were found in the two USTs. Confirmation soil sample analytical data is contained in **Appendix B**. Soil samples contained maximum concentrations of TPH-G (360 ug/l)and benzene (1.5ug/l). Methyl tert-butyl ether (MTBE) was not detected (Gettler Ryan, 2002).

4.4 Residual Soils as On-Going Source

The most current on-site soil analytical data is from soil borings for SB-3, SB-4, and SB-5 installed in March 2006 (**Appendix D**). With the exception of soil samples from boring SB-3, TPH-G and BTEX compounds were at or near the detection limit. In SB-3, located adjacent to the fuel USTs, TPH-G, benzene, toluene, ethylbenzene, xylenes and MTBE were found to be 6,100 mg/kg, <9.7 mg/kg, 53 mg/kg, 86 mg/kg, 420 mg/kg and <9.7 mg/kg, respectively. Borings SB-1 and SB-2 were located off-site. Boring logs for SB-1 through SB-5 are contained in **Appendix E**.

Historic groundwater data in **Appendix C**, shows that water samples contained maximum concentrations of TPH-G, benzene, xylenes, ethylbenzene, and MTBE in well MW-3 at 21,000 ug/l (MW-3), 1,300 ug/l (MW-3), 4,300 ug/l (MW-3), 1,200 ug/l (MW-3), 4,800 ug/l respectively, with the latest maxima occurring in 1995. Currently, TPH-G, xylenes and ethylbenzene are not detected in either wells MW-3 or MW-2. Current maximum concentrations of MTBE and benzene are 19 ug/l (MW-3) and 1.8 ug/l (MW-2), respectively.

4.5 Summary

A release of gasoline and waste oil from the site USTs occurred sometime before 1989, when soil samples from the UST excavation pit showed a maximum TPH-G concentration of 3,100 ppm and maximum TOG concentration of 36 ppm. No potential sources of petroleum hydrocarbons remain on site. The only area of potential leaching of contaminants to groundwater is in the area of boring SB-3.

5.0 FATE AND TRANSPORT CHARACTERISTICS

The following sections describe potential contaminant migration pathways for petroleum hydrocarbons and MTBE. Plume migration and contaminant concentration trends are discussed.

5.1 Underground Utility Conduits

The exact location and depth information of utility trenches both on-site and in the site vicinity has not been determined. Based on the documents in Delta files, a survey of nearby utilities for the purpose of a preferential pathway evaluation has not been performed. However, depth to groundwater (average of 19 feet bgs) is below the depth of utility trenches, and no survey is now deemed necessary.

5.2 Soil Migration Pathways

Soils beneath the site area are generally fine-grained and do not provide pathways for rapid spread of contaminants. Soils encountered in the 1989 UST replacement excavation were described as primarily clay and clayey sand (KEI, October 1989) to a depth of 16 to 21 feet bgs. Logs for off-site wells MW-5 and MW-6, installed in November 1992, show primarily clay and clayey sand (TRC, April 2006) (Appendix E).

5.3 Hydrogeologic Pathways

Vertical migration of dissolved contaminants beneath the site is hindered by generally fine-grained soil types. Geologic cross-sections are provided as Figures 4 and 5. Groundwater was found seeping into the 1989 UST replacement excavation at a depth of approximately 10.5 feet bgs. Groundwater was first detected in the borings for the three site wells at depths ranging from 19 to 19.5 feet bgs (KEI, October 1989). Wells MW-1 through MW-4 are 29-30 feet deep and are screened from 3.5-5 to 29-30 feet bgs. On September 15, 1989 (first sampling event), static water levels in the wells were not measured. The first recorded depths (April 13, 1993) ranged from 12 (MW-6) to 18 feet bgs (MW-3). Seasonally, depth to groundwater in wells fluctuates approximately 2 to 5 feet. Depth to water in wells over the year typically ranges from approximately 15.5 to 18.5 feet below top of casing in wells MW-1 through MW-5, and from 12 to 18 feet in MW-6.

The groundwater flow direction beneath the site has historically been primarily to the east, with a more recent strong southwest component. A rose diagram showing groundwater flow direction from 1990 until 2008 (a total of 38 monitoring events) is provided in **Appendix F**. The groundwater gradient at the site has historically been approximately 0.01 feet/foot (ft/ft). Historic groundwater contour maps, including the most recent (September 17, 2008), are also contained in **Appendix F**.

The groundwater flow rate beneath the site can be approximated based on the hydraulic conductivity of the soil, groundwater flow gradient and effective soil porosity. The linear groundwater flow rate or velocity (V) can be calculated from the formula:

 $V = (K \times I)/N$

where K = soil coefficient of hydraulic conductivity

I = groundwater gradient

N = effective soil porosity

The predominant soil types beneath the site are clay and clayey sand. The average K for a clay/ clayey sand is estimated in the range of 1×10^{-2} to 1×10^{-3} feet per day (ft/day) and the porosity at 20% (Freeze and Cherry, 1979).

The site hydraulic conductivity has typically been approximately 0.02 ft/ft. Using the above estimated parameters, a groundwater velocity of less than one foot per year is calculated. The flow rate for dissolved petroleum hydrocarbons is typically significantly slower than the groundwater due to physical and chemical interactions with the soil matrix and biological processes.

5.4 Contaminant Migration Model

It appears that a release occurred at some undetermined time from the former site USTs removed in 1989. The former UST pit was partially filled with groundwater, to a level of 10.5 feet bgs. Petroleum hydrocarbons moved very slowly downward by gravity through clay/silty soil until encountering saturated soils at a depth of approximately 19 feet bg. Once contaminants entered the groundwater, they were dissolved and began migrating with the shallow groundwater flow toward the southwest and east.

As the contaminants moved downward, some adhered to the fine-grained soil. The soil impact was limited to the fuel UST source area (SB-3). In 2006, maximum concentrations of MTBE, TPH-G and benzene in soil found in SB-3 was <9.7 mg/kg, 6,100 mg/kg, and <9.7 mg/kg, respectively. These concentrations were taken at a depth of 16 feet. At 14 feet, SB-3 was found to contain 0.11 mg/kg benzene, and 0.64 mg/kg MTBE.

Downgradient extent of analytes from former waste oil UST cannot be established. MW-1 has not shown detections of TPH-G, benzene or MTBE, but has shown a maximum concentration of PCE of 2.7 ug/l on September 15, 1989. Currently, PCE is not detected in MW-1. Trichlorotrifluoroethane has been detected at 4.3 ug/l on September 9, 2007. Installation of additional wells and advancement of borings downgradient from the former waste oil UST is limited by residences in the immediate downgradient direction (Figure 2).

5.5 Concentration Trends

TPH-G has only been detected in wells MW-2 and MW-3. TPH-G concentration graphs are shown on **Figures 6** and 7. The graphs illustrate the declining trend in TPH-G concentrations from a maximum of 21,000 ug/l in 1992 to 56 ug/l in September 2008 for well MW-3, and from 3,900 ug/l in 1990 to less than 50 ug/l in September of 2008 for MW-2.

MTBE has been detected in wells MW-2, MW-3 and to a lesser extent, MW-4. MTBE concentrations are shown on the same graphs for wells MW-2 and MW-3. The graphs illustrate the high concentration stance of MTBE of 4,800 ug/l in well MW-3 in 1995, and 260 ug/l in well MW-2 1997. Currently, concentrations in wells MW-2 and MW-3 are 3.1 ug/l and 43 ug/l, respectively.

BTEX concentrations in wells MW-2 and MW-3 historically have been high, and tend to vary with TPH-G trends. Currently the only benzene detection is in well MW-2 at 1.6 ug/l.

6.0 SITE REMEDIATION

In October 1989, approximately 4 feet of the side wall soil was excavated from the fuel tank pit.

In October 1998, approximately 380 cubic yards of soil was disposed of off-site during site demolition activities.

7.0 POTENTIAL SENSITIVE RECEPTORS

The following sections evaluate the various potential impacts to sensitive receptors from petroleum hydrocarbons and MTBE detected in soil and groundwater.

7.1 Environmental Screening Levels

The California Regional Water Quality Control Board, San Francisco Bay Region (RWQCB) has published Environmental Screening Levels (ESLs) for chemicals commonly found in soil and groundwater at sites where releases of chemicals have occurred. The RWQCB notes "The ESLs are considered to be conservative." The tables below compare site specific soil and groundwater concentrations for TPH-G, benzene, and MTBE with ESLs for various potential sensitive receptors. The ESL tables for various sensitive receptors as found in the November 2007 publication are referenced.

,	ESL Table	TPH-G (mg/kg)	Benzene (mg/kg)	MTBE (mg/kg)
Maximum Concentration Detected in Soil Sample		6,100 (SB-3 at 16')	<9.7 (SB-3 at 16')	<9.7 (SB-3 at 16')
Groundwater Protection (shallow soils <3 meters)*	A-1	83	0.044	0.023
Groundwater Protection (deep soils >3 meters)*	C-1	83	0.044	0.023
Direct Exposure - Residential	K-1	110	0.12	30
Direct Exposure – Commercial	K-2	450	0.27	65
Direct Exposure – Construction/Trench Workers	K-3	42,000	12	2,800

^{*} Ingestion. Groundwater considered a current or potential source of drinking water.

	ESL Table	TPH-G (ug/L)	Benzene (ug/L)	MTBE (ug/L)
Concentration Groundwater 3/27/08		<50	1.8	1.3
Potential Vapor Intrusion - Residential	E-1	NA	540	24,000
Potential Vapor Intrusion - Commercial	E-1	NA	1,800	8,000,000
California Maximum Contaminant Level (MCL)	F-3	NA	1.0	13

The maximum soil concentration for TPH-G, benzene and MTBE in the area of boring SB-3, exceeds the ESL for leaching to groundwater considered as a current or potential source of drinking water. The site specific conditions are considered to mitigate these exceedances. The site is underlain by clay and clayey sand that impede contaminant leaching. MTBE is detected below the MCL of 13 ug/l with a decreasing concentration trend indicating a lack of significant leaching.

The maximum groundwater concentration for benzene of 1.8 ug/l exceeds the ESL of 1.0 ug/l. PCE and TCE concentrations (<0.5ug/l and 4.3 ug/l, respectively) collected in September 27, 2007 did not exceed the MCL of 5.0 ug/l.

7.2 Indoor Air Inhalation - Soil

No ESLs have been established for protection of indoor air from impacted soil. The RWQCB recommends direct measurement of soil gas concentrations in soil. The upward migration of any petroleum hydrocarbons remaining in soil is limited due to the silty nature of site soils and the generally low concentrations and limited area of soil impacts. The threat of soil vapors impacting indoor air quality is considered minimal.

7.3 Impact to Drinking Water Supply Wells

A sensitive receptor survey has been conducted for the site. According to the California Department of Water Resources (DWR) records, no water supply wells have been located within 2,000 feet of the site. The nearest well identified was a private water well located approximately 2,500 feet east-southeast of the site.

8.0 SUMMARY

Delta has prepared an SCM that describes the occurrence, migration, and fate of petroleum hydrocarbons and MTBE previously identified beneath the. The following are the key observations and conclusions;

- Site soils are generally fine-grained consisting of clay and clayey sand. The groundwater flow rate is
 estimated at less than one foot per year. The primary direction of groundwater flow is to east and to the
 southwest.
- Groundwater typically occurs at a depth of approximately 12 to 18 feet below top of casing. Depth to groundwater in monitoring wells fluctuates 2 to 5 feet annually
- Facility plans from 1989 indicate that the site gasoline USTs were located in the eastern portion of the property, while the waste oil UST was located just southeast of the service building.
- A release of gasoline and waste oil from the site USTs appears to have occurred prior to July 1989. Soil samples from the UST pits showed a maximum concentration of TPH-G of 3,100 ppm, and 36 ppm of TOG. Petroleum hydrocarbons moved downward from the base of the USTs through 6 to 7 feet of vadose zone. The petroleum hydrocarbons dissolved into the groundwater at a depth of approximately 19 feet bgs and migrated to the southwest and east with the natural groundwater flow gradient.
- TPH-G, was detected in the first groundwater samples collected from wells MW-2 and MW-3 in September 15, 1989 at 290 ug/l and 32ug/l, respectively. Well MW-2 is located approximately 15 feet downgradient of the USTs, and well MW-3 is located approximately 10 feet up gradient from the USTs. TPH-G has only been detected in wells MW-2 and MW-3. TPH-G and BTEX compounds were not detected in the groundwater from boring SB-2, located east (downgradient) of the site (Figure 2).
- TPH-G and MTBE concentrations in groundwater samples from wells MW-2 and MW-3 continue to decline.
 MTBE was detected in the March 27, 2008 sample from wells MW-2 and MW-3 at 1.3 ug/l and 19 ug/l, respectively.
- A comparison of TPH-G, benzene, and MTBE concentrations in site soil and groundwater with RWQCB ESLs indicates that they do not pose a significant risk to public health or the environment.

9.0 RECOMMENDATIONS

Additional groundwater samples are needed to determine the southwestern extent of contamination from the former waste oil UST, however, access to ideal drilling locations is limited by residences south of the site (Figure 2). One possibility would be to gain access to a parcel located directly south of MW-2, which appears to be an empty (parking) lot. Locations on-site are limited due to the recent construction of additional structures over the location of the former waste oil UST. Future boring locations should not be more than 30 feet from the site due to the low groundwater velocity.

Delta recommends collection of a groundwater sample south of the site (**Figure 2**). MTBE and TBA were detected in the "grab" groundwater sample from boring SB-1 located south the site. Direct-push drill equipment will be used to collect a groundwater sample at a depth of approximately 19 feet bgs. The sample will be analyzed for TPH-G, BTEX compounds, MTBE, and TBA.

10.0 LIMITATIONS

The recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

11.0 REFERENCES

- MPDS Services Inc., Baseline Due Dilligence, 76 Station #3538, 411 W. MacArthur Blvd, Oakland CA, February 9, 1997,
- California Department of Water Resources, *Bulletin 118 Updated 2003, California's Groundwater*, October 2003.
- Gettler-Ryan Inc., Request for Closure, 76 Station 3538, 411 MacArthur Blvd, Oakland, California, October 30, 2002.
- Gettler-Ryan Inc., Well Installation Report, Tosco (76) Service Station No. 0018, 6201 Claremont Avenue, Oakland, California, December 18, 2000.
- Kaprealian Engineering, Inc., Continuing Ground Water Investigation, Unocal Service Station 3538, 411 MacArthur Blvd., Oakland, California, January 18, 1993.
- Kaprealian Engineering, Inc., Preliminary Ground Water Investigation, Unocal Service Station 3538, 411 MacArthur Blvd., Oakland, California, October, 23, 1989.
- TRC, Quarterly Monitoring Report, October 2007 through March 2008, 76 Service Station 3538, 411 MacArthur Blvd., Oakland, California, April 15, 2008.
- TRC, Soil and Groundwater Investigation Report, 76 Station 3538, 411 MacArthur Blvd, Oakland, California, April 28, 2006.

FIGURES

FIGURE 1 SITE LOCATION MAP

FORMER 76 STATION NO. 3538 411 WEST MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

PROJECT NO.	DRAWN BY
C103538	JH 11/14/08
FILE NO.	PREPARED BY
3538-Site Locator	NP
REVISION NO.	REVIEWED BY
	DB

SOURCE: USGS 7.5 MINUTE TOPOGRAPHIC MAP, OAKLAND WEST QUADRANGLE (1993)

Figure 3 – Regional Geologic Map

Qha = Alluvium (Holocene)

Qs = Beach and dune sand

Qpa = Alluvium (Pliestocene)

Kfs/fsr = Franciscan Complex (Cretaceous)

Geologic Map of the San Francisco Bay Area; Geology and Geologic

Hazards; U.S.Geological Survey

APPENDIX A Historic Facility Plan

RL 27.00° 1174"00°15" ₩ Section of the sectio 5 -PROPERTY AND SY ISHAN AN COMMINY 2 COLLE SIDEMALE CONIC APPROACH coul material CONTRACTOR OFFICE ANTHROP & 1715
THE PROPERTY OF THE STATE (1/21/05) e 29 PIPING LEGEND were session rende متباد ميسك sires nice meste MAC ARTHUR BOULEVARD GENERAL ARRANGEMENT WHICH OIL DECINCE STORON *0550 THE METHON BLUE I VERSITER HE er:ea ALC 1-270 11.

3538

APPENDIX B

Historic Soil Analytical Data (1989-1992)

KEI-P89-0703.R6 January 18, 1993

TABLE 3
SUMMARY OF LABORATORY ANALYSES SOIL

	Depth (feet)	TPH as Diesel	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u> Toluene</u>	Xylenes	Ethyl- benzene
		(Colle	cted on Ju	ly 12 & 1'	7, 1989)		
SW1	10.0	··· —	3,100	12	300	730	110
SW1(4)	10.0		ИD	ИD	ИД	ND	ND
SW2	10.0		1.1	0.10	ИD	0.18	ИD
ews.	10.0	***	5,7	0.26	ИД	0.45	0.23
5W4	10.0		2,5	ND	ND	0.24	ND
SW4 (2)	10.0	Art And	1.1	0.61	0.51	1.3	0.44
P1	6.5		ND	ND	ND	ИD	ND
P2	6.5	P-0 P-4	CIN	ИD	ND	ND	ИD
P3	5.5		ND	ИD	ИD	ND	ИD
P4	10.0	***	170	0.71	12	47	6.8
WO1*	8,5	ND	ND	ND	ИD	ИD	ND
		(Collect	ed on Sept	ember 6 &	7, 1989)	•	
MW1(5)**	5.0	ИD	3.4	ИD	ИD	ND	ND
MW1(10)**		ND	5.0	ND	ND	ND	ИD
MW1 (15) **		ND	2.2	ND	ND	ND	ND
MW1(19)**		ND	ND	ND	ND	ИD	ИД
MW2 (5)	5.0	tre Pa	1.4	ПN	ND	ND	ND
MW2(10)	10.0	3-4 3-4	ND	ΝП	ND	ND	ND
MW2 (15)	15.0		1.8	ND	ND	ND	ИĎ
MW2 (19)	19.0	*** ***	13	1.5	2.1	1.8	0.34
MW3 (5)	5,0		1,3	ND	ND	ND	ND
MW3 (10)	10.0		1.8	0.29	ND	ND	ND
MW3 (15)	15.0	***	3,3	ND	ND	ND	ND
MW3 (18.5)			ИD	ДИ	ND	ир	ND
11113 (2013)	1013		11.0	***	11.5		
MW4 (5)	5.0		3,1	ИD	ИО	ИD	ИD
MW4(10)	10.0		17	ИD	ИD	0,10	ИD
MW4 (15)	15.0		20	ИD	ND	0.27	ИD
MW4(18.5)	18.5	272 2704	2.1	ИD	ИD	ND	СИ

KET-P89-0703.R6 January 18, 1993

TABLE 3 (Continued)

SUMMARY OF LABORATORY ANALYSES SOIL

<u>Sample</u>	Depth <u>(feet)</u>	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	Toluene	Xylenes	Ethyl- <u>benzene</u>
		(Colle	ected on No	ovember 18	3, 1992)		
MW5 (5)	5.0		ND	ND	ND	ND	ND
MW5 (10)	10.0	500F T-06	ИD	ND	ND	ИD	ND
MW5 (15)	15.0	44	ИD	ИD	ИD	ИD	ND
MW5 (21)	21.0	w w	ИД	ИД	ИД	ИD	ND
MW6(5)	5.0	<u></u>	ND	ND	ND	ИД	ИD
MW6(10)	10.0	·	ИD	ND	ND	ИD	ND
MW6(15)	15.0	~ ·-	ND	ND	ND	ИD	ND
MW6(19.5			ND	ND	ND	dи	ND

- * TOG was 36 ppm, and EPA method 8010 and 8270 constituents were non-detectable.
- ** TOG was <50 ppm for these samples. EPA method 8010 compounds were non-detectable for these samples.

ND = Non-detectable.

-- Indicates analysis was not performed.

Results in parts per million (ppm), unless otherwise indicated.

APPENDIX C Historic Groundwater Monitoring Data

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	$(\mu g/l)$	(μg/l)	(µg/l)	
MW-1													
9/15/198	39					ND ·	ND	0.61	ND	ND			
. 1/23/199	90	<u></u>			- -	ND	1.5	2.3	ND	4.3			
4/19/199						ND	ND	ND	ND	ND			
7/17/199	90			_		ND	ND	ND	ND	ND			
10/16/19	90					ND	ND	ND	ND	ND			
1/15/199	91			_		ND	ND	ND	ND	ND			
4/12/199	91	***			-	ND	ND .	ND	ND	ND		. —	
7/15/199	91					ND	ND	ND	ND	ND		_	
7/14/199) 2				_	ND	ND	ND	ND	ND		-	
4/13/199	93 72.43	3 17.70	0.00	54.73		_	_						Sampled Q3 only
7/14/199	93 72.43	3 18.49	0.00	53.94	-0.79	ND	2.2	2.1	1.1	6.2			
10/14/19	93 72.10	18.32	0.00	53.78	-0.16				-				Sampled Q3 only
1/12/199	94 72.10	18.18	0.00	53.92	0.14				No.				Sampled Q3 only
4/11/199	94 72.10	17.80	0.00	54.30	0.38				_				Sampled Q3 only
7/7/199	4 72.10	18.28	0.00	53.82	-0.48	ND	ND	ND	ND	ND		_	
10/5/199	94 72.19	18.55	0.00	53. 5 5	-0.27							· · · · ·	Sampled Q3 only
1/9/199	5 72.10	17.90	0.00	54.20	0.65								Sampled Q3 only
4/17/199	95 72.10	17.22	0.00	54.88	0.68		_						Sampled Q3 only
7/19/199	95 72.10	18.03	0.00	54.07	-0.81	ND	ND	ND	ND	ND			
10/26/19	95 72.10	18.67	0.00	53.43	-0.64	-							Sampled Q3 only
1/16/199	96 72.10	17.20	0.00	54.90	1.47	-							Sampled Q3 only
4/15/199	96 72.10	17.40	0.00	54.70	-0.20								Sampled Q3 only

©TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G			Ethy!-	Total	МТВЕ	MTBE	Comments
·				Elevation		(8015M)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	•
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-1	continue	i											
7/11/19	96 72.10	18.03	0.00	54.07	-0.63	ND	ND	ND	ND	ND	ND		
1/17/19	97 72.10) 16.54	0.00	55.56	1.49		~		_	-			Sampled Q3 only
7/21/19	97 72.10	18.16	0.00	53.94	-1.62	ND	ND	ND	ND	ND	ND		
1/14/19	98 72.1	16.05	0.00	56.05	2.11				_				Sampled Q3 only
7/6/199	98 72.10	16.46	0.00	55.64	-0.41	ND	ND	ND	ND	ND	ND		
1/13/19	99 72.10	17.37	0.00	54.73	-0.91								Sampled Q3 only
8/31/19	99 72.12	2 17.00	0.00	55.12	0.39	ND	ND	ND	ND	ND	ND		
1/21/20	00 72.13	2 17.04	0.00	55.08	-0.04	~-							Sampled Q3 only
7/10/20	00 72.13	2 18.10	0.00	54.02	-i.06	ND	ND	ND	ND	ND	ND		
1/4/200	72.13	2 17.95	0.00	54.17	0.15				***				Sampled Q3 only
7/16/20	01 72.13	2 18.03	0.00	54.09	-0.08	ND	ND	ND	ND	ND	ND		
1/28/20	02 72.13	2 17.31	0.00	54.81	0.72		-				_		SAMPLED ANNUALLY
7/12/20	02 72.1	2 18.15	0.00	53.97	-0.84	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
1/14/20	03 72.1	2 17.66	0.00	54.46	0.49					_ [20	Sampled Q3 only
7/10/20	03 72.1	2 17.86	0.00	54.26	-0.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
2/4/200)4 72.13	2 17.43	0.00	54.69	0.43					-			Sampled Q3 only
7/29/20	04 72.1	2 18.12	0.00	54.00	-0.69	ND<50	ND<0.3	0.38	ND<0.3	ND<0.6	ND<1	ND<0.5	
3/2/200)5 72.1	2 16.15	0.00	55.97	1.97	-	-					_	Sampled Q3 only
9/30/20	05 72.1	2 18.04	0.00	54.08	-1.89	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
3/23/20	06 72.1:	2 –	***					***			styr gift		Inaccessible due to gate; Sampled Q3 only
9/26/20	06 72.1	2 17.90	0.00	54.22		ND<50	ND<0.30	ND<0.30	ND<0,30	ND<0.60	ND<1.0	ND<0.50	
3/15/20	07 72.1:	2 17.22	0.00	54.90	0.68		-			[Sampled Q3 only
3538								Page 2	2 of 13	[©TRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS September 1989 Through September 2008 Former 76 Station 3538

Date	TOC	Depth to	LPH	Ground-	Change								Comments
Sampled	Elevation	Water	Thickness	water Elevation	in Elevation	TPH-G (8015M)	Benzene	Toluene	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	(δ013M1) (μg/l)	Benzene (μg/l)	i oluene (μg/l)	benzene (μg/l)	Xylenes	(8021B)	(8260B)	
			(ICCI)	(reet)	(Teet)	(µg/t)	(μg/1)	(µg/1)	(μg/1)	(µg/l)	(µg/l)	(μg/l)	
MW-1 9/27/200	continued 77 72.12		0.00	53.63	-1.27	ND<50	NID-0 20	ND-0 20	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
3/27/200				54.55	0.92		0.50~UM	MD~0.30	ND~0.30	טס.ט~עואו	ND~1.0		Sampled Q3 only
9/17/200				53.92	-0.63	 ND<50	MD~0.30	ND-0.20	 ND<0.30	ND<0.60	 ND<1.0	 ND<0.50	Sampled Q5 only
	JO /2.12	. 10.20	0.00	33.92	-0.03	ND~30	MD~0.30	ND~0.50	טכ.ט~עא	0.00 עמו	ND~1.0	ND<0.50	
MW-2	on					200	220	10	```	3.770			
9/15/198						290	ND	12	ND	ND	_		
1/23/199						400	73	36	10	40			
4/19/199						3900	550	5.1	91	390	_		
7/17/199		_		_		490	76	0.59	11	46	****	ule Au-	
10/16/19		_		**	***	1400	430	2.0	48	240			
1/15/199						680	170	0.7	19	81			
4/12/19						2200	160	4.3	23	62			
7/15/199	91					2200	770	12	72	370		_	
10/15/19	91		***			140	44	0.56	1.5	12			
1/15/199	92	No.				220	37	0.52	1.1	7		-	
4/14/199	92					150	6.2	ND	ND	1.4			
7/14/19	92					130	3.7	ND	ND	ND			
10/12/19	92					370	3.4	0.56	ND	11			
1/8/199	93					510	ND	ND	ND	ND			
4/13/19	93 71.63	17.86	0.00	53.77		410	42	7.7	6.4	28	200		
7/14/19	93 71.63	18.38	0.00	53.25	-0.52	110	6.5	ND	ND	1,1	250	_	
10/14/19	93 71.38	18.20	0.00	53.18	-0.07	230	5.3	ND	ND	2.1			
1/12/19	94 71.38	18.08	0.00	53.30	0.12	300	7.8	3.8	1.8	10			
4/9/199	94 71.38	17.97	0.00	53.41	0.11	120	10	0.88	1.1	4.9			
3538								Page 3	of 13				@TPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date Sampled	TOC	Depth to Water	LPH Thickness	Ground- water	Change					_			Comments
Samplet .	EIGVALION	YY atol	1 IIICKIICSS		in Elevation	TPH-G (8015M)	Benzene	Talaama	Ethyl-	Total	MTBE (8021B)	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	(8013N1) (µg/l)	(µg/l)	Toluene (μg/l)	benzene (µg/I)	Xylenes (μg/l)	(8021B) (μg/l)	(8260B) (μg/l)	
			(ICCI)	(1001)	(1001)	(µ5/1)	(MB/1)	(46/1/	(#5/1)	(#5/1)	(48/1)	(µg/1)	
MW-2 4/11/199	continued 94 71.38		0.00	53.50	0.09			-					
7/7/199				53.57	0.07	110	4.4	ND	ND	ND	-		
10/5/199				53.05	-0.52	720	20	ND	ND	3.1			
1/9/199:		17.40	0.00	53.98	0.93	ND	ND	ND	ND	ND			
4/17/199	5 71.38	17.50	0.00	53.88	-0.10	93	5.6	0.62	1.7	5.5			
7/19/199		18.01	0.00	53.37	-0.51	77	32	0.58	1.7	4.1			
10/26/19	95 71.38	18.21	0.00	53.17	-0.20	54	13	ND	ND	0.72	220		
1/16/199	6 71.38	16.58	0.00	54.80	1.63	120	23	ND	ND	0.99			
4/15/199	96 71.38	17.61	0.00	53.77	-1.03	340	21	ND	2.2	3.7	45		
7/11/199	6 71.38	17.98	0.00	53.40	-0.37	540	34	ND	4.3	12	150		
1/17/199	71.38	17.08	0.00	54.30	0.90	320	63	2.4	9.4	26	260		
7/21/199	71.38	18.06	0.00	53.32	-0.98	160	13	ND	1.3	1.6	180		
1/14/199	98 71.38	16.52	0.00	54.86	1.54	66	6.3	ND	ND	0.98	100		
7/6/199	8 71.38	16.87	0.00	54.51	-0.35	ND	2.3	ND	ND	ND	11	-	
1/13/199	99 71.38	17.88	0.00	53.50	-1.01	53	24	ND	0.52	0.98	120		
8/31/199	99 71.34	18.45	0.00	52.89	-0.61	. 86	14	ND	0.63	ND	21	_	
1/21/200	00 71.34	17.73	0.00	53.61	0.72	ND	1.94	ND	ND	ND	10.1		
7/10/200	00 71.34	18.14	0.00	53.20	-0.41	ND	ND	ND	ND	ND	46.6	-	
1/4/200	1 71.34	18.02	0.00	53.32	0.12	ND	0.925	ND	ND	ND	ND		
7/16/200		18.02	0.00	53.32	0.00	ND	ND	ND	ND	ND	ND		
1/28/200	02 71.34	17.57	7 0.00	53.77	0.45	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
7/12/200		18.05	0.00	53.29	-0.48	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
1/14/200	03 71.34	17.44	0.00	53.90	0.61	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		

OTRC

Page 4 of 13

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date	TOC	Depth to	LPH	Ground-	Change								Comments
Sampled	Elevation	Water	Thickness	water Elevation	ın Elevation	TPH-G	D	T	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	(8015M) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (μg/l)	Xylenes (μg/l)	(8021B) (μg/l)	(8260B) (µg/l)	
			(1000)	(1001)	(1001)	(PB/1)	(με/1)	(HB/1)	(με/1)	(μg/1)	(µg/1)	(148/1)	
MW-2 7/10/20	continued 03 71.34												Car parked over well
2/4/200				54.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0	~~	our punted over non
7/29/20												***	Sampled Q3 only
3/2/200			0.00	54.71	****	99	26	ND<0.50	3.5	2.8	ND<5.0		
9/30/20				53.40	-1.31	ND<50	i.2	ND<0.30		ND<0.60	1.6		
3/23/20				54.60	1.20	ND<50	3.6	ND<0.30	0.35	ND<0.60	2.5		
9/26/20				53.43	-1.17	ND<50	1.2	ND<0.30		ND<0.60	ND<1.0		
3/15/20		17.45	0.00	53.89	0.46	110	6.5	ND<0.30	0.70	ND<0.60	1.7		
9/27/20				53.11	-0.78	ND<50	ND<0.30	ND<0.30		ND<0.60	ND<1.0		
3/27/20		17.77	0.00	53.57	0.46	ND<50	1.8		ND<0.30		1.3		
9/17/20	08 71.34	18.06	0.00	53.28	-0.29	ND<50	1.6	ND<0.30	ND<0.30	ND<0.60	3.1		
MW-3													
9/15/19	89				-	32	ND	ND	ND	ND		-	
1/23/19	90	-		_		450	110	1.2	4.4	11			
4/19/19	90			_		3100	600	27	54	220			
7/17/19	90			_		4000	270	48	130	250		***	
10/16/19	90	_				740	210	1.4	2.5	82			
1/15/19	91				_	3200	460	1.5	120	270		-	
4/12/19	91				_	880	170	1.1	34	110			
7/15/19	91					9200	1300	230	490	1900			
10/15/19	91 –					3100	390	34	150	390			
1/15/19	92		_			3000	590	14	310	750	_		
4/14/19	92					14000	660	48	560	2000			
3538								Page (5 of 13				OTRC

Table 2 HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS September 1989 Through September 2008 Former 76 Station 3538

Date Sampled	TO(Depth to Water	LPH Thickness	Ground- water	Change	TPH-G			Ethyı-	Total	MTBE	мтве	Comments
					Elevation	Elevation	(8015M)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(fee	t)	(feet)	(feet)	(feet)	(feet)	(μg/l)							
MW-3		nued												
7/14/19	992			•••			21000	890	200	1200	4300			
10/12/19					_		3200	160	10	230	540			
1/8/199					-		1100	48	0.99	0.9	93			
4/13/19	993 7	2.06	17.96	0.00	54.10		12000	290	38	760	2300	1400		
7/14/19	993 7	2.06	18.54	0.00	53.52	-0.58	6300	190	ND	430	1000	860	-	
10/14/19		1.86	18.45	0.00	53.41	-0.11	2500	52	ND	110	250			
1/12/19	994 7	1.86	18.34	0.00	53.52	0.11	3800	78	ND	180	390			
4/9/19	94 7	1.86	18.19	0.00	53.67	0.15	1800	22	ND	140	280			
4/11/19	994 7	1.86	18.12	0.00	53.74	0.07	-	-				_		
7/7/19	94 7	1.86	18.21	0.00	53.65	-0.09	110	4.5	ND	ND	ND	-		
10/5/19	994 7	1.86	18.58	0.00	53.28	-0.37	ND	ND	ND	ND	ND			
1/9/19	95 7	1.86	17.69	0.00	54.17	0.89	ND	0.68	ND	ND	ND			
4/17/19	995 7	1.86	17.68	0.00	54.18	0.01	3700	80	10	270	510			
7/19/19	995 7	1.86	18.20	0.00	53.66	-0.52	15000	330	27	990	2400			
10/26/19	995 7	1.86	18.32	0.00	53.54	-0.12	14000	420	180	750	1600	4800		
1/16/19	996 7	1.86	17.95	0.00	53.91	0.37	920	38	ND	30	57			
4/15/19	996 7	1.86	17.78	0.00	54.08	0.17	9700	240	ND	570	860	3200		
7/11/19	996 7	1.86	18.19	0.00	53.67	-0.41	13000	69	5.5	430	900	740		
1/17/19	997 7	1.86	17.23	0.00	54.63	0.96	4400	25	ND	270	580	1600		
7/21/19	997 7	1.86	18.29	0.00	53.57	-1.06	9000	36	ND	450	800	950		
1/14/19	998 7	1.86	16.71	0.00	55.15	1.58	7100	40	ND	380	360	930		
7/6/19	98 7	1.86	17.03	0.00	54.83	-0.32	6800	39	ND	320	360	370		
1/13/19	999 7	1.86	18.00	0.00	53.86	-0.97	1800	9.4	ND	58	36	180		
3538									Page 6	of 13				€ TBC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date	TOC	Depth to	LPH	Ground-	Change								Comments
Sampled	Elevatio	n Water	Thickness		in Elevation	TPH-G			Ethyl-	Total	MTBE	MTBE	
	/C .>	(5 i)	/C .>			(8015M)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	
			0.00										W. B
8/31/19			0.00				_				***		Well obstructed at 0.5 feet.
1/21/20				53.82		ND	ND	ND	ND	ND	21.4		
7/10/20				53.35	-0.47	ND	ND	ND	ND	ND	162		
8/25/20				53.58	0.23			~-	_	-	-	180	
1/4/200		10 18.1		53.24	-0.34	ND	ND	ND	ND	ND	193		
7/16/20	01 71.	10 17.9		53.42	0.18	ND	ND	ND	ND	ND	660		
1/28/20	02 71.	17.8	4 0.00	53.56	0.14	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	34	· 	
7/12/20	02 71.	10 17.8	7 0.00	53.53	-0.03	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11	19	
1/14/20	03 71.	17.2	0.00	54.12	0.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	12	new .	
7/10/20	03 71.	17.6	4 0.00	53.76	-0.36	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	23	_	
2/4/200)4 71.	17.0	5 0.00	54.35	0.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	26		
7/29/20	04 71.	40 17.8	2 0.00	53.58	-0.77	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND </td <td></td> <td></td>		
3/2/200	5 71.	10 16.4	7 0.00	54.93	1.35	93	ND<0.50	ND<0.50	ND<0.50	ND<0.50	140		•
9/30/20	05 71.	40 17.7	9 0.00	53.61	-1.32	65	ND<0.30	ND<0.30	ND<0.30	ND<0.60	61		
3/23/20	06 71.	40 16.6	0.00	54.79	1.18	54	ND<0.30	0.41	ND<0.30	0.98	63		
9/26/20	06 71.	4 0 17.7	7 0.00	53.63	-1.16	51	ND<0.30	ND<0.30	ND<0.30	ND<0.60	41		
3/15/20	07 71.	40 17.2	7 0.00	54.13	0.50	140	ND<0.30	ND<0.30	ND<0.30	ND<0.60	110		
9/27/20	07 71.	40 18.4	8 0.00	52.92	-1.21	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	20		
3/27/20	08 71.	17.6	7 0.00	53.73	0.81	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	19		
9/17/20	08 71.	40 17.9	1 0.00	53.49	-0.24	56	ND<0.30	ND<0.30	ND<0.30	ND<0.60	43	<u></u>	
MW-4													
9/15/19	89					ND	ND	ND	ND	ND			
1/23/19	90					ND	ND	0.4	ND	ND			
3538								Page 7	7 of 13				OTRC

CTRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date Sampled	TOC Elevati		Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	Benzene	Toluene	Ethyl-	Total Xylenes	MTBE (8021B)	MTBE (8260B)	С	omments
	(feet))	(feet)	(feet)	(feet)	(feet)	(β015M) (μg/l)	(µg/l)	roidene (μg/l)	benzene (μg/l)	Aylenes (μg/l)	(ΔUZ1B) (μg/l)	(8200 B) (μg/l)		
MW-4							,			437	4-5-7	4-5-7			
4/19/19							ND	ND	0.48	ND	ND	_			
7/17/19	90						ND	ND	ND	ND	ND	_			
10/16/19	90		_				ND	ND	ND	ND	ND				
1/15/19	91						ND	МD	ND	_	ND				
4/12/19	91						ND	ND	ND	ND	ND				
7/15/19	91	_					ND	ND	ND	ND	ND				
7/14/19	92						ND	1.3	2.5	ND	1.0				
4/13/19	93 71	.98	17.67	0.00	54.31	***	-		~-			~~		Samı	pled Q3 only
7/14/19	93 71	.98	18.31	0.00	53.67	-0.64	ND	ND	ND	ND	ND	_			
10/14/19	993 71	.64	18.08	0.00	53.56	-0.11	_	_				_		Samp	pled Q3 only
1/12/19	94 71	.64	17.97	0.00	53.67	0.11	~-			_				Samı	pled Q3 only
4/11/19	94 71	.64	17.70	0.00	53.94	0.27					_			Samp	pled Q3 only
7/7/199	94 71	.64	17.80	0.00	53.84	-0.10	ND	ND	ND	ND	ND				
10/5/19	94 71	.64	18.28	0.00	53.36	-0.48				_	_		-	Samp	pled Q3 only
1/9/199	95 71	.64	17.38	0.00	54.26	0.90								Samp	pled Q3 only
4/17/19	95 71	.64	17.21	0.00	54.43	0.17			_				_	Sam	pled Q3 only
7/1 9 /19	95 71	.64	17.82	0.00	53.82	-0.61	ND	ND	ND	ND	ND				
10/26/19	995 71	1.64	18.17	0.00	53.47	-0.35							-	Sami	pied Q3 only
1/16/19	96 71	1.64	16.45	0.00	55.19	1.72	_							Samj	pied Q3 only
4/15/19	96 71	1.64	17.35	0.00	54.29	-0.90						_		Samp	pled Q3 only
7/11/19	96 71	1.64	17.81	0.00	53.83	-0.46	ND	ND	ND	ND	ND	ND			
1/17/19	97 71	1.64	16.73	0.00	54.91	1.08								Samp	pied Q3 only
7/21/19	97 71	1.64	17.91	0.00	53.73	-1.18	ND .	ND	ND	ND	ND	ND			
3538									Page 8	of 13				C	TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	
MW-4	continued	l											
1/14/19	98 71.64	16.18		55.46	1.73			***		-			Sampled Q3 only
7/6/199	98 71.64	16.49	0.00	55.15	-0.31	ND	ND	ND	ND	ND	ND		
1/13/19	99 71.64	17.29	0.00	54.35	-0.80				_	_			Sampled Q3 only
8/31/19	99 71.54		0.00		_			Name .	No.	_			Well obstructed at 10.4 feet.
1/21/20	00 71.54	17.51	0.00	54.03	-							-	Sampled Q3 only
7/10/20	00 71.54	17.93	0.00	53.61	-0.42	ND	ND	ND	ND	ND	ND		
1/4/200)1 71.54	18.10	0.00	53.44	-0.17							_	Sampled Q3 only
7/16/20	01 71.54	17.76	0.00	53.78	0.34	ND	ND	ND	ND	ND	ND		
1/28/20	02 71.54	17.20	0.00	54.34	0.56								SAMPLED ANNUALLY
7/12/20	02 71.54	17.81	0.00	53.73	-0.61	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		·
1/14/20	03 71.54	17.30	0.00	54.24	0.51						***		Sampled Q3 only
7/10/20	03 71.54	17.58	0.00	53.96	-0.28	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
2/4/200	04 71.54	17.07	0.00	54.47	0.51								Sampled Q3 only
7/29/20	04 71.54	17.81	0.00	53.73	-0.74	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND<1		
3/2/200)5 71.54	16.25	0.00	55.29	1.56								Sampted Q3 only
9/30/20	05 71.54	17.74	0.00	53.80	-1.49	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
3/23/20	06 71.54			W1 No.	****							-	Inaccessible due to gate; Sampled Q3 only
9/26/20	06 71.54	17.7 1	0.00	53.83		ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
3/15/20	07 71.54	17.56	0.00	53.98	0.15	-							Sampled Q3 only
9/27/20	07 71.54	18.16	0.00	53.38	-0.60	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
3/27/20	08 71.54	17.58	0.00	53.96	0.58		~~				_		Sampled Q3 only
9/17/20	08 71.54	17.87	0.00	53.67	-0.29	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		

Page 9 of 13

CTRC

3538

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008

Former 76 Station 3538

Date Sampled	TOC Elevation		Depth to Water	LPH Thickness	Ground- water	Change m	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
					Elevation	Elevation	(8015M)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)		(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/1)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	
MW-5														
11/30/19	992 -	-			_		ND	ND	ND	ND	ND			
1/8/199	93 -	-		07	-		ND	ND	ND	ND	ND			
4/13/19	93 71	.51	17.49	0.00	54.02		ND	ND	ND	ND	ND			
7/14/19	93 71	.51	18.02	0.00	53.49	-0.53	ND	ND	0.57	ND	ND			
10/14/19	993 71	.23	17.82	0.00	<i>5</i> 3.41	-0.08	ND	ND	ND	ND	ND		_	
1/12/19	94 71	.23	17.74	0.00	53.49	0.08	ND	ND	0.84	ND	1.6			
4/11/19	94 71	.23	17.56	0.00	53.67	0.18			***	**		_		Sampled Q3 only
7/7/199	94 71	.23	17.50	0.00	53.73	0.06	ND	ND	ND	ND	ND	_		
10/5/19	94 71	.23	17.98	0.00	53.25	-0.48								Sampled Q3 only
1/9/199	95 71	.23	17.13	0.00	54.10	0.85		_				_		Sampled Q3 only
4/17/19	95 71	.23	17.05	0.00	54.18	0.08								Sampled Q3 only
7/19/19	95 71	.23	17.59	0.00	53.64	-0.54	ND	ND	ND	ND	ND			
10/26/19	995 71	.23	18.10	0.00	53.13	-0.51								Sampled Q3 only
1/16/19	96 71	.23	17.11	0.00	54.12	0.99		~	_			**	-	Sampled Q3 only
4/15/19	96 71	.23	17.22	0.00	54.01	-0.11			***					Sampled Q3 only
7/11/19	96 71	.23	17.59	0.00	53.64	-0.37	ND	ND	ND	ND	ND	ND		
1/17/19	97 71	.23	16.75	0.00	54.48	0.84								Sampled Q3 only
7/21/19	97 71	.23	17.59	0.00	53.64	-0.84	ND	ND	ND	ND	ND	ND		
1/14/19	98 71	.23	16.16	0.00	55.07	1.43		_						Sampled Q3 only
7/6/199	98 71	.23	16.52	0.00	54.71	-0.36	ND	ND	ND	ND	ND	ND		
1/13/19	99 71	.23	17.62	0.00	53.61	-1.10								Sampled Q3 only
8/31/19	99 71	.16	17.76	0.00	53.40	-0.21	ND	ND	ND	ND	ND	ND	-	
1/21/20	00 71	.16	16.83	0.00	54.33	0.93							***	Sampled Q3 only
3538									Page 10	of 13				©TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date	TOC	Depth to	LPH	Ground-	Change								Comments
Sampled	Elevation	Water	Thickness	water Elevation	ın Elevation	TPH-G			Ethyl-	Total	MTBE	MTBE	
						(8015M)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	 ·
MW-5													
7/10/20				53.70	-0.63	ND	ND	ND	ND	ND	ND		
1/4/200				53.65	-0.05						-		Sampled Q3 only
7/16/20				53.84	0.19	ND	ND	ND	ND	ND	ND		
1/28/20	02 71.1	6 17.12		54.04	0.20		-						SAMPLED ANNUALLY
7/12/20	02 71.1	6 17.12	0.00	54.04	0.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5	~~	
1/14/20	03 71.1	6 16.67	0.00	54.49	0.45				_				Sampled Q3 only
7/10/20	03 71.1	6 17.39	0.00	53.77	-0.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0	-	
2/4/200)4 71.1	6 16.23	0.00	54.93	1.16								Sampled Q3 only
7/29/20	04 71.1	6 16.02	0.00	55.14	0.21	ND<50	ND<0.3	0.64	ND<0.3	0.79	ND<1		
3/2/200	05 71.1	6 16.43	0.00	54.73	-0.41								Sampled Q3 only
9/30/20	05 71.1	6 17.41	0.00	53.75	-0.98	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	_	
3/23/20	06 71.1	6 16.37	0.00	54.79	1.04			_				-	Sampled Q3 only
9/26/20	06 71.1	6 15.54	0.00	55.62	0.83	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
3/15/20	07 71.1	6 17.20	0.00	53.96	-1.66		_	-					Sampled Q3 only
9/27/20	07 71.1	6 18.01	0.00	53.15	-0.81	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
3/27/20	08 71.1	6 17.57	0.00	53.59	0.44						_		Sampled Q3 only
9/17/20	08 71.1	6 17.68	0.00	53.48	-0.11	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
MW-6										•			
11/30/19	992					ND	ND	ND	ND	ND	_		
1/8/199	93					ND	ND	ND	ND	ND			
4/13/19	93 71.7	9 11.94	0.00	59.85		ND	ND	ND	ND	ND			
7/14/19	93 71.7	9 17.20	0.00	54.59	-5.26	ND	0.99	2.4	ND	1.9			
10/14/19	993 71.4	4 17.2	0.00	54.23	-0.36	ND	ND	0.64	ND	ND			
3538								Page 1	1 of 13				@TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in	TPH-G			Ethy!-	Total	мтве	MTBE	Comments
				Elevation	Elevation	(8015M)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	
MW-6	continue	d.											
1/12/19	94 71.4	4 17.44	0.00	54.00	-0.23	ND	ND	1.2	ND	2.9	_		
4/11/19	94 71.4	4 13.66	0.00	57.78	3.78	_	-	 .			-		Sampled Q3 only
7/7/199	94 71.4	4 14.05	0.00	57.39	-0.39	ND	ND	ND	ND	ND	_		
10/5/19	94 71.4	4 14.16	0.00	57.28	-0.11								Sampled Q3 only
1/9/199	95 71.4	4 13.73	0.00	57.71	0.43				_		-		Sampled Q3 only
4/17/19	95 71.4	4 11.30	0.00	60.14	2.43					_			Sampled Q3 only
7/19/19	95 71.4	4 12.32	0.00	59.12	-1.02	ND	ND	ND	NĐ	ND			
10/26/19	95 71.4	4 17.88	0.00	53.56	-5.56					_			Sampled Q3 only
1/16/19	96 71.4	4 16.38	0.00	55.06	1.50	**				_			Sampled Q3 only
4/15/19	96 71.4	4 14.00	0.00	57.44	2.38				_	_			Sampled Q3 only
7/11/19	96 71.4	4 13.58	0.00	57.86	0.42	ND	ND	ND	ND	ND	ND		
1/17/19	97 71.4	4 15.42	0.00	56.02	-1.84					_			Sampled Q3 only
7/21/19	97 71.4	4 13.78	0.00	57.66	1.64	ND	ND	ND	ND	ND	ND		
1/14/19	98 71.4	4 13.65	0.00	57.79	0.13				-				Sampled Q3 only
7/6/199	98 71.4	4 13.90	0.00	57.54	-0.25	ND	ND	ND	ND	ND	ND	***	
1/13/19	99 71.4	4 14.93	0.00	56.51	-1.03					_			Sampled Q3 only
8/31/19	99 71.3	7 15.81	0.00	55.56	-0.95	ND	ND	ND	ND	ND	ND	_	
1/21/20	юо 71.3	7 16.13	0.00	55.24	-0.32			_		_			Sampled Q3 only
7/10/20	000 71.3	7 16.95	0.00	54.42	-0.82	ND	ND	ND	ND	ND	ND		
1/4/200	01 71.3	7 17.09	0.00	54.28	-0.14							_	Sampled Q3 only
7/16/20	001 71.3	7 16.83	0.00	54.54	0.26	ND	ND	ND	ND	ND	ND	-	
1/28/20	002 71.3	7 14.5	0.00	56.79	2.25			_					SAMPLED ANNUALLY
7/12/20	002 71.3	7 16.70	5 0.00	54.61	-2.18	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
3538								Page 1	2 of 13				@TRC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2008
Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/I)	(μg/l)	
MW-6	continue	1											
1/14/20	03 71.37	16.25	0.00	55.12	0.51								Sampled Q3 only
7/10/20	03 71.37	12.97	0.00	58.40	3.28	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
2/4/200	71.37	16.20	0.00	55.17	-3.23			~-			_		Sampled Q3 only
7/29/20	04 71.37	7 14.98	0.00	56.39	1.22	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.6	1.3		
3/2/200)5 71.37	14.51	0.00	56.86	0.47						_		Sampled Q3 only
9/30/20	05 71.37	14.45	0.00	56.92	0.06	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	i.7		
3/23/20	06 71.37	16.55	0.00	54.82	-2.10				-	-	<u></u>		Sampled Q3 only
9/26/20	06 71.37	17.58	0.00	53.79	-1.03	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
3/15/20	07 71.37	7 13.72	0.00	57.65	3.86		•••						Sampled Q3 only
9/27/20	07 71.37	7 14.18	0.00	57.19	-0.46	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND <i.0< td=""><td></td><td></td></i.0<>		
3/27/20	08 71.37	7 14.83	0.00	56.54	-0.65					_			Sampled Q3 only
9/17/20	08 71.37	7 14.70	0.00	56.67	0.13	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	2.8	-	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 3538

Date				Ethylene-						Bromo-		
Sampled			Ethanol	dibromide	1,2 - DCA				Total Oil	dichloro-	Bromo-	Bromo-
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	and Grease	methane	form	methane
	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(mg/l)	(μg/l)	(µg/l)	(μg/l)
MW-1												
9/15/1989	ND			~-					ND			
1/23/1990	ND					_			1.5			
4/19/1990	ND		~						ND			
7/17/1990	ND								ND			
10/16/1990	ND				***	-		***	ND			
1/15/1991	ND							<u></u>	ND			~~
4/12/1991	ND			_			••		ND			70
7/15/1991	ND								ND			
7/16/2001								•••		1.7		
7/29/2004					ND<0.5					ND<0.5	ND<0.5	ND <i< td=""></i<>
9/30/2005					ND<0.50					ND<0.50	ND<0.50	ND<1.0
9/26/2006					ND<0.50		_			ND<0.50	ND<0.50	ND<1.0
9/27/2007					ND<0.50		_			ND<0.50	ND<0.50	ND<1.0
9/17/2008	2100				ND<0.50			~~	MH.	ND<0.50	ND<0.50	ND<1.0
MW-3												
8/25/2000		ND		ND	ND	ND	ND	ND		_		
7/12/2002	-	ND<20	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				-

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 3538

Date	Carbon					Dibromo-	1,2-	1,3-	1,4-	Dichloro-		
Sampled	Tetra-	Chloro-	Chloro-		Chloro-	chloro-	Dichloro-	Dichloro-	Dichloro-	difluoro-		
	chloride	benzene	ethane	Chloroform	methane	methane	benzene	benzene	benzene	methane	i,i-DCA	1,1-DCE
	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)
MW-1												
7/11/1996				0.96						n-w		_
7/21/1997			_	1.0								
7/16/2001				45				_				
7/12/2002								-		₩.=		8.1
7/10/2003			-			_						0.89
7/29/2004	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.2
9/30/2005	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.52
9/26/2006	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.60
9/27/2007	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
9/17/2008	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 2 c
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 3538

Date Sampled	cis- 1,2-DCE (µg/l)	trans- 1,2-DCE (μg/l)	1,2- Dichloro- propane (µg/l)	cis-1,3- Dichloro- propene (µg/l)	trans-1,3- Dichloro- propene (µg/l)	Methylene chloride (μg/l)	1,1,2,2- Tetrachloro- ethane (µg/l)	Tetrachloro- ethene (PCE) (µg/l)	Trichloro- trifluoro- ethane (µg/l)	1,1,1- Trichloro- ethane (µg/l)	1,1,2- Trichloro- ethane (µg/l)	Trichloro- ethene (TCE) (µg/l)
MW-1		•		•								
9/15/1989							_	2.7				
1/23/1990							_	2.1		 -	_	
4/19/1990		_						2.2				_
7/17/1990								1.7		, <u>.</u>		_
10/16/1990								2.0		_	_	
1/15/1991			~~					2.1		<u></u>		
4/12/1991			-				-	2.0				
7/15/1991						***		1.8				
7/14/1992	-		~					1.4				
7/14/1993	-							0.95				
7/7/1994						~~		0.83				
7/19/1995								0.52	_			
7/11/1996								0.73	_			
7/21/1997								0.70	_			
8/31/1999								ND	_		_	
7/16/2001								ND	_	No to-		
7/12/2002		_			_			ND<0.60		=-	_	
7/10/2003		~-					_	ND<0.50				
7/29/2004	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	ND<0.5	13	ND<0.5	ND<0.5	ND<0.5
9/30/2005	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	9.1	ND<0.50	ND<0.50	ND<0.50
9/26/2006	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	7.0	ND<0.50	ND<0.50	ND<0.50
9/27/2007	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	4.3	ND<0.50	ND<0.50	ND<0.50
9/17/2008	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	5.4	ND<0.50	ND<0.50	ND<0.50

©TRC

Table 2 d ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 3538

Date	Trichloro-	
Sampled	fluoro-	Vinyl
	methane	chloride
	(μg/l)	(μg/l)
MW-1		
7/29/2004	ND<0.5	ND<0.5
9/30/2005	ND<0.50	ND<0.50
9/26/2006	ND<0.50	ND<0.50
9/27/2007	ND<0.50	ND<0.50
9/17/2008	ND<0.50	ND<0.50

APPENDIX D

Soil and Groundwater Analytical Data - 2006

Table 1

RESULTS OF LABORATORY ANALYSIS OF SOIL SAMPLES

Former 76 Service Station 3538 411 West MacArthur Oakland, California

Sample	Sample	Depth	ТРН⊷а	Benzene	Tolulene	Ethyl- benzene	Total Xvienes	MTBE	TBA	TAME	DIPE	ETBE	EDB.	1,2 DCA	Ethanol	Lead
Number	Date	(fbg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
					***************************************	en was well as	***************************************	EPA	Method 82	60B			***************************************			6061B
SB - 1 @ 5'	3/27/2006	5.0	<0.97	<0.0049	<0.0049	<0.0049	<0.0097	<0.0049	<0.0097	<0.8049	<0.0049	<0.0849	<0.0049	<0.0049	<0.49	_
S8-1@9	3/27/2006	9.0	2.8	<0.0048	<0.0048	<0.0048	<0.0097	<0.0048	<0.0097	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.48	L
S8-2@5	3/27/2006	5.0	<0.97	<0.8049	<0.0049	<0.0049	<0.0097	<0,0049	<0.0097	<0.0049	<0.0049	<0,0049	<0.0049	<0.0049	<0.49	
\$B-2@9	3/27/2006	9.0	<0.93	<0.6047	<0.0047	<0.0047	<0.0093	<0.0047	<0.0093	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.47	
SB - 3 @ 14'	3/27/2006	14.0	1.3	0.11	<0.0046	0.061	0.055	0.64	0.19	<0.0049	<0.0049	<0.0049	<0.0049	<0.0049	<0,49	
SB - 3 @ 16"	3/27/2006	16.0	6,100	<9.7	53	86	420	<9.7	<19	<9.7	<9.7	<9.7	<9.7	<9.7	<190	
S8 - 4 @ 5"	3/28/2006	5.0	<0.93	<0.0047	<0.0047	<0.0047	<0,0093	<0.0047	<0.0093	<0.0047	<0.0047	<0.0047	<0.0047	<0.0047	<0.47	
SB - 4 @ 15	3/28/2006	15.0	<0.92	<0.0048	<0.0046	<0.0046	<0.0092	<0.0046	<0.0092	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.46	
SB - 5@9"	3/28/2006	9.0	<0.93	<0.0046	<0.0046	<0.0046	<0.0093	<0.0046	<0.0093	<0.0046	<0,0048	<0.0046	<0.0046	<0.0046	<0.46	_
SB - 5 @ 13*	3/28/2006	13.0	<0,93	<0.0047	<0.0047	<0.0047	<0.0093	<0.0047	<0.0093	<0,0046	<0.0047	<0.0047	<0.0047	<0.0047	<0.47	_
Composite	3/28/2006	na	<0.95	<0.0047	0.013	0.0051	0.023	0.037	0.073	<0.0047	<0.0047	<0.0847	<0.0047	<0.0047	<0.47	15
Notes:		= tortiary b = methyl te = delsopro	utyl alcohol elliary bulyl eli gyl eliner iuny bulyl eliner		:\$	гановцинас ти	TAME 1,2-DCA EDB Tog mg/kg	 1,2-dichk othylena tasi baka 	desnamide v gradu desnamide	Ç¢			***************************************			

Table 2

RESULTS OF LABORATORY ANALYSIS OF GRAB GROUNDWATER SAMPLES

Former 76 Service Station 3538

411 West MacArthur

Oakland, California

Sample Number	Sample Date	TPPH (µg/kg)	Benzene (µg/kg)	Ethyl- benzene (µg/kg)	Tolulene (µg/kg)	Total Xylenes (µg/kg)	MTBE (µg/kg)	TBA (µg/kg) EPA 8260B	TAME (µg/kg)	OIPE (ug/kg)	ETBE (µg/kg)	EDB (µg/kg)	1,2 DCA (µg/kg)	Ethanol (µg/kg)
SB - 1W	3/27/2006	120	11	<0.50	<0.50	<1.0	130	28	<0.50	<1,0	<0,50	<0.50	<0.50	<100
SB - 2W	3/27/2006	<50	<0.50	<0.50	<0.50	< 1.0	<0.50	<5.0	<0.50	<1.0	<0,50	<0.50	<0.50	<100
SB - 3W	3/27/2006	13,000	510	470	1,400	2,600	340	57	< 5.0	<10	<5.0	<5.0	<5.0	<100
SB -4W	3/28/2006	<50	<0.50	<0.50	<0.50	<1.0	3.4	<5.0	<0.50	<1.0	<0,50	<0.50	<0.50	<100
SB - 5W	3/28/2006	3,000	44	63	1.2	30	53	17	<0.50	<1.0	<0.50	<0.60	<0.50	<100
lotes:		l Lancaus and and						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		iliga minamana i (An)				
	TEPH	zotel purge	rabie petroleum	hydrocarbons		1,2-DCA	= 1,2-cichio	roethane						
	TEA	terlary bu	•			ED8	# athylane	tibromida						
	MTBE		sary bulyl other			ii MSL		e mean son leve	\$					
	DIPE	u di-isoprop				m poc		r top of क्याझेल्ड						
	ETBE	· ·	ry bulyl either			tally.	-	ms per liter						
	TANK	 tentlory orr 	nyl methyl olmer			***	 not analy; 	ed be:						

APPENDIX E Boring Logs

			ВС	R	IN	G I	0 G	
Project No KEI-P89-07	Boring 9"	, &	Casi	ng Di 2"	ameter	Logged By D.L.		
Project Na Oakland/Ma		cal,	Well H		d Ele N/A	vatio	n	Date Drilled 9/7/89
Boring No.	•		Drill: Method		·	Hollo Auger	w-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		oth (ft))	Stra grap USCS	hy		Description
			0				A.C. Pav Sand and	ement Gravel: fill.
11/17/22			5 —				Clay, hi moist,	gh plasticity, stiff, very dark grayish brown.
					·			clay with sand, stiff,
32/17/20			10 -		СН		Sand cla stiff, gravel. Clay, hi stiff,	y, high plasticity, moist, olive, trace
13/17/19			15 -				plastic	ay, moderate to high city, stiff, moist, oliver the yellowish brown.
10/17/20	<u>▼</u>	-	20		sc		Clayey s	sand, dense, very moist , yellowish brown.

Page 1 of 2

		ВОЕ	RIN	G I	OG	
Project No. KEI-P89-0703	Boring &	Cas	ing Di	ameter	Logged By D.L.	
Project Name Unoc Oakland/MacArthur	cal,	Well Hea	ad El	evatio	on .	Date Drilled 9/7/89
Boring No.		Drilling Method	3	Hollo Auger	w-stem	Drilling Company EGI
Penetra- G. W. level blows/6"		pth (ft) mples	_	ati- phy s		Description
		35	SP		Poorly brown.	graded sand, yellowish igh plasticity, very moist, yellowish brown.

Page 2 of 2

WELL COMPLETION DIAGRAM

PROJECT	NAME:	Unocal - Oakland,	MacArthur	BORING/WELL	NO	MW1
PROJECT	NUMBER:	KEI-P89-0703				

WELL PERMIT NO.:_____

Flush-mour	nted Well Cover
	D G H
E	
A	
C	
F	

- A. Total Depth: 29'
- B. Boring Diameter*: 9"

 Drilling Method: Hollow Stem
- C. Casing Length: 29!

 Material: Schedule 40 PVC

_Auger

- D. Casing Diameter: OD = 2.375"

 ID = 2.067"
- E. Depth to Perforations: 5!
- Perforated Length: 24'

 Machined
 Perforation Type: Slot

 Perforation Size: 0.020"
- G. Surface Seal: 3'
 Seal Material: Concrete
- H. Seal: 1'
 Seal Material: Bentonite
- I. Gravel Pack: 25'
 RMC Lonestar
 Pack Material: Sand
 Size: #3
- J. Bottom Seal: None

 Seal Material: N/A

*Boring diameter can vary from 8-1/4" to 9" depending on bit wear.

	,	<u>1</u>	В	O R	IN	G L	OG	
Project No. KEI-P89-0703			Borin 9"	ng &	Casi	ng Di 2"	Logged By D.L.	
Project Na Oakland/Ma		cal,	Well		d Ele N/A	vatio	n 	Date Drilled 9/6/89
Boring No.	•		Dril Meth			Hollo Auger	w-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		oth (f	t)	Stra grag USCS	phy		Description
			_ 0 -		СН		Sand and	Pavement Gravel: Fill gh plasticity, with
9/14/21			5		GC		dark of to 4 fe	gravel with sand, dense, yellowish brown, gravel
13/15/28 9/15/19			10		СН		45% san vellow:	lay, high plasticity, 15- nd, stiff, moist, light ish brown and greenish mottled, lensed with sand.
10/15/23 8/10/15			15		sc		Clayey dense, ish gr	sand, dense to very moist, olive and green- ay.
9/12/16				E	сн		Silty c plasti	lay, moderate to high city, firm, moist, olive
13/37/46	<u>*</u>		20		sw		Well gr dense, 19.5 f	aded sand with gravel, wet, brown, silty from eet.

e r							·
			вог	RING	1	OG	
Project No. KEI-P89-0703			Boring 8	G Casing	D:	Logged By D.L.	
Project Na Oakland/Ma		cal,	Well Hea	ad Eleva N/A	tio	on	Date Drilled 9/6/89
Boring No.	•		Drilling Method	•	llo ger	ow-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		oth (ft) oples	Strati graphy USCS		I	Description
25/37/45			25	GP- GM	(A. 18. 18. 18. 18. 18. 18. 18. 18. 18. 18	and sand dark yel	raded gravel with silt d, very dense, wet, llowish brown. raded gravel with sand, ase, wet, dark, yellow-
25/29/35			30	СН		sand, ve	gh plasticity, trace ery stiff, moist, sh brown.
			35 —				
			40				TOTAL DEPTH 30.5'

Page 2 of 2

WELL COMPLETI	ON DIAGRAM						
PROJECT NAME: Unocal - Oakland, MacArthur BORING/WELL NO. MW2							
PROJECT NUMBER: KEI-P89-0703							
WELL PERMIT NO.:							
WELDS I DIGITI WAY							
Flush-mounted Well Cover	A. Total Depth: 301						
	B. Boring Diameter*: 9"						
	Drilling Method: Hollow Stem						
	Auger						
	C. Casing Length: 28.51						
	Material: Schedule 40 PVC						
	D. Casing Diameter: OD = 2.375"						
E	ID = 2.067"						
	E. Depth to Perforations: 3.5'						
	F. Perforated Length: 25'						
A	Machined Perforation Type: Slot						
	Perforation Size: 0.020"						
I I	G. Surface Seal: 21						
C -	Seal Material: Concrete						
	H. Seal: 1'						
F -	Seal Material: Bentonite						
	I. Gravel Pack: 27'						
	RMC Lonestar Pack Material: Sand						
	Size: #3						
	J. Bottom Seal: None						
J J	Seal Material: N/A						
B ─── B	DOWL 114 VV- 24-1						

*Boring diameter can vary from 8-1/4" to 9" depending on bit wear.

			В	o R	IN	G L	0 G	
Project No KEI-P89-07	Borin 9"	g &	Casi	ng Di 2"	ameter	Logged By D.L.		
Project Na Oakland/Ma		cal,	Well		d Ele N/A	vatio	n	Date Drilled 9/7/89
Boring No.	•		Drill Metho			Hollo Auger	w-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		oth (ft)	Stra grap USCS	phy		Description
9/15/21 14/17/23	7.		10 -		СН		Clay, hi silt, s gray, v above 4 Clay, hi stiff, dark gray holes. Sandy clastic moist, mottled sand. Sandy clastic sand.	gh plasticity, with stiff, moist, dark olive ery dark grayish brown '. Igh plasticity, very moist, pale clive, with reenish gray stained root city, 25-40% sand, stiff, olive and greenish gray, d, lensed with clayey lay, moderate to high city, stiff, moist,

. , .	· ············						
			вог	IN	G I	OĞ	
Project No KEI-P89-07	Boring 8	Cas:	ing Di 2"	Logged By D.L.			
Project Na Oakland/Ma	me Unoc cArthur	al,	Well Hea	ad El	evatio	on	Date Drilled 9/7/89
Boring No.			Drilling Method	3	Hollo Auger	w-stem	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		pth (ft) mples	Str gra USC			Description
37/50-5+1/2"			30	GP-GC		Poorly g and san yellowi	ay, as above. raded gravel with clay d, very dense, wet, dark sh brown. ravel, very dense, yellowish brown.
			40	1		<u> </u>	TOTAL DEPTH 29'

DIAGRAM COMPLETION WELL PROJECT NAME: Unocal - Oakland, MacArthur BORING/WELL NO. MW3 PROJECT NUMBER: KEI-P89-0703 WELL PERMIT NO.:____ Total Depth: 291 Α. Flush-mounted Well Cover Boring Diameter*: 9" В. Drilling Method: Hollow Stem <u>Auger</u> C. Casing Length: 291 Material: Schedule 40 PVC Casing Diameter: OD = 2.375" D. ID = 2.067"Depth to Perforations: 51 Ε. Perforated Length: 24' r. Machined Perforation Type: Slot Perforation Size: 0.020" G. Surface Seal: 3' Seal Material: Concrete ____ H. Seal: ______1' Seal Material: Bentonite Gravel Pack: 25' RMC Lonestar Pack Material: Sand ___ Size: #3 J. Bottom Seal: None Seal Material: N/A

*Boring diameter can vary from 8-1/4" to 9" depending on bit wear.

	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,	ВО	RINO	G I	O G	
Project No KEI-P89-07		Boring 9"	& Casi	ng Di 2"		Logged By D.L.
Project Na Oakland/Ma		l, Well He	ad Ele	vatio	n	Date Drilled 9/6/89
Boring No.		Drillin Method	.	Hollc Auger	w-stem	Drilling Company EGI
Penetra- tion blows/6"		Depth (ft) Samples	Stra grap USCS	hy		Description
12/16/25		5	CH		Clay, hi stiff, brown, Gravelly stiff, brown.	ement Gravel: Fill gh plasticity, very moist, very dark grayish brown below 5'. clay with sand, very moist, dark yellowish gh plasticity, very slightly moist, light
14/17/29	V	15	SM		yellowi Silty cl 15%, fi moist, Silty sa very mo	slightly moist, light sh brown. Lay, high plasticity, 10-line sand, very stiff, pale olive. and, dense to very dense, bist to wet, light sh brown.
		20 —	sw		Well gra	nded sand, trace to 10%

	4.004.34470.07700.77		В О	RING	LOG	
Project No KEI-P89-07			Boring 9"	& Casing D		Logged By D.L.
Project Na Oakland/Ma		cal,	Well He	ad Elevati N/A	on	Date Drilled 9/6/89
Boring No.			Drillin Method	g Holl Auge	ow-stem r	Drilling Company EGI
Penetra- tion blows/6"	G. W. level		oth (ft) mples	Strati- graphy USCS		Description
			25	GP- GC	Poorly g and san yellowi increas Gravelly 5-10% s dark ye	raded gravel with clay d, dense, wet, dark sh brown, clay content, ing with depth. clay, high plasticity, and, very stiff, moist, clowish brown.
		<u> </u>	40 -		1	OTAL DEPTH 29'

WELL COMPLI	ETION DIAGRAM
PROJECT NAME: Unocal - Oakland, PROJECT NUMBER: KEI-P89-0703 WELL PERMIT NO.:	•
Flush-mounted Well Cover B G H C F B B	A. Total Depth:
*Boring diameter can vary	from 8-1/4" to 9" depending on bit wear.

MAJOR DIVISIONS	SYMBOLS	TYPICAL SOIL DESCRIPTIONS
GRAVELS	GW	Well graded gravels or gravel - sand mixtures, little or no fines
(More than 1/2 of coarse	GP .	Poorly graded gravels or gravel - sand mixtures, little or no fines
fraction > No. 4 sieve size)	gм 5	Silty gravels, gravel - sand - silt mixtures
	GC	Clayey gravels, gravel - sand - clay mixtures
SANDS	sw	Well graded sands or gravelly sands, little or no fines
I (More than 1/2 of coarse	SP	Poorly graded sands or gravelly sands, little or no fines
fraction < No. 4 sieve size)	SM	Silty sands, sand - silt mixtures
1 I	SC 757	Clayey sands, sand - clay mixtures
SILTS & CLAYS	ML -	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity
LL < 50	CL `	Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
	OL	Organic silts and organic silty clays of low plasticity
SILTS & CLAYS	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
LL > 50	СН	Inorganic clays of high plasticity, fat clays
	ОН	Organic clays of medium to high plasticity, organic silty clays, organic silts
HIGHLY ORGANIC SOILS	Pt	Peat and other highly organic soils
DUAL (TRANSITION) SOILS		characterisities are transitional between the soil sifications listed above

				BOR	ING LOG					
Project No. KEI-P89-0703	3			ing Diam ing Dian		Logged By TG6 W.W. CEG 1433				
Project Name 411 West Mad	Unocal Arthur B	S/S #3538 Ivd., Oakland	Wel	Well Cover Elevation Date Drilled 11/18/92						
Boring No. MW5		Ŀ	Dril Met		Hollow-stem Auger	Drilling Company Woodward Drilling Co.				
Penetration blows/6"	G. W. level	Depth (feet) Samples	Stra grap USC	hy	Description					
						avement over sand and gravel base.				
	Silty clay, estimated at 35% silt, moist, black, strong bristaining in pores. Silty clay, estimated at 15% silt, 5% sand, and trace gra									
8/13/17		5 -	Sifty clay, estimated at 15% silt, 5% sand, and trace gravel 3/8 inch in diameter, hard, moist, yellowish brown (10YR and light brownish gray (10YR 6/2) mottled, trace pores.							
8/11/16		10	ML			15-20% clay and 5% fine-grained ale yellow (2.5Y 7/3), trace pores.				
6/10/17		15	IVIL		Silt, estimated at 5-10% pale yellow (2.5Y 7/3) w mottling, trace sand and	clay, very stiff, moist to very moist, vith slight yellowish brown (10YR 5/6) pores.				
10/20/24						y moist, very pale brown (10YR 7/3) R 5/6) mottled, slightly micaceous.				
		20	CL		Silty clay, estimated at 3 brown (10YR 5/4) mottle	5-40% silt, hard, moist, very pale ed.				
8/13/25			ML		Clayey silt, estimated at moist, pale yellow (2,5Y	15% clay and 5-10% sand, hard, very 7/3).				

			ВС	DRING LOG		
Project No. KEI-P89-070	2		Boring Di		Logged By JG6 W.W. CE6/633	
KEI-P89-0/0			Casing D	iameter 2"	W.W. CEG 1633	
Project Name 411 West Ma	Unocal Arthur E	S/S #3538 Hvd., Oakland	Well Cove	er Elevation	Date Drilled 11/18/92	
Boring No. MW5			Drilling Method	Hollow-stem Auger	Drilling Company Woodward Drilling Co.	
Penetration blows/6"	G. W. level	Depth (feet) Samples	Strati- graphy USCS		Description	
9/20/36		25	ML -	moist, pale yellow (2.	at 20-25% clay and 5% sand, hard, moist	
very pale brown (10YR 7/3). Silty clay, estimated at 15-20% fine-grained silt a hard, moist, very pale brown (10YR 7/3), trace o CL Silty clay, estimated at 15% silt, 5-10% sand, and						
		30		hard, moist, very pale	TOTAL DEPTH: 30'	
		40				

WELL COMPLETION DIAGRAM

PROJECT NAME: Unocal S/S #3538, 411 West MacArthur Blvd., Oakland WELL NO. MW5

PROJECT NUMBER: KEI-P89-0703

WELL PERMIT NO.: 91185

.....

Flush-mounted Well Cover

		201
٨	Total Donth	30'

C. Casing Length:

B. Boring Diameter: 9st

Drilling Method: Hollow Stem Auger

Material: Schedule 40 PVC

D. Casing Diameter: OD = 2.375"

ID = 2.067*

E. Depth to Perforations: 13'

F. Perforated Length: 17'

Perforation Type: Machined Slot

Perforation Size: 0.010"

G. Surface Seal: _____9'

Seal Material: Neat Cement

Seal Material: Bentonite

I. Filter Pack: 19'

Pack Material: RMC Lonestar Sand

Size: 2/12

J. Bottom Scal: None

Scal Material: N/A

			BOR	ING LOG	1			
Project No. KEI-P89-0703	3		Boring Dian Casing Dian		Logged By JGG W.W. CFG /633			
Project Name 411 West Mac			Well Cover	Well Cover Elevation Date Drilled 11/18/92				
Boring No. MW6		······································	Drilling Method	Hollow-stem Auger	Drilling Company Woodward Drilling Co.			
Penetration blows/6"	G. W. level	Depth (feet) Samples	Strati- graphy USCS	D	escription			
				Fifteen inches of asphal	t pavement.			
				Silty clay, estimated at 2 gray.	20% silt and trace sand, moist, very dark			
18/30/34		5		Silty clay, estimated at 20-25% silt and 5% sand, hard, moist, greenish gray (5GY 5/1). Silty clay with sand and gravel, estimated at 15-20% silt, 15% gravel to 2 inches in diameter, and 10-15% sand, hard, moist, greenish gray (5GY 5/1) with strong brown (7.5YR 4/6)				
19/23/35		10	CL	staining. Silty clay, estimated at 1	5% silt and trace sand, hard, moist, with slight light yellowish brown			
13/22/27		15			20% silt, hard, moist, light yellowish slight light gray (5Y 7/1) staining in ter.			
12/18/20		20	ML		15% clay and 5-10% very fine-grained ight yellowish brown (10YR 6/4).			

		···	ВОР	RING LOG				
Project No. KEI-P89-070	3		Boring Diam Casing Diam		Logged By 766 W.W. CEG1633			
Project Name 411 West Ma	Unocal cArthur B	S/S #3538 Slvd., Oakland	Well Cover		Date Drilled 11/18/92			
Boring No. MW6			Drilling Method	Hollow-stem Auger	Drilling Company Woodward Drilling Co.			
Penetration blows/6"	G. W. level	Depth (feet) Samples	Strati- graphy USCS		Description			
7/10/13		25	ML ====	very moist, light yello Silty clay, estimated a	1 20-30% slightly elastic silt, very stiff.			
8/15/21		30	CL The state of th	moist, very pale brown. Silty clay, estimated at 20-25% silt and trace gravel, hard, moist, light yellowish brown (10YR 6/4).				
		35 —			TOTAL DEPTH: 30'			

WELL COMPLETION DIAGRAM

Unocal S/S #3538, 411 West MacArthur Blvd., Oakland MW6 PROJECT NAME: WELL NO.

KEI-P89-0703 PROJECT NUMBER:

91185 WELL PERMIT NO .: .

Flush-mounted Well Cover

A		H H
	<u> </u>	

	30
Total Depth	JU

B. Boring Diameter: _____

Hollow Stem Auger Drilling Method:

30' C. Casing Length:

> Schedule 40 PVC Material:

 $OD = 2.375^{\circ}$ D. Casing Diameter:

ID = 2.067"

13' E. Depth to Perforations: __

17" F. Perforated Length:

> Machined Slot Perforation Type: _____

Perforation Size: 0.010"

G. Surface Seal:

Seal Material: Neat Cement

H. Seal:

Bentonite Seal Material:

l. Filter Pack:

Pack Material: **RMC Lonestar Sand**

Size: _____

J. Bottom Seal: None

N/A

Seal Material:

WELL COMPLETION DIAGRAM (SCHEMATIC)

Flush-mounted Well Cover

WELL DETAILS*

- Well will be terminated 10 to 15 feet into the first encountered ground water, unless an aquitard five feet or greater in thickness is encountered below the water table, in which case the bottom of the boring will be backfilled with bentonite pellets and the well terminated at the top of this aquitard [A].
- Boring diameter [B] is 8 inches for 2 inch wells, 10 inches for 4 inch wells, and 12 inches for 6 inch wells.
- Perforated interval [F] will extend from bottom of casing to five feet above the first encountered ground water table (unless water <5 feet deep).
- Schedule 40 PVC casing, 2 inch in diameter [D], will be used. Screen is 0.020 or 0.010 inch factory machined slots, depending on filter pack grain size.
- 5. Filter pack will be placed from bottom of casing to two feet above perforated interval [I]. (Bottom seal [J] is not installed unless required.) One to two feet of bentonite [H] will be placed above the filter pack. Concrete grout [G] will be placed from top of bentonite seal to the surface (unless modified due to shallow water). Blank casing [E] will extend from the top of the perforated casing to the top of the hole.
- The well will be installed with a waterproof cap, padlock and a flush-mounted well cover.
- * See text for additional information,

PRC	JECT OCAT	NO.: ION:	76 41	2-0142-0 Station	9 #3538 acArthur Blvd. California	DATE DRILLED: LOGGED BY: APPROVED BY: DRILLING CO.:		E	AS	ING:	NOT SU	RVEYED RVEYED RVEYED
PID(ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	DRII	LLING METHOD:	2-inch Direct Push 4-foot Continuous Core 20.00 feet 16.25 feet		* USCS	LITHOLOGY	BAC	ORING OKFILL ETAIL
12.0		3.0/ 3.0 4.0/ 4.0	Management of the contrasting	5	sand, medium pla - @ 6': color chan - @ 9': color chan	isticity, dry. ge to black (2.5/2.6/1),), 95% fines. 5% fine∗grained s		CL		5	Grout
02		2.0/ 4.0 4.0/	Adapada sa anadaga (s	15	SAND (SW): Olividose, moist CLAY (CL): Light grained sand, me	ve (5Y 4/3), 10% fines, olive brown (2.5Y 5/6), dium plasticity, moist.	90% fine- to coarse-grained sa 90% fines, 10% fine- to coarse /2), 10% fines, 90% fine- to co	, –	sw CL \square		15	
		minorial description of the contract of the co	The second secon	20				and the second s	SW	10000000000000000000000000000000000000	20	
		The state of the s		25							25-	
		andriade de l'année de		35							35-	
				40	LC	G OF EXPL	ORATORY BOR	RING			1	\$B-1 GE 1 OF 1

•

					DATE DRILLED: 3/27/06 LOGGED BY: J. Kearns APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling	STING	: NOT SURV : NOT SURV : NOT SURV	EYED	
Pitchito (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE OEPTH (1991 below grade)		LLING METHOD: 2-inch Direct Push SAMPLER TYPE: 4-foot Continuous Core TOTAL DEPTH: 24.00 feet PTH TO WATER: 16.25 feet DESCRIPTION			BORII BACKE DET/	FILL
1.6 0.2		3.0/ 3.0 4.0/ 4.0 2.0/ 2.0/ 2.0 4.0	- 10 - 10 - 15 - 15 - 20 - 25 - 30 - 35 - 40	grained sand, loo CLAY (CL): Light grained sand, me • @ 9': color char gray (10YR 3/1). • @ 11': color cha (10YR 3/2). CLAYEY SAND (coarse-grained s CLAY (CL): Yello grained sand, me	olive brown (2.5Y 5/6), 90% fines, 10% fine- to coarse- edium plasticity, moist. Ige to mottled light yellowish brown (2.5Y 6/3) and very da Inge to mottled brown (10YR 3/3) and very dark grayish br	own ct		10	- Grout
				LO	G OF EXPLORATORY BORIN	IG		SB.	

PRO L	JECT OCAT	NO.	76 41	1 W. M	09 n #3538 acArthur Blvd. California	DATE DRILLED: 3/27/06 LOGGED BY: J. Kearns APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling	TING	: NOT SURVEYED : NOT SURVEYED : NOT SURVEYED		
PrD/FID (ppm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet below grade)	DRI	LLING METHOD: 2-inch Direct Push SAMPLER TYPE: 4-foot Continuous Core TOTAL DEPTH: 24.00 feet PTH TO WATER: 16.69 feet DESCRIPTION		uscs	LITHOLOGY	BORING BACKFILL DETAIL
13.3 6.9 105		3.0/ 4.0/ 4.0 4.0 4.0 4.0	The state of the s		grained sand, loo CLAY (CL): Dark sand, medium pla - @ 9': color chan yellowish brown (- @ 11': low plast - @ 14': hydrocar hydrocarbon odo	brown (10YR 3/3), 90% fines, 10% fine- to coarse-grain asticity, moist. age to mottled tight yellowish brown (10YR 4/4) and dark 10YR 4/6), high plasticity. icity. bon oder. ange to mottled dusky red (10YR 3/2) and dark brown, r. SC): Mottled dark greenish gray (GLEY1 6/1) and yellow	ned k	cu sc		20
<u> </u>			(3	40 	LO	G OF EXPLORATORY BORI	ING			SB-3 PAGE 1 OF 1

			: 76 41	1 W. M	09 n #3538 acArthur Blvd. California	DATE DRILLED: 3/28/06 LOGGED BY: J, Kearns APPROVED BY: K. Woodburne, RG DRILLING CO: Woodward Drilling	LOGGED BY: J, Kearns EASTING					
PtD:FtD (spm)	BLOWS PER 6 INCHES	RECOVERY	SAMPLE	DEPTH (feet bolow grade)	DRI	ILLING METHOD: 2-inch Direct Push SAMPLER TYPE: 4-foot Continuous Control DEPTH: 24.00 feet PTH TO WATER: 16.39 feet DESCRIPTION	re	SOSO	LITHOLOGY	BAC	RING KFILL TAIL	
8.3 4.0 3.7		3.5/ 3.5/ 4.0 2.5/ 4.0 2.0/ 4.0		5 GGA 10 CONTROL 10 CO	fine- to coarse-gr - @ 9'; color char (10YR 3/4). SAND (SW); Ven grained sand, loo CLAY (CL): Brow madium plasticity - @ 12'; color cha - @ 14'; color cha (10YR 5/6). CLAYEY SAND (vn (10YR 4/3), 90% fines, 10% fine- to coarse-grain	ah brown varse- ned sand, sh brown	CL. SW SC		10	Grout	
				30						30 - 35 - 35 - 35 - 35 - 35 - 35 - 35 -		
	TRC LO			1	LO	G OF EXPLORATORY BO	G OF EXPLORATORY BORING			SB-4 PAGE 1 OF 1		

PROJECT NO.: 42-0142-09 LOCATION: 76 Station #3538 411 W. MacArthur Blvd. Oakland, California						DATE DRILLED: 3/28/06 LOGGED BY: J. Kearns APPROVED BY: K. Woodburne, RG DRILLING CO.: Woodward Drilling	NORTHING: NOT SURVEYED EASTING: NOT SURVEYED ELEVATION: NOT SURVEYED			
PID:FID (ppm)	BLOWS PER 5 INCHES	RECOVERY	SAMPLE	DEPTH Officet below grade)	DRI	LING METHOD: 2-Inch Direct Push 6AMPLER TYPE: 4-foot Continuous Core TOTAL DEPTH: 20.00 feet PTH TO WATER: 18.00 feet DESCRIPTION	sosn .	LITHOLOGY	BORING BACKFILL DETAIL	
1.6		3.0/ 3.0/ 4.0/ 4.0/ 4.0			medium plasticity • @ 9': color char • @ 10': color char CLAYEY SAND (grained sand, loo CLAY (CL): Mottl 5/6), 90% fines, 1 CLAYEY SAND (brown (10YR 5/6)	ige to dark grayish brown (2.5Y 4/2). inge to dark olive gray (5Y 3/2). SC): Dark olive gray (5Y 3/2), 15% fines, 85% fine- to coar	CL Se- SC		25	
TRC LOC					LO	G OF EXPLORATORY BORING			\$B-5 PAGE 1 OF 1	

.

APPENDIX F

Groundwater Flow Rose Diagram and Historic Maps

Historical Groundwater Flow Directions for Tosco (76) Service Station No. 3538 February 1990 through March 2008

76 Broadway Sacramento, California 95818

February 18, 2011

Ms. Barbara Jakub Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Re: Additional Assessment Report Former 76 Service Station No. 3538 411 West MacArthur Boulevard Oakland, California

RO # 0251

Dear Ms. Jakub:

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or need additional information, please call:

Ted Moise (Contractor)
ConocoPhillips
Risk Management & Remediation
76 Broadway
Sacramento, CA 95818

Phone: (510) 245-5162 Fax: (918) 662-4480

Ted.Moise@contractor.conocophillips.com

Sincerely,

Eric G. Hetrick Site Manager

Risk Management & Remediation

Attachment

11050 White Rock Road, Suite 110 Rancho Cordova, California 95670 www.anteagroup.com

February 18, 2011

Mr. Barbara Jakub Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

RE:

ADDITIONAL ASSESSMENT REPORT Former 76 Service Station No. 3538 411 W. MacArthur Boulevard Oakland, California AOC 1178 RO# 0251

Dear Mr. Wickham:

Due to global rebranding, as of January 5, 2011 Delta Consultants has become Antea Group. Any work performed or reports submitted prior to this date will be referenced using the Delta name.

On behalf of ConocoPhillips Company (COP), Antea Group is submitting this *Additional Assessment Report*, for the above referenced location.

Please contact Jan Wagoner at (916) 503-1275 if you have questions.

Sincerely,

cc:

ANTEA GROUP

Jan W. Wagoner

Senior Project Manager

Mr. Ted Moise - ConocoPhillips (electronic copy only)

ADDITIONAL ASSESSMENT REPORT

Former 76 Service Station No. 3538 411 W. MacArthur Blvd Oakland, CA

Antea Group Project No. C103538061

February 18, 2011

Prepared for: ConocoPhillips 76 Broadway Sacramento, CA 95818 Prepared by:
AnteaTMGroup
11050 White Rock Road
Suite 110
Rancho Cordova, CA
95670

ADDITIONAL ASSESSMENT REPORT

76 Service Station No. 3538411 W. MacArthur Blvd Oakland, California

February 18, 2011

Prepared for

ConocoPhillips Company 76 Broadway Sacramento, California

The material and data in this report were prepared under the supervision and direction of the undersigned.

SIONAL GEO

DENNIS SHANNON DETTLOFF No. 7480

TE OF CAL

ANTEA GROUP

Alan Buehler Staff Geologist

Jan Wagoner

Project Manager

Dennis S. Dettloff, P.G.

California Registered Professional Geologist No. 7480

February 18, 2011 76 Service Station No. 3538 Page 2 411 W. MacArthur Blvd, Oakland, CA

1.0 <u>INTRODUCTION</u>

On behalf of ConocoPhillips (COP), AnteaTMGroup has prepared this Additional Assessment Report. Assessment activities were performed as described in Delta's Work Plan for Additional Assessment, dated June 3, 2009, and Amendment to Work Plan for Additional Assessment, dated November 5, 2010, and were approved in an Alameda County Health Care Services Agency (ACHCSA) letter to COP dated October 5, 2010 (Appendix A). As an appropriate access agreement for the private property south of the site and a City of Oakland encroachment permit could not be obtained for Webster Street to coincide with the drilling of SB-8, SB-9, and SB-10, borings SB-6 and SB-7 are pending.

2.0 SITE BACKGROUND

2.1 SITE DESCRIPTION

The site is located at the southwest corner of West MacArthur Boulevard and Webster Street in Oakland, California (Figure 1). The site is a former service station, and all underground storage tanks (USTs) and product piping have been removed. A canopy over the former dispenser island locations and a station building located in the southwestern portion of the site are still in place (Figure 2). There are currently six groundwater monitoring wells (MW-1 through MW-6) on and in the vicinity of the site. Properties in the immediate vicinity of the site are utilized for commercial and residential purposes.

2.2 PREVIOUS ASSESSMENT

A site map with historical sampling locations is included as Figure 4.

<u>July 1989</u>: One 10,000-gallon and one 12,000-gallon gasoline USTs were removed and replaced with two new 12,000-gallon USTs. One 550-gallon waste oil UST and the associated piping for all three tanks were also removed. No holes or cracks were observed in the gasoline USTs; however, holes were observed in the waste oil UST. Groundwater was encountered in the former UST pit at a depth of approximately 10.5 feet below ground surface (bgs), which prohibited the collection of soil samples below the former fuel USTs. Confirmation soil samples from the sidewalls contained moderate maximum concentrations of total petroleum hydrocarbons as gasoline (TPHg), and low maximum concentrations of benzene. These sample areas were subsequently over-excavated. Soil samples from the base of the waste oil UST pit did not contain TPHg or benzene, toluene, ethyl-benzene, and xylenes (BTEX compounds). (Kaprealian Engineering, INC., 1989)

<u>September 1989</u>: Kaprealian Engineering, INC. (KEI) installed four groundwater monitoring wells at the site to depths of approximately 30 feet bgs.

November 1992: Two additional groundwater monitoring wells were installed off-site to a depth of 30 feet bgs. (KEI, 1993)

<u>September 1998</u>: Two 12,000-gallon gasoline USTs and associated product piping and dispensers were removed from the site during station demolition activities. No holes or cracks were observed in the tanks. Confirmation soil samples contained low maximum concentrations of TPHg and benzene. Methyl tertiary-butyl ether (MTBE) was below the laboratory's indicated reporting limits.

October 2003: Site environmental consulting responsibilities were transferred to TRC.

February 18, 2011 76 Service Station No. 3538 Page 3 411 W. MacArthur Blvd, Oakland, CA

<u>March 2006</u>: TRC conducted additional soil and groundwater assessment at the site. The investigation involved the advancement of three onsite soil borings (SB-3, SB-4, and SB-5) and two offsite soil borings (SB-1 and SB-2) to sufficient depth to obtain representative groundwater samples (approximately 16 feet bgs).

October 2007: Site environmental consulting responsibilities were transferred to Delta.

2.3 SENSITIVE RECEPTORS

In 2002, Gettler-Ryan, Inc. requested that California Department of Water Resources (DWR) perform a record search of their files for the presence of water supply wells within a 2,000 foot radius of the site. The DWR file search revealed that there are no water supply wells located within 2,000 feet of the site. The nearest well identified is a private water well located approximately 2,500 feet east-southeast of the site, in the cross-gradient groundwater flow direction.

2.4 SITE GEOLOGY AND HYDROGEOLOGY

Based on review of regional geologic maps the site is underlain by Late Pleistocene Alluvium. This alluvium is considered to be alluvial fan deposits, and is described as consisting of weakly consolidated, slightly weathered, irregularly interbedded clay, silt, and gravel. The maximum thickness of these deposits is unknown, but is considered to be at least 150 feet thick.

Based on subsurface investigation performed at the site, the first 1.5 feet of the subsurface is composed of artificial fill. The fill is underlain by an unsaturated zone consisting of clay with minor amounts of sand and gravel, to a depth of approximately 18 feet blow ground surface (bgs). The saturated zone, extending from approximately 18 to 30 feet bgs (limit of exploration), is composed of gravel with silt and sand, interbedded with clayey sand and clayey silt.

Monitoring and sampling of wells at the site has been performed since September 1989. Depth to groundwater has varied from approximately 11 to 19 feet below top of casing (TOC). Groundwater flow direction has been predominantly towards the south and south-southeast with occasional deviation to the east-southeast and southwest.

3.0 ADDITIONAL ASSESSMENT

3.1 PRE-FIELD ACTIVITIES

Before commencing field operations Antea Group prepared a site-specific health and safety plan in accordance with state and federal requirements for use during site assessment activities. Antea Group also obtained the appropriate permits from Alameda County Public Works Agency (ACPWA) (Appendix B).

Prior to performing any drilling activities, Antea Group identified and marked the proposed boring locations and notified Underground Service Alert (USA) as required. A private utility locating service was also contracted to clear the proposed boring locations for underground utilities.

All the proposed soil boring locations were cleared by air vacuum to five feet bgs, to avoid damage to possible underground utilities.

3.2 SOIL AND GROUNDWATER BORINGS

February 18, 2011 76 Service Station No. 3538 Page 4 411 W. MacArthur Blvd, Oakland, CA

The purpose of the proposed borings was to confirm the petroleum hydrocarbon concentrations reported during the soil and groundwater investigation activities detailed in TRC's *Soil and Groundwater Investigation Report*, dated April 28, 2006 and monitoring well MW-3 installation activities detailed in Kaprealian Engineering, Inc.'s (KEI's) *Preliminary Groundwater Investigation at Unocal Service Station #3538*, dated October 23, 1989. Initially, 5 borings were proposed, two offsite down-gradient (SB-6 and BS-7), and three onsite (SB-8 through SB-10). Borings SB-8 through SB-10 are shown on Figure 2. However, due to permitting and access agreement issues, only the onsite borings were advanced. Borings SB-6 and SB-7 will be advanced once access agreements are in place for SB-6.

On December 15, 16, 20, and 21, 2010, Antea Group oversaw air-knifing and advancement of three direct push soil borings SB-8 through SB-10. Boring SB-8 was advanced to 25 feet bgs in the vicinity of MW-3, north of the former UST pit, and east of the former dispenser islands. Boring SB-9 was advanced to 30 feet bgs in the vicinity of boring SB-3, east of the former UST pit. Boring SB-10 was advanced to 30 feet bgs in the vicinity of boring SB-5, south of the former UST pit and dispenser islands.

For boring SB-8, only one hole was advanced for soil sampling and the collection of a grab groundwater sample. For borings SB-9 and SB-10, three holes were advanced at each location: one for soil sampling, and two for collection of two depth discrete groundwater samples.

3.2.1 Soil Sampling

Soil was collected continuously from just below the air-vacuum cleared depth of 5 feet bgs to total depth in each borehole using GeoProbe direct push technology equipped with acetate liners. Soil was logged for lithology using the Unified Soils Classification System (USCS). Soil samples were collected continuously in boring SB-8 from 5 feet bgs to 20 feet bgs. Four soil samples were collected for analysis from 5, 10, 15, and 20 feet bgs. Soil samples were collected continuously in borings SB-9 and SB-10 from 5 feet bgs to 30 feet bgs. Six soil samples were collected for analysis from 5, 10, 15, 20, 25, and 30 feet bgs from each borehole.

Each sample was collected by cutting a six-inch section from the acetate liner at the corresponding depth. Each sample was then capped with Teflon® sheeting and tight-fitting plastic end caps, labeled, and placed on ice in preparation for transportation to a California-certified laboratory. All sampled were accompanied by proper chain of custody (COC) documentation.

3.2.2 Groundwater Sampling

Groundwater samples were collected from each borehole using HydroPunch® technology in which 0.75-inch temporary polyvinyl chloride (PVC) well screen is exposed to groundwater bearing zones using direct push technology. Groundwater samples collected from boring SB-8 were depth discrete grab samples collected with screen exposed from 20 to 25 feet bgs. Initially, based on lithological data, an attempt was made to obtain a grab sample with temporary well screen exposed from 15 to 20 feet bgs, but no water was encountered.

Based on lithologic data collected during soil sampling, two depth discrete groundwater samples were collected from each boring SB-9 and SB-10. In both borings, the shallow sample was collected with temporary screen exposed from 17 to 22 feet bgs, while the deep sample was collected with temporary screen exposed from 24 to 29 feet bgs.

February 18, 2011 76 Service Station No. 3538 Page 5 411 W. MacArthur Blvd, Oakland, CA

All groundwater samples were collected in appropriate sample bottles, labeled, and placed on ice in preparation for transportation to a California-certified laboratory. All samples were accompanied by proper COC documentation.

3.2.3 Analysis

Soil and groundwater samples were analyzed for TPHg, BTEX, and 8 fuel oxygenates [MTBE, tert-butyl alcohol (TBA), ethylene dibromide (EDB), 1,2 dicholoroethane (1,2-DCA), di-isopropyl ether (DIPE), tert amyl methyl ether (TAME), ethyl tert butyl ether (ETBE), and ethanol] by Environmental Protection Agency (EPA) Method 8260. A copy of the certified laboratory report is included as Appendix C.

3.3 DISPOSAL OF DRILL CUTTINGS AND WASTEWATER

Drill cuttings and wastewater generated during proposed soil, groundwater and soil vapor assessment activities were placed into properly labeled 55-gallon Department of Transportation (DOT) approved steel drums and temporarily stored at the service station site. Samples of the drill cuttings and wastewater were collected, properly labeled and placed on ice for submittal to a California-certified laboratory and analyzed for TPHg, BTEX, and MTBE by EPA Method 8260B. Additionally, soil samples will also be analyzed for CAM 17 metals by EPA Method 6010. A chain-of-custody accompanied the samples during transportation to the laboratory. Subsequent to receiving the laboratory analytical results, the drummed drill cuttings and wastewater will be profiled and transported for disposed of at a COP approved facility.

4.0 DISCUSSION

A site map with current wells and current investigation sampling locations is included as Figure 2. A site map with historical sampling locations is includes as Figure 3. Current soil and grab groundwater analytical results are included in Table 1 and Table 2, respectively. Historical soil and grab groundwater analytical results are included in Table 3 and Table 4, respectively. Boring logs for borings SB-8 through SB-10 are included as Appendix D.

Historical groundwater flow directions are presented in a rose diagram as Figure 4. In the 2006 Soil and Groundwater Investigation Report, TRC included a rose diagram that depicted the predominant groundwater flow directions through first quarter 2006 to be east and southwest. After re-evaluation of this existing data, and the addition of data from second quarter 2006 through third quarter 2010, Figure 4 shows the predominant groundwater flow directions to be south and south-southeast. Since second quarter 1994, all reported flow directions have been generally southerly, ranging between east-southeast and southwest, with the exception of second quarter 2001 (northeast), and third quarter 2006 (west). Since third quarter 2007, reported flow directions have been to the south.

Borings SB-8 and SB-9 were confirmation sampling locations for monitoring well MW-3 and boring SB-3, respectively. Boring SB-10 was a sampling location down-gradient of the former USTs.

Benzene concentrations present in soil in the original borings for monitoring well MW-3 and boring SB-3 were the main concern of the regulatory agency. Benzene concentrations in soil from each of the borings (SB-8, SB-9, and SB-10) from all depths were below laboratory indicated reporting limits, with the exception of 15 and 20 feet bgs in boring SB-9 (1.4 milligrams per kilogram (mg/kg) and 0.17 mg/kg benzene, respectively). This data confirms that benzene concentrations in soil in the vicinity of monitoring well MW-3 and boring SB-8 are no longer present and benzene is not present in the soil in the vicinity of boring SB-10 to 30 feet bgs. While benzene concentrations in the soil sample collected

February 18, 2011 76 Service Station No. 3538 Page 6 411 W. MacArthur Blvd, Oakland, CA

from boring SB-9 were higher than those in boring SB-3, soil sampled collected at both 5 feet and 10 feet bgs were below the laboratory's indicated reporting limits.

This would indicate at least 10 to 15 feet of soil with no reportable benzene concentrations are present immediately below the ground surface in boring SB-9 and no reportable benzene concentrations were reported in boring SB-8 to 20 feet bgs. This would indicate the potential for vapor intrusion in the vicinity of borings SB-3, MW-3, SB-8, SB-9, and SB-10 are minimal and no additional vapor intrusion assessment is necessary.

The highest soil TPHg concentrations were reported in boring SB-8, just north of the former gasoline USTs, and just east of the former dispenser islands. In this boring, TPHg was reported at a concentration of 520 mg/kg at 20 feet bgs. TPHg concentrations at shallower depths in this boring were below or near the laboratory's indicated reporting limits. TPHg concentrations reported in soil samples collected from boring SB-9 were below 10 mg/kg at each depth sampled. TPHg concentrations reported in soil samples collected from boring SB-10, south of the former USTs, were below 1.0 mg/kg from each depth sampled.

Benzene was reported in groundwater samples collected from each of the borings and each depth, with the exception of boring SB-8 (between 20 to 25 feet bgs) which was below laboratory's indicated reporting limits. Benzene was present in both the shallow (17-22 feet bgs) and deep (24-29 feet bgs) samples collected from boring SB-9. The shallow sample contained 420 μ g/L benzene, while the deep sample contained 79 μ g/L benzene. Both of these concentrations are lower than the 510 μ g/L benzene reported in groundwater samples collected from boring SB-3 in 2006. Benzene concentrations in the shallow (17-22 feet bgs) and deep (24-29 feet bgs) samples collected from boring SB-10 were 20 μ g/L and 1.8 μ g/L, respectively.

TPHg concentrations in groundwater were the highest in samples collected from boring SB-9, in the middle of the driveway along the eastern edge of the property, cross-gradient to the former USTs. TPHg was reported in this boring at a maximum concentration of 9,500 μ g/L from the shallow sample (17-22 feet bgs). The deeper sample (24-29 feet bgs) from boring SB-9 reported a TPHg concentration of 2,900 μ g/L. Only one sample (20-25 feet bgs was collected from boring SB-8, with a reported TPHg concentration of 2,000 μ g/L. TPHg in boring SB-10 was reported with a maximum concentration of 1,500 μ g/L in the shallower sample (17-22 feet bgs) and a concentration of 310 μ g/L in the deeper sample (24-29 feet bgs).

Historically, groundwater flow was predominantly to the south-southeast and south, and to a lesser extent northeast, east northeast, southwest, and south-southwest. During the 2006 TRC investigation, reported TPHg concentrations in boring SB-2 (east across Webster Street) were below the laboratory's indicated reporting limits for each constituent analyzed. This indicates that while residual petroleum hydrocarbons may be present in boring SB-9, petroleum hydrocarbons have not migrated offsite across Webster Street (Figure 3). Petroleum hydrocarbons present in boring SB-10 indicate petroleum hydrocarbons are present in groundwater south of the former USTs.

5.0 **RECOMMENDATIONS**

In Delta's Work plan for Additional Assessment, dated June 3, 2009, and Amendment to Work plan for Additional Assessment, dated November 5, 2010, the proposed scope of work included advancing boring SB-6 in the private property immediately to the south of the site, and boring SB-7 in the street southeast of the site at the corner of Webster Street and 37th Street. Due to access issues with the

February 18, 2011 76 Service Station No. 3538 Page 7 411 W. MacArthur Blvd, Oakland, CA

private property owner on which the proposed SB-6 boring is located, and permitting issues with the City of Oakland, borings SB-6 and SB-7 were not advanced as part of this investigation. The purpose of boring SB-6 was to better assess offsite impact south of the USTs and site. The purpose of SB-7 was to better assess any possible migration of site impact offsite to the southeast.

Upon implementation of an access agreement for boring SB-6, and proper permitting for boring SB-7, these borings will be advanced. However, Antea Group proposes to shift the location of boring SB-6 slightly to the west closer to the property line between the 402 37th Street and 412 37th Street properties. This location will put this boring in a more directly down-gradient (south) of the former USTs and boring SB-10. The locations of proposed borings SB-6 and SB-7 are shown on Figure 5.

In ACHCSA's letter to COP dated October 5, 2010, a work plan for assessment of soil vapor pathways was requested upon the confirmation of the presence of benzene in the vicinity of MW-3 and SB-3. ACHCSA's main concern was in regards to soil vapor was the soil sample from MW-3 at 10 feet bgs. No benzene concentrations were reported in boring SB-8. While benzene is present in boring SB-9, the shallowest reported benzene concentrations are at 15 feet bgs. Between 10 and 15 feet of soil with no reportable benzene concentrations are present below the ground surface in the vicinity of borings SB-3 and SB-9 and benzene was not reported in each of the soil sample collected from borings SB-8 and SB-10 to the maximum depths of 20 feet bgs and 30 feet bgs, respectively. As such, Antea Group does not recommend performance of a soil vapor assessment investigation, and has not prepared the work plan noted in ACHCSA's letter of October 5, 2010.

6.0 <u>LIMITATIONS AND CERTIFICATIONS</u>

This report was prepared in accordance with the scope of work outlined in Antea Group's contract and with generally accepted professional engineering and environmental consulting practices existing at the time this report was prepared and applicable to the location of the site. It was prepared for the exclusive use of ConocoPhillips for the expressed purpose stated above. Any re-use of this report for a different purpose or by others not identified above shall be at the user's sole risk without liability to Antea Group. To the extent that this report is based on information provided to Antea Group by third parties, Antea Group may have made efforts to verify this third party information, but Antea Group cannot guarantee the completeness or accuracy of this information. The opinions expressed and data collected are based on the conditions of the site existing at the time of the field investigation. No other warranties, expressed or implied, are made by Antea Group.

CONSULTANT: ANTEA GROUP

FIGURES

Figure 1 – Site Locator Map

Figure 2 – Site Plan with Current Well and Current Investigation Sampling Locations

Figure 3 – Site Plan with Historical Sampling Locations

Figure 4 – Historical Groundwater Flow Direction Rose Diagram

Figure 5 – Site Plan with Proposed Borings

TABLES

Table 1 – Current Soil Analytical Results

Table 2 – Current Grab Groundwater Analytical Results

Table 3 – Historical Soil Analytical Results

February 18, 2011 76 Service Station No. 3538 Page 8 411 W. MacArthur Blvd, Oakland, CA

Table 4 – Historical Grab Groundwater Analytical Results

APPENDICES

Appendix A – ACHCSA Letter dated October 5, 2010

Appendix B – ACPWA Drilling Permits
Appendix C – Certified Laboratory Reports

Appendix D – Boring Logs for Borings SB-8 Through SB-10

FIGURE 1 SITE LOCATION MAP

FORMER 76 STATION NO. 3538 411 WEST MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

PROJECT NO.	DRAWN BY
C103538	JH 11/14/08
FILE NO.	PREPARED BY
3538-Site Locator	NP
REVISION NO.	REVIEWED BY DB

SOURCE: USGS 7.5 MINUTE TOPOGRAPHIC MAP, OAKLAND WEST QUADRANGLE (1993)

FIGURE 4

Historic Groundwater Flow Directions Site No. 3538

411 W. MacArthur Blvd Oakland, California

Legend

Concentric circles represent quarterly montoring events. Second Quarter 1990 through Third Quarter 2010. 49 data points shown.

Table 1
Soil Analytical Results
76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	DIPE	ETBE	TAME	EDB	1,2-DCA	Ethanol
		(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-8@5	12/20/10	5	<0.20	<0.0050	<0.0050	<0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-8@10	12/20/10	10	0.30	<0.0050	<0.0050	<0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-8@15	12/20/10	15	<10	< 0.025	<0.025	<0.025	< 0.050	<0.025	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-8@20	12/20/10	20	520	<1.2	19	19	86	<1.2	<12	<1.2	<1.2	<1.2	<1.2	<1.2	<250
SB-9@5	12/20/10	5	9.9	<0.025	<0.025	0.10	0.059	<0.025	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-9@10	12/20/10	10	3.0	< 0.0050	0.011	0.069	0.28	0.014	0.40	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0
SB-9@15	12/20/10	15	<10	1.4	0.28	0.14	0.66	0.04	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-9@20	12/20/10	20	4.5	0.17	0.10	0.067	0.37	0.62	0.58	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-9@25	12/20/10	25	0.30	<0.0050	0.014	0.0050	0.028	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0
SB-9@30	12/20/10	30	0.28	< 0.0050	0.02	0.011	0.043	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@5	12/21/10	5	<0.20	< 0.0050	<0.0050	< 0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@10	12/21/10	10	0.28	<0.0050	<0.0050	< 0.0050	0.017	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0
SB-10@15	12/21/10	15	0.47	< 0.0050	<0.0050	0.0055	0.024	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@20	12/21/10	20	0.31	<0.0050	<0.0050	0.047	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@25	12/21/10	25	<0.20	< 0.0050	<0.0050	< 0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@30	12/21/10	30	<0.20	<0.0050	<0.0050	< 0.0050	0.012	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0

TPHg = total petroelum hydrocarbons as gasoline MTBE = metyl tert butyl ether TBA = tert butyl alcohol TAME = tert amyl methyl ether DIPE = diisopropyl ether ETBE = ethyl tert butyl ether EDB = ethylene dibromide 1,2-DCA = 1,2 dicholorethane ND = non detect, where reporting limit is not known **bold** = value above reporting limit mg.kg = milligrams per kilogram

Table 2
Groundwater Analytical Results
76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	DIPE	ETBE	TAME	EDB	1,2-DCA	Ethanol
		(ft)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
SB-8@20-25	12/20/10	20-25	2000	<0.50	48	98	340	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
SB-9@17-22	12/20/10	17-22	9500	430	2000	330	2100	190	<5.0	<100	<5.0	<5.0	<5.0	<5.0	<2500
SB-9@24-29	12/20/10	24-29	2900	79	470	100	540	<5.0	<5.0	<100	<5.0	<5.0	<5.0	<5.0	<2500
SB-10@17-22	12/20/10	17-22	1500	20	0.96	75	8.3	<0.50	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250
SB-10@24-29	12/20/10	24-29	310	1.8	25	12	63	5.8	<10	<0.50	<0.50	<0.50	<0.50	<0.50	<250

TPHg = total petroelum hydrocarbons as gasoline MTBE = metyl tert butyl ether TBA = tert butyl alcohol TAME = tert amyl methyl ether DIPE = diisopropyl ether ETBE = ethyl tert butyl ether EDB = ethylene dibromide 1,2-DCA = 1,2 dicholorethane TOG = total oil and grease ND = non detect, where reporting limit is not known **bold** = value above reporting limit ug/L = micrograms per liter

Table 3
Historical Soil Analytical Results
Former 76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1-2,DCA	Ethanol	TOG	Lead
Sample 1D	Date	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-1	6/12/1989	10	3100		12	300	730	110										
SW-1 (4)	6/12/1989	10	<1.0		<0.050	<0.10	<0.10	<0.10						-				
SW2	6/12/1989	10	1.1		0.1	<0.10	0.18	<0.10										
SW3	6/12/1989	10	5.7		0.26	<0.10	0.45	0.23				-		-				
SW4	6/12/1989	10	2.5		<0.050	<0.10	0.24	<0.10										
SW4 (2)	6/12/1989	10	11		0.61	0.51	1.3	0.44						-				
P1	6/12/1989	6.5	<1.0		<0.050	<0.10	<0.10	<0.10										
P2	6/12/1989	6.5	<1.0		< 0.050	<0.10	<0.10	<0.10										
Р3	6/12/1989	5.5	<1.0		< 0.050	<0.10	<0.10	<0.10				-		-				
P4	6/12/1989	10	170		0.71	12	47	6.8				-		-				
WO1	6/12/1989	8.5	<1.0		< 0.050	<0.10	<0.10	<0.10										
MW-1 (5)	9/6/1989	5	3.4	<1.0	< 0.050	<0.010	<0.010	<0.010							<5.0		<50	
MW1 (10)	9/6/1989	10	5	<1.0	< 0.050	<0.010	<0.010	< 0.010				-		-	<5.0		<50	
MW1 (15)	9/6/1989	15	2.2	<1.0	< 0.050	<0.010	< 0.010	< 0.010				-		1	<5.0		<50	
MW1 (19)	9/6/1989	19	<1.0	<1.0	< 0.050	<0.010	< 0.010	< 0.010				-		1	<5.0		<50	
MW2 (5)	9/6/1989	5	1.4		< 0.050	<0.010	<0.010	<0.010										
MW2 (10)	9/6/1989	10	<1.0		< 0.050	<0.010	<0.010	<0.010										
MW2 (15)	9/6/1989	15	1.8		<0.050	<0.010	< 0.010	<0.010										
MW2 (19)	9/6/1989	19	13		1.5	2.1	0.34	1.8										
MW3 (5)	9/6/1989	5	1.3		<0.050	<0.010	< 0.010	<0.010										
MW3 (10)	9/6/1989	10	1.8		0.29	<0.010	<0.010	<0.010										
MW3 (15)	9/6/1989	15	3.3	-	<0.050	<0.010	<0.010	<0.010										
MW3 (18.5)	9/6/1989	18.5	<1.0		<0.050	<0.010	<0.010	<0.010										
MW4 (5)	9/6/1989	5	3.1		<0.050	<0.010	<0.010	<0.010										
MW4 (10)	9/6/1989	10	17		<0.050	<0.010	<0.010	0.1										
MW4 (15)	9/6/1989	15	20		<0.050	<0.010	<0.010	0.27										
MW4 (18.5)	9/6/1989	18.5	2.1		<0.050	<0.010	<0.010	<0.010										
MW5 (5)	11/18/1992	5	<1.0		<0.0050	<0.0050	<0.0050	<0.0050						-				
MW5 (10)	11/18/1992	10	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050						-				
MW5 (15)	11/18/1992	15	<1.0		<0.0050	<0.0050	<0.0050	<0.0050						-				
MW5 (21)	11/18/1992	21	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW6 (5)	11/18/1992	5	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW6 (10)	11/18/1992	10	<1.0		<0.0050	<0.0050	<0.0050	<0.0050				-		-			-	
MW6 (15)	11/18/1992	15	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW6 (19.5)	11/18/1992	19.5	<1.0		<0.0050	<0.0050	<0.0050	<0.0050				-		-				
A1 (10)	0/14/1000	10	2.5		0.53	0.26	0.000	0.40	40.050									1 20
A1 (19)	9/14/1998	19	3.5		0.53	0.36	0.069	0.40	<0.050									26
A2 (18)	9/14/1998	18	12		0.050	0.075	<0.0050	0.026	<0.050									<1.0
B1 (19.5)	9/14/1998	19.5 19.5	360	-	1.5 0.017	15 1.8	7.0 0.24	44 1.4	<0.050 <0.050									1.7
B2 (19.5)	9/14/1998		6.7 <1.0	-	<0.0050	<0.0050	<0.0050	<0.0050										2.7 11
P1 (6)	9/14/1998	6	_	-	<0.0050	<0.0050		<0.0050	<0.050									
P2 (6)	9/14/1998		<1.0	-			<0.0050		<0.050									1.3
P3 (6)	9/14/1998	6	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.050									<1.0
P4 (6)	9/14/1998	6	<1.0		<0.0050	<0.0050	< 0.0050	<0.0050	< 0.050									<1.0

Table 3
Historical Soil Analytical Results
Former 76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1-2,DCA	Ethanol	TOG	Lead
		(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-1@5	3/27/2006	5	< 0.97		< 0.0049	<0.0049	< 0.0049	< 0.0097	< 0.0049	<0.0097	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.49		
SB-1@9	3/27/2006	9	2.8		<0.0048	<0.0048	<0.0048	<0.0097	<0.0048	<0.0097	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.48		
SB-2@5	3/27/2006	5	< 0.97		< 0.0049	< 0.0049	< 0.0049	<0.0097	< 0.0049	< 0.0097	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.49		
SB-2@9	3/27/2006	9	< 0.93		< 0.0047	< 0.0047	< 0.0047	< 0.0093	< 0.0047	< 0.0093	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.47		
SB-3@14	3/27/2006	14	1.3		0.11	<0.0046	0.061	0.055	0.64	0.19	<0.0046	<0.0046	<0.0046	< 0.0046	<0.0046	<0.46		
SB-3@16	3/27/2006	16	6100		<9.7	53	86	420	<9.7	<19	<9.7	<9.7	<9.7	<9.7	<9.7	<190		
SB-4@5	3/27/2006	5	< 0.93		< 0.0047	<0.0047	< 0.0047	< 0.0093	< 0.0047	< 0.0093	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.47		
SB-4@15	3/27/2006	15	< 0.92		<0.0046	<0.0046	<0.0046	<0.0092	<0.0046	<0.0092	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.46		
SB-5@9	3/27/2006	9	< 0.93		< 0.0046	<0.0046	< 0.0046	<0.0093	< 0.0046	< 0.0093	< 0.0046	<0.0046	<0.0046	< 0.0046	< 0.0046	< 0.46		
SB-5@13	3/27/2006	13	< 0.93		< 0.0047	< 0.0047	< 0.0047	<0.0093	< 0.0047	< 0.0093	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.47		
SB-8@5	12/20/10	5	< 0.20		< 0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.050	<0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<1.0		
SB-8@10	12/20/10	10	0.30		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	-	
SB-8@15	12/20/10	15	<10		<0.025	<0.025	<0.025	<0.050	<0.025	< 0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-8@20	12/20/10	20	520		<1.2	19	19	86	<1.2	<12	<1.2	<1.2	<1.2	<1.2	<1.2	<250	-	
SB-9@5	12/20/10	5	9.9		<0.025	<0.025	0.10	0.059	<0.025	< 0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-9@10	12/20/10	10	3.0		< 0.0050	0.011	0.069	0.28	0.014	0.40	< 0.0050	<0.0050	<0.0050	< 0.0050	<0.0050	<1.0		
SB-9@15	12/20/10	15	<10		1.4	0.28	0.14	0.66	0.04	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-9@20	12/20/10	20	4.5		0.17	0.10	0.067	0.37	0.62	0.58	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-9@25	12/20/10	25	0.30		<0.0050	0.014	0.0050	0.028	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-9@30	12/20/10	30	0.28		<0.0050	0.02	0.011	0.043	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@5	12/21/10	5	<0.20		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@10	12/21/10	10	0.28		<0.0050	<0.0050	<0.0050	0.017	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@15	12/21/10	15	0.47		<0.0050	<0.0050	0.0055	0.024	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@20	12/21/10	20	0.31		<0.0050	<0.0050	0.047	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@25	12/21/10	25	<0.20		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@30	12/21/10	30	<0.20		<0.0050	<0.0050	<0.0050	0.012	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		

TPHg = total petroelum hydrocarbons as gasoline TPHd = total petroleum hydrocarbons as diesel MTBE = metyl tert butyl ether TBA = tert butyl alcohol TAME = tert amyl methyl ether DIPE = diisopropyl ether ETBE = ethyl tert butyl ether EDB = ethylene dibromide 1,2-DCA = 1,2 dicholorethane TOG = total oil and grease **bold** = value above reporting limit mg/kg = milligrams per kilogram

Table 4
Historical Grab Groundwater Analytical Results
Former 76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1-2,DCA	Ethanol
		(ft)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
SB-1W	3/27/2006		120	11	<0.050	< 0.050	<1.0	130	28	<0.050	<0.050	<0.050	< 0.050	<0.050	<100
SB-2W	3/27/2006		<50	< 0.050	<0.050	< 0.050	<1.0	<0.050	<5.0	< 0.050	<0.050	< 0.050	< 0.050	<0.050	<100
SB-3W	3/27/2006		13000	510	470	1400	2600	340	57	< 0.050	<0.050	<0.050	< 0.050	<0.050	<100
SB-4W	3/27/2006		<50	< 0.050	< 0.050	< 0.050	<1.0	3.4	<5.0	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<100
SB-5W	3/27/2006		3000	44	63	1.2	30	53	17	< 0.050	<0.050	<0.050	< 0.050	<0.050	<100
SB-8@20-25	12/20/10	20-25	2000	< 0.50	48	98	340	< 0.50	<10	< 0.50	< 0.50	<0.50	<0.50	< 0.50	<250
SB-9@17-22	12/20/10	17-22	9500	430	2000	330	2100	190	<5.0	<5.0	<100	<5.0	<5.0	<5.0	<2500
SB-9@24-29	12/20/10	24-29	2900	79	470	100	540	<5.0	<5.0	<5.0	<100	<5.0	<5.0	<5.0	<2500
SB-10@17-22	12/20/10	17-22	1500	20	0.96	75	8.3	<0.50	<10	< 0.50	<0.50	<0.50	<0.50	<0.50	<250
SB-10@24-29	12/20/10	24-29	310	1.8	25	12	63	5.8	<10	< 0.50	<0.50	<0.50	<0.50	<0.50	<250

TPHg = total petroelum hydrocarbons as gasoline TPHd = total petroleum hydrocarbons as diesel MTBE = metyl tert butyl ether TBA = tert butyl alcohol TAME = tert amyl methyl ether DIPE = diisopropyl ether ETBE = ethyl tert butyl ether EDB = ethylene dibromide 1,2-DCA = 1,2 dicholorethane TOG = total oil and grease ND = non detect, where reporting limit is not known **bold** = value above reporting limit ug/L = micrograms per liter

APPENDIX A

ACHCSA Letter dated October 5, 2010

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE. Director

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

October 5, 2010

Mr. Bill Borgh ConocoPhillips 76 Broadway Sacramento, CA 95818

Messrs. Arthur Yu and Kevin Ma 411 W. MacArthur Blvd. Oakland, CA 94609

Subject: Work Plan, Approval for Fuel Leak Case No. RO0000251 and Geotracker Global ID T0600101472, Unocal #3538, 411 W. MacArthur Blvd., Oakland, CA 94609

Dear Messrs. Borgh, Yu and Ma:

Thank you for the recently submitted documents entitled, *Site Conceptual Model* dated October 15, 2008, and Work Plan for Additional Assessment dated May 27, 2009 which were prepared by Delta Environmental for the subject site. Alameda County Environmental Health (ACEH) staff has reviewed the case file including the above-mentioned report/work plan for the above-referenced site. The SCM identifies additional work that is needed and the work plan presents work plan that addresses the identified data gaps.

The proposed scope of work may be implemented provided that the modifications requested in the technical comments below are addressed and incorporated during the field implementation. Submittal of a revised Work Plan is not required unless an alternate scope of work outside that described in the Work Plan and technical comments below is proposed. However, submittal of a map showing the locations of additional borings is required.

TECHNICAL COMMENTS

Soil and Groundwater Characterization – In addition to the proposed off-site sampling location, ACEH requests that you perform a boring downgradient of the source area to delineate the vertical extent of groundwater contamination and requests that you determine if the residual concentrations of benzene detected in soil in MW-3 and SB-3 are still present. If they are present please present a plan to assess the vapor pathway at the site in the report requested below.

Messrs. Borgh, Yu and Ma RO0000251 October 5, 2010, Page 2

NOTIFICATION OF FIELDWORK ACTIVITIES

Please schedule and perform the proposed work. Please provide ACEH with at least three (3) business days notification prior to conducting the fieldwork (e-mail preferred to barbara.jakub@acgov.org).

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Barbara Jakub), according to the following schedule:

- November 5, 2010 Map showing locations of requested borings.
- January 5, 2010 SWI with vapor pathway assessment work plan if needed.

Thank you for your cooperation. Should you have any questions or concerns regarding this correspondence or your case, please call me at (510) 639-1287 or send me an electronic mail message at barbara.jakub@acgov.org.

Sincerely,

Barbara J. Jakub, P.G. Hazardous Materials Specialist

Enclosure: Responsible Party(ies) Legal Requirements/Obligations

ACEH Electronic Report Upload (ftp) Instructions

cc: Jan Wagoner, Delta Environmental, 11050 White Rock Rd., Suite 110 Rancho Cordova, CA 95670 (Sent via E-mail to: jwagoner@deltaenv.com)

Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland,

CA 94612-2032 (Sent via E-mail to: <u>Igriffin@oaklandnet.com</u>

Donna Drogos, ACEH (Sent via E-mail to: <u>donna.drogos@acgov.org</u>)
Barbara Jakub, ACEH (Sent via E-mail to: <u>barbara.jakub@acgov.org</u>)

GeoTracker, e-file

Responsible Party(ies) Legal Requirements/Obligations

REPORT REQUESTS

These reports are being requested pursuant to California Health and Safety Code Section 25296.10. 23 CCR Sections 2652 through 2654, and 2721 through 2728 outline the responsibilities of a responsible party in response to an unauthorized release from a petroleum UST system, and require your compliance with this request.

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of reports in electronic form. The electronic copy replaces paper copies and is expected to be used for all public information requests, regulatory review, and compliance/enforcement activities. Instructions for submission of electronic documents to the Alameda County Environmental Cleanup Oversight Program FTP site are provided on the attached "Electronic Report Upload Instructions." Submission of reports to the Alameda County FTP site is an addition to existing requirements for electronic submittal of information to the State Water Resources Control Board (SWRCB) GeoTracker website. In September 2004, the SWRCB adopted regulations that require electronic submittal of information for all groundwater cleanup programs. For several years, responsible parties for cleanup of leaks from underground storage tanks (USTs) have been required to submit groundwater analytical data, surveyed locations of monitoring wells, and other data to the GeoTracker database over the Internet. Beginning July 1, 2005, these same reporting requirements were added to Spills, Leaks, Investigations, and Cleanup (SLIC) sites. Beginning July 1, 2005, electronic submittal of a complete copy of all reports for all sites is required in GeoTracker (in PDF format). Please visit the SWRCB website for more information on these requirements (http://www.swrcb.ca.gov/ust/electronic_submittal/report_rgmts.shtml.

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 6835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, later reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC)

REVISION DATE: July 20, 2010

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (LOP and SLIC) require submission of all reports in electronic form to the county's ftp site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single portable document format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 <u>Documents with password protection will not be accepted.</u>
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:
 RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password:
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to dehloptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to dehloptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload) If site is a new case without an RO#, use the street address instead.

d)	If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

APPENDIX B

ACPWA Drilling Permits

Alameda County Public Works Agency - Water Resources Well Permit

399 Elmhurst Street Hayward, CA 94544-1395 Telephone: (510)670-6633 Fax:(510)782-1939

Application Approved on: 12/07/2010 By jamesy

Permit Numbers: W2010-0989

Permits Valid from 12/15/2010 to 12/24/2010

City of Project Site: Oakland

Application Id: 1291420038960

Site Location: 411 W MacArthur Blvd, Oakland, CA **Project Start Date:**

Completion Date: 12/24/2010 12/15/2010

Assigned Inspector: Contact Steve Miller at (510) 670-5517 or stevem@acpwa.org

Applicant: Delta - Jan Wagoner Phone: 916-503-1275

11050 Whitte Rock Rd, Ste 110, Rancho Cordova, CA 95670

Property Owner: Ted Moise Conoco Phillips Phone: 916-558-7612

76 Broadway, Sacramento, CA 95818

** same as Property Owner ** Client:

> Total Due: \$265.00

Receipt Number: WR2010-0418 **Total Amount Paid:** <u>\$265.00</u>

Paid By: CHECK **PAID IN FULL** Payer Name : Delta

Works Requesting Permits:

Borehole(s) for Investigation-Environmental/Monitorinig Study - 3 Boreholes

Driller: Cascade Drillign - Lic #: 938110 - Method: other Work Total: \$265.00

Specifications

Hole Diam Max Depth Permit Issued Dt **Expire Dt**

Number **Boreholes**

W2010-12/07/2010 03/15/2011 2.00 in. 30.00 ft 3

0989

Specific Work Permit Conditions

- 1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.
- 2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.
- 3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.
- 4. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.
- 5. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.
- 6. Prior to any drilling activities onto any public right-of-ways, it shall be the applicants responsibilities to contact and coordinate a Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits

Alameda County Public Works Agency - Water Resources Well Permit

required for that City or to the County and follow all City or County Ordinances. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County a Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

7. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

APPENDIX C

Certified Laboratory Reports

Date of Report: 01/07/2011

Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

RE: 3538 BC Work Order: 1018019 Invoice ID: B092882

Enclosed are the results of analyses for samples received by the laboratory on 12/22/2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information			
•	Reference		10
Sample Results			
1018019-01 - SB-8@5			
Volatile Organic Analysis	(EPA Method	8260)	18
1018019-02 - SB-8@10			
	(EPA Method	8260)	19
1018019-03 - SB-8@15	(EDA 14 ()	2000)	
	(EPA Method	8260)	20
1018019-04 - SB-8@20	(EDA Method	8260)	24
1018019-05 - SB-9@5	(EPA Method	8200)	21
	(EDA Mothod	8260)	22
1018019-06 - SB-9@10	(EFA MEIIIOU	0200)	22
	(FPA Method	8260)	23
1018019-07 - SB-9@15	(LI / Would	0200)	_0
	(EPA Method	8260)	24
1018019-08 - SB-9@20			
	(EPA Method	8260)	25
1018019-09 - SB-9@25		·	
	(EPA Method	8260)	26
1018019-10 - SB-9@30			
	(EPA Method	8260)	27
1018019-11 - SB-10@5			
	(EPA Method	8260)	28
1018019-12 - SB-10@10	(EDA M-45	0000	00
Volatile Organic Analysis 1018019-13 - SB-10@15	(EPA Method	8260)	29
	(EDA Mothod	8260)	30
1018019-14 - SB-10@20	(LI A METIO	0200)	30
	(FPA Method	8260)	31
1018019-15 - SB-10@25	(=: / :	~=~ */	•
	(EPA Method	8260)	32
1018019-16 - SB-10@30	`	,	
Volatile Organic Analysis	(EPA Method	8260)	33
1018019-17 - Comp Soil			
		8260)	
	_C)		35
1018019-18 - SB-8@20-25			
	(EPA Method	8260)	36
1018019-19 - SB-9@17-22	(EDA NA (I I.	0000	^ -
	(EPA Method	8260)	37
1018019-20 - SB-9@24-29	(EDA Mothod	8260)	20
1018019-21 - SB-10@17-22	(EPA Method	6200)	30
	(FPA Method	8260)	30
1018019-22 - SB-10@24-29	(LI / INICUIO	0_00	55
	(EPA Method	8260)	40
1018019-23 - Comp H2O	,	,	-
·	(EPA Method	8260)	41
Quality Control Reports			
Volatile Organic Analysis (EPA M	Method 8260)		
Method Blank Analysis	••••		42

Table of Contents

	Laboratory Control Sample	45
	Precision and Accuracy	
	Total Concentrations (TTLC)	
	Method Blank Analysis	48
	Laboratory Control Sample	
	Precision and Accuracy	
Notes	•	
	Notes and Definitions.	52

11
<u>~</u>
LU.

Chain of Custody and Cooler Receipt Form for 1018019 Laboratories, Inc.
Environmental Testing Laboratory Since 1949

Page 1 of 6

BC Laboratories, Inc.						(Cor	1000	Phil	llip	s C	Chair	10	f C	ust	ody	/R	ecc	ord							
Do Caboratorios, moi	Conoco	Phillips	Site Ma	nager:				Ted Mo	ise							188	Conos	oPNII)	s SAP	Projec	i Numb	ar	9			
4100 Atlas Court	INVOICE	REMIT	TANCE	ADDRE	SS:				CONC	COPI	HILLI	PS											10	ATE:		
Bakersfield, CA 93308									Attn:	Dee H	lutch	inson				C	onocaP	hilips i	Requisi	tion/L	ine Nu	mber	3			
,												or, Suite 92704	200			200		0.790.77	(Cherrita	10770	100/20	ALCOHOL:	- P	AGE:	of	-
(661) 327-4911 (661) 327-1918 fax	Valid Value ID:				СОМОСОРИИ	HES SITE	MINRES			,								- G	.CBAL I	DNO:						\dashv
Delta Consultants	*****				76 Service																					
ADDRESS:					SITE ADDRES													60	MOCOP	HILLIPS	SITEM	ISDANA	A:			
11050 White Rock Road #110, Rancho Cordo	va, CA 95670				411 W. Ma	ac Arthur	r Blvd,	Oakland	I, CA									В	II Bor	gh						
PROJECT CONTACT (Hanklepy or PDF Report to): Jan Wagoner					EUF DELIVER	ABLE TO (RP or De	nignosi;						7	WOME NO	N.		E-6	ALC:			10000	9 USE C			100
TELEPHONE: FAX: B	E-HAIL:				Jan Wago	2005								1	16-50	3-127	5			se@c		10)-	190	29 2	羅
916-503-1275 916-638-8385	iwagener@				Jan wage	,,,,,,												<u>cı</u>	ar.con	acoph	saps.	9,00			-, c	235
SAMPLER MANEIRO (Print)	CONSULTANT	PROJECT NU C103			1								F	REQU	ESTE	D AN	ALYSI	ES								
Alan Buehler TURNAROUND TIME (CALENDAR DAYS):	7.9	C103	000	-	-				_			1	т	_	_	_	П	\neg	_	1	\top		\top	T		_
14 DAYS 7 DAYS 72 HOURS 48 HOURS	24 HOURS	☐ uess	THAN 24 H	CURS										- 1			1 1									
					1									- 1			ш								FIELD NOTES:	
SPECIAL INSTRUCTIONS OR NOTES:	CHECK	10X IF 600	IS NEEDED	1	1				1								П							Orve: I	EDB, 1,2-DCA, TAME, DIF	OF.
	1						1 1							- 1										Oxya.	ETBE, TBA, ethanol	-
Please CC Alan Buehler (abuehler@deltaen)	.com) on rep	orts												- 1												
"Hold TPHd analysis until further notice					₩.	9	20		8								ш						1			
and the last control of Williams In					-8015	TPHg - 8260	TPHd - 8015	-8260	MTBE - 8260	Oxys - 8250				- 1			ш									
* Field Point name only required if different for AB Sample Identification/Field Point			MATRIX	NO, DF	É	₹	물	ВТЕХ	1 2	l ġ.										-		1		TEMPER	ATURE ON RECEIPT C*	_
owy Name*	DATE	TIME	MAINS	CONT.	<u> </u>	<u> </u>	₽	<u> </u>	12	16	-	-	ш	-	_	-	-	+	+	+-	+	+	+	V.	rious Preservatives	_
S8-8@5	12/20/10	10:30a	Soil	1.		×	x	х	×	×								\perp				_	\perp		Not Field Filtered	_
- Z \$8-8@10	12/20/10	10:40a	Soil	1		×	x	х	×	x		-	CH	D	,	Б	ST	RIBI	1710	NC		Н			rious Preservatives Not Field Filtered	
	12/20/10	10:45a	Soil	1	-	×	×	х	×	x	\vdash	11	CH		7		60		T	1	\top	1	\top		rious Preservatives Not Field Filtered	_
3 \$8-8@15			_	<u> </u>	-	-	-		+	-	-	111	2	-1	H	Az	_		-		#	++-	+		rious Preservatives	_
- U 58-8@20	12/20/10	11:00a	Seil	1		X	×	X	×	х	_	++1		_	Щ	-	S)B-(ישכ	ᆜ느	#	1	+	- V	Not Field Filtered	_
- S SB-9@5	12/20/10	1:15p	Soil	1.		×	X	Х	×	X		-	9								1				Not Field Filtered	_
SB-9@10	12/20/10	1:20p	Soll	1 .		х	×	х	×	х							П									
· → SB-9@15	12/20/10	1:25	Soil	1 .		х	х	х	×	х			П			Т		\neg	Т	Τ						
8 SB-9@20	12/20/10	1:30p	Soll	1.		x	х	х	×	×				\neg			П		Т		Т	-	Т			
9 SB-9@25	12/20/10	1:35p	Soil	1		х	х	×	×	×	\vdash						П		\top			Т	T			
-(C) SB-8@30	12/20/10	2:00p	Soil	1		×	х	×	×	×	\vdash			\neg	\neg	$^{+}$	П	_	\top	_	\top		Т			
Principality Strature)	1		Received	V. Johnson		1/2			_	_	_			_			_	Date 1:2	.22	1/2	, ,		Tave	13	C)	
ar WIDER			1/0	ر وري سروموندا ج	Dua	haz								_	_			DUX	u	160		_	Tim	-/-)	2	_
Propiosidan 12.2	2-10		2	LR.	., 		L	_											.2	2,	10	١		V.	800	
R L D	22.4.6		Received t	y: (Signatur	1				1	<	7	7	-					Law.	д -:) 2	11	O	Three	w	JUS	
in a company	00100	_	_				_			\forall		-7												8/19/0	3 Revision	
, ,	240																									

₩	
<u></u> ח	

Chain of Custody and Cooler Receipt Form for 1018019 Laboratories, Inc.
Environmental Testing Laboratory Since 1949

Page 2 of 6

	BC Laboratories, Inc.						(Cor	1000	Phil	llip	s C	hain	Of	Cu	sto	dy F	Rec	ord							
	Do Caboratories, me.	Сопосо	Phillips:	Site Mar	nager:				Ted Mo	ise							Con	occPhi	lips SAP	Project h	Jumber					
	4100 Atlas Court	INVOICE			-	ss:						HILLIPS											DATE:			
	Bakersfield, CA 93308									3611	South		r, Suite 2	100			Consc	aPailip	s Roquis	fion/Lin	e Kum	ter	PAGE:		of	_
(66	51) 327-4911 (661) 327-1918 fax									Santa	Ana,	CA. 92	704													_
SANUATO	NO COMPANY:	Velid Velue ID:				Соносолна													GLOBALI	D MO.:						
	Consultants					76 Service													CONDCOR	11111055	ITE MAI	NACES:		_		_
	White Rock Road #110, Rancho Cordov	a, CA 95670	+			411 W. Ma	-	-		, CA								- 1	Bill Bor							
	ECT CONTACT (Hardcopy or PDF Report lo)					EDF DOUVER	AGLE TO (F	17 or De	signeet:						FHO	NE NO.:			LANK		-	LAB US	SE ONLY		2	[86
Jan W	fagoner	E-NAL:				-									91	6-503-	1275		Ted.Mo	ടെയ്യാ	ntra		0 1	sa	9	
	03-1275 916-638-8385	iwagoner@	deltaenv	com		Jan Wago	oner												ctor.con	occophil	lips.	U	0-1	100	1	(2)
SAMPLE	R NAME(S) (Print):	CONSULTANT	PROJECT NU	маел										DE	OHES	STED	ANALY	SES								
	Alan Buehler		C103	538		1								N.E.	SOE4	SIED	rusent :	363								
TURN	WROUND TIME (CALENDAR DAYS):									Т		П	$\neg \neg$	\top	Т	\top	$\neg \vdash$	П	\neg		\Box	\neg				
14	DAYS 7 DAYS 72 HOURS 48 HOURS	24 HOURS	LESS	THAN 24 H	OURS																					
						1				1								1.1				. 1		FIELD	NOTES:	
SPEC	IAL INSTRUCTIONS OR NOTES:	CHECK	BOX IF EDO	IS NEEDED	7	1				1								11				. 1		EDD 11	-DCA, TAME, DI	oc
10,20		1				ı		1 1		1													Oky		BA, ethanol	me,
Ple	asc CC Alan Buehler (abuehler@deltaenv.r	com) on rep	orts			ı																				
	old TPHd analysis until further notice					l .		1	_		1							1.1	-							
1 "	do irribaliayes dia lame none.					- 8015	1 82	15	-8260	1 25	8260											.				
1 · FI	old Point name only required if different from	n Sample ID							l 🖫													.			L BEREIT OF	_
24B 28F	Sample Identification/Field Point			MATRIX	NO. OF	E E	тРНg - 8260	TPH4 - 3015	BTEX	MTBE - 8260	0xys		- 1									.	TEW	ERATURE	N RECEIPT C*	
OWLY	Name*	DATE	TIME		CONT.	I F	F	_		-	-	\vdash		-	+	+-		+	_	-	\vdash	-	_	Various F	reservatives	_
11	\$8-10@5	12/21/10	8:30a	Soil	1 -	l .	X	×	х	×	×				┸			\perp			\Box	\perp			ld Filtered	_
1.0	SB-10@10	12/21/10	8:40a	Soil	1		x	×	х	×	l x							\Box							reservatives ld Filtered	
-12		-		-	<u> </u>	├─	-	-		+-	1	-	-		-		_	+	\pm	_	$\overline{}$			Various F	reservatives	_
113	SB-10@15	12/21/10	8;45a	Soli	1		X	×	х	×	Х			_	\perp	_	_	\perp		1	\vdash		+		ld Filtered reservatives	_
411	SB-10@20	12/21/10	9:00a	Soil	1		х	X	x	×	x														ld Filtered	
19					· ·			x	×	×	×	-	-	-	-	$^{+}$		1	\neg	1-	\Box				reservatives	_
-15	SB-10@25	12/21/10	9:05a	Soil	1 -		Х	^	_ ^	↓^	1^	-	\rightarrow		-	-	-	+	-	-	\vdash	-	-	Not Fig	ld Filtered	
-16	SB-10@30	12/21/10	9:20a	Soil	1 -		х	х	x	x	×			4	+	4	_	\perp	_	\perp		_	-			_
-12	Comp Soil	12/21/10	12:45p	Soil	2	1	Х	X	×	×	×										Ш					
1:-1								\Box							\neg											
		-	-	<u> </u>		-		\vdash		+	+		-	_	+	+		+	-	-	\vdash	-	+			_
																					\square		\perp			
7																										
Reinqu	and by (Sperior)	-		Received to	13	12.0	-/	2			_							Core	2.2	2.10		\neg	THE 13	30		_
	X UNEXX			Buchard			as	7								_		- Gya	- 6-6	110		\rightarrow	Time:			_
Reanqu	Ve as Talan 12.2	2.15		D	D		Ŋ											11	フシ	2.4	0		10	300		

12-22-10

2045

O	01-1-0	25 0 4	
ConocoPhillips	Chain C	or Gustoay	Record

	BC Laborato	ries. Inc.						(COI	noco	Phi	llip	s C	hair	1 01	f C	ust	ody	Re	cor	d					
	Bo Caborato	rico, moi	Conoco	Phillips	Site Ma	nager:				Ted Mo	se							1433	Canasol	hillips 8	AP Proj	est Numb	er			
	4100 Atlas	Court	INVOICE	REMITT	ANCE	ADDRE	SS:				CON	OCOP	HILLIS	s										DAT	E:	
	Bakersfield,	CA 93308									Attn: 3611	Dee h South	Hutchi Harb	nson or, Suite	200			Co	nacoPhi	lips Req	uisition	/ Line Nu	mber			of
(6	61) 327-4911 (66	1) 327-1918 fax									Santa	Ana,	CA. 9	2704												
	NG COMPANY:		Valid Value ID:				CONOCOPHIL													occo	ALID MO	k:				
	Consultants						76 Service													COVO	COPHILL	IPS SITE MA	ANAGER:		_	
11050		110, Rancho Cordovi	. CA 95670	,			411 W. Ma				CA									Bill F	Borgh					
	ECT CONTACT (Hardcopy or		-				1				, 41						HOME NO			E-MAL	_			USE ONLY	V-Incident	
	/agoner						EDF DEUVER	MALE TO D	er or De	indused:						- 1		3-1275		1		Broontra	LABO	10	n	Ma
1ELE/ 916-5	HONE: 03-1275	FAX: 916-638-8385	e-MAIL: jwagonorgi	odeltaenv.	moo		Jan Wago	oner								- J	9 p-20	13-1215				philips.		(1)	-16	1019
	IR NAME(SO (PVINE)	310 000 0000	COMBULTANT													501	COTO	D ANA	vee							
	Alan Buc	hler		C103	538		1								к	EQU	ESIE	U ANA	LTSE							
	AROUND TIME (CALENC										Т															
□ 14	DAYS 7 DAYS 7	2 HOURS 48 HOURS	24 HOURS	LESS	THAN 29 H	CURS	1																		-	ELD NOTES
																							-		FI	ELD NOTES:
SPEC	IAL INSTRUCTIONS O	R NOTES:	CHECK	BOX IF EDO	IS NEEDED	· [4]]		'															0		B, 1,2-DCA, YAME, D
	CC N Doubles	(abuehler@deltaenv.c	om\ nn rec	ode												- 1									ET	BE, TBA, ethanol
			ann) on rep	Oils			1				١.	١.														
"	fold TPHd analysis un	III tunner nouce					8015	560	12	- 8260	MTBE - 8260	8260														
· F	leid Point name only r	equired if different from	n Sample ID						1 =	"	1 🚡													_	entropological de	IRE ON RECEIPT C*
LAB		cation/Field Point		LING	MATRIX	NO. OF DONT.	Æ	TPHg - 8260	TPHd - 8015	BTEX	l E	Oxys												I I'E	WPERAI	THE ON HEGER I C.
		ime*	DATE	TIME		-	 -	-	+-		_	+	-		-		-	+	+	+	\vdash	_		\vdash		ous Preservatives
18	\$8-8	@20-25	12/20/10	11;00a	H2O	7		×	х	Х	Х	X	<u> </u>		\vdash	_	-	+	-	+	\vdash	-	-	-		t Field Filtered ous Preservatives
19	SB-9	@17-22	12/20/10	2:45p	H2O	7		×	х	x	х	Х								\perp					No	t Field Filtered
20	\$8-9	@24-29	12/20/10	4:00p	H2O	7		x	x	x	х	x														ous Preservatives at Field Filtered
20	20.10)@17-22	12/21/10	12:00p	H2O	7	 	×	x	x	×	x	 			\neg	\neg			\top		\neg		\Box		ous Preservatives et Field Filtered
4	30-10	W17-22	12/2/10					-	-		-	-	-	-	\vdash	-	+	-	-	-	\vdash		\vdash			ous Preservatives
22	\$8-10)@24-29	12/21/10	10:00a	H2O	7		X	X	х	X	X	_		\perp	_	_	-			\dashv		<u> </u>	\vdash	No.	A Field Filtered
18 19 20 21 22 23	Con	p H2O	12/21/10	12:30p	H2O	7	1	x	×	х	×	×	1													
-									\top			T	Т													
122.0			+	-		-	-	-	+		-	+	-		\vdash		\rightarrow	+	_	+		+	-	\vdash		
100						_	-	-	-		-	-	-	-	\vdash	-	\rightarrow	-	-		\vdash	-	-	\vdash	_	
		_						T ,	Т		Π	Т														
Renq	ioned by (Sundane)	$\triangle a$	 		Received	19govern		-												user v = 2				Tirea.		<i>-</i>)
	A W	FELX.			_/c	sso	Du	/kDe	7_											12:	20	-10		Time	135	0
Reina	ACOPER ENTRE ENTRE	12 22	,		D	Ö	11	0	\										1	ر د حا	22	10		11116	1.80	20/0

12-22-10

Chain of Custody and Cooler Receipt Form for 1018019

Page 3 of 6

Environmental Testing Laboratory Since 1949 Laboratories, Inc.

2045

Page 6 of 52

Chain of Custody and Cooler Receipt Form for 1018019 Page 4 of 6

									. 0	
C LABORATORIES INC.	S	AMRLE	RECEIPT	FORM	Rev.	No. 12 (6/24/08	Page 上	Of	
ubmission #: 10-18019										
ubmission #: 10 1 601	AATION		T			SHIPPIN	G CONT	AINER		
SHIPPING INFORM	nation and Delive	rv 🗆	- 1	lce			None			
ederal Express 🗆 UPS 🗅 H. C Lab Field Service 💅 Other 🗅	(Specify)	.,	_		e Chest Z Box C	5	Other	☐ (Speci	fy}	
C Lab Field Service y										
Blue lee [None □	Othe	er D C	omments	:					1
terrigerant; ice										
Intact? Yes No D	Containers	No 🗆		Commen						
li samples received?' Yes A No □ A	II samples c	ontainers	intact? Ye	NO D		Description	on(s) matc	h COC? Ye	s po No 🗆	
COC Received Em	issivity: 🔘	.95 c	ntainer: 🗟	iceve TI	hermomete	er ID: <u>130</u> 3	3	Date/Time	12-22-10	
								Analyst ir	CHCCL_ tie	2051
Ter	nperature: /		1 T *(: / C	97.7	c		Analysen	33.553	
					SAMPLE N					
SAMPLE CONTAINERS	1	, [3	4	5	6			3	10
T GENERAL MINERAL GENERAL PHYSICAL		1								
T PE UNPRESERVED										
T INORGANIC CHEMICAL METALS										
T INORGANIC CHEMICAL METALS										
T CYANIDE										
T NITROGEN FORMS										
T TOTAL SULFIDE										
DZ. NITRATE / NITRITE										
T TOTAL ORGANIC CARBON										
PT TOX									· · · · ·	
PT CHEMICAL OXYGEN DEMAND										
PIA PHENOLICS								1		
40ml VOA VIAL TRAVEL BLANK		1			- 1	1 1	1			
10ml VOA VIAL										
QT EPA 413.1, 413.2, 418.1	1									
PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL									-	
40 ml VOA VIAL- 504										
QT EPA 508/608/5080						4			-	
QT EPA 515.1/8150										
QT EPA 525										
QT EPA \$25 TRAVEL BLANK										
1400ml EPA 547	1.									
100ml EPA 531.1	1									
QT EPA 548				1						
OT EPA 549										
OT EPA 632	+	1								
QT EPA 80 15M	-		1	1						
QT AMBER			1		1					
8 Q7. JAR	-	1	1	-						-
31 OZ. JAR	A	I A	FA	A	A	A	A	A	A	LA
SOIL SLEEVE PE	1-12	1			1 3					
PCB VIAL	-	+	-	-						
PLASTIC BAG	-	-			1					
FERROUS IRON	+				1					
ENCORE		1	14 1	211.0			Califor 1	2000	they :	Dero
Comments: De SOLIPHEN PR Sample Numbering Completed By:	3amb	WS W	15 M	127KY	2120	TATO FIR	200 K	CIGORMSISA CSIGORMSISA	in	
			The Party of the P		139			The second	COLUMN TO SERVICE STATE OF THE PARTY OF THE	
Sample Numbering Completed By: A = Actual / C = Corrected	OP-				1933	(H:VDOCSTÀ	PROUAB_DO	CSIBORWAISH	MKEC 2. WIND	

Mul

Chain of Custody and Cooler Receipt Form for 1018019 Page 5 of 6

BC LABORATORIES INC. Submission #: (0-18019 SHIPPING INFO			RECEIF	I OKIV	Rev	v. No. 12		Page		
Federal Express UPS O BC Lab Field Service Other	Hand Deliv				ice Chest Box	ø:		TAINER le □ er □ (Spec	ify)	
Refrigerant: Ice P Blue Ice	None	□ Oti	her 🗆 🔻	Commen	ts:			-		
Custody Seals Ice Chest Intaci7 Yes D No D	Containe Intact? Yes		None	Comme	ents:	,				
All samples received?' Yes (1) No (1)	All samples	container	s intact? Y	es CD No	n	Descrio	tion(s) mat	ch CQC? Y	es d'Ollo	Π.
COC Received	imissivity: ८ emperature:	2.95 c	ontainer: §	5011 Heeve	Thermomet	er 10: <u>1(3</u>	23_	Date/Time	it _12.22.)	D
SAMPLE CONTAINERS	1,	1 2	(3	[4	T	NUMBERS.	1	T	19	20
OT GENERAL MINERAL GENERAL PHYSICA	The state of the s		1	10	15	15	1 11	1 (8	1,7	140
PT PE UNPRESERVED									-	
QT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS							1			
PT CYANIDE										-
PT NITROGEN FORMS								-		-
PT TOTAL SULFIDE					-		 			
20L NITRATE / NITRITE							_			-
PT TOTAL ORGANIC CARBON							_			_
PT TOX							_			-
PT CHEMICAL OXYGEN DEMAND							 			
PIA PHENOLICS						 	1		-	
40ml VOA VIAL TRAVEL BLANK							1			
48mi VOA VIAL	- 4	1 1		-	()	1	2	ALO	Alo	ATTG
QT EPA 413.1, 413.2, 418.1								1		11.0
PT ODOR									-	
RADIOLOGICAL		,								
BACTERIOLOGICAL							1			
40 ml VOA VIAL- 504										
OT EPA 508/608/8580			1							
QT EPA 515.1/8150						,				
QT EPA SES										
QT EPA \$15 TRAVEL BLANK										
100ml EPA 547										
100ml EPA 5)1.1										
QT EPA 548					1					-
QT EPA 509					 					
QT EPA 632					-	1				1
QT EPA 8015M						1				
QT AMBER					1	1		6	B	3
8 OZ. JAR			-						1 2,00	_
31 OZ. JAR					-		_			
SOIL SLEEVE OL	A	A	A	A	A	A	mB			
PCBVILL	1 * * *		4,		1		110			
PLASTIC BAG							 			
FERROUS IRON				-			1			
ENCORE					-		1			
omments: Description of ample Numbering Completed By: Actual / C = Corrected	3ample	S who	= \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	#es	00 tu	o Pla	Stic bo	xas tv	rey v	sere
C = Corrected				-16	133 I		W.Y8_00C2/	ORMSISAMAE	E2.WP0]	

Mul

Chain of Custody and Cooler Receipt Form for 1018019 Page 6 of 6

Submission #: 10-18019 SHIPPING INFO Federal Express O UPS O	Hand Deliv				ce Chest			TAINER		
BC Lab Field Service 6 Othe	r □ (Specify)			-	ce Chest Box	ō	Othe	r ⊡ (Spec	cify)	
Refrigerant: Ice P Blue Ice	□ None	Ott	her 🗆 (Commen	ts:					
Custody Seals Ice Chest ☐	Containe Intact? Yes	_	None	Comme	nts:	•				
All samples received?" Yes () No O	All samples	containers	s intact? Ye	ssØ Not		Descript	ion(s) mat	ch CQC? Y	es De No	n.
COC Received	Emissivity: ¿	295 0	ontainer; §	soil seeve	Thermome	ter ID: _L\Q	3_	Date/Tim	nit :1101	10
SAMPLE CONTAINERS		4.	1 4.		T	NUMBERS.		,		T
QT GENERAL MINERAL GENERAL PHYSIC	21	21_	21	4	5	4	7		9	10
PT PE UNPRESERVED	AL				-					+
						ļ				+
OT INORGANIC CHEMICAL METALS	-		-						ļ	-
PT INORGANIC CHEMICAL METALS	- 							-		-
PT CYANIDE								-		-
PT NITROGEN FORMS					-					-
PT TOTAL SULFIDE								-	-	
2az. NITRATE / NITRITE					-				-	
PT TOTAL ORGANIC CARBON										-
PT TOX								ļ		-
PT CHEMICAL DXYGEN DEMAND PIA PHENOLICS						_				-
40mi VOA VIAL TRAVEL BLANK								-	-	
40ml VOA VIAL	A10	Alo	1970	-	-			1		
QT EPA 413.1, 413.2, 418.1			1		· ·	<u> </u>	-			
PT ODOR										
RADIOLOGICAL						<u> </u>		-		
BACTERIOLOGICAL								-		
40 ml VOA VLAL- 504										
QT EPA 508/608/8080										
QT EPA 515.1/8150										
QT EPA 525										
QT EPA 525 TRAVEL BLANK										_
100ml EPA 547									-	
100ml EPA 531.1										
QT EPA 548										
OT EPA 549				7.7						
QT EPA 632										
QT EPA 8015M			-							
QT AMBER	B	B	8							
8 OZ. JAR			10		-	-		-		
)! OZ JAR					 	1				
SOIL SLEEVE										
PCB VIAL			1. 1			-				
PLASTIC BAG						-				_
PERROUS IRON										
ENCORE						<u> </u>				
Comments: DeScription of	2000018	s uhs	- 11/0	1100	50 5		Nin Inc	06 tv	1941	sero
ample Numbering Completed By:	Bampy	Date/Tie	me: 12 2	2110	2132	minocenium Di Kice	STIC PL RCY-CCS IIIAB_DOCSII	GRMSISAMRE	2.00-2	1B

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1018019-01 COC Number: -

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-8@5 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 10:30

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-02 COC Number: ---

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-8@10 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 10:40

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-03 COC Number: ---

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-8@15 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 10:45

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1018019-04 COC Number:

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-8@20 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 11:00

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-05 COC Number: ---

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-9@5
Sampled By: DECR

Receive Date: 12/22/2010 20:45 **Sampling Date:** 12/20/2010 13:15

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-06 COC Number: ---

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-9@10 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 13:20

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: SO

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1018019-07 COC Number:

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-9@15 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 13:25

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-08 COC Number: ---

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-9@20 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 13:30

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-09 COC Number: --

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-9@25 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/20/2010 13:35

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: SO

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1018019-10 **COC Number:**

> **Project Number:** 3538 Sampling Location:

Sampling Point: SB-9@30 Sampled By: **DECR**

12/22/2010 20:45 Receive Date: Sampling Date: 12/20/2010 14:00

Sample Depth: Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-11 **COC Number:**

> **Project Number:** 3538 Sampling Location:

SB-10@5 Sampling Point: DECR Sampled By:

12/22/2010 20:45 Receive Date: 12/21/2010 08:30 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-12 COC Number:

> 3538 **Project Number:** Sampling Location:

SB-10@10 Sampling Point: **DECR** Sampled By:

Receive Date:

12/22/2010 20:45

Sampling Date:

12/21/2010 08:40

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: SO

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1018019-13 **COC Number:**

> **Project Number:** 3538 Sampling Location:

Sampling Point: SB-10@15 Sampled By: **DECR**

12/22/2010 20:45 Receive Date: Sampling Date: 12/21/2010 08:45

Sample Depth: Lab Matrix: Solids Soil Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-14 **COC Number:**

> **Project Number:** 3538 Sampling Location:

SB-10@20 Sampling Point: DECR Sampled By:

12/22/2010 20:45 Receive Date: 12/21/2010 09:00 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-15 COC Number:

> 3538 **Project Number:** Sampling Location:

SB-10@25 Sampling Point: **DECR** Sampled By:

Receive Date:

12/22/2010 20:45

12/21/2010 09:05 Sampling Date:

Sample Depth: Solids Lab Matrix: Soil Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: SO

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1018019-16 COC Number: -

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-10@30 Sampled By: DECR **Receive Date:** 12/22/2010 20:45 **Sampling Date:** 12/21/2010 09:20

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-17 COC Number: ---

Project Number: 3538
Sampling Location: ---

Sampling Point: Comp Soil
Sampled By: DECR

Receive Date: 12/22/2010 20:45 **Sampling Date:** 12/21/2010 12:45

Sample Depth: --Lab Matrix: Solids
Sample Type: Soil
Delivery Work Order:

Global ID:

Location ID (FieldPoint): COMP

Matrix: SO

Sample QC Type (SACode): CS

Cooler ID:

1018019-18 COC Number: --

Project Number: 3538
Sampling Location: ---

Sampling Point: SB-8@20-25
Sampled By: DECR

Receive Date: Sampling Date:

12/22/2010 20:45 12/20/2010 11:00

Sample Depth: --Lab Matrix: Water
Sample Type: Water
Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-8

Matrix: W

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information**

1018019-19 **COC Number:**

> **Project Number:** 3538 Sampling Location:

Sampling Point: SB-9@17-22 Sampled By:

DECR

12/22/2010 20:45 Receive Date: Sampling Date: 12/20/2010 14:45

Sample Depth: Lab Matrix: Water Water Sample Type:

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1018019-20 **COC Number:**

> **Project Number:** 3538 Sampling Location:

SB-9@24-29 Sampling Point: DECR Sampled By:

12/22/2010 20:45 Receive Date: 12/20/2010 16:00 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-9

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1018019-21 COC Number:

3538 **Project Number:** Sampling Location:

SB-10@17-22 Sampling Point: **DECR**

Sampled By:

Receive Date: 12/22/2010 20:45

12/21/2010 12:00 Sampling Date:

Sample Depth: Water Lab Matrix: Water Sample Type: Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: W

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

Laboratory / Client Sample Cross Reference

Laboratory Client Sample Information

1018019-22 COC Number: --

Project Number: 3538 Sampling Location: ---

Sampling Point: SB-10@24-29

Sampled By: DECR

Receive Date: 12/22/2010 20:45 **Sampling Date:** 12/21/2010 10:00

Sample Depth: ---

Lab Matrix: Water Sample Type: Water

Delivery Work Order:

Global ID:

Location ID (FieldPoint): SB-10

Matrix: W

Sample QC Type (SACode): CS

Cooler ID:

1018019-23 COC Number: ---

Project Number: 3538
Sampling Location: ---

Sampling Point: Comp H2O Sampled By: DECR

Receive Date: 12/22/2010 20:45 **Sampling Date:** 12/21/2010 12:30

Sample Depth: --Lab Matrix: Water
Sample Type: Water
Delivery Work Order:

Global ID:

Location ID (FieldPoint): COMP

Matrix: W

Sample QC Type (SACode): CS

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID: 10	18019-01	Client Sample	e Name:	3538, SB-8@5, 12/2	20/2010 10:30:00	AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	89.9	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		96.7	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	95.0	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 05:01	MCQ	MS-V3	1	BTL1883	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

1018019-02	Client Sampl	e Name:	3538, SB-8@10, 12	/20/2010 10:40:0	0AM		
	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.010	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	1.0	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
m	0.30	mg/kg	0.20	Luft-GC/MS	ND		1
urrogate)	90.6	%	70 - 121 (LCL - UCL)	EPA-8260			1
	99.4	%	81 - 117 (LCL - UCL)	EPA-8260			1
urrogate)	96.2	%	74 - 121 (LCL - UCL)	EPA-8260			1
	m urrogate)	Result ND ND ND ND ND ND ND N	Result Units ND mg/kg MD mg/kg	Result Units PQL ND mg/kg 0.0050 MD mg/kg 0.0050 m 0.30 mg/kg 0.20	Result Units PQL Method ND mg/kg 0.0050 EPA-8260 M ND mg/kg 0.0050 EPA-8260 M 0.30 mg/kg 0.20 Luft-GC/MS	Result Units PQL Method Bias ND mg/kg 0.0050 EPA-8260 ND ND mg/kg 0.050 EPA-8260 ND ND mg/kg 0.0050 EPA-8260 ND m 0.30 mg	Result Units PQL Method Bias Dquals ND mg/kg 0.0050 EPA-8260 ND ND mg/kg 0.050 EPA-8260 ND ND mg/kg 0.050 EPA-8260 ND ND mg/kg 0.0050 EPA-8260 ND Immopate 0.0050

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 05:27	MCQ	MS-V3	1	BTL1883	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

BCL Sample ID:	1018019-03	Client Sampl	e Name:	3538, SB-8@15, 12	/20/2010 10:45:0	0AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.025	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	mg/kg	0.025	EPA-8260	ND	A01	1
1,2-Dichloroethane		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Ethylbenzene		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Methyl t-butyl ether		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Toluene		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Total Xylenes		ND	mg/kg	0.050	EPA-8260	ND	A01	1
t-Amyl Methyl ether		ND	mg/kg	0.025	EPA-8260	ND	A01	1
t-Butyl alcohol		ND	mg/kg	0.25	EPA-8260	ND	A01	1
Diisopropyl ether		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Ethanol		ND	mg/kg	5.0	EPA-8260	ND	A01	1
Ethyl t-butyl ether		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Total Purgeable Petroleu Hydrocarbons	ım	ND	mg/kg	10	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (S	Surrogate)	97.2	%	70 - 121 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (S	Surrogate)	98.3	%	70 - 121 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		102	%	81 - 117 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		97.8	%	81 - 117 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Surrogate)	100	%	74 - 121 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	102	%	74 - 121 (LCL - UCL)	EPA-8260			2

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	12/29/10	12/30/10 22:31	MCQ	MS-V3	5	BTL1883
2	EPA-8260	12/29/10	01/03/11 14:01	MCQ	MS-V3	50	BTL1883

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

BCL Sample ID:	1018019-04	Client Sampl	e Name:	3538, SB-8@20, 12	/20/2010 11:00:0	0AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	1.2	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	mg/kg	1.2	EPA-8260	ND	A01	1
1,2-Dichloroethane		ND	mg/kg	1.2	EPA-8260	ND	A01	1
Ethylbenzene		19	mg/kg	1.2	EPA-8260	ND	A01	1
Methyl t-butyl ether		ND	mg/kg	1.2	EPA-8260	ND	A01	1
Toluene		19	mg/kg	1.2	EPA-8260	ND	A01	1
Total Xylenes		86	mg/kg	2.5	EPA-8260	ND	A01	1
t-Amyl Methyl ether		ND	mg/kg	1.2	EPA-8260	ND	A01	1
t-Butyl alcohol		ND	mg/kg	12	EPA-8260	ND	A01	1
Diisopropyl ether		ND	mg/kg	1.2	EPA-8260	ND	A01	1
Ethanol		ND	mg/kg	250	EPA-8260	ND	A01	1
Ethyl t-butyl ether		ND	mg/kg	1.2	EPA-8260	ND	A01	1
Total Purgeable Petroleur Hydrocarbons	n	520	mg/kg	200	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Su	rrogate)	101	%	70 - 121 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Su	rrogate)	103	%	70 - 121 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		102	%	81 - 117 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		103	%	81 - 117 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Su	ırrogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	ırrogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260			2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 23:07	MCQ	MS-V3	250	BTL1883	
2	EPA-8260	12/29/10	01/03/11 14:27	MCQ	MS-V3	1000	BTL1883	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

1018019-05	Client Sampl	e Name:	3538, SB-9@5, 12/2	20/2010 1:15:00F	PM		
	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
	0.10	mg/kg	0.025	EPA-8260	ND	A01	1
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
	0.059	mg/kg	0.050	EPA-8260	ND	A01	1
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
	ND	mg/kg	0.25	EPA-8260	ND	A01	1
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
	ND	mg/kg	5.0	EPA-8260	ND	A01	1
	ND	mg/kg	0.025	EPA-8260	ND	A01	1
m	9.9	mg/kg	1.0	Luft-GC/MS	ND	A01	1
urrogate)	100	%	70 - 121 (LCL - UCL)	EPA-8260			1
	99.5	%	81 - 117 (LCL - UCL)	EPA-8260			1
urrogate)	98.1	%	74 - 121 (LCL - UCL)	EPA-8260			1
	m urrogate)	Result ND ND ND ND ND ND ND N	Result Units ND mg/kg ND mg/kg ND mg/kg 0.10 mg/kg ND mg/kg m 9.9 mg/kg urrogate) 100 % 99.5 %	Result Units PQL ND mg/kg 0.025 ND mg/kg 0.050 ND mg/kg 0.025 ND mg/kg 0.025 ND mg/kg 5.0 ND mg/kg 0.025 m 9.9 mg/kg 1.0 urrogate) 100 % 70 - 121 (LCL - UCL) 99.5 % 81 - 117 (LCL - UCL)	Result Units PQL Method ND mg/kg 0.025 EPA-8260 ND mg/kg 0.050 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 5.0 EPA-8260 ND mg/kg 0.025 EPA-8260 m 9.9 mg/kg 1.0 Luft-GC/MS urrogate) 100 % 70 - 121 (LCL - UCL) EPA-8260 99.5 % 81 - 117 (LCL - UCL) EPA-8260	Result Units PQL Method Bias ND mg/kg 0.025 EPA-8260 ND ND mg/kg 0.025 EPA-8260 ND ND mg/kg 0.025 EPA-8260 ND 0.10 mg/kg 0.025 EPA-8260 ND ND mg/kg 0.025 EPA-8260 ND m 9.9 mg/kg	No

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/31/10 00:00	MCQ	MS-V3	5	BTL1883	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

BCL Sample ID:	1018019-06	Client Sample	e Name:	3538, SB-9@10, 12	/20/2010 1:20:00)PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		0.069	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		0.014	mg/kg	0.0050	EPA-8260	ND		1
Toluene		0.011	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		0.28	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		0.40	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petroleu Hydrocarbons	m	3.0	mg/kg	1.0	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Su	urrogate)	116	%	70 - 121 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Su	urrogate)	98.3	%	70 - 121 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		98.9	%	81 - 117 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.7	%	81 - 117 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (S	urrogate)	102	%	74 - 121 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	urrogate)	99.6	%	74 - 121 (LCL - UCL)	EPA-8260			2

			Run				QC	
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 07:12	MCQ	MS-V3	1	BTL1883	
2	EPA-8260	12/29/10	12/31/10 00:26	MCQ	MS-V3	5	BTL1883	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

BCL Sample ID:	1018019-07	Client Sampl	e Name:	3538, SB-9@15, 12	/20/2010 1:25:00)PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		1.4	mg/kg	0.025	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	mg/kg	0.025	EPA-8260	ND	A01	1
1,2-Dichloroethane		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Ethylbenzene		ND	mg/kg	0.25	EPA-8260	ND	A01	2
Methyl t-butyl ether		0.040	mg/kg	0.025	EPA-8260	ND	A01	1
Toluene		0.28	mg/kg	0.25	EPA-8260	ND	A01	2
Total Xylenes		0.66	mg/kg	0.50	EPA-8260	ND	A01	2
t-Amyl Methyl ether		ND	mg/kg	0.025	EPA-8260	ND	A01	1
t-Butyl alcohol		ND	mg/kg	0.25	EPA-8260	ND	A01	1
Diisopropyl ether		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Ethanol		ND	mg/kg	5.0	EPA-8260	ND	A01	1
Ethyl t-butyl ether		ND	mg/kg	0.025	EPA-8260	ND	A01	1
Total Purgeable Petroleum Hydrocarbons	1	ND	mg/kg	10	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Su	rrogate)	109	%	70 - 121 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Su	rrogate)	100	%	70 - 121 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		110	%	81 - 117 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.4	%	81 - 117 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Si	urrogate)	95.9	%	74 - 121 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Si	urrogate)	100	%	74 - 121 (LCL - UCL)	EPA-8260			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	12/29/10	01/03/11 14:54	MCQ	MS-V3	5	BTL1883
2	EPA-8260	12/29/10	12/31/10 00:53	MCQ	MS-V3	50	BTL1883

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

1018019-08	Client Sampl	e Name:	3538, SB-9@20, 12	/20/2010 1:30:00	SB-9@20, 12/20/2010 1:30:00PM				
	Result	Units	PQL	Method	MB Bias	Lab Quals	Run#		
	0.17	mg/kg	0.025	EPA-8260	ND	A01	1		
	ND	mg/kg	0.025	EPA-8260	ND	A01	1		
	ND	mg/kg	0.025	EPA-8260	ND	A01	1		
	0.067	mg/kg	0.025	EPA-8260	ND	A01	1		
	0.62	mg/kg	0.025	EPA-8260	ND	A01	1		
	0.10	mg/kg	0.025	EPA-8260	ND	A01	1		
	0.37	mg/kg	0.050	EPA-8260	ND	A01	1		
	ND	mg/kg	0.025	EPA-8260	ND	A01	1		
	0.58	mg/kg	0.25	EPA-8260	ND	A01	1		
	ND	mg/kg	0.025	EPA-8260	ND	A01	1		
	ND	mg/kg	5.0	EPA-8260	ND	A01	1		
	ND	mg/kg	0.025	EPA-8260	ND	A01	1		
m	4.5	mg/kg	1.0	Luft-GC/MS	ND	A01	1		
ırrogate)	93.8	%	70 - 121 (LCL - UCL)	EPA-8260			1		
	101	%	81 - 117 (LCL - UCL)	EPA-8260			1		
urrogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260			1		
	m urrogate)	Result 0.17 ND ND 0.067 0.62 0.10 0.37 ND 0.58 ND ND ND ND ND ND ND ND ND N	Result Units 0.17 mg/kg ND mg/kg ND mg/kg 0.067 mg/kg 0.62 mg/kg 0.10 mg/kg ND mg/kg ND mg/kg ND mg/kg ND mg/kg ND mg/kg MD mg/kg MD mg/kg MD mg/kg MD mg/kg MD mg/kg M 4.5 mg/kg Mrogate) 93.8 % 101 % 101 %	Result Units PQL 0.17 mg/kg 0.025 ND mg/kg 0.025 ND mg/kg 0.025 0.067 mg/kg 0.025 0.62 mg/kg 0.025 0.10 mg/kg 0.025 0.37 mg/kg 0.050 ND mg/kg 0.025 ND mg/kg 0.025 ND mg/kg 0.025 ND mg/kg 0.025 m 4.5 mg/kg 1.0	Result Units PQL Method 0.17 mg/kg 0.025 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 0.025 EPA-8260 0.067 mg/kg 0.025 EPA-8260 0.62 mg/kg 0.025 EPA-8260 0.10 mg/kg 0.025 EPA-8260 0.37 mg/kg 0.050 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 0.025 EPA-8260 ND mg/kg 5.0 EPA-8260 ND mg/kg 0.025 EPA-8260 m 4.5 mg/kg 1.0 Luft-GC/MS urrogate) 93.8 % 70 - 121 (LCL - UCL) EPA-8260 101 % 81 - 117 (LCL - UCL) EPA-8260	Result Units PQL Method Bias 0.17 mg/kg 0.025 EPA-8260 ND ND mg/kg 0.025 EPA-8260 ND ND mg/kg 0.025 EPA-8260 ND 0.067 mg/kg 0.025 EPA-8260 ND 0.62 mg/kg 0.025 EPA-8260 ND 0.10 mg/kg 0.025 EPA-8260 ND 0.37 mg/kg 0.025 EPA-8260 ND ND mg/kg 0.025 EPA-8260 ND m 4.5 mg/kg	Result Units PQL Method Bias Quals		

			Run					
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	01/03/11 15:20	MCQ	MS-V3	5	BTL1883	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID:	1018019-09	Client Sampl	e Name:	3538, SB-9@25, 12	/20/2010 1:35:00	PM		
0 "				DO!		MB	Lab	_ "
Constituent		Result	Units	PQL	Method	Bias	Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		0.0050	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		0.014	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		0.028	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petrol Hydrocarbons	eum	0.30	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4	(Surrogate)	98.2	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate))	100	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	(Surrogate)	96.9	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/31/10 02:12	MCQ	MS-V3	1	BTL1884	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID: 10	18019-10	Client Sample	e Name:	3538, SB-9@30, 12	2/20/2010 2:00:00	DPM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		0.011	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		0.020	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		0.043	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		0.28	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	88.7	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		97.3	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	ogate)	96.9	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run			QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 08:59	MCQ	MS-V3	1	BTL1884	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID:	1018019-11	Client Sampl	e Name:	3538, SB-10@5, 12	/21/2010 8:30:00	MAC		
Constituent		Result	Units	PQL	Method	MB Bias	Lab	Bun #
							Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petroleur Hydrocarbons	n	ND	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	urrogate)	97.6	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.5	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	Surrogate)	96.8	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC			
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID			
1	EPA-8260	12/29/10	01/03/11 15:46	MCQ	MS-V3	1	BTL1884			

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

	e Name:	3538, SB-10@10, 1				
Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
ND	mg/kg	0.0050	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
0.017	mg/kg	0.010	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
ND	mg/kg	0.050	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
ND	mg/kg	1.0	EPA-8260	ND		1
ND	mg/kg	0.0050	EPA-8260	ND		1
0.28	mg/kg	0.20	Luft-GC/MS	ND		1
93.3	%	70 - 121 (LCL - UCL)	EPA-8260			1
98.8	%	81 - 117 (LCL - UCL)	EPA-8260			1
97.9	%	74 - 121 (LCL - UCL)	EPA-8260			1
	ND N	ND mg/kg ND mg/kg	ND mg/kg 0.0050 ND mg/kg 0.050 ND mg/kg 0.0050 ND mg/kg 1.0 ND mg/kg 0.0050 0.28 mg/kg 0.20 93.3 % 70 - 121 (LCL - UCL) 98.8 % 81 - 117 (LCL - UCL)	ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 1.0 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.20 Luft-GC/MS 93.3 % 70 - 121 (LCL - UCL) EPA-8260 98.8 % 81 - 117 (LCL - UCL) EPA-8260	Result Units PQL Method Bias ND mg/kg 0.0050 EPA-8260 ND ND mg/kg 0.050 EPA-8260 ND ND mg/kg 0.0050 EPA-8260 ND 0.28 mg/kg <t< td=""><td>Result Units PQL Method Bias Quals ND mg/kg 0.0050 EPA-8260 ND Deal column</td></t<>	Result Units PQL Method Bias Quals ND mg/kg 0.0050 EPA-8260 ND Deal column

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 09:52	MCQ	MS-V3	1	BTL1884	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID: 10	18019-13	Client Sample	e Name:	3538, SB-10@15, 1	2/21/2010 8:45:0	MA00		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		0.0055	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		0.024	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		0.47	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surro	gate)	89.4	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.1	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surro	gate)	99.6	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run			QC		
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 10:19	MCQ	MS-V3	1	BTL1884	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

BCL Sample ID:	1018019-14	Client Sampl	e Name:	3538, SB-10@20, 1	2/21/2010 9:00:0	MA00		
						MB	Lab	
Constituent		Result	Units	PQL	Method	Bias	Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		0.047	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petrole	eum	0.31	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surrogate)	98.9	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		101	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene	(Surrogate)	101	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	01/04/11 14:25	MCQ	MS-V3	1	BTL1884	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID:	1018019-15	Client Sampl	e Name:	3538, SB-10@25, 1	2/21/2010 9:05:0	MA00		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		ND	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	ı	ND	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sui	rrogate)	88.0	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		96.3	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	ırrogate)	97.6	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 11:11	MCQ	MS-V3	1	BTL1884	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID:	1018019-16	Client Sampl	e Name:	3538, SB-10@30, 1	2/21/2010 9:20:0	MA00		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	mg/kg	0.0050	EPA-8260	ND	Quais	1 Null #
Delizerie			mg/kg	0.0000	LI A-0200	ND		ļ
1,2-Dibromoethane		ND	mg/kg	0.0050	EPA-8260	ND		1
1,2-Dichloroethane		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethylbenzene		ND	mg/kg	0.0050	EPA-8260	ND		1
Methyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Toluene		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Xylenes		0.012	mg/kg	0.010	EPA-8260	ND		1
t-Amyl Methyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
t-Butyl alcohol		ND	mg/kg	0.050	EPA-8260	ND		1
Diisopropyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Ethanol		ND	mg/kg	1.0	EPA-8260	ND		1
Ethyl t-butyl ether		ND	mg/kg	0.0050	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	1	ND	mg/kg	0.20	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Su	rrogate)	91.5	%	70 - 121 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		98.2	%	81 - 117 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	urrogate)	99.7	%	74 - 121 (LCL - UCL)	EPA-8260			1

			Run					
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 11:38	MCQ	MS-V3	1	BTL1884	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

1018019-17	Client Sampl	e Name:	3538, Comp Soil, 12	2/21/2010 12:45:0	00PM		
	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.010	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	0.050	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
	ND	mg/kg	1.0	EPA-8260	ND		1
	ND	mg/kg	0.0050	EPA-8260	ND		1
1	0.20	mg/kg	0.20	Luft-GC/MS	ND		1
rogate)	89.1	%	70 - 121 (LCL - UCL)	EPA-8260			1
	99.2	%	81 - 117 (LCL - UCL)	EPA-8260			1
rrogate)	99.4	%	74 - 121 (LCL - UCL)	EPA-8260			1
	n rogate)	Result ND ND ND ND ND ND ND N	Result Units ND mg/kg ND mg/kg	Result Units PQL ND mg/kg 0.0050 ND mg/kg 0.20 Mg/kg 0.20	Result Units PQL Method ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.010 EPA-8260 ND mg/kg 0.050 EPA-8260 ND mg/kg 0.050 EPA-8260 ND mg/kg 0.050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 1.0 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 ND mg/kg 0.0050 EPA-8260 M 0.20 Luft-GC/MS	Result Units PQL Method Bias ND mg/kg 0.0050 EPA-8260 ND ND mg/kg <td< td=""><td>Result Units PQL Method Bias Dquals ND mg/kg 0.0050 EPA-8260 ND ND mg/kg</td></td<>	Result Units PQL Method Bias Dquals ND mg/kg 0.0050 EPA-8260 ND ND mg/kg

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/29/10	12/30/10 12:04	MCQ	MS-V3	1	BTL1884	

Delta Environmental Consultants, Inc.

Reported: 01/07/2011 17:08
11050 White Rock Rd, Suite 110 Project: 3538

11050 White Rock Rd, Suite 110 Project: 3538
Rancho Cordova, CA 95670 Project Number: 4514546539
Project Manager: Jan Wagoner

Total Concentrations (TTLC)

BCL Sample ID:	1018019-17	Client Sampl	e Name:	3538, Comp S	Soil, 12/21/2010 12:45:0	00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Antimony		ND	mg/kg	5.0	EPA-6010B	ND		1
Arsenic		3.0	mg/kg	1.0	EPA-6010B	ND		1
Barium		120	mg/kg	0.50	EPA-6010B	ND		1
Beryllium		0.54	mg/kg	0.50	EPA-6010B	ND		1
Cadmium		ND	mg/kg	0.50	EPA-6010B	ND		1
Chromium		42	mg/kg	0.50	EPA-6010B	ND		1
Cobalt		9.8	mg/kg	2.5	EPA-6010B	ND		1
Copper		14	mg/kg	1.0	EPA-6010B	ND		1
Lead		6.3	mg/kg	2.5	EPA-6010B	ND		1
Mercury		ND	mg/kg	0.16	EPA-7471A	ND		2
Molybdenum		ND	mg/kg	2.5	EPA-6010B	ND		1
Nickel		77	mg/kg	0.50	EPA-6010B	ND		1
Selenium		ND	mg/kg	1.0	EPA-6010B	ND		1
Silver		ND	mg/kg	0.50	EPA-6010B	ND		1
Thallium		ND	mg/kg	5.0	EPA-6010B	ND		1
Vanadium		34	mg/kg	0.50	EPA-6010B	ND		1
Zinc		27	mg/kg	2.5	EPA-6010B	ND		1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-6010B	01/03/11	01/04/11 09:36	ARD	PE-OP2	1	BUA0029
2	EPA-7471A	01/05/11	01/06/11 11:23	MEV	CETAC1	0.992	BUA0232

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110

Rancho Cordova, CA 95670

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

BCL Sample ID:	1018019-18	Client Sampl	e Name:	3538, SB-8@20-25,	12/20/2010 11:0	0:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		98	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		48	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		340	ug/L	5.0	EPA-8260	ND	A01	2
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleu Hydrocarbons	m	2000	ug/L	250	Luft-GC/MS	ND	A01	2
1,2-Dichloroethane-d4 (Su	urrogate)	89.5	%	76 - 114 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Su	urrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		94.7	%	88 - 110 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.9	%	88 - 110 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (S	urrogate)	110	%	86 - 115 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	urrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	12/30/10	12/30/10 19:40	KEA	MS-V12	1	BTL1912
2	EPA-8260	12/30/10	01/03/11 17:25	JSK	HPCHEM	5	BTL1923

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

BCL Sample ID: 1018019-19		Client Sample Name:		3538, SB-9@17-22, 12/20/2010		5:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		430	ug/L	5.0	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2-Dichloroethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
Ethylbenzene		330	ug/L	5.0	EPA-8260	ND	A01	1
Methyl t-butyl ether		190	ug/L	5.0	EPA-8260	ND	A01	1
Toluene		2000	ug/L	25	EPA-8260	ND	A01	2
Total Xylenes		2100	ug/L	10	EPA-8260	ND	A01	1
t-Amyl Methyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
t-Butyl alcohol		ND	ug/L	100	EPA-8260	ND	A01	1
Diisopropyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
Ethanol		ND	ug/L	2500	EPA-8260	ND	A01	1
Ethyl t-butyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
Total Purgeable Petroleur Hydrocarbons	n	9500	ug/L	500	Luft-GC/MS	ND	A01	1
1,2-Dichloroethane-d4 (Su	rrogate)	131	%	76 - 114 (LCL - UCL)	EPA-8260		S09	1
1,2-Dichloroethane-d4 (Su	rrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)		97.8	%	88 - 110 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		99.9	%	88 - 110 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Su	urrogate)	113	%	86 - 115 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	ırrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	01/03/11	01/03/11 15:38	KEA	MS-V12	10	BTL1914
2	EPA-8260	01/03/11	01/03/11 17:04	JSK	HPCHEM	50	BTL1923

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

BCL Sample ID:	1018019-20	Client Sample Name:		3538, SB-9@24-29	, 12/20/2010 4:00	0:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		76	ug/L	5.0	EPA-8260	ND	A01	1
1,2-Dibromoethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
1,2-Dichloroethane		ND	ug/L	5.0	EPA-8260	ND	A01	1
Ethylbenzene		100	ug/L	5.0	EPA-8260	ND	A01	1
Methyl t-butyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
Toluene		470	ug/L	5.0	EPA-8260	ND	A01	1
Total Xylenes		540	ug/L	10	EPA-8260	ND	A01	1
t-Amyl Methyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
t-Butyl alcohol		ND	ug/L	100	EPA-8260	ND	A01	1
Diisopropyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
Ethanol		ND	ug/L	2500	EPA-8260	ND	A01	1
Ethyl t-butyl ether		ND	ug/L	5.0	EPA-8260	ND	A01	1
Total Purgeable Petroleum	n	2900	ug/L	500	Luft-GC/MS	ND	A01	1
1,2-Dichloroethane-d4 (Sui	rrogate)	125	%	76 - 114 (LCL - UCL)	EPA-8260		S09	1
Toluene-d8 (Surrogate)		102	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	ırrogate)	101	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	01/03/11	01/03/11 15:20	KEA	MS-V12	10	BTL1914

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

9-21 Client Samp	le Name:	3538, SB-10@17-2	2, 12/21/2010 12:	:00:00PM		
Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
20	ug/L	0.50	EPA-8260	ND	Z 1	1
ND	ug/L	0.50	EPA-8260	ND	Z1	1
ND	ug/L	0.50	EPA-8260	ND	Z1	1
75	ug/L	0.50	EPA-8260	ND	Z 1	1
ND	ug/L	0.50	EPA-8260	ND	Z1	1
0.96	ug/L	0.50	EPA-8260	ND	Z 1	1
8.3	ug/L	1.0	EPA-8260	ND	Z 1	1
ND	ug/L	0.50	EPA-8260	ND	Z1	1
ND	ug/L	10	EPA-8260	ND	Z1	1
ND	ug/L	0.50	EPA-8260	ND	Z1	1
ND	ug/L	250	EPA-8260	ND	Z1	1
ND	ug/L	0.50	EPA-8260	ND	Z1	1
1500	ug/L	50	Luft-GC/MS	ND	Z 1	1
91.8	%	76 - 114 (LCL - UCL)	EPA-8260			1
95.3	%	88 - 110 (LCL - UCL)	EPA-8260			1
115	%	86 - 115 (LCL - UCL)	EPA-8260			1
	Result 20 ND ND 75 ND 0.96 8.3 ND ND ND ND ND ND ND ND ND N	Result Units 20 ug/L ND ug/L ND ug/L 75 ug/L ND ug/L 8.3 ug/L ND ug/L 91.8 % 95.3 %	Result Units PQL 20 ug/L 0.50 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 0.50 8.3 ug/L 1.0 ND ug/L 0.50 ND ug/L 10 ND ug/L 0.50 ND ug/L 0.50 ND ug/L 50 ND ug/L 50 1500 ug/L 50 91.8 % 76 - 114 (LCL - UCL) 95.3 % 88 - 110 (LCL - UCL)	Result Units PQL Method 20 ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 0.50 EPA-8260 8.3 ug/L 1.0 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 10 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 250 EPA-8260 ND ug/L 0.50 EPA-8260 ND ug/L 50 EPA-8260 1500 ug/L 50 Luft-GC/MS 91.8 % 76 - 114 (LCL - UCL) EPA-8260 95.3 % 88 - 110 (LCL - UCL) EPA-8260	Result Units PQL Method Bias 20 ug/L 0.50 EPA-8260 ND ND ug/L 0.50 EPA-8260 ND 8.3 ug/L 0.50 EPA-8260 ND ND ug/L 250 EPA-8260 ND ND ug/L 50 Luft-GC/MS ND 91.8 % 76 - 114 (LCL - UCL) EPA-8260 95.3 % 88 - 110 (LCL - UCL) EPA-8260 </td <td>Result Units PQL Method Bias Bias Quals 20 ug/L 0.50 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 8.3 ug/L 0.50 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 ND ug/L 10 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 ND ug/L 250 EPA-8260 ND Z1 ND ug/L 50 EPA-8260 ND Z1 1500 ug/L 50 Luft-GC/MS ND<</td>	Result Units PQL Method Bias Bias Quals 20 ug/L 0.50 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 8.3 ug/L 0.50 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 ND ug/L 10 EPA-8260 ND Z1 ND ug/L 0.50 EPA-8260 ND Z1 ND ug/L 250 EPA-8260 ND Z1 ND ug/L 50 EPA-8260 ND Z1 1500 ug/L 50 Luft-GC/MS ND<

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/30/10	12/30/10 18:46	KEA	MS-V12	1	BTL1912	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1018019-22	Client Sampl	e Name:	3538, SB-10@24-29	9, 12/21/2010 10:	00:00AM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		1.8	ug/L	0.50	EPA-8260	ND	Z1	1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND	Z1	1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND	Z1	1
Ethylbenzene		12	ug/L	0.50	EPA-8260	ND	Z 1	1
Methyl t-butyl ether		5.8	ug/L	0.50	EPA-8260	ND	Z 1	1
Toluene		25	ug/L	0.50	EPA-8260	ND	Z 1	1
Total Xylenes		63	ug/L	1.0	EPA-8260	ND	Z1	1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND	Z1	1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND	Z1	1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND	Z1	1
Ethanol		ND	ug/L	250	EPA-8260	ND	Z1	1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND	Z1	1
Total Purgeable Petroleu Hydrocarbons	ım	310	ug/L	50	Luft-GC/MS	ND	Z 1	1
1,2-Dichloroethane-d4 (S	urrogate)	90.0	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		95.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (S	Surrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	12/30/10	12/30/10 18:28	KEA	MS-V12	1	BTL1912	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Delta Environmental Consultants, Inc. 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	1018019-23	Client Sampl	e Name:	3538, Comp H2O, 1	2/21/2010 12:30	:00PM		
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene		1.7	ug/L	0.50	EPA-8260	ND		1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		11	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Toluene		14	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		43	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	1	490	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Sur	rogate)	94.5	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		88.4	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Su	rrogate)	106	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	12/30/10	12/30/10 18:09	KEA	MS-V12	1	BTL1912

Delta Environmental Consultants, Inc.

11050 White Rock Rd, Suite 110

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Rancho Cordova, CA 95670 Project Nu Project Mar

Volatile Organic Analysis (EPA Method 8260) Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTL1883						
Benzene	BTL1883-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BTL1883-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BTL1883-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BTL1883-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BTL1883-BLK1	ND	mg/kg	0.0050		
Toluene	BTL1883-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BTL1883-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BTL1883-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BTL1883-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BTL1883-BLK1	ND	mg/kg	0.0050		
Ethanol	BTL1883-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BTL1883-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BTL1883-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BTL1883-BLK1	93.6	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BTL1883-BLK1	99.5	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTL1883-BLK1	100	%	74 - 121	(LCL - UCL)	
QC Batch ID: BTL1884						
Benzene	BTL1884-BLK1	ND	mg/kg	0.0050		
1,2-Dibromoethane	BTL1884-BLK1	ND	mg/kg	0.0050		
1,2-Dichloroethane	BTL1884-BLK1	ND	mg/kg	0.0050		
Ethylbenzene	BTL1884-BLK1	ND	mg/kg	0.0050		
Methyl t-butyl ether	BTL1884-BLK1	ND	mg/kg	0.0050		
Toluene	BTL1884-BLK1	ND	mg/kg	0.0050		
Total Xylenes	BTL1884-BLK1	ND	mg/kg	0.010		
t-Amyl Methyl ether	BTL1884-BLK1	ND	mg/kg	0.0050		
t-Butyl alcohol	BTL1884-BLK1	ND	mg/kg	0.050		
Diisopropyl ether	BTL1884-BLK1	ND	mg/kg	0.0050		
Ethanol	BTL1884-BLK1	ND	mg/kg	1.0		
Ethyl t-butyl ether	BTL1884-BLK1	ND	mg/kg	0.0050		
Total Purgeable Petroleum Hydrocarbons	BTL1884-BLK1	ND	mg/kg	0.20		
1,2-Dichloroethane-d4 (Surrogate)	BTL1884-BLK1	103	%	70 - 121	(LCL - UCL)	
Toluene-d8 (Surrogate)	BTL1884-BLK1	102	%	81 - 117	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTL1884-BLK1	99.5	%	74 - 121	(LCL - UCL)	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTL1912						
Benzene	BTL1912-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BTL1912-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTL1912-BLK1	ND	ug/L	0.50		
Ethylbenzene	BTL1912-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BTL1912-BLK1	ND	ug/L	0.50		
Toluene	BTL1912-BLK1	ND	ug/L	0.50		
Total Xylenes	BTL1912-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BTL1912-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BTL1912-BLK1	ND	ug/L	10		
Diisopropyl ether	BTL1912-BLK1	ND	ug/L	0.50		
Ethanol	BTL1912-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BTL1912-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BTL1912-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BTL1912-BLK1	91.3	%	76 - 11	4 (LCL - UCL)	
Toluene-d8 (Surrogate)	BTL1912-BLK1	95.9	%	88 - 11	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTL1912-BLK1	101	%	86 - 11	5 (LCL - UCL)	
QC Batch ID: BTL1914						
Benzene	BTL1914-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BTL1914-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTL1914-BLK1	ND	ug/L	0.50		
Ethylbenzene	BTL1914-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BTL1914-BLK1	ND	ug/L	0.50		
Toluene	BTL1914-BLK1	ND	ug/L	0.50		
Total Xylenes	BTL1914-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BTL1914-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BTL1914-BLK1	ND	ug/L	10		
Diisopropyl ether	BTL1914-BLK1	ND	ug/L	0.50		
Ethanol	BTL1914-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BTL1914-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BTL1914-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BTL1914-BLK1	104	%	76 - 11	4 (LCL - UCL)	
Toluene-d8 (Surrogate)	BTL1914-BLK1	102	%	88 - 11	0 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTL1914-BLK1	94.6	%	96 11	5 (LCL - UCL)	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTL1923						
Toluene	BTL1923-BLK1	ND	ug/L	0.50		
Total Xylenes	BTL1923-BLK1	ND	ug/L	1.0		
Total Purgeable Petroleum Hydrocarbons	BTL1923-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BTL1923-BLK1	105	%	76 - 114	(LCL - UCL)	
Toluene-d8 (Surrogate)	BTL1923-BLK1	98.2	%	88 - 110	(LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTL1923-BLK1	106	%	86 - 115	(LCL - UCL)	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

								Control Limits				
		_		Spike		Percent		Percent		Lab		
Constituent	QC Sample ID	Туре	Result	Level	Units	Recovery	RPD	Recovery	RPD	Quals		
QC Batch ID: BTL1883												
Benzene	BTL1883-BS1	LCS	0.13954	0.12500	mg/kg	112		70 - 130				
Toluene	BTL1883-BS1	LCS	0.12711	0.12500	mg/kg	102		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BTL1883-BS1	LCS	0.046423	0.050000	mg/kg	92.8		70 - 121				
Toluene-d8 (Surrogate)	BTL1883-BS1	LCS	0.048081	0.050000	mg/kg	96.2		81 - 117				
4-Bromofluorobenzene (Surrogate)	BTL1883-BS1	LCS	0.049287	0.050000	mg/kg	98.6		74 - 121				
QC Batch ID: BTL1884												
Benzene	BTL1884-BS1	LCS	0.12435	0.12500	mg/kg	99.5		70 - 130				
Toluene	BTL1884-BS1	LCS	0.12307	0.12500	mg/kg	98.5		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BTL1884-BS1	LCS	0.052476	0.050000	mg/kg	105		70 - 121				
Toluene-d8 (Surrogate)	BTL1884-BS1	LCS	0.049873	0.050000	mg/kg	99.7		81 - 117				
4-Bromofluorobenzene (Surrogate)	BTL1884-BS1	LCS	0.051986	0.050000	mg/kg	104		74 - 121				
QC Batch ID: BTL1912												
Benzene	BTL1912-BS1	LCS	22.080	25.000	ug/L	88.3		70 - 130				
Toluene	BTL1912-BS1	LCS	21.810	25.000	ug/L	87.2		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BTL1912-BS1	LCS	8.9800	10.000	ug/L	89.8		76 - 114				
Toluene-d8 (Surrogate)	BTL1912-BS1	LCS	9.6600	10.000	ug/L	96.6		88 - 110				
4-Bromofluorobenzene (Surrogate)	BTL1912-BS1	LCS	10.210	10.000	ug/L	102		86 - 115				
QC Batch ID: BTL1914												
Benzene	BTL1914-BS1	LCS	28.610	25.000	ug/L	114		70 - 130				
Toluene	BTL1914-BS1	LCS	29.410	25.000	ug/L	118		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BTL1914-BS1	LCS	10.370	10.000	ug/L	104		76 - 114				
Toluene-d8 (Surrogate)	BTL1914-BS1	LCS	10.040	10.000	ug/L	100		88 - 110				
4-Bromofluorobenzene (Surrogate)	BTL1914-BS1	LCS	9.9400	10.000	ug/L	99.4		86 - 115				
QC Batch ID: BTL1923												
Toluene	BTL1923-BS1	LCS	27.240	25.000	ug/L	109		70 - 130				
1,2-Dichloroethane-d4 (Surrogate)	BTL1923-BS1	LCS	10.640	10.000	ug/L	106		76 - 114				
Toluene-d8 (Surrogate)	BTL1923-BS1	LCS	9.7100	10.000	ug/L	97.1		88 - 110				
4-Bromofluorobenzene (Surrogate)	BTL1923-BS1	LCS	10.240	10.000	ug/L	102		86 - 115				

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
Source Source Spike Percent Constituent Type Sample ID Result Result Added Units RPD Recovery Used client sample: N Benzene MS 1016633-93 ND 0.14269 0.12500 mg/kg 114							Percent	Lab			
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
00 D 4 L ID DTI 4000	Lleo	d client camp	vlo: N								
		•		0.14260	0.12500	ma/ka		111		70 120	
Benzene		1016633-93	ND ND	0.14269	0.12500	mg/kg mg/kg	0.8	114	20	70 - 130 70 - 130	
	MSD						0.6		20		
Toluene	MS	1016633-93	ND	0.13107	0.12500	mg/kg		105		70 - 130	
	MSD	1016633-93	ND	0.12851	0.12500	mg/kg	2.0	103	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1016633-93	ND	0.046518	0.050000	mg/kg		93.0		70 - 121	
	MSD	1016633-93	ND	0.046623	0.050000	mg/kg	0.2	93.2		70 - 121	
Toluene-d8 (Surrogate)	MS	1016633-93	ND	0.049709	0.050000	mg/kg		99.4		81 - 117	
	MSD	1016633-93	ND	0.050263	0.050000	mg/kg	1.1	101		81 - 117	
4-Bromofluorobenzene (Surrogate)	MS	1016633-93	ND	0.047151	0.050000	mg/kg		94.3		74 - 121	
	MSD	1016633-93	ND	0.048348	0.050000	mg/kg	2.5	96.7		74 - 121	
QC Batch ID: BTL1884	Use	d client samp	ole: N								
Benzene	∟ MS	1016633-94	ND	0.12127	0.12500	mg/kg		97.0		70 - 130	
	MSD	1016633-94	ND	0.12769	0.12500	mg/kg	5.2	102	20	70 - 130	
	MS	1016633-94	ND	0.12098	0.12500	mg/kg		96.8		70 - 130	
rolderic	MSD	1016633-94	ND	0.13017	0.12500	mg/kg	7.3	104	20	70 - 130	
,2-Dichloroethane-d4 (Surrogate)		1016633-94	ND	0.053497	0.050000			107		70 - 121	
1,2-Dicfiloroethane-u4 (Surrogate)	MS MSD	1016633-94	ND	0.053497	0.050000	mg/kg mg/kg	5.2	107		70 - 121 70 - 121	
							0.2				
Foluene-d8 (Surrogate)	MS	1016633-94 1016633-94	ND ND	0.050616 0.049659	0.050000 0.050000	mg/kg	1.9	101 99.3		81 - 117 81 - 117	
	MSD					mg/kg	1.9				
4-Bromofluorobenzene (Surrogate)	MS	1016633-94	ND	0.051297	0.050000	mg/kg	4.7	103		74 - 121	
	MSD	1016633-94	ND	0.050435	0.050000	mg/kg	1.7	101		74 - 121	
QC Batch ID: BTL1912	Use	d client samp	ole: N								
Benzene	MS	1016633-83	ND	25.270	25.000	ug/L		101		70 - 130	
	MSD	1016633-83	ND	26.570	25.000	ug/L	5.0	106	20	70 - 130	
	MS	1016633-83	ND	25.010	25.000	ug/L		100		70 - 130	
	MSD	1016633-83	ND	26.470	25.000	ug/L	5.7	106	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1016633-83	ND	8.8000	10.000	ug/L		88.0		76 - 114	
,	MSD	1016633-83	ND	8.8600	10.000	ug/L	0.7	88.6		76 - 114	
 Γoluene-d8 (Surrogate)	MS	1016633-83	ND	9.7500	10.000	ug/L		97.5		88 - 110	
. s.aso do (odinogato)	MSD	1016633-83	ND	9.6700	10.000	ug/L	0.8	96.7		88 - 110	
Rromofluorohenzono (Surrogeta)							***	106			
1-Bromofluorobenzene (Surrogate)	MS	1016633-83 1016633-83	ND ND	10.580 10.390	10.000 10.000	ug/L ug/L	1.8	106		86 - 115 86 - 115	
	MSD			10.330	10.000	ug/L	1.0	104		00 - 110	
QC Batch ID: BTL1914	Use	d client samp									
Benzene	MS	1016633-84	ND	21.090	25.000	ug/L		84.4		70 - 130	
	MSD	1016633-84	ND	25.340	25.000	ug/L	18.3	101	20	70 - 130	
Toluene	MS	1016633-84	ND	22.440	25.000	ug/L		89.8		70 - 130	
	MSD	1016633-84	ND	27.310	25.000	ug/L	19.6	109	20	70 - 130	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

				·					Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTL1914	Use	d client samp	ole: N								
1,2-Dichloroethane-d4 (Surrogate)	─ MS	1016633-84	ND	10.160	10.000	ug/L		102		76 - 114	
	MSD	1016633-84	ND	10.140	10.000	ug/L	0.2	101		76 - 114	
Toluene-d8 (Surrogate)	MS	1016633-84	ND	10.230	10.000	ug/L		102		88 - 110	
	MSD	1016633-84	ND	10.290	10.000	ug/L	0.6	103		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1016633-84	ND	9.5400	10.000	ug/L		95.4		86 - 115	
	MSD	1016633-84	ND	9.8600	10.000	ug/L	3.3	98.6		86 - 115	
QC Batch ID: BTL1923	Use	d client samp	ole: N								
Toluene	− MS	1016633-85	ND	27.580	25.000	ug/L		110		70 - 130	
	MSD	1016633-85	ND	27.760	25.000	ug/L	0.7	111	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1016633-85	ND	10.930	10.000	ug/L		109		76 - 114	
	MSD	1016633-85	ND	10.620	10.000	ug/L	2.9	106		76 - 114	
Toluene-d8 (Surrogate)	MS	1016633-85	ND	10.220	10.000	ug/L		102		88 - 110	
	MSD	1016633-85	ND	9.9400	10.000	ug/L	2.8	99.4		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1016633-85	ND	10.130	10.000	ug/L		101		86 - 115	
	MSD	1016633-85	ND	10.200	10.000	ug/L	0.7	102		86 - 115	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Total Concentrations (TTLC)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BUA0029						
Antimony	BUA0029-BLK1	ND	mg/kg	5.0		
Arsenic	BUA0029-BLK1	ND	mg/kg	1.0		
Barium	BUA0029-BLK1	ND	mg/kg	0.50		
Beryllium	BUA0029-BLK1	ND	mg/kg	0.50		
Cadmium	BUA0029-BLK1	ND	mg/kg	0.50		
Chromium	BUA0029-BLK1	ND	mg/kg	0.50		
Cobalt	BUA0029-BLK1	ND	mg/kg	2.5		
Copper	BUA0029-BLK1	ND	mg/kg	1.0		
Lead	BUA0029-BLK1	ND	mg/kg	2.5		
Molybdenum	BUA0029-BLK1	ND	mg/kg	2.5		
Nickel	BUA0029-BLK1	ND	mg/kg	0.50		
Selenium	BUA0029-BLK1	ND	mg/kg	1.0		
Silver	BUA0029-BLK1	ND	mg/kg	0.50		
Thallium	BUA0029-BLK1	ND	mg/kg	5.0		
Vanadium	BUA0029-BLK1	ND	mg/kg	0.50		
Zinc	BUA0029-BLK1	ND	mg/kg	2.5		
QC Batch ID: BUA0232						
Mercury	BUA0232-BLK1	ND	mg/kg	0.16		

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

Total Concentrations (TTLC)

Quality Control Report - Laboratory Control Sample

								Control L	imits	
Constituent	QC Sample ID	Type	Result	Spike Level	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
QC Batch ID: BUA0029		71-								
Antimony	BUA0029-BS1	LCS	102.02	100.00	mg/kg	102		75 - 125		
Arsenic	BUA0029-BS1	LCS	10.253	10.000	mg/kg	103		75 - 125		
Barium	BUA0029-BS1	LCS	104.84	100.00	mg/kg	105		75 - 125		
Beryllium	BUA0029-BS1	LCS	10.869	10.000	mg/kg	109		75 - 125		
Cadmium	BUA0029-BS1	LCS	10.292	10.000	mg/kg	103		75 - 125		
Chromium	BUA0029-BS1	LCS	104.51	100.00	mg/kg	105		75 - 125		
Cobalt	BUA0029-BS1	LCS	106.44	100.00	mg/kg	106		75 - 125		
Copper	BUA0029-BS1	LCS	101.97	100.00	mg/kg	102		75 - 125		
Lead	BUA0029-BS1	LCS	108.56	100.00	mg/kg	109		75 - 125		
Molybdenum	BUA0029-BS1	LCS	102.42	100.00	mg/kg	102		75 - 125		
Nickel	BUA0029-BS1	LCS	108.35	100.00	mg/kg	108		75 - 125		
Selenium	BUA0029-BS1	LCS	9.7475	10.000	mg/kg	97.5		75 - 125		
Silver	BUA0029-BS1	LCS	10.723	10.000	mg/kg	107		75 - 125		
Thallium	BUA0029-BS1	LCS	105.87	100.00	mg/kg	106		75 - 125		
Vanadium	BUA0029-BS1	LCS	100.79	100.00	mg/kg	101		75 - 125		
Zinc	BUA0029-BS1	LCS	105.71	100.00	mg/kg	106		75 - 125		
QC Batch ID: BUA0232										
Mercury	BUA0232-BS1	LCS	1.2413	1.5000	mg/kg	82.8		75 - 125		

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539 Project Manager: Jan Wagoner

Total Concentrations (TTLC)

Quality Control Report - Precision & Accuracy

									Cont	rol Limits	
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BUA0029	Use	ed client samp	ole: N								
Antimony	→ DUP	1018116-01	ND	ND		mg/kg			20		
•	MS	1018116-01	ND	98.903	100.00	mg/kg		98.9		16 - 119	
	MSD	1018116-01	ND	99.109	100.00	mg/kg	0.2	99.1	20	16 - 119	
Arsenic	DUP	1018116-01	ND	ND		mg/kg			20		
	MS	1018116-01	ND	10.127	10.000	mg/kg		101		75 - 125	
	MSD	1018116-01	ND	9.8156	10.000	mg/kg	3.1	98.2	20	75 - 125	
Barium	DUP	1018116-01	0.16908	ND		mg/kg			20		
	MS	1018116-01	0.16908	103.95	100.00	mg/kg		104		75 - 125	
	MSD	1018116-01	0.16908	104.61	100.00	mg/kg	0.6	104	20	75 - 125	
Beryllium	DUP	1018116-01	0.51800	0.53135		mg/kg	2.5		20		
	MS	1018116-01	0.51800	11.626	10.000	mg/kg		111		75 - 125	
	MSD	1018116-01	0.51800	11.315	10.000	mg/kg	2.7	108	20	75 - 125	
Cadmium	DUP	1018116-01	ND	ND		mg/kg			20		
	MS	1018116-01	ND	10.866	10.000	mg/kg		109		75 - 125	
	MSD	1018116-01	ND	10.380	10.000	mg/kg	4.6	104	20	75 - 125	
Chromium	DUP	1018116-01	0.31011	ND		mg/kg			20		A02
	MS	1018116-01	0.31011	106.08	100.00	mg/kg		106		75 - 125	
	MSD	1018116-01	0.31011	101.20	100.00	mg/kg	4.7	101	20	75 - 125	
Cobalt	DUP	1018116-01	0.89462	ND		mg/kg			20		
	MS	1018116-01	0.89462	111.60	100.00	mg/kg		111		75 - 125	
	MSD	1018116-01	0.89462	106.34	100.00	mg/kg	4.8	105	20	75 - 125	
Copper	DUP	1018116-01	0.60346	ND		mg/kg			20		
	MS	1018116-01	0.60346	107.86	100.00	mg/kg		107		75 - 125	
	MSD	1018116-01	0.60346	105.31	100.00	mg/kg	2.4	105	20	75 - 125	
Lead	DUP	1018116-01	0.84341	ND		mg/kg			20		
	MS	1018116-01	0.84341	113.32	100.00	mg/kg		112		75 - 125	
	MSD	1018116-01	0.84341	107.57	100.00	mg/kg	5.2	107	20	75 - 125	
Molybdenum	DUP	1018116-01	ND	ND		mg/kg			20		
	MS	1018116-01	ND	106.08	100.00	mg/kg		106		75 - 125	
	MSD	1018116-01	ND	101.24	100.00	mg/kg	4.7	101	20	75 - 125	
Nickel	DUP	1018116-01	0.18905	ND		mg/kg			20		
	MS	1018116-01	0.18905	112.48	100.00	mg/kg		112		75 - 125	
	MSD	1018116-01	0.18905	107.30	100.00	mg/kg	4.7	107	20	75 - 125	
Selenium	DUP	1018116-01	ND	ND		mg/kg			20		
	MS	1018116-01	ND	9.7680	10.000	mg/kg		97.7		75 - 125	
	MSD	1018116-01	ND	9.1484	10.000	mg/kg	6.6	91.5	20	75 - 125	
Silver	DUP	1018116-01	ND	ND		mg/kg			20		
	MS	1018116-01	ND	8.9307	10.000	mg/kg		89.3		75 - 125	
	MSD	1018116-01	ND	8.8391	10.000	mg/kg	1.0	88.4	20	75 - 125	

Reported: 01/07/2011 17:08

Project: 3538

Project Number: 4514546539
Project Manager: Jan Wagoner

Total Concentrations (TTLC)

Quality Control Report - Precision & Accuracy

			_		_			Cont	rol Limits	
	Source	Source		Spike			Percent		Percent	Lab
Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
Use	d client samp	ole: N								
DUP	1018116-01	ND	ND		mg/kg			20		
MS	1018116-01	ND	107.20	100.00	mg/kg		107		75 - 125	
MSD	1018116-01	ND	106.57	100.00	mg/kg	0.6	107	20	75 - 125	
DUP	1018116-01	149.09	152.33		mg/kg	2.1		20		
MS	1018116-01	149.09	260.46	100.00	mg/kg		111		75 - 125	
MSD	1018116-01	149.09	253.55	100.00	mg/kg	2.7	104	20	75 - 125	
DUP	1018116-01	2.9149	3.0144		mg/kg	3.4		20		
MS	1018116-01	2.9149	120.83	100.00	mg/kg		118		75 - 125	
MSD	1018116-01	2.9149	114.68	100.00	mg/kg	5.2	112	20	75 - 125	
Use	d client samp	ole: N								
DUP	1018241-04	0.047143	ND		mg/kg			20		A02
MS	1018241-04	0.047143	0.81476	0.79365	mg/kg		96.7		85 - 115	
MSD	1018241-04	0.047143	0.81762	0.79365	mg/kg	0.4	97.1	20	85 - 115	
	Use DUP MS MSD DUP MS MSD DUP MS MSD DUP MS DUP MS DUP MS MSD	Type Sample ID Used client samp DUP 1018116-01 MS 1018116-01 MSD 1018116-01 MS 1018116-01 MSD 1018116-01 MSD 1018116-01 MSD 1018116-01 MSD 1018116-01 USEd client samp DUP 1018241-04 MS 1018241-04	Type Sample ID Result Used client sample: N DUP 1018116-01 ND MS 1018116-01 ND MSD 1018116-01 149.09 MS 1018116-01 149.09 MSD 1018116-01 149.09 MSD 1018116-01 2.9149 MS 1018116-01 2.9149 MS 1018116-01 2.9149 MSD 1018116-01 2.9149 Used client sample: N DUP 1018241-04 0.047143 MS 1018241-04 0.047143	Type Sample ID Result Result Used client sample: N DUP 1018116-01 ND ND MS 1018116-01 ND 106.57 DUP 1018116-01 149.09 152.33 MS 1018116-01 149.09 260.46 MSD 1018116-01 149.09 253.55 DUP 1018116-01 2.9149 3.0144 MS 1018116-01 2.9149 120.83 MSD 1018116-01 2.9149 114.68 Used client sample: N DUP 1018241-04 0.047143 ND MS 1018241-04 0.047143 0.81476	Type Sample ID Result Result Added Used client sample: N DUP 1018116-01 ND ND ND MS 1018116-01 ND 106.57 100.00 MSD 1018116-01 149.09 152.33 NS MS 1018116-01 149.09 260.46 100.00 MSD 1018116-01 149.09 253.55 100.00 DUP 1018116-01 2.9149 3.0144 MS 1018116-01 2.9149 120.83 100.00 MSD 1018116-01 2.9149 114.68 100.00 Used client sample: N DUP 1018241-04 0.047143 ND MS 1018241-04 0.047143 0.81476 0.79365	Type Sample ID Result Result Added Units Used client sample: N DUP 1018116-01 ND ND mg/kg MS 1018116-01 ND 107.20 100.00 mg/kg MSD 1018116-01 ND 106.57 100.00 mg/kg DUP 1018116-01 149.09 152.33 mg/kg MS 1018116-01 149.09 260.46 100.00 mg/kg MSD 1018116-01 2.9149 3.0144 mg/kg MS 1018116-01 2.9149 120.83 100.00 mg/kg MSD 1018116-01 2.9149 114.68 100.00 mg/kg MSD 1018116-01 2.9149 114.68 100.00 mg/kg MSD 1018241-04 0.047143 ND mg/kg MS 1018241-04 0.047143 0.81476 0.79365 mg/kg	Type Sample ID Result Result Added Units RPD Used client sample: N DUP 1018116-01 ND ND mg/kg MS 1018116-01 ND 106.57 100.00 mg/kg 0.6 DUP 1018116-01 149.09 152.33 mg/kg 2.1 MS 1018116-01 149.09 260.46 100.00 mg/kg 2.7 MSD 1018116-01 149.09 253.55 100.00 mg/kg 2.7 DUP 1018116-01 2.9149 3.0144 mg/kg 3.4 MS 1018116-01 2.9149 120.83 100.00 mg/kg 5.2 Used client sample: N DUP 1018241-04 0.047143 ND mg/kg MS 1018241-04 0.047143 ND mg/kg MS 1018241-04 0.047143 ND mg/kg	Type Sample ID Result Added Units RPD Recovery Used client sample: N DUP 1018116-01 ND ND mg/kg 107 MS 1018116-01 ND 106.57 100.00 mg/kg 0.6 107 DUP 1018116-01 149.09 152.33 mg/kg 2.1 mg/kg 111 MS 1018116-01 149.09 260.46 100.00 mg/kg 2.7 104 DUP 1018116-01 149.09 253.55 100.00 mg/kg 2.7 104 DUP 1018116-01 2.9149 3.0144 mg/kg 3.4 mg/kg 118 MSD 1018116-01 2.9149 120.83 100.00 mg/kg 5.2 112 Used client sample: N DUP 1018241-04 0.047143 ND mg/kg 5.2 112	Source Sample ID Source Result Spike Added Units Percent Recovery RPD Used client sample: N DUP 1018116-01 ND ND mg/kg 20 MS 1018116-01 ND 107.20 100.00 mg/kg 107 MSD 1018116-01 ND 106.57 100.00 mg/kg 0.6 107 20 DUP 1018116-01 149.09 152.33 mg/kg 2.1 20 MS 1018116-01 149.09 260.46 100.00 mg/kg 111 111 MSD 1018116-01 149.09 253.55 100.00 mg/kg 2.7 104 20 DUP 1018116-01 2.9149 3.0144 mg/kg 3.4 20 MS 1018116-01 2.9149 120.83 100.00 mg/kg 5.2 112 20 Used client sample: N DUP 1018241-04 0.047143 ND mg/kg 5.2 112 <td>Type Sample ID Result Result Added Units RPD Recovery RPD Recovery Used client sample: N ND MS MS 1018116-01 ND ND MS 107 75 - 125 75 - 125 MSD 1018116-01 ND 106.57 100.00 mg/kg 0.6 107 20 75 - 125 DUP 1018116-01 149.09 152.33 mg/kg 2.1 20 20 MS 1018116-01 149.09 260.46 100.00 mg/kg 2.7 104 20 75 - 125 MSD 1018116-01 149.09 253.55 100.00 mg/kg 2.7 104 20 75 - 125 DUP 1018116-01 2.9149 3.0144 mg/kg 3.4 20 75 - 125 MSD 1018116-01 2.9149 120.83 100.00 mg/kg 5.2 112 20 75 - 125 MSD 1018241-04 0.047143</td>	Type Sample ID Result Result Added Units RPD Recovery RPD Recovery Used client sample: N ND MS MS 1018116-01 ND ND MS 107 75 - 125 75 - 125 MSD 1018116-01 ND 106.57 100.00 mg/kg 0.6 107 20 75 - 125 DUP 1018116-01 149.09 152.33 mg/kg 2.1 20 20 MS 1018116-01 149.09 260.46 100.00 mg/kg 2.7 104 20 75 - 125 MSD 1018116-01 149.09 253.55 100.00 mg/kg 2.7 104 20 75 - 125 DUP 1018116-01 2.9149 3.0144 mg/kg 3.4 20 75 - 125 MSD 1018116-01 2.9149 120.83 100.00 mg/kg 5.2 112 20 75 - 125 MSD 1018241-04 0.047143

Delta Environmental Consultants, Inc. Reported: 01/07/2011 17:08

Project: 3538 11050 White Rock Rd, Suite 110 Rancho Cordova, CA 95670 Project Number: 4514546539

Project Manager: Jan Wagoner

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

PQL's and MDL's are raised due to sample dilution. A01

A02 The difference between duplicate readings is less than the PQL.

S09 The surrogate recovery on the sample for this compound was not within the control limits.

Z1 Combined two VOAs for a complete sample.

APPENDIX D

Boring Logs for Borings SB-8 Through SB-10

			Project No	o: C10353506	51			Client	: Conoco	Phillips	Boring/Well No: SB-8
			Logged By	y: A. Buehler				Locati	on: Oakl	and, CA	Page 1 of 1
		2	Driller: Ca	scade Drilling	g			Date I	Orilled: 1	2/20/10	
	6		Drilling M	ethod: Direct	t Push			Hole [Diameter	: 2"	Site Address:
	toolar	20110	Sampling	Method: Ace	tate Liner			Hole [Depth: 20)'	411 W. MacArthur Blvd, Oakland, CA
an	tea gr	oup	Casing Ty	pe: N/A				Well [Diameter	: N/A	
			Slot Size:	N/A				Well [Depth: N,	/A	
			Gravel Pa	ck: N/A			\blacksquare	First V	Vater De	pth:	
							∇	Static	Water D		
			Elevation:		ī	Northing:	1			Easting:	
Well	Completion	-	Moisture Content	PID Reading (ppm)	⊆		Sar	nple			
		Water Level	Cont	d)	Sample Identification	Depth (feet)		-	Soil Type		_
Ę	ng	ter	nre	adir	Sample	th (Recovery	Interval	ii T	1	LITHOLOGY / DESCRIPTION
Backfill	Casing	Wa	oistı) Re	S	Dek	eco	nte	Š		
			Σ	PI			~	_			
						_			ı	Air-knife clerance	e to 5 ft.
1						1					
									i		
						2					
							_		ı		
						3	_				
							_		ı		
						4					
	_					l –					
						5					
	_			0.6	SB-8	_			CL		andy lean clay with gravel,
					@5	6				20% sand, 10% gravel, d	amp
	-					-			ı		
						7				D // L L L	1 11 200/
	_					-			ML		andy silt, 30% sand, trace
						8				gravel, mild odor, damp	
Ħ						-			i		
Gro	l —					9 —					
nt (5.8	SB-8	-			i		
me				5.0	@10	10					
Neat Cement Grout					@ 10	-			ı		
eat						11					
Z	-					_			į		
						12					
						I			GM	Brown/gray, silty gravel	with sand, 10% silt, 30%
						13 —			٥.٠٠	gravel, moist	30.1.0, 20.70 3114, 30.70
									ı	,	
						14					
				0.7	SB-8				CL	Brown/gray, lean clay, 5	% sand, moist
					@15	15 —					
						16			•		
						16—			GC	Brown, clayey gravel wit	th sand, 10% clay, 20%
	$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$					17—			•	sand, moist to wet	
						18—					
									ML	Brown/gray mottles, sar	ndy silt, 30% sand, very
						19—				dense, damp	
						-			i		
				440	SB-8	20—					
					@20	25				Total Depth = 20	ft
						21—					
						22					
I			1			ı	1				

											I=	
			Project No		5697			Client		СОР	Boring/Well I	
l		_	Logged By	y:	A Buehle	r		Locat		Oakland	Page 1 of	2
		<u></u>	Driller:		Cascade				Drilled:	12/20/2010		
			Drilling M		Direct Pu				Diameter			
an	tead	roup	Sampling		N1 / A	Acetate			Depth:	20 ft		
			Casing Ty	pe:	N/A				Diameter	•		
			Slot Size: Gravel Pa	alu	N/A		lacktriangle		Depth: Water De	N/A		
			GraverPa	CK:	N/A		$\overline{\nabla}$		Water De Water D			
			Elevation	<u> </u>		Northing:		Static	. Water D	Easting:		
Well (Completion		1 1							Jan 5		
vvcii v	compiction	, lel	Moisture Content	PID Reading (ppm)	Sample Identification	set)	Sar	nple	ā			
=	p 0	Water Level	e Cc	ding	mpl	Depth (feet)	2	a	Soil Type		LITHOLOGY	/ / DESCRIPTION
Backfill	Casing	Nato	istur	Rea	Sa Jent	Sept	Recovery	Interval	Soi			
ă	O	_	Мо	PID	_ =		Re	드				
	_									Air-knife clear	ance to 5 ft	
						1 —						
	_					2						
	l					3						
		_										
	l					4 —						
	_	4										
	l	4				5						
	-	4		6.7	SB-9				ļ	Gray, gravelly lean cla	ay, 20% grave	l, moist, no
	l —	4			@5	6				odor		
	_	4				-						
		4				7 —			B 4 1	Dunarra /International Control		th arranal 2007
	-	4				-			ML	Brown/black mottled,	, sandy silt wi	tn gravei, 20%
	I —	4				8				sand, 10% gravel		
	-	-				-						
		=				9 —		-				
±	-	1		7.5	SB-9	-			CL	Brown/gray mottled,	gravelly lean	clav. 10%
Neat Cement Grout	I —	1		,.5	@10	10 —				gravel, moist, slight of	dor	,,,
it G] -	₹							†	5 · · · ,, sg	-	
ner		1				11						
Cen	l —	1							SP	Dark brown, sand, fin	e sand, wet	
at		7				12 —						
Re	_	1				12			1			
						13—			ML	Brown/orange/gray n	nottled, sandy	y silt, 40% sand,
	l					14				damp		
	I _											
		_		910	SB-9	15 —						
	_	_			@15	_						
	l					16						
	-	▼								Dark brown/gray laye	red, sandy sil	t, 35% sand,
	I	4				17 —				saturated		
	_	4										
		4				18		-				
	_	4				_			<u> </u>			
	I —	4				19 —						
	-	4		27	CD 0	-			ļ			
	-	-		37	SB-9	20 —			CN4	Gray Silty cand fine	and 2E0/ all+	caturated
	-	-			@20	-			SM	Gray, Silty sand, fine s	sariu, 25% Silt	, saturateu
	-	-				21						
	-	-										
	l —	-				22 —						
	1	1			1	1		i		I		

			-	o: C1035350				Client	t: Conocc	Phillips	Boring/Well I	
1			Logged B	y: A. Buehler				Locat	ion: Oakl	and, CA	Page 2 of	2
		9	Driller: Ca	ascade Drillir	ng			Date	Drilled: 1	.2/20/10		
1	(1ethod: Dired				Hole	Diametei	r: 2"		
-	tonia	2115		Method: Ac		r		Hole	Depth: 20	0'		
an	tea gi	oup	Casing Ty						Diameter			
			Slot Size:					Well	Depth: N	/A		
			Gravel Pa						Water De			
							\sum	Statio	: Water D	epth:		
		T	Elevation	:		Northing:				Easting:		
Well C	Completion	-Je	ם ה	ng	no (et)	San	nple	au			
=	bū	Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)			Soil Type		LITHOLOGY	/ / DESCRIPTION
Backfill	Casing	/ate	Moi Cor	ID R. (pr	enet	epth	Recovery	Interval	Soil	<u>'</u>		, besein from
Ba	Ö	>		Ы	P (۵	Rec	Ē				
						23						
						_			ML	Gray/green sandy silt, 3	30% sand, v	ery dense, dry
						24						
1	_					_						
out				12.5	SB-9	25						
Gr] _		▼		@25	_				Same as above, saturat	ed	
Neat Cement Grout						26			<u> </u>	Duraning /a		
eĽ	_								CL	Brown/gray mottled, le	an clay, ver	y dense, moist
t C						27——						
lea												
_						28						
	_											
		-				29 —						
	_			4.6	SB-9							
				4.0	@30	30				Total Depth = 30) ft	
					@30					Total Deptil = 30	710	
						31—						
						32—	t					
	-								•			
						33 ——						
						34						
						25						
1						35—						
1]				36—						
1	_											
1						37——						
1	_											
						38	<u> </u>					
1	_					_						
1						39——						
	_					_	!					
1						40						
1	_	-				_	-		l			
1	-	-				41						
1	_											
1		-				42 ——	-					
	_	-				_	\vdash					
1	-					43 —						
1		1				_	 					
1		1				44	 					

			Project No	0:	5697			Client	:	COP	Boring/Well No: SB-9
			Logged By	y:	A Buehler			Locat	ion:	Oakland	Page 2 of 2
			Driller:		Cascade			Date	Drilled:	12/21/2010	
			Drilling M	lethod:	Direct Push	n		Hole I	Diameter	:: 2 in	
			Sampling	Method:		Acetate		Hole I	Depth:	20 ft	
an	tea ïgi	roup	Casing Ty		N/A			Well I	Diameter	: N/A	
	_	•	Slot Size:		N/A			Well I	Depth:	N/A	
			Gravel Pa	ck:	N/A		Y	First \	Water De	pth:	
							∇	Static	Water D	epth:	
			Elevation:		1	Northing:	ı			Easting:	
Well C	ompletion	<u></u>	Moisture Content	PID Reading (ppm)	<u> </u>	æ.	Sar	nple			
		Water Level	Con	d) ສີເ	Sample Identification	Depth (feet)			Soil Type		
Æ	Casing	iter	ure	adir	Sam	oth	Recovery	Interval	oil T		LITHOLOGY / DESCRIPTION
Backfill	Casi	M	oist) Re	Ider	Del	io co	nte	Š		
			Σ	PII			~	_			
						_					
						1				Air-knife cleared	1 to 5 ft
1] —					-	-				
1	<u> </u>					2 —	-	<u> </u>			
1	l –					-					
1	l —					3 —					
1	<u> </u>					-					
1	<u> </u>					4	+				
1	<u> </u>					-	 				
				0	SB-10	5 —			CL	Brown Gravelly lean cl	ay with sand, 20% gravel,
	_			O	@5	_			CL	10% sand, saturated	ay with sand, 20% graver,
					ر س	6				1070 3aria, Saturatea	
	-					_			CL	Brown/gray/green lave	red sandy lean clay, 15%
						7			0-	sand, moist, no odor	. 64 54.147 164.1 6147, 2576
	_									Sarray melety ne cue.	
						8					
						_					
						9 —					
Ħ	_			0.5	SB-10	_					
io					@10	10 —					
± 0						11					
πeı											
Neat Cement Grout						12 —					
eat						<u> </u>			SW	Brown, gravelly sand, 2	0% gravel, moist
Ź						13 —					
1	_										
1						14					
1	_]			CL		mottled, sandy lean clay,
1	<u> </u>			0.6	SB-10	15 —				25% sand, dense	
1	l <u> </u>				@15	_			ML	Brown/gray layered, sa	ndy silt, 40% sand
1	<u> </u>					16					
1	<u> </u>] _					
1	<u> </u>					17					
1	<u> </u>					-					
1]					18 —					
1] —					-					
	<u> </u>					19 —					
	-			9.3	SB-10	-					
	<u> </u>			9.3	@20	20 —				Gray, sandy silt, 40% sa	and moist
	l –				س20	-				uray, sariuy siit, 40% Sa	iiu, iilUist
	<u> </u>					21—					
1] —									Brown, sandy silt with a	gravel, 25% sand 40%
1	<u> </u>					22 —			GM	gravel, moist	5. 4. C., 23/0 Juliu, 70/0
					I	ı			2141	D. 44C1, 1110131	

			Project N	o: C1035350	061			Client	:: Conocc	Phillips	Boring/Well	No: SB-10
			Logged B	y: A. Buehle	r			Locat	ion: Oakl	and, CA	Page 2 of	2
		3	Driller: Ca	ascade Drilli	ng			Date	Drilled: 1	2/21/10		
	6	_		1ethod: Dire					Diametei			
				Method: Ad		r		Hole	Depth: 20	D'		
ant	:ea gr	guo	Casing Ty						Diameter			
			Slot Size:						Depth: N	•		
			Gravel Pa						Nater De			
				•					Water D			
			Elevation	:		Northing:				Easting:		
Well Co	ompletion	el		<u> </u>	n (t)	San	nple				
		Water Level	Moisture Content	PID Reading (ppm)	Penetration (blows/6")	Depth (feet)			Soil Type		LITUOLOGY	/ DESCRIPTION
Backfill	Casing	ater	Aois Cont	S Re (pp	neti	pth	Recovery	Interval	lio Li	Į.	LITHULUGY	/ / DESCRIPTION
Ba	S S	×	20	PII	Pe (b	De	Rec	Int	S			
	-					23 —			ML	Brown/gray, sandy silt,	40% sand,	moist
	-					_					·	
	-					24——						
Ħ	-			0	SB-10	_						
Neat Cement Grout					@25	25—			SM	Brown silty sand, 50% s	and, satura	ted
ıt G	-					26				, ,	· · · · · · · · · · · · · · · · · · ·	
ner	-					26						
Cer	-								CL	Brown, sandy lean clay,	10% sand,	moist, very
at	-					27——				dense	•	•
Se	-					20						
	-					28						
	-					-						
	-					29—						
				0	SB-10	20						
					@30	30				Total Depth = 30) ft	
	-											
						31——						
	-					32—						
	-					32						
						33—						
						33 —						
						34—						
						34						
						35						
						36—						
						37—						
						38—						
						_						
						39——						
						_						
						40						
	_											
						41						
	_											
						42 ——						
	_					-						
						43						
	_											
						44						

Attachment B
Historical Soil Data

Table 1
Soil Analytical Results
76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	DIPE	ETBE	TAME	EDB	1,2-DCA	Ethanol
		(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-8@5	12/20/10	5	<0.20	<0.0050	<0.0050	<0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-8@10	12/20/10	10	0.30	< 0.0050	<0.0050	<0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-8@15	12/20/10	15	<10	< 0.025	<0.025	<0.025	< 0.050	<0.025	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-8@20	12/20/10	20	520	<1.2	19	19	86	<1.2	<12	<1.2	<1.2	<1.2	<1.2	<1.2	<250
SB-9@5	12/20/10	5	9.9	<0.025	<0.025	0.10	0.059	<0.025	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-9@10	12/20/10	10	3.0	< 0.0050	0.011	0.069	0.28	0.014	0.40	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0
SB-9@15	12/20/10	15	<10	1.4	0.28	0.14	0.66	0.04	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-9@20	12/20/10	20	4.5	0.17	0.10	0.067	0.37	0.62	0.58	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0
SB-9@25	12/20/10	25	0.30	<0.0050	0.014	0.0050	0.028	<0.0050	< 0.050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0
SB-9@30	12/20/10	30	0.28	<0.0050	0.02	0.011	0.043	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@5	12/21/10	5	<0.20	<0.0050	<0.0050	< 0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@10	12/21/10	10	0.28	<0.0050	<0.0050	< 0.0050	0.017	<0.0050	< 0.050	<0.0050	<0.0050	<0.0050	<0.0050	< 0.0050	<1.0
SB-10@15	12/21/10	15	0.47	<0.0050	<0.0050	0.0055	0.024	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@20	12/21/10	20	0.31	< 0.0050	<0.0050	0.047	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@25	12/21/10	25	<0.20	<0.0050	<0.0050	< 0.0050	< 0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0
SB-10@30	12/21/10	30	<0.20	<0.0050	<0.0050	<0.0050	0.012	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0

TPHg = total petroelum hydrocarbons as gasoline MTBE = metyl tert butyl ether TBA = tert butyl alcohol TAME = tert amyl methyl ether DIPE = diisopropyl ether ETBE = ethyl tert butyl ether EDB = ethylene dibromide 1,2-DCA = 1,2 dicholorethane ND = non detect, where reporting limit is not known **bold** = value above reporting limit mg.kg = milligrams per kilogram

Table 3
Historical Soil Analytical Results
Former 76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1-2,DCA	Ethanol	TOG	Lead
Sample 1D	Date	(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-1	6/12/1989	10	3100		12	300	730	110										
SW-1 (4)	6/12/1989	10	<1.0		<0.050	<0.10	<0.10	<0.10						-				
SW2	6/12/1989	10	1.1		0.1	<0.10	0.18	<0.10										
SW3	6/12/1989	10	5.7		0.26	<0.10	0.45	0.23				-		-				
SW4	6/12/1989	10	2.5		<0.050	<0.10	0.24	<0.10										
SW4 (2)	6/12/1989	10	11		0.61	0.51	1.3	0.44						-				
P1	6/12/1989	6.5	<1.0		<0.050	<0.10	<0.10	<0.10										
P2	6/12/1989	6.5	<1.0		<0.050	<0.10	<0.10	<0.10										
Р3	6/12/1989	5.5	<1.0		<0.050	<0.10	<0.10	<0.10										
P4	6/12/1989	10	170		0.71	12	47	6.8				-		-				
WO1	6/12/1989	8.5	<1.0		<0.050	<0.10	<0.10	<0.10				-		-				
MW-1 (5)	9/6/1989	5	3.4	<1.0	< 0.050	< 0.010	<0.010	<0.010							<5.0		<50	
MW1 (10)	9/6/1989	10	5	<1.0	< 0.050	< 0.010	< 0.010	<0.010							<5.0		<50	
MW1 (15)	9/6/1989	15	2.2	<1.0	<0.050	<0.010	< 0.010	< 0.010						-	<5.0		<50	
MW1 (19)	9/6/1989	19	<1.0	<1.0	< 0.050	<0.010	<0.010	<0.010				-		-	<5.0		<50	
MW2 (5)	9/6/1989	5	1.4		<0.050	<0.010	<0.010	<0.010										
MW2 (10)	9/6/1989	10	<1.0		<0.050	<0.010	<0.010	<0.010										
MW2 (15)	9/6/1989	15	1.8		< 0.050	<0.010	< 0.010	<0.010				-		-				
MW2 (19)	9/6/1989	19	13		1.5	2.1	0.34	1.8				-		-				
MW3 (5)	9/6/1989	5	1.3		< 0.050	<0.010	< 0.010	<0.010										
MW3 (10)	9/6/1989	10	1.8	-	0.29	<0.010	< 0.010	< 0.010				-		1				
MW3 (15)	9/6/1989	15	3.3		< 0.050	< 0.010	< 0.010	< 0.010										
MW3 (18.5)	9/6/1989	18.5	<1.0		<0.050	<0.010	<0.010	< 0.010										
MW4 (5)	9/6/1989	5	3.1		<0.050	<0.010	< 0.010	< 0.010										
MW4 (10)	9/6/1989	10	17		<0.050	<0.010	<0.010	0.1										
MW4 (15)	9/6/1989	15	20		<0.050	<0.010	<0.010	0.27										
MW4 (18.5)	9/6/1989	18.5	2.1		<0.050	<0.010	<0.010	<0.010										
MW5 (5)	11/18/1992	5	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW5 (10)	11/18/1992	10	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW5 (15)	11/18/1992	15	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW5 (21)	11/18/1992	21	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW6 (5)	11/18/1992	5	<1.0		<0.0050	<0.0050	<0.0050	<0.0050										
MW6 (10)	11/18/1992	10	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050						-				
MW6 (15)	11/18/1992	15	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050						-				
MW6 (19.5)	11/18/1992	19.5	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050						-				
()	- 1 - 1																	
A1 (19)	9/14/1998	19	3.5		0.53	0.36	0.069	0.40	<0.050									26
A2 (18)	9/14/1998	18	12		0.050	0.075	<0.0050	0.026	<0.050									<1.0
B1 (19.5)	9/14/1998	19.5	360		1.5	15	7.0	44	<0.050									1.7
B2 (19.5)	9/14/1998	19.5	6.7	-	0.017	1.8	0.24	1.4	<0.050									2.7
P1 (6)	9/14/1998	6	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.050									11
P2 (6)	9/14/1998	6	<1.0		<0.0050	<0.0050	<0.0050	<0.0050	<0.050									1.3
P3 (6)	9/14/1998	6	<1.0	-	<0.0050	<0.0050	<0.0050	<0.0050	<0.050					-				<1.0
P4 (6)	9/14/1998	6	<1.0		<0.0050	<0.0050	< 0.0050	<0.0050	< 0.050									<1.0

Table 3
Historical Soil Analytical Results
Former 76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	TPHd	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1-2,DCA	Ethanol	TOG	Lead
		(ft)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SB-1@5	3/27/2006	5	< 0.97		< 0.0049	<0.0049	< 0.0049	< 0.0097	< 0.0049	<0.0097	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.49		
SB-1@9	3/27/2006	9	2.8		<0.0048	<0.0048	<0.0048	<0.0097	<0.0048	<0.0097	<0.0048	<0.0048	<0.0048	<0.0048	<0.0048	<0.48		
SB-2@5	3/27/2006	5	< 0.97		< 0.0049	< 0.0049	< 0.0049	<0.0097	< 0.0049	< 0.0097	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.0049	< 0.49		
SB-2@9	3/27/2006	9	< 0.93		< 0.0047	< 0.0047	< 0.0047	< 0.0093	< 0.0047	< 0.0093	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.47		
SB-3@14	3/27/2006	14	1.3		0.11	<0.0046	0.061	0.055	0.64	0.19	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.46		
SB-3@16	3/27/2006	16	6100		<9.7	53	86	420	<9.7	<19	<9.7	<9.7	<9.7	<9.7	<9.7	<190		
SB-4@5	3/27/2006	5	< 0.93		< 0.0047	<0.0047	< 0.0047	< 0.0093	< 0.0047	< 0.0093	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.47		
SB-4@15	3/27/2006	15	< 0.92		<0.0046	<0.0046	<0.0046	<0.0092	<0.0046	<0.0092	<0.0046	<0.0046	<0.0046	<0.0046	<0.0046	<0.46		
SB-5@9	3/27/2006	9	< 0.93		< 0.0046	<0.0046	< 0.0046	<0.0093	< 0.0046	< 0.0093	< 0.0046	< 0.0046	<0.0046	< 0.0046	< 0.0046	< 0.46		
SB-5@13	3/27/2006	13	< 0.93		< 0.0047	< 0.0047	< 0.0047	<0.0093	< 0.0047	< 0.0093	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.0047	< 0.47		
SB-8@5	12/20/10	5	< 0.20		< 0.0050	<0.0050	< 0.0050	<0.010	< 0.0050	<0.050	<0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<1.0		
SB-8@10	12/20/10	10	0.30		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0	-	
SB-8@15	12/20/10	15	<10		<0.025	<0.025	<0.025	<0.050	<0.025	< 0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-8@20	12/20/10	20	520		<1.2	19	19	86	<1.2	<12	<1.2	<1.2	<1.2	<1.2	<1.2	<250		
SB-9@5	12/20/10	5	9.9		<0.025	<0.025	0.10	0.059	<0.025	< 0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-9@10	12/20/10	10	3.0		<0.0050	0.011	0.069	0.28	0.014	0.40	< 0.0050	<0.0050	<0.0050	< 0.0050	< 0.0050	<1.0		
SB-9@15	12/20/10	15	<10		1.4	0.28	0.14	0.66	0.04	<0.25	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-9@20	12/20/10	20	4.5		0.17	0.10	0.067	0.37	0.62	0.58	<0.025	<0.025	<0.025	<0.025	<0.025	<5.0		
SB-9@25	12/20/10	25	0.30		<0.0050	0.014	0.0050	0.028	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-9@30	12/20/10	30	0.28		<0.0050	0.02	0.011	0.043	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@5	12/21/10	5	<0.20		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@10	12/21/10	10	0.28		<0.0050	<0.0050	<0.0050	0.017	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@15	12/21/10	15	0.47		<0.0050	<0.0050	0.0055	0.024	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@20	12/21/10	20	0.31		<0.0050	<0.0050	0.047	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@25	12/21/10	25	<0.20		<0.0050	<0.0050	<0.0050	<0.010	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		
SB-10@30	12/21/10	30	<0.20		<0.0050	<0.0050	<0.0050	0.012	<0.0050	<0.050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<1.0		

TPHg = total petroelum hydrocarbons as gasoline TPHd = total petroleum hydrocarbons as diesel MTBE = metyl tert butyl ether TBA = tert butyl alcohol TAME = tert amyl methyl ether DIPE = diisopropyl ether ETBE = ethyl tert butyl ether EDB = ethylene dibromide 1,2-DCA = 1,2 dicholorethane TOG = total oil and grease **bold** = value above reporting limit mg/kg = milligrams per kilogram

Attachment C
Site Groundwater Data

TABLE 1Page 1 of 5

					HYDROCARBONS				PRIMAI	RY VOCS			
					TPH Gasoline	Benzene	aur	Ethylbenzene	Total Xylene	by SW8021	Ethanol		
Location	Date	тос	DTW	GWE	1Pt	Ber	Tolune	Eth	Tota	MTBE	Eth	EDB	EDC
	Units	ft	ft 1 (TGL) ¹	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	Environmenta scr		5 to 29 feet	bas	100	1	40	30	20	5			
	9/15/1989				ND	ND	0.61	ND	ND				
	1/23/1990				ND	1.5	2.3	ND	4.3				
	4/19/1990 7/17/1990				ND ND	ND ND	ND ND	ND ND	ND ND				
	10/16/1990				ND	ND	ND	ND	ND				
	1/15/1991				ND	ND	ND	ND	ND				
	4/12/1991 7/15/1991				ND ND	ND ND	ND ND	ND ND	ND ND				
	7/13/1991				ND ND	ND	ND	ND ND	ND				
	4/13/1993	72.43	17.70	54.73			Sam	npled Annual	ly in the Third	d Quarter			-
	7/14/1993	72.43	18.49	53.94	ND	2.2	2.1	1.1	6.2				
	10/14/1993	72.10 72.10	18.32 18.18	53.78 53.92				npled Annual npled Annual	•				
	4/11/1994	72.10	17.80	54.30				npled Annual	-				
	7/7/1994	72.10	18.28	53.82	ND	ND	ND	ND	ND				
	10/5/1994	72.10	18.55 17.90	53.55 54.20				npled Annual npled Annual	•				
	4/17/1995	72.10 72.10	17.90	54.88				npled Annual					
	7/19/1995	72.10	18.03	54.07	ND	ND	ND	ND	ND				
	10/26/1995	72.10	18.67	53.43				npled Annual	•				
	1/16/1996 4/15/1996	72.10 72.10	17.20 17.40	54.90 54.70				npled Annual npled Annual					
	7/11/1996	72.10	18.03	54.07	ND	ND	ND	ND	ND	ND			
	1/17/1997	72.10	16.54	55.56			Sam	npled Annual	ly in the Third	d Quarter			
	7/21/1997	72.10	18.16	53.94	ND	ND	ND	ND	ND	ND			
	1/14/1998 7/6/1998	72.10 72.10	16.05 16.46	56.05 55.64	ND	ND	ND Sam	npled Annual ND	y in the Third	Quarter ND			
	1/13/1999	72.10	17.37	54.73				npled Annual					-
	8/31/1999	72.12	17.00	55.12	ND	ND	ND	ND	ND	ND			
	1/21/2000 7/10/2000	72.12 72.12	17.04 18.10	55.08 54.02	ND	ND	San ND	npled Annual ND	ly in the Third	d Quarter ND			
	1/4/2001	72.12	17.95	54.02	ND	ND		npled Annual					
	7/16/2001	72.12	18.03	54.09	ND	ND	ND	ND	ND	ND			
	1/28/2002	72.12	17.31	54.81		0.50		npled Annual	-				
	7/12/2002 1/14/2003	72.12 72.12	18.15 17.66	53.97 54.46	<50	<0.50	<0.50 Sam	<0.50 npled Annual	<0.50	<2.5 d Quarter			
	7/10/2003	72.12	17.86	54.26	<50	<0.50	<0.50	<0.50	<0.50	<2.0			
	2/4/2004	72.12	17.43	54.69				npled Annual	-				
	7/29/2004 3/2/2005	72.12 72.12	18.12 16.15	54.00 55.97	<50	<0.30	0.38	<0.30	<0.6	<1			
	9/30/2005	72.12	18.04	54.08	<50	<0.30	<0.30	<0.30	<0.6	<1.0			
	3/23/2006	72.12						npled Annual					
	9/26/2006	72.12	17.90	54.22	<50	<0.30	<0.30	<0.30	<0.6	<1.0			
	3/15/2007 9/27/2007	72.12 72.12	17.22 18.49	54.90 53.63	<50	<0.30	<0.30	npled Annual <0.30	y in the Third	<1.0			
	3/27/2008	72.12	17.57	54.55	100	10.00		npled Annual					
	9/17/2008	72.12	18.20	53.92	<50	<0.30	<0.30	<0.30	<0.6	<1.0			
	3/27/2009	72.12	16.75 18.18	55.37 53.94	-50	-0.20		npled Annual	-	d Quarter <1.0			
	9/17/2009 3/23/2010	72.12 72.12	17.34	53.94	<50	<0.30	<0.30 Sam	<0.30	<0.6 ly in the Third				
	9/21/2010	72.12	18.74	53.38	<50	<0.30	<0.30	<0.30	<0.6	<1.0			
	3/30/2011	72.12	16.68	55.44				npled Annual	-				
	09/06/2011 02/03/2012	72.12 72.12	18.36 18.02	53.76 54.10	<50	<0.30	<0.30 Sam	<0.30 npled Annual	<0.60	<1.0		<0.50	
	08/17/2012	72.12	18.50	53.62	<50	<0.30	<0.30	<0.30	<0.60	<1.0	<250	<0.50	<0.50
	2/14/2013	72.12	17.98	54.14	•			npled Annual					
MW-2			5 to 28.5 fee		200	NID	40	ND	NID.				
	9/15/1989				290 400	ND 73	12 36	ND 10	ND 40				
	4/19/1990				3900	550	5.1	91	390				
	7/17/1990				490	76	0.59	11	46				
	10/16/1990				1400 680	430 170	2.0 0.7	48 19	240 81				
	4/12/1991				2200	160	4.3	23	62				
	7/15/1991				2200	770	12	72	370				
	10/15/1991				140	44	0.56	1.5	12				
	1/15/1992 4/14/1992				220 150	37 6.2	0.52 ND	1.1 ND	7 1.4				
	7/14/1992				130	3.7	ND	ND	ND				
-	10/12/1992				370	3.4	0.56	ND	11				
	1/8/1993	71.63	17.86	 53 77	510	ND 42	ND	ND 6.4	ND 28	200			
	4/13/1993 7/14/1993	71.63 71.63	17.86 18.38	53.77 53.25	410 110	42 6.5	7.7 ND	6.4 ND	28 1.1	200 250			
MW-2	10/14/1993	71.38	18.20	53.18	230	5.3	ND	ND	2.1				
	1/12/1994	71.38	18.08	53.30	300	7.8	3.8	1.8	10				

					HYDROCARBONS				PRIMAR	RY VOCS			
Location	Date	тос	DTW	GWE	TPH Gasoline	Benzene	Tolune	Ethylbenzene	Total Xylene	MTBE by SW8021	Ethanol	EDB	EDC
	Units 4/9/1994	ft 71.38	ft 17.97	ft-amsl 53.41	<u>μg/L</u> 120	<u>μg/L</u> 10	μg/L 0.88	μg/L 1.1	μg/L 4.9	μg/L 	μg/L 	μg/L 	μg/L
	4/11/1994	71.38	17.88	53.50									
	7/7/1994 10/5/1994	71.38 71.38	17.81 18.33	53.57 53.05	110 720	4.4 20	ND ND	ND ND	ND 3.1				
	1/9/1995	71.38	17.40	53.98	ND ND	ND	ND	ND	ND				
	4/17/1995 7/19/1995	71.38 71.38	17.50 18.01	53.88 53.37	93 77	5.6 32	0.62 0.58	1.7	5.5 4.1				
	10/26/1995	71.38	18.21	53.17	54	13	ND	ND	0.72	220			
	1/16/1996	71.38	16.58	54.80	120	23	ND	ND	0.99				
	4/15/1996 7/11/1996	71.38 71.38	17.61 17.98	53.77 53.40	340 540	21 34	ND ND	2.2 4.3	3.7 12	45 150			
	1/17/1997	71.38	17.08	54.30	320	63	2.4	9.4	26	260			
	7/21/1997 1/14/1998	71.38 71.38	18.06 16.52	53.32 54.86	160 66	13 6.3	ND ND	1.3 ND	1.6 0.98	180 100			
	7/6/1998	71.38	16.87	54.51	ND	2.3	ND	ND	ND	11			
	1/13/1999 8/31/1999	71.38 71.34	17.88 18.45	53.50 52.89	53 86	24 14	ND ND	0.52 0.63	0.98 ND	120 21			
	1/21/2000	71.34	17.73	53.61	ND	1.94	ND	ND	ND	10.1			
	7/10/2000	71.34	18.14	53.20	ND ND	ND 0.925	ND	ND ND	ND	46.6			
	1/4/2001 7/16/2001	71.34 71.34	18.02 18.02	53.32 53.32	ND ND	0.925 ND	ND ND	ND ND	ND ND	ND ND			
	1/28/2002	71.34	17.57	53.77	<50	<0.50	<0.50	<0.50	<0.50	<2.5			
	7/12/2002 1/14/2003	71.34 71.34	18.05 17.44	53.29 53.90	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<2.5 <2.0			
	7/10/2003	71.34											
	2/4/2004 7/29/2004	71.34 71.34	17.22	54.12	<50	<0.50	<0.50	<0.50	<0.50	<5.0 			
	3/2/2005	71.34	16.63	54.71	 99	26	<0.50	3.5	2.8	<5.0			
	9/30/2005	71.34	17.94	53.40	<50	1.2	<0.30	<0.30	<0.60	1.6			
	3/23/2006 9/26/2006	71.34 71.34	16.74 17.91	54.60 53.43	<50 <50	3.6 1.2	<0.30 <0.30	0.35 <0.30	<0.60 <0.60	2.5 <1.0			
	3/15/2007	71.34	17.45	53.89	110	6.5	< 0.30	0.70	<0.60	1.7			
	9/27/2007	71.34 71.34	18.23 17.77	53.11 53.57	<50 <50	<0.30	<0.30 <0.30	<0.30 <0.30	<0.60 <0.60	<1.0 1.3			
	9/17/2008	71.34	18.06	53.28	<50 <50	1.6	<0.30	<0.30	<0.60	3.1			
	3/27/2009	71.34	17.43	53.91	<50	3.5	<0.30	<0.30	<0.60	<1.0			
	9/17/2009	71.34 71.34	18.01 17.47	53.33 53.87	<50 <50	2.7 0.68	<0.30 <0.30	<0.30 <0.30	<0.60 <0.60	1.1 <1.0			
	9/21/2010	71.34	18.41	52.93	69	1.6	<0.30	<0.30	<0.60	1.6			
	3/30/2011 09/06/2011	71.34 71.34	16.58 18.14	54.76 53.20	<50 <50	<0.30	<0.30	<0.30	<0.60	1.6 <1.0		<0.50	
	02/03/2011	71.34	17.97	53.37	<50 <50	<0.30	<0.30 <0.30	<0.30	<0.60 <0.60	<1.0		<0.50	
	08/17/2012	71.34	18.20	53.14	57	1.2	<0.30	<0.30	<0.60	<1.0	<250	<0.50	<0.50
MW-3	2/14/2013 scr	71.34	17.88 5 to 29 feet	53.46 bas	<50	<0.30	<0.30	<0.30	<0.60	<1.0	<250	<0.50	<0.50
	9/15/1989				32	ND	ND	ND	ND				
	1/23/1990 4/19/1990				450 3100	110 600	1.2 27	4.4 54	11 220				
	7/17/1990				4000	270	48	130	250				
	10/16/1990				740	210	1.4	2.5	82				
	1/15/1991 4/12/1991				3200 880	460 170	1.5 1.1	120 34	270 110				
	7/15/1991				9200	1300	230	490	1900				
	10/15/1991 1/15/1992				3100 3000	390 590	34 14	150 310	390 750				
	4/14/1992				14000	660	48	560	2000				
	7/14/1992 10/12/1992				21000 3200	890 160	200 10	1200 230	4300 540				
	1/8/1993				1100	48	0.99	0.9	93				
	4/13/1993	72.06	17.96	54.10	12000	290	38 ND	760 430	2300	1400			
	7/14/1993 10/14/1993	72.06 71.86	18.54 18.45	53.52 53.41	6300 2500	190 52	ND ND	430 110	1000 250	860			
	1/12/1994	71.86	18.34	53.52	3800	78	ND	180	390				
	4/9/1994 4/11/1994	71.86 71.86	18.19 18.12	53.67 53.74	1800 	22 	ND 	140	280				
	7/7/1994	71.86	18.21	53.65	110	4.5	ND	ND	ND				
	10/5/1994	71.86 71.86	18.58 17.69	53.28 54.17	ND ND	ND 0.68	ND ND	ND ND	ND ND				
	4/17/1995	71.86	17.69	54.17	3700	80	10	270	510				
	7/19/1995	71.86	18.20	53.66	15000	330	27	990	2400				
	10/26/1995 1/16/1996	71.86 71.86	18.32 17.95	53.54 53.91	14000 920	420 38	180 ND	750 30	1600 57	4800			
	4/15/1996	71.86	17.78	54.08	9700	240	ND	570	860	3200			
MW-3	7/11/1996 1/17/1997	71.86 71.86	18.19 17.23	53.67 54.63	13000 4400	69 25	5.5 ND	430 270	900 580	740 1600			
	7/21/1997	71.86	18.29	53.57	9000	36	ND ND	450	800	950			
	1/14/1998	71.86	16.71	55.15	7100	40	ND	380	360	930			

					HYDROCARBONS				PRIMAR	Y VOCS			
Location	Date	тос	DTW	GWE	TPH Gasoline	Benzene	Tolune	Ethylbenzene	Total Xylene	MTBE by SW8021	Ethanol	EDB	ЕРС
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	7/6/1998	71.86	17.03	54.83	6800	39	ND	320	360	370			-
	1/13/1999 8/31/1999	71.86 71.40	18.00	53.86	1800	9.4	ND 	58 	36	180			
	1/21/2000	71.40	17.58	53.82	ND	ND	ND	ND	ND	21.4			
	7/10/2000	71.40	18.05	53.35	ND	ND	ND	ND	ND	162			
	8/25/2000	71.40	17.82	53.58						180			-
	1/4/2001	71.40	18.16	53.24	ND	ND	ND	ND	ND	193			
	7/16/2001 1/28/2002	71.40 71.40	17.98 17.84	53.42 53.56	ND <50	ND ND<0.50	ND ND<0.50	ND ND<0.50	ND ND<0.50	660 34			
	7/12/2002	71.40	17.87	53.53	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11			
	1/14/2003	71.40	17.28	54.12	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	12			
	7/10/2003	71.40	17.64	53.76	<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	23			
	2/4/2004 7/29/2004	71.40 71.40	17.05 17.82	54.35 53.58	<50 <50	ND<0.50 <0.30	ND<0.50 <0.30	ND<0.50 <0.30	ND<0.50 <0.60	26 ND<1			
	3/2/2005	71.40	16.47	54.93	93	<0.50	<0.50	<0.50	<0.50	140			
	9/30/2005	71.40	17.79	53.61	65	< 0.30	< 0.30	< 0.30	<0.60	61			
	3/23/2006	71.40	16.61	54.79	54	<0.30	0.41	ND<0.30	0.98	63			
	9/26/2006 3/15/2007	71.40 71.40	17.77 17.27	53.63 54.13	51 140	<0.30	<0.30	<0.30 <0.30	<0.60	41 110			
	9/27/2007	71.40	18.48	52.92	<50	<0.30	<0.30	<0.30	<0.60	20			
	3/27/2008	71.40	17.67	53.73	<50	<0.30	<0.30	<0.30	<0.60	19			
	9/17/2008	71.40	17.91	53.49	56	<0.30	<0.30	<0.30	<0.60	43			
	3/27/2009	71.40 71.40	17.34 17.88	54.06 53.52	<50 <50	<0.30	<0.30	<0.30	<0.60	15 30			
	9/17/2009 3/23/2010	71.40	17.88	53.52	<50 <50	<0.30 <0.30	<0.30 <0.30	<0.30 <0.30	<0.60 <0.60	22			
	9/21/2010	71.40	18.28	53.12	69	<0.30	<0.30	<0.30	<0.60	48			
	3/30/2011	71.40	16.50	54.90	110	<0.30	<0.30	<0.30	<0.60	73			
	09/06/2011	71.40	18.03	53.37	<50	<0.30	<0.30	<0.30	<0.60	4.7		<0.50	
	02/03/2012 08/17/2012	71.40 71.40	17.83 18.07	53.57 53.33	<50 <50	<0.30 <0.30	<0.30 <0.30	<0.30 <0.30	<0.60 <0.60	8.2 4.7	 <250	<0.50 <0.50	<0.50
	2/14/2013	71.40	17.72	53.68	<50	<0.30	<0.30	<0.30	<0.60	5.1	<250	<0.50	<0.50
MW-4		eened from	5 to 29 feet	bgs									
	9/15/1989				ND	ND	ND	ND	ND				
	1/23/1990 4/19/1990				ND ND	ND ND	0.4	ND ND	ND ND				
	7/17/1990				ND	ND	ND	ND	ND				
	10/16/1990				ND	ND	ND	ND	ND				
	1/15/1991				ND	ND	ND		ND				
	4/12/1991 7/15/1991				ND ND	ND ND	ND ND	ND ND	ND ND				
	7/13/1991				ND	1.3	2.5	ND	1.0				
	4/13/1993	71.98	17.67	54.31			Sam	npled Annuall	y in the Third	Quarter			
	7/14/1993	71.98	18.31	53.67	ND	ND	ND	ND	ND				
	10/14/1993 1/12/1994	71.64 71.64	18.08 17.97	53.56 53.67				•	y in the Third y in the Third				
	4/11/1994	71.64	17.70	53.94					y in the Third				
	7/7/1994	71.64	17.80	53.84	ND	ND	ND	ND	ND				
	10/5/1994	71.64	18.28	53.36				•	y in the Third				
	1/9/1995 4/17/1995	71.64 71.64	17.38 17.21	54.26 54.43					y in the Third y in the Third				
	7/19/1995	71.64	17.82	53.82	ND	ND	ND	ND	ND				
	10/26/1995	71.64	18.17	53.47			Sam	npled Annuall	y in the Third				
	1/16/1996	71.64	16.45	55.19				•	y in the Third				
	4/15/1996 7/11/1996	71.64 71.64	17.35 17.81	54.29 53.83	ND	ND	Sam ND	npled Annuall ND	y in the Third ND	Quarter ND			
	1/17/1996	71.64	16.73	53.83	IND	ואט			טא y in the Third				
	7/21/1997	71.64	17.91	53.73	ND	ND	ND	ND	ND	ND			
	1/14/1998	71.64	16.18	55.46					y in the Third				
	7/6/1998 1/13/1999	71.64 71.64	16.49	55.15 54.35	ND	ND	ND Sam	ND	ND y in the Third	ND Ouarter			
	8/31/1999	71.64	17.29	54.35					y in the Third y in the Third				
	1/21/2000	71.54	17.51	54.03				-	y in the Third				
	7/10/2000	71.54	17.93	53.61	ND	ND	ND	ND	ND	ND			
	1/4/2001 7/16/2001	71.54 71.54	18.10 17.76	53.44 53.78	ND	ND		npled Annuall ND	y in the Third	Quarter ND			
	1/28/2001	71.54	17.76	54.34	IAD	IND			שאו y in the Third				
	7/12/2002	71.54	17.81	53.73	<50	<0.50	<0.50	<0.50	<0.50	<2.5			
	1/14/2003	71.54	17.30	54.24				•	y in the Third				
	7/10/2003 2/4/2004	71.54 71.54	17.58 17.07	53.96 54.47	<50	<0.50	<0.50	<0.50	<0.50 y in the Third	<2.0			
	7/29/2004	71.54	17.07	53.73	<50	<0.30	<0.30	<0.30	<0.60	<1			
MW-4	3/2/2005	71.54	16.25	55.29					y in the Third				
	9/30/2005	71.54	17.74	53.80	<50	<0.30	<0.30	<0.30	<0.60	<1.0			
	3/23/2006	71.54	17.71	 52.02	.50	-0.00		•	y in the Third				
	9/26/2006 3/15/2007	71.54 71.54	17.71 17.56	53.83 53.98	<50	<0.30	<0.30 Sam	<0.30	<0.60 y in the Third	<1.0 Quarter			
	9/27/2007	71.54	18.16	53.38	<50	<0.30	<0.30	<0.30	<0.60	<1.0			
-													

TABLE 1Page 4 of 5

					HYDROCARBONS				PRIMAR	RY VOCS			1
					TPH Gasoline	Benzene	ne	Ethylbenzene	Total Xylene	MTBE by SW8021	lon		
Location	Date	тос	DTW	GWE	ТРН	Ben	Tolune	Ethy	Tota	MTE	Ethanol	EDB	EDC
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	3/27/2008 9/17/2008	71.54 71.54	17.58 17.87	53.96 53.67	<50	<0.30	<0.30	pled Annuall <0.30	y in the Third <0.60	I Quarter <1.0			
	3/27/2009	71.54	17.07	54.37	<50	<0.30		pled Annuall			<u></u>		
	9/17/2009	71.54	17.86	53.68	<50	<0.30	< 0.30	<0.30	<0.60	<1.0			
	3/23/2010	71.54	17.25	54.29	-50	-0.20		pled Annuall					
	9/21/2010	71.54 71.54	18.31 16.35	53.23 55.19	<50	<0.30	<0.30 Sam	<0.30 pled Annuall	<0.60 y in the Third	<1.0 I Quarter			
	09/06/2011	71.54	18.00	53.54	<50	<0.30	<0.30	<0.30	<0.60	<1.0		<0.50	
	02/03/2012	71.54	17.81	53.73	50	0.00		pled Annuall			050	0.50	0.50
	08/17/2012 2/14/2013	71.54 71.54	18.09 17.68	53.45 53.86	<50	<0.30	<0.30 Sam	<0.30	<0.60	<1.0 I Quarter	<250	<0.50	<0.50
MW-5			13 to 30 feet				Can	iprod 7 tiliradii	y 111 ti 10 11 11 10	Quartor			
	11/30/1992				ND	ND	ND	ND	ND				
	1/8/1993 4/13/1993	71.51	17.49	54.02	ND ND	ND ND	ND ND	ND ND	ND ND				
	7/14/1993	71.51	18.02	53.49	ND	ND	0.57	ND	ND				
	10/14/1993	71.23	17.82	53.41	ND	ND	ND	ND	ND				
	1/12/1994	71.23	17.74	53.49	ND	ND	0.84	ND	1.6				
	4/11/1994 7/7/1994	71.23 71.23	17.56 17.50	53.67 53.73	ND	ND	ND Sam	pled Annuall ND	y in the Third ND				
	10/5/1994	71.23	17.98	53.25				pled Annuall		l Quarter			
	1/9/1995	71.23	17.13	54.10				pled Annuall					
	4/17/1995 7/19/1995	71.23 71.23	17.05 17.59	54.18 53.64	ND	ND	Sam ND	pled Annuall ND	y in the Third ND	I Quarter			
	10/26/1995	71.23	18.10	53.04	ND	IND		ipled Annuall					
	1/16/1996	71.23	17.11	54.12			Sam	pled Annuall	y in the Third	l Quarter			
	4/15/1996	71.23	17.22	54.01		ND		pled Annuall	•				
	7/11/1996 1/17/1997	71.23 71.23	17.59 16.75	53.64 54.48	ND	ND	ND Sam	ND pled Annuall		ND I Quarter			
	7/21/1997	71.23	17.59	53.64	ND	ND	ND	ND	ND	ND			
	1/14/1998	71.23	16.16	55.07				pled Annuall					
	7/6/1998 1/13/1999	71.23 71.23	16.52 17.62	54.71 53.61	ND	ND	ND Sam	ND pled Annuall	ND	ND LOuartor			
	8/31/1999	71.23	17.02	53.40	ND	ND	ND	ND	ND	ND			
	1/21/2000	71.16	16.83	54.33				pled Annuall	y in the Third				
	7/10/2000	71.16	17.46	53.70	ND	ND	ND	ND	ND	ND			
	1/4/2001 7/16/2001	71.16 71.16	17.51 17.32	53.65 53.84	ND	ND	ND Sam	pled Annuall ND	y in the Third ND	ND			
	1/28/2002	71.16	17.12	54.04				pled Annuall					
	7/12/2002	71.16	17.12	54.04	<50	<0.50	<0.50	<0.50	<0.50	<2.5			
	1/14/2003 7/10/2003	71.16 71.16	16.67 17.39	54.49 53.77	<50	<0.50	<0.50	pled Annuall <0.50	y in the Third <0.50	Quarter <2.0			
	2/4/2004	71.16	16.23	54.93	100	10.00		pled Annuall					
	7/29/2004	71.16	16.02	55.14	<50	<0.30	0.64	<0.30	0.79	<1			
	3/2/2005	71.16	16.43	54.73 53.75	-50	-0.20	<0.30	pled Annuall <0.30	y in the Third <0.60	Quarter <1.0			
	9/30/2005	71.16 71.16	17.41 16.37	54.79	<50	<0.30		vipled Annuall					
	9/26/2006	71.16	15.54	55.62	<50	<0.30	< 0.30	<0.30	<0.60	<1.0			
	3/15/2007	71.16	17.20	53.96		0.00		pled Annuall					
	9/27/2007	71.16 71.16	18.01 17.57	53.15 53.59	<50	<0.30	<0.30 Sam	<0.30	<0.60	<1.0			
	9/17/2008	71.16	17.68	53.48	<50	<0.30	<0.30	<0.30	<0.60	<1.0			
	3/27/2009	71.16	17.14	54.02				pled Annuall					
	9/17/2009	71.16 71.16	17.60 17.84	53.56 53.32	<50	<0.30	<0.30 Sam	<0.30	<0.60	<1.0			
	9/21/2010	71.16	17.84	53.32	<50	<0.30	<0.30	<0.30	<0.60	<1.0			
	3/30/2011	71.16	15.87	55.29			Sam	pled Annuall	y in the Third				
	09/06/2011	71.16	17.74	53.42	<50	<0.30	<0.30	<0.30	<0.60	<1.0		<0.50	
	02/03/2012 08/17/2012	71.16 71.16	17.69 17.75	53.47 53.41	<50	<0.30	<0.30	pled Annuall <0.30	y in the Third <0.60	Quarter <1.0	<250	<0.50	<0.50
	2/14/2013	71.16	17.75	53.65		.0.00		pled Annuall			00		.5.55
MW-6			13 to 30 feet		A15	NE	NE	NE	415				
	11/30/1992 1/8/1993				ND ND	ND ND	ND ND	ND ND	ND ND				
	4/13/1993	71.79	11.94	59.85	ND	ND	ND	ND	ND				
	7/14/1993	71.79	17.20	54.59	ND	0.99	2.4	ND	1.9				
	10/14/1993 1/12/1994	71.44 71.44	17.21 17.44	54.23 54.00	ND ND	ND ND	0.64 1.2	ND ND	ND 2.9				
	4/11/1994	71.44	13.66	57.78	IND	ואט		טא וpled Annuall					
MW-6	7/7/1994	71.44	14.05	57.39	ND	ND	ND	ND	ND				
	10/5/1994	71.44	14.16	57.28				pled Annuall					
	1/9/1995 4/17/1995	71.44	13.73 11.30	57.71 60.14				pled Annuall	-				
	7/19/1995	71.44	12.32	59.12	ND	ND	ND	ND	ND				
	10/26/1995	71.44	17.88	53.56				pled Annuall					
	1/16/1996	71.44	16.38	55.06				pled Annuall					
	4/15/1996	71.44	14.00	57.44			Sam	ihien Yuungii	y iii iiile Thifo	ı Quarter			

TABLE 1 Page 5 of 5

GROUNDWATER MONITORING AND SAMPLING DATA CHEVRON STATION #351642, FORMER UNOCAL STATION #3538 411 W MACARTHUR BLVD OAKLAND, CALIFORNIA

	T T		T	T	HYDROCARBONS		T	T	PRIMAR	Y VOCS	T	T	
Location	Date	тос	DTW	GWE	TPH Gasoline	Benzene	Tolune	Ethylbenzene	Total Xylene	MTBE by SW8021	Ethanol	ЕDВ	EDC
	Units	ft	ft	ft-amsl	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
	7/11/1996	71.44	13.58	57.86	ND	ND	ND	ND	ND	ND			
	1/17/1997	71.44	15.42	56.02			Sam	npled Annual	ly in the Third	Quarter			
	7/21/1997	71.44	13.78	57.66	ND	ND	ND	ND	ND	ND			
	1/14/1998	71.44	13.65	57.79			Sam	npled Annual	ly in the Third	Quarter			
	7/6/1998	71.44	13.90	57.54	ND	ND	ND	ND	ND	ND			
	1/13/1999	71.44	14.93	56.51			Sam	npled Annual	ly in the Third	Quarter			
	8/31/1999	71.37	15.81	55.56	ND	ND	ND	ND	ND	ND			
	1/21/2000	71.37	16.13	55.24			Sam	npled Annual	ly in the Third	Quarter			
	7/10/2000	71.37	16.95	54.42	ND	ND	ND	ND	ND	ND			
	1/4/2001	71.37	17.09	54.28				npled Annual	ly in the Third	Quarter			
	7/16/2001	71.37	16.83	54.54	ND	ND	ND	ND	ND	ND			
	1/28/2002	71.37	14.58	56.79			Sam	npled Annual	ly in the Third	Quarter			
	7/12/2002	71.37	16.76	54.61	<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5			
	1/14/2003	71.37	16.25	55.12			Sam	npled Annual	ly in the Third	Quarter			
	7/10/2003	71.37	12.97	58.40	<50	<0.50	<0.50	< 0.50	<0.50	<2.0			
	2/4/2004	71.37	16.20	55.17			Sam	npled Annual	ly in the Third	Quarter			
	7/29/2004	71.37	14.98	56.39	<50	<0.30	< 0.30	< 0.30	<0.6	1.3			
	3/2/2005	71.37	14.51	56.86			Sam	npled Annual	ly in the Third	Quarter			
	9/30/2005	71.37	14.45	56.92	<50	< 0.30	< 0.30	< 0.30	<0.6	1.7			
	3/23/2006	71.37	16.55	54.82			Sam	npled Annual	ly in the Third	Quarter			
	9/26/2006	71.37	17.58	53.79	<50	< 0.30	< 0.30	< 0.30	<0.60	<1.0			
	3/15/2007	71.37	13.72	57.65			Sam	npled Annual	ly in the Third	Quarter			
	9/27/2007	71.37	14.18	57.19	<50	< 0.30	<0.30	< 0.30	<0.60	<1.0			
	3/27/2008	71.37	14.83	56.54			Sam	npled Annual	ly in the Third	Quarter			
	9/17/2008	71.37	14.70	56.67	<50	<0.30	<0.30	< 0.30	<0.6	2.8			
	3/27/2009	71.37	15.66	55.71				•	ly in the Third	Quarter			
	9/17/2009	71.37	15.31	56.06	<50	< 0.30	< 0.30	< 0.30	< 0.60	<1.0			
	3/23/2010	71.37	15.42	55.95			Sam		ly in the Third	Quarter			
	9/21/2010	71.37	15.62	55.75	<50	< 0.30	< 0.30	< 0.30	< 0.60	<1.0			
	3/30/2011	71.37	14.12	57.25			Sam	•	ly in the Third	Quarter			
	09/06/2011	71.37	15.07	56.30	<50	< 0.30	< 0.30	< 0.30	< 0.60	<1.0		< 0.50	
	02/03/2012	71.37	14.88	56.49			Sam	npled Annual	ly in the Third	Quarter			
	08/17/2012	71.37	16.08	55.29	<50	<0.30	< 0.30	<0.30	<0.60	<1.0	<250	<0.50	<0.50
	2/14/2013	71.37	13.66	57.71			Sam	npled Annual	ly in the Third	Quarter			

Abbreviations and Notes:

TOC = Top of Casing

DTW = Depth to Water

GWE = Groundwater elevation (ft-amsl) = Feet Above Mean sea level

ft = Feet

μg/L = Micrograms per Liter

TPH - Total Petroleum Hydrocarbons

VOCS = Volatile Organic Compounds

MTBE = Methyl tert butyl ether

EDB = 1,2-Dibromoethane (Ethylene dibromide)

1,2-DCA = 1,2-Dichloroethane

-- = Not available / not applicable

<x = Not detected above laboratory reported practical quantitation level.</p>

shaded = exceeds ESL

bold = detected

1 = Environmental Screening Level (Table F-1a) for groundwater that is a current or potential drinking water resource; Screening for Environmental Concerns at site with Contaminated Soil and Groundwater;
 California Regional Water Quality Control Board - San Francisco Bay Region; Interim Final November 2007; revised May 2008.

Attachment C

ADDITIONAL HISTORIC ANALYTICAL RESULTS CHEVRON STATION #351642, FORMER UNOCAL STATION #3538

411 W MACARTHUR BLVD OAKLAND, CALIFORNIA

_				Ethylene-						Bromo-	_	_	
Date Sampled	TPH-D	TBA	Ethanol (8260B)	dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	dichloro- methane	Bromo- form	Bromo- methane	Comments
Sampled	(μg/l)	μg/l)	(8200 B) (μg/l)	(EDB) (μg/l)	(EDC) (μg/l)	DIFE (μg/l)	LTBE (μg/l)	(μg/l)	(mg/l)	methane (μg/l)	loilli (μg/l)	memane (μg/l)	Comments
MW-1	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(IIIg/1)	(μg/1)	(μg/1)	(μg/1)	
9/15/1989	ND								ND				
1/23/1990	ND								1.5				
4/19/1990	ND								ND				
7/17/1990	ND								ND				
10/16/1990	ND								ND				
1/15/1991	ND								ND				
4/12/1991	ND								ND				
7/15/1991	ND								ND				
7/14/1992													
7/14/1993													
7/7/1994													
7/19/1995													
7/11/1996													
7/21/1997													
8/31/1999													
7/16/2001										1.7			
7/12/2002													
7/10/2003													
7/29/2004					ND<0.5					ND<0.5	ND<0.5	ND<1	
9/30/2005					ND<0.50					ND<0.50	ND<0.50	ND<1.0	
9/26/2006					ND<0.50					ND<0.50	ND<0.50	ND<1.0	
9/27/2007					ND<0.50					ND<0.50	ND<0.50	ND<1.0	
9/17/2008					ND<0.50					ND<0.50	ND<0.50	ND<1.0	
MW-3													
8/25/2000		ND		ND	ND	ND	ND	ND					
7/12/2002		ND<20	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0					

Attachment C ADDITIONAL HISTORIC ANALYTICAL RESULTS CHEVRON STATION #351642, FORMER UNOCAL STATION #3538

Date Sampled	Carbon Tetra- chloride (µg/l)	Chloro- benzene (µg/l)	Chloro- ethane (µg/l)	Chloroform (µg/l)	Chloro- methane (µg/l)	Dibromo- chloro- methane (µg/l)	1,2- Dichloro- benzene (µg/l)	1,3- Dichloro- benzene (µg/l)	1,4- Dichloro- benzene (µg/l)	Dichloro- difluoro- methane (µg/l)	1,1-DCA (μg/l)	1,1-DCE (μg/l)	Comments
MW-1													
9/15/1989													
1/23/1990													
4/19/1990													
7/17/1990													
10/16/1990													
1/15/1991													
4/12/1991													
7/15/1991													
7/14/1992													
7/14/1993													
7/7/1994													
7/19/1995													
7/11/1996				0.96									
7/21/1997				1.0									
8/31/1999													
7/16/2001				45									
7/12/2002												1.8	
7/10/2003												0.89	
7/29/2004	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.2	
9/30/2005	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.52	
9/26/2006	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.60	
9/27/2007	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
9/17/2008	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	
MW-3													
8/25/2000													
7/12/2002													

Attachment C ADDITIONAL HISTORIC ANALYTICAL RESULTS CHEVRON STATION #351642, FORMER UNOCAL STATION #3538

Date Sampled	cis- 1,2-DCE (µg/l)	trans- 1,2-DCE (µg/l)	1,2- Dichloro- propane (µg/l)	cis-1,3- Dichloro- propene (µg/l)	trans-1,3- Dichloro- propene (µg/l)	Methylene chloride (μg/l)	1,1,2,2- Tetrachloro- ethane (µg/l)	Tetrachloro- ethene (PCE) (µg/l)	Trichloro- trifluoro- ethane (µg/l)	1,1,1- Trichloro- ethane (µg/l)	1,1,2- Trichloro- ethane (µg/l)	Trichloro- ethene (TCE) (µg/l)	Comments
MW-1													_
9/15/1989								2.7					
1/23/1990								2.1					
4/19/1990								2.2					
7/17/1990								1.7					
10/16/1990								2.0					
1/15/1991								2.1					
4/12/1991								2.0					
7/15/1991								1.8					
7/14/1992								1.4					
7/14/1993								0.95					
7/7/1994								0.83					
7/19/1995								0.52					
7/11/1996								0.73					
7/21/1997								0.70					
8/31/1999								ND					
7/16/2001								ND					
7/12/2002								ND<0.60					
7/10/2003								ND<0.50					
7/29/2004	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	ND<0.5	13	ND<0.5	ND<0.5	ND<0.5	
9/30/2005	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	9.1	ND<0.50	ND<0.50	ND<0.50	
9/26/2006	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	7.0	ND<0.50	ND<0.50	ND<0.50	
9/27/2007	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	4.3	ND<0.50	ND<0.50	ND<0.50	
9/17/2008	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	5.4	ND<0.50	ND<0.50	ND<0.50	
MW-3													
8/25/2000													
7/12/2002													

Attachment C ADDITIONAL HISTORIC ANALYTICAL RESULTS CHEVRON STATION #351642, FORMER UNOCAL STATION #3538

	Trichloro-		
Date	fluoro-	Vinyl	
Sampled	methane	chloride	
	$(\mu g/l)$	(µg/l)	
MW-1			
9/15/1989			
1/23/1990			
4/19/1990			
7/17/1990			
10/16/1990			
1/15/1991			
4/12/1991			
7/15/1991			
7/14/1992			
7/14/1993			
7/7/1994			
7/19/1995			
7/11/1996			
7/21/1997			
8/31/1999			
7/16/2001			
7/12/2002			
7/10/2003			
7/29/2004	ND<0.5	ND<0.5	
9/30/2005	ND<0.50	ND<0.50	
9/26/2006	ND<0.50	ND<0.50	
9/27/2007	ND<0.50	ND<0.50	
9/17/2008		ND<0.50	
MW-3			
8/25/2000			
7/12/2002			

Attachment D Historical Grab Groundwater Data

Table 4
Historical Grab Groundwater Analytical Results
Former 76 Service Station No. 3538
411 W. MacArthur Blvd
Oakland, CA

Sample ID	Date	Depth	TPHg	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE	TBA	TAME	DIPE	ETBE	EDB	1-2,DCA	Ethanol
		(ft)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)	(ug/L)
SB-1W	3/27/2006		120	11	<0.050	< 0.050	<1.0	130	28	< 0.050	<0.050	<0.050	< 0.050	<0.050	<100
SB-2W	3/27/2006		<50	< 0.050	<0.050	< 0.050	<1.0	<0.050	<5.0	< 0.050	<0.050	<0.050	< 0.050	<0.050	<100
SB-3W	3/27/2006		13000	510	470	1400	2600	340	57	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<100
SB-4W	3/27/2006		<50	< 0.050	< 0.050	< 0.050	<1.0	3.4	<5.0	< 0.050	<0.050	< 0.050	< 0.050	< 0.050	<100
SB-5W	3/27/2006		3000	44	63	1.2	30	53	17	< 0.050	<0.050	<0.050	< 0.050	<0.050	<100
SB-8@20-25	12/20/10	20-25	2000	< 0.50	48	98	340	< 0.50	<10	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	<250
SB-9@17-22	12/20/10	17-22	9500	430	2000	330	2100	190	<5.0	<5.0	<100	<5.0	<5.0	<5.0	<2500
SB-9@24-29	12/20/10	24-29	2900	79	470	100	540	<5.0	<5.0	<5.0	<100	<5.0	<5.0	<5.0	<2500
SB-10@17-22	12/20/10	17-22	1500	20	0.96	75	8.3	<0.50	<10	< 0.50	<0.50	<0.50	<0.50	<0.50	<250
SB-10@24-29	12/20/10	24-29	310	1.8	25	12	63	5.8	<10	< 0.50	<0.50	<0.50	<0.50	<0.50	<250

TPHg = total petroelum hydrocarbons as gasoline TPHd = total petroleum hydrocarbons as diesel MTBE = metyl tert butyl ether TBA = tert butyl alcohol TAME = tert amyl methyl ether DIPE = diisopropyl ether ETBE = ethyl tert butyl ether EDB = ethylene dibromide 1,2-DCA = 1,2 dicholorethane TOG = total oil and grease ND = non detect, where reporting limit is not known **bold** = value above reporting limit ug/L = micrograms per liter