RECEIVED

1:41 pm, Oct 30, 2009

Alameda County Environmental Health

76 Broadway Sacramento, California 95818

October 29, 2009

Barbara Jakub Alameda County Health Agency 1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Semi Annual Summary Report--Second Quarter through Third Quarter 2009

76 Service Station # 3538 RO # 0251

411 W. MacArthur Blvd.

Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

October 28, 2009

Ms. Barbara Jakub Alameda County Health Care Services Department of Environmental Health 1131 Harbor Bay Parkway Alameda, California 94502-6577

Re: Semi-Annual Summary Report – Second Quarter through Third Quarter 2009

Delta Project No. C1Q3538091 Alameda County LOP Case No. R0251

Dear Ms. Jakub,

On behalf of ConocoPhillips Company (ConocoPhillips), Delta Consultants (Delta) is submitting the subject report and forwarding a copy of TRC's Semi-Annual Monitoring Report April through September 2009, dated October 9, 2009 for the following location:

Location

JONAL GE

LIA HOLDEN No. 8584

ConocoPhillips Site No. 3538

411 W. MacArthur Blvd. Oakland, California

Please contact the undersigned at (408) 826-1863 if you have any questions.

Sincerely,

Delta Consultants

Evan Chantikian Staff Geologist

Lia Holden, PG #8584 Geologist—Project Manager

Enclosure

cc: Mr. Terry Grayson - ConocoPhillips (electronic copy only)

nogen*

312 PIERCY ROAD SAN JOSE, CALIFORNIA 95138 USA
PHONE +1 408.224.4724 / USA TOLL FREE 800.477.7411
FAX +1 408.225.8506 www.deltaenv.com

SITE DESCRIPTION

The subject site is a former Tosco (76) service station located on the southwest corner of Mac Arthur Boulevard and Webster Street in Oakland, California. The site is currently a used car sales lot and is entirely fenced. All petroleum storage and dispensing equipment were removed in September of 1998, during station demolition activities. Six groundwater-monitoring wells are present, four on-site wells and two off-site wells.

SITE BACKGROUND AND ACTIVITY

July 1989 One 10,000-gallon and one 12,000-gallon gasoline underground storage tanks (USTs) were removed and replaced with two new 12,000-gallon USTs. One 550-gallon waste oil UST and the associated piping for all three tanks were also removed. No holes or cracks were observed in the gasoline USTs; however, holes were observed in the waste oil UST. Groundwater was encountered in the former UST pit at a depth of approximately 10.5 feet below ground surface (bgs), which prohibited the collection of soil samples below the former fuel USTs. Confirmation soil samples from the sidewalls contained moderate maximum concentrations of total petroleum hydrocarbons as gasoline (TPH-G), and low maximum concentrations of benzene. These sample areas were subsequently over-excavated. Soil samples from the base of the waste oil UST pit did not contain detections of TPH-G or benzene, toluene, ethylbenzene, and xylenes (BTEX compounds). (Kaprealian Engineering, INC., 1989)

<u>September 1989</u> Kaprealian Engineering, INC. (KEI) installed four groundwater monitoring wells at the site to depths of approximately 30 feet bgs.

November 1992 Two additional groundwater monitoring wells were installed off-site to a depth of 30 feet bgs. (KEI, 1993)

<u>September 1998</u> Two 12,000-gallon gasoline USTs and associated product piping and dispensers were removed from the site during station demolition activities. No holes or cracks were observed in the tanks. Confirmation soil samples contained low maximum concentrations of TPH-G and benzene. Methyl butyl ether (MTBE) was not detected.

October 2003 Site environmental consulting responsibilities were transferred to TRC.

<u>March 2006</u> TRC conducted additional soil and groundwater assessment at the Site. The investigation involved the advancement of three onsite soil borings (SB-3, SB-4, and SB-5) and two offsite soil borings (SB-1 and SB-2) to sufficient depth to obtain representative groundwater samples (approximately 16 feet bgs).

October 2007 Site environmental consulting responsibilities were transferred to Delta.

SENSITIVE RECEPTORS

A sensitive receptor survey has been conducted for the site. According to the California Department of Water Resources (DWR) records, no water supply wells have been located

within 2,000 feet of the site. The nearest well identified was a private water well located approximately 2,500 feet east-southeast of the site.

GROUNDWATER MONITORING AND SAMPLING

Currently, the two onsite monitoring wells MW-2 and MW-3 are monitored semi-annually during the first and third quarters and the remaining four wells are monitored annually during the third quarter. During the third quarter of 2009, the groundwater flow direction beneath the site was reported south at a gradient of 0.01 feet per feet (ft/ft). This is consistent with the previous calculated gradient of 0.01 ft/ft south during the first quarter 2009 sampling event.

Dissolved groundwater concentrations are reported as follows.

TPH-G: Not reported above the laboratory reporting limit in any of the site groundwater monitoring wells (MW-1 through MW-6). In the third quarter 2008, TPH-G was detected at a concentration of 56 μ g/l in on-site well MW-3. With the exception of the third quarter 2008 detection min MW-3, TPH-G has not been detected in well MW-3, or any site well, since the first quarter 2007.

Benzene: Was detected in well MW-2 at a concentration of 2.7 μ g/l. During the previous sampling event, in the first quarter of 2009, benzene was detected in well MW-2 at a concentration of 3.5 μ g/l. Benzene was not detected above the laboratory reporting limit in any other site wells this quarter.

MTBE was detected by EPA Method 8021B in wells MW-2 and MW-3 at concentrations of 1.1 μ g/I and 30 μ g/I, respectively, in the current quarter. Historically, MTBE has been detected fairly consistently in on-site wells MW-2 and MW-3. MTBE was detected in well MW-6 during the third quarter 2008, but has only been detected in MW-6 three times since 1996.

REMEDIATION STATUS

October 1998 A total of 516.44 tons (approximately 380 cubic yards) of soil generated during station demolition was transported from the site to Forward Landfill in Manteca, California for disposal.

Active soil and groundwater remediation is not currently being conducted at the site.

CONCLUSIONS AND RECOMMENDATIONS

Analyte concentrations in the Site's monitoring wells continue to decline. In Delta's Site Conceptual Model dated November 21, 2008, Delta proposed collecting a grab-groundwater sample no more than 30 feet south of the site to assess the southern extent of the hydrocarbon and fuel oxygenate plume.

Delta did not receive agency response to the SCM or the recommendations proposed within the November 21, 2008 SCM. Delta then submitted a Work Plan for Additional

Assessment dated June 3, 2009 detailing the scope initially proposed in the November 2008 SCM. To date, Delta has not received a response from the agency regarding the November 2008 SCM or the June 2009 work plan; however, Delta and ConocoPhillips have been moving forward with private property access procurement, in preparation of agency approval.

Although several letters have been issued to the property owner, no response has been received. Upon approval of the work plan, Delta will request agency assistance in procuring access to the private property south of the site.

RECENT CORRESPONDENCE

No correspondence was sent or received during the current quarter.

SECOND AND THIRD QUARTER 2009 ACTIVITIES

 Monitoring and sampling of the groundwater monitoring well network was conducted by TRC on September 17, 2009.

FOURTH AND FIRST QUARTER PLANNED ACTIVITIES

- TRC prepared the Semi-Annual Monitoring Report, April through September 2009, dated October 9, 2009.
- Delta prepared and submitted the *Semi-Annual Status Report, Third Quarter 2009.*
- As it has been greater than 60 days since submittal of the proposed investigation (June 3, 2009). Upon access procurement, Delta will conduct field activities as proposed in Delta's Work Plan for Additional Assessment.

REMARKS

The descriptions, conclusions, and recommendations contained in this report represent Delta's professional opinions based upon the currently available information and are arrived at in accordance with currently acceptable professional standards. For any reports cited that were not generated by Delta, the data from those reports is used "as is" and is assumed to be accurate. Delta does not guarantee the accuracy of this data for the referenced work performed nor the inferences or conclusions stated in these reports. This report is based upon a specific scope of work requested by the client. The Contract between Delta and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were conducted. This report is intended only for the use of Delta's Client and anyone else specifically listed on this report. Delta will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Delta makes no express or implied warranty as to the contents of this report.

CONSULTANT: Delta Consultants

REFERENCES CITED

- Kaprealian Engineering, Inc., *Preliminary Ground Water Investigation*, *Unocal Service Station 3538, 411 MacArthur Blvd., Oakland, California*, October, 23, 1989.
- Kaprealian Engineering, Inc., Continuing Ground Water Investigation, Unocal Service Station 3538, 411 MacArthur Blvd,, Oakland, California, January 18, 1993.
- Gettler-Ryan Inc., Well Installation Report, Tosco (76) Service Station No. 0018, 6201 Claremont Avenue, Oakland, California, December 18, 2000.
- Gettler-Ryan Inc., Request for Closure, 76 Station 3538, 411 MacArthur Blvd, Oakland, California, October 30, 2002.

EPA, List of Drinking Water Contaminants & MCLs, U.S. Environmental Protection Agency, Washington, DC, Retrieved October 14, 2003 from http://www.epa.gov/safewater/mcl.html#mcls.

TRC, Soil and Groundwater Investigation Report, 76 Station 3538, 411 MacArthur Blvd, Oakland, California, April 28, 2006.

Office of Environment Health Hazard Assessment, http://oehha.ca.gov/water/phg/allphgs.html, January 2, 2009

TRC, Semi-Annual Monitoring Report, April through September 2009, Former 76 Station 3538, 411 West MacArthur Blvd, Oakland, CA, October 9, 2009.

21 Technology Drive Irvine, CA 92618

949.788.9990 PHONE 949.788.9995 FAX

www.TRCsolutions.com

DATE:

October 9, 2009

TO:

ConocoPhillips Company

76 Broadway

Sacramento, CA 95818

ATTN:

MR. TERRY GRAYSON

SITE:

FORMER 76 STATION 3538

411 WEST MACARTHUR BLVD.

OAKLAND, CALIFORNIA

RE:

SEMI-ANNUAL MONITORING REPORT

APRIL THROUGH SEPTEMBER 2009

Dear Mr. Grayson:

Please find enclosed our Semi-Annual Monitoring Report for Former 76 Station 3538, located at 411 West MacArthur Blvd, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan (

Groundwater Program Operations Manager

CC: Ms. Lia Holden, Delta Consultants (2 copies)

Enclosures 20-0400/3538R12.QMS

SEMI-ANNUAL MONITORING REPORT APRIL THROUGH SEPTEMBER 2009

FORMER 76 STATION 3538 411 West MacArthur Blvd. Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, California 95818

By:

Senior Project Geologist, Irvine Operations

Date: <u>/0/9/09</u>

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key Contents of Tables Table 1: Current Fluid Levels and Selected Analytical Results Table 2: Historic Fluid Levels and Selected Analytical Results Table 2a: Additional Historic Analytical Results Table 2b: Additional Historic Analytical Results Table 2c: Additional Historic Analytical Results Table 2d: Additional Historic Analytical Results
Figures	Figure 1: Vicinity Map Figure 2: Groundwater Elevation Contour Map Figure 3: Dissolved-Phase TPH-G by 8015M Concentration Map Figure 4: Dissolved-Phase Benzene Concentration Map Figure 5: Dissolved-Phase MTBE Concentration Map Groundwater Elevations vs. Time
Graphs	Benzene Concentrations vs. Time
Field Activities	General Field Procedures Field Monitoring Data Sheet – 09/17/09 Groundwater Sampling Field Notes – 09/17/09
Laboratory Reports	Official Laboratory Reports Quality Control Reports Chain of Custody Records
Disposal Documents	Disposal/Treatment Manifests – Current (Pending)
Statements	Limitations

Summary of Gauging and Sampling Activities April 2009 through September 2009 Former 76 Station 3538 411 West MacArthur Blvd. Oakland, CA

Project Coordinator: Terry Grayson Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo											
Date(s) of Gauging/Sampling Event: 09/17/09	complica by. Christina Carrino											
Sample Points												
Groundwater wells: 4 onsite, 2 offsite Purging method: Bailer/submersible pump Purge water disposal: Crosby and Overton treatme Other Sample Points: 0 Type:	Points gauged: 6 Points sampled: 6 ent facility											
Liquid Phase Hydrocarbons (LPH)												
Sample Points with LPH: 0 Maximum thickness (fe LPH removal frequency: Treatment or disposal of water/LPH:	et): Method:											
Hydrogeologic Parameters												
Hydrogeologic Parameters Depth to groundwater (below TOC): Minimum: 15.31 feet Maximum: 18.18 feet Average groundwater elevation (relative to available local datum): 54.02 feet Average change in groundwater elevation since previous event: -0.56 feet Interpreted groundwater gradient and flow direction: Current event: 0.01 ft/ft, south Previous event: 0.01 ft/ft, south (03/27/09)												
Selected Laboratory Results												
·	ple Points above MCL (1.0 μg/l): 1 g /l (MW-2)											
Sample Points with TPH-G 0 Sample Points with MTBE 8021B 2 Max	kimum: 30 μg/Ι (MW-3)											
Notes:												

TABLE KEY

STANDARD ABBREVIATIONS

-- = not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons Trace = less than 0.01 foot of LPH in well

μg/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND< = not detected at or above laboratory detection limit TOC = top of casing (surveyed reference elevation)

D = duplicate

P = no-purge sample

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether
ETBE = ethyl tertiary butyl ether
MTBE = methyl tertiary butyl ether
PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether 1.1-DCA = 1.1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.

REFERENCE

TRC began groundwater monitoring and sampling for Former 76 Station 3538 in October 2003. Historical data compiled prior to that time were provided by Gettler-Ryan Inc.

Contents of Tables 1 and 2 Site: Former 76 Station 3538

Current	Current Event													
Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		
Historic	Data													
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)		
Table 2a	Well/ Date	TPH-D	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Total Oil and Grease	Bromo- dichloro- methane	Bromo- form	Bromo- methane	
Table 2b	Well/ Date	Carbon Tetra- chloride	Chloro- benzene	Chloro- ethane	Chloroform	Chloro- methane	Dibromo- chloro- methane	1,2- Dichloro- benzene	1,3- Dichloro- benzene	1,4- Dichloro- benzene	Dichloro- difluoro- methane	1,1-DCA	1,1-DCE	
Table 2c	Well/ Date	cis- 1,2-DCE	trans- 1,2-DCE	1,2- Dichloro- propane	cis-1,3- Dichloro- propene	trans-1,3- Dichloro- propene	Methylene chloride	1,1,2,2- Tetrachloro- ethane	Tetrachloro- ethene (PCE)	Trichloro- trifluoro- ethane	1,1,1- Trichloro- ethane	1,1,2- Trichloro- ethane	Trichloro- ethene (TCE)	
Table 2d	Well/ Date	Trichloro- fluoro- methane	Vinyl chloride											

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 17, 2009

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G	D	Т-1	Ethyl-	Total	MTBE	MTBE	Comments
						8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1 09/17/09	9 72.12	18.18	0.00	53.94	-1.43	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
MW-2 09/17/09	9 71.34	18.01	0.00	53.33	-0.58	ND<50	2.7	ND<0.30	ND<0.30	ND<0.60	1.1		
MW-3 09/17/09	9 71.40	17.88	0.00	53.52	-0.54	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	30		
MW-4 09/17/09	9 71.54	17.86	0.00	53.68	-0.69	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
MW-5 09/17/09	9 71.16	17.60	0.00	53.56	-0.46	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
MW-6 09/17/09	9 71.37	15.31	0.00	56.06	0.35	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	
MW-1													
09/15/	89					ND	ND	0.61	ND	ND			
01/23/	90					ND	1.5	2.3	ND	4.3			
04/19/	90					ND	ND	ND	ND	ND			
07/17/	90					ND	ND	ND	ND	ND			
10/16/	90					ND	ND	ND	ND	ND			
01/15/	91					ND	ND	ND	ND	ND			
04/12/	91					ND	ND	ND	ND	ND			
07/15/	91					ND	ND	ND	ND	ND			
07/14/	92					ND	ND	ND	ND	ND			
04/13/	93 72.43	17.70	0.00	54.73									Sampled Q3 only
07/14/	93 72.43	18.49	0.00	53.94	-0.79	ND	2.2	2.1	1.1	6.2			
10/14/	93 72.10	18.32	0.00	53.78	-0.16								Sampled Q3 only
01/12/	94 72.10	18.18	0.00	53.92	0.14								Sampled Q3 only
04/11/	94 72.10	17.80	0.00	54.30	0.38								Sampled Q3 only
07/07/	94 72.10	18.28	0.00	53.82	-0.48	ND	ND	ND	ND	ND			
10/05/	94 72.10	18.55	0.00	53.55	-0.27								Sampled Q3 only
01/09/	95 72.10	17.90	0.00	54.20	0.65								Sampled Q3 only
04/17/	95 72.10	17.22	0.00	54.88	0.68								Sampled Q3 only
07/19/	95 72.10	18.03	0.00	54.07	-0.81	ND	ND	ND	ND	ND			
10/26/	95 72.10	18.67	0.00	53.43	-0.64								Sampled Q3 only
01/16/	96 72.10	17.20	0.00	54.90	1.47								Sampled Q3 only
04/15/	96 72.10	17.40	0.00	54.70	-0.20								Sampled Q3 only

CTRC

Former 76 Station 3538

Date	TOC	Depth to	LPH		Change in								Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	_		Ethyl-	Total	MTBE	MTBE	
	(C ()	(C ()	(6)			8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1	continued	40.00	0.00		0.40								
07/11/9				54.07	-0.63	ND	ND	ND	ND	ND	ND		
01/17/9				55.56	1.49								Sampled Q3 only
07/21/9				53.94	-1.62	ND	ND	ND	ND	ND	ND		
01/14/9	98 72.10	16.05		56.05	2.11								Sampled Q3 only
07/06/9	98 72.10	16.46	0.00	55.64	-0.41	ND	ND	ND	ND	ND	ND		
01/13/9	99 72.10	17.37	0.00	54.73	-0.91								Sampled Q3 only
08/31/9	99 72.12	17.00	0.00	55.12	0.39	ND	ND	ND	ND	ND	ND		
01/21/0	00 72.12	17.04	0.00	55.08	-0.04								Sampled Q3 only
07/10/0	00 72.12	18.10	0.00	54.02	-1.06	ND	ND	ND	ND	ND	ND		
01/04/0	72.12	17.95	0.00	54.17	0.15								Sampled Q3 only
07/16/0	72.12	18.03	0.00	54.09	-0.08	ND	ND	ND	ND	ND	ND		
01/28/0	72.12	17.31	0.00	54.81	0.72								Sampled Q3 only
07/12/0	72.12	18.15	0.00	53.97	-0.84	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
01/14/0	72.12	17.66	0.00	54.46	0.49								Sampled Q3 only
07/10/0	72.12	17.86	0.00	54.26	-0.20	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
02/04/0	72.12	17.43	0.00	54.69	0.43								Sampled Q3 only
07/29/0	72.12	18.12	0.00	54.00	-0.69	ND<50	ND<0.3	0.38	ND<0.3	ND<0.6	ND<1	ND<0.5	
03/02/0	72.12	16.15	0.00	55.97	1.97								Sampled Q3 only
09/30/0	72.12	18.04	0.00	54.08	-1.89	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
03/23/0	06 72.12												Inaccessible due to gate; Sampled Q3 only
09/26/0	06 72.12	17.90	0.00	54.22		ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
03/15/0	72.12	17.22	0.00	54.90	0.68								Sampled Q3 only

CTRC

Page 2 of 14

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2009

Former 76 Station 3538

Date	TOC	Depth to	LPH		Change in								Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	_		Ethyl-	Total	MTBE	MTBE	
	(6)	(6)	(6)			8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued		0.00										
09/27/0				53.63	-1.27	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
03/27/0				54.55	0.92								Sampled Q3 only
09/17/0		18.20		53.92	-0.63	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0	ND<0.50	
03/27/0	9 72.12	16.75	0.00	55.37	1.45								Sampled Q3 only
09/17/0	9 72.12	18.18	0.00	53.94	-1.43	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
MW-2													
09/15/8	39					290	ND	12	ND	ND			
01/23/9	90					400	73	36	10	40			
04/19/9	90					3900	550	5.1	91	390			
07/17/9	00					490	76	0.59	11	46			
10/16/9	90					1400	430	2.0	48	240			
01/15/9	91					680	170	0.7	19	81			
04/12/9	91					2200	160	4.3	23	62			
07/15/9	91					2200	770	12	72	370			
10/15/9	91					140	44	0.56	1.5	12			
01/15/9	92					220	37	0.52	1.1	7			
04/14/9	92					150	6.2	ND	ND	1.4			
07/14/9	92					130	3.7	ND	ND	ND			
10/12/9						370	3.4	0.56	ND	11			
01/08/9						510	ND	ND	ND	ND			
04/13/9		17.86	0.00	53.77		410	42	7.7	6.4	28	200		
07/14/9				53.25	-0.52	110	6.5	ND	ND	1.1	250		
10/14/9				53.18	-0.07	230	5.3	ND	ND	2.1		<u></u>	
10/14/5	,5 11.30	10.20	0.00	33.10	-0.07	230	٥.٥		ייי	2.1			

CTRC

Page 3 of 14

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	
MW-2	continued												
01/12/9	94 71.38	18.08	0.00	53.30	0.12	300	7.8	3.8	1.8	10			
04/09/9	94 71.38	17.97	0.00	53.41	0.11	120	10	0.88	1.1	4.9			
04/11/9	94 71.38	17.88	0.00	53.50	0.09								
07/07/	94 71.38	17.81	0.00	53.57	0.07	110	4.4	ND	ND	ND			
10/05/9	94 71.38	18.33	0.00	53.05	-0.52	720	20	ND	ND	3.1			
01/09/9	95 71.38	17.40	0.00	53.98	0.93	ND	ND	ND	ND	ND			
04/17/9	95 71.38	17.50	0.00	53.88	-0.10	93	5.6	0.62	1.7	5.5			
07/19/9	95 71.38	18.01	0.00	53.37	-0.51	77	32	0.58	1.7	4.1			
10/26/9	95 71.38	18.21	0.00	53.17	-0.20	54	13	ND	ND	0.72	220		
01/16/9	96 71.38	16.58	0.00	54.80	1.63	120	23	ND	ND	0.99			
04/15/9	96 71.38	17.61	0.00	53.77	-1.03	340	21	ND	2.2	3.7	45		
07/11/9	96 71.38	17.98	0.00	53.40	-0.37	540	34	ND	4.3	12	150		
01/17/	97 71.38	17.08	0.00	54.30	0.90	320	63	2.4	9.4	26	260		
07/21/9	97 71.38	18.06	0.00	53.32	-0.98	160	13	ND	1.3	1.6	180		
01/14/9	98 71.38	16.52	0.00	54.86	1.54	66	6.3	ND	ND	0.98	100		
07/06/9	98 71.38	16.87	0.00	54.51	-0.35	ND	2.3	ND	ND	ND	11		
01/13/9	99 71.38	17.88	0.00	53.50	-1.01	53	24	ND	0.52	0.98	120		
08/31/9	99 71.34	18.45	0.00	52.89	-0.61	86	14	ND	0.63	ND	21		
01/21/0	00 71.34	17.73	0.00	53.61	0.72	ND	1.94	ND	ND	ND	10.1		
07/10/0	00 71.34	18.14	0.00	53.20	-0.41	ND	ND	ND	ND	ND	46.6		
01/04/0	01 71.34	18.02	0.00	53.32	0.12	ND	0.925	ND	ND	ND	ND		
07/16/0	01 71.34	18.02	0.00	53.32	0.00	ND	ND	ND	ND	ND	ND		
01/28/0	02 71.34	17.57	0.00	53.77	0.45	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		

CTRC

Page 4 of 14

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TTDII G			Ed. 1	m . 1) (TD) E	MEDE	Comments
Sampled	Elevation	vv ater	Tillekiless	Elevation		TPH-G 8015	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	Aylenes (μg/l)	(8021B) (μg/l)	(8200 B) (μg/l)	
		(===)	()	()	(====)	(1-8-7	(1-8)	(1.9)	(1-8)	(1-6-7	(1-8)	(1-8-7	
07/12/0	continued 71.34	18.05	0.00	53.29	-0.48	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
01/14/0		17.44		53.90	0.61	ND<50				ND<0.50	ND<2.0		
07/10/0													Car parked over well
02/04/0	04 71.34	17.22	0.00	54.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<5.0		
07/29/0	04 71.34												Sampled Q3 only
03/02/0	5 71.34	16.63	0.00	54.71		99	26	ND<0.50	3.5	2.8	ND<5.0		
09/30/0	5 71.34	17.94	0.00	53.40	-1.31	ND<50	1.2	ND<0.30	ND<0.30	ND<0.60	1.6		
03/23/0	06 71.34	16.74	0.00	54.60	1.20	ND<50	3.6	ND<0.30	0.35	ND<0.60	2.5		
09/26/0	06 71.34	17.91	0.00	53.43	-1.17	ND<50	1.2	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/15/0	71.34	17.45	0.00	53.89	0.46	110	6.5	ND<0.30	0.70	ND<0.60	1.7		
09/27/0	71.34	18.23	0.00	53.11	-0.78	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/27/0	08 71.34	17.77	0.00	53.57	0.46	ND<50	1.8	ND<0.30	ND<0.30	ND<0.60	1.3		
09/17/0	08 71.34	18.06	0.00	53.28	-0.29	ND<50	1.6	ND<0.30	ND<0.30	ND<0.60	3.1		
03/27/0	9 71.34	17.43	0.00	53.91	0.63	ND<50	3.5	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
09/17/0	9 71.34	18.01	0.00	53.33	-0.58	ND<50	2.7	ND<0.30	ND<0.30	ND<0.60	1.1		
MW-3													
09/15/8	39					32	ND	ND	ND	ND			
01/23/9	90					450	110	1.2	4.4	11			
04/19/9	90					3100	600	27	54	220			
07/17/9	90					4000	270	48	130	250			
10/16/9	90					740	210	1.4	2.5	82			
01/15/9	01					3200	460	1.5	120	270			
04/12/9	91					880	170	1.1	34	110			
3538								Page 5	of 14				@TPC

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water	Change in Elevation	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation		8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
-	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued												
07/15/9	91					9200	1300	230	490	1900			
10/15/9	91					3100	390	34	150	390			
01/15/9	92					3000	590	14	310	750			
04/14/9	92					14000	660	48	560	2000			
07/14/9	92					21000	890	200	1200	4300			
10/12/9	92					3200	160	10	230	540			
01/08/9	93					1100	48	0.99	0.9	93			
04/13/9	93 72.06	17.96	0.00	54.10		12000	290	38	760	2300	1400		
07/14/9	93 72.06	18.54	0.00	53.52	-0.58	6300	190	ND	430	1000	860		
10/14/9	93 71.86	18.45	0.00	53.41	-0.11	2500	52	ND	110	250			
01/12/9	94 71.86	18.34	0.00	53.52	0.11	3800	78	ND	180	390			
04/09/9	94 71.86	18.19	0.00	53.67	0.15	1800	22	ND	140	280			
04/11/9	94 71.86	18.12	0.00	53.74	0.07								
07/07/9	94 71.86	18.21	0.00	53.65	-0.09	110	4.5	ND	ND	ND			
10/05/9	94 71.86	18.58	0.00	53.28	-0.37	ND	ND	ND	ND	ND			
01/09/9	95 71.86	17.69	0.00	54.17	0.89	ND	0.68	ND	ND	ND			
04/17/9	95 71.86	17.68	0.00	54.18	0.01	3700	80	10	270	510			
07/19/9	95 71.86	18.20	0.00	53.66	-0.52	15000	330	27	990	2400			
10/26/9	95 71.86	18.32	0.00	53.54	-0.12	14000	420	180	750	1600	4800		
01/16/9	96 71.86	17.95	0.00	53.91	0.37	920	38	ND	30	57			
04/15/9	96 71.86	17.78	0.00	54.08	0.17	9700	240	ND	570	860	3200		
07/11/9	96 71.86	18.19	0.00	53.67	-0.41	13000	69	5.5	430	900	740		
01/17/9	97 71.86	17.23	0.00	54.63	0.96	4400	25	ND	270	580	1600		
								р. с	6.1.4				

CTRC

Page 6 of 14

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G			Ethyl-	Total	MTBE	MTBE	Comments
				Elevation	1	8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$							
MW-3	continued	Į.											
07/21/9			0.00	53.57	-1.06	9000	36	ND	450	800	950		
01/14/9	98 71.86	5 16.71	0.00	55.15	1.58	7100	40	ND	380	360	930		
07/06/9	98 71.86	5 17.03	0.00	54.83	-0.32	6800	39	ND	320	360	370		
01/13/9	99 71.80	5 18.00	0.00	53.86	-0.97	1800	9.4	ND	58	36	180		
08/31/9	99 71.40)	0.00										Well obstructed at 0.5 feet.
01/21/0	00 71.40	17.58	0.00	53.82		ND	ND	ND	ND	ND	21.4		
07/10/0	00 71.40	18.05	0.00	53.35	-0.47	ND	ND	ND	ND	ND	162		
08/25/0	00 71.40	17.82	0.00	53.58	0.23							180	
01/04/0	01 71.40	18.16	0.00	53.24	-0.34	ND	ND	ND	ND	ND	193		
07/16/0	01 71.40	17.98	0.00	53.42	0.18	ND	ND	ND	ND	ND	660		
01/28/0	02 71.40	17.84	0.00	53.56	0.14	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	34		
07/12/0	02 71.40	17.87	0.00	53.53	-0.03	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	11	19	
01/14/0	03 71.40	17.28	0.00	54.12	0.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	12		
07/10/0	03 71.40	17.64	0.00	53.76	-0.36	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	23		
02/04/0	04 71.40	17.05	0.00	54.35	0.59	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	26		
07/29/0	04 71.40	17.82	0.00	53.58	-0.77	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND<1		
03/02/0	05 71.40) 16.47	0.00	54.93	1.35	93	ND<0.50	ND<0.50	ND<0.50	ND<0.50	140		
09/30/0	05 71.40) 17.79	0.00	53.61	-1.32	65	ND<0.30	ND<0.30	ND<0.30	ND<0.60	61		
03/23/0	06 71.40	16.61	0.00	54.79	1.18	54	ND<0.30	0.41	ND<0.30	0.98	63		
09/26/0	06 71.40) 17.77	0.00	53.63	-1.16	51	ND<0.30	ND<0.30	ND<0.30	ND<0.60	41		
03/15/0	07 71.40	17.27	0.00	54.13	0.50	140	ND<0.30	ND<0.30	ND<0.30	ND<0.60	110		
09/27/0	07 71.40	18.48	0.00	52.92	-1.21	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	20		
03/27/0	08 71.40	17.67	0.00	53.73	0.81	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	19		
								ъ -					

CTRC

Page 7 of 14

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in Elevation	TPH-G			Ethyl-	Total	MTBE	MTBE		Comments
				Elevation		8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)		
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(µg/l)		
MW-3	continued													
09/17/0	08 71.40	17.91	0.00	53.49	-0.24	56	ND<0.30	ND<0.30	ND<0.30	ND<0.60	43			
03/27/0	9 71.40	17.34	0.00	54.06	0.57	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	15			
09/17/0	9 71.40	17.88	0.00	53.52	-0.54	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	30			
MW-4														
09/15/8	39					ND	ND	ND	ND	ND				
01/23/9	90					ND	ND	0.4	ND	ND				
04/19/9	90					ND	ND	0.48	ND	ND				
07/17/9	90					ND	ND	ND	ND	ND				
10/16/9	90					ND	ND	ND	ND	ND				
01/15/9	91					ND	ND	ND		ND				
04/12/9	91					ND	ND	ND	ND	ND				
07/15/9	91					ND	ND	ND	ND	ND				
07/14/9	92					ND	1.3	2.5	ND	1.0				
04/13/9	71.98	17.67	0.00	54.31									S	ampled Q3 only
07/14/9	71.98	18.31	0.00	53.67	-0.64	ND	ND	ND	ND	ND				
10/14/9	71.64	18.08	0.00	53.56	-0.11								S	ampled Q3 only
01/12/9	71.64	17.97	0.00	53.67	0.11								S	ampled Q3 only
04/11/9	71.64	17.70	0.00	53.94	0.27								S	ampled Q3 only
07/07/9	94 71.64	17.80	0.00	53.84	-0.10	ND	ND	ND	ND	ND				
10/05/9	71.64	18.28	0.00	53.36	-0.48								S	ampled Q3 only
01/09/9	71.64	17.38	0.00	54.26	0.90								S	ampled Q3 only
04/17/9	71.64	17.21	0.00	54.43	0.17								S	ampled Q3 only
07/19/9	71.64	17.82	0.00	53.82	-0.61	ND	ND	ND	ND	ND				
3538								Page 8	3 of 14				1	TRC

Former 76 Station 3538

Date	TOC	Depth to	LPH	Ground-	Change in								Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$							
MW-4	continued												
10/26/9	95 71.64	18.17	0.00	53.47	-0.35								Sampled Q3 only
01/16/9	96 71.64	16.45	0.00	55.19	1.72								Sampled Q3 only
04/15/9	96 71.64	17.35	0.00	54.29	-0.90								Sampled Q3 only
07/11/9	96 71.64	17.81	0.00	53.83	-0.46	ND	ND	ND	ND	ND	ND		
01/17/9	97 71.64	16.73	0.00	54.91	1.08								Sampled Q3 only
07/21/9	97 71.64	17.91	0.00	53.73	-1.18	ND	ND	ND	ND	ND	ND		
01/14/9	98 71.64	16.18	0.00	55.46	1.73								Sampled Q3 only
07/06/9	98 71.64	16.49	0.00	55.15	-0.31	ND	ND	ND	ND	ND	ND		
01/13/9	99 71.64	17.29	0.00	54.35	-0.80								Sampled Q3 only
08/31/9	99 71.54		0.00										Well obstructed at 10.4 feet.
01/21/0	00 71.54	17.51	0.00	54.03									Sampled Q3 only
07/10/0	00 71.54	17.93	0.00	53.61	-0.42	ND	ND	ND	ND	ND	ND		
01/04/0	01 71.54	18.10	0.00	53.44	-0.17								Sampled Q3 only
07/16/0	01 71.54	17.76	0.00	53.78	0.34	ND	ND	ND	ND	ND	ND		
01/28/0	02 71.54	17.20	0.00	54.34	0.56								Sampled Q3 only
07/12/0	02 71.54	17.81	0.00	53.73	-0.61	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
01/14/0	03 71.54	17.30	0.00	54.24	0.51								Sampled Q3 only
07/10/0	03 71.54	17.58	0.00	53.96	-0.28	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
02/04/0	04 71.54	17.07	0.00	54.47	0.51								Sampled Q3 only
07/29/0	04 71.54	17.81	0.00	53.73	-0.74	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.6	ND<1		
03/02/0	05 71.54	16.25	0.00	55.29	1.56								Sampled Q3 only
09/30/0	05 71.54	17.74	0.00	53.80	-1.49	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		

Page 9 of 14

Former 76 Station 3538

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	water Elevation		TPH-G 8015	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-4 03/23/0	continued 71.54												Inaccessible due to gate; Sampled Q3 only
09/26/0	06 71.54	17.71	0.00	53.83		ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/15/0	07 71.54	17.56	0.00	53.98	0.15								Sampled Q3 only
09/27/0	07 71.54	18.16	0.00	53.38	-0.60	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/27/0	08 71.54	17.58	0.00	53.96	0.58								Sampled Q3 only
09/17/0	08 71.54	17.87	0.00	53.67	-0.29	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/27/0	09 71.54	17.17	0.00	54.37	0.70								Sampled Q3 only
09/17/0	09 71.54	17.86	0.00	53.68	-0.69	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
MW-5													
11/30/9	92					ND	ND	ND	ND	ND			
01/08/9	93					ND	ND	ND	ND	ND			
04/13/9	93 71.51	17.49	0.00	54.02		ND	ND	ND	ND	ND			
07/14/9	93 71.51	18.02	0.00	53.49	-0.53	ND	ND	0.57	ND	ND			
10/14/9	93 71.23	17.82	0.00	53.41	-0.08	ND	ND	ND	ND	ND			
01/12/9	94 71.23	17.74	0.00	53.49	0.08	ND	ND	0.84	ND	1.6			
04/11/9	94 71.23	17.56	0.00	53.67	0.18								Sampled Q3 only
07/07/9	94 71.23	17.50	0.00	53.73	0.06	ND	ND	ND	ND	ND			
10/05/9	94 71.23	17.98	0.00	53.25	-0.48								Sampled Q3 only
01/09/9	95 71.23	17.13	0.00	54.10	0.85								Sampled Q3 only
04/17/9	95 71.23	17.05	0.00	54.18	0.08								Sampled Q3 only
07/19/9	95 71.23	17.59	0.00	53.64	-0.54	ND	ND	ND	ND	ND			
10/26/9	95 71.23	18.10	0.00	53.13	-0.51								Sampled Q3 only

CTRC

Page 10 of 14

Former 76 Station 3538

Date	TOC	Depth to	LPH		Change in								Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G		m 1	Ethyl-	Total	MTBE	MTBE	
	(f4)	(f4)	(f4)			8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
			0.00	54.10	0.00								Sampled O2 only
01/16/9				54.12	0.99								Sampled Q3 only
04/15/9				54.01	-0.11								Sampled Q3 only
07/11/9				53.64	-0.37	ND	ND	ND	ND	ND	ND		Samuelad O2 aula
01/17/9				54.48									Sampled Q3 only
07/21/9				53.64	-0.84	ND	ND	ND	ND	ND	ND		g 1 100 1
01/14/9				55.07	1.43								Sampled Q3 only
07/06/9				54.71	-0.36	ND	ND	ND	ND	ND	ND		
01/13/9				53.61	-1.10								Sampled Q3 only
08/31/9				53.40	-0.21	ND	ND	ND	ND	ND	ND		
01/21/0				54.33	0.93								Sampled Q3 only
07/10/0	00 71.16	17.46		53.70	-0.63	ND	ND	ND	ND	ND	ND		
01/04/0	01 71.16	17.51		53.65	-0.05								Sampled Q3 only
07/16/0	01 71.16	17.32	0.00	53.84	0.19	ND	ND	ND	ND	ND	ND		
01/28/0	02 71.16	17.12	0.00	54.04	0.20								Sampled Q3 only
07/12/0	02 71.16	17.12	0.00	54.04	0.00	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		
01/14/0	03 71.16	16.67	0.00	54.49	0.45								Sampled Q3 only
07/10/0	03 71.16	17.39	0.00	53.77	-0.72	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
02/04/0	04 71.16	16.23	0.00	54.93	1.16								Sampled Q3 only
07/29/0	04 71.16	16.02	0.00	55.14	0.21	ND<50	ND<0.3	0.64	ND<0.3	0.79	ND<1		
03/02/0	05 71.16	16.43	0.00	54.73	-0.41								Sampled Q3 only
09/30/0	05 71.16	17.41	0.00	53.75	-0.98	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/23/0	06 71.16	16.37	0.00	54.79	1.04								Sampled Q3 only
09/26/0	06 71.16	15.54	0.00	55.62	0.83	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
3538								Page 1	1 of 14				€ TRC

Former 76 Station 3538

Date	TOC	Depth to	LPH		Change in								Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	_		Ethyl-	Total	MTBE	MTBE	
	(C ()	(f. 1)	(C 1)			8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued	4= 40	0.00										0 1102 1
03/15/0				53.96									Sampled Q3 only
09/27/0				53.15	-0.81	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		g 1.102 l
03/27/0				53.59	0.44								Sampled Q3 only
09/17/0				53.48	-0.11	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/27/0				54.02	0.54								Sampled Q3 only
09/17/0	9 71.16	17.60	0.00	53.56	-0.46	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
MW-6													
11/30/9						ND	ND	ND	ND	ND			
01/08/9						ND	ND	ND	ND	ND			
04/13/9	71.79	11.94		59.85		ND	ND	ND	ND	ND			
07/14/9	71.79	17.20	0.00	54.59	-5.26	ND	0.99	2.4	ND	1.9			
10/14/9	71.44	17.21		54.23	-0.36	ND	ND	0.64	ND	ND			
01/12/9	94 71.44	17.44	0.00	54.00	-0.23	ND	ND	1.2	ND	2.9			
04/11/9	94 71.44	13.66	0.00	57.78	3.78								Sampled Q3 only
07/07/9	94 71.44	14.05	0.00	57.39	-0.39	ND	ND	ND	ND	ND			
10/05/9	94 71.44	14.16	0.00	57.28	-0.11								Sampled Q3 only
01/09/9	71.44	13.73	0.00	57.71	0.43								Sampled Q3 only
04/17/9	71.44	11.30	0.00	60.14	2.43								Sampled Q3 only
07/19/9	71.44	12.32	0.00	59.12	-1.02	ND	ND	ND	ND	ND			
10/26/9	71.44	17.88	0.00	53.56	-5.56								Sampled Q3 only
01/16/9	96 71.44	16.38	0.00	55.06	1.50								Sampled Q3 only
04/15/9	6 71.44	14.00	0.00	57.44	2.38								Sampled Q3 only
07/11/9	6 71.44	13.58	0.00	57.86	0.42	ND	ND	ND	ND	ND	ND		
3538								Page 1	2 of 14				€ TRC

Former 76 Station 3538

Date	TOC	Depth to	LPH		Change in								Comments
Sampled	Elevation	Water	Thickness	water Elevation	Elevation	TPH-G	D	. T. 1	Ethyl-	Total	MTBE	MTBE	
	(feet)	(feet)	(feet)	(feet)	(feet)	8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
			(leet)	(leet)	(leet)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-6 01/17/9	continued		0.00	56.02	-1.84								Sampled Q3 only
							ND.	ND.	ND.	ND.	ND.		Sampled Q3 omy
07/21/9				57.66 57.70	1.64	ND	ND	ND	ND	ND	ND		Sampled Q3 only
01/14/9				57.79	0.13								Sampled Q3 only
07/06/9				57.54	-0.25	ND	ND	ND	ND	ND	ND		Samulad O2 only
01/13/9				56.51	-1.03				NID.				Sampled Q3 only
08/31/9				55.56	-0.95	ND	ND	ND	ND	ND	ND		Sampled Q3 only
01/21/0				55.24	-0.32				NID.				Sampled Q3 only
07/10/0				54.42	-0.82	ND	ND	ND	ND	ND	ND		Samulad O2 only
01/04/0				54.28	-0.14								Sampled Q3 only
07/16/0				54.54	0.26	ND	ND	ND	ND	ND	ND		0 1102 1
01/28/0				56.79	2.25								Sampled Q3 only
07/12/0				54.61	-2.18	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.5		0 1 100 1
01/14/0				55.12	0.51								Sampled Q3 only
07/10/0				58.40	3.28	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<2.0		
02/04/0				55.17	-3.23								Sampled Q3 only
07/29/0				56.39	1.22	ND<50	ND<0.3	ND<0.3	ND<0.3	ND<0.6	1.3		
03/02/0				56.86	0.47								Sampled Q3 only
09/30/0				56.92	0.06	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	1.7		
03/23/0				54.82	-2.10								Sampled Q3 only
09/26/0				53.79	-1.03	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/15/0				57.65	3.86								Sampled Q3 only
09/27/0				57.19	-0.46	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		
03/27/0	08 71.37	14.83	0.00	56.54	-0.65								Sampled Q3 only
38								Page 1	3 of 14				© TRO

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
September 1989 Through September 2009

Former 76 Station 3538

Date	TOC	Depth to	LPH	Ground-	Change in								Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		8015	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$							
MW-6	continued												
09/17/0	08 71.37	14.70	0.00	56.67	0.13	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	2.8		
03/27/0	9 71.37	15.66	0.00	55.71	-0.96								Sampled Q3 only
09/17/0	9 71.37	15.31	0.00	56.06	0.35	ND<50	ND<0.30	ND<0.30	ND<0.30	ND<0.60	ND<1.0		

Page 14 of 14

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 3538

Date				Ethylene-						Bromo-		
Sampled			Ethanol	dibromide	1,2-DCA				Total Oil	dichloro-	Bromo-	Bromo-
	TPH-D	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	and Grease	methane	form	methane
	(µg/l)	$(\mu g/l)$	(µg/l)	(mg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)					
MW-1												
09/15/89	ND								ND			
01/23/90	ND								1.5			
04/19/90	ND								ND			
07/17/90	ND								ND			
10/16/90	ND								ND			
01/15/91	ND								ND			
04/12/91	ND								ND			
07/15/91	ND								ND			
07/16/01										1.7		
07/29/04					ND<0.5					ND<0.5	ND<0.5	ND<1
09/30/05					ND<0.50					ND<0.50	ND<0.50	ND<1.0
09/26/06					ND<0.50					ND<0.50	ND<0.50	ND<1.0
09/27/07					ND<0.50					ND<0.50	ND<0.50	ND<1.0
09/17/08					ND<0.50					ND<0.50	ND<0.50	ND<1.0
MW-3												
08/25/00		ND		ND	ND	ND	ND	ND				
07/12/02		ND<20	ND<500	ND<2.0	ND<2.0	ND<2.0	ND<2.0	ND<2.0				

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 3538

Date Sampled	Carbon Tetra- chloride (µg/l)	Chloro- benzene (µg/l)	Chloro- ethane (µg/l)	Chloroform (µg/l)	Chloro- methane (µg/l)	Dibromo- chloro- methane (µg/l)	1,2- Dichloro- benzene (µg/l)	1,3- Dichloro- benzene (µg/l)	1,4- Dichloro- benzene (µg/l)	Dichloro- difluoro- methane (µg/l)	1,1-DCA (μg/l)	1,1-DCE (μg/l)
MW-1												
07/11/96				0.96								
07/21/97				1.0								
07/16/01				45								
07/12/02												1.8
07/10/03												0.89
07/29/04	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.2
09/30/05	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.52
09/26/06	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.60
09/27/07	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
09/17/08	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Page 1 of 1

Table 2 c
ADDITIONAL HISTORIC ANALYTICAL RESULTS
Former 76 Station 3538

Date Sampled	cis- 1,2-DCE (μg/l)	trans- 1,2-DCE (µg/l)	1,2- Dichloro- propane (µg/l)	cis-1,3- Dichloro- propene (µg/l)	trans-1,3- Dichloro- propene (µg/l)	Methylene chloride (μg/l)	1,1,2,2- Tetrachloro- ethane (µg/l)	Tetrachloro- ethene (PCE) (µg/l)	Trichloro- trifluoro- ethane (µg/l)	1,1,1- Trichloro- ethane (µg/l)	1,1,2- Trichloro- ethane (µg/l)	Trichloro- ethene (TCE) (µg/l)
MW-1												
09/15/89								2.7				
01/23/90								2.1				
04/19/90								2.2				
07/17/90								1.7				
10/16/90								2.0				
01/15/91								2.1				
04/12/91								2.0				
07/15/91								1.8				
07/14/92								1.4				
07/14/93								0.95				
07/07/94								0.83				
07/19/95								0.52				
07/11/96								0.73				
07/21/97								0.70				
08/31/99								ND				
07/16/01								ND				
07/12/02								ND<0.60				
07/10/03								ND<0.50				
07/29/04	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1	ND<0.5	ND<0.5	13	ND<0.5	ND<0.5	ND<0.5
09/30/05	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	9.1	ND<0.50	ND<0.50	ND<0.50
09/26/06	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	7.0	ND<0.50	ND<0.50	ND<0.50
09/27/07	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	4.3	ND<0.50	ND<0.50	ND<0.50
09/17/08	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50	5.4	ND<0.50	ND<0.50	ND<0.50

CTRC

Page 1 of 1

Table 2 d ADDITIONAL HISTORIC ANALYTICAL RESULTS Former 76 Station 3538

Date	Trichloro-	
Sampled	fluoro-	Vinyl
	methane	chloride
	(µg/l)	$(\mu g/l)$
MW-1		
07/29/04	ND<0.5	ND<0.5
09/30/05	ND<0.50	ND<0.50
09/26/06	ND<0.50	ND<0.50
09/27/07	ND<0.50	ND<0.50
09/17/08	ND<0.50	ND<0.50

Groundwater Elevations vs. Time Former 76 Station 3538

Benzene Concentrations vs Time

Former 76 Station 3538

00000¢

09/24/09

09/19/04

0.1

09/08/89

09/12/94

09/16/99

0.1

09/08/89

09/12/94

09/16/99

00000c¢

09/24/09

09/19/04

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

3/7/08 version

FIELD MONITORING DATA SHEET

Technician: MINW WVS	Job #/Task #:	165521 FAZU	Date: 9/17/04
Site #3539	Project Manager_	A. Colling	Pageof

				Depth	Depth	Product		
Well#	TOC	Time Gauged	Total Depth	to Water	to Product	Thickness (feet)	Time Sampled	Misc. Well Notes
Mw-4	√ V	0913	24.7 <i>j</i>		Floudet	(1661)	1 <i>0</i> 2 <i>0</i>	2"
MW- 1	V	0417	23.43	17.86 18.18				2 "
MW-5	V		~~~~~	17.60	_		1035	2"
MW-6	V	0923	30.13				1056	Z"
		0135		15.31			1119	
W. 3	٧	0941	27.12	17.88			1133	2''
Nw-2	√	044,7	14,53	18.01	•		1147	2"
			·					
						<u> </u>		
				<u> </u>				
			:					
		ļ				<u> </u>		
FIELD DATA	COMPL	ETE	QA/QC		COC	W	ELL BOX CO	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR'	Y	TRAFFIC	CONTROL		
					<u></u>		 	

GROUNDWATER SAMPLING FIELD NOTES

Technician:

Site: 3539 65521 Project No.: Sub MW-4 Well No. Purge Method: 17.86 Depth to Water (feet): Depth to Product (feet): 24.71 Total Depth (feet) LPH & Water Recovered (gallons): 6.85 Water Column (feet): Casing Diameter (Inches): 1923 80% Recharge Depth(feet): 1 Well Volume (gallons):_

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-l	Purge		rent belief						
1011			2	824,7	19.7	6.35			
			4	821.9	19.6	6.28			
	1015		b	846.1	19.9	6.28			
Static at Time Sampled			Total Gallons Purged			Sample Time			
17,90			4			1020			
Comments:					,				·

HB MW-Well No.____ Purge Method: 18.18 Depth to Water (feet): Depth to Product (feet):_ 23.93 Total Depth (feet) LPH & Water Recovered (gallons): 5.75 Water Column (feet): Casing Diameter (Inches): 19.33 80% Recharge Depth(feet): 1 Well Volume (gallons):__

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F , C)	pН	D O (mg/L)	ORP	Turbidity	
Pre-	Purge	er er er er eg har britan en a								
1025			1	577-4	18.	6.78				
			2	574.9	17.9	6.62				
	1031	3 5756 17.8		17.8	6.56					
Static at Time Sampled			Tota	Total Gallons Purged			Sample Time			
19.24				3			1035			
omments:										

GROUNDWATER SAMPLING FIELD NOTES

Technician:	A. Vidners			
Site: 3538 Project No :	65321		Date:	9/17/09
Well No. MW-5	Purge Method:	Sub		
Depth to Water (feet): 17.60	Depth to Product (fe	eet):		
Total Depth (feet) 30.\3	LPH & Water Recov	vered (gallons):	-	
Water Column (feet): 12.53	Casing Diameter (Ir	nches):	2	
80% Recharge Depth(feet): 10.11	1 Well Volume (galle	ons):	3	

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O (mg/L)	ORP	Turbidity
Pre-	Purge	dan basalan	1000000					77	
1047			3	1150	19.9	6.76			
			6	1138	20 Z	6.60			<u> </u>
	1051		q	1173	10.4	6.50			
Stat	tic at Time S	ampled	Tota	al Gallons Pur	ged		Sample	Time	-t
20.71				9			1056	· · ·	
comments:									

Well No. MW-6	Purge Method: Sub
Depth to Water (feet): 15.31	Depth to Product (feet):
Total Depth (feet) 30.04	LPH & Water Recovered (gallons):
Water Column (feet): 14.73	Casing Diameter (Inches):
80% Recharge Depth(feet): 18.26	1 Well Volume (gallons):3

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F , C)	pН	D O (mg/L)	ORP	Turbidity	
Pre-	Purge									
1109			3	843.5	21.0	6.81				
			6	782.4	21.3	6.76				
	413		9	714.2	21.	6-12				
····		_	· · · · · · · · · · · · · · · · · · ·		<u> </u>					
Static at Time Sampled			Total Gallons Purged			Sample Time				
i8.26				q			11/9			
Comments:				··						

GROUNDWATER SAMPLING FIELD NOTES

Technician:

80% Recharge Depth(feet):

Videlins 165521 3538 Site: Project No :_ MW-3 Well No._ Purge Method: 17.88 Depth to Water (feet): Depth to Product (feet): 27-12 Total Depth (feet) LPH & Water Recovered (gallons): 9.24 Water Column (feet): Casing Diameter (Inches): 19.73

1 Well Volume (gallons):__

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D O (mg/L)	ORP	Turbidity
Pre-F	ourge	edelahin	a Caraba A						
1126			Z	819.2	22.4	6.86			
			4	851.2	22.0	6.72			
	1129		6	874.8	21.7	6.66			
01.1	1 6								
Static at Time Sampled		ampled	l ot	al Gallons Pur	ged		Sample	Time	
17. 91		6			1133				
Comments:			- -						

Sub MW-2 Well No._ Purge Method:_ 18.01 Depth to Water (feet): Depth to Product (feet):_ 24.53 Total Depth (feet) LPH & Water Recovered (gallons):_ 6.52 Water Column (feet): Casing Diameter (Inches): 80% Recharge Depth(feet): 19.31 1 Well Volume (gallons):___

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F , C)	рН	D.O. (mg/L.)	ORP	Turbidity
Pre-	Purge								
1140			ζ	853.4	23.9	6.70			
			4	835.5	22,2	6.69			
	1143		6	833.6	21,6	6.65			
Static at Time Sampled			Total Gallons Purged			Sample Time			
18.06			4			1147			
Comments:							f *		

Date of Report: 09/23/2009

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

3538 RE:

BC Work Order: 0912430 B068504 Invoice ID:

Enclosed are the results of analyses for samples received by the laboratory on 9/17/2009. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Irvine, CA 92618

 TRC
 Project:
 3538
 Reported:
 09/23/2009 16:27

 21 Technology Drive
 Project Number:
 4511010869

Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	on.			
0912430-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3538 MW-4 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/17/2009 20:58 09/17/2009 00:00 Water	Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-4 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0912430-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3538 MW-1 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/17/2009 20:58 09/17/2009 00:00 Water	Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-1 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0912430-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3538 MW-5 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/17/2009 20:58 09/17/2009 00:00 Water	Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-5 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0912430-04	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3538 MW-6 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/17/2009 20:58 09/17/2009 00:00 Water	Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-6 Matrix: W Sample QC Type (SACode): CS Cooler ID:

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Information	n			
0912430-05	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3538 MW-3 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/17/2009 20:58 09/17/2009 00:00 Water	Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-3 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0912430-06	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 3538 MW-2 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	09/17/2009 20:58 09/17/2009 00:00 Water	Delivery Work Order: Global ID: T0600101472 Location ID (FieldPoint): MW-2 Matrix: W Sample QC Type (SACode): CS Cooler ID:

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID: 091243	30-01	Client Sample	e Name:	3538, MW-4, 9/17/2	009 12:00:00	MAC							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080	ND	
Toluene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080	ND	
Ethylbenzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080	ND	
Methyl t-butyl ether		ND	ug/L	1.0	EPA-8021	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080	ND	
Total Xylenes		ND	ug/L	0.60	EPA-8021	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080	ND	
Gasoline Range Organics (C4 - C1	2)	ND	ug/L	50	Luft	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080	ND	
a,a,a-Trifluorotoluene (PID Surroga	ate)	84.3	%	70 - 130 (LCL - UCL)	EPA-8021	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080		
a,a,a-Trifluorotoluene (FID Surroga	ate)	82.4	%	70 - 130 (LCL - UCL)	Luft	09/18/09	09/22/09 13:13	jjh	GC-V4	1	BSI1080		

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID: 09124	30-02	Client Sample	e Name:	3538, MW-1, 9/17/2	009 12:00:00	MAC							
		-				Prep	Run		Instru-		QC	MB	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080	ND	
Toluene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080	ND	
Ethylbenzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080	ND	
Methyl t-butyl ether		ND	ug/L	1.0	EPA-8021	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080	ND	
Total Xylenes		ND	ug/L	0.60	EPA-8021	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080	ND	
Gasoline Range Organics (C4 - C	:12)	ND	ug/L	50	Luft	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080	ND	
a,a,a-Trifluorotoluene (PID Surrog	jate)	80.9	%	70 - 130 (LCL - UCL)	EPA-8021	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080		
a,a,a-Trifluorotoluene (FID Surrog	jate)	84.1	%	70 - 130 (LCL - UCL)	Luft	09/18/09	09/22/09 13:37	jjh	GC-V4	1	BSI1080		

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID: 0912430)-03	Client Sample	e Name:	3538, MW-5, 9/17/2	2009 12:00:00)AM							
	•					Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080	ND	
Toluene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080	ND	
Ethylbenzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080	ND	
Methyl t-butyl ether		ND	ug/L	1.0	EPA-8021	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080	ND	
Total Xylenes		ND	ug/L	0.60	EPA-8021	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080	ND	
Gasoline Range Organics (C4 - C12	!)	ND	ug/L	50	Luft	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080	ND	
a,a,a-Trifluorotoluene (PID Surrogate	e)	81.0	%	70 - 130 (LCL - UCL)	EPA-8021	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080		
a,a,a-Trifluorotoluene (FID Surrogate	e)	79.7	%	70 - 130 (LCL - UCL)	Luft	09/18/09	09/22/09 14:01	jjh	GC-V4	1	BSI1080		

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID: 091243	0-04	Client Sampl	e Name:	3538, MW-6, 9/17/2	009 12:00:00	MAC							
						Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080	ND	
Toluene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080	ND	
Ethylbenzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080	ND	
Methyl t-butyl ether		ND	ug/L	1.0	EPA-8021	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080	ND	
Total Xylenes		ND	ug/L	0.60	EPA-8021	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080	ND	
Gasoline Range Organics (C4 - C1	2)	ND	ug/L	50	Luft	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080	ND	
a,a,a-Trifluorotoluene (PID Surroga	nte)	84.5	%	70 - 130 (LCL - UCL)	EPA-8021	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080		
a,a,a-Trifluorotoluene (FID Surroga	ite)	89.2	%	70 - 130 (LCL - UCL)	Luft	09/18/09	09/22/09 14:25	jjh	GC-V4	1	BSI1080		

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID: 09	912430-05	Client Sample	e Name:	3538, MW-3, 9/17/2	12:00:00)AM							
		-				Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080	ND	
Toluene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080	ND	
Ethylbenzene		ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080	ND	
Methyl t-butyl ether		30	ug/L	1.0	EPA-8021	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080	ND	
Total Xylenes		ND	ug/L	0.60	EPA-8021	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080	ND	
Gasoline Range Organics (C	4 - C12)	ND	ug/L	50	Luft	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080	ND	
a,a,a-Trifluorotoluene (PID S	urrogate)	90.6	%	70 - 130 (LCL - UCL)	EPA-8021	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080		
a,a,a-Trifluorotoluene (FID Si	urrogate)	90.1	%	70 - 130 (LCL - UCL)	Luft	09/18/09	09/22/09 14:49	jjh	GC-V4	1	BSI1080		

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

BCL Sample ID: 0912430-	06 Client Sai	mple Name:	3538, MW-2, 9/17/2	2009 12:00:00	MAC							
	•				Prep	Run		Instru-		QC	MB	Lab
Constituent	Result	Units	PQL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	2.7	ug/L	0.30	EPA-8021	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080	ND	
Toluene	ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080	ND	
Ethylbenzene	ND	ug/L	0.30	EPA-8021	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080	ND	
Methyl t-butyl ether	1.1	ug/L	1.0	EPA-8021	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080	ND	
Total Xylenes	ND	ug/L	0.60	EPA-8021	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080	ND	
Gasoline Range Organics (C4 - C12)	ND	ug/L	50	Luft	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080	ND	
a,a,a-Trifluorotoluene (PID Surrogate) 88.0	%	70 - 130 (LCL - UCL)	EPA-8021	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080		
a,a,a-Trifluorotoluene (FID Surrogate) 91.1	%	70 - 130 (LCL - UCL)	Luft	09/18/09	09/22/09 15:14	jjh	GC-V4	1	BSI1080		

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Precision & Accuracy

										Contr	ol Limits
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BSI1080	Matrix Spike	0911528-36	0	36.107	40.000	ug/L		90.3		70 - 130
		Matrix Spike Duplicate	0911528-36	0	35.191	40.000	ug/L	2.6	88.0	20	70 - 130
Toluene	BSI1080	Matrix Spike	0911528-36	0	36.724	40.000	ug/L		91.8		70 - 130
		Matrix Spike Duplicate	0911528-36	0	35.853	40.000	ug/L	2.4	89.6	20	70 - 130
Ethylbenzene	BSI1080	Matrix Spike	0911528-36	0	35.374	40.000	ug/L		88.4		70 - 130
		Matrix Spike Duplicate	0911528-36	0	34.363	40.000	ug/L	2.9	85.9	20	70 - 130
Methyl t-butyl ether	BSI1080	Matrix Spike	0911528-36	0	36.343	40.000	ug/L		90.9		70 - 130
		Matrix Spike Duplicate	0911528-36	0	35.831	40.000	ug/L	1.4	89.6	20	70 - 130
Total Xylenes	BSI1080	Matrix Spike	0911528-36	0	102.53	120.00	ug/L		85.4		70 - 130
		Matrix Spike Duplicate	0911528-36	0	99.391	120.00	ug/L	3.1	82.8	20	70 - 130
Gasoline Range Organics (C4 - C12)	BSI1080	Matrix Spike	0911528-36	0	968.38	1000.0	ug/L		96.8		70 - 130
		Matrix Spike Duplicate	0911528-36	0	907.62	1000.0	ug/L	6.5	90.8	20	70 - 130
a,a,a-Trifluorotoluene (PID Surrogate)	BSI1080	Matrix Spike	0911528-36	ND	43.082	40.000	ug/L		108		70 - 130
		Matrix Spike Duplicate	0911528-36	ND	43.374	40.000	ug/L		108		70 - 130
a,a,a-Trifluorotoluene (FID Surrogate)	BSI1080	Matrix Spike	0911528-36	ND	40.633	40.000	ug/L		102		70 - 130
		Matrix Spike Duplicate	0911528-36	ND	39.998	40.000	ug/L		100		70 - 130

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Laboratory Control Sample

										Control	Limits	
					Spike			Percent		Percent		
Constituent	Batch ID	QC Sample ID	QC Type	Result	Level	PQL	Units	Recovery	RPD	Recovery	RPD	Lab Quals
Benzene	BSI1080	BSI1080-BS1	LCS	38.717	40.000	0.30	ug/L	96.8		85 - 115		
Toluene	BSI1080	BSI1080-BS1	LCS	39.494	40.000	0.30	ug/L	98.7		85 - 115		
Ethylbenzene	BSI1080	BSI1080-BS1	LCS	37.746	40.000	0.30	ug/L	94.4		85 - 115		
Methyl t-butyl ether	BSI1080	BSI1080-BS1	LCS	38.847	40.000	1.0	ug/L	97.1		85 - 115		
Total Xylenes	BSI1080	BSI1080-BS1	LCS	109.51	120.00	0.60	ug/L	91.3		85 - 115		
Gasoline Range Organics (C4 - C12)	BSI1080	BSI1080-BS1	LCS	1070.5	1000.0	50	ug/L	107		85 - 115		
a,a,a-Trifluorotoluene (PID Surrogate)	BSI1080	BSI1080-BS1	LCS	43.332	40.000		ug/L	108		70 - 130		
a,a,a-Trifluorotoluene (FID Surrogate)	BSI1080	BSI1080-BS1	LCS	39.443	40.000		ug/L	98.6		70 - 130		

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

Purgeable Aromatics and Total Petroleum Hydrocarbons

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BSI1080	BSI1080-BLK1	ND	ug/L	0.30		
Toluene	BSI1080	BSI1080-BLK1	ND	ug/L	0.30		
Ethylbenzene	BSI1080	BSI1080-BLK1	ND	ug/L	0.30		
Methyl t-butyl ether	BSI1080	BSI1080-BLK1	ND	ug/L	1.0		
Total Xylenes	BSI1080	BSI1080-BLK1	ND	ug/L	0.60		
Gasoline Range Organics (C4 - C12)	BSI1080	BSI1080-BLK1	ND	ug/L	50		
a,a,a-Trifluorotoluene (PID Surrogate)	BSI1080	BSI1080-BLK1	86.9	%	70 - 130 (LC	L - UCL)	
a,a,a-Trifluorotoluene (FID Surrogate)	BSI1080	BSI1080-BLK1	91.3	%	70 - 130 (LC	L - UCL)	

21 Technology Drive Project Number: 4511010869
Irvine, CA 92618 Project Manager: Anju Farfan

Notes And Definitions

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit

RPD Relative Percent Difference

BC LABORATORIES INC.		SAMPLE	RECEIF	TFORM	Re	v. No. 12	06/24/08	Page	1 Of 1	
Submission #: 09-124	30								++	
SHIPPING INFO	ORMATION					SHIDDI	NG CON	TAINED		
Federal Express □ UPS □					Ice Chest		Non			
BC Lab Field Service 💆 💢 Othe	r 🗆 (Specify)			Вох			r □ (Spe	cify)	
Refrigerant: Ice 🗂 Blue Ice	□ None	□ Oth	ner 🗆 🤇	Commen	ts:					
Custody Seals Ice Chest □	Containe	ers 🗆	None □	Comme	nts:					
Intact? Yes □ No □	Intact? Yes	□No□	T							
All samples received? Yes ☑ No □	All samples	containers	intact? Yo	∍s,⊠ No [Descript	tion(s) mate	ch COC? Y	′es ⊠ No	П
COC Received	Emissivity: _(1		2102
FOUR THE						er ID: <u>\ \ \</u>	<u>.000</u>	Date/Tim	ie <u>4-17-0</u>	Į
/- 120	Temperature:	: A <u> </u>	<u>ک</u> •	C / C	3.7	°C		Analyst I	nit _ <u> _ り</u> のい	Q
					CANADIE	UMBDEDO		<u> </u>		
SAMPLE CONTAINERS	1	2	3	4	SAMPLE I	40MBEK2	7	8	9	T 10
QT GENERAL MINERAL/ GENERAL PHYSIC	AL		·				<u> </u>		İ	10
PT PE UNPRESERVED		·								
OT INORGANIC CHEMICAL METALS										
PT INORGANIC CHEMICAL METALS										
PT CYANIDE										
PT NITROGEN FORMS										
PT TOTAL SULFIDE		2								
20z. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON										
PT TOX										
PT CHEMICAL OXYGEN DEMAND										
PtA PHENOLICS										<u> </u>
40ml VOA VIAL TRAVEL BLANK 40ml VOA VIAL	A 3	A 31	A-3	N .2	AB	n 2				
OT EPA 413.1, 413.2, 418.1	17 1	11 (3)	KID	TA (3)	H W	A13) ()	()	(()
PT ODOR										
RADIOLOGICAL										
BACTERIOLOGICAL								T		
40 ml VOA VIAL- 504										<u> </u>
OT EPA 508/608/8080	·									
QT EPA 515.1/8150	es e									
QT EPA 525	N H (THE ACADE)				*					
OT EPA 525 TRAVEL BLANK										
100ml EPA 547										
100ml EPA 531.1			MINT							
QT EPA 548										
QT EPA 549										
QT EPA 632										
QT EPA 8015M										
QT AMBER		·								
8 OZ. JAR										
32 OZ. JAR										
SOIL SLEEVE										
PCB VIAL										
PLASTIC BAG								***************************************		
FERROUS IRON			· · ·					:		
ENCORE	<u> </u>									-

Comments:____Sample Numbering Completed By:____A = Actual / C = Corrected Date/Time: 9-18-09 BC LABORATORIES, INC.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

CHAIN OF CUSTODY

		09-12430			An	aly	/sis	Re	dne	ste	d		
Bill to: Conoco Phillips/ TRC	Consultant Firm: TR		MATRIX (GW)	ស									
Address: 411 West Mac Arthur Blud.	21 Technology Drive Irvine, CA 92618-230 Attn: Anju Farfan		Ground- water (S)	, Gas by 8015			nates es	8260B					nested
city: Oakland	4-digit site#: 3538 Workorder# 01 178	7 - 45 10 0869	(WW) Waste- water	y 8021B,	TPH GAS by 8015M	TPH DIESEL by 8015	8260 full list w/ oxygenates	BTEX/MTBE/OXYS BY	8260B	GC/MS			Turnaround Time Requested
State: CA Zip:	Project #: (655)	21	(SL)	<u>В</u>	by 8	П	ž.	ME O	ò				E
Conoco Phillips Mgr: Terry Grays	Sampler Name: And	blew Vidiers	Sludge		3AS	ES		S	ğ	-G by			2
Lab# Sample Description	Field Point Name	Date & Time Sampled		BTEX/MTBE by	HE	Ē	8260	BTEX	ETHANOL	直			=
/	MW-4	9/17/09	GW	X									STD)
-2	Mw-	1191	**************************************										
-2 -3 -4 -5 -6	MW-3												
-ip /	NW-6					-	JHK	3.V	\sim	Mariana a	adinis languagi popularing a sing	W. Janaharan	
-5	1W-3	ACCESSION OF THE PROPERTY OF T					ma	74					
-6 N	1W-Z	V		V		La section	ech in december and a significant in the control of			BUB (And the state of t	V
Comments:	gnature		·	Received by:				,	9/1	& Tir 19/0	9 13	90	
GLOBAL ID: 7060001477	Relinquished by: (Si	Willan II	17/89	Received by: Received by:				Š		Date 2. [& Tir	ne	İ
	Relinquished by: (Si	9.17.19	D BUTE		Rec	ceived	1 by:	france and a con-			& Tir Z-C		J58
				19/	1	V		***************************************	<u> </u>	1 0	* ***		

Receipt of Manifest is Pending

(October 9, 2009)

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.