MPDS-UN0752-01 February 3, 1994

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

Attention: Ms. Tina R. Berry

RE: Quarterly Data Report

Unocal Service Station #0752

800 Harrison Street Oakland, California

Dear Ms. Berry:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on January 3, 1994. Prior to sampling, the wells were each purged of between 7 and 9.5 gallons of water. Samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflonlined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Tables 2, 3 and 4. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline and benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

MPDS-UN0752-01 February 3, 1994 Page 2

DISTRIBUTION

A copy of this report should be sent to Ms. Jennifer Eberle of the Alameda County Health Care Services Agency, and to the Regional Water Quality Control Board, San Francisco Bay Region.

If you have any questions regarding this report, please do not hesitate to call at (510) 602-5120.

ERED GEOLO

Sincerely,

MPDS Services, Inc.

Joel G. Greger, C.E.G. Senior Engineering Geologist

God nm

License No. EG 1633 Exp. Date 6/30/94

/dlh

Attachments: Tables 1 through 4

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation

cc: Mr. Robert H. Kezerian, Kaprealian Engineering, Inc.

TABLE 1
SUMMARY OF MONITORING DATA

Well #	Ground Water Elevation (feet)	Depth to Water (feet)◆	Product Thickness (feet)	<u>Sheen</u>	Water Purged (gallons)	Total Well Depth (feet)◆
	(Moni	tored and S	ampled on Ja	anuary 3	, 1994)	
MW1	14.17	20.52	0	No	9.5	33.85
MW2	14.51	20.21	0	No	7.5	31.00
EWM	13.74	19.40	0	No	8.5	31.35
MW4	13.78	18.93	0	No	9.5	32.58
MW5	13.90	19.05	0	No	9	31.95
MW6	13.62	18.54	0	No	9	31.58
MW7	13.29	18.91	0	No	9.5	32.23
MW8	13.27	18.73	0	No	7	28.74
	(Moni	tored and S	ampled on O	ctober 5	, 1993)	
MW1	14.39	20.30	0	No	10	
MW2	14.77	19.95	0	No	8	
MW3	13.94	19.20	0	No	10	
MW4	13.97	18.74	0	No	10	
MW5	14.12	18.83	0	No	10	
MW6	13.81	18.35	0	No	10	
MW7	13.44	18.76	0	No	10	
8WM	13.43	18.57	0	No	8	

TABLE 1 (Continued)

SUMMARY OF MONITORING DATA

Total Well Depth (feet)◆

32.20

32.00

***************************************					34.44.54.04.000013.44.0030000000000000000000000
	Ground Water Elevation	Depth to Water	Product Thickness		Water Purged
Well #	(feet)	<u>(feet)</u> ◆	(feet)	<u>Sheen</u>	(gallons)
	(Mc	nitored and	Sampled on 3	July 23,	. 1993)
MW1	14.81	20.13	0	No	10
MW2	15.16	19.81	0	No	8
MW3	14.39	19.00	0	No	9
MW4	14.40	18.72	0	No	10
MW5	14.51	18.74	0	No	10
MW6	14.25	18.17	0	No	10
MW7	13.89	18.60	0	No	10
NW8	13.88	18.45	0	No	8
	(Moni	tored and Sa	ampled on Dec	ember 2	21, 1992)
NAT.7 -1	10 77	21.17	0	No	9
MW1 MW2	13.77 14.12	20.85	0	No No	7
MW3	13.37	20.02	0	No	7
MW4	13.39	19.73	0	No	, 9
MW5	13.50	19.75	0	No	9
MW6	13.25	19.17	0	No	9
1.144 ()	13.23	13.1,	J	210	-
			Well Cover		Well Casing
	•	** - 3 3 U	Elevation		Elevation (fact) **
		Well #	<u>(feet)*</u>	-	<u>(feet)**</u>
		MW1	34.94		34.69
		MW2	34.97		34.72
		MW3	33.39		33.14
		MW4	33.12		32.71
		MW5	33.25		32.95
		MW6	32.42		32.16

32.49

32.33

MW7

8WM

TABLE 1 (Continued)

SUMMARY OF MONITORING DATA

- ◆ The depth to water level and total well depth measurements were taken from the top of the well casings. Prior to October 5, 1993, the water level and total well depth measurements were taken from the top of the well covers.
- * The elevations of the top of the well covers have been surveyed relative to Mean Sea Level (MSL), per the City of Oakland benchmark disk stamped "25/A" at the northeast corner of 7th and Harrison (elevation = 28.81 MSL).
- ** Relative to MSL.

Note: Monitoring data prior to January 3, 1994, were provided by Kaprealian Engineering, Inc.

TABLE 2

SUMMARY OF LABORATORY ANALYSES WATER

Date Well # Gasoline Benzene Toluene benzene Xylenes Diesel			TPH as			Ethyl-		TPH as
MW2	<u>Date</u>	Well #		<u>Benzene</u>	<u>Toluene</u>		<u>Xylenes</u>	
MW2			,					
MW3 4.900	1/03/94		•	v				ND
MW4 210 ↑ ND — ND 0.76 1.6 MW5 1,500 ↓ 44 ↓ ND 42 46 MW6 1,400 — 57 ↑ ND 8.5 11 MW7 ND ↓ 0.93 ↓ ND 0.75 1.9 MW8 ND ↓ ND ↓ ND ND ND 10/05/93 MW1 92** 1.5 ND ND ND ND MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 MW4 130** ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND MW8 </th <th></th> <td>MW2</td> <td>at the same of the</td> <td>•</td> <td></td> <td></td> <td>26</td> <td></td>		MW2	at the same of the	•			26	
MW5 1,500 ↓ 44 ↓ ND 42 46 MW6 1,400 - 57 ↑ ND 8.5 11 MW7 ND ↓ 0.93 ↓ ND 0.75 1.9 MW8 ND ↓ ND ND ND ND MW8 ND ↓ ND ND ND ND MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 140 MW4 130** ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND N		MW3	4,900	<u>830</u> 1	100	170	150	- -
MW6 1,400 - 57 ↑ ND 8.5 11 MW7 ND √ 0.93 √ ND 0.75 1.9 MW8 ND √ ND √ ND ND ND 10/05/93 MW1 92** 1.5 ND ND ND 0.72 57 ↑ MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 MW4 130** ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4			<u> </u>					
MW7 ND 0.93 √ ND 0.75 1.9 MW8 ND ND ND ND ND 10/05/93 MW1 92** 1.5 ND ND ND 0.72 57◆ MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 MW4 130*** ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 <tr< th=""><th></th><th>MW5</th><th></th><th>•</th><th>ND</th><th>42</th><th>46</th><th></th></tr<>		MW5		•	ND	42	46	
MW8 ND ↓ ND ↓ ND ND ND ND 10/05/93 MW1 92** 1.5 ND ND ND ND 0.72 57◆ MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 MW4 130** ND ND ND ND ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 0.99 MW8 120** 1.7 ND		MW6	1,400	57 /	ND	8.5	11	
10/05/93 MW1 92** 1.5 ND ND 0.72 57♦ MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 MW4 130** ND ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW7	ND 🗸	0.93 🎶	ND	0.75	1.9	
MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 MW4 130** ND ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW8	ND 🗸	ND ∤	ND	ND	ND	
MW2 120 12 ND 2.1 12 MW3 9,200 720 88 140 140 MW4 130** ND ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4								
MW3 9,200 720 88 140 140 MW4 130** ND ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4	10/05/93							57♦
MW4 130** ND ND ND ND ND MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4								
MW5 1,700 70 6.2 54 40 MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW3	9,200	720	88	140		- -
MW6 1,400 34 ND 5.3 7.3 MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW4	130**	ND .	ND	ND	ND	
MW7 360 10 1.2 0.91 0.99 MW8 120** 1.7 ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW5	1,700 ·	70	6.2	54	40	
MW8 120** 1.7 ND ND ND ND 7/23/93 MW1 ND 0.50 0.66 ND ND ND MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW6	1,400	34	ND	5.3	7.3	
7/23/93 MW1 ND 0.50 0.66 ND ND ND MD MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW7	360	10	1.2	0.91	0.99	
MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW8	120**	1.7	ND	ND	ND	
MW2 66 1.8 ND 2.5 2.0 MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4								
MW3 4,400 660 26 160 82 MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4	7/23/93							ND
MW4 85* ND ND ND ND MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW2	66	1.8	ND	2.5		
MW5 2,000 122 8.0 68 47 MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW3	4,400	660	26	160	82	
MW6 580 19 0.99 3.4 2.7 MW7 790 23 3.3 28 5.4		MW4	85*	ND	ND	ND	ND	
MW7 790 23 3.3 28 5.4		MW5	2,000	122	8.0	68	47	
		MW6	580	19	0.99	3.4	2.7	
MW8 260 5.1 ND 0.60 ND		MW7	790	23	3.3	28	5.4	
		8WM	260	5.1	ND	0.60	ND	

TABLE 2 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

		TPH as			Ethyl-		TPH as
Date	Well:	# Gasoline	<u>Benzene</u>	<u>Toluene</u>	<u>benzene</u>	<u>Xylenes</u>	<u>Diesel</u>
4/28/93	MW1	920	3.1	2.3	1.2	9.7	470♦♦
	MW2	1,300	76	1.9	130	87	
	MW3	2,600	220	7.6	41	27	
	MW4	ND	ND	ND	ND	ND	
	MW5	6,700	200	190	250	430	
	MW6	1,200	54	1.5	11	5.3	
	MW7	110	2.8	1.3	1.4	1.7	
	8WM	450	18	1.8	1.8	1.4	
12/21/92	MW1	95	0.69	ND	ND	1.0	ND
	MW2	960	97	3.2	74	96	
	EWM	8,500	1,500	150	310	330	
	MW4	220*	ND	ND	0.97	0.74	
	MW5	1,700	51	4.7	83	34	*** ***
	MW6	2,300	370	11	39	15	
10/19/92	MW4	480	0.51	2.1	2.8	6.8	
	MW5	2,700	61	5.0	100	61	
	MW6	3,900	420	12	60	28	
9/15/92	MW1	76	1.0	ND	ND	ND	ND
	MW2	1,300	91	5.7	80	110	
	MW3	10,000	1,900	330	400	580	
6/30/92	MW1	ND	ND	ND	ND	ND	120
	MW2	76	9.3	0.76	4.8	6.9	
	MW3	8,900	1,900	210	430	550	
4/02/92	MWl	ND	ND	ND	ND	ND	94
	MW2	88	12	0.32	6.3	7.2	
	EWM	8,000	1,400	200	300	310	

TABLE 2 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

<u>Date</u>	Well #	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Ethyl- <u>benzene</u>	Xylenes	TPH as <u>Diesel</u>
12/30/91	MWl	ND	ND	ND	ND	ND	ND
	MW2	91	16	0.89	11	1.9	
	MW3	7,200	2,100	690	410	550	
9/30/91	MW1	ND	ND	ND	ND	ND	ND
	MW2	130	18	0.53	14	9.6	
	ММЗ	6,800	1,400	130	290	240	
6/05/91	MWl	47	ND	ND	ND	ND	ND
	MW2	49	ND	ND	ND	ND	
	MW3	5,800	1,200	40	140	97	

- Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a non-diesel mixture.
- ◆◆ Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.
- * Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- ** Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a non-gasoline mixture.
- ND = Non-detectable.
- -- Indicates analysis was not performed.

Results are in micrograms per liter $(\mu q/L)$, unless otherwise indicated.

Note: Laboratory analyses data prior to January 3, 1994, were provided by Kaprealian Engineering, Inc.

TABLE 3
SUMMARY OF LABORATORY ANALYSES
WATER

<u>Date</u>	Well#	Chloroform	<u>Tetrachloroethene</u>	<u>Trichloroethene</u>
1/03/94	MW1*	16	1.4	0.93
	MW4** MW8◆	9.0 1.5	1.0	ND ND
10/05/93	MW1	13	1.3	0.66
7/23/93	MW1	16	1.3	0.91
4/28/93	MW1◆◆	12	0.89	0.85
12/21/92	MWl	12	1.4	0.83
9/15/92	MWl	12	2.2	1.3
6/30/92	MW1	9.5	2.2	1.3
4/02/92	MWl	7.1	2.6	1.4
12/30/91	MWl	6.4	2.1	0.9
9/30/91	MW1			
6/04/91	MW1	7.8	2.9	1.3

TABLE 3 (Continued)

SUMMARY OF LABORATORY ANALYSES WATER

- * A fuel fingerprint analysis was conducted on this sample. Sequoia Analytical Laboratory reported that total extractable petroleum hydrocarbons in this sample were not detected in high enough concentrations to compare with known standards and approximate their make-up.
- ** MTBE was detected at a concentration of 240 $\mu g/L$.
- 1,2-Dichloroethane was detected at a concentration of 4.0 μ g/L, and MTBE was detected at a concentration of 51 μ g/L.
- $\bullet \bullet$ 1,2-Dichloroethane was detected at a concentration of 1.1 μ g/L.

ND = Non-detectable.

-- Indicates analysis was not performed.

Results are in micrograms per liter $(\mu g/L)$, unless otherwise indicated.

- Note: All EPA method 8010 constituents were non-detectable, except for the above compounds.
 - Laboratory analyses data prior to January 3, 1994, were provided by Kaprealian Engineering, Inc.

TABLE 4
SUMMARY OF LABORATORY ANALYSES
WATER

20000000	<u>Date</u>	Well #	TOG	<u>Cadmium</u>	Chromium	<u>Lead</u>	Nickel	<u>Zinc</u>
	4/02/92	MW1	ND	ND	0.015	0.016	ND	0.020
	12/30/91	MW1	ND	ND	0.0078	0.0057	ND	0.046
	9/30/91	MW1	ND	ND	0.019	ND	ND	0.11
	6/05/91	MW1	ND	ND	0.0083	0.011	0.063	0.023

ND = Non-detectable.

Results are in milligrams per liter (mg/L), unless otherwise indicated.

Note: Laboratory analyses data were provided by Kaprealian Engineering, Inc.

Base modified from 7.5 minute U.S.G.S. Oakland West Quadrangle (photorevised 1980)

MPDS

SERVICES, INCORPORATED

UNOCAL SERVICE STATION #0752 800 HARRISON STREET OAKLAND, CALIFORNIA

LOCATION MAP

POTENTIOMETRIC SURFACE MAP FOR THE JANUARY 3, 1994 MONITORING EVENT

MPDS SERVICES, INCORPORATED

LEGEND

UNOCAL SERVICE STATION #0752 800 HARRISON STREET OAKLAND, CALIFORNIA

Approx. scale

FIGURE 1

feet

LEGEND

- () Concentration of TPH as gasoline in $\mu g/L$
- [] Concentration of benzene in μ g/L

ND = Non-detectable

PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON JANUARY 3, 1994

MPDS
SERVICES, INCORPORATED

UNOCAL SERVICE STATION #0752 800 HARRISON STREET OAKLAND, CALIFORNIA

FIGURE

2

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedessian Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland

Water

Sample Matrix: Analysis Method: EPA 5030/8015/8020

First Sample #: 401-0049 Sampled:

Jan 3, 1994

Received: Reported:

Jan 3, 1994 Jan 13, 1994

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 401-0049 MW-1	Sample I.D. 401-0050 MW-2	Sample I.D. 401-0051 MW-3	Sample I.D. 401-0052 MW-4	Sample I.D. 401-0053 MW-5	Sample I.D. 401-0054 MW-6
Purgeable Hydrocarbons	50	N.D.	260	4,900	210	1500	1400
Benzene	0.5	N.D.	25	830	N.D.	44	57
Toluene	0.5	N.D.	N.D.	100	N.D.	N.D.	N.D.
Ethyl Benzene	0.5	N.D.	5.5	170	0.76	42	8.5
Total Xylenes	0.5	N.D.	26	150	1.6	46	11
Chromatogram Pat	tern:		Gasoline	Gasoline	Gasoline	Gasoline	Gasoline ,

Quality Control Data

1						
Report Limit Multiplication Factor:	1.0	1.0	20	1.0	10	10
Date Analyzed:	1/7/94	1/7/94	1/7/94	1/7/94	1/10/94	1/7/94
Instrument Identification:	HP-4	HP-5	HP-5	HP-4	HP-2	HP-5
Surrogate Recovery, %: (QC Limits = 70-130%)	89	90	93	87	114	102

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager

2401 Stanwell Dr., Ste. 400

Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland

Sampled:

Jan 3, 1994

Concord, CA 94520

Sample Matrix: Analysis Method: Water EPA 5030/8015/8020 Received: Reported:

Jan 3, 1994 Jan 13, 1994

Attention: Avo Avedessian

First Sample #:

401-0055

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 401-0055 MW-7	Sample I.D. 401-0056 MW-8	Sample I.D. Method Blank			
Purgeable Hydrocarbons	50	N.D.	N.D.				
Benzene	0.5	0.93	N.D.				
Toluene	0.5	N.D.	N.D.				
Ethyl Benzene	0.5	0.75	N.D.		•	•	
Total Xylenes	0.5	1.9	N.D.				
Chromatogram Patte	ern:						

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0
Date Analyzed:	1/7/94	1/7/94	1/7/94
Instrument Identification:	HP-5	HP-4	HP-4
Surrogate Recovery, %: (QC Limits = 70-130%)	93	97	98

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

B. Kemp Project Manager

2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedessian Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland Sample Matrix:

Water

EPA 3510/3520/8015

Analysis Method: First Sample #: 401-0049 Sampled:

Jan 3, 1994

Jan 3, 1994 Received: Reported: Jan 13, 1994

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 401-0049 MW -1	Sample I.D. Method Blank	
Extractable Hydrocarbons	50	N.D.		

Chromatogram Pattern:

Quality Control Data

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Alfam B. Kemp Project Mánager

2401 Stanwell Dr., Ste. 400

Attention: Avo Avedessian

Client Project ID: Sample Matrix:

Unocal 0752, 800 Harrison Street, Oakland

Sampled: Received: Reported: Jan 3, 1994 Jan 3, 1994

Concord, CA 94520

Analysis Method:

EPA 3510/3520/8015

Jan 13, 1994

First Sample #:

401-0049

Water

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS AS A FUEL FINGERPRINT

Analyte

Reporting Limit

 $\mu g/L$

Sample I.D.

401-0049

MW₁

Extractable

Hydrocarbons

50

Chromatogram Pattern:

Total Extractable Petroleum Hydrocarbons in this sample were not detected in high enough concentrations to compare with known standards and approximate their make-up.

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Extracted:

1/4/94

Date Analyzed:

1/6/94

Instrument Identification:

HP-3B

Extractable Hydrocarbons are quantitated against fresh Gasoline, Kerosene, Paint Thinner, Stoddard Solvent and Diesel standards. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Kemp Project Manager

MPDS Services 2401 Stanwell Dr., Ste. 400

Concord, CA 94520 Attention: Avo Avedessian

Analysis for:

Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland Sample Descript:

Water

MTBE (EPA 8020 Modified)

First Sample #: 401-0052 Sampled:

Jan 3, 1994

Received: Jan 3, 1994

Analyzed: Reported:

Jan 7, 1994 Jan 13, 1994

LABORATORY ANALYSIS FOR:

MTBE (EPA 8020 Modified)

Sample Number	Sample Description	Detection Limit μg/L	Sample Result $\mu {\rm g/L}$	
401-0052	MW 4	0.60	240	
401-0056	MW 8	0.60	51	

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Abent B. Kemp Project Manager

MPDS Services 2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedessian Client Project ID: Sample Descript: Analysis Method: Unocal 0752, 800 Harrison Street, Oakland Water, MW 1

Sampled: Received: Analyzed:

Jan 3, 1994 Jan 3, 1994 Jan 4, 1994

Lab Number:

EPA 5030/8010 401-0049

Reported: Jan 13, 1994

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results μg/L
Bromodichloromethane	0.50	***************************************	N.D.
Bromoform	0.50		N.D.
Bromomethane	1.0		N.D.
Carbon tetrachloride	0.50		N.D.
Chlorobenzene	0.50	***************************************	N.D.
Chloroethane	1.0	******	N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	0.50	***************************************	San respect to contract and are included in the contract and are i
Chloromethane	1.0	***************************************	N.D.
Dibromochloromethane	0.50		N.D.
1,3-Dichlorobenzene	0.50		N.D.
1,4-Dichlorobenzene	0.50		N.D.
1,2-Dichlorobenzene	0.50		N.D.
1,1-Dichloroethane	0.50		N.D.
1,2-Dichloroethane	0.50		N.D.
1,1-Dichloroethene	0.50		N.D.
cis-1,2-Dichloroethene	0.50		N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50		N.D.
cis-1,3-Dichloropropene	0.50		N.D.
trans-1,3-Dichloropropene	0.50		N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	0.50		N.D.
Tetrachloroethene	0.50		. 1.4
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50	•••••	N.D.
Trichloroethene	0.50	***************************************	. 0.93
Trichlorofluoromethane	0.50	*****	N.D.
Vinyl chloride	1.0		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

reject Mahager

2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedessian

Client Project ID: Sample Descript:

Lab Number:

Unocal 0752, 800 Harrison Street, Oakland

Water, MW 4 Analysis Method: EPA 5030/8010 401-0052

Sampled: Received:

Jan 3, 1994 Jan 3, 1994

Analyzed: Jan 4, 1994 Reported: Jan 13, 1994

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results µg/L
Bromodichloromethane	0.50		N.D.
Bromoform	0.50		N.D.
Bromomethane	1.0	,,-,,-,	N.D.
Carbon tetrachloride	0.50		N.D.
Chlorobenzene	0.50	,	N.D.
Chloroethane	1.0	,	N.D.
2-Chloroethylvinyl ether	1.0	,	N.D.
Chioroform	0.50		
Chloromethane	1.0		N.D.
Dibromochloromethane	0.50		N.D.
1,3-Dichlorobenzene	0.50	***************************************	N.D.
1,4-Dichlorobenzene	0.50	***************************************	N.D.
1,2-Dichlorobenzene	0.50		N.D.
1,1-Dichloroethane	0.50		N.D.
1,2-Dichloroethane	0.50		N.D.
1,1-Dichloroethene	0.50		N.D.
cis-1,2-Dichloroethene	0.50		N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50		N.D.
cls-1,3-Dichloropropene	0.50		N.D.
trans-1,3-Dichloropropene	0.50		N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	0.50		N.D.
Tetrachioroethene	0,50		
1,1,1-Trichloroethane	0.50	***************************************	N.D.
1,1,2-Trichloroethane	0.50	***************************************	N.D.
Trichloroethene	0.50	· · · · · · · · · · · · · · · · · · ·	N.D.
Trichlorofluoromethane	. 0.50		N.D.
Vinyl chloride	1.0	***************************************	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

B.≭emp∕ Project Manager MPDS Services 2401 Stanwell Dr., Ste. 400 Concord, CA 94520 Attention: Avo Avedessian

Client Project ID: Sample Descript: Analysis Method: Lab Number: Unocal 0752, 800 Harrison Street, Oakland Water, MW 8

EPA 5030/8010 401-0056 Sampled: Received: Jan 3, 1994 Jan 3, 1994

Analyzed: Jan 4, 1994 Reported: Jan 13, 1994

HALOGENATED VOLATILE ORGANICS (EPA 8010)

Analyte	Detection Limit µg/L		Sample Results μg/L
Bromodichloromethane	0.50		N.D.
Bromoform	. 0.50	,	N.D.
Bromomethane	1.0		N.D.
Carbon tetrachloride	0.50		N.D.
Chlorobenzene	0.50	***************************************	N.D.
Chloroethane	1.0	***************************************	N.D.
2-Chloroethylvinyl ether	1.0	***************************************	N.D.
Chloroform	0.50	***************************************	
Chloromethane	1.0		N.D.
Dibromochloromethane	0.50		N.D.
1,3-Dichlorobenzene	0.50		N.D.
1,4-Dichlorobenzene	0.50		N.D.
1,2-Dichlorobenzene	0.50		N.D.
1,1-Dichloroethane	0.50		N.D.
1,2-Dichloroethane	0,50	***************************************	
1,1-Dichloroethene	0.50		N.D.
cis-1,2-Dichloroethene	0.50		N.D.
trans-1,2-Dichloroethene	0.50		N.D.
1,2-Dichloropropane	0.50		N.D.
cis-1,3-Dichloropropene	0.50	***************************************	N.D.
trans-1,3-Dichloropropene	0.50	,	N.D.
Methylene chloride	5.0		N.D.
1,1,2,2-Tetrachloroethane	0.50		N.D.
Tetrachloroethene	0.50		
1,1,1-Trichloroethane	0.50		N.D.
1,1,2-Trichloroethane	0.50		N.D.
Trichloroethene	0.50	111111111111111111111111111111111111111	N.D.
Trichlorofluoromethane	0.50		N.D.
Vinyl chloride	1.0		N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL

Alar B. Kemp Project Manager

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland

Matrix: Liquid

Attention: Avo Avedessian

QC Sample Group: 4010049-56

Reported:

Jan 13, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	Diesel		
		•	Benzene				
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	EPA 815		
Analyst:	A.T.	A.T.	A.T.	A.T	K.W.		
MS/MSD							
Batch#:	4010109	4010109	4010109	4010109	BLK010494		
Date Prepared:	1/7/94	1/7/94	1/7/94	1/7/94	1/4/94		
Date Analyzed:	1/7/94	1/7/94	1/7/94	1/7/94	1/5/94		
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	HP-3B		
Conc. Spiked:	$20\mu\mathrm{g/L}$	20 μg/L	20 μg/L	60 μg/L	300 μg/L		
Matrix Spike		•					•
% Recovery:	90	90	95	93	89		
Matrix Spike Duplicate %							
Recovery:	85	90	90	92	96		
Relative %							
Difference:	5.7	0.0	5.4	1.1	7.6		,
********************************		555555555666666666666666666666666666666	x1000 000000000000000000000000000000000	· 		****	446010000000000000000000000000000000000

LCS Batch#:	2LCS010794	2LCS010794	2LCS010794	2LCS010794	BLK010494	
Date Prepared:	1/7/94	1/7/94	1/7/94	1/7/94	1/4/94	
Date Analyzed:	1/7/94	1/7/94	1/7/94	1/7/94	1/5/94	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	HP-3B	,
LCS %		·				
Recovery:	102	101	106	102	89	
% Recovery		<u> </u>				
Control Limits:	71-133	72-128	72-130	71-120	28-122	

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager Please Note:

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland

Matrix:

Liquid

Attention: Avo Avedessian

QC Sample Group: 4010049-56

Reported:

Jan 13, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	A.T.	A.T.	A.T.	A.T.	
MS/MSD					
Batch#:	4010220	4010220	4010220	4010220	
Date Prepared:	1/10/94	1/10/94	1/10/94	1/10/94	
Date Analyzed:	1/10/94	1/10/94	1/10/94	1/10/94	
Instrument I.D.#:	HP-2	HP-2	HP-2	HP-2	
Conc. Spiked:	$20\mu\mathrm{g/L}$	20 μg/L	$20\mu\mathrm{g/L}$	60 μg/L	
Matrix Spike					
% Recovery:	107	105	106	103	•
Matrix Spike Duplicate %			•		
Recovery:	107	100	101	101	
Relative %					
Difference:	0.0	4.9	4.9	1.9	

LCS Batch#:	1LCS011094	1LCS011094	1LCS011094	1LCS011094		
Date Prepared:	1/10/94	1/10/94	1/10/94	1/10/94		
Date Analyzed: Instrument I.D.#:	1/10/94 HP-2	1/10/94 HP-2	1/10/94 HP-2	1/10/94 HP-2		
LCS [·] % Recovery:	108	105	105	105		
% Recovery Control Limits:	71-133	72-128	72-130	71-120		

SEQUOIA ANALYTICAL

Alan B. Kemp Project Manager Please Note:

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland

Matrix:

Liquid

Attention: Avo Avedessian

QC Sample Group: 4010049-56

Reported:

Jan 13, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl Benzene	Xylenes	
Method: Analyst:	EPA 8020 J.F.	EPA 8020 J.F.	EPA 8020 J.F.	EPA 8020 J.F.	
MS/MSD Batch#:	4010037	4010037	4010037	4010037	
Date Prepared:	1/7/94	1/7/94	1/7/94	1/7/94	 •
Date Analyzed: nstrument I.D.#:	1/7/94 HP-5	1/7/94 HP-5	1/7/94 HP-5	1/7/94 HP-5	
Conc. Spiked:	$20\mu\mathrm{g/L}$	20 μg/L	$20\mu\mathrm{g/L}$	$60\mu\mathrm{g/L}$	
Matrix Spike % Recovery:	100	100	100	98	
Matrix Spike Duplicate % Recovery:	105	105	100	100	,
Relative % Difference:	4.9	4.9	0.0	2.0	

LCS Batch#:	3LCS010794	3LCS010794	3LCS010794	3LCS010794	*
Date Prepared:	1/7/94	1/7/94	1/7/94	1/7/94	
Date Analyzed:	1/7/94	1/7/94	1/7/94	1/7/94	
instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
LCS %		•			
Recovery:	104	101	99	99	-
% Recovery		· · · · · · · · · · · · · · · · · · ·			
Control Limits:	71-133	72-128	72-130	71-120	

SEQUOIA ANALYTICAL

Alan B. Kemp) Project Manager Please Note:

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Attention: Avo Avedessian

Client Project ID:

Unocal 0752, 800 Harrison Street, Oakland

Matrix:

Liquid -

QC Sample Group: 4010049, 4010052 & 4010056

Reported:

Jan 13, 1994

QUALITY CONTROL DATA REPORT

ANALYTE	1,1-Dichloro- ethene	Trichloro- ethene	Chloro- benzene		
Method:					
Analyst:	EPA 8010 K.N.	EPA 8010 K.N.	EPA 8010 K.N.		
· · · · · · · · · · · · · · · · · · ·					
MS/MSD Batch#:	3121622	3121622	3121622		
Date Prepared:	1/4/94	1/4/94	1/4/94		
Date Analyzed:	1/4/94	1/4/94	1/4/94		
Instrument I.D.#:	HP-5890/1	HP-5890/1	HP-5890/1		
Conc. Spiked:	10 μg/L	10 μg/L	10 μg/L		
Matrix Spike					
% Recovery:	74	100	100		
Matrix Spike				·	
Duplicate %	74	. 100	100		
Recovery:		•		•	
Relative %					
Difference:	0.0	0.0	0.0		
	***************************************			***************************************	*******************************

LCS Batch#:	LCS010494	LCS010494	LCS010494
Date Prepared: Date Analyzed: Instrument I.D.#:	1/4/94 1/4/94 HP-5890/1	1/4/94 1/4/94 HP-5890/1	1/4/94 1/4/94 HP-5890/1
LCS % Recovery:	78	100	97

% Recovery			
Control Limits:	28-167	35-146	38-150

SEQUOIA ANALYTICAL

Project Manager

Please Note:

Client Project (D: Unocal 0752, 800 Harrison Street, Oakland

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Attention: Avo Avedessian

QC Sample Group: 401-0049

Reported: Jan 13, 1994

QUALITY CONTROL DATA REPORT

SURROGATE

Method:

EPA 8015

EPA 8015

Analyst:

K.W.

K.W.

Reporting Units:

μg/L

μg/L

Date Analyzed:

Jan 6, 1994

Jan 5, 1994

Sample #:

401-0049

Method Blank

Surrogate

% Recovery:

104

98

SEQUOIA ANALYTICAL

Alam B. Kemp Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

Client Project ID: Unocal 0752, 800 Harrison Street, Oakland

2401 Stanwell Dr., Ste. 400

Concord, CA 94520

Attention: Avo Avedessian

QC Sample Group: 4010049, 4010052 & 4010056

Reported: Jan 13, 1994

QUALITY CONTROL DATA REPORT

SURROGATE

Method: Analyst:

EPA 8010

EPA 8010 K.Nill EPA 8010

EPA 8010

Reporting Units:

K.Nill μg/L

μg/L

K.Niil μg/L K.Nill μg/L

Date Analyzed: Sample #:

Jan 4, 1994 401-0049 Jan 4, 1994 401-0052 Jan 4, 1994 401-0056 Jan 4, 1994 Method Blank

Surrogate #1

% Recovery:

129

90

94

127

Surrogate #2

% Recovery:

133

107

112

124

SEQUOIA ANALYTICAL

Ålan 8. Kemp) Project Manager % Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D. (Conc. of M.S. + Conc. of M.S.D.) / 2 x 100

MPDS

Services, Inc.

CHAIN OF CUSTODY

SAMPLER STEVE			SITE NAME & ADDRESS UNO.# 0752 OAKLAND BOO HARRISON STREET							AHALYSI	S REQ	UESTED		TURN AROUND TIME:	
								\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	0 1	BE	RUEL RPRIN		REG-ULAR -	
SAMPLE 1D HO.	DATE	TIME	SOIL	WATER	GRAB	СОНР	NO. OF CONT.	SAHPLING LOCATION	TPH-G BTXE	T P H	8010	MTE	WATER		REHARKS
MW- 1	1-3-94	-		X	X		6	мω	X	X	X		X		4010049 A-F
MW- 2	"			X	X		2	11	X						, 0050 A-B
мш_ 3	4			X	X		2	. //	X						0051
ми- 4	4			X	X		6	1	λ		X	X			0052 AF
MW- 5	"			X	X		2	4	X	i					0053 AB
MW- 6	4			X	X		2	//	X						0054
ми- 7	4			X	X		2	"	X						0055 V 0056 A.F
MW- 8	7			X	X		6	1	X		X	X			0056 A.F
			<u> </u>									<u> </u>			
Retinquished by: (Stynature) Bate/Time Received by: (Stynature) STEVE Welling Chlusere					The following HUST BE completed by the laboratory accepting samples for analysis: 1. Have all samples received for analysis been stored in ice? 2. Vill samples remain refrigerated until analyzed?										
Relinquished by: (Signature) Date/Time Received by: (Signature)															
Relinquished by: (Signature) Date/line					Received by: (Signature)			3. Did any samples received for analysis have head space?							
Relinguished	i by: (Si	gnature)	t	ate/[i	ine		Receiv	ed by: (Signature)		4. Were somples in appropriate containers and properly packaged? Whiting a Cumple Sample Control 13194 Signature Title Date					

2401 Stanwell Drive, Suite 400 Concord, California 91520 Tel. \$10.602 5100 - Eax: \$10.607 0602