

GETTLER-RYAN INC.

TRANSMITTAL

January 23, 2002 G-R #180061

#1059

TO:

Mr. David B. De Witt

Phillips 66 Company

2000 Crow Canyon Place, Suite 400

San Ramon, California 94583

CC:

Mr. David Vossler

Gettler-Ryan Inc.

Petaluma, California

FROM:

Deanna L. Harding

Project Coordinator

Gettler-Ryan Inc.

6747 Sierra Court, Suite J Dublin, California 94568

RE:

Tosco (Unocal) Service Station

#5325

3220 Lakeshore Avenue

Oakland, California

· Still ongoing release nearly-184-2

WE HAVE ENCLOSED THE FOLLOWING:

COPIES	DATED	DESCRIPTION
1	January 18, 2002	Groundwater Monitoring and Sampling Report Fourth Quarter - Event of December 10, 2001

COMMENTS:

This report is being sent to you for your review/comment, prior to being distributed on your behalf. If no comments are received by February 6, 2002, this report will be distributed to the following:

cc: Alameda County Health Care Services, 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Enclosure

January 18, 2002 G-R Job #180061

Mr. David B. De Witt Phillips 66 Company 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

RE: Fourth Quarter Event of December 10, 2001

Groundwater Monitoring & Sampling Report

Tosco (Unocal) Service Station #5325

3220 Lakeshore Avenue Oakland, California

Dear Mr. De Witt:

This report documents the most recent groundwater monitoring and sampling event performed by Gettler-Ryan Inc. (G-R) at the referenced site. All field work was conducted in accordance with G-R Standard Operating Procedure - Groundwater Sampling (attached).

Static groundwater levels were measured and all wells were checked for the presence of separate-phase hydrocarbons. Separate-phase hydrocarbons were not present in any wells. Static water level data and groundwater elevations are summarized in Table 1. Dissolved Oxygen Concentrations are summarized in Table 4. A Potentiometric Map is included as Figure 1.

Groundwater samples were collected from the monitoring wells as specified by Standard Operating Procedure Groundwater Sampling (attached). The field data sheets are also attached. The samples were analyzed by Sequoia Analytical. Analytical results are summarized in Tables 1, 2 and 3. A Concentration Map is included as Figure 2. The chain of custody document and laboratory analytical reports are also attached.

Sincerely,

Deanna L. Harding Project Coordinator

Hagop Kevork P.E. No. C55734

Figure 1: Potentiometric Map Figure 2: Concentration Map

Table 1: Groundwater Monitoring Data and Analytical Results
Table 2: Groundwater Analytical Results – Oxygenate Compounds

Table 3: Groundwater Analytical Results
Table 4: Dissolved Oxygen Concentrations

Attachments: Standard Operating Procedure - Groundwater Sampling

Field Data Sheets

Chain of Custody Document and Laboratory Analytical Reports

5325.gml

REVIEWED BY

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

DATE REVISED DATE December 10, 2001

FILE NAME: P:\Enviro\Tosco\5325\QQ1-5325.DWG | Layout Tab: Pot4

PROJECT NUMBER

180061

DATE

REVIEWED BY

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

REVISED DATE December 10, 2001

180061 FILE NAME: P:\Enviro\Tosco\5325\Q01-5325.DWG | Layout Tab: Con4

PROJECT NUMBER

Table 1
Groundwater Monitoring Data and Analytical Results

						AKILING, CUITOTI					general de la companya de la company
WELL ID/ TOC*(ft.)	DATE	DTW (ft.)	S.I. (ft. hg×)	GWE (ft.)	Product Thickness (ft.)	TPH-G (ppb)	R (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (pph)
U-1	08/10/90		5.0-2 0.0			690	38	75	8.6	130	
~ 1	01/07/91					250	22	16	4.2	17	
	04/01/91					160	13	8.6	1.0	15	
	07/03/91					140	21	4.3	0.36	17	
	10/09/91					ND	ND	ND	ND	ND	
	02/12/92					250	ND	ND	ND	ND	
	05/05/92					230	1.2	ND	ND	ND	
	06/11/92					1,000	80	1.4	6.7	41	
	08/20/92					400 ¹	1.0	ND	ND	0.6	
	02/22/93					34,000	1,400	5,500	910	7,300	
	05/07/93					8,700	600	240	650	3,300	
	08/08/93					4,900 ²	79	ND	832	270	
5.32	11/16/93	8.61		-3.29	0.00	690 ³	ND	ND	ND	ND	
1.54	02/16/94	8.54		-3.22	0.00	6,800 ⁴	ND	ND	ND	ND	
		8.39		0.07	0.00	200	NĎ	ND	5.9	21	
8.46	06/22/94	8.66		-0.20	0.00	6,100 ³	ND	ND	ND	ND	
	09/22/94			0.42	0.00	50,000	2,500	9,700	2,400	17,000	
	12/24/94	8.04		1.02**	0.37	NOT SAMPLED	DUE TO THE	RESENCE OF F	REE PRODUCT		
	03/25/95	7.72		-0.69**	0.20	NOT SAMPLEI	DUE TO THE F	RESENCE OF F	REE PRODUCT		
	06/21/95	9.30		-0.53**	0.40	NOT SAMPLEI	DUE TO THE	RESENCE OF F	REE PRODUCT		
	09/19/95	9.29		-0.50**	0.03	NOT SAMPLEI	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	12/19/95	8.98		0.21	0.00	27,000	ND	2,300	1,400	11,000	4,900
	03/18/96	8.25		0.21	<0.01	120,000	540	4,300	2,600	26,000	ND
	06/27/96	7.92		-0.62**	0.02	NOT SAMPLEI	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	09/26/96	9.10		-0.62** 1.60**	0.02	NOT SAMPLEI	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	12/09/96	6.88		-0.15**	0.55	NOT SAMPLE	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	03/14/97	9.02		-0.15** 0.07**	0.02	NOT SAMPLE	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	06/30/97	8.41			0.02	NOT SAMPLE	DUE TO THE	PRESENCE OF F	REE PRODUCT		
	09/19/97	8.56		-0.08**	0.02	NOT SAMPLE	DUE TO THE	PRESENCE OF I	REE PRODUCT		
	12/12/97	8.58		-0.11**	0.01	NOT SAMPIFI	DUE TO THE	PRESENCE OF I	REE PRODUCT		•••
	03/03/98 ¹⁷	8.23		0.26**		52,000	ND ⁷	900	1,800	13,000	ND
	06/15/98 ¹⁷	8.37		0.09	Sheen	32,000	2 100	.			

Table 1
Groundwater Monitoring Data and Analytical Results

		-,		<u> </u>		oakiano, Camoin					
WELL ID/ TOC*(fL)	DATE	DTW (ft.)	S.I. (ft : hgs)	GWE	Product Thickness (ft.)	TPH-G (ppb)	B (ppb)	T (pph)	E (ppb)	X (ppb)	MTBE (pph)
U-1	09/30/98 ¹⁷						-				
	12/28/98 ¹⁷	8.94	5.0 -20.0	-0.48	Sheen	1,000,0008	ND ⁷	2,600	13,000	83,000	4,800
(cont)		8.57		-0.11	<0.01	1,100,000 ⁹	ND ⁷	1,600	8,600	71,000	5,700
	03/22/99 ¹⁷	8.18		0.28	Sheen	130,000	470	1,100	2,000	28,000	5,700
	06/09/99	9.37		-0.91	0.00	40,000	230	640	590	13,000	3,500/2,10010
	09/08/99 ¹⁷	9.53		-1.07	0.00	55,000 ¹¹	217	202	745	14,300	6,890/6,69010
	12/07/99 ¹⁷	9.67		-1.21	0.00	41,200 ¹³	89.3	ND^7	385	6,930	15,800/14,70012
	03/13/0017	8.44		0.02	0.00	48,000 ¹¹	490	610	2,400	10,000	22;000/23,000 ¹⁰
	06/21/0017	9.45		-0.99	0.00	37,000 ¹¹	200	ND^7	1,200	7,200	15,000/20,000 ¹⁰
	09/27/0017	9.29		-0.83	0.00	15,00011	92	ND ⁷	540	2,800	74,000/83,000 ¹⁵
	12/12/00 ¹⁷	9.37		-0.91	0.00	50,000 ¹⁶	${ m ND}^7$	ND^7	250	1,900	12,000/15,000 ¹²
	03/07/01 ¹⁷	8.45		0.01	0.00	6,22013	29.8	10.4	96.3	638	11,200/11,800 16
	06/06/01 ¹⁷	9.29		-0.83	0.00	5,200 ¹³	17	ND^7	69	420	6,500/8,700 ¹²
	09/24/0117	9.39		-0.93	0.00	4,30018	36	<25	65	590	4,400/4,400 ¹⁰
	12/10/01 ²⁰	9.17		-0.71	0.00	11,000 ¹⁸	220	<100	380	1,500	5,100/5,100 ¹⁰
						T gai	\$	7277	2.00	1,000	
						C. N)				10'5
J -2	08/10/90		5.0 -20.0			780	27	46	15	130	
	01/07/91					1,900	67	5.8	58	69	
	04/01/91					1,700	250	89	34	190	
	07/03/91				**	2,100	150	25	3.1	290	
	10/09/91					230	7.1	ND	ND	11	
	02/12/92					410	1.9	ND	0.36	0.4	
	05/05/92					1,600	120	52	6.2	290	
	06/11/92					620	17	2.1	ND	37	
	08/20/92					700	28	6.5	1.3	4.6	
	02/22/93					3,400	2,400	2,100	1,200	5,800	
	05/07/93				••	17,000	1,800	660	1,700	4,000	
	08/08/93					5,600 ²	420	ND	410	670	
53	11/16/93	8.17		-3.64	0.00	510 ³	ND	ND	ND	ND	
	02/16/94	7.73		-3.20	0.00	980 ⁴	49	13	2.7	40	
.62	06/22/94	7.60		0.02	0.00	31,000	2,200	62	1,500	3,500	~-
.02	UU1 441 74	7.00		0.02	0.00	21,000	2,200	02	3 34/00	2,200	

Table 1
Groundwater Monitoring Data and Analytical Results

						Oukland, Camon					
WELL ID/ TOC*(ft.)	DATE	DTW (ft.)	S.I. (ft. bgs)	GWE (ft.)	Product Thickness (ft.)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (ppb)	MTBE (pph)
U-2	09/22/94	7.93	5.0-2 0.0	-0.31	0.00	8,500 ³	29	ND	ND	ND	<u></u>
(cont)	12/24/94	7.27		0.35	0.00	32,000	1,500	890	1,300	5,000	
	03/25/95	7.01		0.61	0.00	170,000	1,900	21,000	4,800	33,000	
	06/21/95	6.98		0.64	0.00	16,000	2,100	ND	1,800	1,700	
	09/19/95	7.70		-0.08	0.00	3,000	610	ND	78	240	5
	12/19/95	7.30		0.32	0.00	1,600	140	55	52	270	6
	03/18/96	6.45		1.17	0.00	12,000	2,200	ND	1,200	2,200	22,000
	06/27/96	7.41		0.21	0.00	28,000	3,400	ND	2,800	3,100	3,000
	09/26/96	7.90		-0.28	0.00	5,900	750	ND	ND	ND	18,000
	12/09/96	6.76		0.86	0.00	13,000	5,100	290	980	370	2,700
	03/14/97	7.12		0.52**	0.03	NOT SAMPLED	DUE TO THE P	RESENCE OF FI	REE PRODUCT		
	06/30/97	6.19		1.43	< 0.01	NOT SAMPLED	DUE TO THE P	RESENCE OF FI	REE PRODUCT		
	09/19/9 7	7.31		0.31	< 0.01	NOT SAMPLED	DUE TO THE P	RESENCE OF FI	REE PRODUCT		
	12/12/97	6.75		0.88**	< 0.01	NOT SAMPLED	DUE TO THE P	RESENCE OF F	REE PRODUCT		
	03/03/98	6.36		1.26	Sheen	80,000	3,000	1,100	820	16,000	16,000
	06/15/98	6.51		1.11	Sheen	48,000	1,800	330	470	7,900	20,000
•	09/30/98	7.17		0.45	Sheen	60,000	1,300	ND ⁷	500	9,700	19,000
	12/28/98	7.06		0.56	0.00	63,000	590	160	320	5,600	16,000
	03/22/99	6.82		0.80	0.00	28,000	1,100	ND ⁷	360	2,900	25,000
	06/09/99	7.51	•	0.11	0.00	21,000	110	190	310	2,600	7,900/7,800
	09/08/99	8.16		-0.54	0.00	23,300 ¹¹	477	138	286	4,110	16,400/15,30
	12/07/99	8.31		-0.69	0.00	4,840 ¹³	17.2	ND ⁷	ND ⁷	157	14,900/15,60
	03/13/00	6.69		0.93	0.00	11,00011	380	160	ND ⁷	2,100	22,000/26,00
	06/21/00	7.67		-0.05	0.00	9,10011	22	ND ⁷	ND ⁷	800	16,000/22,00
	09/27/00	7.44		0.18	0.00	2,90011	43	ND ⁷	ND ⁷	39	20,000/26,00
	12/12/00	7.51		0.11	0.00	3,60011	17	ND ⁷	ND ⁷	87	8,000/7,800
	03/07/01	7.15		0.47	0.00	1,6 7 0 ¹³	51.0	ND ⁷	7.20	19.5	5,930/7,900
	06/06/01	7.57		0.05	0.00	1,100 ¹¹	14	ND ⁷	9.3	35	9,200/10,000
	09/24/01	7.63		-0.01	0.00	1,000 ¹⁸	25	<2.5	12	100	9,800/11,000
	12/10/01	6.78		0.84	0.00	83	14	0.55	3.4	6.8	2,500/2,500

Table 1
Groundwater Monitoring Data and Analytical Results

					Product						
WELL ID/ TOC*(ft.)	DATE	DTW	S.T.	GWE	Thickness	TPH-G	В	T	E	X	MTBE
1.0C2(J.)		(ft.)	(ft. bgs)	(ft.)	(fl.)	(pph)	(ррб)	(pph)	(ppb)	(ppb)	(ррб)
U-3	08/10/90		5.0 -20,0			ND	ND	ND	ND	ND	
	01/07/91		5.0 2			ND	ND	ND ND	ND ND	ND	
	04/01/91					ND.	1.0	2.9	0.53	1.8	
	07/03/91					ND.	ND	ND	0.53 ND	5.4	
	10/09/91					ND	ND	ND ND	ND ND	ND ND	
	02/12/92					ND	ND	ND ND	ND ND	ND ND	
	05/05/92				 	ND	ND	ND ND	ND ND	ND ND	
	06/11/92			••	 	ND	ND	ND	ND	ND ND	
	08/20/92					ND	ND	ND	ND ND	ND ND	
	02/22/93					ND	ND	ND ND	ND	ND ND	
	05/07/93			-		ND	ND	ND	ND	ND	
	08/08/93					210	5.0	9.7	0.7	4.1	
7.86	11/16/93	11.82		-3.96	0.00	ND	ND	9.7 ND	ND	4.1 ND	
7.00	02/16/94	11.62		-3.76	0.00	ND	ND ND	ND ND	ND ND	ND ND	
10.98	06/22/94	11.64		-0.66	0.00	ND	ND	ND	ND	ND	
10.76	09/22/94	11.76		-0.78	0.00	ND	ND	ND	ND	ND	
	12/24/94	11.70		-0.76	0.00	ND ND	ND	ND	ND	ND	
	03/25/95	10.96		0.02	0.00	ND	ND	ND	ND	ND	
	06/21/95	11.37		-0.39	0.00	ND	ND	ND	ND	ND	
	09/19/95	11.55		-0.57	0.00	ND	ND	ND	ND	ND	5
	12/19/95			-0.47	0.00	ND	ND	ND	ND	ND	
		11.45		-0.47	0.00	ND	ND	ND	ND	ND	
	03/18/96 06/27/96	11.10		-0.12 -0.18	0.00	440	49	50	51	140	50
	09/26/96	11.16 11.55		-0.18	0.00	ND	ND	ND	ND	ND	ND
	12/09/96	10.12		0.86	0.00	ND.	ND	ND	ND	ND	29
		10.12		0.80	0.00	ND	ND	ND	ND	ND	ND
	03/14/97				0.00	ND	ND ND	ND	ND	ND	ND
	06/30/97	11.08		-0.10	0.00	ND ND	ND	ND	ND	ND	ND
	09/19/97	11.05		-0.07		ND ND	ND ND	ND	ND	ND	ND
	12/12/97	10.58		0.40	0.00	ND ND	ND ND	ND ND	ND	ND	ND
	03/03/98	9.84		1.14	0.00		ND ND	ND	ND	ND	ND
	06/15/98	10.56		0.42	0.00	ND	מא	ND	ND	עאו	1417

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*(ft.)	DATE	DTW	S.I.	GWE	Product Thickness	TPH-G	В	T	E	x	MTBE
100 000		(ft.)	(ft. bgs)	(ft.)	(ft.)	(ppb)	(ppb)	(ррв)	(pph)	(ppb)	(ppb)
U-3	09/30/98	11,12	5.0-2 0.0	-0.14	0.00	ND	ND	ND	ND	NID	ND
(cont)	12/28/98	10.96	5.0-20.7	0.02	0.00	ND	ND ND	ND		ND	ND
(,	03/22/99	9.46		1.52	0.00	ND	ND ND	ND	ND	ND	ND
	06/09/99	11.01		-0.03	0.00	ND	ND	ND	ND	ND	ND
	09/08/99	11.31		-0.03	0.00	ND ND	ND	ND	ND	ND	ND
	12/07/99	11.26		-0.28	0.00	ND	ND	ND	ND	ND	ND
	03/13/00	8.28		2.70	0.00	ND ND	ND	ND ND	ND ND	ND ND	ND
	06/21/00	11.12		-0.14	0.00	ND ND	ND ND	ND ND	ND ND	ND ND	ND
	09/27/00	11.07		-0.14	0.00	ND	ND	ND	ND	ND ND	ND ND
	12/12/00	10.94		0.04	0.00	ND ND	ND				
	03/07/01	8.32		2.66	0.00		ND ND	ND ND	ND ND	ND	ND
	05/07/01	6.32 10.94		0.04		ND		ND	ND ND	ND	ND
					0.00	ND .50	ND -0.50			ND	ND
	09/24/01	11.03		-0.05	0.00	<50	<0.50	<0.50	<0.50 < 0.50	<0.50	<2.5 <2.5
	12/10/01	8.16		2.82	0.00	<50	<0.50	<0.50	<0.50	<0.50	<2.5
U-4											
11.15	06/22/94	10.16	5.0-2 0.0	0.99	0.00	ND	ND	ND	ND	ND	·
	09/22/94	10.79		0.36	0.00	ND	0.78	1.3	ND	1.4	
	12/24/94	9.81		1.34	0.00	ND	ND	ND	ND	ND	**
	03/25/95	9.51		1.64	0.00	ND	ND	ND	ND	ND	
	06/21/95	9.54		1.61	0.00	ND	ND	ND	ND	ND	
	09/19/95	10.17		0.98	0.00	ND	ND	ND	ND	ND	
	12/19/95	9.98		1.17	0.00	ND	ND	ND	ND	ND	
	03/18/96	9.66		1.49	0.00	ND	ND	ND	ND	ND	
	06/27/96	9.74		1.41	0.00	ND	ND	ND	ND	ND	ND
	09/26/96	10.14		1.01	0.00	ND	ND	ND	ND	ND	ND
	12/09/96	8.67		2.48	0.00	ND	ND	ND	ND	ND	33
	03/14/97	9.35		1.80	0.00	ND	ND	ND	ND	, ND	ND
	06/30/97	9.89		1.26	0.00	ND	ND	ND	ND	ND	ND
	09/19/97	9.96		1.19	0.00	ND	ND	ND	ND	ND	ND

Table 1
Groundwater Monitoring Data and Analytical Results

WELL ID/	DATE	Tellian.		A**:#	Product						
WELL ID: TOC*(ft.)	DALE	DTW (ft.)	S.I.	GWE	Thickness	TPH-G	В	T	E	X	MTBE
<u>V</u>		(Jr.)	(ft, bgv)	(ft.)	(ft.)	(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)
U-4	12/12/97	8.56	5.0 -20.0	2.59	0.00	ND	ND	ND	ND	ND	ND
(cont)	03/03/98	7.85		3.30	0.00	ND	ND	ND	ND	ND	ND ND
	06/15/98	9.08		2.07	0.00	ND	ND	ND	ND	ND	ND ND
	09/30/98	9.75		1.40	0.00	ND	ND	ND	ND	ND	ND ND
	12/28/98	9.59		1.56	0.00	ND	ND	ND	ND	ND	ND
	03/22/99	8.34		2.81	0.00	ND	ND	ND	ND	ND	ND ND
	06/09/99	9.39		1.76	0.00	ND	ND	ND	ND	ND	ND ND
	09/08/99	9.90		1.25	0.00	ND	ND	ND	ND	ND	ND ND
	12/07/99	10.05		1.10	0.00	ND	ND	ND	ND	ND	ND
	03/13/00	7.24		3.91	0.00	ND	ND	ND	ND	ND	ND ND
	06/21/00	9.48		1.67	0.00	ND	ND	ND	ND	ND	ND
	09/27/00	9.42		1.73	0.00	ND	ND	ND	ND	ND	ND
	12/12/00	9.50		1.65	0.00	ND	ND	ND	ND	ND	ND
	03/07/01	6.88		4.27	0.00	ND	ND	ND	ND	ND	ND
	06/06/01	9.18		1.97	0.00	ND	ND	ND	ND	ND	ND
	09/24/01	9.21		1.94	0.00	<50	<0.50	< 0.50	< 0.50	<0.50	<2.5
	12/10/01	7.32		3.83	0.00	<50	<0.50	< 0.50	<0.50	< 0.50	<2.5
U- 5											
5.98	06/22/94	6.83	5.0-20.0	0.15	0.00	210	7.1	13	4.5	26	
	09/22/94	6.90		0.08	0.00	170	8.4	10	8.5	18	
	12/24/94	6.43		0.55	0.00	8,700	560	70	670	430	
	03/25/95	6.35		0.63	0.00	44,000	390	960	1,500	7,600	
	06/21/95	7.11		-0.13	0.00	400	2.3	ND	9.1	3.5	
	09/19/95	6.99		-0.01	0.00	850	14	7.1	13	66	5
	12/19/95	7.17		-0.19	0.00	ND	ND	ND	ND	ND	
	03/18/96	6.65		0.33	0.00	100	0.67	0.5	0.51	5.4	
	06/27/96	6.49		0.49	0.00	16,000	280	150	1,400	4,600	530
	09/26/96	7.13		-0.15	0.00	ND	ND	0.57	ND	0.96	ND
	12/09/96	5.90		1.08	0.00	1,300	29	46	ND	140	97

Table 1
Groundwater Monitoring Data and Analytical Results

Product											
WELL ID/	DATE	DTW	S.I.	GWE	Thickness	TPH-G	В	Т	E	x	MTBE
OC*(ft.)		(ft.)	(fi. bgs)	(ft.)	(fi.)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
J-5	03/14/97	6.99	5.0 -20.0	-0.01	0.00	ND	ND	ND	ND	ND	14
cont)	. 06/30/97	7.08		-0.10	0.00	4,200	74	51	180	980	270
	09/19/97	6.78		0.20	0.00	6,300	160	13	370	1000	480
	12/12/97	6.94		0.04	0.00	60	1.3	ND	1.6	2.1	47
	03/03/98	6.50		0.48	0.00	1,700	29	ND ⁷	150	190	330
	06/15/98	6.85	*	0.13	0.00	1,500	32	ND^7	91	83	330
	09/30/98	7.31		-0.33	0.00	1,700	44	ND^7	39	150	60
	12/28/98	7.25		-0.27	0.00	1,400	59	ND ⁷	13	27	150
	03/22/99	6.86		0.12	0.00	780	8.9	ND	0.76	4.5	350
	06/09/99	7.28		-0.30	0.00	1,000	ND ⁷	ND^7	10	35	280/350 ¹
	09/08/99	7.52		-0.54	0.00	2,62011	26.2	ND^7	32.2	157	280/239 ¹
	12/07/99	7.67		-0.69	0.00	94911	9.26	ND ⁷	11.2	22.7	235/301 ^t
	03/13/00	6.73		0.25	0.00	88014	12	1.0	5.6	8.7	46/37 ¹⁰
	06/21/00	7.39		-0.41	0.00	70011	4.0	ND	0.99	4.0	120/140 ^t
	09/27/00	7.45		-0.47	0.00	40011	1.9	ND	ND	1.5	160/250 ^t
	12/12/00	7.68		-0.70	0.00	770 ¹¹	3.2	ND^7	ND^7	ND ⁷	27/13 ¹²
	03/07/01	6.83		0.15	0.00	623 ¹³	5.15	ND	ND	0.669	35.7/43.4
	06/06/01	7.42		-0.44	0.00	110^{13}	ND	ND	ND	ND	ND
	09/24/01	7.50		-0.52	0.00	270 ¹⁹	< 0.50	< 0.50	< 0.50	< 0.50	40/42 ¹⁰
	12/10/01	6.65		0.33	0.00	420 ¹⁸	13	0.60	0.66	<0.50	<2.5
U-6											
7.14	06/22/94	7.14	5.0-2 4.0	0.00	0.00	ND	ND	ND	ND	ND	
	09/22/94	7.34		-0.20	0.00	130	1.3	0.8	ND	0.73	
	12/24/94	6.67		0.47	0.00	6,900	500	59	600	380	
	03/25/95	6.29		0.85	0.00	47,000	450	1,300	1,700	8,200	
	06/21/95	7.60		-0.46	0.00	ND	ND	ND	ND	ND	
	09/19/95	7.70		-0.56	0.00	ND	NĎ	ND	ND	ND	5
	12/19/95	7.75		-0.61	0.00	210	2.5	1.0	2.9	17	
	03/18/96	6.86		0.28	0.00	ND	ND	ND	ND	ND	••

Table 1
Groundwater Monitoring Data and Analytical Results

Oukland, Cantotina											
WELL ID/	DATE	DTW	S.t.	GWE	Product Thickness	TPH-G	В	Т	E	X	MTRE
TOC*(ft.)		(ft.)	(ft. hgs)	(ft.)	(ft.)	(ppb)	(ppb)	(ppb)	(ppb)	(pph)	(pph)
U-6	06/27/96	6.52	5.0-24.0	0.62	0.00	ND	ND	ND	ND	ND	510
cont)	09/26/96	7.62	•	-0.48	0.00	ND	ND	ND	ND	ND	1,400
	12/09/96	5.88		1.26	0.00	1,200	29	48	6.4	140	58
	03/14/97	7.30		-0.16	0.00	ND	ND	ND	ND	ND	1,500
	06/30/97	7.35		-0.21	0.00	ND	ND	ND	ND	ND	990
	09/19/97	7.25		-0.11	0.00	ND	ND	ND	ND	ND	1,400
	12/12/97	7.29		-0.15	0.00	ND	ND	ND	ND	ND	680
	03/03/98	7.00		0.14	0.00	ND	ND	ND	ND	ND	1,600
	06/15/98	7.18		-0.04	0.00	ND ⁷	ND ⁷	ND^7	ND ⁷	ND ⁷	1,000
	09/30/98	7.90		-0.76	0.00	ND	ND	ND	ND	ND	1,200
	12/28/98	7.79		-0.65	0.00	ND ⁷	ND^7	ND ⁷	ND ⁷	ND ⁷	730
	03/22/99	7.47		-0.33	0.00	ND	ND	ND	ND	ND	1,800
	06/09/99	7.73		-0.59	0.00	ND ⁷	ND^7	ND^7	ND ⁷	ND ⁷	1,000/85010
	09/08/99	7.95		-0.81	0.00	ND	ND	ND	ND	ND	851/1,040 ¹⁰
	12/07/99	8.10		-0.96	0.00	ND	ND	ND	ND	ND	1,140/1,150
	03/13/00	6.95		0.19	0.00	ND	ND	ND	ND	ND	560/670 ¹⁰
	06/21/00	7.84		-0.70	0.00	ND	ND	ND	ND	ND	400/590 ¹⁰
	09/27/00	7.68		-0.54	0.00	ND	ND	ND	ND	ND:	2,500/2,800 ¹
	12/12/00	7.74		-0.60	0.00	ND	ND	ND	ND	ND	590/580 ¹²
	03/0701	7.27		-0.13	0.00	ND	ND	ND	ND	ND	310/321 ¹²
	06/06/01	7.80		-0.66	0.00	ND	ND	ND	ND	ND	250/330 ¹²
	09/24/01	7.82		-0.68	0.00	<50	< 0.50	< 0.50	<0.50	< 0.50	530/660 ¹⁰
	12/10/01	7.15		-0.01	0.00	<50	< 0.50	< 0.50	< 0.50	< 0.50	220/220 ¹⁰
Trip Blank TB-LB	03/03/98					ND	ND	ND	ND	ND	ND
נושים	05/05/98		- -	 		ND	ND	ND	ND	ND	ND
	09/30/98				 	ND	ND	1.7	ND	2.2	ND
						ND	ND	0.71	ND	0.72	9.5
	12/28/98					ND ND	ND ND	ND	ND	ND	ND
	03/22/99					שאו	ND	1117	1110	. 1.1.5	1.0

Table 1Groundwater Monitoring Data and Analytical Results

WELL ID/ TOC*(ft.)	DATE	DTW (ft.)	S .I. (ft , b ġx)	GWE (ft.)	Product Thickness (ft.)	TPH-G (ppb)	B (ppb)	T (ppb)	E (ppb)	X (pph)	MTBE (pph)
TB-LB	06/09/99					ND	ND	ND	ND	ND	ND
(cont)	09/08/99				••	ND	ND	ND	ND	ND	ND
	12/07/99					ND	ND	0.762	ND	ND	ND
	03/13/00					ND	ND	ND	ND	ND	ND
	06/21/00					ND	ND	ND	ND	ND	ND
	09/27/00					ND	ND	ND	ND	ND	ND
	12/12/00		•			ND	ND	ND	ND	ND	ND
	03/07/01					ND	ND	ND	ND	ND	ND
	06/06/01					ND	ND	ND	ND	ND	ND
	09/24/01					<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5
	12/10/01					<50	< 0.50	< 0.50	< 0.50	<0.50	<2.5

Groundwater Monitoring Data and Analytical Results

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

EXPLANATIONS:

Groundwater monitoring data and laboratory analytical results prior to March 3, 1998, were compiled from reports prepared by MPDS Services, Inc.

TOC = Top of Casing

B = Benzene

(ppb) = Parts per billion

(ft.) = Feet

T = Toluene

ND = Not Detected

DTW = Depth to Water

E = Ethylbenzene

-- = Not Measured/Not Analyzed

S.I. = Screen Interval

X = Xylenes

(ft. bgs) = Feet Below Ground Surface

MTBE = Methyl tertiary butyl ether

GWE = Groundwater Elevation

TPH-G = Total Petroleum Hydrocarbons as Gasoline

- * TOC elevations are surveyed relative to City of Oakland Benchmark, at the northeasterly corner of Weller and Cheney Avenue
 (Elevation = 9.055 feet, city datum; add 3.00 to U.S.G.S. datum). Prior to November 16, 1993, the DTW measurements were taken from the well cover.
- ** Groundwater elevation corrected due to the presence of free product; correction factor = [(TOC-DTW)+(Product Thickness x 0.75)].
- The positive result for gasoline does not appear to have a typical gasoline pattern.
- The concentration reported as gasoline is primarily due to the presence of a combination of gasoline and a discrete peak not indicative of gasoline.
- Laboratory report indicates the hydrocarbons detected did not appear to be gasoline
- Laboratory report indicates the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.
- Laboratory has potentially identified the presence of MTBE at reportable levels in the groundwater sample collected from this well.
- Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 ppb in the sample collected from this well.
- Detection limit raised, Refer to analytical reports.
- 8 Laboratory report indicates unidentified hydrocarbons C6-C12.
- ⁹ Laboratory report indicates gasoline and unidentified hydrocarbons >C8.
- MTBE by EPA Method 8260.
- Laboratory report indicates gasoline C6-C12.
- ¹² MTBE by EPA Method 8260 analyzed past the recommended holding time.
- Laboratory report indicates weathered gasoline C6-C12.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons < C6.
- Laboratory report indicates sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.
- Laboratory report indicates gasoline C6-C12 + unidentified hydrocarbons >C10.
- 17 Skimmer present in well.
- Laboratory report indicates gasoline C6-C10.
- Laboratory report indicates unidentified hydrocarbons C6-C10.
- Skimmer not present in well.

Table 2
Groundwater Analytical Results - Oxygenate Compounds

WELL ID	DATE	ETHANOL	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB
		(ppb)	(pph)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
J -1	09/27/00 ¹	<u>-</u> -	ND ²	83,000	ND^2	ND²	ND^2	NF2	2 TD 2
	12/12/00			15,000 ³	ND 	 ND	ND ⁻	ND^2	ND^2
	03/07/01	ND^2	ND^2	11,800	ND^2	ND ²		?	
	06/06/01 ³	, ND ²	ND ²	8,700			ND^2	ND^2	ND^2
	09/24/01	<400,000	<20,000	4,400	ND ²				
	12/10/01	<8,000	<4,000		<1,000	<1,000	<1,000	<1,000	<1,000
	12/10/01	~0,000	<4,lnni	5,100	<100	<100	<100	<100	<100
-2	09/27/00			26,000 ¹		·			**
	12/12/00			7,800 ³					
	03/07/01	ND^2	ND^2	7,900	ND ²	ND^2	ND^2	ND^2	ND^2
	06/06/01 ³	ND^2	ND^2	10,000	ND ²	ND^2	ND^2	ND ²	ND^2
	09/24/01	<400,000	<20,000	11,000	<1,000	<1,000	<1,000	<1,000	<1,000
	12/10/01	<4,000	<2,000	2,500	<50	<50	<50	<50	<50
			-2,	2,000		400			
I-5	09/27/00			250 ¹					
	12/12/00			13 ³				**	
	03/07/01	ND	ND	43.4	ND	ND	ND	ND	ND
	09/24/01	<4,000	<200	42	<10	<10	<10	<10	<10
J-6	09/27/00			2,8001					
	12/12/00			580 ³					
	03/07/01 ³	ND^2	ND^2	321	ND ²	ND ²	ND ²	ND ²	ND^2
	06/06/013	ND^2	ND^2	330	ND^2	ND^2	ND^2	ND ²	ND ²
	09/24/01	<40,000	<2,000	660	<100	<100	<100	<100	<100
	12/10/01	<400	<200	220	<5.0	<5.0	<5.0	<5.0	<5.0

Groundwater Analytical Results - Oxygenate Compounds

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

EXPLANATIONS:

ANALYTICAL METHOD:

TBA = Tertiary butyl alcohol

MTBE = Methyl tertiary butyl ether

DIPE = Di-isopropyl ether

ETBE = Ethyl tertiary butyl ether

TAME = Tertiary amyl methyl ether

1,2-DCA = 1,2-Dichloroethane

EDB = 1,2-Dibromoethane

(ppb) = Parts per billion

ND = Not Detected

-- = Not Analyzed

EPA Method 8260 for Oxygenate Compounds

Laboratory report indicates sample was originally analyzed within holding time. Re-analysis for confirmation or dilution was performed past the recommended holding time.

Detection limit raised. Refer to analytical reports.

³ Laboratory report indicates sample was analyzed outside the EPA recommended holding time.

Table 3 Groundwater Analytical Results

WELL ID	DATE	Ferrous Iron (ppm)	Nitrate as NO3 (ppm)	Phosphate as PO4 (ppm)	Redox Potential mV
v istala 117	PALE	(рүт)	Ahma	Nr.jr.w/	***·T
U -1	06/15/98	39	ND	ND	382 ²
	09/30/98	17	ND	ND	366 ²
	12/28/98	4.3	6.3	28	298 ²
	03/22/99	4.9	ND	3.5	320 ³
	06/09/99	1.2	ND	ND	260^{3}
	09/08/99	1.80	ND^1	ND ¹	85 ³
	12/07/99	5.70	ND^1	17.0	404 ³
	03/13/00	8.0	0.18	ND	² 117/262 ³
	06/21/00	9.3	ND^{1}	ND^1	148 ²
	09/27/00	2.8	ND¹	18.4	119 ²
	12/12/00	0.49	ND ¹	16.0	131 ²
	03/07/01	0.483	2.64	6.89	125 ²
	06/06/01	1.04	ND	2.7	141 ²
	09/24/01	<0.10	0.45 ⁵		125 ²
	12/10/01	14	<0.50	2.2	141 ²
J -2	03/03/98	25	ND	ND	369 ²
	06/15/98	42	ND	ND	341 ²
	09/30/98	25	ND	ND	354 ²
	12/28/98	28	ND	ND	276 ²
	03/22/99	0.68	ND	2.3	320 ³
	06/09/99	0.50	ND	ND	290 ³
	09/08/99	1.90	ND ¹	ND^1	235 ³
	12/07/99	0.250	ND^{1}	ND ¹	389 ³
	03/13/00	4.3	0.31	ND	² 121/184 ³
	06/21/00	0.26	ND^1	ND ¹	136 ²
	09/27/00	0.64	ND ¹	10.5	142 ²
	12/12/00	2.7	ND^{I}	ND	155 ²
	03/07/01	0.677	2.24	3.02	148 ²
	06/06/01	0.80	ND	2.8	163 ²
	09/24/01	< 0.10	0.49 ⁵		151 ²
	12/10/01	<0.10	<0.50	0.20	171 ²
					2
J -3	06/30/97	1.4	21	0.86	190 ³
	09/19/97	0.57	19	ND	75 ³
•	12/12/97	1.9	23	0.85	390 ³
	03/03/98	0.013	36	ND	358 ²
	06/15/98	0.16	33	ND	318 ²
	09/30/98	0.040	31	ND	295 ²
	12/28/98	ND	29	ND	281 ²
	03/22/99	0.015	30	0.14	310 ³
	06/09/99	ND	26	1.2	350 ³
	09/08/99	ND	32.9	ND	417 ³

Table 3 Groundwater Analytical Results

		Ferrous Iron	Nitrate as NO3	Phosphate as PO4	Redox Potential
WELL ID	DATE	(ppm)	(ppm)	(ррт)	mV
U-3	12/07/99	0.0520	27.9	ND^1	437 ³
(cont)	03/13/00	0.15	33	ND	² 226/307 ³
, ,	06/21/00	0.20	32	ND	225 ²
	09/27/00	ND	34	15.7	211 ²
	12/12/00	ND	31	ND ¹	246 ²
	03/07/01	ND	36.5	0.443	251 ²
	06/06/01	ND⁴	8.0	0.18	214 ²
	09/24/01	<0.10	23 ⁵		198 ²
	12/10/01	<0.10	21	0.11	188 ²
U-4	06/30/97	0.13	35	0.52	200 ³
	09/19/97	0.35	30	ND	45 ³
	12/12/97	0.68	31	0.73	380^{3}
	03/03/98	0.018	3.2	ND	284 ²
	06/15/98	0.14	33	ND	256 ²
	09/30/98	0.049	31	ND	276 ²
	12/28/98	0.36	31	ND	280 ²
	03/22/99	ND	30	0.14	320 ³
	06/09/99	ND	35	0.91	340 ³
	09/08/99	ND	24	ND ¹	391 ³
	12/07/99	ND	27.7	ND^1	478 ³
	03/13/00	ND	33	ND	² 219/244 ³
	06/21/00	0.034	32	ND	248 ²
	09/27/00	ND	28	ND ¹	198 ²
	12/12/00	ND	30	ND_1	210 ²
	03/07/01	ND	33.9	0.226	233 ²
	06/06/01	ND⁴	7.4	0.21	248 ²
	09/24/01	<0.10	24 ⁵	•~	262 ²
	12/10/01	<0.10	19	0.10	242 ²
U-5	06/30/97	16	ND	ND	160 ³
	09/19/97	0.22	ND	ND	63 ³
	12/12/97	6.7	ND	ND	400 ³
	03/03/98	18	3.1	ND	345 ²
	06/15/98	17	ND	ND	333 ²
	09/30/98	17	ND	ND	3182
	12/28/98	17	6.6	ND	305 ²
	03/22/99	0.12	ND	2.4	340 ³
	06/09/99	0.23	ND	ND	320 ³
	09/08/99	2.10	ND	ND ¹	3353
	12/07/99	0.310	ND ¹	ND1	408 ³
	03/13/00	0.33	0.16	ND	² 111/264 ³
	06/21/00	0.15	ND ¹	ND^1	159 ²

Table 3
Groundwater Analytical Results

		Ferrous Iron	Nitrate as NO3	Phosphate as PO4	Redox Potential
WELL ID	DATE	(ррт)	(ppm)	(ррт)	mV
U-5	09/27/00	0.33	ND^1	ND^{t}	136 ²
(cont)	12/12/00	0.086	ND ¹	ND ⁱ	122 ²
(cont)	03/07/01	1.07	3.02	4.00	141 ²
	06/06/01	ND ⁴	ND	1.2	112 ²
	09/24/01	<0.10	0.775		146²
	12/10/01	3.7	<0.50	2.6	96 ²
	12/10/01	3.7	<0.50	2.0	70
U -6	06/30/97	88	0.80	ND	190 ³
J- U	09/19/97	2.9	1.80	ND	ND^3
	12/12/97	51	ND	ND	380^{3}
	03/03/98	60	3.5	ND	327 ²
	06/15/98	590	4.8	ND	315 ²
	09/30/98	33	ND	ND	345 ²
	12/28/98	83	7.2	ND	297 ²
	03/22/99	2.1	ND	0.98	330^{3}
	06/09/99	0.47	0.20	ND	320^{3}
	09/08/99	0.140	5.59	ND^1	305 ³
	12/07/99	0.260	ND^1	$ND^{\mathfrak{l}}$	443 ³
	03/13/00	0.79	0.26	ND	² 68/222 ³
	06/21/00	1.9	ND ¹	ND ¹	159 ²
	09/27/00	2.6	ND¹	ND^{i}	170 ²
	12/12/00	ND	2.7	ND^1	128 ²
	03/07/01	2.52	3.11	37.0	11 7 2
	06/06/01	0.47^{4}	0.15	0.70	97²
	09/24/01	<0.10	0.58 ⁵		123 ²
	12/10/01	0.99	0.50	2.0	112 ²

EXPLANATIONS:

Groundwater analytical results prior to March 3, 1998, were compiled from reports prepared by MPDS Services, Inc.

(ppm) = Parts per million

ND = Not Detected

mV = millivolts

-- = Not Analyzed

- Detection limit raised. Refer to analytical reports.
- Field measurement.
- 3 Analyzed by laboratory.
- Due to the transfer of samples from one laboratory to another laboratory; the sample was received beyond the EPA recommended holding time.
- 5 Laboratory report indicates the sample was analyzed beyond the EPA recommended holding time.

Dissolved Oxygen Concentrations Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue

Oakland, California

WELL ID	DATE	Before Purge
		(mg/L)
U-1	12/07/99	1.36
	06/21/00	1.53
	09/27/00	1.63
	12/12/00	1.48
	03/07/01	1.91
	06/06/01	1.77
	09/24/01	1.64
	12/10/01	1.82
U-2	12/07/99	2.28
	06/21/00	1.96
	09/27/00	2.12
•	12/12/00	2.35
	03/07/01	2.21
	06/06/01	2.67
	09/24/01	2.10
	12/10/01	2.81
U-3	06/30/97	4.1
	09/19/97	4.2
	12/12/97	2.97
	03/03/98	2.63
	06/15/98	2.93
	09/30/98	3.11
	12/28/98 03/22/99	3.59 4.02
	06/09/99	3.70
	09/08/99	3.70
	12/07/99	4.21
	06/21/00	4.27
	09/27/00	4.67
	12/12/00	4.79
	03/07/01	5.16
	06/06/01	4.79
	09/24/01	4.27
	12/10/01	4.66
	AM 10/02	7.00
U-4	06/30/97	5.4
	09/19/97	5.1
	12/12/97	3.11
	03/03/98	2.94
	06/15/98	3.08
	09/30/98	4.05
	12/28/98	4.03
,	1 M 201 70	4.57

Dissolved Oxygen Concentrations Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

•	Oakiand, Camornia	
WELL ID	DATE	Before Purge (mg/L)
		(4/8/27)
U-4	03/22/99	4.26
(cont)	06/09/99	3.61
	09/08/99	3.75
	12/07/99	4.03
	06/21/00	4.89
	09/27/00	5.09
	12/12/00	4.86
	03/07/01	4.97
	06/06/01	5.12
	09/24/01	4.86
	12/10/01	5.05
*1.5	0 6 /3 0 /97	3.4
U-5	09/19/97	0.6
	12/12/97	1.75
	03/03/98	2.36
	06/15/98	2.55
	09/30/98	1.93
	12/28/98	1.64
	03/22/99	1.99
	06/09/99	2.10
	09/08/99	2.21
	12/07/99	2.66
	06/21/00	3.42
	09/27/00	3.85
	12/12/00	3.53
	03/07/01	2.98
	06/06/01	2.67
	09/24/01	3.15
	12/10/01	2.85
U-6	06/30/97	0.30
	09/19/97	0.60
	12/12/97	2.70
	03/03/98	2.18
	06/15/98	2.48
	09/30/98	3.06
	12/28/98	3.42
	03/22/99	3.88
	06/09/99	3.29
	09/08/99	3.12
	12/07/99	3.44
	06/21/00	3.27 3.49
	09/27/00	3.49
	12/12/00	3.00

Dissolved Oxygen Concentrations

an anno mora de contrato de la companya de contrato de la contrato de la contrato de la contrato de la contrato	DATE	Before Purge (mg/L)
U- 6	03/07/01	2.85
J-6 cont)	06/06/01	2.46
	09/24/01	3.10
	12/10/01	2.57

Dissolved Oxygen Concentrations

Tosco (Unocal) Service Station #5325 3220 Lakeshore Avenue Oakland, California

EXPLANATIONS:

Dissolved oxygen concentrations prior to March 3, 1998, were compiled from reports prepared by MPDS Services, Inc.

(mg/L) = milligrams per liter

STANDARD OPERATING PROCEDURE - GROUNDWATER SAMPLING

Gettler-Ryan Inc. field personnel adhere to the following procedures for the collection and handling of groundwater samples prior to analysis by the analytical laboratory. Prior to sample collection, the type of analysis to be performed is determined. Loss prevention of volatile compounds is controlled and sample preservation for subsequent analysis is maintained.

Prior to sampling, the presence or absence of free-phase hydrocarbons is determined using an interface probe. Product thickness, if present, is measured to the nearest 0.01 foot and is noted in the field notes. In addition, static water level measurements are collected with the interface probe and are also recorded in the field notes.

After water levels are collected and prior to sampling, temperature, pH and electrical conductivity are measured. If purging is to occur, each well is purged a minimum of three well casing volumes of water using pre-cleaned pumps (stack, suction, Grundfos), or polyvinyl chloride bailers. The measurements are taken a minimum of three times during the purging. Purging continues until these parameters stabilize.

Groundwater samples are collected using disposable bailers. The water samples are transferred from the bailer into appropriate containers. Pre-preserved containers, supplied by analytical laboratories, are used when possible. When pre-preserved containers are not available, the laboratory is instructed to preserve the sample as appropriate. Duplicate samples are collected for the laboratory to use in maintaining quality assurance/quality control standards. The samples are labeled to include the job number, sample identification, collection date and time, analysis, preservation (if any), and the sample collector's initials. The water samples are placed in a cooler, maintained at 4°C for transport to the laboratory. Once collected in the field, all samples are maintained under chain of custody until delivered to the laboratory.

The chain of custody document includes the job number, type of preservation, if any, analysis requested, sample identification, date and time collected, and the sample collector's name. The chain of custody is signed and dated (including time of transfer) by each person who receives or surrenders the samples, beginning with the field personnel and ending with the laboratory personnel.

A laboratory supplied trip blank accompanies each sampling set. For sampling sets greater than 20 samples, 5% trip blanks are included. The trip blank is analyzed for some or all of the same compounds as the groundwater samples.

As requested by Tosco Marketing Company, the purge water and decontamination water generated during sampling activities is transported to Tosco - San Francisco Area Refinery, located in Rodeo, California.

acility # 53	25		Job	#:	18006	1	
	20 Lakest	iole Av			12-10-6		
City: <u>Oa</u>		•			Joe		
Well ID	U- 1	We	Il Condition:	0	. F ·		
Vell Diameter	3 _{in}	Нус	drocarbon	, 	Amount Bai	led	
Total Depth	19.68		ckness:	<u>in</u>	(product/wate		
Depth to Water	9.17 #		olume 2" = actor (VF)		3" = 0.38 1.50		* = 0.66
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:	•	Sampling Equipme	nt: O	isposable Bail ailer ressure Bailer rab Sample	er	12 [cal.]
Sampling Times	12 . 12 R.ml	1717 /	Water Cales	\sim 1	0 00/	Odan id	
Purging Flow Rate Did well de-water Time V	olume pH	con	Water Color: _ Sediment Desc If yes; Time:	ription: _	Volume	ORP	iosi.
Purging Flow Rate Did well de-water Time V	e:	Con	Sediment Desc If yes; Time: aductivity () Ten thos/cm ()	ription: _	D.O. (mg/L)	ORP (mV)	iosi.
Purging Flow Rate Did well de-water Time V	e:	Con	Sediment Descritine: If yes; Time: Iductivity (*) Ten Ten Ten Ten	ription:	Volume	ORP (mV)	Alkalinity
Purging Flow Rate Did well de-water Time V	e:	Con	Sediment Desc If yes; Time: aductivity () Ten thos/cm ()	ription: _	D.O. (mg/L)	ORP (mV)	Alkalinity
Purging Flow Rate Did well de-water Time V	e:	Con	Sediment Desc If yes; Time: aductivity Ten ahos/cm x	ription:	D.O. (mg/L)	ORP (mV)	Alkalinity
Purging Flow Rate Did well de water Time V 10:53 10:55	e:	Con	Sediment Descritine: If yes; Time: Inductivity 100 Ten Ten Ten 1/98 1/96 RATORY INFORM	ription: aperature F 7/ / 7/ S 7/ G	D.O. (mg/L)	ORP (mV)	Alkalinity
Purging Flow Rate Did well de-water Time V 10:53 10:55 10:57	e:	Con pin O LABO REFRIG.	Sediment Descrit yes, Time: If yes, Time: Iductivity O Ten Ten Andrew O Ten Andrew	iption: Aperature F 7/ / 7/ 5 7/ 6 AATION LAB	D.O. (mg/L) /-8 2	ORP (mV)	Alkalinity (ppm)
Purging Flow Rate Time V 10:53 10:55	e:	Con pin O LABO REFRIG.	Sediment Descritine: If yes; Time: Inductivity 100 Ten Ten Ten 1/98 1/96 RATORY INFORM	iption: Aperature F 7/ / 7/ 5 7/ 6 AATION LAB	D.O. (mg/L) /-82 ORATORY	ORP (mV) 141 ANAI TPHG, 8	Alkalimity (ppm)
Purging Flow Rate Did well de-water Time V 10:53 10:55 10:57	e:	Con pin O LABO REFRIG.	Sediment Descrit yes, Time: If yes, Time: Iductivity O Ten Ten Andrew O Ten Andrew	iption: aperature F 7/ / 7/ 5 7/ 6 AATION LAB	D.O. (mg/L) /-82 ORATORY	ORP (mV) /4/ ANAI TPHG, 6-	Alkalinity (ppm) LYSES TEY, MTBE
Purging Flow Rate Did well de-water Time V 10:53 10:55 10:57	e:	Con pin O LABO REFRIG.	Sediment Descrit yes, Time: If yes, Time: Iductivity O Ten Ten Andrew O Ten Andrew	iption: aperature F 7/ / 7/ 5 7/ 6 AATION LAB	D.O. (mg/L) /-82 ORATORY	ORP (mV) 141 ANAI TPHG, 8	Alkalinity (ppm) LYSES TEX, MTBE
Purging Flow Rate Did well de-water Time V 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	e:	Con per Con	Sediment Descrit yes, Time: If yes, Time: Iductivity O Ten Ten Andrew O Ten Andrew	iption: aperature F 7/ / 7/ 5 7/ 6 AATION LAB	D.O. (mg/L) /-82 ORATORY	ORP (mV) 141 ANAI TPHG, B- Feccous Nitco	Alkalinity (ppm) LYSES TEX, MTBE

Client/	·		•	_	. 1	-
Facility #_53			Joba	#: 1800	61	
Address: 22	220 Lakesh	ore Ave	Date	12-10	-01	·
City:	akland, CA.	 	Sam	pler:	·	
Well ID	U-2	Well (Condition: _	0.F-		
Well Diameter		Hydro	carbon	. Amount	Bailed	
Total Depth	19.60 #		ness:	in (product/s	waterl:	<u> </u>
Depth to Water	6.78 +	Volum Facto	me 2*=∢ r(VF)	3" = 0. 6" = 1.50	38 4 12" = 5,80	* = 0.66
	1282 x	VF 0.38	4.87 x 3 (case	volume) = Estimated	Purge Volume:	1.5 lost 1
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment		Bailer iler e	,
Starting Time:	10: n	/ . 1a		1.3 - 1 /	- 1 I	
Purging Flow Rat	10:30 pm (10	<u>23</u> 0) _W	ediment Descri	Clear	Odor	Ar 5'
	te:	<u>23</u> 0) _W	Vater Color:	Clear	Odor	1 · S
Purging Flow Rate Did well de-wate	te:	230) w	vater Color: ediment Descriptions: yes; Time: trivity Temps T	otion: Volu	Odor: :	•
Purging Flow Rate Did well de wate Time 10:04 10:11	Volume pH (gal.) 7.31	230) W	vater Color: ediment Descriptives: tivity Temps	Clear/ ption: Volument D.O. (mg/L) 6 2.81	Odor:; ume: ORP (mV)	Alledinity
Purging Flow Rate Did well de-wate Time 10:09 10:11 10:13	Volume pH (gal.) 7.31	Condingumber 4 6 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6	vater Color: ediment Descriptions: yes; Time: trivity Temps T	Clear/ ption: Volument D.O. (mg/L) 6 2.81	Odor:	Alkalinity (ppm)
Purging Flow Rate Did well de wate Time 10:09 10:11 10:13	te: 1.5 on or? Volume pH (gal.) 1.5 7.31 1.0 7.32 7.33 1.5 CONTAINER 3 YO A	Condingumber 4 6 4 5 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6	vater Color:ediment Descriptors; Time: trivity Temps Te	Clecy ption: Volume D.O. (mg/L) Control (mg/L) Cont	Odor:	Alkalinity (ppm)
Purging Flow Rate Did well de-wate Time 10:09 10:11 10:13	te: 1.5 m Property of the series of the ser	Condinguinho	Vater Color: ediment Descriptyes; Time: ctivity Temp Temp	Cle of prion: Volume D.O. (mg/L) 6 2.81	Odor:	Alicationity (ppm)
Purging Flow Rate Did well de-wate Time 10:09 10:11 10:13	te: 1.5 on or? Volume pH (gal.) 1.5 7.31 1.0 7.32 7.33 1.5 CONTAINER 3 YO A	Condingumber 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Vater Color: ediment Descriptyes; Time: ctivity Temp Temp	Clecy ption: Volument D.O. (mg/L) 6 2.81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Odor Jame: ORP (mV) 171 ANAL TPHG, BT (Ferrors	Alicationity (ppm) YSES FOU 1 c
Purging Flow Rate Did well de-wate Time 10:09 10:11 10:13	te: 1.5 on or? Volume pH (gal.) 1.5 7.31 1.0 7.32 7.33 1.5 CONTAINER 3 YO A	Condingumber 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Vater Color: ediment Descriptyes; Time: ctivity Temp Temp	Clecy ption: Volument D.O. (mg/L) 6 2.81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Odor ;	Alicationity (ppm) YSES FOU 1 c
Purging Flow Rate Did well de-wate Time 10:09 10:11 10:13 SAMPLE ID U-2	te: 1.5 on or? Volume pH (gal.) 1.5 7.31 1.0 7.32 7.33 1.5 CONTAINER 3 YO A	Condingumber 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Vater Color: ediment Descriptyes; Time: ctivity Temp Temp	Clecy ption: Volument D.O. (mg/L) 6 2.81 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Odor Jame: ORP (mV) 171 ANAL TPHG, BT (Ferrors	Alicationity (ppm) YSES FOU 1 c

Client/ Facility #_53	32<					٠ (
-					18000		
	220 Lakes		<u>د </u>	ite: _	12-10-	01	 -
City:	akland, CA	•	Sa	mpler: _	Joc	<u> </u>	÷
Well ID	· U-3	344	-# C		. k ·		
•			ell Condition:		•		· ·
Well Diameter		. Hy Th	drocarbon ickness:	<u> </u>	Amount B		<u></u> .
Total Depth	19.36			= 0.17	15 moduct/we 3" = 0.31		<u> </u>
Depth to Water	8.16	F	actor (VF)	6"=	1.50	12" = 5,80	= 0.66
	11.20	VF #.38	3 -4.26 ×310	ase volume) :	= Estimated P	tron Vol.	1.3
Purge	Disposable Bailer		Samplin				lor(.)
Equipment:	Bailer Stack	•	Equipme	ent: 🗹	isposable B	üler	2
	Suction	•-			ailer ressure Baile	er	•
	Grundfos Other:			.G	rab Sample	^	•
				Outer,		- .	•
Starting Time:	7:4	3.	Weather Condi	tions:	wet/	11	
Sampling Time:	8.15 A.m (0	815)	Water Color:			Odor: 1	
Purging Flow Ra	te: <u> </u>	pm.	Sediment Desc				
Did well de-wate	ec)		If yes; Time:		Volun	e:	lgal.)
	Volume pH	Cox	iductivity (⁽⁾ Te	mperature	D.o.	ORP	Alkalinity
7:55	(gal.)	<i>ىخى</i> د	nhos/cm X	4	(mg/L)	(MV)	(bhm)
7.55	<u>4</u> 7.59			70.7	4.66	188	
8:01	8 7-6/ 13 7-66		0 19	71.0 70.8		· -	·
				70.X			
					-	· <u></u>	
							
		LAEO	RATORY INFOR	MATION			<u> </u>
SAMPLE ID	(#) - CONTAINER	REFRIG.	PRESERV. TYPE		DRATORY	ANAL	YSES
U-3	3404	Υ	HCL	Se	q.	TPHG, BT	ex,mtbe
	Iplastic	//		- ''	_	(Ferrous :	Frou.
					•	Nitra	te.
			1			1 phosp	2-c
COMMENTS: _	·	· •		•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·
	<u> </u>	-		 	<u> </u>		
		•	•	•	-		•

Client/ Facility # <u>53</u>	25		Job#	: _1800	61	
	20 Lakesh	nce Av				
	kland, CA.			oler: <u>Joc</u>		
Well ID	U-4	We	ell Condition:	0.F-		
Well Diameter	4 in	Hy	drocarbon	Amount 8	Bailed	_
Total Depth	20.15		ickness:	in (product/w	eterl: O	lgel1
Depth to Water	7.32,	- 1	clume 2° = 0. actor (VF)	17 3" = 0.3 6" = 1.50	12" = 5,80	= 0.66
	1283 x	VF 060	6 -8.47 × 3 (case	volume) = Estimated (urge Volume:	26 (00)
Purge Equipment:	Disposable Bailer Bailer Stack Suction Grundfos Other:		Sampling Equipment		er	,
•	7 <u>135 A m (073</u> e:2 17		Sediment Descrip	tion: Volu	·····	ou'e
	folume pH (gal.)	Cor pès	uductivity i Tempe thos/cm X	E (mg/L)	ORP (mV)	Álkalinity (ppm)
7:07	8 7.17		0.68 71.	2 5:05	- •	
7:10	$\frac{7.29}{2}$			0		
	26 7.3°	<u> </u>	0.72 71.	2		
		- ` <u> </u>				
SAMPLE ID			RATORY INFORMA	NOIT		· · · · · · · · · · · · · · · · · · ·
U-4	3YOA	REFRIG.	PRESERV, TYPE	LABORATORY	ANAL	
	1 Plastic		HCL	Seq.	Ferrous	EX,MTBE
					Nitra	
					Phose	atc.
COMMENTS: _			·		<u>-:</u>	
				-		
				• •		-

Client/	_				•		
Facility #_53	325		Jo	o#:	18006	5/	
Address: 31	220 Lakesl	iore Av	<u>ce·</u> Da	te: _	12-10-	စ <u> </u>	
City:	akland, CA	<u> </u>	Sa	mpler: _	Joe		
Well ID	U-5	W	ell Condition:		. k -		
Well Diameter		Hy	rdrocarbon		Amount Ba	ailed	
Total Depth	70.05 +		ickness:	<u>in</u>	(product/wa	(or);	
Depth to Water	6.65 4		actor (VF)	• 0.17 6 =	3" = 0.38 1.50	12" = 5,80	= 0.66
Purge Equipment:	13.4 x Disposable Bailer		5 = 8 184 x 3 (ca	3		_	27 _(0×1)
	Stack Suction Grundfos Other:		Equipme	∄ Pi .G	isposable Ba ailer ressure Baile rab Sample		
Starting Time: Sampling Time: Purging Flow Rate Did well de-water	te:2		Weather Color: _ Sediment Desc	ription: _	• ,	Odor: M	-
OR WEIL OF WEEK	11,f		If yes; Time:	• .	Volum	e:	
	Volume pH (gal.)	Cor ம்	uductivity i ⁷⁾ Ter nivos/cm K	-C decentrate	D.O. (mg/L)	ORP (mV)	Alkalinity (ppm)
9:76	$\frac{9}{18}$ $\frac{7.30}{7.10}$		· • -	<u>e.7</u>	2.85	96	
7:33	$\frac{77}{27} = \frac{7.14}{7.14}$		<u>67</u>	21-0 21-4		-	*
		- '		·			
							
· 641.151.5 m			RATORY INFORA	IATION			
SAMPLE ID	3 YO A	REFRIG.	PRESERV. TYPE		DRATORY	ANAU	
	1 plastic	Y	HCL		4.	TPHG, BT	
	Criustic			- "		Ferrors:	
					-	9 Nitra	te.
COMMENTS: _		<u> </u>		<u> </u>	·	L Fra OXYE	AFC .
-			<u> </u>		•		
<u> </u>		•	•				

Facility #_53	,25		Job#	#:	61
Address: 32	220 Lakesh	ore Av		,	
	ikland, CA.		-	pler: To c	
Well ID	U-6	₩e	Il Condition: _	0.k.	
Well Diameter	2	Hyd	Irocarbon	Amount	Bailed
Total Depth	73.78 #		ckness: 2° = 0	in (product/s	
Depth to Water	7.15		dume 2" = (ctor (VF)	37 = 0. 6 = 1.50	38 4" = 0.66 12" = 5.80
B. com a		vf <u>@.17</u>		volume) = Estimated	Purge Volume: 8-5 (gal.)
Purge Equipment:	Disposable Bailer Bailer	•	Sampling Equipment	: Disposable i	Bailer
	Stack			Bailer Pressure Ba	
	Grundfos Other:	·		Grab Sampl	e
Did well de-wate	Volume pH (gal.) 3.5 7.10 5.5 7.09	Con.	Sediment Description of the se	Volumentum D.O. (mg/L)	ORP Alkalinity (mV) (ppm)
8:44	8.5 7.16	<u>></u>	<u> </u>	24	
SAMPLE ID	(#) - CONTAINER	LABOF	ATORY INFORMA PRESERV. TYPE	ATION LABORATORY	
U- 6	3YO4	Υ	HCL	Seq.	TPHG, BTEX, MTBE
	Iplastic	//		11	(Ferrous Iron
•					Nitrate.
COMMENTS: _					1 phosphale
		<u>-</u>		•	· · · · · · · · · · · · · · · · · · ·
		•			

2 January, 2002

Deanna Harding Gettler Ryan/Geostrategies - Tosco/Unocal 6747 Sierra Ct, Suite J Dublin, CA 94568

four Mont

RE: #5325, Oakland Sequoia Report: MKL0190 REGENTED

GETTLEK-KTAIL

Enclosed are the results of analyses for samples received by the laboratory on 12/10/01 19:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

James Hartley Project Manager

CA ELAP Certificate #1210

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J

Dublin CA, 94568

Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.

Project Manager: Deanna Harding

Reported: 01/02/02 13:55

ANALYTICAL REPORT FOR SAMPLES

Sample 1D	Laboratory ID	Matrix	Date Sampled	Date Received
TB-LB	MKL0190-01	Water	12/10/01 00:00	12/10/01 19:00
U-I	MKL0190-02	Water	12/10/01 12:12	12/10/01 19:00
U-2	MKL0190-03	Water	12/10/01 10:30	12/10/01 19:00
U-3	MKL0190-04	Water	12/10/01 08:15	12/10/01 19:00
U-4	MKL0190-05	Water	12/10/01 07:35	12/10/01 19:00
U-5	MKL0190-06	Water	12/10/01 09:48	12/10/01 19:00
U-6	MKL0190-07	Water	12/10/01 09:05	12/10/01 19:00

Sequoia Analytical - Morgan Hill

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.
Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Total Purgeable Hydrocarbons (C6-C10) by 8015B modified, BTEX and MTBE by 8021B Sequoia Analytical - Morgan Hill

		734 737.47	<u></u>	111019					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB-LB (MKL0190-01) Water S	ampled: 12/10/01 00:00	Received	: 12/10/0	1 19:00					
Gasoline Range Organics (C6-C10) ND	50	ug/l	1	1L18002	12/18/01	12/18/01	8015Bm/8021B	
Benzene	ND	0.50	**	**	**	Ħ	*	я	
Toluene	ND	0.50	**	Н	u	"	W	**	
Ethylbenzene	ND	0.50	11	n	11	11	11	н	
Xylenes (total)	ND	0.50	н		**	BF .	Ħ	•	
Methyl tert-butyl ether	ND	2.5	p	#	И			π 	A-01
Surrogate: a,a,a-Trifluorotoluene		104 %	70-	-130	H	"	"	•	
U-1 (MKL0190-02) Water Sam	pled: 12/10/01 12:12 R	eceived: 12	/10/01 1	9:00					
Gasoline Range Organics (C6-C1	0) 11000	10000	ug/l	200	1L18002	12/18/01	12/18/01	8015Bm/8021B	P-01
Benzene	220	100	11	#1	**	"	11 .	11	
Toluene	ND	100	**	"	#1	Ħ	Ħ	*	
Ethylbenzene	380	100	**	II	n ·	Ħ	п	Ħ	
Xylenes (total)	1500	100	11	"	11	11	99	11	
Methyl tert-butyl ether	5100	500			*	н		н	A-0la
Surrogate: a,a,a-Trifluorotoluene		101 %	70	-130	n	H	H	п	
U-2 (MKL0190-03) Water Sam	pled: 12/10/01 10:30 R	eceived: 12	2/10/01 1	9:00					
Gasoline Range Organics (C6-C1	0) 83	50	ug/l	1	1L18002	12/18/01	12/18/01	8015Bm/8021B	
Benzene	14	0.50	**	**	**	11	н	*	
Toluene	0.55	0.50	. 41	-	н	17	4		
Ethylbenzene	3.4	0.50	п	"	H	11	11	"	
Xylenes (total)	6.8	0.50	**	11	u	u	11	P	
Methyl tert-butyl ether	2500	250		100	11			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A-01,M-03
Surrogate: a,a,a-Trifluorotoluene		99.6 %	70	-130	"	**	"	"	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.
Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Total Purgeable Hydrocarbons (C6-C10) by 8015B modified, BTEX and MTBE by 8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-3 (MKL0190-04) Water San	npled: 12/10/01 08:15	Received: 12	/10/01 1	9:00					
Gasoline Range Organics (C6-C10)) ND	50	ug/l	1	1L18002	12/18/01	12/18/01	8015Bm/8021B	
Benzene	ND	0.50	"	•	π	**	н	Ħ	
Toluene	ND	0.50	**	**	**	•	h	*	
Ethylbenzene	ND	0.50		#		**	Ħ	11	
Xylenes (total)	ND	0.50		#	•	11	u u	**	
Methyl tert-butyl ether	ND	2.5	*	n	**	н		tt	A-01
Surrogate: a,a,a-Trifluorotoluene		102 %	70-	130	"	"	ħ	ø	
U-4 (MKL0190-05) Water San	pled: 12/10/01 07:35	Received: 12	2/10/01 1	9:00					
Gasoline Range Organics (C6-C10) ND	50	ug/l	1	1L18002	12/18/01	12/18/01	8015Bm/8021B	
Benzene	ND	0.50	ŧπ	11	**	*	11	tt	
Toluene	ND	0.50	71	11	**	"	п	*	
Ethylbenzene	ND	0.50	**	n	41	19	11	"	
Xylenes (total)	ND	0.50	77	11	W	n		u	
Methyl tert-butyl ether	ND	2.5	**	H		U .	•	Ħ	A-01
Surrogate: a,a,a-Trifluorotoluene		81.9 %	70-	130	"	"	n	"	
U-5 (MKL0190-06) Water Sam	pled: 12/10/01 09:48	Received: 12	<u>//10/01 1</u>	9:00					
Gasoline Range Organics (C6-C1	10) 420	50	ug/l	1	1L18002	12/18/01	12/18/01	8015Bm/8021B	P-01
Benzene	13	0.50	11	**	н	**	11	#	
Toluene	0.60	0.50	**	17	n		11	#	
Ethylbenzene	0.66	0.50	19	н	w	n	н	u	
Xylenes (total)	ND	0.50	"	Ħ	н	Ħ	*	, 11	
Methyl tert-butyl ether	ND	2.5	*1	77	π	н		ti .	A-0
Surrogate: a,a,a-Trifluorotoluene		125 %	70-	130	п	н	"	pr	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.
Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Total Purgeable Hydrocarbons (C6-C10) by 8015B modified, BTEX and MTBE by 8021B Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-6 (MKL0190-07) Water Sampled:	12/10/01 09:05	Received: 12	/10/01 1	9:00					
Gasoline Range Organics (C6-C10)	ND	50	ug/l	1	1L18002	12/18/01	12/18/01	8015Bm/8021B	
Benzene	ND	0.50	11	"		п	н	•	
Toluene	ND	0.50	11	*	Ħ	н	n	u	
Ethylbenzene	ND	0.50	11		Ħ	H		11	
Xylenes (total)	ND	0.50	11		#	"	u	11	
Methyl tert-butyl ether	220	25	n	10	0	"	**	h	A-01,M-03
Surrogate: a.a.a-Trifluorotoluene		101 %	70	-130	"	н	π	"	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave. Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Volatile Organic Compounds by EPA Method 8260B

Sequoia Analytical - Morgan Hill

	36	quoia Ana	iyticai	- Worg	an Hill				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (MKL0190-02) Water	Sampled: 12/10/01 12:12	Received: 12	/10/01 1	9:00					
Ethanol	ND	8000	սջ/I	200	1L20029	12/20/01	12/20/01	EPA 8260B	
tert-Butyl alcohol	ND	4000	ŧŧ	u	P		u		
Methyl tert-butyl ether	5100	100	Ħ	п	H	11	•	п	
Di-isopropyl ether	ND	100	**	н	Ħ	**	"	11	
Ethyl tert-butyl ether	ND	100		11	н	**	**	и	
tert-Amyl methyl ether	ND	100		11	R	н	n	m	
1,2-Dichloroethane	ND	100		"	**	n	11	•	•
Ethylene dibromide	ND	100	**	"	"	*	n	11	
Surrogate: 1,2-Dichloroethar	ne-d4	107 %	60-	140	"	"	"	"	
U-2 (MKL0190-03) Water	Sampled: 12/10/01 10:30	Received: 12	/10/01 1	9:00					
Ethanol	ND	4000	ug/l	100	1L20028	12/19/01	12/20/01	EPA 8260B	
tert-Butyl alcohol	ND	2000	11	**	Ħ	11	11	11	
Methyl tert-butyl ether	2500	50	11	#	п	R	11	11	
Di-isopropyl ether	ND	50	•		н	**	n	11	
Ethyl tert-butyl ether	ND	50			Ħ		Ħ	n	
tert-Amyl methyl ether	ND	50	H	**	R	a.	"	rr .	
1,2-Dichloroethane	ND	50	•	"	н	•	Ħ	rr	
Ethylene dibromide	ND ND	50	-	*	11	**	11	n	
Surrogate: 1,2-Dichloroethan	ne-d4	107 %	60-	140	"	"	"	н	 -
U-6 (MKL0190-07) Water	Sampled: 12/10/01 09:05	Received: 12	/10/01 19	9:00		_			
Ethanol	ND	400	ug/l	10	1L20028	12/19/01	12/20/01	EPA 8260B	1.4.
tert-Butyl alcohol	ND	200	Ħ	Ħ	н	11	H		
Methyl tert-butyl ether	220	5.0	n	m	н	H	н	11	
Di-isopropyl ether	ND	5.0	II .	b	D	II .	+1	**	
Ethyl tert-butyl ether	ND	5.0	п	ш	II	ii	1 1	**	
tert-Amyl methyl ether	ND	5.0	11	11	1)	ıı	**	**	
1,2-Dichloroethane	ND	5.0	ŧì	**	**	.,	н	и	
Ethylene dibromide	מא	5.0	••	r.	41	ii .	u	ū	
Surrogate: 1,2-Dichloroethan	e-d4	107 %	60-	140	"	"	"	μ	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave. Project Manager: Deanna Harding Reported: 01/02/02 13:55

Conventional Chemistry Parameters by APHA/EPA Methods

Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (MKL0190-02) Water	Sampled: 12/10/01 12:12	Received: 12	/10/01_1	9:00					
Phosphorus (Ortho)	2.2	0.050	mg/l	5	1L18013	12/11/01	12/11/01	EPA 365.3	
U-2 (MKL0190-03) Water	Sampled: 12/10/01 10:30	Received: 12	/10/01 1	9:00					
Phosphorus (Ortho)	0.20	0.010	mg/l	1	1L18013	12/11/01	12/11/01	EPA 365.3	
U-3 (MKL0190-04) Water	Sampled: 12/10/01 08:15	Received: 12	/10/01 1	9:00					
Phosphorus (Ortho)	0.11	0.010	mg/l	1	1L18013	12/11/01	12/11/01	EPA 365.3	
U-4 (MKL0190-05) Water	Sampled: 12/10/01 07:35	Received: 12	/10/01 1	19:00				····	
Phosphorus (Ortho)	0.10	0.010	mg/l	1	1L18013	12/11/01	12/11/01	EPA 365.3	
U-5 (MKL0190-06) Water	Sampled: 12/10/01 09:48	Received: 12	/10/01 1	19:00					
Phosphorus (Ortho)	2.6	0.060	mg/l	6	1L18013	12/11/01	12/11/01	EPA 365.3	
U-6 (MKL0190-07) Water	Sampled: 12/10/01 09:05	Received: 12	/10/01	19:00					
Phosphorus (Ortho)	2.0	0.060	mg/l	6	1L18013	12/11/01	12/11/01	EPA 365.3	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.

Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Ferrous Iron by Hach method 8146/1;10 Phenanthroline Method Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (MKL0190-02) Water	Sampled: 12/10/01 12:12	Received: 12	/10/01 1	9:00					
Ferrous Iron	14	2.5	mg/l	25	1 L.27 010	12/10/01	12/10/01	Hach Co. 8146	
U-2 (MKL0190-03) Water	Sampled: 12/10/01 10:30	Received: 12	/10/01 1	9:00					٠
Ferrous Iron	ND	0.10	mg/l	1	1L27010	12/10/01	12/10/01	Hach Co. 8146	: <u>.</u> .
U-3 (MKL0190-04) Water	Sampled: 12/10/01 08:15	Received: 12	/10/01 1	9:00					
Ferrous Iron	ND	0.10	mg/l	1	1L27010	12/10/01	12/10/01	Hach Co. 8146	
U-4 (MKL0190-05) Water	Sampled: 12/10/01 07:35	Received: 12	/10/01 1	9:00					
Ferrous Iron	ND	0.10	mg/l	1	1L27010	12/10/01	12/10/01	Hach Co. 8146	
U-5 (MKL0190-06) Water	Sampled: 12/10/01 09:48	Received: 12	<u>/10/0</u> 1 1	9:00	-				
Ferrous Iron	3.7	1.2	mg/l	12.5	1L27010	12/10/01	12/10/01	Hach Co. 8146	
U-6 (MKL0190-07) Water	Sampled: 12/10/01 09:05	Received: 12	/10/01 1	9:00					
Ferrous Iron	0.99	0.25	mg/l	2.5	11.27010	12/10/01	12/10/01	Hach Co. 8146	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave. Project Manager: Deanna Harding Reported: 01/02/02 13:55

Anions by EPA Method 300.0 Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
U-1 (MKL0190-02) Water	Sampled: 12/10/01 12:12	Received: 12	/10/01 1	19:00				. 	
Nitrate as NO3	ND	0.50	mg/l	1	1L27022	12/11/01	12/11/01	EPA 300.0	
U-2 (MKL0190-03) Water	Sampled: 12/10/01 10:30	Received: 12	/10/01	9:00					
Nitrate as NO3	ND	0.50	mg/l	1	1L27022	12/11/01	12/11/01	EPA 300.0	
U-3 (MKL0190-04) Water	Sampled: 12/10/01 08:15	Received: 12	/10/01	19:00		<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Nitrate as NO3	21	5.0	mg/l	10	1L27022	12/11/01	12/11/01	EPA 300.0	
U-4 (MKL0190-05) Water	Sampled: 12/10/01 07:35	Received: 12	/10/01	19:00					
Nitrate as NO3	19	5.0	mg/l	10	1L27022	12/11/01	12/11/01	EPA 300.0	
U-5 (MKL0190-06) Water	Sampled: 12/10/01 09:48	Received: 12	/10/01	19:00				<u> </u>	
Nitrate as NO3	ND	0.50	mg/l	1	1L27022	12/11/01	12/11/01	EPA 300.0	
U-6 (MKL0190-07) Water	Sampled: 12/10/01 09:05	Received: 12	/10/01	19:00					
Nitrate as NO3	0.50	0.50	mg/l	1	1L27022	12/11/01	12/11/01	EPA 300.0	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.
Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Total Purgeable Hydrocarbons (C6-C10) by 8015B modified, BTEX and MTBE by 8021B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1L18002 - EPA 5030B [P/T]							·			
Blank (1L18002-BLK1)				Prepared	& Analyzo	ed: 12/18/	 01			
Gasoline Range Organics (C6-C10)	ND	50	ug/l		·••					
Benzene	ND	0.50	11							
Toluene	ND	0.50	•							
Ethylbenzene	ND	0.50								
Xylenes (total)	ND	0.50	Ħ							
Methyl tert-butyl ether	ND	2.5	"							
Surrogate: a,a,a-Trifluorotoluene	9.78		,,	10.0		97.8	70-130			
LCS (1L18002-BS1)				Prepared	& Analyze	d: 12/18/	01			
Benzene	8.80	0.50	ug/l	10.0		88.0	70-130			
Toluene	10.0	0.50	11	10.0		100	70-130			
Ethylbenzene	11.1	0.50	**	10.0		111	70-130			
Xylenes (total)	34.0	0.50	н	30.0		113	70-130			
Surrogate: a,a,a-Trifluorotoluene	10.0	·	*	10.0		100	70-130			
LCS (1L18002-BS2)				Prepared .	& Analyze	ed: 12/18/	01			
Gasoline Range Organics (C6-C10)	242	50	ug/l	250		96.8	70-130			
Surrogate: a,a,a-Trifluorotoluene	9.45		"	10.0		94.5	70-130			
LCS (1L18002-BS3)				Prepared a	& Analyze	ed: 12/18/	01			
Gasoline Range Organics (C6-C10)	444	50	ug/l	550	<u></u>	80.7	70-130			
Benzene	8.12	0.50	11	6.60		123	70-130			
Toluene	39.6	0.50		39.7		99.7	70-130			
Ethylbenzene	10.9	0.50	n	9.20		118	70-130			
Xylenes (total)	52.3	0.50	11	46.1		113	70-130			
Surrogate: a,a,o-Trifluorotoluene	9.69		"	10.0		96.9	70-130	······································		
LCS Dup (1L18002-BSD3)				Prepared (& Analyze	ed: 12/18/	01			
Gasoline Range Organics (C6-C10)	464	50	ug/l	550		84.4	70-130	4.41	25	
Benzene	8.48	0.50	**	6.60		128	70-130	4.34	25	
l'oluen e	42.3	0.50	,,	39.7		107	70-130	6.59	25	
thylbenzene	11.2	0.50	**	9.20		122	70-130	2.71	25	
(ylenes (total)	53.7	0.50	н	46.1		116	70-130	2.64	25	
Surrogate: a,a,a-Trifluorotoluene	9.79	· · ·	"	10.0		97.9	70-130			

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.
Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1L20028 - EPA 5030B P/T							18		<u> </u>	
Blank (1L20028-BLK1)				Prepared	& Analyz	ed: 12/19/	01			
Ethanol	ND	40	ug/l							
tert-Butyl alcohol	ND	20	н							
Methyl tert-butyl ether	ND	0.50	н							
Di-isopropyl ether	ND	0.50	н							
Ethyl tert-butyl ether	ND	0.50	n							
tert-Amyl methyl ether	ND	0.50	Ħ							
1,2-Dichloroethane	ND	0.50								
Ethylene dibromide	ND	0.50	**							
Surrogate: 1,2-Dichloroethane-d4	10.7		п	10.0	· · · · · ·	107	60-140			
LCS (1L20028-BS1)				Prepared	& Analyz	ed: 12/19/	01			
Methyl tert-butyl ether	11.4	0.50	ug/l	10.0		114	70-130·			
Surrogate: 1,2-Dichloroethane-d4	10.6		н	10.0		106	60-140			
LCS Dup (1L20028-BSD1)				Prepared	& Analyz	ed: 12/19/	01			
Methyl tert-butyl ether	11.5	0.50	ug/l	10.0		115	70-130	0.873	25	
Surrogate: 1,2-Dichloroethane-d4	10.6		"	10.0		106	60-140			
Batch 1L20029 - EPA 5030B P/T										
Blank (1L20029-BLK1)				Prepared	& Analyz	ed: 12/20/	01			
Ethanol	ND	40	ug/l							
tert-Butyl alcohol	ND	20	**							
Methyl tert-butyl ether	ND	0.50	"							
Di-isopropyl ether	ND	0.50	#1							
Ethyl tert-butyl ether	ND	0.50	•							
tert-Amyl methyl ether	ND	0.50								
1.2-Dichloroethane	ND	0.50	ž1							
Ethylene dibromide	ND	0.50	**							
Surrogate: 1,2-Dichloroethane-d4	10.8		н	10.0		108	60-140			

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave. Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Volatile Organic Compounds by EPA Method 8260B - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1L20029 - EPA 5030B P/T										•••
LCS (1L20029-BS1)				Prepared	& Analyzo	ed: 12/20/	01			
Methyl tert-butyl ether	11.4	0.50	ug/l	10.0		114	70-130			-
Surrogate: 1,2-Dichloroethane-d4	10.6		#	10.0		106	60-140			
Matrix Spike (1L20029-MS1)	So	urce: MKL0:	379-01	Prepared	& Analyz	ed: 12/20/	01			
Methyl tert-butyl ether	113	5.0	ug/I	100	ND	113	70-130		*-	
Surrogate: 1,2-Dichloroethane-d4	10.9		. п	10.0		109	60-140		, , , , , , , , , , , , , , , , , , ,	·
Matrix Spike Dup (1L20029-MSD1)	So	urce: MKL03	379-01	Prepared	& Analyze	ed: 12/20/	01			
Methyl tert-butyl ether	109	5.0	ug/l	100	ND	109	70-130	3.60	25	
Surrogate: 1,2-Dichloroethane-d4	10.7		"	10.0		107	60-140			

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.
Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Morgan Hill

Апаlyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1L18013 - General Preparation										
Blank (1L18013-BLK1)				Prepared	& Analyz	ed: 12/11/	01			
Phosphorus (Ortho)	ND	0.010	mg/l							
LCS (1L18013-BS1)				Prepared	& Analyz	ed: 12/11/	01			
Phosphorus (Ortho)	0.235	0.010	mg/l	0.250		94.0	80-120	<u> </u>		
Matrix Spike (1L18013-MS1)	So	urce: MKL0	190-05	Prepared	& Analyz	ed: 12/11/	01			
Phosphorus (Ortho)	0.369	0.010	mg/l	0.250	0.10	108	75-125			
Matrix Spike Dup (1L18013-MSD1)	So	urce: MKL0	190-05	Prepared	& Analyz	ed: 12/11/	01			
Phosphorus (Ortho)	0.366	0.010	mg/l	0.250	0.10	106	75-125	0.816	20	

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave. Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Ferrous Iron by Hach method 8146/1;10 Phenanthroline Method - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1L27010 - General Preparation							····· -	-		
Blank (1L27010-BLK1)				Prepared	& Analyze	ed: 12/10/	01			
Ferrous Iron	ND	0.10	mg/l	,			•			
LCS (1L27010-BS1)				Prepared	& Analyze	ed: 12/10/	01			
Ferrous Iron	0.389	0.10	mg/l	0.400		97.2	90-110		· · · · · · · · · · · · · · · · · · ·	
Matrix Spike (1L27010-MS1)	Sou	orce: MKL0	190-04	Prepared	& Analyz	ed: 12/10/	01			
Ferrous Iron	0.415	0.10	mg/l	0.400	ND	104	80-120		· · · · · · · · · · · · · · · · · · ·	
Matrix Spike Dup (1L27010-MSD1)	Sou	arce: MKL0	190-04	Prepared of	& Analyz	ed: 12/10/	01			
Ferrous Iron	0.419	0.10	mg/l	0.400	ND	105	80-120	0.959	20	

6747 Sierra Ct, Suite J Dublin CA, 94568 Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave. Project Manager: Deanna Harding

Reported: 01/02/02 13:55

Anions by EPA Method 300.0 - Quality Control Sequoia Analytical - Morgan Hill

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 1L27022 - General Preparation										
Blank (1L27022-BLK1)	Prepared & Analyzed: 12/11/01									
Nitrate as NO3	ND	0.50	mg/l	<u> </u>		<u> </u>				
LCS (1L27022-BS1)				Prepared & Analyzed: 12/11/01						
Nitrate as NO3	9.26	0.50	mg/l	10.0		92.6	90-110			
Matrix Spike (1L27022-MS1)	Source: MKL0190-04			Prepared & Analyzed: 12/11/01						
Nitrate as NO3	117	5.0	mg/l	100	21	96.0	80-120			
Matrix Spike Dup (1L27022-MSD1)	Source: MKL0190-04			Prepared & Analyzed: 12/11/01						
Nitrate as NO3	117	5.0	mg/l	100	21	96.0	80-120	0.00	20	

885 Jarvis Drive Morgan Hill, CA 95037 (408) 776-9600 FAX (408) 782-6308 www.sequoialabs.com

Gettler Ryan/Geostrategies - Tosco/Unocal

6747 Sierra Ct, Suite J

Dublin CA, 94568

Project: #5325, Oakland

Project Number: 3220 Lakeshore Ave.

Project Manager: Deanna Harding

Reported:

01/02/02 13:55

Notes and Definitions

A-01 MTBE reported from GCMS on 12/19/01.

A-01a MTBE reported from GCMS on 12/20/01.

M-03 This result is from a second dilution of the sample. An initial result was reported from a previous dilution of the sample necessary

to report other analytes in a different range.

P-01 Chromatogram Pattern: Gasoline C6-C10

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference