

MPDS-UN0752-13 August 20, 1997

Tosco Marketing Company Environmental Compliance Department 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Semi-Annual Data Report

Unocal Service Station #0752

800 Harrison Street Oakland, California

Dear Ms. Berry:

This data report presents the results of the most recent monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled are indicated in Table 1. Oxygen Release Compound (ORC*) filter socks were present in all the monitoring wells. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during this semi-annual period is shown on the attached Figure 1.

Ground water samples were collected on July 23, 1997. Prior to sampling, the wells were each purged of between 5.5 and 7.5 gallons of water. In addition, dissolved oxygen concentrations were measured and are presented in Table 7. During purging operations, the field parameters pH, temperature, and electrical conductivity were recorded on the purging/sampling data sheets which are attached to this report. Once the field parameters were observed to stabilize, and where possible, a minimum of approximately three casing volumes had been removed from each well, samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. MPDS Services, Inc. transported the purged ground water to the Tosco Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Tables 2 through 6. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline and benzene detected in the ground water samples collected this semi-annual period are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

MPDS-UN0752-13 August 20, 1997 Page 2

LIMITATIONS

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

DISTRIBUTION

A copy of this report should be sent to Ms. Jennifer Eberle of the Alameda County Health Care Services Agency.

If you have any questions regarding this report, please do not hesitate to call Mr. Nubar Srabian at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Armond A. Balaian

Staff Engineer

Hagop Kevork, P.E. Senior Staff Engineer

License No. C 55734

Exp. Date December 31, 2000

/aab

Attachments: Tables 1 through 7

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation Purging/Sampling Data Sheets

cc: Mr. Sarkis A. Soghomonian, Kaprealian Engineering, Inc.

Table 1
Summary of Monitoring Data

Well#	Ground Water Elevation (feet)	Depth to Water (feet)	Total Well Depth (feet)*	Product Thickness (feet)	Sheen	Water Purged (gallons)
			d Sampled on	July 23, 1997)		
MW1	15.27	19.42	33.55	0	No	7.5
MW2	15.59	19.13	30.34	0	No	6
MW3	14.76	18.38 –	30.49	0	No	6.5
MW4	14.84	17.87	32.32	0	No	7.5
MW5	14.87	18.08	31.70	0	No	7
MW6	14.63	17.53	30.90	0	No	7
MW7	14.21	17.99	31.50	0	No	7
MW8	14.31	17.69	27.93	0	No	5.5
		(Monitored and	Sampled on Ja	anuary 24, 1997)		
MW1	16.97	17.72	33.70	0	No	8.5
MW2	17.13	17.59	30.35	0	No	6.5
MW3	16.57	16.57 🛥	30.61	0	No	7.5
MW4	16.67	16.04	32.41	0	No	8.5
MW5	16.59	16.36	31.75	0	No	8
MW6	16.47	15.69	30.94	0	No	8
MW7	16.12	16.08 🛥	31.58	0	No	8
MW8	16.21	15.79	27.77	0	No	6.5
		(Monitored a	nd Sampled on	July 9, 1996)		
MW1	16.17	18.52	33.70	0	No	10.5
MW2	16.50	18.22	30.33	0	No	8.5
MW3	15.71	17.43	30.57	0	No	9
MW4	15.75	16.96	32.35	0	No	10.5
MW5	15.84	17.11	31.80	0	No	10
MW6	15.57	16.59	30.94	0	No	10
MW7	15.21	16.99	31.60	0	No	10
MW8	15.22	16.78	27.75	0	No	7.5
		(Monitored an	d Sampled on	April 10, 1996)		
MW1	17.04	17.65	33.90	0	No	11.5
MW2	17.37	17.35	30.45	ő	No	9
MW3	16.74	16.40	31.80	ő	No	10.5
MW4	16.71	16.00	32.51	ő	No	11.5
MW5	16.90	16.05	31.95	ő	No	11
MW6	16.60	15.56	31.03	ő	No	11
MW7	16.39	15.81	31.95	ő	No	11
MW8	16.30	15.70	27.60	ő	No	8.5

Table 1
Summary of Monitoring Data

	Well Casing
	Elevation
Well #	(feet)*
MW1	34.69
MW2	34.72
MW3	33.14
MW4	32.7 1
MW5	32.95
MW6	32.16
MW7	32.20
MW8	32.00

- The depth to water level and total well depth measurements were taken from the top of the well casings.
- * The elevations of the top of the well casings are relative to Mean Sea Level (MSL), per the City of Oakland benchmark disk stamped "25/A" at the northeast corner of 7th and Harrison (elevation = 28.81 feet MSL).

Table 2
Summary of Laboratory Analyses
Water

			water			
		TPH as			Ethyl-	
Well#	Date	Gasoline	Benzene	Toluene	Benzene	Xylenes
MW1	6/5/91	47	ND	ND	ND	ND
242 44 1	9/30/91	ND	ND	ND	ND	ND
	12/30/91	ND	ND	ND	ND	ND
	4/2/92	ND	ND	ND	ND	ND ND
	6/30/92	ND ND	ND ND	ND ND	ND ND	ND ND
	9/15/92					
		76	1.0	ND	ND ND	ND
	12/21/92	95 920	0.69	ND		1.0
	4/28/93	920 ND	3.1	2.3	1.2	9.7
	7/23/93	ND	0.5	0.66	ND	ND
	10/5/93	92**	1.5	ND	ND	0.72
	1/3/94	ND	ND	ND	ND	ND
	4/2/94	ND	ND	ND	ND	ND
	7/5/94	250	4.8	13	1.2	7.3
	10/6/94	540	1.4	ND	0.66	11
	1/2/95	140	ND	ND	ND	ND
	4/3/95	580	3.6	0.75	ND	4.0
	7/14/95	260	2.1	ND	ND	1.2
	10/10/95	220	2.0	ND	25	5.6
	1/3/96	190	2.4	ND	0.71	1.2
	4/10/96	540	8.9	1.7	1.5	7.4
	7/9/96	490	3.0	1.4	1.3	2.5
	1/24/97	760	27	0.89	5.2	10
	7/23/97	ND	ND	ND	ND	ND
MW2	6/5/91	49	ND	ND	ND	ND
	9/30/91	130	18	0.53	14	9.6
	12/30/91	91	16	0.89	11	1.9
	4/2/92	88	12	0.32	6.3	7.2
	6/30/92	76	9.3	0.76	4.8	6.9
	9/15/92	1,300	91	5.7	80	110
	12/21/92	960	97	3.2	74	96
	4/28/93	1,300	76	1.9	130	87
	7/23/93	66	1.8	ND	2.5	2.0
	10/5/93	120	12	ND	2.1	12
	1/3/94	260	25	ND	5.5	26
	4/2/94	ND	0.65	ND	ND	0.99
	7/5/94	160	16	ND	0.73	10
	10/6/94	170	15	ND	1.4	11
	1/2/95	190	27	ND	0.95	11
	4/3/95	2,400	65	6.6	19	63
	7/14/95	750	270	ND	ND	13
	10/10/95	50	1.6	ND	ND	ND
	1/3/96	ND	ND	ND	ND	ND
	4/10/96	300	42	ND	2.4	9.0
	7/9/96	760	230	ND	1.3	2.4
	1/24/97	2,900	400	350	190	720
	7/23/97	ND	ND	ND	ND	ND
	1123171	MD	1477	עוא	MD	1110

Table 2
Summary of Laboratory Analyses
Water

			TY alci			
Well#	Date	TPH as Gasoline	Benzene	Toluene	Ethyl+ Benzene	Xylenes
MW3	6/5/91	5,800	1,200	40	140	97
	9/30/91	6,800	1,400	130	290	240
	12/30/91	7,200	2,100	690	410	550
	4/2/92	8,000	1,400	200	300	310
	6/30/92	8,900	1,900	210	430	550
	9/15/92	10,000	1,900	330	400	580
	12/21/92	8,500	1,500	150	310	330
	4/28/93	2,600	220	7.6	41	27
	7/23/93	4,400	660	26	160	82
	10/5/93	9,200	720	88	140	140
	1/3/94	4,900	830	100	170	150
	4/2/94	6,000	800	30	140	110
	7/5/94	25,000**	ND	ND	ND	ND
	10/6/94	49,000*	1,300	200	280	300
	1/2/95	480	1.6	ND	1.4	ND
	4/3/95	8,100**	65	ND	ND	ND
	7/14/95	ND	1,300	ND	ND	ND
	10/10/95	3,100	1,400	36	50	53
	1/03/96†	ND	2,300	110	150	140
	4/10/96	940	38	33	39	47
	7/9/96	ND	2,000	ND	150	160
	1/24/97	540	8.0	ND	11	9.9
	7/23/97	7,400	1,900	180	140	340
MW4	10/19/92	480	0.51	2.1	2.8	6.8
	12/21/92	220*	ND	ND	0.97	0.74
	4/28/93	ND	ND	ND	ND	ND
	7/23/93	85*	ND	ND	ND	ND
	10/5/93	130**	ND	ND	ND	ND
	1/3/94	210	ND	ND	0.76	1.6
	4/2/94	89	ND	ND	ND	ND
	7/5/94	190**	ND	ND	ND	ND
	10/6/94	170	0.85	ND	ND	0.74
	1/2/95	ND	ND	ND	ND	ND
	4/3/95	98**	ND	ND	ND	ND
	7/14/95	ND	ND	ND	ND	ND
	10/10/95	ND	ND	ND	ND	ND
	1/03/96†	ND	ND	ND	ND	ND
	4/10/96	ND	ND	ND	ND	ND
	7/9/96	ND	ND	ND	ND	ND
	1/24/97	ND	ND	ND	ND	ND
	7/23/97	ND	ND	ND	ND	ND
MW5	10/19/92	2,700	61	5.0	100	61
	12/21/92	1,700	51	4.7	83	34
	4/28/93	6,700	200	190	250	430
	7/23/93	2,000	122	8.0	68	47

Table 2
Summary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Велгеве	Toluene	Ethyl- Benzene	Xylenes
MW5	10/5/93	1,700	70	6.2	54 42	40 46
(Cont.)	1/3/94	1,500	44	ND	42	46 25
	4/2/94	1,800	46	5.1	38	35 26
	7/5/94	2,200	97 7 2	8.4	37	36
	10/6/94	1,600	79 50	5.7	28	22
	1/2/95	1,700	50	8.6	30	28
	4/3/95	5,400**	190	240	170	420
	7/14/95	3,800	210	100	130	190
	10/10/95	1,300	92	14	15	39
	1/03/96†	630	53	4.4	8.3	13
	4/10/96	500	25	18	7.0	20
	7/9/96	1,000	44	20	10	34
	1/24/97	4,000	190	400	160	430
	7/23/97	1,700	200	23	18	45
MW6	10/19/92	3,900	420	12	60	28
	12/21/92	2,300	370	11	39	15
	4/28/93	1,200	54	1.5	11	5.3
	7/23/93	580	19	0.99	3.4	2.7
	10/5/93	1,400	34	ND	5.3	7.3
	1/3/94	1,400	57	ND	8.5	11
	4/2/94	5,300*	ND	ND	ND	ND
	7/5/94	ND	ND	ND	ND	ND
	10/6/94	11,000**	ND	ND	ND	ND
	1/2/95	550	18	0.92	2.0	1.8
	4/3/95	6,600**	ND	ND	ND	ND
	7/14/95	ND	ND	ND	ND	ND
	10/10/95	ND	81	ND	ND	ND
	1/03/96†	70	9.9	0.58	ND	0.81
	4/10/96	300	25	4.7	0.94	2.7
	7/9/96	1,800	410	ND	12	ND
	1/24/97	ND	0.80	ND	ND	ND
	7/23/97	5,700	1,100	240	240	700
MW7	4/28/93	110	2.8	1.3	1.4	1.7
141 44 7	7/23/93	790	23	3.3	28	5.4
	10/5/93	360	10	1.2	0.91	0.99
	1/3/94	ND	0.93	ND	0.75	1.9
	4/2/94	360	2.0	ND	ND	0.8
	7/5/94	ND	ND	ND	ND	ND
	10/6/94	340	5.6	0.85	ND	1.2
	1/2/95	ND	ND	ND	ND	ND
	4/3/95	570	24	ND	3.4	5.8
	7/14/95	ND	14	ND	ND	ND
	10/10/95	740	170	ND	ND	ND
	1/03/96†	360	16	1.3	2.7	1.4

Table 2
Summary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylenes
MW7	4/10/96	120	4.1	1.5	ND	0.88
(Cont.)	7/9/96	ND ,	ND	ND	ND	ND
	1/24/97	ND	16	ND	ND	ND
	7/23/97	ND	1.5	ND	ND	0.62
MW8	4/28/93	450	18	1.8	1.8	1.4
	7/23/93	260	5.1	ND	0.6	ND
	10/5/93	120**	1.7	ND	ND	ND
	1/3/94	ND	ND	ND	ND	ND
	4/2/94	150	1.2	ND	ND	ND
	7/5/94	730	17	ND	1.6	ND
	10/6/94	140**	ND	ND	ND	ND
	1/2/95	440	18	0.72	2.0	1.8
	4/3/95	960	11	ND	ND	ND
	7/14/95	280	4.2	2.6	1.1	3.3
	10/10/95	110	1.3	0.62	0.67	ND
	1/03/96†	63	ND	0.51	ND	1.8
	4/10/96	ND	1.1	0.61	ND	ND
	7/9/96	72	1.0	ND	ND	ND
	1/24/97	ND	ND	ND	ND	ND
	7/23/97	ND	ND	ND	ND	ND

- † Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μ g/L in the sample collected from this well.
- * Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- ** Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.

ND = Non-detectable

-- Indicates analysis was not performed.

Results are in micrograms per liter (μ g/L), unless otherwise indicated.

- Note: The detection limit for results reported as ND by Sequoia Analytical Laboratory is equal to the stated direction limit times the dilution factor indicated on the laboratory analytical sheets.
 - Prior to August 1, 1995, the total purgeable petroleum hydrocarbon (TPH as gasoline) quantification range used by Sequoia Analytical Laboratory was C4 C12. Since August 1, 1995, the quantification range used by Sequoia Analytical Laboratory is C6 C12.
 - Laboratory analyses data prior to January 3, 1994, were provided by Kaprealian Engineering, Inc.

Table 3
Summary of Laboratory Analyses
Water

-						
Well#	Date	TPH as Diesel	Chloreform	Tetrachloro- ethene	Trichloro- ethene	MTBE
MW1	6/5/91	ND	7.8	2.9	1.3	
	9/30/91	ND				
	12/30/91	ND	6.4	2.1	0.9	
	4/2/92	94	7.1	2.6	1.4	
	6/30/92	120	9.5	2.2	1.3	
	9/15/92	ND	12	2.2	1.3	
	12/21/92	ND	12	1.4	0.83	
	4/28/93◆	470**	12	0.89	0.85	
	7/23/93	ND	16	1.3	0.91	
	10/5/93	57*	13	1.3	0.66	
	1/3/94†	ND	18	1.4	0.93	
	4/2/94	ND	15	1.1	0.68	<u></u>
	10/10/95					29
	4/10/96				 	50
	7/9/96					150
	1/24/97					510
	7/23/97	~~				550
	1123171					550
MW2	10/10/95					200
	4/10/96					620
	7/9/96					1,500
	1/24/97					1,300
	7/23/97					65
	1723/71					95
MW3	10/10/95	~-				190,000
,.	4/10/96					69,000
	7/9/96				***	140,000
	1/24/97					45
	7/23/97					45,000
						,
MW4	1/3/94		9.0	1.0	ND	240
	10/10/95		**			120
	4/10/96			***		240
	7/9/96					480
	1/24/97					270
	7/23/97					460
MW5	10/10/95					1,100
	4/10/96					640
	7/9/96					150
	1/24/97					600
	7/23/97					2,500
						-

Table 3
Summary of Laboratory Analyses
Water

		TPH as		Tetrachioro-	Trichloro-	
Well#	Date	Diesel	Chloreform	ethene	ethene	MTBE
MW6	10/10/95					75,000
	4/10/96					53,000
	7/9/96					76,000
	1/24/97					390
	7/23/97					16,000
MW7	10/10/95					13,000
	4/10/96	••				3,200
	7/9/96					3,400
	1/24/97					6,600
	7/23/97					10,000
MW8	1/3/94◆		1.5	1.2	ND	51
	10/10/95					170
	4/10/96					60
	7/9/96					140
	1/24/97					76
	7/23/97					270

- † A fuel fingerprint analysis was conducted on this sample. Sequoia Analytical Laboratory reported that total extractable petroleum hydrocarbons in this sample were not detected in high enough concentrations to compare with known standards and approximate their makeup.
- 1,2-dichloroethane was detected in MW8 at a concentration of 4.0 μ g/L on 1/03/94, and 1.1 μ g/L in MW1 on 4/28/93.
- * Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.
- ** Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.

ND = Non-detectable.

-- Indicates analysis was not performed.

Results are in micrograms per liter (µg/L), unless otherwise indicated.

- Note: All EPA method 8010 constituents were non-detectable, except as indicated above.
 - Laboratory analyses data prior to January 3, 1994, were provided by Kaprealian Engineering, Inc.

Table 4Summary of Laboratory Analyses
Water

Weil#	Date	TOG	Cadmium	Chromium	Lead	Nickel	Zinc
MW1	6/30/92	ND	ND	0.079	0.009	0.1	0.087
MW1	4/2/92	ND	ND	0.015	0.016	ND	0.02
MW1	12/30/91	ND	ND	0.0078	0.0057	ND	0.046
MW1	9/30/91	ND	ND	0.019	ND	ND	0.11
MW1	6/5/91	ND	ND	0.0083	0.011	0.063	0.023

TOG = Total Oil & Grease.

ND = Non-detectable.

Results are in milligrams per liter (mg/L), unless otherwise indicated.

Note: Laboratory analyses data were provided by Kaprealian Engineering, Inc.

Table 5Summary of Laboratory Analyses
Water

Date	Well#	HeterotrophicPlate Count (CFU/mL)
1/3/96	MW2	>5,700
	MW3	350
	MW4	1,000
	MW5	>5,700
	MW8	>5,700

CFU/mL = Colony Forming Units per milliliter.

Table 6Summary of Laboratory Analyses
Water

			Bicarbonate					
Date	Well#	BOD	Alkalinity	Calcium	Iron	Manganese	Nitrate	Sulfate
4/10/96	MW1		160	21	15	2.6		
	MW2		460	- 58	60	7.0		
	MW3		360	40	60	3.7		
	MW4		160	25	43	2.0		
	MW5		240	22	18	2.4		
	MW6		240	35	61	3.7		
	MW7		210	44	120	4.8		
	MW8		380	37	63	3.6		
1/3/96	MW2	2.2	130	27	77	3.0	0.22	97
	MW3	4.3	430	43	61	5.4	0.23	16
	MW4	ND	120	20	61	3.3	10	44
	MW5	3.4	240	31	80	3.3	ND	17
	MW8	ND	310	37	62	3.3	0.57	20

- Indicates analysis was not performed.

ND = Non-detectable.

BOD = Biochemical Oxygen Demand

Results are in milligrams per liter (mg/L), unless otherwise indicated.

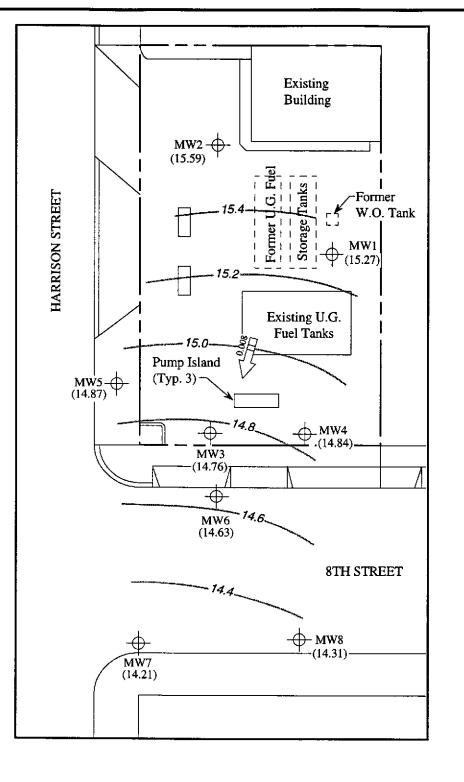
Table 7
Summary of Monitoring Data

Date	Well#	Dissolved Oxygen Concentrations Before Purging	Dissolved Oxygen Concentrations
- Jac	TT LAL #	ocare furging	After Purging
7/23/97	MW1	2.26	2.81
	MW2	1.40	0.97
	MW3	3.84	1.37
	MW4	9.28	3.68
	MW5	7.96	4.56
	MW6	10.90	3.31
	MW7	3.25	2.83
	MW8	4.08	3.27
1/24/97	MW1		2.56
	MW2		2.37
	MW3		1.46
	MW4		3.04
	MW5		1.47
	MW6		6.21
	MW7		1.91
	MW8		2.09
7/9/96	MW1		3.13
	MW2	••	0.71
	MW3		1.04
	MW4		4.91
	MW5		3.25
	MW6		3.62
	MW7		2.34
	MW8		1.32
4/10/96	MW1		3.04
	MW2		5.88
	MW3		4.63
	MW4	- -	5.23
	MW5		3.73
	MW6		4.50
	MW7		5.10
	MW8		4.80
1/3/96	MW2		1.80
	MW3		1.50
	MW4		1.20
	MW5		2.80
	MW8		1.30

Results are in milligrams per liter (mg/L).

Note: Measurements were taken using a LaMotte DO4000 dissolved oxygen meter.

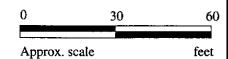
⁻⁻ Indicates measurement was not taken.



Base modified from 7.5 minute U.S.G.S. Oakland West Quadrangle (photorevised 1980)

0 2000 4000
Approx. scale feet

UNOCAL SERVICE STATION #0752 800 HARRISON STREET OAKLAND, CALIFORNIA LOCATION MAP

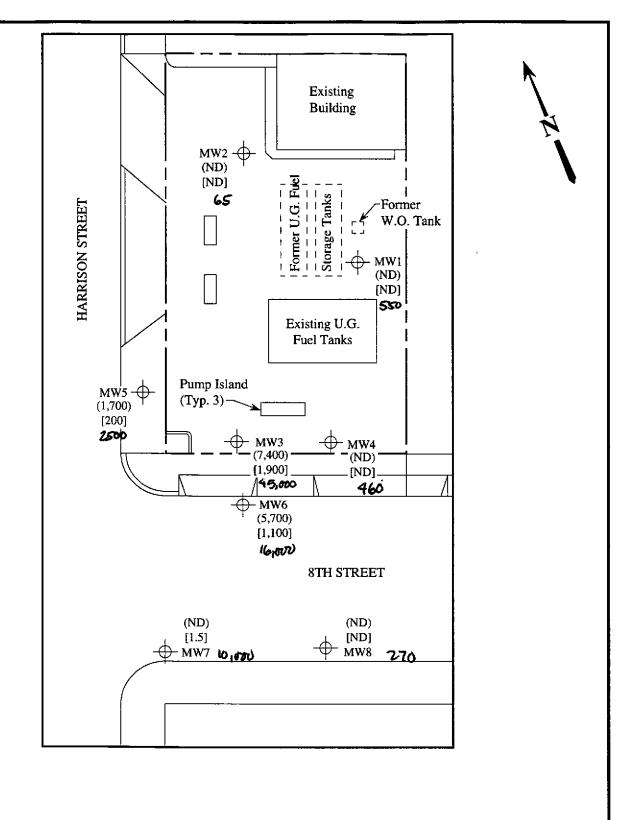

LEGEND

→ Monitoring well

) Ground water elevation in feet above Mean Sea Level

Direction of ground water flow with approximate hydraulic gradient

- Contours of ground water elevation


POTENTIOMETRIC SURFACE MAP FOR THE JULY 23, 1997 MONITORING EVENT

UNOCAL SERVICE STATION #0752 800 HARRISON STREET OAKLAND, CALIFORNIA

FIGURE

1

LEGEND

Monitoring well

() Concentration of TPH as gasoline in μ g/L

[] Concentration of benzene in μ g/L

MTBE

O 30 60
Approx. scale feet

ND Non-detectable

PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON JULY 23, 1997

UNOCAL SERVICE STATION #0752 800 HARRISON STREET OAKLAND, CALIFORNIA

FIGURE

2

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: # 0752 OAK(AND	DATE & A.M. TIME SAMPLED 7 2 3 -97 /3:05 P.M.
goo HARRIJON ST.	FIELD TECHNICIAN STEVE BALIAN
PURGE METHOD _ Pump	DATE(S) PURGED 7-23-97
WELL NUMBER/	
WATER LEVEL-INITIAL 19.42	SAMPLING METHOD BAIL
WATER LEVEL-FINAL	CONTAINERS 2
WELL DEPTH	PRESERVATIVES Hd
WELL CASING VOLUME	tCASING DIAMETER _ Z ″

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm	рН
12:40	0	84.3	265 UV	6.85
	2.5	80.1	177 02	6.72
V	5	77.4	166 ur	6.56
12:50	7.5	76.8	174 00	6.53
		=		

† Conversion Factors: Well Diameter	<u>Factor</u>	S = Siemens = mhos
2"	0.17	Stabilization Criteria:
3"	0.37	Temperature = ± 1 °F
4"	0.65	Conductivity = \pm 10% of total
4.5"	0.82	$pH = \pm 0.2$
6"	1.46	·
8"	2.60	
12"	5.87	

2401 Stanwell Drive Concord, California 94520

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: <u>#0752 OAK(AND</u>	DATE & TIME SAMPLED 7-23-97 19:30 P.M.
800 HARRISON ST.	FIELD TECHNICIAN STEVE BALLAN
PURGE METHOD PUMP	DATE(S) PURGED 7-23-97
WELL NUMBER MW-2	
WATER LEVEL-INITIAL	SAMPLING METHOD BAi
WATER LEVEL-FINAL 19.17	CONTAINERS
WELL DEPTH	PRESERVATIVES HL
WELL CASING VOLUME	tCASING DIAMETER 2 "

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (\mu mhos/cmx100) or \mu S/cm	рН
14:05	Ð	83.4	32902	6.86
	2	79.9	343 02	6.58
V	4	77.0	330 00	6.57
14:15	6	76.5	302 02	6.60

† Conversion Factors:	Well Diameter	<u>Factor</u>	S = Siemens = mhos
	2"	0.17	Stabilization Criteria:
	3"	0.37	Temperature = ± 1 °F
	4"	0.65	Conductivity = \pm 10% of total
	4.5"	0.82	$pH = \pm 0.2$
	6"	1.46	·
	8"	2.60	
	12"	5.87	

2401 Stanwell Drive *Concord, California 94520

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: # 0752 OAK(AND	DATE & A.M. TIME SAMPLED 7-23-57 /2:25 P.M.
800 HARRISON ST.	FIELD TECHNICIAN STEVE BALIAN
PURGE METHOD PUMP	DATE(S) PURGED 7-23-97
WELL NUMBER	·
WATER LEVEL-INITIAL /8.38	SAMPLING METHOD BACC
WATER LEVEL-FINAL /8.47	CONTAINERS 2
WELL DEPTH	PRESERVATIVES Hel
WELL CASING VOLUME 2.06	tCASING DIAMETER _ 2 ~

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm	рН
12:00	0	80.0	381 02	6.70
	2.5	77.5	344 02	6.67
	4.5	77.0	332 02	6.56
12:10	6.5	76.5	335 UV	6.57
	The state of the s			

† Conversion Factors: Well Diameter	<u>Factor</u>	S = Siemens = mhos
2" 3" 4" 4.5" 6" 8"	0.17 0.37 0.65 0.82 1.46 2.60 5.87	Stabilization Criteria: Temperature = \pm 1 °F Conductivity = \pm 10% of total pH = \pm 0.2

MPDS Services Inc.

2401 Stanwell Drive Concord, California 94520

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: # 0752 OAK(AND	DATE & A.M. TIME SAMPLED 7- 23-97 9:45 P.M.
SOO HARRISON ST.	FIELD TECHNICIAN STEVE BALIAN
PURGE METHOD PUMP	DATE(S) PURGED 7-23-97
WELL NUMBER	
WATER LEVEL-INITIAL	SAMPLING METHOD BAIL
WATER LEVEL-FINAL 17.97	CONTAINERS 2
WELL DEPTH	PRESERVATIVES Hel
WELL CASING VOLUME 2.46	tCASING DIAMETER 2"

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
9:20	0	69.2	423 02	6.90
	2.5	72.4	263 02	6.63
↓	5	73.2	243 UV	6.47
9:30	7.5	73.5	229 00	6.43

† Conversion Factors:	Well Diameter	Factor	S = Siemens = mhos
	2"	0.17	Stabilization Criteria:
	3"	0.37	Temperature = \pm 1 °F
	4"	0.65	Conductivity = \pm 10% of total
	4.5"	0.82	$pH = \pm 0.2$
	6"	1.46	•
	8"	2.60	
	12"	5.87	

Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: #0752 OAK(AND	DATE & A.M. TIME SAMPLED 7-23-77 /3:45 P.M.
\$00 HARRIYON ST.	FIELD TECHNICIAN STEVE BALLAN
PURGE METHOD PUMP	DATE(S) PURGED 7-23-97
WELL NUMBER Mw-5	· ·
WATER LEVEL-INITIAL /8.08	SAMPLING METHOD BAIC
WATER LEVEL-FINAL 18.19	CONTAINERS2
WELL DEPTH	PRESERVATIVES _ H J
WELL CASING VOLUME 2 . 3 2	tCASING DIAMETER _ 2 =

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
13:20	ס	87.6	283 02	6.77
	2.5	\$3.3	305 00	6.73
	5	79.8	285 UV	6.69
13:30	7	79.2	274 00	6.69

† Conversion Factors: Well Diameter	<u>Factor</u>	S = Siemens = mhos
2" 3" 4" 4.5" 6" 8"	0.17 0.37 0.65 0.82 1.46 2.60 5.87	Stabilization Criteria: Temperature = \pm 1 °F Conductivity = \pm 10% of total pH = \pm 0.2

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING # 0752 OAK(AND	DATE & TIME SAMPLED 7-23-97 11:05 P.M.
800 HARRISON ST.	FIELD TECHNICIAN STEVE BALIAN
PURGE METHOD PUMP	DATE(S) PURGED
WELL NUMBER 4W-6	:
WATER LEVEL-INITIAL 17.53	SAMPLING METHOD BALL
WATER LEVEL-FINAL	CONTAINERS
WELL DEPTH 3 0. 90	PRESERVATIVES Hel
WELL CASING VOLUME 2.27	tCASING DIAMETER

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
10:40	ø	82.2	276 uv	6.59
	2.5	80-1	265 00	6.46
	5	77.5	240 uv	6.47
10;50	7	77.1	243 02	6.42

† Conversion Factors: Well Diameter	<u>Factor</u>	S = Siemens = mhos
2"	0.17	Stabilization Criteria:
3"	0.37	Temperature = ± 1 °F
4"	0.65	Conductivity = \pm 10% of total
4.5"	0.82	$pH = \pm 0.2$
6"	1.46	
8"	2.60	
12"	5.87	

MPDS Services Inc.

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: #0752 OAK(AND	DATE & TIME SAMPLED 7-23-97 //: 45 P.M.
800 HARRISON ST.	FIELD TECHNICIAN STEVE BALIAN
PURGE METHOD PUMP	DATE(S) PURGED _7-23-97
WELL NUMBER	
WATER LEVEL-INITIAL	SAMPLING METHOD BAIL
WATER LEVEL-FINAL 18.04	CONTAINERS 2
WELL DEPTH	PRESERVATIVES Hel
WELL CASING VOLUME 2 . \$ 30	tCASING DIAMETER 2

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm	рН
11:20	0	81.1	322 00	6.73
	2.5	79. 0	370 00	6.47
	7	77.6	349 02	6.45
//:30	7	77.4	338 UV	6.40

† Conversion Factors:	Well Diameter	<u>Factor</u>	S = Siemens = mhos
	2"	0.17	Stabilization Criteria:
	3"	0.37	Temperature = ± 1 °F
	4"	0.65	Conductivity = \pm 10% of total
	4.5"	0.82	$pH = \pm 0.2$
	6"	1.46	
	8"	2.60	
	12"	5.87	

MPDS Services Inc.

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

SAMPLING LOCATION: # 0752 OAK(AND	DATE & A.M. TIME SAMPLED 7-23-97 10:25 P.M.
800 HARRISON ST.	FIELD TECHNICIAN STENE BALIAN
PURGE METHOD PUMP	DATE(S) PURGED 7-23-97
WELL NUMBER	
WATER LEVEL-INITIAL 17.69	SAMPLING METHOD BAIL
WATER LEVEL-FINAL 17.74	CONTAINERS 2
WELL DEPTH 27.93	PRESERVATIVES HL
WELL CASING VOLUME	tCASING DIAMETER _ 2 -

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
/0:00	۵	75.9	312 00	6.64
	2	76.4	3/0 00	6.53
	4	75.8	281 00	6.43
10:10	5.5	75.9	285 02	6.39

† Conversion Factors:	Well Diameter	<u>Factor</u>	S = Siemens = mhos
	2"	0.17	Stabilization Criteria:
	3"	0.37	Temperature = ± 1 °F
	4"	0.65	Conductivity = \pm 10% of total
	4.5"	0.82	$pH = \pm 0.2$
	6"	1.46	
	8"	2.60	
	12"	5.87	

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300

Client Project ID: Tosco #0752, 800 Harrison St. Oakland Sampled: Jul 23, 1997

Received:

Jul 23, 1997

Concord, CA 94520 Attention: Jarrel Crider Matrix Descript: Analysis Method:

Water EPA 5030/8015 Mod./8020

Reported:

Aug 6, 1997.

First Sample #: 707-1211

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Purgeable Hydrocarbons µg/L	Benzene μg/L	Toluene μg/L	Ethyl Benzene µg/L	Total Xylenes μg/L
707-1211	MW-1	ND	ND	ND	ND	ND
707-1212	MW-2	ND	ND	ND	ND	ND
707-1213	MW-3	7,400	1,900	180	140	340
707-1214	MW-4	ND	ND	ND	ND	ND
707-1215	MW-5	1,700	200	23	18	45
707-1216	MW-6	5,700	1,100	240	240	700
707-1217	MW-7	ND	1.5	ND	ND	0.62
707-1218	MW-8	ND	ND	ND	ND	ND

Detection Limits:	50	0.50	0.50	0.50	0.50	
						

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as ND were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp **Project Manager**

Page 1 of 2

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services Client Project ID: 2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Matrix Descript:

): Tosco #0752, 800 Harrison St. Oakland Sampled: Jul 23, 1997 Water

Received:

Jul 23, 1997

Attention: Jarrel Crider

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020

Reported:

Aug 6, 1997

707-1211

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Sample Number	Sample Description	Chromatogram Pattern	DL Mult. Factor	Date Analyzed	Instrument ID	Surrogate Recovery, % QC Limits: 70-130
707-1211	MW-1		1.0	07/30/97	HP-2	7 7
707-1212	MW-2		1.0	07/30/97	HP-2	80
707-1213	мw-з	Gasoline	100	07/30/97	HP-2	82
707-1214	MW-4	-	1.0	07/30/97	HP-2	79
707-1215	MW-5	Gasoline	5.0	07/30/97	HP-5	84
707-1216	MW-6	Gasoline	100	07/31/97	HP-2	83
707-1217	MW-7		1.0	07/30/97	HP-5	88
707-1218	MW-8		1.0	07/30/97	HP-5	99

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID: Sample Descript: Analysis for:

First Sample #:

Tosco #0752, 800 Harrison St. Oakland

Water MTBE (Modified EPA 8020)

707-1211

Sampled: Jul 23, 1997 Received: Jul 23, 1997

Analyzed: Jul 30-31, 97 Reported: Aug 6, 1997

LABORATORY ANALYSIS FOR:

MTBE (Modified EPA 8020)

Sample Number	Sample Description	Detection Limit $\mu \mathrm{g/L}$	Sample Result μg/L
707-1211	MW-1	5.0	550
707-1212	MW-2	5.0	65
707-1213	MW-3	250	45,000
707-1214	MW-4	5.0	460
707-1215	MW-5	13	2,500
707-1216	MW-6	250	16,000
707-1217	MW-7	250	10,000
707-1218	MW-8	5.0	270

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID:

Tosco #0752, 800 Harrison St. Oakland

Matrix: Liquid

QC Sample Group: 7071211-218

Reported:

Aug 11, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Вепzепе		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	D. Newcomb	D. Newcomb	D. Newcomb	D. Newcomb	
MS/MSD					
Batch#:	7071109	7071109	7071109	7071109	
Date Prepared:	7/30/97	7/30/97	7/30/97	7/30/97	
Date Analyzed:	7/30/97	7/30/97	7/30/97	7/30/97	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
Conc. Spiked:	$20\mu\mathrm{g/L}$	20 μg/L	20 μg/L	60 μg/L	
Matrix Spike					
% Recovery:	90	110	95	103	
Matrix Spike					
Duplicate %					
Recovery:	85	105	95	102	
Relative %					
Difference:	5.7	4.7	0.0	1.7	
LCS Batch#:	2LCS073097	2LCS073097	2LCS073097	2LCS073097	
Date Prepared:	7/30/97	7/30/97	7/30/97	7/30/97	
Date Analyzed:	7/30/97	7/30/97	7/30/97	7/30/97	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
LCS %					
Recovery:	85	100	100	98	

Please Note:

70-130

70-130

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Control Limits:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

70-130

70-130

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID: Tosco #0752, 800 Harrison St. Oakland

Matrix: Liquid

QC Sample Group: 7071211-218 Reported: Aug 11, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
	Donzone	Toldelle	Benzene	Aylelles	
			Denzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	D. Newcomb	D. Newcomb	D. Newcomb	D. Newcomb	
MS/MSD					
Batch#:	7071127	7071127	7071127	7071127	
Date Prepared:	7/31/97	7/31/97	7/31/97	7/31/97	
Date Analyzed:	7/31/97	7/31/97	7/31/97	7/31/97	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
•	,	,		, 0,	
Matrix Spike					
% Recovery:	90	105	100	100	
Matrix Spike					
Duplicate %					
Recovery:	85	105	100	98	
1100010191	00	100	100	90	
Relative %					
Difference:	5.7	0.0	0.0	1.7	
LCS Batch#:	2LCS073197	2LC\$073197	2LCS073197	2LCS073197	
Date Prepared:	7/31/97	7/31/97	7/31/97	7/31/97	
Date Analyzed:	7/31/97	7/31/97	7/31/97	7/31/97	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
LCS %					
Recovery:	85	105	100	98	
% Recovery Control Limits:		- 0 :			
Cond of Limits:	70-130	70-130	70-130	70-130	

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Attention: Jarrel Crider

Client Project ID:

o: Tosco #0752, 800 Harrison St. Oakland

Matrix:

Liquid

QC Sample Group: 7071211-218

Reported:

Aug 11, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Danasa	 .			
ANALITE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	D. Newcomb	D. Newcomb	D. Newcomb	D. Newcomb	
MS/MSD					
Batch#:	7071119	7071119	7071119	7071119	
	7071110	7071113	7071113	7071113	
Date Prepared:	7/30/97	7/30/97	7/30/97	7/30/97	
Date Analyzed:	7/30/97	7/30/97	7/30/97	7/30/97	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
Conc. Spiked:	20 μg/L	20 μg/L	$20\mu\mathrm{g/L}$	60 μg/L	
Matrix Spike					
% Recovery:	95	95	05	0.7	
% Hecovery.	90	90	95	97	
Matrix Spike					
Duplicate %			•		
Recovery:	90	90	90	97	
Relative %					
Difference:	5.4	E 1	F 4	8.0	
Dillerence.	5.4	5.4	5.4	0.0	
LCS Batch#:	5LCS073097	5LCS073097	5LCS073097	5LCS073097	
			3.2.30, 330,		
Date Prepared:	7/30/97	7/30/97	7/30/97	7/30/97	
Date Analyzed:	7/30/97	7/30/97	7/30/97	7/30/97	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
LCS %					
Recovery:	100	100	100	105	
_					
% Recovery					
Control Limits:	70-130	70-130	70-130	70-130	I

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

M P D S Services, Inc.

2401 Stanwell Drive, Suite 400, Concord, CA 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

CHAIN OF CUSTODY

gin colle

SAMPLER	BALI	4 <i>N</i>	TOSCO S/S # 0752 CITY: OAKLAND					ANALYSES REQUESTED								TURN AROUND TIME:
WITNESSING AGENCY	- 5/10/		ADDRE	SS: % o	o	PRISON ST	TREET	3.5	4-D	₽8.	0/	30				REGULAR
SAMPLE ID NO.	DATE	TIME	WATER	GRAÐ	СОМР	NO. OF CONT.	SAMPLING LOCATION	BTEX	TPH	MTB	80	1				REMARKS
Mw_ 1	7-23-97	13:05	X	X		2	WELL	У		X	17	071	211	A	B	MTBE 5 pp
Mw- 2	"	/4:30	Χ	Х		2	ų	X		X	77	071:	12			5 1991
Mw- 3	n	/2:25	X	X		2	"	X		X		7071	213			
Mw-4	"	9:45	χ	X		2	"	X		X		7071	214			
Mw-5	11	13:45	X	X		2	" ,	X		X		7071	215			
MW- 6	9	11:05	X	X		2	1	X		X		I	1010			
MW-7	"	1]:45	X	X		2_	"	X		X		7071	217			
14W-8	"	10:25	X	X		2	v	X		X		יחלי	12038	·	<u> </u>	
																
RELINQUISH	ED BV:	DATE/T	INGE			CEIVED BY:	I DA	TE/TIME	THE E	OU L OW(INC	AMICT DE	COMPLETE	D DV THE I		DV 40000	TING SAMPLES FOR ANALYSES:
NECHADISH	20 67.	/6:3	- 1	,			1	1 100								<i>p</i>
STEVE BA	CIAN	7-23		(SIGNAT		rina	16	1. HAVE ALL SAMPLES RECEIVED FOR ANALYSIS BEEN STORED ON ICE? 2. WILL SAMPLES REMAIN REFRIGERATED UNTIL ANALYZED?								
(SIGNATURE)				ISIGNAT	URE)			3. DID ANY SAMPLES RECEIVED FOR ANALYSIS HAVE HEAD SPACE?					<i>N</i>			
(SIGNATURE)	'	 		(SIGNAT	URE)				4. WERE	SAMPLES II	N APPROPE	HATE CON	TAINERS AF	ID PROPE	RLY PACK	AGED?
(SIGNATURE)				ISIGNAT	URE)			SIGNATURE: Alana TITLE: AnalytoATE: 7/3/					WDATE: 7/2/97			