

MPDS-UN5325-15 August 1, 1997

Tosco Marketing Company Environmental Compliance Department 2000 Crow Canyon Place, Suite 400 San Ramon, California 94583

Attention: Mr. David De Witt

RE: Quarterly Data Report

Unocal Service Station #5325 3220 Lakeshore Avenue Oakland, California

Dear Mr. De Witt:

This data report presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site by MPDS Services, Inc.

RECENT FIELD ACTIVITIES

The monitoring wells that were monitored and sampled during this quarter are indicated in Table 1. A skimmer was present in well U-1. Prior to sampling, the wells were checked for depth to water and the presence of free product or sheen. The monitoring data and the ground water elevations are summarized in Table 1. The ground water flow direction during the most recent quarter is shown on the attached Figure 1.

Ground water samples were collected on June 30, 1997. Prior to sampling, the wells were each purged of between 8 and 20 gallons of water. During purging operations, the field parameters pH, temperature, and electrical conductivity were recorded on the purging/sampling data sheets which are attached to this report. Once the field parameters were observed to stabilize, and where possible, a minimum of approximately three casing volumes had been removed from each well, samples were then collected using a clean Teflon bailer. The samples were decanted into clean VOA vials, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory. MPDS Services, Inc. transported the purged ground water to the Tosco Refinery located in Rodeo, California, for treatment and discharge to San Pablo Bay under NPDES permit.

ANALYTICAL RESULTS

The ground water samples were analyzed at Sequoia Analytical Laboratory and were accompanied by properly executed Chain of Custody documentation. The analytical results of the ground water samples collected to date are summarized in Table 2. The concentrations of Total Petroleum Hydrocarbons (TPH) as gasoline and benzene detected in the ground water samples collected this quarter are shown on the attached Figure 2. Copies of the laboratory analytical results and the Chain of Custody documentation are attached to this report.

MPDS-UN5325-15 August 1, 1997 Page 2

LIMITATIONS

Environmental changes, either naturally-occurring or artificially-induced, may cause changes in ground water levels and flow paths, thereby changing the extent and concentration of any contaminants.

DISTRIBUTION

A copy of this report should be sent to the Alameda County Health Care Services Agency.

If you have any questions regarding this report, please do not hesitate to call Mr. Nubar Srabian at (510) 602-5120.

Sincerely,

MPDS Services, Inc.

Haig (Gary) Tejirian

Senior Staff Geologist

Hagop Kevork, P.E. Senior Staff Engineer

License No. C 55734

Exp. Date December 31, 2000

/aab

Attachments:

Tables 1 through 4

Location Map Figures 1 & 2

Laboratory Analyses

Chain of Custody documentation Purging/Sampling Data Sheets

cc: Mr. Greg Gurss, GeoStrategies, Inc., Rancho Cordova

Table 1
Summary of Monitoring Data

	Ground Water	Depth to	Total Well	Product		Water
	Elevation	Water	Depth	Thickness		Purged
Well #	(feet)	(feet)+	(feet)+	(feet)	Sheen	(gallons)
		(Manitomed a	and Sampled on a	I 20 1007)		
		(Monitorea a	ind Sampled on a	June 30, 1997)		
U-1*	0.07**	8.41	19.80	0.02	N/A	0
U-2*	1.43	6.19	19.53	< 0.01	N/A	0
U-3	-0.10	11.08	19.80	0	No	9.5
U-4	1.26	9.89	20.20	0	No	13
U-5	-0.10	7.08	20.08	0	No	20
U-6	-0.21	7.35	23.81	0	No	8
		(Monitored a	nd Sampled on N	March 14, 1997)		
		,	•			
U-1*	-0.15**	9.02	*	0.55	N/A	0 (13.5)
U-2*	0.52**	7.12	*	0.03	N/A	0
U-3	0.11	10.87	19.80	0	No	9
U-4	1.80	9.35	20.21	0	No	15
U-5	-0.01	6.99	20.10	0	No	25
U-6	-0.16	7.30	23.80	0	No	9.5
	(Monitored an	d Sampled on D	ecember 9, 1996)		
U-1*	. 1.60**	6.88	19.82	0.03	N/A	0 (1.5)
U-2	0.86	6.76	19.55	0	No	14.5
U-3	0.86	10.12	19.78	0	No	11
U-4	2.48	8.67	20.22	0	No	22
U-5	1.08	5.90	20.05	0	No	28
U-6	1.26	5.88	23.80	0	No	9.5
	(1)	Monitored and	d Sampled on Se	ptember 26, 1996	6)	
7 T 1 4	0.63**	0.10	19.83	0.02	N/A	0 (<1)
U-1*	-0.63** 0.28	9.10 7.00	19.83	0.02	No	13.5
U-2	-0.28	7.90		0	No	9.5
U-3	-0.57	11.55	19.85	0	No No	20
U-4	1.01	10.14	20.20		No No	25.5
U-5	-0.15	7.13	20.12	0		23.3 9
U-6	-0.48	7.62	23.84	0	No	7

Table 1
Summary of Monitoring Data

Well Casing					
	Elevation				
Well#	(feet)***				
U-1	8.46				
U-2	7.62				
U-3	10.98				
U-4	11.15				
U-5	6.98				
U-6	7.14				

- The depth to water level and total well depth measurements are taken from the top of the well casings.
- ★ Well depth measurements were not taken.
- * Monitored only.
- ** Ground water elevation corrected due to the presence of free product (correction factor = 0.75).
- *** The elevations of the top of the well casings are surveyed relative to
 City of Oakland benchmark, at the northeasterly corner of Weller and
 Cheney Avenue (elevation = 9.055 feet, city datum; add 3.00' to U.S.G.S. datum).
- (x) Amount of product purged in ounces.

N/A = Not applicable.

Table 2
Summary of Laboratory Analyses
Water

		TPH as			Ethyl-		
Well#	Date	Gasoline	Benzene	Toluene	Benzene	Xylenes	MTBE
U-1	6/30/97	NOT SAMPLE	D DUE TO T	HE PRESENC	E OF FREE P	RODUCT	
	3/14/97	NOT SAMPLE	D DUE TO T	HE PRESENC	E OF FREE P	RODUCT	
	12/9/96	NOT SAMPLE	D DUE TO T	HE PRESENC	E OF FREE P	RODUCT	
	9/26/96	NOT SAMPLE	D DUE TO T	HE PRESENC			
	6/27/96	120,000	540	4,300	2,600	26,000	ND
	3/18/96	27,000	ND	2,300	1,400	11,000	4,900
	12/19/96	NOT SAMPLE					
	9/19/95	NOT SAMPLE	D DUE TO T	HE PRESENC	E OF FREE P	RODUCT	
	6/21/95	NOT SAMPLE	D DUE TO T	HE PRESENC	E OF FREE P	RODUCT	
	3/25/95	NOT SAMPLE	D DUE TO T	HE PRESENC	E OF FREE P		
	12/24/94	50,000	2,500	9,700	2,400	17,000	
	9/22/94	6,100◆	ND	ND	ND	ND	
	6/22/94	200	ND	ND	5.9	21	
	2/16/94	6,800♦♦	ND	ND	ND	ND	
	11/16/93	690◆	ND	ND	ND	ND	
	8/8/93	4,900**	79	ND	832	270	
	5/7/93	8,700	600	240	650	3,300	
	2/22/93	34,000	1,400	5,500	910	7,300	
	8/20/92	400*	1.0	ND	ND	0.6	
	6/11/92	1,000	80	1.4	6.7	41	
	5/5/92	230	1.2	ND	ND	ND	
	2/12/92	250	ND	ND	ND	ND	
	10/9/91	ND	ND	ND	ND	ND	
	7/3/91	140	21	4.3	0.36	17	
	4/1/91	160	13	8.6	1.0	15	
	1/7/91	250	22	16	4.2	17	
	8/10/90	690	38	75	8.6	130	
U-2	6/30/97	NOT SAMPLE					
	3/14/97	NOT SAMPLE					2 500
	12/9/96	13,000	5,100	290	980	370	2,700
	9/26/96	5,900	750	ND	ND	ND	18,000
	6/27/96	28,000	3,400	ND	2,800	3,100	3,000
	3/18/96	12,000	2,200	ND	1,200	2,200	22,000
	12/19/95	1,600	140	55	52	270	††
	9/19/95	3,000	610	ND	78	240	†
	6/21/95	16,000	2,100	ND	1,800	1,700	
	3/25/95	170,000	1,900	21,000	4,800	33,000	
	12/24/94	32,000	1,500	890	1,300	5,000	
	9/22/94	8,500+	29	ND	ND	ND	
	6/22/94	31,000	2,200	62	1,500	3,500	
	2/16/94	980 ♦ ♦	49	13	2.7	40	
	11/16/93	510◆	ND	ND	ND	ND	
	8/8/93	5,600**	420	ND	410	670	

Table 2Summary of Laboratory Analyses
Water

		TPH as			Ethyl-		
Well #	Date	Gasoline	Benzene	Toluene	Benzenc	Xylenes	MTBE
U-2	5/7/93	17,000	1,800	660	1,700	4,000	
(Cont.)	2/22/93	3,400	2,400	2,100	1,200	5,800	
(Cont.)	8/20/92	700	28	6.5	1.3	4.6	
	6/11/92	620	17	2.1	ND	37	
	5/5/92	1,600	120	52	6.2	290	
	2/12/92	410	1.9	ND	0.36	0.4	
	10/9/91	230	7.1	ND	ND	11	
	7/3/91	2,100	150	25	3.1	290	
	4/1/91	1,700	250	89	34	190	
	1/7/91	1,900	67	5.8	58	69	
	8/10/90	780	27	46	15	130	
	8/10/90	760	21	40	15	100	
U-3	6/30/97	ND	ND	ND	ND	ND	ND
	3/14/97	ND	ND	ND	ND	ND	ND
	12/9/96	ND	ND	ND	ND	ND	29
	9/26/96	ND	ND	ND	ND	ND	ND
	6/27/96	440	49	50	51	140	50
	3/18/96	ND	ND	ND	ND	ND	
	12/19/95	ND	ND	ND	ND	ND	
	9/19/95	ND	ND	ND	ND	ND	†
	6/21/95	ND	ND	ND	ND	ND	
	3/25/95	ND	ND	ND	ND	ND	
	12/24/94	ND	ND	ND	ND	ND	
	9/22/94	ND	ND	ND	ND	ND	
	6/22/94	ND	ND	ND	ND	ND	
	2/16/94	ND	ND	ND	ND	ND	
	11/16/93	ND	ND	ND	ND	ND	
	8/8/93	210	5.0	9.7	0.7	4.1	
	5/7/93	ND	ND	ND	ND	ND	
	2/22/93	ND	ND	ND	ND	ND	
	8/20/92	ND	ND	ND	ND	ND	
	6/11/92	ND	ND	ND	ND	ND	
	5/5/92	ND	ND	ND	ND	ND	
	2/12/92	ND	ND	ND	ND	ND	
	10/9/91	ND	ND	ND	ND	ND	
	7/3/91	ND	ND	ND	ND	ND	
	4/1/91	ND	1.0	2.9	0.53	5.4	
	1/7/91	ND	ND	ND	ND	1.8	
	8/10/90	ND	ND	ND	ND	ND	
U-4	6/30/97	ND	ND	ND	ND	ND	ND
	3/14/97	ND	ND	ND	ND	ND	ND
	12/9/96	ND	ND	ND	ND	ND	33
	9/26/96	ND	ND	ND	ND	ND	ND

Table 2
Summary of Laboratory Analyses
Water

Well#	Date	TPH as Gasoline	Benzene	Toluene	Ethyl- Benzene	Xylenes	MTBE
U-4	6/27/96	ND	ND	ND	ND	ND	ND
(Cont.)	3/18/96	ND	ND	ND	ND	ND	
(Com.)	12/19/95	ND ND	ND	ND	ND	ND	
	9/19/95	ND	ND	ND	ND	ND	
	6/21/95	ND	ND	ND	ND	ND	
	3/25/95	ND	ND	ND	ND	ND	*-
	12/24/94	ND	ND	ND	ND	ND	
	9/22/94	ND	0.78	1.3	ND	1.4	**
	6/22/94	ND	ND	ND	ND	ND	
	0,22,34	ND	ND	ND	112	1.12	
U-5	6/30/97	4,200	74	51	180	980	270
	3/14/97	ND	ND	ND	ND	ND	14
	12/9/96	1,300	29	46	ND	140	97
	9/26/96	ND	ND	0.57	ND	0.96	ND
	6/27/96	16,000	280	150	1,400	4,600	530
	3/18/96	100	0.67	0.5	0.51	5.4	
	12/19/95	ND	ND	ND	ND	ND	
	9/19/95	850	14	7.1	13	66	†
	6/21/95	400	2.3	ND	9.1	3.5	
	3/25/95	44,000	390	960	1,500	7,600	·
	12/24/94	8,700	560	7 0	670	430	
	9/22/94	170	8.4	10	8.5	18	
	6/22/94	210	7.1	13	4.5	26	
U-6	6/30/97	ND	ND	ND	ND	ND	990
	3/14/97	ND	ND	ND	ND	ND	1,500
	12/9/96	1,200	29	48	6.4	140	58
	9/26/96	ND	ND	ND	ND	ND	1,400
	6/27/96	ND	ND	ND	ND	ND	510
	3/18/96	ND	ND	ND	ND	ND	
	12/19/95	210	2.5	1.0	2.9	17	
	9/19/95	ND	ND	ND	ND	ND	Ť
	6/21/95	ND	ND	ND	ND	ND	
	3/25/95	47,000	450	1,300	1,700	8,200	
	12/24/94	6,900	500	59	600	380	
	9/22/94	130	1.3	0.8	ND	0.73	+-
	6/22/94	ND	ND	ND	ND	ND	

- Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a gasoline and non-gasoline mixture.

Table 2 Summary of Laboratory Analyses Water

- * The positive result for gasoline does not appear to have a typical gasoline pattern.
- ** The concentration reported as gasoline is primarily due to the presence of a combination of gasoline and a discrete peak not indicative of gasoline.
- † Sequoia Analytical Laboratory has potentially identified the presence of MTBE at reportable levels in the groundwater sample collected from this well.
- †† Sequoia Analytical Laboratory has identified the presence of MTBE at a level above or equal to the taste and odor threshold of 40 μ g/L in the sample collected from this well.

MTBE = methyl tert butyl ether.

ND = Non-detectable.

Indicates analyses was not performed.

Results are in micrograms per liter ($\mu g/L$), unless otherwise indicated.

Note: The detection limit for results reported as ND by Sequoia Analytical Laboratory is equal to the stated detection limit times the dilution factor indicated on the laboratory analytical sheets.

Prior to August 1, 1995, the total purgeable petroleum hydrocarbon (TPH as gasoline) quantification range used by Sequoia Analytical Laboratory was C4 - C12. Since August 1, 1995, the quantification range used by Sequoia Analytical Laboratory is C6 - C12.

Laboratory analyses data prior to November 16, 1993, were provided by GeoStrategies, Inc.

Table 3
Summary of Laboratory Analyses
Water

Well #	Date	Iron (mg/L)	Nitrate as NO3 (mg/L)	Phosphate as PO4 (mg/L)	Redox Potential (mV)
U-3	6/30/97	1.4	21	0.86	190
U-4	6/30/97	0.13	35	0.52	200
U-5	6/30/97	16	ND	ND	160
U-6	6/30/97	88	0.80	ND	190

mg/L = milligrams per liter.

mV = milli-volts.

Table 4Summary of Laboratory Analyses
Water

Well#	Date	Dissolved Oxygen (mg/L)
U-3	6/30/97	4.1
U-4	6/30/97	5.4
U-5	6/30/97	3.4
U-6	6/30/97	0.30

mg/L = milligrams per liter.

Note: Dissolved oxygen measurments taken at Sequoia Analytical Laboratory.

Base modified from 7.5 minute U.S.G.S. Oakland East and West Quadrangles (both photorevised 1980)

O 2000 4000

Approx. scale feet

UNOCAL SERVICE STATION #5325 3220 LAKESHORE AVENUE OAKLAND, CALIFORNIA

LOCATION MAP

LEGEND

→ Monitoring well

() Ground water elevation relative to Mean Sea Level

Direction of ground water flow with approximate hydraulic gradient

Contours of ground water elevation

* Ground water elevation corrected due to the presence of free product.

POTENTIOMETRIC SURFACE MAP FOR THE JUNE 30, 1997 MONITORING EVENT

UNOCAL SERVICE STATION #5325 3220 LAKESHORE AVENUE OAKLAND, CALIFORNIA FIGURE 1

LEGEND

- → Monitoring well
- () Concentration of TPH as gasoline in $\mu g/L$
- [] Concentration of benzene in μg/L

ND Non-detectable, FP Free product

PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUND WATER ON JUNE 30, 1997

UNOCAL SERVICE STATION #5325 3220 LAKESHORE AVENUE OAKLAND, CALIFORNIA FIGURE

2

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Matrix Descript:

): Tosco #5325, 3220 Lakeshore Ave., Oakland Sampled: Jun 30, 1997

Received:

Jun 30, 1997

Analysis Method: First Sample #:

EPA 5030/8015 Mod./8020

Reported:

Jul 15, 1997

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

707-0001

Water

Sample Number	Sample Description	Purgeable Hydrocarbons $\mu { m g/L}$	Benzene μg/L	Toluene μg/L	Ethyl Benzene μg/L	Total Xylenes μg/L
707-0001	U-3	ND	ND	ND	ND	ND
707-0002	U-4	ND	ND	ND	ND	ND
707-0003	U-5	4,200	74	51	180	980
707-0004	U-6	ND	ND	ND	ND	ND

Detection Limits:	50	0.50	0.50	0.50	0.50	

Total Purgeable Petroleum Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as ND were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Page 1 of 2

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Sample Descript:

Tosco #5325, 3220 Lakeshore Ave., Oakland Water

Jun 30, **1**997 Sampled: Received: Jun 30, 1997

Analysis for: First Sample #:

MTBE (Modified EPA 8020) 707-0001

Analyzed:

July 1&2, 1997 Reported: Jul 15, 1997

LABORATORY ANALYSIS FOR:

MTBE (Modified EPA 8020)

Sample Number	Sample Description	Detection Limit $\mu \mathrm{g}/\mathrm{L}$	Sample Result $\mu { m g/L}$
707-0001	U-3	5.0	N.D.
707-0002	U-4	5.0	N.D.
707-0003	U-5	50	270
707-0004	U-6	25	990

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

707-0001

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

Jun 30, 1997

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Sample Descript: Analysis for: First Sample #:

Tosco #5325, 3220 Lakeshore Ave., Oakland Water Iron

Received: Jun 30, 1997 Digested: Jul 9, 1997 Analyzed: Jul 14, 1997 Reported: Jul 15, 1997

Sampled:

LABORATORY ANALYSIS FOR: Iron

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
707-0001	U-3	0.010	1.4
707-0002	U-4	0.010	0.13
707-0003	U-5	0.010	16
707-0004	U-6	0.010	88

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

680 Chesapeake Drive 404 N. Wiget Lane

Redwood City, CA 94063 Walnut Creek, CA 94598 819 Striker Avenue, Suite 8 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Sample Descript: Tosco #5325, 3220 Lakeshore Ave., Oakland Water

Sampled: Received:

Jun 30, 1997 Jun 30, 1997

Analysis for: First Sample #: Nitrate as NO3 707-0001

Analyzed:

Jul 2, 1997

Reported: <u> La companya da mangantan da m</u>

Jul 15, 1997

LABORATORY ANALYSIS FOR:

Nitrate as NO3

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
707-0001	U-3	0.10	21
707-0002	U-4	0.10	35
707-0003	U-5	0.10	N.D.
707-0004	U-6	0.10	0.80

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Sample Descript: Analysis for:

Tosco #5325, 3220 Lakeshore Ave., Oakland

Water

Phosphate as PO4 First Sample #: 707-0001

Sampled: Jun 30, 1997 Received: Jun 30, 1997

Analyzed: Jul 2, 1997 Reported: Jul 15, 1997

LABORATORY ANALYSIS FOR:

Phosphate as PO4

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
707-0001	U-3	0.50	0.86
707-0002	U- 4	0.50	0.52
707-0003	U-5	0.50	N.D.
707-0004	U-6	0.50	N.D.

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

680 Chesapeake Drive 404 N. Wiget Lane 819 Striker Avenue, Suite 8 Sacramento, CA 95834

Redwood City, CA 94063 Walnut Creek, CA 94598

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID: Sample Descript: Analysis for:

First Sample #:

Tosco #5325, 3220 Lakeshore Ave., Oakland

Water

Dissolved Oxygen 707-0001

Sampled: Jun 30, 1997 Received: Jun 30, 1997

Analyzed: Jun 30, 1997 Reported: Jul 15, 1997

LABORATORY ANALYSIS FOR:

Dissolved Oxygen

Sample Number	Sample Description	Detection Limit mg/L	Sample Result mg/L
707-0001	U-3	0.10	4.1
707-0002	U-4	0.10	5.4
707-0003	U-5	0.10	3.4
707-0004	U-6	0.10	0.30

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1271

Signature on File

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services 2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider Client Project ID: Sample Descript:

Tosco #5325, 3220 Lakeshore Ave., Oakland Water

Sampled: Received:

Jun 30, 1997 Jun 30, 1997

Analysis for: First Sample #:

Redox Potential 707-0001

Analyzed: Reported: Jul 7, 1997 Jul 15, 1997

LABORATORY ANALYSIS FOR:

Redox Potential

Sample Number	Sample Description	Detection Limit mV	Sample Result mV
707-0001	U-3	10	190
707-0002	U-4	10	200
707-0003	U-5	10	160
707-0004	U-6	10	190

Analytes reported as N.D. were not present above the stated limit of detection.

SEQUOIA ANALYTICAL, #1210

Signature on File

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Attention: Jarrel Crider

Client Project ID:

Tosco #5325, 3220 Lakeshore Ave., Oakland

Matrix:

Liquid

QC Sample Group: 707-0003

Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Cale. d	Vidana	
ANALTIE	Derizerie	loluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	D. Newcomb	D. Newcomb	D. Newcomb	D. Newcomb	
MC /MCD					
MS/MSD					
Batch#:	7070036	7070036	7070036	7070036	
Date Prepared:	7/2/97	7/2/97	7/2/97	7/2/97	
Date Analyzed:	7/2/97	7/2/97	7/2/97	7/2/97	
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4	
Conc. Spiked:	20 μg/L	20 μg/L	20 μg/L	60 μg/L	
·					
Matrix Spike					
% Recovery:	90	90	90	93	
Matrix Spike					
Duplicate %					
Recovery:	85	00	95		
necovery.	85	90	85	88	
Relative %					
Difference:	5.7	0.0	5.7	5.5	
LCS Batch#:	4LCS070297	41.00070007	41.00070007	41.00070007	
LOS Batch#:	46000/029/	4LCS070297	4LCS070297	4LCS070297	
B B					

LCS Batch#:	4LCS070297	4LCS070297	4LCS070297	4LCS070297
Date Prepared:	7/2/97	7/2/97	7/2/97	7/2/97
Date Analyzed:	7/2/97	7/2/97	7/2/97	7/2/97
Instrument I.D.#:	HP-4	HP-4	HP-4	HP-4
LCS %				
Recovery:	85	90	90	93
% Recovery				

Control Limits:	60-140	60-140	60-140	60-140	
∕o necuveiy					
	Control Limits:	• • • • • • • • • • • • • • • • • • •	•	· · · · · · · · · · · · · · · · · · ·	Annahus I Charles

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600

FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Client Project ID:

Tosco #5325, 3220 Lakeshore Ave., Oakland

Matrix:

Liquid

Attention: Jarrel Crider

QC Sample Group: 707001,002 &004

Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

ANALYTE	Benzene	Toluene	Ethyl	Xylenes	
			Benzene		
Method:	EPA 8020	EPA 8020	EPA 8020	EPA 8020	
Analyst:	D. Newcomb	D. Newcamb	D. Newcomb	D. Newcomb	
MS/MSD					
Batch#:	7061506	7061506	7061506	7061506	
Date Prepared:	7/1/97	7/1/97	7/1/97	7/1/97	
Date Analyzed:	7/1/97	7/1/97	7/1/97	7/1/97	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
Conc. Spiked:	20 μg/L	20 μg/L	20 μ g/L	$60\mu\mathrm{g/L}$	
Matrix Spike					
% Recovery:	95	100	95	100	
Matrix Spike					
Duplicate %					
Recovery:	90	90	90	93	
Relative %					
Difference:	5.4	10.5	5.4	6.9	

LCS Batch#:	5LCS062697	5LCS062697	5LCS062697	5LC\$062697	
Date Prepared:	7/1/97	7/1/97	7/1/97	7/1/97	
Date Analyzed:	7/1/97	7/1/97	7/1/97	7/1/97	
Instrument I.D.#:	HP-5	HP-5	HP-5	HP-5	
LCS %					
Recovery:	90	95	95	98	
% Recovery					
Control Limits:	60-140	60-140	60-140	60-140	

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520

Attention: Jarrel Crider

Client Project ID:

Tosco #5325, 3220 Lakeshore Ave., Oakland

Matrix: Liquid

QC Sample Group: 7070001-004

Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

ANALYTÉ	Iron	Nitrate as NO3	Phosphate as	
			PO4	
Method:	EPA 200.7	EPA 300.0	EPA 300.0	
Analyst:	J. Kelly	K. Anderson	K, Anderson	
MS/MSD		15.00		
Batch#:	7070001	7070001	7070001	
Date Prepared:	7/9/97	7/2/97	7/2/97	
Date Analyzed:	7/14/97	7/2/97	7/2/97	
Instrument I.D.#:	MV-4	INIC-1	INIC-1	
Conc. Spiked:	1.0 mg/L	10 mg/L	20 mg/L	
Matrix Spike				
% Recovery:	100	110	86	
Matrix Spike				
Duplicate % Recovery:	400	440		
necovery.	160	110	86	
Relative %				
Difference:	22	0.0	0.0	
		×0.000	5/00/00/00/00/00/00/00	

LCS Batch#:	LCS070997A	LCS070297-B	LCS070297-B
Date Prepared: Date Analyzed: Instrument I.D.#:	7/9/97 7/14/97 MV-4	7/2/97 7/2/97 INIC-1	7/2/97 7/2/97 INIC-1
LCS % Recovery:	110	100	90

		.00		•
% Recovery				
Control Limits:	80-120	80-120	80-120	

SEQUOIA ANALYTICAL, #1271

Signature on File

Alan B. Kemp Project Manager

Please Note:

The LCS is a control sample of known, interferent free matrix that is analyzed using the same reagents, preparation, and analytical methods employed for the samples. The matrix spike is an aliquot of sample fortified with known quantities of specific compounds and subjected to the entire analytical procedure. If the recovery of analytes from the matrix spike does not fall within specified control limits due to matrix interference, the LCS recovery is to be used to validate the batch.

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834

(415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID:

Tosco #5325, 3220 Lakeshore Ave., Oakland

Matrix: Liquid

QC Sample Group: 7070001-004

Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

ANALYTE Dissolved Oxygen

Method: Analyst: EPA 360.1 B. Nguyen

Date Analyzed:

6/30/97

Instrument I.D.#:

Manual

Sample #:

7070004

Sample

Concentration:

0.30 mg/L

Sample

Duplicate

Concentration:

0.30 mg/L

RPD:

0.0

RPD

Control Limits:

0-30

SEQUOIA ANALYTICAL, #1271

Signature on File

Redwood City, CA 94063 Walnut Creek, CA 94598 Sacramento, CA 95834 (415) 364-9600 (510) 988-9600 (916) 921-9600 FAX (415) 364-9233 FAX (510) 988-9673 FAX (916) 921-0100

MPDS Services

2401 Stanwell Dr., Ste. 300 Concord, CA 94520 Attention: Jarrel Crider

Client Project ID:

Tosco #5325, 3220 Lakeshore Ave., Oakland

Matrix: Liquid

QC Sample Group: 7070001-004

Reported:

Jul 15, 1997

QUALITY CONTROL DATA REPORT

ANALYTE

Redox

Method:

ASTM DI 49876

Analyst: J. Saaoo

Date Analyzed:

7/2/97

Instrument I.D.#:

Manual

Sample #:

9707015-1

Sample

Concentration:

190

Sample

Duplicate

Concentration:

190

RPD:

0.0

RPD

Control Limits:

0-30

SEQUOIA ANALYTICAL, #1210

Signature on File

M P D S Services, Inc.

2401 Stanwell Drive, Suite 400, Concord, CA 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

CHAIN OF CUSTODY

The state of the s

HAIG H	KEVOR1	K	1	TOSCO 5325 CITY: OAKLAND ADDRESS: 3220 LAKESHORE AVE.				ŀ	H-6	BTEX ON STREET PER PROSPER PLANTER PROSPER PARTIE AND MILE TO THE PROSPER PROS					TURN AROUND TIME:		
SAMPLE ID NO.	DATE	TIME	WATER	GRAB	СОМР	NO. OF CONT.	SAMPI LOCAT		HdT	87	Σω	0;55 0X	43	ر ح ح	Redox		REMARKS
u-3	6/30/94		レ	~		2 VOR's+	3 WE	LL		U	V	V	V	レ	7		707000 1 AE
U-4			7	\	,				7	V	V		~	V			7070002
U-5			V	V					7	١	\	V	V	v	L		7070003
U-6	V		~	L		-		/	7	7	V	V	V	U	4		7070004 🖖
										•							
							i										
RELINQUISH	OP STEEL	DATE/		(SIGNA		ECEIVED BY:	20	13	Е/ТІМЕ 8/0	1. HAVE	ALL SAMPL	.es receiv	ED FOR AN	IALYSIS BE		ON ICE?	ING SAMPLES FOR ANALYSES:
(SIGNATURE)				(SIGNA	TURE)					3. DID AN	IY SAMPLE	S RECEIVE	ANA RÔ7 C	LYSIS HAV	/E HEAD SP	ACE?	<u>~~</u>
(SIGNATURE)	·		,	(SIGNA	TURE)					4. WERE	SAMPLES II	n appropr	BIATE CON	TAINERS A	ND PROPER	LY PACKA	GED? <u>Ye</u>
(SIGNATURE)				(SIGNA	TURE)					SIGNAT	JRE: //-	uto.	Er	Jilf	TITLED M	shift	DATE: (136)47

MPDS Services Inc.

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

PURGING/SAMPLING DATA SHEET

SAMPLING LOCATION: 5325 - Oakland	TIME SAMPLED 6/30/97 4:05 P.M.
	FIELD TECHNICIAN HAIG- KEVORK
PURGE METHOD	DATE(S) PURGED 6/30/97
WELL NUMBER	
WATER LEVEL-INITIAL	SAMPLING METHOD BAIL
WATER LEVEL-FINAL	CONTAINERS 2 VOAS +3
WELL DEPTH	PRESERVATIVES YES
WELL CASING VOLUME 3,23	

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm	рН
2110	0	41.8	1.11	4.30
	3.5	41.3	1.09	4,28
	6.5	40.9	1.08	4.25
2,20	9.5	MO.M	1.08 ms	4.22

2" 0.17 Stabilization Criteria:	
3" 0.37 Temperature = ± 1 °F 4" 0.65 Conductivity = ± 10% ° 4.5" 0.82 pH = ± 0.2 6" 1.46 8" 2.60 12" 5.87	of total

Tel: (510) 602-5120 Fax: (510) 689-1918

PURGING/SAMPLING DATA SHEET

2 - A 4 D 1 1 1 2	DATE & A.M.
LOCATION: 5325- Oakland	TIME SAMPLED 6/30/97 4:20 F.M.
	FIELD TECHNICIAN HAIG KIEVORK
PURGE METHOD PUMP	DATE(S) PURGED 6/30/97
WELL NUMBER	
WATER LEVEL-INITIAL 9.89	SAMPLING METHOD BAIL
	CONTAINERS 2 VOAIS +3
WELL DEPTH	PRESERVATIVES YES
	tCASING DIAMETER

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (µmhos/cmx100) or µS/cm	рН
2:40	0	42.3	0.80	4.18
	6.50	71.5	0.82	7.15
2150	13 *	M1.1	0.81 ms	4.13

Ш	i I		<u> </u>	
Į.	† Conversion Factors:	Well Diameter	<u>Factor</u>	s = Siemens = mhos X Very Glow recovery
		2"	0.17	Stabilization Criteria:
		3"	0.37	Temperature = \pm 1 °F
		4"	0.65	Conductivity $= \pm 10\%$ of total
		4.5"	0.82	$pH = \pm 0.2$
		6"	1.46	

8"

12"

2.60

5.87

Tel: (510) 602-5120 Fax: (510) 689-1918

PURGING/SAMPLING DATA SHEET

SAMPLING LOCATION: 5325- Oakland	TIME SAMPLED 6/30/97 45 F.M.
	FIELD TECHNICIAN HAIG KEVORK
PURGE METHOD PUMP	DATE(S) PURGED 6/30/97
WELL NUMBER <u>U-5</u>	
WATER LEVEL-INITIAL	SAMPLING METHOD BAIL
WATER LEVEL-FINAL 8.41	containers 2 VDA'S +3
WELL DEPTH	PRESERVATIVES YES
WELL CASING VOLUME 8.45	tCASING DIAMETER

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
3:40	0	69,4	2,81	6.86
	9	69.0	2.83	6.91
	14	68.8	2.84	6.90
3:55	20 *	68.5	2.85 ms	6.93

h		
† Conversion Factors: Well Diameter	Factor	S = Siemens = mhos Very Slow Pacoulu
2"	0.17	Stabilization Criteria:
3"	0.37	Temperature = $\pm 1 ^{\circ}F$
4"	0.65	Conductivity = \pm 10% of total
4.5"	0.82	$pH = \pm 0.2$
6"	1.46	
- 8"	2.60	
12"	5.87	/P&S

MPDS Services Inc.

2401 Stanwell Drive Concord, California 94520 Tel: (510) 602-5120 Fax: (510) 689-1918

PURGING/SAMPLING DATA SHEET

	DATE & A.M.
LOCATION: 5325- Oakland	DATE & TIME SAMPLED 6/30/97 4:30 P.M.
	FIELD TECHNICIAN HAIG KEVORK
PURGE METHOD BAIL	2 10 × 10 N
WELL NUMBER U-6	
	8011
WATER LEVEL-INITIAL 1.35	SAMPLING METHOD BAIL
WATER LEVEL-FINAL 8.64	CONTAINERS 2 VOA'S +3
WELL DEPTH	PRESERVATIVES YES
	tCASING DIAMETER 211
WELL CASING VOLUME	TCASING DIAMETER

TIME	GALLONS PURGED	TEMPERATURE (°F)	ELECTRICAL CONDUCTIVITY (μmhos/cmx100) or μS/cm	рН
3:10	0	69,4		6.91
	2.5	69.2	1.10	6.86
V	6	69.0	1,09	6.89
3:20	8	68.9	1.10 ms	6.88
-				

† Conversion Factors: Well	l Diameter Facto	S = Siemens = mhos
	2" 0.17 3" 0.37 4" 0.65 4.5" 0.82 6" 1.46 8" 2.60 12" 5.87	pH = ± 0.2