

3330 Cameron Park Drive, Ste 550 Cameron Park, California 95682 (530) 676-6004 ~ Fax: (530) 676-6005

January 14, 2005 Project No. 2007-0057-01

Mr. Amir Gholami Alameda County Health Agency Department of Environmental Health 1131 Harbor Bay Parkway, 2nd Floor Alameda, California 94502

Re: Quarterly Groundwater Monitoring Report, Fourth Quarter 2004, for former USA Service Station No. 57, located at 10700 MacArthur Boulevard, Oakland, California

Dear Mr. Gholami:

Stratus Environmental, Inc. (Stratus) is submitting the attached report which presents the results of the fourth quarter 2004 quarterly monitoring and sampling program on behalf of USA Gasoline Corporation (USA) for the former USA Service Station No. 57, located at 10700 MacArthur Boulevard, Oakland, California (Figure 1). This report is in compliance with Alameda County Department of Environmental Health requirements for underground storage tank (UST) investigations.

If you have any questions regarding this report, please contact Steve Carter at (530) 676-6008.

Sincerely,

STRATUS ENVIRONMENTAL, INC.

Gowri S. Kowtha, P.E.

lenior Engineer

Stephen J. Carter, R.G.

Project Manager

Attachment: Quarterly Groundwater Monitoring Report, Fourth Quarter 2004

cc: Mr. Charles Miller, USA Gasoline Corporation

Mr. Ken Phares, Jay-Phares Corporation

Mr. Peter McIntyre, AEI Consultants

FOF CALIFO

Date	January	14,	2005
------	---------	-----	------

USA GASOLINE QUARTERLY GROUNDWATER MONITORING REPORT

Facility No: <u>57</u> Address:	10700 MacArthur Blvd., Oakland, California
USA Gasoline Project Supervisor:	Charles Miller
Consulting Co./Contact Person:	Stratus Environmental, Inc./ Stephen J. Carter, R.G.
Consultant Project No:	2007-0057-01
Primary Agency/Regulatory ID No:	Amir Gholami, Alameda County Department of Environmental Health / 4490

WORK PERFORMED THIS QUARTER (Fourth 2004):

- Stratus measured groundwater elevations and collected groundwater samples from wells S-1, S-2, MW-3, MW-4, MW-7, and MW-8 on November 11, 2004. Well MW-5 was damaged and well MW-6 was dry.
- 2. Stratus compiled and evaluated groundwater monitoring data.
- 3. Stratus prepared and submitted a Dual Phase Extraction Test Report (dated October 15, 2004).

WORK PROPOSED FOR NEXT QUARTER (First 2005):

- 1. The next sampling event is tentatively scheduled for February 2005. Groundwater samples will be collected for laboratory analysis from wells S-1, S-2, and MW-3 through MW-8.
- Groundwater samples will be analyzed for total petroleum hydrocarbons as gasoline (TPHG) using U.S. Environmental Protection Agency Method (EPA) Method SW8015B/DHS Luft Manual, and for benzene, toluene, ethylbenzene, total xylenes (BTEX), methyl tertiary butyl ether (MTBE), tertiary butyl alcohol (TBA), ethyl tertiary butyl ether (ETBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), 1,2-dichloroethane (1,2-DCA), 1,2-dibromoethane (EDB), methanol, and ethanol using EPA Method SW8260B.
- 3. Upon concurrence by ACEHD with the recommendations in the *Dual Phase Extraction Test Report*, Stratus will initiate the proposed interim remedial action.

Current Phase of Project:	Monitoring
Frequency of Groundwater Sampling:	All Wells = Quarterly
Frequency of Groundwater Monitoring:	Quarterly
Groundwater Sampling Date:	November 11, 2004
Is Free Product (FP) Present on Site:	No
FP Recovered This Quarter:	NA
Cumulative FP Recovered to Date:	NA
Approximate Depth to Groundwater:	11.93 to 21.95 feet below top of well casing
Groundwater Flow Direction:	To the southeast, and away from a groundwater high centered around well MW-3
Groundwater Gradient:	0.048 to 0.071 ft/ft

DISCUSSION:

At the time of the fourth quarter 2004 monitoring event, groundwater elevations had decreased between 0.44 and 1.0 feet in wells S-1, S-2, MW-3, MW-7, and MW-8, and increased 0.69 feet in well MW-4 since the previous monitoring event (August 10, 2004). Depth-to-water measurements were corrected to mean sea level (MSL) and used to construct a groundwater elevation contour map (Figure 2). The groundwater flow direction on November 11, 2004, was generally to the southeast, and away from an apparent groundwater high centered around well MW-3. Gradients ranged from 0.048 to 0.071 ft/ft. Similar groundwater flow patterns have been observed during previous monitoring events.

TPHG, benzene, and MTBE were reported in wells S-2 and MW-3. TPHG and MTBE were also reported in well S-1 and MTBE was also reported in well MW-7. The highest concentration of TPHG (20,000 μ g/L) was reported in well S-2, and the highest concentrations of benzene (810 μ g/L) and MTBE (690 μ g/L) were reported in well MW-3. TBA was reported in wells S-1 (14 μ g/L) and MW-3 (1,400 μ g/L). 1,2-DCA was reported in wells S-1 (7.3 μ g/L) and MW-3 (140 μ g/L). DIPE, ETBE, TAME, EDB, methanol, or ethanol were not reported in any of the wells. Concentrations reported during the fourth quarter 2004 are generally consistent with historical analytical data. The laboratory noted that the pH in the samples for wells S-1, S-2, and MW-3 were above the EPA recommended limit of 2. As the reported results for these wells appear to be generally consistent with historical data, it appears that the elevated pH has not affected data quality. Analytical results of TPHG, benzene, and MTBE for groundwater samples collected on November 11, 2004, are presented in Figure 3.

ATTACHMENTS:

•	Table 1	Groundwater Elevation and Analytical Summary
-	1000	Circuit and Chairting Sulfillian

- Table 2 Groundwater Analytical Results for Oxygenates and Additional Compounds
- Figure 1 Site Location Map
- Figure 2 Groundwater Elevation Contour Map (Fourth Quarter 2004)
- Figure 3 Groundwater Analytical Summary (Fourth Quarter 2004)
- Appendix A Field Data Sheets
- Appendix B Sampling and Analysis Procedures
- Appendix C Certified Analytical Reports and Chain-of-Custody Documentation

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former USA Station No. 57

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	TPHG (μg/L)	TPHD (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)
S-1	03/03/95	13.10	74.74	61.64	910	5,900	260	7.6	16	14	NA
0 1	07/24/95	12.35	, .,, .	62.39	NA	NA	NA	NA	NA	NA	NA
	11/22/95	19.30	78.68	59.38	460	6100	13	0.69	0.99	1.1	460*
	12/06/95	19.59		59.09	NA	NA	NA	NA	NA	NA	NA
	01/04/96	19.52		59.16	NA	NA	NA	NA	NA	NA	NA
	01/31/97	15.07		63.61	1,100	200	11	6	3	6	200*
	10/10/97	18.90		59.78	530	2,000	< 0.5	2.1	< 0.5	<2	230*
	01/20/98	16.79		61.89	1,800	200	< 0.5	<0.5	1.5	10	87*
	04/28/98	8.37		70.31	130	7,300	1.9	3.2	< 0.5	<0.5	310*
	07/31/98	11.61		67.07	310	2,000	0.54	4.6	3.8	0.82	280*
	06/10/99	14.35		64.33	660	150	0.99	< 0.5	< 0.5	2.4	80*[1]
	10/18/00	17.56		61.12	<50	330	< 0.5	0.93	< 0.5	< 0.5	44
	03/12/02	16.29		62.39	500	< 50	2.8	4.8	0.79	4.4	63
	11/19/02	19.53		59.15	190	NA	< 0.50	< 0.50	< 0.50	< 0.50	190
	01/09/03	18.14		60.54	510	NA	1.1	< 0.50	0.52	< 0.50	11
	04/14/03	18.04		60.64	300	NA	<1.0[2]	<1.0[2]	<1.0[2]	<1.0[2]	27
	07/21/03	20.31		58.37	300	NA	< 0.50	< 0.50	< 0.50	< 0.50	11
	10/09/03	19.46		59.22	390	NA	< 0.50	< 0.50	< 0.50	< 0.50	8.8
	01/15/04	18.21	79.66	61.45	200	NA	< 0.50	< 0.50	< 0.50	<0.50	6.0
	04/08/04	19.29		60.37	140	NA	< 0.50	< 0.50	< 0.50	< 0.50	12
	08/10/04	18.86		60.80	110	NA	4.6	< 0.50	< 0.50	0.51	73
	11/11/04	19.81		59.85	160	NA	< 0.50	< 0.50	< 0.50	< 0.50	150

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former USA Station No. 57

Well	Date	Depth to Water	Well Elevation	Groundwater Elevation	TPHG	TPHD	Benzene	Toluene	Ethylbenzene	Total Xylenes	МТВЕ
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/L)	(µg/L)	(μg/L)
S-2	03/03/95	15.39	76.86	61.47	24,000	6,000	1,900	440	600	2,500	NA
	07/24/95	14.47		62.39	ŃA	ΝA	NA	NA	NA	NA	NA
	11/22/95	21.52	80.93	59.41	NA	NA	NA	NA	NA	NA	NA
	12/06/95	21.78		59.15	NA	NA	NA	NA	NA	NA	NA
	01/04/96	21.75		59.18	NA	NA	NA	NA	NA	NA	NA
	01/31/97	17.25		63.68	NA	NA	NA	NA	NA	NA	NA
	10/10/97	21.21		59.72	13,000	<50	260	38	190	280	600*
	01/20/98	19.07		61.86	1,900	2300	4.6	6.3	< 0.5	4.6	190*
	04/28/98	10.47		70.46	22,000	<100	980	160	320	680	570*
	07/31/98	13.71		67.22	160,000	<50	950	290	550	1,700	550*
	11/02/98	17.31		63.62	14,000	<500	170	70	170	230	490*
	06/10/99	16.48		64.45	17,000	<50	650	230	<25	750	490*[1]
	10/18/00	19.70		61.23	4,400	<50	2	64	5.1	12	270
	03/12/02	18.56		62.37	5,100	660	62	44	52	78	430
	11/19/02	21.70		59.23	26,000	NA	1,400	180	520	340	750
	01/09/03	20.37		60.56	16,000	NA	120	32	76	214	270
	04/14/03	19.93		61.00	16,000	NA	160	76	210	290	400
	07/21/03	22.00		58.93	9,700	NA	270	90	200	277	410
	10/09/03	21.58		59.35	10,000	NA	39	9.2	52	26.5	180
	01/15/04	20.44	81.90	61.46	6,300	NA	21	<2.0 [3]	20	3.1	130
	04/08/04	17.15		64.75	13,000	NA	160	76	170	231	430
	08/10/04	20.98		60.92	10,000	NA	76	13	<5.0[3]	500	92
	11/11/04	21.95		59.95	20,000	NA	530	240	370	1,730	420

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former USA Station No. 57

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	TPHG (μg/L)	TPHD (μg/L)	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)																							
MW-3	03/03/95	13.99	76.30	62.31	2,500	1,600	540	92	36	200	NA																							
	07/24/95	13.33		62.97	NA	NA	NA	NA	NA	NA	NA																							
	11/22/95	20.94	80.32	59.38	14,000	5,400	5,700	230	430	650	820*																							
	12/06/95	17.48		62.84	NA	NA	NA	NA	NA	NA	NA																							
	01/04/96	20.01		60.31	NA	NA	NA	NA	NA	NA	NA																							
		01/31/97	16.63		63.69	1,100	< 50	130	8	5	5	NA																						
	10/10/97	20.62		59.70	3,400	1,100	830	4	100	<10	160*																							
	01/20/98	15.40																										64.92	3,900	550	7.9	4.1	< 0.5	3.7
	04/28/98	10.51		69.81	800	1,000	82	5.2	5.7	5.4	240*																							
	07/31/98	13.46		66.86	2,200	610	510	7.6	16	5.27	310*																							
	11/02/98	17.11		63.21	4,900	1,600	220	16	13	13.7	180*																							
	06/10/99	15.24		65.08	1,000	120	< 0.5	< 0.5	< 0.5	1.1	120*[1]																							
	10/18/00	15.41		64.91	< 50	< 50	< 0.5	< 0.5	<0.5	< 0.5	12																							
	04/08/04	13.70		66.62	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	19																							
	08/10/04	16.96		63.36	580	NA	19	<1.0[3]	<1.0[3]	3.3	300																							
	11/11/04	17.40		62.92	3,000	NA	810	<5.0[3]	43	<5.0[3]	690																							

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Formula USA Station No. 57

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	TPHG (μg/L)	TPHD (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
MW-4	11/22/95	14.99	76.42	61.43	<50	200	<0.5	1.5	<0.5	1.7	6.4*
<u> </u>	12/06/95	11.21		65.21	NA	NA	NA	NA	NA	NA	NA
	01/04/96	14.62		61.80	NA	NA	NA	NA	NA	NA	NA
	01/31/97	8.18		68.24	< 50	< 50	< 0.5	2	< 0.5	2	11*
	10/10/97	14.14		62.28	<50	<50	< 0.5	< 0.5	< 0.5	<2	<5.0*
	01/20/98	7.05		69.37	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	04/28/98	5.88		70.54	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	8.40		68.02	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/02/98	16.08		60.34	NA	NA	NA	NA	NA	NA	NA
	06/10/99	14.81		61.61	NA	NA	NA	NA	NA	NA	NA
	10/18/00	12.71		63.71	<50	< 50	< 0.5	0.59	0.82	0.53	<5.0*
	03/12/02	8.92		67.50	< 50	< 50	< 0.5	0.61	0.72	2.5	1.8
	11/19/02	13.24		-13.24	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/09/03	11.00		-11.00	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/03	11.03		-11.03	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	07/21/03	13.10		-13.10	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/09/03	13.33		-13.33	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/15/04	12.14		-12.14	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/08/04	10.76		65.66	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	08/10/04	12.62		63.80	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	11.93		64.49	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former USA Station No. 57

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	TPHG (μg/L)	TPHD (μg/L)	Benzene (μg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	MTBE (μg/L)
MW-5	11/22/95	19.56	80.52	60.96	<50	280	<0.5	1.8	<0.5	3	2.2*
	12/06/95	15.84		64.68	NA	NA	NA	NA	NA	NA	NA
	01/04/96	19.36		61.16	NA	NA	NA	NA	NA	NA	NA
	01/31/97	13.31		67.21	80	<50	< 0.5	0.6	< 0.5	2	6*
	10/10/97	17.80		62.72	<50	< 50	< 0.5	< 0.5	< 0.5	<2	<5*
	01/20/98	12.58		67.94	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	04/28/98	9.45		71.07	<50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	7.38		73.14	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/02/98	15.98		64.54	<50	<500	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	06/10/99	14.60		65.92	NA	NA	NA	NA	NA	NA	NA
	10/18/00	17.77		62.75	<50	< 50	< 0.5	0.75	<0.5	0.79	28
	03/12/02	15.72		64.80	< 50	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	11/19/02	NM		NM				Well Dam	aged		
	01/09/03	NM		NM				Well Dam	aged		
	04/14/03	NM		NM				Well Dam	aged		
	07/21/03	NM		NM				Well Dam	aged		
	10/09/03	NM		NM				Well Dam	aged		
	01/15/04	NM		NM				Well Dam	aged		
	04/08/04	16.80		63.72	<100	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	08/10/04	18.58		61.94	89	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	NM		NM				Well Dam	aged		

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former USA Station No. 57

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	TPHG (μg/L)	TPHD (μg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (μg/L)
MW-6	11/22/95	21.73	81.64	59.91	<50	140	<0.5	1.2	<0.5	1.5	5.3*
	12/06/95	18.03		63.61	NA	NA	NA	NA	NA	NA	NA
	01/04/96	21.67		59.97	NA	NA	NA	NA	NA	NA	NA
	01/31/97	16.01		65.63	70	< 50	< 0.5	2	<0.5	<1	5*
	10/10/97	20.55		61.09	80	< 50	< 0.5	< 0.5	< 0.5	<2	<5*
	01/20/98	15.74		65.90	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0*
	04/28/98	10.78		70.86	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	13.97		67.67	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0*
	11/02/98	17.97		63.67	NA	NA	NA	NA	NA	NA	NA
	06/10/99	16.92		64.72	NA	NA	NA	NA	NA	NA	NA
	04/08/04	NM		NM			Well O	bstructed -	Not Sampled		
	08/10/04	NM		NM			I	Dry - Not Sa	ampled		
	11/11/04	17.20		64.44			I	Dry - Not Sa	ampled		

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Date	Depth to Water	Well Elevation	Groundwater Elevation	TPHG	TPHD	Benzene	Toluene	Ethylbenzene	Total Xylenes	MTBE
Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(µg/L)	(μg/L)	(μg/L)	(μg/ L)	(μg/L)	(µg/L)
11/22/95	19.38	78.86	59.48	<50	180	<0.5	0.57	<0.5	0.62	0.73*
12/06/95	19.72		59.14	NA	NA	NA	NA	NA	NA	NA
01/04/96	19.76		59.10	NA	NA	NA	NA	NA	NA	NA
01/31/97	15.25		63.61	70	<50	0.7	1	<0.5	<1	8*
10/10/97	19.03		59.83	<50	<50	< 0.5	< 0.5	<0.5	<2	15*
01/20/98	17.11		61.75	<50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0*
04/28/98	8.22		70.64	< 50	< 50	< 0.5	< 0.5	<0.5	< 0.5	9.3*
07/31/98	11.53		67.33	< 50	<50	< 0.5	< 0.5	<0.5	< 0.5	<5.0*
11/02/98	15.15		63.71	NA	NA	NA	NA	NA	NA	NA
06/10/99	14.23		64.63	NA	NA	NA	NA	NA	NA	NA
10/18/00	17.59		61.27	NA	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
03/12/02	16.54		62.32	<50	<50	< 0.5	<0.5	< 0.5	< 0.5	2.9
11/19/02	19.59		-19.59	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	3.8
01/09/03	18.38		-18.38	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.7
04/14/03	18.17		-18.17	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
07/21/03	20.29		-20.29	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.8
10/09/03	19.48		-19.48	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.9
01/15/04	18.45	79.81	61.36	< 50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.6
04/08/04	17.28		62.53	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	0.81
08/10/04	18.85		60.96	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	2.1
11/11/04	19.85		59.96	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	1.0
	11/22/95 12/06/95 01/04/96 01/31/97 10/10/97 01/20/98 04/28/98 07/31/98 11/02/98 06/10/99 10/18/00 03/12/02 11/19/02 01/09/03 04/14/03 07/21/03 10/09/03 01/15/04 04/08/04	11/22/95 19.38 12/06/95 19.72 01/04/96 19.76 01/31/97 15.25 10/10/97 19.03 01/20/98 17.11 04/28/98 8.22 07/31/98 11.53 11/02/98 15.15 06/10/99 14.23 10/18/00 17.59 03/12/02 16.54 11/19/02 19.59 01/09/03 18.38 04/14/03 18.17 07/21/03 20.29 10/09/03 19.48 01/15/04 18.45 04/08/04 17.28 08/10/04 18.85	11/22/95	11/22/95 19.38 78.86 59.48 12/06/95 19.72 59.14 01/04/96 19.76 59.10 01/31/97 15.25 63.61 10/10/97 19.03 59.83 01/20/98 17.11 61.75 04/28/98 8.22 70.64 07/31/98 11.53 67.33 11/02/98 15.15 63.71 06/10/99 14.23 64.63 10/18/00 17.59 61.27 03/12/02 16.54 62.32 11/19/02 19.59 -19.59 01/09/03 18.38 -18.38 04/14/03 18.17 -18.17 07/21/03 20.29 -20.29 10/09/03 19.48 -19.48 01/15/04 18.45 79.81 61.36 04/08/04 17.28 62.53 08/10/04 18.85 60.96	11/22/95 19.38 78.86 59.48 <50	11/22/95 19.38 78.86 59.48 <50	11/22/95 19.38 78.86 59.48 <50	11/22/95 19.38 78.86 59.48 <50	11/22/95 19.38 78.86 59.48 <50	11/22/95 19.38 78.86 59.48 <50 180 <0.5 0.57 <0.5 0.62 12/06/95 19.72 59.14 NA NA

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY
Former USA Station No. 57

		Depth to	Well	Groundwater						Total	
Well	Date	Water	Elevation	Elevation	TPHG	TPHD	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
Number	Collected	(feet)	(ft msl)	(ft msl)	(μg/L)	(μg/L)	(µg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)
MW-8	11/22/95	33.33	79.55	46.22	< 50	360	<0.5	1.3	<0.5	2.1	2.1*
	12/06/95	17.57		61.98	NA	NA	NA	NA	NA	NA	NA
	01/04/96	20.08		59.47	NA	NA	NA	NA	NA	NA	NA
	01/31/97	18.72		60.83	80	<50	0.6	1	< 0.5	1	8*
	10/10/97	20.26		59.29	50	<50	< 0.5	< 0.5	< 0.5	<2	<5*
	01/20/98	15.91		63.64	< 50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	04/28/98	10.39		69.16	<50	<50	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	07/31/98	12.93		66.62	<50	<50	< 0.5	< 0.5	< 0.5	<0.5	<5.0*
	11/02/98	16.90		62.65	<50	< 500	< 0.5	< 0.5	< 0.5	< 0.5	<5.0*
	06/10/99	14.98		64.57	NA	NA	NA	NA	NA	NA	NA
	10/18/00	16.27		63.28	<50	<50	< 0.5	< 0.5	1. 1	6.3	8.6*
	03/12/02	14.56		64.99	< 50	<50	< 0.5	0.63	0.55	1.7	0.94
	11/19/02	21.14		-21.14	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/09/03	17.90		-17.90	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/14/03	17.84		-17.84	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	<0.50
	07/21/03	19.79		-19.79	<100[2]	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	10/09/03	21.02		-21.02	<50	NA	<0.50	< 0.50	< 0.50	< 0.50	< 0.50
	01/15/04	18.10	80.50	62.40	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	04/08/04	17.51		62.99	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	08/10/04	20.76		59.74	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
	11/11/04	21.38		59.12	<50	NA	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50

TABLE 1

GROUNDWATER ELEVATION AND ANALYTICAL SUMMARY

Well Number	Date Collected	Depth to Water (feet)	Well Elevation (ft msl)	Groundwater Elevation (ft msl)	TPHG (μg/L)	TPHD (µg/L)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (µg/L)	MTBE (µg/L)
Note:											
* = MTBE a	nalyzed using E	PA Method 80	020/8021B						msl = Mean sea leve	al .	
MTBE = Me	thyl tert-butyl e	ther							μg/L = micrograms	per liter	
TPHD = Tot	al petroleum hy	drocarbons as	diesel								
TPHG = Tot	al petroleum hy	drocarbons as	gasoline						NA = Not analyzed		
TPHG analy	zed using EPA	Method 8015B	3 and the remai	ning analytes using E	EPA Method	8260B			NM = Not measured	i	
[1] Laborato	ry indicates the	chromatogram	n does not mate	h the diesel hydrocar	bon range pa	ittern.					•
[2] Reportin	g limits were in	creased due to	sample foamin	ig.							
[3] Reportin	g limits were in	creased due to	high concentra	tions of target analyt	tes.						
Monitoring	wells surveyed t	oy Morrow Sur	veying on Febr	ruary 10, 2004.							
Data prior to	November 19,	2002 provided	i by GHH Engi	neering.							
1											

TABLE 2

GROUNDWATER ANALYTICAL RESULTS
FOR OXYGENATES AND ADDITIONAL COMPOUNDS

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (µg/L)	1,2-DCA (μg/L)	EDB (µg/L)	Methanol (μg/L)	Ethanol (µg/L)
S-1	11/19/02	190	<10	<1.0	<1.0	<1.0	NA	NA	NA	NA
J 1	01/09/03	11	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	27	<20[2]	<2.0[2]	<2.0[2]	<2.0[2]	NA	NA	NA	NA
	07/21/03	11	<10[2]	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	8.8	6.4	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	01/15/04	6.0	10	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	04/08/04	12	8.5	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	73	28	<1.0	<1.0	<1.0	16	<2.0	<5,000	<5,000
	11/11/04	150	14	<1.0	<1.0	<1.0	7.3	<2.0	<5,000	<5,000
S-2	11/19/02	750	<200[1]	<20[1]	<20[1]	<20[1]	NA	NA	NA	NA
-	01/09/03	270	<100[1]	<10[1]	<10[1]	<10[1]	NA	NA	NA	NA
	04/14/03	400	95	<5.0[1]	<5.0[1]	<5.0[1]	NA	NA	NA	NA
	07/21/03	410	110	<5.0[1]	<5.0[1]	<5.0[1]	NA	NA	NA	NA
	10/09/03	180	57	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	NA	NA
	01/15/04	130	48	<4.0[1]	<4.0[1]	<4.0[1]	<4.0[1]	<16[1]	NA	NA
	04/08/04	430	130	<5.0[1]	<5.0[1]	<5.0[1]	<5.0[1]	<20[1]	<5,000	<5,000
	08/10/04	92	<100[1]	<10[1]	<10[1]	<10[1]	74	<40[1]	<5,000	<5,000
	11/11/04	420	<200[1]	<20[1]	<20[1]	<20[1]	<20[1]	<80[1]	<5,000	<5,000
MW-3	04/08/04	19	7.6	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	300	2,000	2.2	<2.0[1]	<2.0[1]	270	<8.0[1]	<5,000	<5,000
	11/11/04	690	1,400	<10[1]	<10[1]	<10[1]	140	<40[1]	<5,000	<5,000

TABLE 2

GROUNDWATER ANALYTICAL RESULTS FOR OXYGENATES AND ADDITIONAL COMPOUNDS

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (μg/L)
MW-4	11/19/02	<0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
112.17	01/09/03	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	<0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	< 0.50	<5.0	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	01/15/04	< 0.50	7.8	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	11/11/04	<0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
MW-5	11/19/02					Well Damaged				
	01/09/03					Well Damaged				
	04/14/03					Well Damaged				
	07/21/03					Well Damaged				
	10/09/03					Well Damaged				
	01/15/04					Well Damaged				
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<4.0[2]	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	11/11/04					Well Damaged				

TABLE 2

GROUNDWATER ANALYTICAL RESULTS
FOR OXYGENATES AND ADDITIONAL COMPOUNDS

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (µg/L)	Methanol (μg/L)	Ethanol (µg/L)
MW-6	04/08/04				Well Ob	structed - Not	Sampled			
	08/10/04				D	ry - Not Samp	led			
	11/11/04				D	ry - Not Samp	led			
MW-7	11/19/02	3.8	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	2.7	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	< 0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	1.8	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	2.9	<5.0	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	01/15/04	2.6	7.9	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	04/08/04	0.81	9.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	2.1	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	11/11/04	1.0	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
MW-8	11/19/02	<0.50	<5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	01/09/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	04/14/03	< 0.50	< 5.0	<1.0	<1.0	<1.0	NA	NA	NA	NA
	07/21/03	< 0.50	<10[2]	<1.0	<1.0	<1.0	NA	NA	NA	NA
	10/09/03	< 0.50	<5.0	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	01/15/04	< 0.50	9.9	<1.0	<1.0	<1.0	<1.0	<2.0	NA	NA
	04/08/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	08/10/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000
	11/11/04	< 0.50	<10	<1.0	<1.0	<1.0	<1.0	<2.0	<5,000	<5,000

TABLE 2

GROUNDWATER ANALYTICAL RESULTS FOR OXYGENATES AND ADDITIONAL COMPOUNDS

Well Number	Date Collected	MTBE (μg/L)	TBA (μg/L)	DIPE (μg/L)	ETBE (μg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (μg/L)	Methanol (μg/L)	Ethanol (μg/L)
Note: Οxygenates analy μg/L = microgra NA = Not analyz	•	thod 8260B				MTBE = Methyl TBA = Tertiary b DIPE = Di-isopro ETBE = Ethyl ter	pyl ether			
~ · · · ~	nits were increased on	-	_	analytes		TAME = Tertiary 1,2-DCA = 1,2-D EDB = 1,2-Dibro				

GENERAL NOTES:
BASE MAP FROM U.S.G.S.
OAKLAND, CA
7.5 MINUTE TOPOGRAPHIC
PHOTOREVISED 1980

STRATUS ENVIRONMENTAL, INC.

FORMER USA SERVICE STATION NO. 57 10500 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA SITE LOCATION MAP

1 PROJECT NO. 2007-0057-01

FIGURE

LEGEND

MW-3 MONITORING WELL LOCATION

(69.85) GROUND WATER ELEVATION IN FEET RELATIVE TO MEAN SEA LEVEL

62 WATER TABLE CONTOUR IN FEET RELATIVE TO MEAN SEA LEVEL

INFERRED DIRECTION OF GROUND WATER FLOW

(NM) NOT MEASURED (WELL DAMAGED)

WELLS MEASURED: 11/11/04

STRATUS ENVIRONMENTAL, INC.

FORMER USA SERVICE STATION NO. 57 10500 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GROUNDWATER ELEVATION CONTOUR MAP 4th QUARTER 2004

FIGURE

PROJECT NO. 2007-0057-01

LEGEND

♠ MW-3 MONITORING WELL LOCATION

[NS] NOT SAMPLED

T<50 TOTAL PETROLEUM HYDROCARBONS AS GASOLINE IN µg/L

(0.50 BENZENE CONCENTRATION IN µg/L

<0.50 METHYL TERTIARY BUTYL ETHER CONCENTRATION IN µg/L

SAMPLES COLLECTED ON 11/11/04

TPHG ANALYZED BY EPA METHOD 8015B

BENZENE & MTBE ANALYZED BY EPA METHOD 8260B

STRATUS ENVIRONMENTAL, INC.

FORMER USA SERVICE STATION NO. 57 10500 MACARTHUR BOULEVARD OAKLAND, CALIFORNIA

GROUNDWATER ANALYTICAL SUMMARY
4th QUARTER 2004

FIGURE

3

PROJECT NO. 2007-0057-01

APPENDIX A FIELD DATA SHEETS

Site Contact Phone No.

Sile Address 10700 Mac Arthor Blod City Oakland, CA Sampled By Vince 2.

ORIGINAL

Site Number: USA 57
Project No 2007-0057-01
Project PM (2007) Keloka
Date Sampled 11-11-04

	Water Le	evel Data				Purge Vol	lume Calcu	ilations			Weli P	urge M	ethod	Sa	mple Red	cord	Field	7
				Total	Casing			Three	Actual	1	<u> </u>		****	DTW		Ĭ	Data	
	·	Depth to	Top of	Depth of	Water	Well	Multiplier	Casing	Water	1				At		1	Dissolved	1
		water	Screen	Well	Column	Diameter	Value	Volumes	Purged	No				Sample	Sample	Sample		1
Vell ID	Time	leet	feet	feet	(A)	(inches)	(B)	(gallons)	(gallons)	Purge	Bailer	Pump	Other	Time	I.D.	Time	(mg/L)	
														1				1
														 		-		1
w-3	0730	17.40	+3550	42.88	25.4	4	2	50	40			X		3684	иш - 3	1410	1.65	
	3740			42.15	30.52	4.	2_	61	61			×		34.75	mw - 4	0955	1.65	16
xω-5	Da	mage	d	37.60	Danazed	4	٦	N/A	N/A		3		N/A	_	MW-5	DRY		
mω-6	0750	17.22		17.50	Dry	4.	2	Ø	DRY			鑫	N/A		mw-6	DRY		
MW-7	0758	19.85		41.85	22	4	2	44	44	<u> </u>		X		28.80	MW-7	1053	3./7	
4W - 8	0725	21.38	<u> </u>	37.70	16.32	4	2	32	28			爱		35.75	MW-8	1422	5.96	
				<u> </u>	 -		<u> </u>									ļ		
	0739			T	20.99		1	42	20	<u> </u>	X	M	Both	129.10	5-1	1249	2.30	1
<u>s - 2</u>	0800	21.95		42.85	20.90	3	1	422	22			X		29.70	5-2	1135	2.30 .70	
		ļ <u>.</u>																
	ļ				ļ						ļ		 	<u> </u>	ļ			
		 						_						<u> </u>		<u> </u>		
	<u> </u>	 					 	<u> </u>		 	-		·····	<u> </u>				
								ļ		 			-			ļ		1
	 	 					ļ <u>.</u>		ļ	 	 -				-	ļ		-
	ļ				 		<u> </u>		 	 					ļ <u> </u>		<u> </u>	-
	-		 				 	 	 	 	 -			 	 	ļ <u>.</u>	 	1
	<u> </u>		 	 	<u> </u>		 -		 	 				╂	-			-
		 		 	 -	 	 	 			 -							ł
	<u> </u>	<u> </u>		<u></u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>				1	-	1	

(A) Casing water Column
Depth wtr. Depth to Bottom

Multiplier Values 2"=0.5 4"=2.0 6"=4

Site Address 10 700 Mac Arthur City Oakland, CA Site Sampled by Vince Z.

Site Number USA 57
Project No. 2007-0057-0/
Project PM Gowri Kawtha
Date Sampled U-11-04

				t	1	Origin	A N		Dat	e Sam;	oled <u>II</u>
We!i ID	MW-4			X		Well ID		<u> </u>			
gurge start tim		15)	No 0	مامد		purge start tim			ged		
	Temp C	!pH)	gai		<u></u>	Tern	1 0	pH	cond	gallo
time	23.4	8.04	149.	1 -		time		1		00110	gano
time	22.4	7.66	174.2	3		time					1
time	18.9	7.39	170.0	i .		time	İ				
Sime		į				time					<u> </u>
purge stop time	094	14				ougre stop time	not	50_	mpl	بط	<u>n</u>
Weli ID	MW-7	7				Veil ID	'nω	- 8			
ourge start time	1022	1	Vo 0	dor	P	urgë start time		*****	0	dor	
	Temp C	рН	cond	gallo			Temp		7	cond	gallons
ime	20.17	.42	189.0	0	ti	ine	20.0			487.0	
ma	20.07	.26	179.4	٦١	. tic	me	20.2			170.0	····
me	18.1 7	.20	171.1	44	tir	ne	Dry	@		921	
me					tìr	ne	20.4		63 6		
urge stop time	1048		·		===	irge stop time	135	3			
/eli ID		_	lite sk	een) _W	el! ID	mw-	3			
urge start time	1205	5			ρυ	rge start time	131	2.	. 0	dor	
	1			allon	s i		Temp C	þí	- C	ond g	allons
	20.5 7.			∇	∬tim	e	20.0	6.6	8 18	1-7	\$
ne	20.56.			10	tim	8	20.9	6.	10 18	9.8	2.5
7	topped - Ht 2n				tim	9	Dry	<u>e</u>	40	gal	
9		18 17	5.5	29	time		18.9	6.6	9 19	0.6	
rge stop time	N/A				ρυκ	ge stop time	N/,	4			
ili ID	5 - 2				Well	IID	· · · · · · · · · · · · · · · · · · ·				
ge start time	1109	<u> </u>	٥٢		рига	e start time					
	Temp C ph	· · · · · · · · · · · · · · · · · · ·	ond ça		····	<u> </u>	Temp C	ρН	_ cor	nd çai	snci
<u>e</u>	20.4 7-0	· -			time						
9	19.9 7.0				ime	<u> </u>			- -		
)	19.7 6.7	2/154	<u>-1 2</u>	2	ime			 .	 		
			 .	<u> </u> t	me						
e s top time	1117				urge	stop timie					

APPENDIX B SAMPLING AND ANALYSIS PROCEDURES

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures as well as the quality assurance plan are contained in this appendix. The procedures and adherence to the quality assurance plan will provide for consistent and reproducible sampling methods; proper application of analytical methods; accurate and precise analytical results; and finally, these procedures will provide guidelines so that the overall objectives of the monitoring program are achieved.

Ground Water and Liquid-Phase Petroleum Hydrocarbon Depth Assessment

A water/hydrocarbon interface probe is used to assess the liquid-phase petroleum hydrocarbon (LPH) thickness, if present, and a water level indicator is used to measure the ground water depth in monitoring wells that do not contain LPH. Depth to ground water or LPH is measured from a datum point at the top of each monitoring well casing. The datum point is typical a notch cut in the north side of the casing edge. If a water level indicator is used, the tip is subjectively analyzed for hydrocarbon sheen.

Subjective Analysis of Ground Water

Prior to purging, a water sample is collected from the monitoring well for subjective assessment. The sample is retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer is then retrieved, and the sample contained within the bailer is examined for floating LPH and the appearance of a LPH sheen.

Monitoring Well Purging and Sampling

Monitoring wells are purged using a pump or bailer until pH, temperature, and conductivity of the purge water has stabilized and a minimum of three well volumes of water have been removed. If three well volumes can not be removed in one half hour's time the well is allowed to recharge to 80% of original level. After recharging, a ground water sample is then removed from each of the wells using a disposable bailer.

A Teflon bailer, electric submersible or bladder pump will be the only equipment used for well sampling. When samples for volatile organic analysis are being collected, the pump flow will be regulated at approximately 100 milliliters per minute to minimize pump effluent turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa will be used in sampling for volatile organics. These bottles will be filled completely to prevent air from remaining in the bottle. A positive meniscus forms when the bottle is completely full. A convex Teflon septum will be placed over the positive meniscus to eliminate air. After the bottle is capped, it is inverted and tapped to verify that it contains no air bubbles. The sample containers for other parameters will be filled, filtered as required, and capped.

The water sample is collected, labeled, and handled according to the Quality Assurance Plan. Water generated during the monitoring event is disposed of accruing to regulatory accepted method pertaining to the site.

QUALITY ASSURANCE PLAN

Procedures to provide data quality should be established and documented so that conditions adverse to quality, such as deficiencies, deviations, nonconforments, defective material, services, and/or equipment, can be promptly identified and corrected.

General Sample Collection and Handling Procedures

Proper collection and handling are essential to ensure the quality of a sample. Each sample is collected in a suitable container, preserved correctly for the intended analysis, and stored prior to analysis for no longer than the maximum allowable holding time. Details on the procedures for collection and handling of samples used on this project can be found in this section.

Soil and Water Sample Labeling and Preservation

Label information includes a unique sample identification number, job identification number, date, and time. After labeling all soil and water samples are placed in a Ziploc® type bag and placed in an ice chest cooled to approximately 4° Celsius. Upon arriving at Stratus' office the samples are transferred to a locked refrigerator cooled to approximately 4° Celsius. Chemical preservation is controlled by the required analysis and is noted on the chain-of-custody form. Trip blanks supplied by the laboratory accompany the groundwater sample containers and groundwater samples.

Upon recovery, the sample container is sealed to minimize the potential of volatilization and cross-contamination prior to chemical analysis. Soil sampling tubes are typically closed at each end with Teflon[®] sheeting and plastic caps. The sample is then placed in a Ziploc[®] type bag and sealed. The sample is labeled and refrigerated at approximately 4° Celsius for delivery, under strict chain-of-custody, to the analytical laboratory.

Sample Identification and Chain-of-Custody Procedures

Sample identification and chain-of-custody procedures document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis has a label affixed to identify the job number, sampler, date and time of sample collection, and a sample number unique to that sample. This information, in addition to a description of the sample, field measurements made, sampling methodology, names of on-site personnel, and any other pertinent field observations, is recorded on the borehole log or in the field records. The samples are analyzed by a California-certified laboratory.

A chain-of-custody form is used to record possession of the sample from time of collection to its arrival at the laboratory. When the samples are shipped, the person in custody of them relinquishes the samples by signing the chain-of-custody form and

noting the time. The sample-control officer at the laboratory verifies sample integrity and confirms that the samples are collected in the proper containers, preserved correctly, and contain adequate volumes for analysis. These conditions are noted on a Laboratory Sample Receipt Checklist that becomes part of the laboratory report upon request.

If these conditions are met, each sample is assigned a unique log number for identification throughout analysis and reporting. The log number is recorded on the chain-of-custody form and in the legally-required log book maintained by the laboratory. The sample description, date received, client's name, and other relevant information is also recorded.

Equipment Cleaning

Sample bottles, caps, and septa used in sampling for volatile and semivolatile organics will be triple rinsed with high-purity deionized water. After being rinsed, sample bottles will be dried overnight at a temperature of 200°C. Sample caps and septa will be dried overnight at a temperature of 60°C. Sample bottles, caps, and septa will be protected from solvent contact between drying and actual use at the sampling site. Sampling containers will be used only once and discarded after analysis is complete.

Plastic bottles and caps used in sampling for metals will be soaked overnight in a 1-percent nitric acid solution. Next, the bottles and caps will be triple rinsed with deionized water. Finally, the bottles and caps will be air dried before being used at the site. Plastic bottles and caps will be constructed of linear polyethylene or polypropylene. Sampling containers will be used only once and discarded after analysis is complete. Glass and plastic bottles used by Stratus to collect groundwater samples are supplied by the laboratory.

Before the sampling event is started, equipment that will be placed in the well or will come in contact with groundwater will be disassembled and cleaned thoroughly with detergent water, and then steam cleaned with deionized water. Any parts that may absorb contaminants, such as plastic pump valves, etc. will be cleaned as described above or replaced.

During field sampling, equipment surfaces that are placed in the well or contact groundwater will be steam cleaned with deionized water before the next well is purged or sampled. Equipment blanks will be collected and analyzed from non-disposable sampling equipment that is used for collecting groundwater samples at the rate of one blank per twenty samples collected.

Internal Quality Assurance Checks

Internal quality assurance procedures are designed to provide reliability of monitoring and measurement of data. Both field and laboratory quality assurance checks are necessary to evaluate the reliability of sampling and analysis results. Internal quality assurance procedures generally include:

- Laboratory Quality Assurance

- Documentation of instrument performance checks
- Documentation of instrument calibration
- Documentation of the traceability of instrument standards, samples, and data
- Documentation of analytical and QC methodology (QC methodology includes use of spiked samples, duplicate samples, split samples, use of reference blanks, and check standards to check method accuracy and precision)

- Field Quality Assurance

- Documentation of sample preservation and transportation
- Documentation of field instrument calibration and irregularities in performance

Internal laboratory quality assurance checks will be the responsibility of the contract laboratories. Data and reports submitted by field personnel and the contract laboratory will be reviewed and maintained in the project files.

Types of Quality Control Checks

Samples are analyzed using analytical methods outlined in EPA Manual SW 846 and approved by the California Regional Water Quality Control Board-Central Valley Region in the Leaking Underground Fuel Tanks (LUFT) manual and appendices. Standard contract laboratory quality control may include analysis or use of the following:

- Method blanks reagent water used to prepare calibration standards, spike solutions, etc. is analyzed in the same manner as the sample to demonstrate that analytical interferences are under control.
- Matrix spiked samples a known amount of spike solution containing selected constituents is added to the sample at concentrations at which the accuracy of the analytical method is to satisfactorily monitor and evaluate laboratory data quality.
- Split samples a sample is split into two separate aliquots before analysis to assess the reproducibility of the analysis.
- Surrogate samples samples are spiked with surrogate constituents at known concentrations to monitor both the performance of the analytical system and the effectiveness of the method in dealing with the sample matrix.
- Control charts graphical presentation of spike or split sample results used to track the accuracy or precision of the analysis.
- Quality control check samples when spiked sample analysis indicates atypical
 instrument performance, a quality check sample, which is prepared independently
 of the calibration standards and contains the constituents of interest, is analyzed to
 confirm that measurements were performed accurately.

 Calibration standards and devices – traceable standards or devices to set instrument response so that sample analysis results represent the absolute concentration of the constituent.

Field QA samples will be collected to assess sample handling procedures and conditions. Standard field quality control may include the use of the following, and will be collected and analyzed as outlined in EPA Manual SW 846.

- Field blanks reagent water samples are prepared at the sampling location by the same procedure used to collect field groundwater samples and analyzed with the groundwater samples to assess the impact of sampling techniques on data quality. Typically, one field blank per twenty groundwater samples collected will be analyzed per sampling event.
- Field replicates duplicate or triplicate samples are collected and analyzed to
 assess the reproducibility of the analytical data. One replicate groundwater
 sample per twenty samples collected will be analyzed per sampling event, unless
 otherwise specified. Triplicate samples will be collected only when specific
 conditions warrant and generally are sent to an alternate laboratory to confirm the
 accuracy of the routinely used laboratory.
- Trip blanks reagent water samples are prepared before field work, transported and stored with the samples and analyzed to assess the impact of sample transport and storage for data quality. In the event that any analyte is detected in the field blank, a trip blank will be included in the subsequent groundwater sampling event.

Data reliability will be evaluated by the certified laboratory and reported on a cover sheet attached to the laboratory data report. Analytical data resulting from the testing of field or trip blanks will be included in the laboratory's report. Results from matrix spike, surrogate, and method blank testing will be reported, along with a statement of whether the samples were analyzed within the appropriate holding time.

Stratus will evaluate the laboratory's report on data reliability and note significant QC results that may make the data biased or unacceptable. Data viability will be performed as outlined in EPA Manual SW 846. If biased or unacceptable data is noted, corrective actions (including re-sample/re-analyze, etc.) will be evaluated on a site-specific basis.

APPENDIX C

CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861

Attn: Phone: Gowri Kowtha

(530) 676-6002

Fax:

(530) 676-6005

Date Received 11/13/04

Job#:

2007-0057-01/USA 57

Methanol by GC/MSD - Direct Injection EPA Method SW8260B-DI

	· · · · · · · · · · · · · · · · · · ·	Parameter	Concentration	Reporting	Date Date
				Limit	Sampled Analyzed
Client ID:	MW-3				
Lab ID:	STR04111564-01A	Methanol	ND	5,000 μg/L	11/11/04 11/17/04
		Ethanol	ND	5,000 μg/L	11/11/04 11/17/04
Client ID:	MW-4				
Lab ID:	STR04111564-02A	Methanol	ND	5,000 μg/L	11/11/04 11/17/04
		Ethanol	ND	5,000 µg/L	11/11/04 11/17/04
Client ID:	MW-7				
Lab ID :	STR04111564-03A	Methanol	ND	5,000 µg/L	11/11/04 11/17/04
		Ethanol	ND	5,000 μg/L	11/11/04 11/17/04
Client ID:	MW-8				
Lab ID :	STR04111564-04A	Methanol	ND	5,000 μg/L	11/11/04 11/17/04
		Ethanol	ND	5,000 μg/L	11/11/04 11/17/04
Client ID:	S-1				
Lab ID:	STR04111564-05A	Methanol	ND ·	5,000 µg/L	11/11/04 11/17/04
		Ethanol	ND	5,000 µg/L	11/11/04 11/17/04
Client ID:	S-2				
Lab ID:	STR04111564-06A	Methanol	ND	5,000 µg/L	11/11/04 11/17/04
		Ethanol	ND	5,000 µg/L	11/11/04 11/17/04

Reported in micrograms per liter, per client request.

ND = Not Detected

Roger Scholl

Roger L. Scholl, Ph.D., Laboratory Director • • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

11/22/04

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

ANALYTICAL REPORT

Stratus Environmental 3330 Cameron Park Drive Cameron Park, CA 956828861 Attn: Gowri Kowtha Phone (530) 676-6002 Fax: (530) 676-6005 Date Received 11/13/04

Job#:

2007-0057-01/USA 57

Total Petroleum Hydrocarbons - Purgeable (TPH-P) EPA Method SW8015B/DHS LUFT Manual Volatile Organic Compounds (VOCs) EPA Method SW8260B

	Parameter	Concen	tration	Reporting	Date	Date
	1 arameter			Limit	Sampled	Analyzed
	TPH Purgeable	3,000		1,000 μg/L	11/11/04	11/17/04
Client ID:	Tertiary Butyl Alcohol (TBA)	1,400		100 µg/Ĺ	11/11/04	11/17/04
MW-3	Methyl tert-butyl ether (MTBE)	690		5.0 μg/L	11/11/04	11/17/04
Lab ID:	Di-isopropyl Ether (DIPE)	ND	V	10 μg/L	11/11/04	11/17/04
STR04111564-01A	Ethyl Tertiary Butyl Ether (ETBE)	ND	v	10 μg/L	11/11/04	11/17/04
	1,2-Dichloroethane	140		10 μg/L	11/11/04	11/17/04
	Benzene	810		5.0 μg/L	11/11/04	11/17/04
	Tertiary Amyl Methyl Ether (TAME)	ND	V	10 μg/L	11/11/04	11/17/04
	Toluene	ND	V	5.0 μg/L	11/11/04	11/17/04
	1,2-Dibromoethane (EDB)	ND	V	40 μg/L	11/11/04	11/17/04
		43		5.0 μg/L	11/11/04	11/17/04
	Ethylbenzene m,p-Xylene	ND	V	5.0 μg/L	11/11/04	11/17/04
	o-Xyiene	ND	v	5.0 μg/L	11/11/04	11/17/04
CII. A ID	TPH Purgeable	ND		50 μg/L	11/11/04	11/16/04
Client ID:	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	11/11/04	11/16/04
MW-4	Methyl tert-butyl ether (MTBE)	ND		0.50 µg/L	11/11/04	11/16/04
Lab ID:	Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	11/11/04	11/16/04
STR04111564-02A	Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	[1/11/04	11/16/04
	1,2-Dichloroethane	ND		1.0 µg/L	11/11/04	11/16/04
	Benzene	ND		0.50 μg/L	11/11/04	11/16/04
	Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	11/11/04	11/16/04
	Toluene	ND		0.50 μg/L	11/11/04	11/16/04
	1,2-Dibromoethane (EDB)	ND		2.0 μg/L	11/11/04	11/16/04
	Ethylbenzene	ND		0.50 µg/L	11/11/04	11/16/04
	m,p-Xylene	ND		0.50 μg/L	11/11/04	11/16/04
	o-Xylene	ND		0.50 µg/L	11/11/04	11/16/04
Client ID :	TPH Purgeable	ND		50 μg/L	11/11/04	11/16/04
MW-7	Tertiary Butyl Alcohol (TBA)	ND		10 μg/L	11/11/04	11/16/04
Lab ID :	Methyl tert-butyl ether (MTBE)	1.0		0.50 μg/L	11/11/04	11/16/04
STR04111564-03A	Di-isopropyl Ether (DIPE)	ND		1.0 μg/L	11/11/04	11/16/04
31K04111304-0371	Ethyl Tertiary Butyl Ether (ETBE)	ND		1.0 μg/L	11/11/04	11/16/04
	1,2-Dichloroethane	ND		1.0 µg/L	11/11/04	11/16/04
	Benzene	ND		0.50 µg/L	11/11/04	11/16/04
	Tertiary Amyl Methyl Ether (TAME)	ND		1.0 μg/L	11/11/04	
	Toluene	ND		0.50 μg/L	11/11/04	[1/16/04
	1,2-Dibromoethane (EDB)	ND		2.0 μ g /L	11/11/04	
	Ethylbenzene	ND		0.50 μg/L	11/11/04	
	m,p-Xylene	ND		0.50 μg/L	11/11/04	
	o-Xylene	ND		0.50 μg/L	11/11/04	[1/16/04

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Client ID:	TPH Purgeable	ND	50 μg/L	11/11/04	11/17/04
MW-8	Tertiary Butyl Alcohol (TBA)	ND	10 μg/L	11/11/04	11/17/04
Lab ID:	Methyl tert-butyl ether (MTBE)	ND	0.50 μg/L	11/11/04	11/17/04
STR04111564-04A	Di-isopropyl Ether (DIPE)	ND	1.0 μg/L	11/11/04	11/17/04
	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L	11/11/04	11/17/04
	1,2-Dichloroethane	ND	1.0 μg/L	11/11/04	11/17/04
	Benzene	ND	0.50 µg/L	11/11/04	11/17/04
	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 μg/L	11/11/04	11/17/04
	Toluene	ND	0.50 μ <i>g</i> /L	11/11/04	11/17/04
	1,2-Dibromoethane (EDB)	ND	2.0 μg/L	11/11/04	11/17/04
	Ethylbenzene	ND	0.50 μg/L	11/11/04	11/17/04
	m,p-Xylene	ND	0.50 μg/L	11/11/04	11/17/04
	o-Xylene	ND	0.50 μg/L	11/11/04	11/17/04
Client ID:	TPH Purgeable	160	50 μg/L	11/11/04	11/17/04
S-1	Tertiary Butyl Alcohol (TBA)	14	10 μ g/ L	11/11/04	11/17/04
Lab ID:	Methyl tert-butyl ether (MTBE)	150	0.50 μg/L	11/11/04	11/17/04
STR04111564-05A	Di-isopropyl Ether (DIPE)	ND	1.0 μg/L	11/11/04	11/17/04
	Ethyl Tertiary Butyl Ether (ETBE)	ND	1.0 μg/L	11/11/04	11/17/04
	1,2-Dichloroethane	7.3	1.0 µg/L	11/11/04	11/17/04
	Benzene	ND	0.50 μg/L	11/11/04	11/17/04
	Tertiary Amyl Methyl Ether (TAME)	ND	1.0 μg/L	11/11/04	11/17/04
	Toluene	ND	0.50 μg/L	11/11/04	11/17/04
	1,2-Dibromoethane (EDB)	ND	2.0 μg/L	11/11/04	11/17/04
	Ethylbenzene	ND	0.50 μ g/ L	11/11/04	11/17/04
	m,p-Xylene	ND	0.50 μ g/L	11/11/04	11/17/04
	o-Xylene	ND	0.50 μ g/L	11/11/04	11/17/04
Client ID:	TPH Purgeable	20,000	2,000 μg/L	11/11/04	11/17/04
S-2	Tertiary Butyl Alcohol (TBA)	ND V	200 μg/L	11/11/04	11/17/04
Lab ID :	Methyl tert-butyl ether (MTBE)	420	10 μ g/L	11/11/04	11/17/04
STR04111564-06A	Di-isopropyl Ether (DIPE)	ND V	' 20 μg/L	11/11/04	11/17/04
	Ethyl Tertiary Butyl Ether (ETBE)	ND V	' 20 μg/L	11/11/04	11/17/04
	1,2-Dichloroethane	ND V	' 20 μg/L	11/11/04	11/17/04
	Benzene	530	10 μg/L	11/11/04	11/17/04
	Tertiary Amyl Methyl Ether (TAME)	ND V	' 20 μg/L	11/11/04	11/17/04
	Toluene	240	10 μg/L	11/11/04	11/17/04
	1,2-Dibromoethane (EDB)	ND V	' 80 μg/L	11/11/04	11/17/04
	Ethylbenzene	370	10 μg/L	11/11/04	11/17/04
	m,p-Xylene	1,200	10 μg/Ľ	11/11/04	11/17/04
	o-Xylene	530	10 μg/L	11/11/04	11/17/04

Reported in micrograms per liter, per client request.

V = Reporting Limits were increased due to high concentrations of target analytes.

ND = Not Detected

Roger Scholl

Kandy Surlner

Walter Finden

Roger L. Scholl, Ph.D., Laboratory Director • Randy Gardner, Laboratory Manager • • Walter Hinchman, Quality Assurance Officer Sacramento, CA • (916) 366-9089 / Las Vegas, NV • (702) 281-4848 / info@alpha-analytical.com

Report Date

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

VOC pH Report

Work Order STR04111564

Project: 2007-0057-01/USA 57

Alpha	's Sample ID	Client's Sample ID	Matrix	рН
0411	1564-01A	MW-3	Aqueous	5
0411	1564-02A	MW-4	Aqueous	2
0411	1564-03A	MW-7	Aqueous	2
0411	1564-04A	MW-8	Aqueous	2
0411	1564-05A	S-1	Aqueous	6
0411	1564-06A	S-2	Aqueous	5

11/22/04

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Nov-04	(OC S	ummar	y Repor	t				Work Order: 04111564
Method Blank File ID: D:\HPCHEM\MS10\DATA\041116\(04111638.D	Type M		est Code: E atch ID: MS			Analysi		11/16/2004 22:02
Sample ID: MBLK MS10W1116C	Units : µg/L		Run ID: M	SD_10_041	116B		Prep D	ate:	11/16/2004
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit F	RPDRefV	al %RPD(Limit) Qual
Tertiary Butyl Alcohol (TBA)	ND	10							
Methyl tert-butyl ether (MTBE)	ND	0.5							
Di-isopropyl Ether (DIPE)	ND	1							
Ethyl Tertiary Butyl Ether (ETBE)	ND	1							
1,2-Dichloroethane	ND	1							
Benzene	ND	0.5	ı						
Tertiary Amyl Methyl Ether (TAME)	ND	1							
Toluene	ND	0.5							
1,2-Dibromoethane (EDB)	ND	2							
Ethylbenzene	ND	0.5							
m,p-Xylene	ND ND	0.5 0.5							
o-Xylene Surr: 1,2-Dichloroethane-d4	10.3	0.5	10		103	72	126		
Surr: Toluene-d8	9.97		10		99.7	71	128		
Surr: 4-Bromofluorobenzene	9.65		10		97	76	121		
out. I bromone be a brown a br	0.00								
Laboratory Control Spike		Type L	CS To	est Code: El	PA Met	hod SW8:			
File ID: D:\HPCHEM\MS10\DATA\041116\0	04111636.D		Ba	atch ID: MS	10W111	16C	Analysi	s Date:	11/16/2004 21:19
Sample ID: LCS MS10W1116C	Units : µg/L		Run ID: MS	SD_10_041	116B		Prep D	ate:	11/16/2004
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	: HighLimit F	RPDRefv	al %RPD(Limit) Qual
Benzene	10.5	0.5			105	83	119		· · · · · · · · · · · · · · · · · · ·
Toluene	10.5	0.5			106	80	120		
Ethylbenzene	10.6	0.5			106	80	120		
m,p-Xylene	10	0.5			100	77	125		
o-Xylene	10	0.5			100	77	124		
Surr: 1,2-Dichloroethane-d4	11.2		10		112	72	126		
Surr: Toluene-d8	10		10		100	71	128		
Surr: 4-Bromofluorobenzene	9.57		10		96	76	121		
Sample Matrix Spike		Type M	IS Te	est Code: El	PA Met	hod SW8	260B		
File ID: D:\HPCHEM\MS10\DATA\041116\(M111644 D			atch ID: MS				s Date:	11/17/2004 00:10
	Units : µg/L			SD_10_041			Prep D		11/17/2004
		DOL				المسل البيم ا			
Analyte	Result	PQL	Spkvai		%REC			RPDReiv	al %RPD(Limit) Qual
Benzene	55.9	1.3		5.07	102	59	145		
Toluene	51	1.3		0	102	39	161		
Ethylbenzene	51.1 48.4	1.3		0		57	145		
m,p-Xylene	48.4 48.4	1.3 1.3		0	97 97	37 47	163 156		
o-Xylene Surr: 1,2-Dichloroethane-d4	46.4 53.2	1,3	50	U	106	72	126		
Surr: Toluene-d8	49.2		50		98	71	128		
Surr: 4-Bromofluorobenzene	49.7		50		99	76	121		

Sample Matrix Spike Duplicate		Type M	IŞD T	est Code: El	PA Met	hod SW8			
File ID: D:\HPCHEM\MS10\DATA\041116\0	04111645.D		Ва	atch ID: MS	10W111	16C	Analysi	s Date.	11/17/2004 00:31
Sample ID: 04111002-01AMSD	Units : µg/L		Run ID: M	SD_10_041 ⁴	116B		Prep D	ate:	11/17/2004
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	: HighLimit F	RPDRefv	al %RPD(Limit) Qual
Benzene	54.7	1.3	50	5.07	99	59	145	55.87	2.1(22)
Toluene	50.1	1.3		0.07	100	39	161	51.02	•
Ethylbenzene	50.7	1.3		Ō	101	57	145	51.13	
m,p-Xylene	47.6	1.3	50	0	95	37	163	48.4	1.7(23)
o-Xylene	48.1	1.3		0		47	156	48.39	0.7(50)
Surr: 1,2-Dichloroethane-d4	53.3		50		107	72	126		
Surr: Toluene-d8	49.5		50		99	71	128		
Surr: 4-Bromofluorobenzene	49.6		50		99	76	121		

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Nov-04	QC Summary Report	Work Order: 04111564
21 1101 01		

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Nov-04	(QC St	ımmar	y Repor	t			Work Order: 04111564
Method Blank		Туре М	BLK To	est Code: E	PA Met	hod SW86	15B/DHS LUFT	Manual
File ID: D:\HPCHEM\MS10\DATA\041116\0	4111638.D		В	atch ID: MS	10W111	16D	Analysis Dat	te: 11/16/2004 22:02
Sample ID: MBLK MS10W1116D	Units : µg/L		Run ID: M:	SD_10_041	116B		Prep Date:	11/16/2004
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDR	efVal %RPD(Limit) Qual
TPH Purgeable	ND	50						
Surr: 1,2-Dichloroethane-d4	10.3		10		103	72	126	
Surr: Toluene-d8	9.97		10		99.7	71	128	
Surr: 4-Bromofluorobenzene	9.65		10		97	76	121	
Laboratory Control Spike		Type L	CS Te	est Code: E	PA Met	hod SW80	15B/DHS LUFT	Manual
File ID: D:\HPCHEM\MS10\DATA\041116\0	4111634.D		Ba	atch ID: MS	10W111	16D	Analysis Dat	e: 11/16/2004 20:36
Sample ID: GLCS MS10W1116D	Units : µg/L		Run ID: M	SD_10_041	116B		Prep Date:	11/16/2004
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDR	efVal %RPD(Limit) Qual
TPH Purgeable	418	50	400	•	105	67	136	
Surr: 1,2-Dichloroethane-d4	10.9		10		109	72	126	
Surr: Toluene-d8	9.58		10		96	71	128	
Surr: 4-Bromofluorobenzene	9.04		10		90	76	121	
Sample Matrix Spike		Type M	S Te	est Code: El	PA Met	hod SW8(15B/DHS LUFT	Manual
File ID: D:\HPCHEM\MS10\DATA\041116\0	4111642.D	Batch ID: MS10W1116D Analysis Date:						e: 11/16/2004 23:28
Sample ID: 04111002-01AGS	Units : µg/L		Run ID: M	SD_10_041	116B		Prep Date:	11/16/2004
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDR	efVal %RPD(Limit) Qual
TPH Purgeable	2240	250	2000	0	112	54	154	
Surr: 1,2-Dichloroethane-d4	51.9		50		104	72	126	
Surr: Toluene-d8	48.5		50		97	71	128	
Surr: 4-Bromofluorobenzene	47.5		50		95	76	121	
Sample Matrix Spike Duplicate		Type M	SD Te	est Code: El	PA Met	hod SW80	15B/DHS LUFT	Manual
File ID: D:\HPCHEM\MS10\DATA\041116\0	4111643.D		Ва	atch ID: MS	10W111	16D	Analysis Dat	e: 11/16/2004 23:49
Sample ID: 04111002-01AGSD	Units : μg/L		Run ID: MS	3D_10_041 ⁻	116B		Prep Date:	11/16/2004
Analyte	Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDR	efVal %RPD(Limit) Qual
TPH Purgeable	2280	250	2000	0	114	54	154 22	240 1.7(66)
Surr: 1,2-Dichloroethane-d4	53		50		106	72	126	
Surr: Toluene-d8	48.5		50		97	71	128	
Surr: 4-Bromofluorobenzene	47.9		50		96	76	121	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per liter, per client request.

255 Glendale Ave. • Suite 21 • Sparks, Nevada 89431-5778 (775) 355-1044 • (775) 355-0406 FAX • 1-800-283-1183

Date: 24-Nov-04		(C Su	ımmar	y Repor	t			Work Order: 04111564
Method Bla	nk CHEM\MS11\DATA\041117\	\0.4444702 D	Туре М		est Code: El		thod SW8		ate: 11/17/2004 11:01
	MBLK-11152	Units : µg/L		_	SD 11_041			Prep Date:	
Sample ID: Analyte	MDLR-11132	Result	PQL				· LowLimit	•	RefVal %RPD(Limit) Qual
			5000	Оркуа	Opkiteivai	701 KE C	CONCLUTE	rngnemm ra B	resident point of Entitle Good
Methanol Ethanol		ND ND	5000						
Surr: Hexafluo	ro-2-propanol	511	3000	500		102	69	135	
Lahoratory	Control Spike		Type LO	S T	est Code: El	PA Met	hod SW8	260B-DI	
	CHEMIMS11IDATA(041117)	\04111704.D	••	В	atch ID: 111	52		Analysis Da	ate: 11/17/2004 11:22
Sample ID:	LCS-11152	Units : μg/L		Run ID: M	SD 11 041	117A		Prep Date:	11/17/2004
Analyte		Result	PQL				LowLimit	HighLimit RPDi	RefVal %RPD(Limit) Qual
Methanol		232	50	250	· • • • • • • • • • • • • • • • • • • •	93	51	161	
Ethanol		227	5	250		91	47	137	
Surr: Hexafluo	ro-2-propanol	508		500		102	69	135	
Sample Mat	trix Spike		Type M	s Te	est Code: El	PA Met	hod SW82	260B-DI	
File ID: C:\HP	CHEM\MS11\DATA\041117\	04111706.D		Ва	atch ID: 111:	52		Analysis Da	ate: 11/17/2004 12:03
Sample ID:	04111564-02AMS	Units : µg/L	;	Run ID: M	SD_11_041 [.]	117A		Prep Date:	11/17/2004
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPD	RefVal %RPD(Limit) Qual
Methanol		219	50	250	0	88	51	161	
Ethanol		212	5	250	0	85	47	137	
Surr: Hexafluo	ro-2-propanol	511		500		102	69	135	
Sample Mat	rix Spike Duplicate		Type M:	SD To	est Code: El	PA Met	hod SW82	260B-DI	
	CHEM\MS11\DATA\041117\	04111707.D		Ва	atch ID: 111	52		Analysis Da	ate: 11/17/2004 12:23
Sample ID:	04111564-02AMSD	Units : µg/L	ĺ	Run ID: M	SD_11_041 [,]	117A		Prep Date:	11/17/2004
Analyte		Result	PQL	SpkVal	SpkRefVal	%REC	LowLimit	HighLimit RPDI	RefVal %RPD(Limit) Qual
Methanol		221	50	250	0	89	51	161 2	1.2(39)
Ethanol		222	5	250	0	89	47		212 4.5(34)
Surr: Hexafluo	ro-2-propanol	509		500		102	69	135	

Comments:

Calculations are based off of raw (non-rounded) data. However, for reporting purposes, all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Reported in micrograms per liter, per client request.

Alpha Analytical, Inc. Phone: (775) 355-1044 FAX: (775) 355-0406

Sample Receipt Checklist

Date Report is due to Client: 11/23/2004

Date of Notice: 11/15/2004 8:54:17

Please take note of any NO check marks. If we receive no response concerning these items within 24 hours of the date of this notice, all of the samples will be analyzed as requested.

Client Name Stratus Environmental	P	Project ID: 2007-0057-01/USA 57									
Project Manager: Gowrl Kowtha	Client's Pho	one (530) 676-6002 Client's FAX (530) 676-6005									
Work Order Number STR04111564 Date Received	: 11/13/2004	Received by: Laura Long									
<u>Chain of</u>	Custody (COC) In	nformation									
Carrier name FedEx											
Chain of custody present ?	Yes 🗹	□ No									
Custody seals intact on shippping container/cooler?	Yes 🗹	☐ No Not Present ☐									
Custody seals intact on sample bottles?	Yes 🗌	☐ No Not Present ☑									
Chain of custody signed when relinquished and received?	Yes 🗹	□ No									
Chain of custody agrees with sample labels ?	Yes 🗹	□ No									
Sample ID noted by Client on COC ?	Yes 🗹	□ No									
Date and time of collection noted by Client on COC ?	Yes 🗹	□ No									
Samplers's name noted on COC?	Yes 🗸	□ No									
Internal Chain of Custody (COC) requested?	Yes 🗌	✓ No									
Sub Contract Lab Used :	None 🗹	SEM Other (see comments)									
Samı	ole Receipt Inform										
Shipping container/cooler in good condition?	Yes 🗹	☐ No Not Present ☐									
Samples in proper container/bottle?	Yes 🗹	L. No									
Sample containers intact?	Yes 🗹	□ No									
Sufficient sample volume for indicated test?	Yes 🗹	□ No									
Sample Preservat	ion and Hold Time	e (HT) Information									
All samples received within holding time?	Yes 🗹	☐ No Cooler Temperature									
Container/Temp Blank temperature in compliance (0-6°C)?	Yes 🗹	□ No 4°C									
Water - VOA vials have zero headspace / no bubbles?	Yes 🗹	☐ No No VOA vials submitted ☐									
Sample labels checked for correct preservation?	Yes 🗹	□ No									
TOC Water - pH acceptable upon receipt (H2SO4 pH<2)?	Yes	□ No N/A 🗹									
Analytical Requirement Information											
Are non-Standard or Modified methods requested ?	Yes 🗌	☑ No									
Are there client specific Project requirements?	Yes 🗌	✓ No If YES : see the Chain of Custody (COC)									
Comments :											

Billing Information:

CHAIN-OF-CUSTODY RECORD

Page:

Alpha Analytical, Inc.

255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778

TEL: (775) 355-1044 FAX: (775) 355-0406

Report Due By: 5:00 PM On: 23-Nov-04

Client:

Stratus Environmental 3330 Cameron Park Drive

Suite 550

Cameron Park, CA 95682-8861

Report Attention: Gowri Kowtha

FAX: (530) 676-6005 2007-0057-01/USA 57

Gowri Kowtha

TEL: (530) 676-6002

PO:

Client's COC #: 05747

EDD Required: Yes

Sampled by : Vince Z

Cooler Temp:

WorkOrder: STR04111564

15-Nov-04

CC Report: QC Level: S3

= Final Rpt, MBLK, LCS, MS/MSD With Surrogates

	Client Sample ID				Requested Tests									
•				ection No. of Bottl ate ORG SUE	Bottles SUB	S TAT	PWS#	W ALCOHOL_	TPH/P_W	VOC_W				Sample Remarks
STR04111564-01A	MW-3	AQ	11/11/04 14:10	5	0	6		McOH/EIOH	GAS-C	BTEX/OXY_C				
STR04111564-02A	MW-4	AQ	11/11/04 09:55	5	0	6		MeOH/EiOH	GAS-C	C C			<u> </u>	
STR04111564-03A	MW-7	AQ	11/11/04 10:53	5	0	6		MeOH/EtOH	GAS-C	BTEX/OXY_			j	
STR04111564-04A	MW-8	AQ	11/11/04 14:22	5	0	6		MeOH/EIOH	GAS-C	BTEX/OXY_				
STR04111564-05A	S-1	AQ	11/11/04 12:49	5	0	6		MeOH/BiOH	GAS-C	BTEX/OXY_				
STR04111564-06A	S-2	AQ	11/11/04 11:35	5	0	6		MeOH/EtOH	GAS-C	BTEX/OXY_		<u> </u>		

Saturday delivery. Kept on ice and secure until logged in on 11/15/04. Send copy of receipt checklist with final report. Global ID T0600101808.: Comments:

Received by:

Print Name

Company Alpha Analytical, Inc. Date/Time

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for the report.

Matrix Type: AQ(Aqueous) AR(Air) SO(Soil) WS(Waste) DW(DrinkIng Water) OT(Other)

Bottle Type: L-Liter V-Voa S-Soil Jar O-Orbo T-Tedlar B-Brass P-Plastic OT-Other

Billing Information: Name <u>STRATUS ENV., FAC.</u> Address <u>3:3 Cameron Park Dr. #550</u> City, State, Zip <u>Cameron Park</u> , CA	Alpha Analytical, Inc. 255 Glendale Avenue, Suite 21 Sparks, Nevada 89431-5778	Samples Collected From AZ CA × NV ID OR OTHER	WA
Phone Number 530 - 676 - 6004 Fax 530 - 676 - 6005	Phone (775) 355-1044 Fax (775) 355-0406	Analyses Required	05747
0955 110Y 02 M	Sample Description TAT Field See below STD STV SV V - 3 STD STV	Town Soxy 'S Flax Mathana Mathana	Required QC Level? I II III IV EDD / EDF? YES X NO Global ID # To 600 (0) 80 6 REMARKS
	$\frac{\omega-7}{\omega-8}$	1/15/5/5/5/(
	-1	 	
	-2 5TP 5.V		
The state of the s			
Signature Relinquished by Visita 3 daths Visita	ent Zalutka Stra	Company tus Env.	Date Time 11-12-04 1535
Received by Relinquished by	ă - 1	PHA	11-12-04 1535 11-12-04 1535
Received by Relinquished by Received by	na long A	lpha	11/15/04 900
*Key: AQ - Aqueous SO - Soil WA - Waste OT - Oti NOTE: Samples are discarded 60 days after results are reported unles		Soil Jar O-Orbo T-Tedlar B-Brass	P-Plastic OT-Other

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this coc. The liability of the laboratory is fimited to the amount paid for the report.