

ENVIRONMENTAL & ENGINEERING SERVICES

www.aeiconsultants.com

RECEIVED

10:57 am, Jul 08, 2008

Alameda County Environmental Health

July 2, 2008

Mr. Jerry Wickham Alameda County Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

Subject: Groundwater and Soil Vapor Sampling Report 625 Hegenberger Road Oakland, California AEI Project No. 277254 ACHCSA Case No. RO0000226

Dear Mr. Wickham:

Enclosed is a copy of the recently completed *Groundwater and Soil Vapor Sampling Report* regarding the above referenced property.

As required, a copy of this report and EDFs are currently being uploaded to the State Water Regional Control Board (SWRCB) Geotracker Database.

If you have any question or comments on the scope, please contact Peter McIntyre or myself anytime. He can be reached at 800/801-3224, extension 104 or at pmcintyre@aeiconsultants.com.

Sincerely, AEI Consultants

Leah Goldberg Staff Geologist June 30, 2008

GROUNDWATER AND SOIL VAPOR SAMPLING REPORT

625 Hegenberger Road Oakland, California

AEI Project No. 277254

Prepared For

Diversified Investment and Management Corporation 400 Oyster Point Boulevard South San Francisco, CA 94080

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

TABLE OF CONTENTS

1.0	INTRODUCTION	.1
2.0	SITE DESCRIPTION AND BACKGROUND SUMMARY	.1
	SOIL VAPOR SAMPLING	
3 3 3	 3.1 Temporary Soil Gas Probe Installation	22
	GROUNDWATER SAMPLING	
4 4	I.1 Groundwater Monitoring and SamplingI.2 Sample Analyses	. 3
5.0	FINDINGS	.3
6.0	CLOSING	.5

Figures

FIGURE 1	SITE LOCATION MAP
FIGURE 2	SITE PLAN
FIGURE 3	WATER TABLE CONTOURS (5/08)

Tables

TABLE 1	WATER TABLE ELEVATION DATA
TABLE 2	GROUNDWATER SAMPLE ANALYTICAL DATA
TABLE 3	SOIL VAPOR SAMPLE ANALYTICAL DATA

Appendices

APPENDIX A	GROUNDWATER MONITORING FIELD FORMS
APPENDIX B	LABORATORY ANALYTICAL REPORT
APPENDIX C	Well Survey

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this report on behalf of the Diversified Investment & Management Corporation (Diversified) for the property located at 625 Hegenberger Road in the City of Oakland, California (refer to Figures 1 and 2). AEI has been retained by Diversified to provide environmental engineering and consulting services related to the release of fuel hydrocarbons from the former underground storage tank (UST) system at the property. The Alameda County Environmental Health (ACEH) is the lead local oversight agency for this site, working under cooperative agreement with the San Francisco Bay Regional Water Quality Control Board (RWQCB), and providing regulatory guidance during the mitigation of the release.

In a letter dated March 12, 2008, the ACEH required several additional site assessment and reporting tasks in order to consider this site for closure, including soil vapor sampling, groundwater sampling of the existing wells, and reporting of findings. A workplan was dated March 28, 2008 was submitted to ACEH which outlined the soil vapor and groundwater sampling. The workplan was approved with the condition that several additional soil gas probes be installed and additional analyses of groundwater be performed. These revisions were agreeable and incorporated into the scope of work implemented at the site.

This report presents the methods and findings of the soil vapor and groundwater sample analyses performed in May 2008. Based on the results of these analyses, the residual petroleum impact at the site is minimal and that case closure should be granted for the site.

2.0 SITE DESCRIPTION AND BACKGROUND SUMMARY

The site is located on the northwestern corner of Collins Drive and Hegenberger Road in a commercial and light industrial area of the City of Oakland. The site is currently vacant and unimproved but will be developed in the coming months with a commercial center.

The property was reportedly developed as a gasoline service station in the mid 1960s, which was subsequently abandoned in the mid 1970s. A release was discovered at the site and beginning in 1993, the fuel system and tanks were removed and site investigation, groundwater monitoring, and remedial action began. In 1996 soil was excavated and treated onsite and from 2000 to 2002 *in situ* bio-remediation conducted. A more detailed history of the site has been presented in several past reports, the most recent of which was the March 28, 2003 *Risk Evaluation and Closure Report* to which the reader is referred for additional information on previous analytical results, monitoring data, and site geology.

3.0 SOIL VAPOR SAMPLING

Soil vapor sampling was requested by the ACEH to evaluate the site the possibility vapor intrusion at the future development. A total of nine soil gas probes (labeled SG-1 to SG-9) were drilled in the areas requested by ACEH. The methods for probe installation, purging, leak testing, sampling,

and analyses were outlined in the workplan and implemented in general accordance with the "Advisory – Active Soil Gas Investigations" (ASGI), dated January 28, 2003.

3.1 Temporary Soil Gas Probe Installation

Due to the shallow depth to groundwater at this site of approximately 5 to 6 feet bgs and the low flow conditions at the standard target depth of 5 feet up to approximately 3 feet in all of the probe locations, the probes were set to a depth between 1 and 2.5 feet bgs. The soil probes consist of 1 ¹/₄-inch outside diameter (OD) Geoprobe[®] rods with a sacrificial tip and a soil vapor tip that allows for attachment of 1/4 –inch OD, 1/8-inch inside diameter (ID) tubing though the inside of the rod for collection of the soil vapor sample. The rods were manually driven using roto-hammer type of impact hammer.

Following emplacement of the rod at the desired depth, the rod was pulled back approximately 6-inches creating a void space from which the soil vapor can be collected. The collection tube which has a threaded tip on the lower end and a valve on the top end was extended down through the inside of the tubing and screwed into the tip of the rod. The rod was then sealed at the surface with hydrated bentonite.

3.2 Sample Collection

Three (3) volumes of dead air were purged from the sample tubing using a 30 to 60 milliliter (mL) plastic syringe before collecting a soil gas sample. After the probe was purged, samples will be collected into 6-liter laboratory prepared SummaTM canisters. The sampling manifold included a critical orifice flow regulator and down-hole pressure (vacuum) gage. The critical orifice device maintained a sampling flow rate of between approximately 100 to 200 milliliters per minute (mL/min).

A leak test was performed on each of the gas probes during the soil gas sampling. A leak test dome was placed over the sampling probe at the surface. A rag moistened with 1,1 difluouroethane was placed under the dome. This tracer compound is not suspected to be present in gasoline. The diction limit for the leak check compounds was set at ≤ 10 micrograms per liter of air (µg/L) in accordance with DTSC guidance.

3.3 Sample Analyses

The nine canisters were delivered on May 15, 2008 to McCampbell Analytical, Inc. of Pittsburg, California (DHS No. 1644) under proper chain of custody protocol. The soil gas samples were analyzed for TPH-g by EPA Method TO-3 and for MTBE, BTEX and leak check compound by EPA Method TO-15. A copy of the laboratory analytical report is included in Appendix B.

4.0 GROUNDWATER SAMPLING

4.1 Groundwater Monitoring and Sampling

The wells were sampled on May 8 with the exception of MW-11 which was sampled on May 14 once it was located. Prior to measurement of depth to groundwater, the well caps were removed and the water levels allowed to equilibrate with the atmosphere for 20 minutes. The depth to groundwater from the top of the each well casing will then be measured with an electric water level indicator prior to sampling.

Each well was purged with a submersible purge pump of at least three well volumes prior to sample collection. During purging the following water quality measurements were measured using a flow-though cell and recorded: temperature, pH, specific conductivity, and dissolved oxygen (DO). A visual evaluation of turbidity was noted. Field measurements are recorded on the field sampling forms in Appendix A.

Following purging and recovery of water levels, groundwater samples were collected with new, unused disposable bailers into appropriate laboratory-supplied containers: 40 milliliter volatile organic vials (VOAs). The VOAs were capped with zero visible headspace or visible air bubbles. All samples were labeled with at minimum, project number, sample number, time, date, and sampler's name and entered into chain-of-custody. The samples were bagged and placed on water ice in a pre-chilled cooler pending transportation under chain of custody protocols to McCampbell Analytical, Inc.

A monitoring well survey was conducted on June 11, 2008 to update the well elevations for GeoTracker database entry. The survey was conducted by Morrow Surveying, Inc (CA #LS5161). See Table 1 for updated well elevation data. Copies of the survey maps are included in Appendix C.

4.2 Sample Analyses

The seven groundwater samples were analyzed for Total Petroleum Hydrocarbons (TPH) as gasoline (TPH-g) by EPA method 8015Cm; Benzene, toluene, ethyl benzene, and xylenes (BTEX) and methyl tertiary butyl ether (MTBE) by EPA method 8021; and by EPA method 8260 for fuel additives, BTEX, and halogenated VOCs.

5.0 FINDINGS

Soil vapor sample analytical data is included in Table 3. The results are compared to the RWQCB Environmental Screening Levels (ESLs) for shallow soil gas under both residential and commercial/industrial land use scenarios.

No TPH-g, Ethylbenzene, or MTBE was detected in any of the nine soil gas samples. Toluene, benzene and xylenes were detected in up to four of the samples. The concentrations detected are below all ESL values for both land use scenarios.

Water level measurements are included in Table 1 and are plotted on Figure 3. Based on these measurements, groundwater beneath the site generally flows in a southwest direction. These results are generally consistent with historical monitoring results and hydraulic gradients.

Groundwater sample analytical data is included in Table 2. In wells MW-10, MW-12, MW-26, and MW-27 all contaminants were below laboratory detection limits with the exception of MTBE which was detected at insignificant concentrations (up to 2.5 μ g/l). In well MW-8 and EW-01, TPH-g, BTEX, and MTBE remain but have decreased significantly since the 2005 monitoring event. TPH-g increased slightly in MW-11 since 2005 however not to significant concentrations while BTEX and MTBE remained stable since 2005.

Based on the results of the additional sampling requested by ACEH, the residual petroleum impact that remained in 2002 has continued to decrease since the last reporting to ACEH. In addition, the soil gas sample results confirm that residual impact is not present at significant levels in the soil or groundwater to pose a reasonable potential for vapor intrusion at the site. Although low dissolved phase concentrations were detected in three of the wells, their concentrations have decreased significantly (MW-8 and EW-01) since the prior sampling event (2005) or been stable at low levels (MW-11) since the treatment activities. This case should be considered eligible for closure under RWQCB low risk criteria as outlined in the 2003 closure request report for the site. Once the ACEH agrees that closure is appropriate for this site, the remaining monitoring wells should be properly decommissioned in accordance with applicable well standards.

The new well survey data along with the other requested electronic data delivery files have been uploaded to the GeoTracker database as required.

6.0 CLOSING

This report presents a summary of work completed by AEI, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide requested information, but it cannot be assumed that they are entirely representative of all areas not sampled. Environmental sampling is inherently limited and conditions may exist between sampling points that cannot be accounted for. All conclusions and recommendations are based on these analyses, observations, and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field that existed at the time and location of the work. Please contact either of the undersigned with any questions.

Sincerely, AEI Consultants

Leah Goldberg Staff Geologist

C F PETER J. MCINTYRE Exo. No. 7702 McIntyre, P Senior Project Mahager

<u>Distribution:</u> Diversified Investment and Management Corporation Attn: Mr. Rob Canepa 400 Oyster Point Boulevard, Suite 415 South San Francisco, CA 94080

ACEH; Attn: Mr. Jerry Wickham FTP Electronic Upload

GeoTracker Database (PDF upload)

FIGURES

TABLES

Table 1Water Table Elevation Data

1		Well	Depth	Groundwater
Well ID	Date	Elevation	to Water	Elevation
		(ft msl)	(ft)	(ft msl)
MW-8	12/22/1993	4.88	6.72	-1.84
MW-10	12/22/1993	4.21	6.00	-1.79
MW-11	12/22/1993	5.04	6.84	-1.80
MW-12	12/22/1993	4.58	6.07	-1.49
MW-16	12/22/1993	5.53	7.48	-1.95
	C/20/1004	4.00		1.67
MW-8	6/30/1994	4.88	6.55	-1.67
MW-10	6/30/1994	4.21	5.79	-1.58
MW-11	6/30/1994	5.04	6.73	-1.69
MW-12	6/30/1994	4.58	6.06	-1.48
MW-16	6/30/1994	5.53	7.28	-1.75
MW-8	9/27/1994	4.88	7.20	-2.32
MW-10	9/27/1994	4.21	6.39	-2.18
MW-11	9/27/1994	5.04	7.41	-2.37
MW-12	9/27/1994	4.58	6.57	-1.99
MW-16	9/27/1994	5.53	7.93	-2.40
MW-8	1/4/1995	4.88	6.21	-1.67
MW-10	1/4/1995	4.88	5.42	-1.58
MW-10 MW-11	1/4/1995	5.04	6.45	-1.69
MW-11 MW-12	1/4/1995	4.58	5.50	-1.48
MW-16	1/4/1995	5.53	7.03	-1.50
MW-8	1/10/1995	4.88	5.09	-2.32
MW-10	1/10/1995	4.21	4.67	-2.18
MW-11	1/10/1995	5.04	5.72	-2.37
MW-12	1/10/1995	4.58	4.46	-1.99
MW-16	1/10/1995	5.53	6.21	-2.40
MW-24	1/10/1995	5.49	5.97	-0.48
MW-8	10/2/1995	4.88	7.66	-2.78
MW-10	10/2/1995	4.21	6.87	-2.66
MW-11	10/2/1995	5.04	7.85	-2.81
MW-12	10/2/1995	4.58	6.99	-2.41
MW-16	10/2/1995	5.53	8.40	-2.87
MW-24	10/2/1995	5.49	8.31	-2.82
MW-8	1/8/1996	4.88	7.45	-2.57
MW-10	1/8/1996	4.21	6.82	-2.61
MW-10 MW-11	1/8/1996	5.04	7.91	-2.87
MW-12	1/8/1996	4.58	6.65	-2.07
MW-12 MW-16	1/8/1996	5.53	8.23	-2.70
MW-24	1/8/1996	5.49	8.08	-2.59
MW-8	4/25/1996	4.88	7.32	-2.44
MW-10	4/25/1996	4.21	7.48	-3.27
MW-11	4/25/1996	5.04	7.51	-2.47
MW-12	4/25/1996	4.58	6.56	-1.98
MW-16	4/25/1996	5.53	8.06	-2.53
MW-8	3/25/1997	4.88	6.75	-1.87
MW-10	3/25/1997	4.21	5.83	-1.62
MW-11	3/25/1997	5.04	6.83	-1.79
MW-12	3/25/1997	4.58	6.03	-1.45
MW-16	3/25/1997	5.53	7.35	-1.82
MW-8	7/3/1997	4.88	8.70	-3.82
MW-10	7/3/1997	4.21	5.87	-1.66
MW-11	7/3/1997	5.04	6.83	-1.79
MW-12	7/3/1997	4.58	6.03	-1.45
MW-16	7/3/1997	5.53	7.35	-1.82

		Table 1: Conting Well	Depth	Groundwater
Well ID	Date	Elevation	to Water	Elevation
, (cn 1D	Daic	(ft msl)	(ft)	(ft msl)
		× ~/	× 7	
MW-8	10/2/1997	4.88	6.70	-1.82
MW-10	10/2/1997	4.21	5.90	-1.69
MW-11	10/2/1997	5.04	6.85	-1.81
MW-12	10/2/1997	4.58	6.08	-1.50
MW-16	10/2/1997	5.53	7.36	-1.83
MW-8	1/28/1998	4.88	5.20	-0.32
MW-10	1/28/1998	4.88	4.40	-0.19
MW-10 MW-11	1/28/1998	4.21 5.04	5.33	-0.19
MW-11 MW-12	1/28/1998	4.58	4.54	-0.29
MW-16	1/28/1998	5.53	5.90	-0.04
101 00 - 10	1/20/1990	5.55	5.90	-0.57
MW-8	2/9/2000	4.88	5.12	-0.24
MW-10	2/9/2000	4.21	5.25	-1.04
MW-11	2/9/2000	5.04	6.25	-1.21
MW-12	2/9/2000	4.58	5.33	-0.75
MW-16	2/9/2000	5.53	6.81	-1.28
MW-8	8/9/2000*	3.96	5.15	-1.19
MW-10	8/9/2000	4.20	5.33	-1.13
MW-11	8/9/2000	5.01	6.20	-1.19
MW-12	8/9/2000	4.58	5.14	-0.56
MW-16	8/9/2000	5.51	6.74	-1.23
MW-26	8/9/2000	5.12	5.81	-0.69
MW-27	8/9/2000	4.06	5.12	-1.06
EW-01	8/9/2000	5.19	6.38	-1.19
MUV 0	5/21/2001	2.06	5.54	1.50
MW-8 MW-10	5/31/2001	3.96 4.20	5.54 5.81	-1.58 -1.61
	5/31/2001	4.20 5.01	6.65	-1.61
MW-11 MW-12	5/31/2001 5/31/2001	4.58	6.28	-1.04
MW-12 MW-16	5/31/2001	5.51	7.14	-1.63
MW-26	5/31/2001	5.12	6.25	-1.13
MW-20 MW-27	5/31/2001	4.06	5.84	-1.78
EW-01	5/31/2001	5.19	6.84	-1.65
MW-8	4/8/2002	3.96	4.85	-0.89
MW-10	4/8/2002	4.20	4.93	-0.73
MW-11	4/8/2002	5.01	5.94	-0.93
MW-12	4/8/2002	4.58	5.08	-0.50
MW-16	4/8/2002	5.51	6.45	-0.94
MW-26	4/8/2002	5.12	5.88	-0.76
MW-27	4/8/2002	4.06	5.32	-1.26
EW-01	4/8/2002	5.19	6.11	-0.92
MW-8	7/29/2002	3.96	5.22	-1.26
MW-8	9/11/2002	3.96	5.39	-1.43
MW-10	9/11/2002	4.20	5.57	-1.37
MW-11	9/11/2002	5.01	6.50	-1.49
MW-12	9/11/2002	4.58	5.67	-1.09
MW-16	9/11/2002	5.51	7.01	-1.50
MW-26	9/11/2002	5.12	6.54	-1.42
MW-27	9/11/2002	4.06	6.04	-1.98
EW-01	9/11/2002	5.19	6.66	-1.47
MW	5/14/2000	10.01	4.07	5.04
MW-8	5/14/2008	10.01	4.97	5.04
MW-10	5/14/2008	10.25	5.05	5.20
MW-11	5/14/2008	11.07	6.12	4.95
MW-12 MW-16	5/14/2008	10.66 w	5.23	5.43
MW-16	5/14/2009		fell Lost	E 10
MW-26	5/14/2008	11.17	6.05	5.12
MW-27 EW-01	5/14/2008 5/14/2008	10.06 11.30	5.00 6.25	5.06 5.05

All elevations are measured from the top of casing. ft msl = feet above mean sea level NA = Not Available

*All well elevations were re-surveyed May/June 2008 by Morrow Surveying, Inc.

 Table 2

 Groundwater Sample Analytical Data

		TPH-g	TPH-d	TPH-0	Benzene	Toluene	Ethyl-	Xylenes	MTBE	MTBE	DIPE	ETBE	TAME	TBA	EBD	1,2-DCA
	Date	µg/L	µg/L	µg/L	μg/L	µg/L	benzene	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	μg/L	µg/L
							µg/L									
			EPA method 8015M				A method 8020					EPA	A method 826	0B *		
MW-8	5/28/1993	19000	1000	-	6400	28	160	36	-	-	-	-	-	-	-	-
	12/22/1993	56000	300	<200	16000	5999.3	650	2700	-	-	-	-	-	-	-	-
	6/30/1994	41000	<500	500	11000	4800	2200	8200	-	-	-	-	-	-	-	-
	9/27/1994	28000	620	<200	8500	260	1600	5300	-	-	-	-	-	-	-	-
	1/10/1995	58000	70	<200	10000	11000	2400	12000	-	-	-	-	-	-	-	-
	10/2/1995	28000	<50	<500	51	16	54	80	-	-	-	-	-	-	-	-
	1/8/1996	72000	3700	<250	8600	13000	2200	12000	-	-	-	-	-	-	-	-
	1/8/1996	62000	-	-	7200	9500	1600	8000	-	-	-	-	-	-	-	-
	4/25/1996	33000	3100	-	7600	2300	1500	4800	-	-	-	-	-	-	-	-
	3/25/1997	23000	1900	-	8300	80	350	380	1500	-	-	-	-	-	-	-
	7/3/1997	14000	1400	-	6600	32	190	100	1300	-	-	-	-	-	-	-
	7/3/1997	15000	1400	-	7300	34	160	110	1700	-	-	-	-	-	-	-
	10/2/1997	7600	810	-	3500	14	37	21	890	-	-	-	-	-	-	-
	1/28/1998	21000	2700	-	5500	270	730	780	900	-	-	-	-	-	-	-
	9/9/1999	2500	-	-	790	2.8	4.7	8	380	-	-	-	-	-	-	-
	2/9/2000	39000	-	-	6400	4300	950	390	460	-	-	-	-	-	-	-
	8/9/2000	5500	-	-	1700	15	130	370	540	-	-	-	-	-	-	-
	5/31/2001	14,000	-	-	2,800	63	610	540	370	-	-	-	-	-	-	-
	8/10/2001	4,400	-	-	1,200	41	160	170	380	-	-	-	-	-	-	-
	9/25/2001	2,100	-	-	470	7.2	6.5	7.1	210	-	-	-	-	-	-	-
	12/14/2001	1800	-	-	230	34	67	150	26	-	-	-	-	-	-	-
	4/8/2002	32000	-	-	2000	820	1100	2300	62	-	-	-	-	-	-	-
	7/29/2002	4300	-	-	1200	21	58	69	280	-	-	-	-	-	-	-
	9/11/2002	2000	-	-	520	5.4	11	8.7	430	270	<5.0	<5.0	<5.0	<50	<5.0	< 5.0
	8/18/2005	3600	-	-	390	16	59	57	<90	72	<2.5	<2.5	<2.5	<25	<2.5	<2.5
	5/8/2008	2600	-	-	140	14	30	57	<25	18	-	-	-	<5.0	<5.0	<5.0
MW-10	5/28/1993	<50	54	-	<0.3	<0.3	<0.3	<0.9								
141 44 - 10	12/22/1993	<50	580	<200	<0.5	<0.3	<0.5	<0.9	-	-	-	-	-	-	-	-
	6/30/1994	<50	<50	<200 600	<0.5	<0.7	<0.5	<0.2	-	-	-	-	-	-	-	-
	9/27/1994						<0.5		-	-	-	-	-	-	-	
	9/2//1994 1/10/1995	<50 <50	610 600	<200 <200	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.2 <0.2	-	-	-	-	-	-	-	-
	10/2/1995								-	-	-	-	-	-	-	-
		350	<50	<500	4.4	2.6	2.3	6.4	-	-	-	-	-	-	-	-
	1/8/1996	50	<50	<250	5.8	7.1	1.2	6.4	-	-	-	-	-	-	-	
	4/25/1996	<50	<50	-	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-
	3/25/1997	<50	<50	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	7/3/1997	<50	<50	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	10/2/1997	<50	110	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	1/28/1998	<50	<50	-	5.7	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	8/19/1999	<50	-	-	5.7	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	2/9/2000	<50	-	-	5.7	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	8/9/2000	<50	-	-	5.7	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	5/31/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	8/10/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/8/2002	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	9/11/2002	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	2.3	< 0.5	< 0.5	< 0.5	<5.0	< 0.5	< 0.5
	8/18/2005	<50	-	-	1.5	3.4	<0.5	2.6	<5.0	2.3	< 0.5	< 0.5	< 0.5	<5.0	< 0.5	< 0.5
	5/8/2008	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	2.0	-	-	-	<5.0	<0.5	<0.5

Table 2: Continued

		TPH-g	TPH-d	TPH-0	Benzene	Toluene	Ethyl-	Xylenes	MTBE	MTBE	DIPE	ETBE	TAME	TBA	EBD	1,2-DCA
	Date	µg/L	µg/L	µg/L	µg/L	μg/L	benzene	µg/L	μg/L	μg/L	µg/L	µg/L	µg/L	µg/L	µg/L	μg/L
]	EPA method 8015!	м		EF	µg/L PA method 8020					EP	A method 826	50B		
MW-11	5/28/1993	1200	<50	-	450	17	1.5	2.1	_	-	-	_	-	_	-	_
	12/22/1993	9200	530	<200	4500	38.3	12	43	-	-	-	-	-	-	-	-
	6/30/1994	8800	<50	1100	1500	13	690	1200	-	-	-	-	-	-	-	-
	6/30/1994	9700	-	-	1700	14	730	1300	-	-	-	-	-	-	-	-
	9/27/1994	15000	910	<200	6500	26	870	590	-	-	-	-	-	-	-	-
	1/10/1995	14000	1100	<200	890	220	840	2400	-	-	-	-	-	-	-	-
	10/2/1995	7100	<50	<500	47	5.7	11	36	-	-	-	-	-	-	-	-
	1/8/1996	12000	2000	<250	1200	99	790	1400	-	-	-	-	-	-	-	-
	4/25/1996	5800	1400	_	230	59	200	770	-	-	-	-	-	-	-	-
	3/25/1997	760	490	-	130	49	2.9	1	130	-	-	-	-	-	-	-
	7/3/1997	290	<50	-	<0.5	<0.5	600	<0.5	380	-	-	-	-	-	-	-
	10/2/1997	220	220	-	8.8	0.73	<0.5	0.67	720	-	-	-	-	-	-	-
	1/28/1998	540	160	-	140	0.81	<0.5	<0.5	360	-	-	-	-	-	-	-
	8/19/1999	590	_	-	180	3.2	<0.5	<0.5	720	-	-	-	-	-	-	-
	2/9/2000	680	-	-	100	3.1	<0.5	2.9	280	-	-	-	-	-	-	-
	8/9/2000	350	-	-	1.7	2.6	<0.5	0.84	410	-	-	-	-	-	-	-
	5/31/2001	280	-	-	1.1	1.6	0.25	0.25	430	-	-	-	-	-	-	-
	8/10/2001	300	-	-	0.95	1.6	0.25	0.66	340	-	-	-	-	-	-	-
	9/25/2001	-	_	_	-	-	-	-	-	_	_	_	_	_	_	-
	12/14/2001	250	_	_	2.8	1.7	0.25	0.9	300	-	_	_	_	_	-	-
	4/8/2002	86	_	_	0.7	0.77	<0.5	<0.5	300							
	9/11/2002	<50	_	_	<0.5	<0.5	<0.5	<0.5	320	250	<2.5	<2.5	<2.5	98	<2.5	<2.5
	8/18/2005	56	_	_	1.2	2.9	0.54	2.5	150	160	<2.5	<2.5	<2.5	83	<2.5	<2.5
	5/14/2008	360	-	-	4.2	1.2	<0.5	0.51	150	170	-	-	<5.0	45	<5.0	<5.0
MW-12	5/28/1993	<50	<50	-	< 0.3	< 0.3	< 0.3	< 0.9	-	-	-	-	-	-	-	-
	12/22/1993	50	300	<200	< 0.5	< 0.7	< 0.5	< 0.2	-	-	-	-	-	-	-	-
	6/30/1994	<50	<50	400	<0.5	< 0.5	< 0.5	< 0.2	-	-	-	-	-	-	-	-
	9/27/1994	<50	400	<200	<0.5	< 0.5	< 0.5	< 0.2	-	-	-	-	-	-	-	-
	9/27/1994	<50	-	-	<0.5	< 0.5	< 0.5	< 0.2	-	-	-	-	-	-	-	-
	1/10/1995	<50	300	<200	<0.5	< 0.5	< 0.5	< 0.2	-	-	-	-	-	-	-	-
	10/2/1995	<50	<50	<500	<0.5	< 0.5	<0.5	< 0.5	-	-	-	-	-	-	-	-
	1/8/1996	<50	<50	<250	2.4	2.7	0.54	2.8	-	-	-	-	-	-	-	-
	4/25/1996	<50	<50	-	<0.5	< 0.5	<0.5	< 0.5	-	-	-	-	-	-	-	-
	3/25/1997	<50	<50	-	<0.5	< 0.5	<0.5	< 0.5	16	-	-	-	-	-	-	-
	7/3/1997	<50	<50	-	<0.5	< 0.5	<0.5	<0.5	16	-	-	-	-	-	-	-
	10/2/1997	<50	120	-	<0.5	< 0.5	<0.5	<0.5	17	-	-	-	-	-	-	-
	1/28/1998	<50	<50	-	1.3	< 0.5	< 0.5	< 0.5	13	-	-	-	-	-	-	-
	8/19/1999	<50	-	-	<0.5	< 0.5	< 0.5	< 0.5	9.1	-	-	-	-	-	-	-
	2/9/2000	<50	-	-	<0.5	< 0.5	<0.5	<0.5	6.2	-	-	-	-	-	-	-
	8/9/2000	<50	-	-	<0.5	< 0.5	<0.5	<0.5	6.4	-	-	-	-	-	-	-
	5/31/2001	<50	-	-	<0.5	< 0.5	<0.5	<0.5	6.5	-	-	-	-	-	-	-
	8/10/2001	<50	-	-	<0.5	< 0.5	<0.5	<0.5	5.3	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/8/2002	51	-	-	3.1	0.98	1.2	2	<5.0	-	-	-	-	-	-	-
	9/11/2002	<50	-	-	<0.5	< 0.5	<0.5	< 0.5	6.2	3.6	< 0.5	<0.5	<0.5	<5.0	< 0.5	< 0.5
	8/18/2005	<50	-	-	1.1	3.1	<0.5	2.5	<5.0	3.6	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	5/8/2008	<50	_	_	<0.5	<0.5	<0.5	<0.5	<5.0	2.5	-	-	-	<0.5	<0.5	<0.5

Table 2: Continued

		TPH-g	TPH-d	TPH-0	Benzene	Toluene	Ethyl-	Xylenes	MTBE	MTBE	DIPE	ETBE	TAME	TBA	EBD	1,2-DC
	Date	μg/L	µg/L	µg/L	µg/L	µg/L	benzene	µg/L	μg/L	μg/L	µg/L	μg/L	µg/L	µg/L	$\mu g/L$	μg/L
							µg/L									
		EP	A method 8015	М		El	PA method 8020					EF	A method 8260B			
MW-16	5/28/1993	<50	<50	-	2.8	0.3	<0.7	<0.9	-	-	-	-	-	-	-	-
	12/22/1993	2200	520	<200	<0.5	<0.7	<0.5	<0.2	-	-	-	-	-	-	-	-
	6/30/1994	<50	<50	900	8	<0.5	<0.5	<0.2	-	-	-	-	-	-	-	-
	9/27/1994	70	590	<200	17	<0.5	<0.5	< 0.2	-	-	-	-	-	-	-	-
	1/10/1995	300	700	<200	190	< 0.5	< 0.5	< 0.2	-	-	-	-	-	-	-	-
	10/2/1995	550	<50	<500	7.7	0.7	3.5	13	-	-	-	-	-	-	-	-
	1/8/1996	360	140	<250	< 0.5	<0.5	4	9.7	-	-	-	-	-	-	-	-
	4/25/1996	1100	330	-	390	3.7	3.2	14	-	-	-	-	-	-	-	-
	3/25/1997	310	120	-	< 0.5	<0.5	<0.5	1.4	2100	-	-	-	-	-	-	-
	7/3/1997	250	130	-	< 0.5	<0.5	<0.5	<0.5	1900	-	-	-	-	-	-	-
	10/2/1997	290	180	-	< 0.5	< 0.5	<0.5	<0.5	2000	-	-	-	-	-	-	-
	1/28/1998	150	130	-	< 0.5	< 0.5	<0.5	<0.5	1900	-	-	-	-	-	-	-
	9/9/1999	<50	-	-	< 0.5	< 0.5	<0.5	<0.5	880	-	-	-	-	-	-	-
	2/9/2000	<50	-	-	< 0.5	0.6	<0.5	8.7	88	-	-	-	-	-	-	-
	8/9/2000	<50	-	-	< 0.5	< 0.5	< 0.5	< 0.5	800	-	-	-	-	-	-	-
	5/31/2001	<50	-	-	< 0.5	< 0.5	< 0.5	< 0.5	69	-	-	-	-	-	-	-
	8/10/2001	<50	-	-	< 0.5	<0.5	< 0.5	< 0.5	300	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/8/2002	<50	-	-	1.7	0.61	0.78	1.4	45	-	-	-	-	-	-	-
	9/11/2002	<50	-	-	<0.5	< 0.5	<0.5	<0.5	280	250	<2.5	<2.5	<2.5	33	<2.5	<2.5
	8/18/2005	Well covered / lost														
EW-01	2/9/2000	2600	-	-	800	48	21	91	750	-	-	-	-	-	-	-
	8/9/2000	6700	-	-	2700	19	120	31	1300	-	-	-	-	-	-	-
	5/31/2001	3,100	-	-	580	24	36	32	850	-	-	-	-	-	-	-
	8/10/2001	210	-	-	14	2.2	1.0	1.1	620	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	2,400	-	-	320	57	23	70	510	-	-	-	-	-	-	-
	4/8/2002	230	-	-	37	3.1	1.5	1	190	-	-	-	-	-	-	-
	9/11/2002	1600	-	-	400	5.2	22	56	630	470	<5.0	<5.0	<5.0	77	<5.0	<5.0
	8/18/2005	2900	-	-	520	15	8.7	150	<500	220	<2.5	<2.5	<2.5	26	<2.5	<2.5
		190			14	3.4	<0.5	2.6	190	210	-	-	-	25	<5.0	<5.0

Table 2: Continued

		TPH-g	TPH-d	TPH-0	Benzene	Toluene	Ethyl-	Xylenes	MTBE	MTBE	DIPE	ETBE	TAME	TBA	EBD	1,2-DCA
	Date	μg/L	μg/L	µg/L	μg/L	µg/L	benzene	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
							µg/L									
			EPA method 8015M	4		E	PA method 8020					EI	PA method 826	60B		
MW-26	8/9/2000	<50		-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	5/31/2001	<50	-	-	< 0.5	<0.5	<0.5	<0.5	8.3	-	-	-	-	-	-	-
	8/10/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/8/2002	<50	-	-	< 0.5	<0.5	< 0.5	< 0.5	<5.0	-	-	-	-	-	-	-
	9/11/2002	<50	-	-	< 0.5	< 0.5	< 0.5	< 0.5	<5.0	0.80	< 0.5	< 0.5	< 0.5	<5.0	< 0.5	< 0.5
	8/18/2005	<50	-	-	< 0.5	1.2	< 0.5	0.62	<5.0	0.84	< 0.5	< 0.5	< 0.5	<5.0	< 0.5	< 0.5
	5/8/2008	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	0.57	-	-	-			
MW-27	8/9/2000	<50		-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	5/31/2001	<50	-	-	< 0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	8/10/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	4/8/2002	<50	-	-	< 0.5	<0.5	< 0.5	< 0.5	<5.0	-	-	-	-	-	-	-
	9/11/2002	<50	-	-	<0.5	<0.5	< 0.5	< 0.5	<5.0	0.52	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
	8/18/2005	<50	-	-	< 0.5	<0.5	< 0.5	< 0.5	<5.0	0.52	< 0.5	< 0.5	< 0.5	<5.0	< 0.5	< 0.5
	5/8/2008	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	-	-	-	3.3	<0.5	<0.5

TPH-g = TPH as gasoline TPH-d = TPH as diesel

TPH-o = TPH as motor oil

* Analyses for May 2008 included halogenated VOCs by EPA method 8260; no other detections than those noted below

Sample ID	Depth ft	Date	TPH-g μg/m ³	Benzene μg/m ³	Toluene μg/m ³	Ethylbenzene µg/m ³	Xylenes μg/m ³	MTBE μg/m ³	All other VOCs µg/m ³
			EPA Method TO-15	r8,	~B,	EPA Metho		μ <u>θ</u> ,	P(B)
SG-1	1	5/14/08	<1,800	9.5	9.6	<8.8	<27	<7.3	<rl< td=""></rl<>
SG-2	2.5	5/14/08	<1,800	<6.5	<7.7	<8.8	<27	<7.3	<rl< td=""></rl<>
SG-3	2.5	5/14/08	<1,800	9.6	16	<8.8	36	<7.3	<rl< td=""></rl<>
SG-4	2.5	5/14/08	<1,800	<6.5	<7.7	<8.8	<27	<7.3	<rl< td=""></rl<>
SG-5	1.5	5/14/08	<1,800	7.1	<7.7	<8.8	<27	<7.3	<rl< td=""></rl<>
SG-6	2	5/14/08	<1,800	<6.5	<7.7	<8.8	<27	<7.3	<rl< td=""></rl<>
SG-7	2.5	5/14/08	<1,800	27	13	<8.8	<27	<7.3	<rl< td=""></rl<>
SG-8	2.5	5/14/08	<1,800	<6.5	<7.7	<8.8	<27	<7.3	<rl< td=""></rl<>
SG-9	2.5	5/14/08	<1,800	<6.5	<7.7	<8.8	<27	<7.3	<rl< td=""></rl<>
ESL-R	-	-	10,000	84	63,000	980	21,000	9,400	NA
ESL-CI	-	-	29,000	280	180,000	3,300	58,000	31,000	NA

Table 3Soil Vapor Sample Analytical Data

ESL-R= environmental screening level (RWQCB, May 2008) for residential land use

ESL-CI= environmental screening level (RWQCB, May 2008) for commercial/industrial land use

µg/m³= micrograms per meter cubed

SG= Soil Gas (Soil Vapor)

RL = laboratory reporting limit

ND= not detectable above the reporting limit NA= not applicable

TPH-g = total petroleum hydrocarbon as gasoline

MTBE = methyl tertiary-butyl ether

Other VOCs from TO-15 analyses include TAME, TBA, DIPE, and ETBE

APPENDIX A

Groundwater Monitoring Well Field Sampling Forms

		Mor	nitoring Well Number:	MW-8
-				
	Project Name:	Hegenberger	Date of Sampling:	5/8/2008
	Job Number:	277254	Name of Sampler:	A Nieto
	Project Address:	625 Hegenberger Rd		

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	ОК	•				
Elevation of Top of Casing (feet above msl)	10.01					
Depth of Well	14.40					
Depth to Water (from top of casing)	4.97					
Water Elevation (feet above msl)	5.04					
Well Volumes Purged	3					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	4.5					
Actual Volume Purged (gallons)	5.0					
Appearance of Purge Water	clears at 1.5 gallons					
Free Product Present?	No	Thickness (ft):				

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
15:18	1	16.76	6.84	4460	3.23	-94.6	Light dark
15:19	2	16.65	6.85	4474	2.65	-109.9	clear
15:20	3	16.64	6.86	4444	2.43	-120.7	clear
15:21	4	16.63	6.86	4369	2.35	-124.8	clear
15:22	5	16.63	6.86	4397	2.33	-127.8	clear
		63					

Water started dark and clears at 1.5 gallons, with strong hydrocarbon odor present			

Monitoring Well Number: MW-10

Project Name:	Hegenberger	Date of Sampling: 5/8/2008
Job Number:	277254	Name of Sampler: A Nieto
Project Address:	625 Hegenberger Rd	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2					
Wellhead Condition	OK					
Elevation of Top of Casing (feet above msl)	10.25					
Depth of Well	15.70					
Depth to Water (from top of casing)	5.05					
Water Elevation (feet above msl)	5.20					
Well Volumes Purged	3					
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	5.1					
Actual Volume Purged (gallons)	6.0					
Appearance of Purge Water	clear					
Free Product Present?	No Thickness (ft):					

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
14:47	1	19.42	6.98	6748	3.33	-110.5	Clear
14:48	2	19.46	6.96	6802	2.91	-122.5	Clear
14:49	3	19.47	6.97	6818	2.81	-126.2	Clear
14:50	4	19.48	6.97	6836	2.64	-130.6	Clear
14:51	5	19.48	6.98	6830	2.98	-132.4	Clear
14:52	6	19.48	6.98	6837	2.52	-134.2	Clear

Clear with no hydrocarbon odor/smells present		

Monitoring Well Number: MW-11

ſ	Project Name:	Hegenberger	Date of Sampling: 5/14/2008
	Job Number:	277254	Name of Sampler: A Nieto
	Project Address:	625 Hegenberger Rd	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2			
Wellhead Condition	ОК	•			
Elevation of Top of Casing (feet above msl)	11.07				
Depth of Well	15.00				
Depth to Water (from top of casing)	6.12				
Water Elevation (feet above msl)	4.95				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	4.5				
Actual Volume Purged (gallons)	5.0				
Appearance of Purge Water	yellow clears quickly				
Free Product Present?	No	Thickness (ft):			

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
11:00	0						
11:15	4.5						

Strong hydrocarbon odor becoming less at 2.5 gallons						

Monitoring Well Number: MW-12

Project Name:	Hegenberger	Date of Sampling: 5/8/2008
Job Number:	277254	Name of Sampler: A Nieto
Project Address:	625 Hegenberger Rd	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2		
Wellhead Condition	ОК	_		
Elevation of Top of Casing (feet above msl)		10.66		
Depth of Well		15.50		
Depth to Water (from top of casing)	5.23			
Water Elevation (feet above msl)	5.43			
Well Volumes Purged	3			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	4.9			
Actual Volume Purged (gallons)	5.0			
Appearance of Purge Water				
Free Product Present?	No	Thickness (ft):		

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
15:00	1	18.48	6.8	3086	2.45	-95.5	Clear
15:01	2	18.47	6.79	2904	2.31	-97.9	Clear
15:02	3	18.48	6.78	2795	2.23	-99.6	Clear
15:03	4	18.49	6.76	2681	2.17	-101.7	Clear
15:04	5	18.49	6.75	2661	2.12	-103.2	Clear

Clear with slight hydrocarbon odors present					

Monitoring Well Number: MW-16

Project Name:	Hegenberger	Date of Sampling: 5/8/2008
Job Number:	277254	Name of Sampler: A Nieto
Project Address:	625 Hegenberger Rd	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2	
Wellhead Condition	ОК		▼
Elevation of Top of Casing (feet above msl)			
Depth of Well		12.50	
Depth to Water (from top of casing)			
Water Elevation (feet above msl)			
Well Volumes Purged			
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)			
Actual Volume Purged (gallons)			
Appearance of Purge Water			
Free Product Present?	Yes / No	Thickness (ft):	

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
Well not found	since 2005						

WELL NOT FOUND SINCE 2005	
	I

Monitoring Well Number: MW-26

Project Name:	Hegenberger	Date of Sampling: 5/8/2008
Job Number:	277254	Name of Sampler: A Nieto
Project Address:	625 Hegenberger Rd	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2			
Wellhead Condition	ОК				
Elevation of Top of Casing (feet above msl)		11.17			
Depth of Well		15.00			
Depth to Water (from top of casing)	6.05				
Water Elevation (feet above msl)	5.12				
Well Volumes Purged	3				
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	4.3				
Actual Volume Purged (gallons)	5.0				
Appearance of Purge Water	Clears quickly				
Free Product Present?	Yes / No Thickness (ft):				

GROUNDWATER SAMPLES

Number of Samples/Container Size							
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
14:32	1	17.41	6.93	1737	3.32	-126.9	Clear
14:33	2	17.28	6.93	1771	2.93	-136.4	Clear
14:34	3	17.38	6.94	1898	2.6	-152.2	Clear
14:35	4	17.42	6.94	1870	2.67	-153.5	Clear
14:36	5	17.5	6.91	1818	3.02	-150.3	Clear

Water clear with slight sewage odors present						

Monitoring Well Number: MW-27

Project Name:	Hegenberger	Date of Sampling: 5/8/2008
Job Number:	277254	Name of Sampler: A Nieto
Project Address:	625 Hegenberger Rd	

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")		2							
Wellhead Condition	ОК	_							
Elevation of Top of Casing (feet above msl)	10.06								
Depth of Well		15.00							
Depth to Water (from top of casing)		5.00							
Water Elevation (feet above msl)	5.06								
Well Volumes Purged	3								
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	4.8								
Actual Volume Purged (gallons)	5.0								
Appearance of Purge Water									
Free Product Present?	Yes / No	Thickness (ft):							

GROUNDWATER SAMPLES

es/Container S	Size					
Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (µ sec/cm)	DO (mg/L)	ORP (meV)	Comments
1	18.33	7	1349	4.65	-132.2	Clear
2	18.28	6.98	1368	4.52	-132.4	Clear
3	18.27	6.93	1373	3.97	-130.5	Clear
4	18.27	6.93	1376	3.86	-130.5	Clear
5	18.26	6.95	1374	3.71	-131.2	Clear
	Vol Removed (gal) 1 2 3 4	(gal) (deg C) 1 18.33 2 18.28 3 18.27 4 18.27	Vol Removed (gal)Temperature (deg C)pH118.337218.286.98318.276.93418.276.93	Vol Removed (gal)Temperature (deg C)pHConductivity (μ sec/cm)118.3371349218.286.981368318.276.931373418.276.931376	Vol Removed (gal)Temperature (deg C)pHConductivity (μ sec/cm)DO (mg/L)118.33713494.65218.286.9813684.52318.276.9313733.97418.276.9313763.86	Vol Removed (gal)Temperature (deg C)pHConductivity (μ sec/cm)DO

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Clear with no hydrocarbon odors present

Monitoring Well Number: EW-01

Project Name:	Hegenberger	Date of Sampling: 5/8/2008
Job Number:	277254	Name of Sampler: A Nieto
Project Address:	625 Hegenberger Rd	

MONITORIN	G WELL DA	ТА							
Well Casing Diameter (2"/4"/6")		2							
Wellhead Condition	ОК								
Elevation of Top of Casing (feet above msl)		11.30							
Depth of Well		22.50							
Depth to Water (from top of casing)	6.25								
Water Elevation (feet above msl)	5.05								
Well Volumes Purged	3								
Gallons Purged: formula valid only for casing sizes of 2" (.16 gal/ft), 4" (.65 gal/ft), and 6" (1.44 gal/ft)	31.9								
Actual Volume Purged (gallons)	32.0								
Appearance of Purge Water	Clear fast								
Free Product Present?	Yes / No	Thickness (ft):							

GROUNDWATER SAMPLES

Number of Sample	es/Container S	ize	-				
Time	Vol Removed (gal)	Temperature (deg C)	рН	Conductivity (μ sec/cm)	DO (mg/L)	ORP (meV)	Comments
15:42	1	16.84	6.96	6126	2.9	-130.5	Clear
14:43	2	16.62	6.85	51645102	2.53	-124.7	Clear
15:44	3	16.63	6.85	5102	2.46	-124.4	Clear
15:45	4	16.64	6.85	4933	2.38	-124.7	Clear
15:46	5	16.65	6.85	4732	2.34	-125.4	Clear
15:49	10	16.69	6.79	3912	2.39	-125	Clear
15:52	15	16.69	6.81	3707	2.38	-125.7	Clear
15:55	20	16.7	6.81	3471	2.33	-126.5	Clear
15:58	25	16.69	6.82	3411	2.34	-126.8	Clear
16:01	30	16.69	6.93	3276	2.3	-126.2	Clear
16:02	32	16.69	6.93	3249	2.28	-127.4	Clear

COMMENTS (i.e., sample odor, well recharge time & percent, etc.)

Light dark and strong hydrocarbon odors present

APPENDIX B

Laboratory Analytical Reports With Chain of Custody Documentation

When Ouality		1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269							
AEI Consultants	Client Project ID: #277254	4; Diversified	Date Sampled:	05/08/08					
2500 Camino Diablo, Ste. #200			Date Received:	05/08/08					
Walnut Creek, CA 94597	Client Contact: Leah Gold	lberg	Date Reported:	05/15/08					
Wundt Creek, CIT 94397	Client P.O.:		Date Completed:	05/15/08					

WorkOrder: 0805228

May 15, 2008

Dear Leah:

Enclosed within are:

- 1) The results of the **6** analyzed samples from your project: **#277254; Diversified,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

					_						(35	C	6	Ð	8									_						
	McCAN	1PBELI 110 2 nd AV				LI	NC.						L									F C					REC		RD		_
			CO, CA 945		60								1	TU	RN	AR	0	UNI	DI	IM	IE					-			88 - 88		
Telephor	ne: (925) 79	8-1620			F	ax:	(925)) 79	8-16	22			F	EDF	Req	uire	d?			Yes	C		RUS No		24 I nail		F Re	8 HR		72 HF Yes	
Report To: Leah	Goldberg		В	ill To	: san	ne							t		_			Ana	lysi	s R	eque	est					(Othe	r	Co	mments
Company: AEI C	onsultants														E																
2500 0	Camino Dia	blo, Suite	200												B&												(EPA				
Waln	ut Creek, C	A 94597		E-M	lail: 1	goldi	berg(a	aeio	cons	ultan	ts.co	om			&F/							010	0100				s (F				
Tele: (925) 944-2	899		F	ax: (925)	944	-289	5					/8015)		20 E	8.1						0.00	5				vent				
Project #: 277254	ļ		Р	rojec	t Nar	me: 1	Dive	rsifi	ed				1/80		(55	s (41		6				000	10170				Sol				
Project Location:	625 Hege	nberger F	d, Øalda	and	_	_							(6021		ase	suoo	ist)	802				3	1070		10		ated				
Sampler Signatur	e: Am	/	10	2									Gas		Gre	scarl	010	02 /	080						2/60		orina				
	N	SAMP	LING	s	Type Containers	I	MAT	RE	x			HOD RVEI	TPH as	TPH as Diesel (8015)	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	HVOCs EPA 8260 (8010 list)	BTEX ONLY (EPA 602 / 8020)	Pesticides EPA 608 / 8080	PCBs EPA 608 / 8080	VOCs EPA 624 / 8260	EPA 625 / 8270	nh et		Lead (7240/7421/239.2/6010)		MTBE, TBA, and Chlorinated Solvents 8260)				
SAMPLE ID				ner	tair								1 2	sel (eum	cum	A 8.	7 (PA.	608	624	\$270	etal	tals	742		A, al				
(Field Point Name)	LOCATION			Containers	Con			4					MTBE. BTEX	Die	etrol	ctrol	EP	N	esE	PA	Ada	EPA 625 / 8270	CAM-17 Metals	LUFT 5 Metals	240		TB			1	
(,		Date	Time	UO II	be	Water		Sludge	Other		-	HNO ₃	E	las	al Pe	al Po	8	X	licid	3s E	CSE	62		E	d (7		0) BE,				
				#	Tyl	3	Soil		ŏ	Ice	HCI	E	E N	TPI	Tot	Tot	H	BTI	Pes	PCI	2	EP		19	Lea	RCI	MT 826				
MW-8		5/8/08	4:50	3	VOUR	X		+	-				>	(-						+	+	+	+			X	+	+	+	
MW-10		1	4:40	Ĩ	1	K							>	5													Х				
MW-11-	-				1	X								(_	-	-	-	-	-	-	-		Х				
MW-12			4:40	+	t	x	-	-	-				1	(-				X		-		
MW-26			5:30	+	+	x	+	+	+			-	>	<	-						+		+	-	-		X	-	+		
				1	+	1		+	+				>	3	-				-		-		+	-	-		X		-		
MW-27		1	5:20	-	+	1	-	+	+-		-	-	1	-	-		-	-	-	-	-	-	-	-	-		X	-	-	-	
EW-01			4:55	1		X	-	-	+		-		Ľ	`	-		-	_	-	-	-	-	+	-	-		~	-	+	-	
												_	1						_										_	-	
									-				1		-																
				-	-		-	-	+				+	+	-				-	-	+	+	+	+	-					-	
				-	-		-	+	+			-	+	-	-				-	-	-		-	-	-				-		
							_	-	_		_		+	-		_		_	_	_	-	_	-	-	-					<u> </u>	
																		1		*											
Relinquished By:	h	Date: IBCOG	Time: 7.30	Rece	ived B	By:	rl	/.	-	/							•	~	1	,						y	HCC LAB	Jose	G 1	METAI	s othi
Relinquished By:		Date:	Time:	Rece	ived B	sy:	-						1	ICE		1.0	2			1,		PE	ESE	RV	ATIC	DN	HC	1			
-														HE	ADS	PAG	CE 4	ABSI	ENT	1		C	INT	AIN	ERS	1	-	1			
Relinquished By:		Date:	Time:	Rece	ived B	sy:				-			1	DEC	CHL	ORI	NA	TED	IN	LAI	BN	A	PER	SER	VED	IN	LAB	V			
					101503																	1									

McCampbell Analytical, Inc.

1534 Willow Pass Rd ECE 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252	-9262					Work	Order:	0805	228	ClientC	Code: A	EL				
			WriteOn	EDF		Excel		Fax	🗸 Emai	il	Harc	ICopy	Thiro	dParty	J-1	flag
Report to:							Bill to:					Req	uested	TAT:	5 (days
Leah Goldberg AEI Consultan 2500 Camino Walnut Creek, (925) 283-6000	its Diablo, Ste. #200 , CA 94597	Email: cc: PO: ProjectNo	lgoldberg@ae	eiconsultants.com	ו		AE 25 Wa	alnut Cr)7			e Recei e Print		05/08/2 05/08/2	
									Requested	d Tests	(See le	gend b	elow)			
Lab ID	Client ID		Matrix	Collection Date	Hold	1	2	3	4 5	6	7	8	9	10	11	12
0805228-001	MW-8		Water	5/8/2008 4:50		В	А									
0805228-002	MW-10		Water	5/8/2008 16:45		В	А									
0805228-003	MW-12		Water	5/8/2008 16:40		В	А									
0805228-004	MW-26		Water	5/8/2008 17:30		В	А									
0805228-005	MW-27		Water	5/8/2008 17:20		В	А									

В

А

Test Legend:

0805228-006

1	8010-8021MS_W
6	
11	

2	G-MBTEX_W
7	
12	

Water

EW-01

3	
8	

4	
9	

5	
10	

Prepared by: Samantha Arbuckle

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants		Date a	and Time Received:	5/8/08 8:06:23 PM						
Project Name:	#277254; Diversi	fied			Check	dist completed and re	eviewed by:	Samantha Arbuckle			
WorkOrder N°:	0805228	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>					
			Chain of C	ustody (C	COC) Informa	ation					
Chain of custody	/ present?		Yes	✓	No 🗆						
Chain of custody	/ signed when relinqui	ved? Yes	\checkmark	No 🗆							
Chain of custody	agrees with sample	Yes	✓	No 🗌							
Sample IDs noted	d by Client on COC?	Yes	✓	No 🗆							
Date and Time of	f collection noted by Cl	Yes	✓	No 🗆							
Sampler's name	noted on COC?	Yes	\checkmark	No 🗆							
Sample Receipt Information											
Custody seals intact on shipping container/cooler?				✓	No 🗆		NA 🗆				
Shipping contain	er/cooler in good conc	Yes	✓	No 🗆							
Samples in prop	er containers/bottles?	Yes	✓	No 🗆							
Sample containe	ers intact?	Yes	✓	No 🗆							
Sufficient sample	e volume for indicated	test?	Yes	✓	No 🗌						
		Sample I	Preservatio	n and Ho	d Time (HT) Information					
		<u>oumpie i</u>	reservatie			<u>j momuton</u>					
All samples received within holding time?				✓	No 🗌						
Container/Temp Blank temperature				er Temp:	4.6°C		NA 🗆				
Water - VOA vials have zero headspace / no bubbles?				✓	No 🗆	No VOA vials subm	itted 🗆				
Sample labels cl	Yes	✓	No 🗌								
TTLC Metal - pH	Yes		No 🗆		NA 🗹						

Client contacted:

Date contacted:

Contacted by:

Comments:

<u>McCampbell</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269										
"When Ouality Counts"				ect ID:	#277254; Diversified	1					
					· · · , · · · · · · ·		Received: 05/08/0				
2500 Camino Diablo, Ste. #200		Clier	nt Con	tact. Le							
Walnut Creek, CA 94597			nt P.O.:			Date Extracted: 05/12/08					
Wallut Cleek, CA 94397						Date Analyzed 05/12/08					
	HVOCs, N	MTBE		•	Alcohol by P&T and G	C-MS*					
Extraction Method: SW5030B			Analy	ytical Meth	od: SW8260B		Work Or	der: 080	5228		
Lab ID Client ID			0805228-001B MW-8								
Matrix		Water									
Compound	Concentration *		DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit		
Bromodichloromethane	ND<5.0		10	0.5	Bromoform		ND<5.0	10	0.5		
Bromomethane	ND<5.0		10	0.5	t-Butyl alcohol (TBA)	utyl alcohol (TBA)		10	2.0		
Carbon Tetrachloride	ND<5.0		10	0.5	Chlorobenzene		ND<5.0	10	0.5		
Chloroethane	ND<5.0		10	0.5	Chloroform		ND<5.0	10	0.5		
Chloromethane	ND<5.0		10	0.5	Dibromochloromethane		ND<5.0	10	0.5		
1,2-Dibromoethane (EDB)	ND<5.0		10	0.5	1,2-Dichlorobenzene		ND<5.0	10	0.5		
1,3-Dichlorobenzene	ND<5.0		10	0.5	1,4-Dichlorobenzene		ND<5.0	10	0.5		
Dichlorodifluoromethane	ND<5.0		10	0.5	1,1-Dichloroethane		ND<5.0	10	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<5.0		10	0.5	1,1-Dichloroethene		ND<5.0	10	0.5		
cis-1,2-Dichloroethene	ND<5.0		10	0.5	trans-1,2-Dichloroethene		ND<5.0	10	0.5		
1,2-Dichloropropane	ND<5.0		10	0.5	cis-1,3-Dichloropropene		ND<5.0	10	0.5		
trans-1,3-Dichloropropene	ND<5.0		10	0.5	Freon 113		ND<100	10	10		
Methyl-t-butyl ether (MTBE)	18		10	0.5	Methylene chloride		ND<5.0	10	0.5		
1,1,1,2-Tetrachloroethane	ND<5.0		10	0.5	1,1,2,2-Tetrachloroethane		ND<5.0	10	0.5		
Tetrachloroethene	ND<5.0)	10	0.5	1,1,1-Trichloroethane		ND<5.0	10	0.5		
1,1,2-Trichloroethane	ND<5.0)	10	0.5	Trichloroethene		ND<5.0	10	0.5		
Trichlorofluoromethane	ND<5.0)	10	0.5	Vinyl Chloride		ND<5.0	10	0.5		
m,p-Xylene		50	10	0.25	Xylenes		57	10	0.5		
			Surr	ogate Re	coveries (%)						
%SS1:	110				%SS2:	99	99				
%SS3:		97									
Comments:											

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/wipe$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

<u>McCampbell</u>	1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com										
	Duality Counts"				-	877-252-92	62 Fax: 925-252-9269	9			
AEI Consultants		Client Project ID:			#277254; Diversified Date S		Sampled: 05/08/08				
2500 Camino Diablo, Ste. #200)					Date R	Received: 05/08/0	8			
		Client Contact: Leah Goldberg					Date Extracted: 05/12/08				
Walnut Creek, CA 94597		Client P.O.:				Date Analyzed 05/12/08					
	HVOCs, M	TBE	2 & ter	t-Butyl	Alcohol by P&T and G	C-MS*					
Extraction Method: SW5030B	,			•	od: SW8260B		Work Or	der: 080	5228		
Lab ID					0805228-002B						
Client ID		MW-10									
Matrix				Reporting	Water	~		Reportin			
Compound	Concentratio	n *	DF	Limit	Compound		Concentration *	DF	Limit		
Bromodichloromethane	ND		1.0	0.5	Bromoform		ND	1.0	0.5		
Bromomethane	ND		1.0	0.5	t-Butyl alcohol (TBA)		ND	1.0	2.0		
Carbon Tetrachloride	ND		1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND		1.0	0.5	Chloroform		ND	1.0	0.5		
Chloromethane	ND		1.0	0.5	Dibromochloromethane		ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND		1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5		
1,3-Dichlorobenzene	ND		1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5		
Dichlorodifluoromethane ND			1.0	0.5	1,1-Dichloroethane	ND	1.0	0.5			
1,2-Dichloroethane (1,2-DCA)	ND		1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND		1.0	0.5	trans-1,2-Dichloroethene		ND	1.0	0.5		
1,2-Dichloropropane	ND		1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5		
trans-1,3-Dichloropropene	ND		1.0	0.5	Freon 113		ND	1.0	10		
Methyl-t-butyl ether (MTBE)	2.0		1.0	0.5	Methylene chloride		ND	1.0	0.5		
1,1,1,2-Tetrachloroethane	ND		1.0	0.5	1,1,2,2-Tetrachloroethane		ND	1.0	0.5		
Tetrachloroethene	ND		1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5		
1,1,2-Trichloroethane	ND		1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND		1.0	0.5	Vinyl Chloride		ND	1.0	0.5		
m,p-Xylene	ND		1.0	0.25	Xylenes		ND	1.0	0.5		
			Surro	ogate Re	coveries (%)						
%SS1:	108)8 %SS2:			10	0			
%SS3: 99											
Comments:											

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\mu$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~ 1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.
<u>McCampbell</u>	Analyti	cal,	Inc.		1534 Willow I Web: www.mccamp		Pittsburg, CA 94565-17 E-mail: main@mccamp				
	Dualitv Counts"				Telephone: 8	877-252-92	62 Fax: 925-252-9269	Ð			
AEI Consultants		Clier	nt Proje	ect ID:	#277254; Diversified	Date S	ampled: 05/08/0	8			
2500 Camino Diablo, Ste. #200)					Date R	Received: 05/08/0	8			
2000 Culture Diacio, Ster #200		Clie	nt Cont	tact: Le	eah Goldberg	Date E	Extracted: 05/12/0	8			
Walnut Creek, CA 94597	-	Clier	nt P.O.:			Date A	analyzed 05/12/0	8			
	HVOCs. M	ITBF	E & ter	t-Butvl	Alcohol by P&T and G	C-MS*					
Extraction Method: SW5030B	,			•	nod: SW8260B		Work Or	der: 080	5228		
Lab ID					0805228-003B						
Client ID					MW-12						
Matrix				Reporting	Water		~		Reporting		
Compound	Concentratio	on *	DF	Limit	Compound		Concentration *	DF	Ĺimit		
Bromodichloromethane	ND		1.0	0.5	Bromoform		ND	1.0	0.5		
BromomethaneND1.00.5t-Butyl alcohol (TBA)ND1.0Carbon TetrachlorideND1.00.5ChlorobenzeneND1.0											
Carbon Tetrachloride	ND		1.0	0.5	Chlorobenzene		ND	1.0	0.5		
Chloroethane	ND		1.0	0.5	Chloroform		ND	1.0	0.5		
Chloromethane	ND		1.0	0.5	Dibromochloromethane	ND	1.0	0.5			
1,2-Dibromoethane (EDB)	ND		1.0	0.5	1,2-Dichlorobenzene		ND	1.0	0.5		
1,3-Dichlorobenzene	ND		1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5		
Dichlorodifluoromethane	ND		1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5		
1,2-Dichloroethane (1,2-DCA)	ND		1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5		
cis-1,2-Dichloroethene	ND		1.0	0.5	trans-1,2-Dichloroethene	•	ND	1.0	0.5		
1,2-Dichloropropane	ND		1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5		
trans-1,3-Dichloropropene	ND		1.0	0.5	Freon 113		ND	1.0	10		
Methyl-t-butyl ether (MTBE)		2.5	1.0	0.5	Methylene chloride		ND	1.0	0.5		
1,1,1,2-Tetrachloroethane	ND		1.0	0.5	1,1,2,2-Tetrachloroethar	ne	ND	1.0	0.5		
Tetrachloroethene	ND		1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5		
1,1,2-Trichloroethane	ND		1.0	0.5	Trichloroethene		ND	1.0	0.5		
Trichlorofluoromethane	ND		1.0	0.5	Vinyl Chloride		ND	1.0	0.5		
m,p-Xylene	ND		1.0	0.25	Xylenes		ND	1.0	0.5		
			Surro	ogate Re	coveries (%)						
%SS1:		107	7		%SS2:		10	0			
%SS3:	1	98									
Comments:					•						

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\mu$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

<u>McCampbell</u>	Analytic	al,	Inc.		1534 Willow F Web: www.mccamp		Pittsburg, CA 94565-17 E-mail: main@mccamp			
	Duality Counts"					377-252-92	62 Fax: 925-252-9269)	<u> </u>	
AEI Consultants	(Clien	t Proje	ect ID:	#277254; Diversified	Date S	ampled: 05/08/0	8		
2500 Camino Diablo, Ste. #200)					Date R	eceived: 05/08/0	8		
		Clien	nt Cont	tact: Le	eah Goldberg	Date E	xtracted: 05/13/0	8		
Walnut Creek, CA 94597	(Clien	t P.O.:			Date A	nalyzed 05/13/0	8		
	HVOCs, M	гве	& ter	t-Butyl	Alcohol by P&T and G	C-MS*				
Extraction Method: SW5030B	,			•	od: SW8260B		Work Or	der: 080	5228	
Lab ID					0805228-004B					
Client ID					MW-26					
Matrix		di	DE	Reporting	Water			DE	Reportin	
Compound	Concentration	n *	DF	Limit	Compound		Concentration *	DF	Limit	
Bromodichloromethane	ND		1.0	0.5	Bromoform		ND	1.0	0.5	
Bromomethane ND 1.0 0.5 t-Butyl alcohol (TBA) ND										
Carbon Tetrachloride	ND		1.0	0.5	Chlorobenzene		ND	1.0	0.5	
Chloroethane	ND		1.0	0.5	Chloroform	ND	1.0	0.5		
Chloromethane	ND		1.0	0.5	Dibromochloromethane	ND	1.0	0.5		
1,2-Dibromoethane (EDB)	ND		1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5		
1,3-Dichlorobenzene	ND		1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5	
Dichlorodifluoromethane	ND		1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5	
1,2-Dichloroethane (1,2-DCA)	ND		1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5	
cis-1,2-Dichloroethene	ND		1.0	0.5	trans-1,2-Dichloroethene	,	ND	1.0	0.5	
1,2-Dichloropropane	ND		1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5	
trans-1,3-Dichloropropene	ND		1.0	0.5	Freon 113		ND	1.0	10	
Methyl-t-butyl ether (MTBE)	0.:	57	1.0	0.5	Methylene chloride		ND	1.0	0.5	
1,1,1,2-Tetrachloroethane	ND		1.0	0.5	1,1,2,2-Tetrachloroethar	ie	ND	1.0	0.5	
Tetrachloroethene	ND		1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5	
1,1,2-Trichloroethane	ND		1.0	0.5	Trichloroethene		ND	1.0	0.5	
Trichlorofluoromethane	ND		1.0	0.5	Vinyl Chloride		ND	1.0	0.5	
m,p-Xylene	ND		1.0	0.25	Xylenes		ND	1.0	0.5	
			Surro	ogate Re	coveries (%)					
%SS1:		106			%SS2:		10	0		
%SS3:		98					•			
Comments:	·									

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\mu$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

<u>McCampbell</u>	Analytic	al,	Inc.		1534 Willow I Web: www.mccamp		Pittsburg, CA 94565-17 E-mail: main@mccamp		
	Duality Counts"				-	877-252-92	62 Fax: 925-252-9269	Ð	
AEI Consultants	(Clien	nt Proje	ect ID:	#277254; Diversified	Date S	ampled: 05/08/0	8	
2500 Camino Diablo, Ste. #200)					Date R	Received: 05/08/0	8	
		Clier	nt Cont	tact: Le	eah Goldberg	Date E	Extracted: 05/12/0	8	
Walnut Creek, CA 94597	(Clien	t P.O.:			Date A	analyzed 05/12/0	8	
	HVOCs, M	гве	& ter	t-Butyl	Alcohol by P&T and G	C-MS*			
Extraction Method: SW5030B	,			•	nod: SW8260B		Work Or	der: 080	5228
Lab ID					0805228-005B				
Client ID					MW-27				
Matrix			DE	Reporting	Water			DE	Reportin
Compound	Concentration	n *	DF	Limit	Compound		Concentration *	DF	Limit
Bromodichloromethane	ND	Bromoform		ND	1.0	0.5			
Bromomethane	ND		1.0	0.5	t-Butyl alcohol (TBA)	3.3	1.0	2.0	
Carbon Tetrachloride	ND		1.0	0.5	Chlorobenzene		ND	1.0	0.5
Chloroethane	ND		1.0	0.5	Chloroform		ND	1.0	0.5
Chloromethane	ND		1.0	0.5	Dibromochloromethane		ND	1.0	0.5
1,2-Dibromoethane (EDB)	ND		1.0	0.5	1,2-Dichlorobenzene	ND	1.0	0.5	
1,3-Dichlorobenzene	ND		1.0	0.5	1,4-Dichlorobenzene		ND	1.0	0.5
Dichlorodifluoromethane	ND		1.0	0.5	1,1-Dichloroethane		ND	1.0	0.5
1,2-Dichloroethane (1,2-DCA)	ND		1.0	0.5	1,1-Dichloroethene		ND	1.0	0.5
cis-1,2-Dichloroethene	ND		1.0	0.5	trans-1,2-Dichloroethene		ND	1.0	0.5
1,2-Dichloropropane	ND		1.0	0.5	cis-1,3-Dichloropropene		ND	1.0	0.5
trans-1,3-Dichloropropene	ND		1.0	0.5	Freon 113		ND	1.0	10
Methyl-t-butyl ether (MTBE)	ND		1.0	0.5	Methylene chloride		ND	1.0	0.5
1,1,1,2-Tetrachloroethane	ND		1.0	0.5	1,1,2,2-Tetrachloroethar	ne	ND	1.0	0.5
Tetrachloroethene	ND		1.0	0.5	1,1,1-Trichloroethane		ND	1.0	0.5
1,1,2-Trichloroethane	ND		1.0	0.5	Trichloroethene		ND	1.0	0.5
Trichlorofluoromethane	ND		1.0	0.5	Vinyl Chloride		ND	1.0	0.5
m,p-Xylene	ND		1.0	0.25	Xylenes		ND	1.0	0.5
			Surro	ogate Re	coveries (%)				
%SS1:		107			%SS2:		99)	
%SS3:		98							
Comments:									

* water and vapor samples are reported in $\mu g/L$, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in $\mu g/\mu$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

McCampbell		cal,	Inc.		Web: www.mccamp	bell.com	Pittsburg, CA 94565-17 E-mail: main@mccamp	bell.com	
AEI Consultants	Duality Counts"	Clio	nt Proje	oct ID:	#277254; Diversified		62 Fax: 925-252-9269 ampled: 05/08/0		
AEI Consultains		Clief	in Floje	ct ID.	#277254, Diversined		-		
2500 Camino Diablo, Ste. #200)						Received: 05/08/0	-	
					ah Goldberg		Extracted: 05/14/0		
Walnut Creek, CA 94597		Clier	nt P.O.:			Date A	Analyzed 05/14/0	8	
	HVOCs, I	MTBE	E & ter	t-Butyl	Alcohol by P&T and G	C-MS*			
Extraction Method: SW5030B	•		Anal	tical Meth	od: SW8260B		Work Or	der: 080	5228
Lab ID					0805228-006B				
Client ID Matrix					EW-01 Water				
Compound	Concentrat	ion *	DF	Reporting Limit	Compound		Concentration *	DF	Reportin Limit
Bromodichloromethane	ND<5.0)	10	Bromoform		ND<5.0	10	0.5	
Bromomethane	ND<5.0)	10	0.5	t-Butyl alcohol (TBA)		25	10	2.0
Carbon Tetrachloride	ND<5.0)	10	0.5	Chlorobenzene		ND<5.0	10	0.5
Chloroethane	ND<5.0)	10	0.5	Chloroform		ND<5.0	10	0.5
Chloromethane	ND<5.0)	10	0.5	Dibromochloromethane		ND<5.0	10	0.5
1,2-Dibromoethane (EDB)	ND<5.0)	10	0.5	1,2-Dichlorobenzene	ND<5.0	10	0.5	
1,3-Dichlorobenzene	ND<5.0)	10	0.5	1,4-Dichlorobenzene		ND<5.0	10	0.5
Dichlorodifluoromethane	ND<5.0)	10	0.5	1,1-Dichloroethane		ND<5.0	10	0.5
1,2-Dichloroethane (1,2-DCA)	ND<5.0)	10	0.5	1,1-Dichloroethene		ND<5.0	10	0.5
cis-1,2-Dichloroethene	ND<5.0)	10	0.5	trans-1,2-Dichloroethene	,	ND<5.0	10	0.5
1,2-Dichloropropane	ND<5.0)	10	0.5	cis-1,3-Dichloropropene		ND<5.0	10	0.5
trans-1,3-Dichloropropene	ND<5.0)	10	0.5	Freon 113		ND<100	10	10
Methyl-t-butyl ether (MTBE)		210	10	0.5	Methylene chloride		ND<5.0	10	0.5
1,1,1,2-Tetrachloroethane	ND<5.0)	10	0.5	1,1,2,2-Tetrachloroethar	ie	ND<5.0	10	0.5
Tetrachloroethene	ND<5.0)	10	0.5	1,1,1-Trichloroethane		ND<5.0	10	0.5
1,1,2-Trichloroethane	ND<5.0)	10	0.5	Trichloroethene		ND<5.0	10	0.5
Trichlorofluoromethane	ND<5.0)	10	0.5	Vinyl Chloride		ND<5.0	10	0.5
Xylenes	ND<5.0)	10	0.5					
			Surr	ogate Re	coveries (%)				
%SS1:		100)		%SS2:		10	0	
%SS3:		104	1						
Comments:									

* water and vapor samples are reported in μ g/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in μ g/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

	McCampbell	Analyt uality Counts"			Web: www.m		Pittsburg, CA 94565 E-mail: main@mcca 52 Fax: 925-252-9	mpbell.com		
AEI Con	sultants		Client Proje	ect ID: #277	254; Diversifie	ed	Date Sample	d: 05/08/08		
2500 Car	nino Diablo, Ste. #200						Date Receive	ed: 05/08/08		
			Client Con	tact: Leah G	oldberg		Date Extract	ed: 05/12/08	-05/14	/08
Walnut C	Creek, CA 94597		Client P.O.	:			Date Analyz	ed 05/12/08	-05/14	/08
Extraction r	Gasolin nethod SW5030B	e Range (-	rbons as Gaso W8021B/8015Cm	line with BTI	EX and MTBE	* Work Order	: 0805	5228
Lab ID	Client ID	Ethylbenzene	Xylenes	DF	% SS					
001A	MW-8	W	2600,a	ND<25	140	14	30	57	5	110
002A	MW-10	W	ND	ND	ND	ND	ND	ND	1	91
003A	MW-12	W	ND	ND	ND	ND	ND	ND	1	91
004A	MW-26	W	ND	ND	ND	ND	ND	ND	1	89
005A	MW-27	W	ND	ND	ND	ND	ND	ND	1	91
006A	EW-01	w	190,a	190	14	3.4	ND	2.6	1	100
										_
										_
										<u> </u>
	ting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L
	ans not detected at or e the reporting limit	S	NA	NA	NA	NA	NA	NA	1	mg/Kg

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0805228

EPA Method SW8260B	Extra	ction SW	5030B		Ba	tchID: 35	505	Sp	iked Samp	ole ID:	0 70 - 130 0 70 - 130 0 70 - 130 0 70 - 130 0 70 - 130					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)					
<i>i</i> and y to	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD				
Benzene	ND	10	109	112	2.61	96.7	94.9	1.83	70 - 130	30	70 - 130	30				
Chlorobenzene	ND	10	102	104	2.03	97.1	94.5	2.78	70 - 130	30	70 - 130	30				
1,2-Dibromoethane (EDB)	ND	10	109	111	1.79	102	101	1.68	70 - 130	30	70 - 130	30				
1,2-Dichloroethane (1,2-DCA)	ND	10	118	121	2.51	110	110	0	70 - 130	30	70 - 130	30				
1,1-Dichloroethene	ND	10	93.9	95.8	1.96	84	82.3	1.98	70 - 130	30	70 - 130	30				
Methyl-t-butyl ether (MTBE)	0.57	10	108	110	2.23	101	101	0	70 - 130	30	70 - 130	30				
Toluene	ND	10	99.4	102	2.32	88.6	86.7	2.17	70 - 130	30	70 - 130	30				
Trichloroethene	ND	10	99.8	104	3.65	91.9	88.5	3.77	70 - 130	30	70 - 130	30				
%SS1:	106	10	99	100	0.792	102	103	0.686	70 - 130	30	70 - 130	30				
%SS2:	100	10	98	98	0	103	103	0	70 - 130	30	70 - 130	30				
%SS3:	98	10	100	101	0.354	101	102	0.887	70 - 130	30	70 - 130	30				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 35505 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805228-001B	05/08/08 4:50 AM	05/12/08	05/12/08 10:59 PM	0805228-002B	05/08/08 4:45 PM	05/12/08	05/12/08 11:37 PM
0805228-003B	05/08/08 4:40 PM	05/12/08	05/12/08 9:04 PM	0805228-004B	05/08/08 5:30 PM	05/13/08	05/13/08 12:16 AM
0805228-005B	05/08/08 5:20 PM	05/12/08	05/12/08 10:21 PM	0805228-006B	Not Provided	05/14/08	05/14/08 1:16 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0805228

EPA Method SW8021B/8015Cm	Extra	ction SW	5030B		Bat	chID: 35	481	Sp	iked Sam	ole ID:	0805197-00	2A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)				
/ maryto	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
TPH(btex) [£]	ND	60	81.1	79.4	2.16	103	90.2	13.7	70 - 130	20	70 - 130	20			
MTBE	ND	10	110	112	1.83	118	102	14.8	70 - 130	20	70 - 130	20			
Benzene	ND	10	92.5	95.2	2.82	91.9	88.2	4.12	70 - 130	20	70 - 130	20			
Toluene	ND	10	89	91.9	3.25	108	97.6	9.74	70 - 130	20	70 - 130	20			
Ethylbenzene	ND	10	88.9	91	2.29	101	94.4	6.38	70 - 130	20	70 - 130	20			
Xylenes	ND	30	79.2	80.9	2.06	110	104	5.88	70 - 130	20	70 - 130	20			
%SS:	92	10	103	105	1.84	101	92	9.64	70 - 130	130 20 70 - 130					

BATCH 35481 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805228-001A	05/08/08 4:50 AM	05/13/08	05/13/08 11:07 PM	0805228-002A	05/08/08 4:45 PM	05/12/08	05/12/08 10:33 PM
0805228-003A	05/08/08 4:40 PM	05/12/08	05/12/08 11:07 PM	0805228-004A	05/08/08 5:30 PM	05/13/08	05/13/08 12:46 AM
0805228-005A	05/08/08 5:20 PM	05/13/08	05/13/08 1:19 AM	0805228-006A	Not Provided	05/14/08	05/14/08 4:03 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell An "When Ouality"		Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #277254	4; Diversified	Date Sampled:	05/14/08
2500 Camino Diablo, Ste. #200			Date Received:	05/15/08
Walnut Creek, CA 94597	Client Contact: Leah Gold	lberg	Date Reported:	05/20/08
Wallat Creek, Cri 91897	Client P.O.:		Date Completed:	05/19/08

WorkOrder: 0805390

May 20, 2008

Dear Leah:

Enclosed within are:

- 1) The results of the **1** analyzed sample from your project: **#277254; Diversified,**
- 2) A QC report for the above sample,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

											ORC	15	39	0																			
	we									TUI Geo			OU	ND	T	IMI)	E PD	F	RUS	SH Ex	24 cel	HR		48 Wr	HR HR	RD 72 H On (D	R 51 W)	DAY					
	Report To:	h Cool	260	B	ill To	: \$	in	0				_		t		_	-		A	nal		_	_							-	ther		ments
	Company: AZ 2500 6 Walnut Tele: (975) 90 Project #: 7 7	=1 C= - Creek 44-2-69	A E-Mail: 1goldburg@ariconstructure A E-Mail: 1goldburg@ariconstructure 19 Fax: (925) 944-2795 Project Name: Diversified Hegenberg Ray Sakland, ca						(602/8021+8015) MTBE	from a mon in	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	arbons (418.1)	8021 (HVOCs)			EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners				VOCs)	AHs / PNAs)	200.8 / 6010 / 6020)	00.8 / 6010 / 6020)) / 6020)	and charinated		Filte Sam	r ples fetals ysis:					
	SAMPLE ID	LOCATION/ Field Point Name			# Containers	Type Container	er		RIX		MI	SER	IOD	TPH as Gas	(8015)	Total Petroleum Oil & G	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	MTBE / BTEX ONLY (EPA 602 / 8021)	EPA 505/ 608 / 8081 (Cl Pesticides)	EPA 608 / 8082 PCB's O	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	EPA 525.2 / 625 / 8270 (SVOCs)	EPA 8270 SIM / 8310 (PAHs / PNAs)	CAM 17 Metals (200.7 / 200.8 / 6010 / 6020)	LUFT S Metals (200.7 / 200.8 / 6010 / 6020)	Lend (200.7 / 200.8 / 6010 / 6020)	MT SE TBA	5		ł
+	MW-11		5/14	1:20	4 VOR X XX				\geq	<															X								
	Reljnquished By:		Date:	Time:											CE/t*		~																
	Zen L.	ry.	5/15 Date:	Time:		eived B	11	al	U	1	7	5		G H D A	GOOI HEAD DECH	O COL SPA LOR OPRI	CE A INAT	BSE FED CO	IN L		RS_	4	_					CU	AVI IV	IENT	ə: 10		
	Relinquished By:		Date:	Time:	Reco	eived B	sy:								RES			ve	B	0	&G	MI		LS	OT	HER							

McCampbell Analytical, Inc.

1534 Willow Pass Rd CA 04565 1701

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

(925) 252-9262				WorkOr	der: 0805390) Client(Code: AEL		
		WriteOn	EDF	Excel	Fax	🖌 Email	HardCopy	ThirdParty	J-flag
Report to:				Bi	II to:		Rec	uested TAT:	5 days
Leah Goldberg	Email:	lgoldberg@aeicc	onsultants.com		Denise Mock	kel			
AEI Consultants	CC:				AEI Consulta	ints	_		
2500 Camino Diablo, Ste. #200	PO:				2500 Camino	o Diablo, Ste. #20	0 Dat	te Received:	05/15/2008
Walnut Creek, CA 94597	ProjectNo	: #277254; Diversi	ified		Walnut Creel	k, CA 94597	Dat	te Printed:	05/15/2008
(925) 944-2899 FAX (925) 283-6121					dmockel@ae	eiconsultants.com	1		
							<i>(</i> a · · · · ·		

				Requested Tests (See legend below)											
Lab ID	Client ID	Matrix	Collection Date Hold	1	2	3	4	5	6	7	8	9	10	11	12
		-													
0805390-001	MW-11	Water	5/14/2008 13:20	В	Α	Α									

Test Legend:

1	8010-8021MS_W
6	
11	

2	G-MBTEX_W	
7		
12		

3	PREDF REPORT
8	

4	
9	

5	
10	

Prepared by: Melissa Valles

Comments:

NOTE: Soil samples are discarded 60 days after results are reported unless other arrangements are made (Water samples are 30 days). Hazardous samples will be returned to client or disposed of at client expense.

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	05/15/08 ⁻	10:56:46 AM
Project Name:	#277254; Divers	ified			Check	klist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0805390	Matrix <u>Water</u>			Carrie	r: <u>Client Drop-In</u>		
		<u>Chain</u>	of Cu	stody (C	OC) Informa	ation		
Chain of custody	y present?		Yes	✓	No 🗆			
Chain of custody	y signed when relinqu	ished and received?	Yes	✓	No 🗆			
Chain of custody	y agrees with sample	labels?	Yes	✓	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time of	f collection noted by C	lient on COC?	Yes	✓	No 🗆			
Sampler's name	noted on COC?		Yes	✓	No 🗆			
	in #277254; Diversified Checklist completed and received. Meins Adala in dots y agrees with sample labels? Yes No							
Custody seals in	tact on shipping conta				_	•		
					_			
Snipping contain	ier/cooler in good cond	aition ?	Yes		_			
Samples in prop	er containers/bottles?		Yes	\checkmark	No			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	I test?	Yes	\checkmark	No 🗌			
Project Name: # 277254; Diversited Matrix Vater Carrier: Died Ustorgen Meiss Aussite WorkOrder NP: 0 805390 Matrix Vater Carrier: Cient Drop-Int Project Project <t< td=""><td></td></t<>								
All samples rece	ived within holding tim	-						
	-						NIA 🗖	
Container/Temp	Blank temperature		Coole	•	_		_	
Water - VOA vials have zero headspace / no bubbles?			Yes		No 🗀	No VOA vials subm	itted 🗀	
Sample labels cl	hecked for correct pre	eservation?	Yes	✓	No 🗌			
TTLC Metal - pH	acceptable upon rece	eipt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

McCampbell	Analyti	cal,	Inc.		Web: www.mccamp	bell.com	Pittsburg, CA 94565-17 E-mail: main@mccamp 62 Fax: 925-252-9269	bell.com			
AEI Consultants		Clie	nt Proie	ect ID:	#277254; Diversified		ampled: $05/14/0$				
		chie				Date Received: 05/15/08					
2500 Camino Diablo, Ste. #200		Clia	nt Con	toot: Lo	eah Goldberg		xtracted: 05/17/0				
Web (Coult CA 04507											
Walnut Creek, CA 94597		Clie	nt P.O.:			Date A	analyzed 05/17/0	8			
Н	VOCs and N	IBTE	X by P	&T and	l GC-MS (8021 BasicTa	arget Lis	t)*				
Extraction Method: SW5030B	1		Analy	tical Meth	od: SW8260B		Work Or	der: 080	15390		
Lab ID					0805390-001B						
Client ID Matrix					MW-11 Water						
Compound	Concentrati	on *	DF	Reporting Limit	Compound		Concentration *	DF	Reporting Limit		
Bromodichloromethane	ND<5.0		10	0.5	Bromoform		ND<5.0	10	0.5		
Bromomethane	ND<5.0		10	0.5	t-Butyl alcohol (TBA)		45	10	2.0		
Carbon Tetrachloride	ND<5.0		10	0.5	Chlorobenzene		ND<5.0	10	0.5		
Chloroethane	ND<5.0		10	0.5	Chloroform		ND<5.0	10	0.5		
Chloromethane	ND<5.0)	10	0.5	Dibromochloromethane		ND<5.0	10	0.5		
1,2-Dibromoethane (EDB)	ND<5.0)	10	0.5	1,2-Dichlorobenzene		ND<5.0	10	0.5		
1,3-Dichlorobenzene	ND<5.0)	10	0.5	1,4-Dichlorobenzene		ND<5.0	10	0.5		
Dichlorodifluoromethane	ND<5.0)	10	0.5	1,1-Dichloroethane		ND<5.0	10	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<5.0)	10	0.5	1,1-Dichloroethene		ND<5.0	10	0.5		
cis-1,2-Dichloroethene	ND<5.0)	10	0.5	trans-1,2-Dichloroethene	e	ND<5.0	10	0.5		
1,2-Dichloropropane	ND<5.0)	10	0.5	cis-1,3-Dichloropropene		ND<5.0	10	0.5		
trans-1,3-Dichloropropene	ND<5.0)	10	0.5	Freon 113		ND<100	10	10		
Methyl-t-butyl ether (MTBE)		170	10	0.5	Methylene chloride		ND<5.0	10	0.5		
1,1,1,2-Tetrachloroethane	ND<5.0)	10	0.5	1,1,2,2-Tetrachloroethar	ne	ND<5.0	10	0.5		
Tetrachloroethene	ND<5.0)	10	0.5	1,1,1-Trichloroethane		ND<5.0	10	0.5		
1,1,2-Trichloroethane	ND<5.0)	10	0.5	Trichloroethene		ND<5.0	10	0.5		
Trichlorofluoromethane	ND<5.0)	10	0.5	Vinyl Chloride		ND<5.0	10	0.5		
			Surro	ogate Re	coveries (%)						
%SS1:		109	9		%SS2:		98	3			
%SS3:		103	3								
Comments:											

* water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

	McCampbell	Analyt	ical, Inc	<u>-</u>	Web: w	www.mccampbell.com	d, Pittsburg, CA 9456 E-mail: main@mcca -9262 Fax: 925-252-	ampbell.com					
AEI C	Consultants		Client Proj	ject ID: #	277254; Dive	rsified	Date Sample	ed: 05/14/08					
2500	Camino Diablo, Ste. #200					Date Receiv	Date Received: 05/15/08						
Walm	ıt Creek, CA 94597		Client Cor	ntact: Lea	h Goldberg		Date Extract	Date Extracted: 05/16/08					
vv unit	a crock, cri 5 1557		Client P.O	.:			Date Analyz	zed 05/16/08					
Extract	Gasolin	ne Range (C		-	ocarbons as (s SW8021B/801		Work Order: 0805390						
Lab ID	Client ID	Matrix	TPH(g)	MTBE	Benze	ne Toluene	Ethylbenzene	Xylenes	DF	% SS			
001A	MW-11	w	360,a	150	4.2	1.2	ND	0.51	1	100			
Re	porting Limit for DF =1;	W	50	5.0	0.5	0.5	0.5	0.5	1	µg/L			
ND	means not detected at or pove the reporting limit	S	NA	NA	NA		NA	NA	1	mg/Kg			

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request; p) see attached narrative.

NONE

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0805390

EPA Method SW8260B	Extra	ction SW	5030B		BatchID: 35653					piked Sample ID: 0805408-001A					
Analyte	Sample	Sample Spiked MS			MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)						
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD			
Benzene	ND	10	107	103	3.78	95.1	111	15.7	70 - 130	30	70 - 130	30			
Chlorobenzene	ND	10	99.2	97	2.17	83.4	95.8	13.9	70 - 130	30	70 - 130	30			
1,2-Dibromoethane (EDB)	ND	10	97.1	94.5	2.77	88.1	93.7	6.21	70 - 130	30	70 - 130	30			
1,2-Dichloroethane (1,2-DCA)	ND	10	117	113	3.39	104	115	9.36	70 - 130	30	70 - 130	30			
1,1-Dichloroethene	ND	10	91.2	88.3	3.24	80.8	93.7	14.8	70 - 130	30	70 - 130	30			
Methyl-t-butyl ether (MTBE)	ND	10	105	102	2.92	96.8	106	9.03	70 - 130	30	70 - 130	30			
Toluene	ND	10	90.1	88	2.34	79	89.9	12.8	70 - 130	30	70 - 130	30			
Trichloroethene	ND	10	96.3	93.2	3.21	82.3	94.6	13.9	70 - 130	30	70 - 130	30			
%SS1:	100	10	102	103	0.442	99	100	0.206	70 - 130	30	70 - 130	30			
%SS2:	102	10	100	100	0	96	96	0	70 - 130	30	70 - 130	30			
%SS3:	105	10	99	99	0	96	96	0	70 - 130	30	70 - 130	30			

BATCH 35653 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805390-001B	05/14/08 1:20 PM	05/17/08	05/17/08 1:06 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

DHS ELAP Certification Nº 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder 0805390

EPA Method SW8021B/8015Cm	EPA Method SW8021B/8015Cm Extraction SW5030B								Spiked Sample ID: 0805411-001A					
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acc	eptance	Criteria (%)			
Analyte	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD		
TPH(btex ^f	ND	60	102	91.1	11.0	88.9	95.1	6.66	70 - 130	20	70 - 130	20		
MTBE	ND	10	94	91.5	2.66	93.2	97.7	4.68	70 - 130	20	70 - 130	20		
Benzene	ND	10	86.9	82.3	5.43	84.7	89.7	5.74	70 - 130	20	70 - 130	20		
Toluene	ND	10	85.4	80.4	6.02	77.4	84	8.22	70 - 130	20	70 - 130	20		
Ethylbenzene	ND	10	86.5	81.4	6.06	85.2	89.6	4.97	70 - 130	20	70 - 130	20		
Xylenes	ND	30	81	76.5	5.71	84.4	89	5.28	70 - 130	20	70 - 130	20		
%SS:	100	10	102	98	3.33	97	96	1.85	70 - 130	20	70 - 130	20		
All target compounds in the Method E NONE	Blank of this	extraction	batch we	ere ND les	ss than the	method F	RL with th	ne following	exceptions:					

BATCH 35607 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805390-001A	05/14/08 1:20 PM	4 05/16/08	05/16/08 3:30 AM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

 \pounds TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = matrix interference and/or analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content, or inconsistency in sample containers.

McCampbell An "When Ouality"		Web: www.mco	ow Pass Road, Pittsburg, campbell.com E-mail: m ne: 877-252-9262 Fax:	ain@mccampbell.com
AEI Consultants	Client Project ID: #277254	4; Diversified	Date Sampled:	05/14/08
2500 Camino Diablo, Ste. #200			Date Received:	05/15/08
Walnut Creek, CA 94597	Client Contact: Leah Gold	lberg	Date Reported:	05/23/08
trainat creek, cri 94397	Client P.O.:		Date Completed:	05/23/08

WorkOrder: 0805392

May 23, 2008

Dear Leah:

Enclosed within are:

- 1) The results of the **9** analyzed samples from your project: **#277254; Diversified,**
- 2) A QC report for the above samples,
- 3) A copy of the chain of custody, and
- 4) An invoice for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits.

If you have any questions or concerns, please feel free to give me a call. Thank you for choosing

McCampbell Analytical Laboratories for your analytical needs.

Best regards,

Angela Rydelius Laboratory Manager McCampbell Analytical, Inc.

				0800							
McCAM Telephone: (925) 25	1534 Wi Pittsburg, www.main	llow Pass , CA 9456	55-1701	52-9269	CHAIN OF CUSTODY RECORD TURN AROUND TIME RUSH 24 HR 48 HR 72 HR 5 DAY EDF Required? Coelt (Normal) No Write On (DW) No						
eport To: Leah Go	12ben		Dill Ter 1	3 @ Geicansutta	atter com	La	b Use O	nly	्म ह	Star Contract	
omnany:	nsu 1-ta		Egoine	2	The Friday of States of	.tre		and the second second	Press	urization	Gas
			E-Mail:		Pressurized	Ву		Date	N2		He
ele: (925) 944-28	99		Fax: (905) 94	U-70/00			-	1.1.1.1.1			
roject #: 277254	1		Ducient Nomer	versfiel		7					
roject Location: 675		alera						¥8.5	e in it.	1.11	
Sampler Signature: Zev	Collec		RJ. Oaklen		Notes: Leak c report	heck as D	by etect	dif 1 No	Letes	hone t at	10 mg/
(Location)			Canister SN#	Sampler Kit SN#	Analysis Requested	Indoor	Soil	Ca	nister Pres	sure/Vacu	um
	Date	Time				Air	Gas	Initial	Final	Receipt	Final (psi)
56-1	5/14	10:10	4756	316-729	TPH-gas		X		-5		
56-2		11:41	8 3 4889		(by TO-3)		X		-5	1	
SG-3		12:35	4709	316-689	M'BTEX 7-		X	1	-5	- the second	-
56-4		3:23	4755-625		Fuel additives		X		1 1	N the	
							- Contraction of the local division of the l				
56-5		3:51	4707				X			19 E L	
5G-6		3:51	4707	316-712	by TO-15		X				
56-6 56-7			4707 4701 2587-549	316-712			XXX				
56-6 56-7 56-8		12:51 1:23 2:32	4707 4701 2587-549 3655				XXXX				
56-6 56-7		12:51	4707 4701 2587-549	316-725	by TO-15		XXXXX				
56-6 56-7 56-8	Date:	12:51 1:23 2:32	4707 4701 2587-549 3655	316-725	by TO-15		XXXXX				
SG-6 SG-7 SG-8 SG-9 Relipquished By: Zen Zon Ax	5/15	12:51 1:23 2:32 751 Time: (0:50	4707 4701 2587-549 3655 4708 E	316-725	Бу ТО-15 Тетр (°С) :	Work Ord	ler #:				
56-6 56-7 56-8 56-9	-1	12:51 1:23 2:32 751 Time: (0:50	4707 4701 2587-549 3655 4708 55 Received By:	316-725	by TO-15			None_			

14.5700

_

McCampbell Analytical, Inc. "When Ouality Counts"

Sample Receipt Checklist

Client Name:	AEI Consultants				Date a	and Time Received:	5/15/08 4:	27:45 PM
Project Name:	#277254; Diversif	ied			Check	klist completed and r	eviewed by:	Melissa Valles
WorkOrder N°:	0805392	Matrix Soil Gas			Carrie	er: <u>Client Drop-In</u>		
		Chain	of Cus	stody (COC)	Informati	on		
Chain of custody	y present?		Yes		No 🗆			
Chain of custody	v signed when relinquis	shed and received?	Yes	\checkmark	No 🗆			
Chain of custody	y agrees with sample la	abels?	Yes	\checkmark	No 🗌			
Sample IDs noted	d by Client on COC?		Yes	\checkmark	No 🗆			
Date and Time o	f collection noted by Clie	ent on COC?	Yes	\checkmark	No 🗆			
Sampler's name	noted on COC?		Yes	\checkmark	No 🗆			
		S	amnle	Receipt Info	ormation			
Custody socia in	toot on obinning contoi		Yes		No 🗆	-	NA 🔽	
	tact on shipping contai			_			NA 💌	
Shipping contain	er/cooler in good condi	ition?	Yes	\checkmark	No 🗆			
Samples in prop	er containers/bottles?		Yes	\checkmark	No 🗆			
Sample containe	ers intact?		Yes	\checkmark	No 🗆			
Sufficient sample	e volume for indicated	test?	Yes	\checkmark	No 🗌			
		Sample Preser	vation	and Hold T	me (HT) l	nformation		
All samples rece	ived within holding time	e?	Yes	✓	No 🗌			
Container/Temp	Blank temperature		Coole	er Temp:			NA 🗹	
Water - VOA via	ls have zero headspac	ce / no bubbles?	Yes		No 🗆	No VOA vials subm	itted 🗹	
Sample labels cl	hecked for correct pres	servation?	Yes	~	No 🗌			
TTLC Metal - pH	acceptable upon recei	pt (pH<2)?	Yes		No 🗆		NA 🗹	

Client contacted:

Date contacted:

Contacted by:

Comments:

<u>McC</u>	Campbell Analyti	cal, Inc.	We	b: www.mccampb	ss Road, Pittsburg, CA 94565-1 ell.com E-mail: main@mccam 7-252-9262 Fax: 925-252-92	pbell.com	
AEI Consultants		Client Project ID	: #277254; Di		Date Sampled: 05/14/		
2500 Camino Dia	blo, Ste. #200			_	Date Received: 05/15/	08	
		Client Contact:	Leah Goldberg	g	Date Extracted: 05/22/	08	
Walnut Creek, CA	A 94597	Client P.O.:			Date Analyzed 05/22/	08	
Extraction method: TO1		Check Compound Analytica	as Dichlorod	ifluoroethane		rder: 08	05392
Lab ID	Client ID	Matrix	Initial Pressure	Final Pressure	e 1,1-Difluoroethane	DF	% SS
001A	SG-1	SoilVapor	11.9	23.72	ND	1	N/A
002A	SG-2	SoilVapor	8.13	16.2	ND	1	N/A
003A	SG-3	SoilVapor	12.42	24.74	ND	1	N/A
004A	SG-4	SoilVapor	12.18	24.36	ND	1	N/A
005A	SG-5	SoilVapor	12.21	24.38	ND	1	N/A
006A	SG-6	SoilVapor	11.89	23.78	ND	1	N/A
007A	SG-7	SoilVapor	11.45	22.9	ND	1	N/A
008A	SG-8	SoilVapor	11.48	22.94	ND	1	N/A
009A	SG-9	SoilVapor	11.96	23.84	ND	1	N/A
							<u> </u>
	ing Limit for $DF = 1$;	W	psia	psia	NA	Ν	NA
	ans not detected at or e the reporting limit	SoilVapor	psia	psia	10	μ	g/L

* leak check compound is reported in μ g/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

The IPA reference is:

DTSC, Advisory-Active Soil Gas Investigations, January 28, 2003, page 10, section 2.4.2

"Tracer compounds, such as ...isopropanol..., may be used as leak check compounds, if a detection limit of 10 ug/L or less can be achieved." This implies that 10ug/L is the cut off definition for a leak, which equals 10,000 ug/m3. The other low IPA hits may be due to extremely small leaks or may be naturally occuring in soil gas, particularly at biologically active sites.

DHS ELAP Certification 1644

Angela Rydelius, Lab Manager

When Ouality		<u>c.</u>		Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92:		om
EI Consultants	Client Pr	oject ID: #2	277254	l; Diversified	Date Sampled:	05/14/08	
500 Camino Diablo, Ste. #200					Date Received:	05/15/08	
	Client Co	ontact: Leah	n Gold	berg	Date Extracted:	05/22/08	
Valnut Creek, CA 94597	Client P.	D.:			Date Analyzed:	05/22/08	
		organic Com	nound	ds in uø/m³*			
straction Method: TO15		ytical Method: T	-	us in µg/in		Work Order:	0805392
Lab ID	0805392-001A	0805392-00)2A	0805392-003A	0805392-004A		
Client ID	SG-1	SG-2		SG-3	SG-4		
Matrix	Soil Vapor	Soil Vapo	or	Soil Vapor	Soil Vapor	Reporting DF	
Initial Pressure (psia)	11.9	8.13		12.42	12.18		
Final Pressure (psia)	23.72	16.2		24.74	24.36	SoilVapor	W
Compound		C	Concer	ntration	1	$\mu g/m^3$	ug/L
rt-Amyl methyl ether (TAME)	ND	ND		ND	ND	8.5	NA
enzene	9.5	ND		9.6	ND	6.5	NA
Butyl alcohol (TBA)	ND	ND		ND	ND	62	NA
iisopropyl ether (DIPE)	ND	ND		ND	ND	8.5	NA
hyl tert-butyl ether (ETBE)	ND	ND		ND	ND	8.5	NA
hylbenzene	ND	ND		ND	ND	8.8	NA
ethyl-t-butyl ether (MTBE)	ND	ND		ND	ND	7.3	NA
bluene	9.6	ND		16	ND	7.7	NA
ylenes	ND	ND		36	ND	27	NA
	Surr	ogate Recov	veries	(%)			
%SS1:	103	102		103	105		
%SS2:	99	96		95	99		
%SS3:	95	103		99	107		
omments							
%SS3:	95 ng limit; N/A means	103	pplicat	99	107		

When Ouality		<u>nc.</u>		Web: www.mccamp		94565-1701 @mccampbell.co 5-252-9269	om	
AEI Consultants	Client P	roject ID:	#27725	4; Diversified	Date Sampled:	05/14/08		
2500 Camino Diablo, Ste. #200					Date Received:	05/15/08		
	Client C	Contact: Le	ah Golo	lberg	Date Extracted:	05/22/08		
Walnut Creek, CA 94597	Client P	.0.:			Date Analyzed:	05/22/08		
	Volatile (Organic Co	mpour	nds in µg/m³*				
Extraction Method: TO15	Ana	alytical Method	: TO15			Work Order:	0805392	
Lab ID	0805392-005A	0805392-	-006A	0805392-007A	0805392-008A			
Client ID	SG-5	SG-	6	SG-7	SG-8			
Matrix	Soil Vapor	Soil Va	ıpor	or Soil Vapor	Soil Vapor	- Reporting Limit fo DF =1		
Initial Pressure (psia)	12.21	11.8	89	11.45	11.48			
Final Pressure (psia)	24.38	23.7	8	22.9	22.94	SoilVapor	W	
Compound			Conce	entration	L	$\mu g/m^3$	ug/L	
tert-Amyl methyl ether (TAME)	ND	ND		ND	ND	8.5	NA	
Benzene	7.1	ND		27	ND	6.5	NA	
t-Butyl alcohol (TBA)	ND	ND		ND	ND	62	NA	
Diisopropyl ether (DIPE)	ND	ND		ND	ND	8.5	NA	
Ethyl tert-butyl ether (ETBE)	ND	ND		ND	ND	8.5	NA	
Ethylbenzene	ND	ND		ND	ND	8.8	NA	
Methyl-t-butyl ether (MTBE)	ND	ND		ND	ND	7.3	NA	
Toluene	ND	ND		13	ND	7.7	NA	
Xylenes	ND	ND		ND	ND	27	NA	
	Sur	rogate Rec	overies	s (%)				
%SS1:	107	104		107	102			
%SS2:	101	96		100	99			
%SS3:	109	111		101	#			
Comments								
[*] vapor samples are reported in µg/m ³ .		<u> </u>			<u>.</u>			
ND means not detected above the reporting	-	-	t applica	ble to this analysis	i.			

McCampbell An "When Ouality		<u>c.</u>	Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: main 877-252-9262 Fax: 92	@mccampbell.co	om		
AEI Consultants	Client Pro	oject ID:	#277254; Diversified	Date Sampled:	05/14/08			
2500 Camino Diablo, Ste. #200				Date Received:	05/15/08			
	Client Co	ontact: Le	ah Goldberg	Date Extracted:	05/22/08			
Walnut Creek, CA 94597	Client P.C			Date Analyzed:	05/22/08			
			ompounds in µg/m³*	Dute Thiary 200.	00,22,00			
Extraction Method: TO15		ytical Method			Work Order: (0805392		
Lab ID	0805392-009A							
Client ID	SG-9				-			
Matrix	Soil Vapor		Repo		Reporting DF			
	11.96				DF =:			
Initial Pressure (psia)								
Final Pressure (psia)	23.84				SoilVapor	W		
Compound	Compound Concentration					ug/L		
tert-Amyl methyl ether (TAME)	ND				8.5	NA		
Benzene	ND				6.5	NA		
t-Butyl alcohol (TBA)	ND				62	NA		
Diisopropyl ether (DIPE)	ND				8.5	NA		
Ethyl tert-butyl ether (ETBE)	ND				8.5	NA		
Ethylbenzene	ND				8.8	NA		
Methyl-t-butyl ether (MTBE)	ND				7.3	NA		
Toluene	ND				7.7	NA		
Xylenes	ND				27	NA		
	Surro	ogate Rec	overies (%)					
%SS1:	100							
%SS2:	100							
% SS3:	94							
Comments								
vapor samples are reported in μg/m ³ . ND means not detected above the reportin	ng limit; N/A means	analyte no	t applicable to this analys	is.				
# surrogate diluted out of range or surrog		-	lyzad by 8260B, p) see att	ached parrative				

WcCampbell An "When Ouality"		al, In	<u>c.</u>		Web: www.mccamp	ass Road, Pittsburg, CA bell.com E-mail: main 77-252-9262 Fax: 92:		om	
AEI Consultants	(Client Pro	oject ID:	#27725	4; Diversified	Date Sampled:	05/14/08		
2500 Camino Diablo, Ste. #200						Date Received:	05/15/08		
	(Client Co	ontact: Le	ah Golo	lberg	Date Extracted:	05/22/08		
Walnut Creek, CA 94597	(Client P.C	D.:			Date Analyzed:	05/22/08		
	V	olatile C)rganic Co	mpour	nds in nL/L*				
Extraction Method: TO15	•		ytical Method	-			Work Order:	0805392	
Lab ID	0805392	2-001A	0805392-	-002A	0805392-003A	0805392-004A			
Client ID	SG	-1	SG-2	2	SG-3	SG-4			
Matrix	Soil V	/apor	Soil Va	apor	Soil Vapor	Soil Vapor	Reporting DF		
Initial Pressure (psia)	11.	.9	8.13	3	12.42	12.18	-		
Final Pressure (psia)	23.7	72	16.2	2	24.74	24.36	SoilVapor	W	
Compound				Conce	ntration		nL/L	ug/L	
tert-Amyl methyl ether (TAME)	NI	D	ND		ND	ND	2.0	NA	
Benzene		3.0	ND		3.0	ND	2.0	NA	
t-Butyl alcohol (TBA)	NI	D	ND		ND	ND	20	NA	
Diisopropyl ether (DIPE)	NI	D	ND		ND	ND	2.0	NA	
Ethyl tert-butyl ether (ETBE)	NI	D	ND		ND	ND	2.0	NA	
Ethylbenzene	NI	D	ND		ND	ND	2.0	NA	
Methyl-t-butyl ether (MTBE)	NI	D	ND		ND	ND	2.0	NA	
Toluene		2.5	ND		4.2	ND	2.0	NA	
Xylenes	NI	D	ND		8.2	ND	6.0	NA	
		Surro	ogate Rec	overies	s (%)				
%SS1:	10	13	102	2	103	105			
%SS2:	99	9	96		95	99			
%SS3:	95	5	103	5	99	107			
Comments									
*vapor samples are reported in nL/L.									
ND means not detected above the reporting with the surrogate diluted out of range or surrogate diluted out of surrogate diluted out of range or surrogate diluted out of range or surrogate diluted out of surrogate diluted	-			t applica	ble to this analysis	3.			

McCampbell Analytical, Inc. 1534 Willow Pass Road, Pittsburg "When Ouality Counts" Web: www.mccampbell.com AEI Consultants Client Project ID: #277254; Diversified Date Sampled								om
AEI Consultants		Client Pr	oject ID:	#27725	4; Diversified	Date Sampled:	05/14/08	
2500 Camino Diablo, Ste. #200						Date Received:	05/15/08	
		Client C	ontact: Le	ah Golo	dberg	Date Extracted:	05/22/08	
Walnut Creek, CA 94597		Client P.	D.:			Date Analyzed:	05/22/08	
		Volatile (Organic Co	mpour	nds in nL/L*			
Extraction Method: TO15			ytical Method	-			Work Order:	0805392
Lab ID	08053	92-005A	0805392	-006A	0805392-007A	0805392-008A		
Client ID	S	G-5	SG-	6	SG-7	SG-8		
Matrix	Soil	Vapor	Soil Va	apor	Soil Vapor	Soil Vapor	Reporting DF	
Initial Pressure (psia)	12	2.21	11.8	9	11.45	11.48		
Final Pressure (psia)	24	4.38	23.7	8	22.9	22.94	SoilVapor	W
Compound				Conce	entration		nL/L	ug/L
tert-Amyl methyl ether (TAME)	1	ND	ND		ND	ND	2.0	NA
Benzene		2.2	ND		8.5	ND	2.0	NA
t-Butyl alcohol (TBA)	1	ND	ND		ND	ND	20	NA
Diisopropyl ether (DIPE)	1	ND	ND		ND	ND	2.0	NA
Ethyl tert-butyl ether (ETBE)	1	ND	ND		ND	ND	2.0	NA
Ethylbenzene	1	ND	ND	1	ND	ND	2.0	NA
Methyl-t-butyl ether (MTBE)	1	ND	ND		ND	ND	2.0	NA
Toluene		2.0	ND		3.4	ND	2.0	NA
Xylenes	1	ND	ND	1	ND	ND	6.0	NA
		Surr	ogate Rec	overies	s (%)			
%SS1:	1	07	104	Ļ	107	102		
%SS2:	1	01	96		100	99		
%SS3:	1	09	111	l	101	#		
Comments								
*vapor samples are reported in nL/L.								
ND means not detected above the reportin # surrogate diluted out of range or surroga	-		-	t applica	able to this analysis			

McCampbell An "When Ouality		<u>c.</u>	Web: www.mccam	Pass Road, Pittsburg, CA pbell.com E-mail: main 877-252-9262 Fax: 92	n@mccampbell.co	m	
AEI Consultants	Client Pro	oject ID:	#277254; Diversified	Date Sampled:	05/14/08		
2500 Camino Diablo, Ste. #200				Date Received:	05/15/08		
	Client Co	ontact: Le	ah Goldberg	Date Extracted:	05/22/08		
Walnut Creek, CA 94597	Client P.C			Date Analyzed:			
				Date Anaryzed.	03/22/08		
Extraction Method: TO15		Frganic Co ytical Method	mpounds in nL/L*		Work Order: (0805392	
Lab ID	0805392-009A	juou notio				,000072	
Client ID	SG-9				_		
	R			Reporting			
Matrix	Soil Vapor			DF			
Initial Pressure (psia)	11.96						
Final Pressure (psia)	23.84				SoilVapor	W	
Compound			Concentration		nL/L	ug/L	
tert-Amyl methyl ether (TAME)	ND				2.0	NA	
Benzene	ND				2.0	NA	
t-Butyl alcohol (TBA)	ND				20	NA	
Diisopropyl ether (DIPE)	ND				2.0	NA	
Ethyl tert-butyl ether (ETBE)	ND				2.0	NA	
Ethylbenzene	ND				2.0	NA	
Methyl-t-butyl ether (MTBE)	ND				2.0	NA	
Toluene	ND				2.0	NA	
Xylenes	ND				6.0	NA	
	Surro	ogate Rec	overies (%)				
%SS1:	100						
%SS2:	100						
%SS3:	94						
Comments							
vapor samples are reported in nL/L.					-		
ND means not detected above the reporting	ng limit; N/A means	s analyte no	t applicable to this analys	is.			
surrogate diluted out of range or surrog	ate coelutes with and	other peak.					
) sample diluted due to high organic cont	ent: m) this compou	and was one	1				

	Campbell Analyti "When Ouality Counts"	cal, Inc.	We		uss Road, Pittsburg, CA 94565- ell.com E-mail: main@mccan 17-252-9262 Fax: 925-252-92	npbell.com	
AEI Consultants		Client Project ID:	#277254; Di		Date Sampled: 05/14		
2500 Camino Dia	blo, Ste. #200				Date Received: 05/15	/08	
		Client Contact:	Leah Goldberg	5	Date Extracted: 05/20/	/08-05/2	21/08
Walnut Creek, CA	A 94597	Client P.O.:			Date Analyzed 05/20	/08-05/2	21/08
Extraction method TO3	0	(C6-C12) Volatile	Hydrocarbo I methods TO3	ns as Gasolir		rder: 08	05392
Lab ID	Client ID	-	Initial Pressure	Final Pressure		DF	% SS
001A	SG-1	SoilVapor	11.9	23.72	ND	1	N/A
002A	SG-2	SoilVapor	8.13	16.2	ND	1	N/A
003A	SG-3	SoilVapor	12.42	24.74	ND	1	N/A
004A	SG-4	SoilVapor	12.18	24.36	ND	1	N/A
005A	SG-5	SoilVapor	12.21	24.38	ND	1	N/A
006A	SG-6	SoilVapor	11.89	23.78	ND	1	N/A
007A	SG-7	SoilVapor	11.45	22.9	ND	1	N/A
008A	SG-8	SoilVapor	11.48	22.94	ND	1	N/A
009A	SG-9	SoilVapor	11.96	23.84	ND	1	N/A
							+
	ing Limit for DF =1; ans not detected at or	W			NA	N	JA
	the reporting limit	SoilVapor			1800	με	g/m³

*soil vapor samples are reported in $\mu g/m^3$.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?) g) strongly aged gasoline or diesel range compounds are significant; j) sample diluted due to high organic content; k) this compound's reporting limit does not meet the ESL for residential soil gas; m) no recognizable pattern.j) sample diluted due to high organic content.

DHS ELAP Certification N° 1644

<u> </u>	Campbell Analyti "When Ouality Counts"	cal, Inc.	We	1534 Willow Pa b: www.mccampb Telephone: 87		mpbell.com		
AEI Consultants		Client Project ID:	#277254; Di		Date Sampled: 05/14/08			
2500 Camino Dia	blo, Ste. #200			Date Received: 05/15/08				
	04507	Client Contact: I	Leah Goldberg	5	Date Extracted: 05/20)/08-05/2	21/08	
Walnut Creek, CA	A 94597	Client P.O.:			Date Analyzed 05/20)/08-05/2	21/08	
Extraction method TO3	0	(C6-C12) Volatile Analytical	e Hydrocarbo methods TO3	ns as Gasoliı		Order: 08	05392	
Lab ID	Client ID	Matrix 1	Initial Pressure	Final Pressure	e TPH(g)	DF	% SS	
001A	SG-1	SoilVapor	11.9	23.72	ND	1	N/A	
002A	SG-2	SoilVapor	8.13	16.2	ND	1	N/A	
003A	SG-3	SoilVapor	12.42	24.74	ND	1	N/A	
004A	SG-4	SoilVapor	12.18	24.36	ND	1	N/A	
005A	SG-5	SoilVapor	12.21	24.38	ND	1	N/A	
006A	SG-6	SoilVapor	11.89	23.78	ND	1	N/A	
007A	SG-7	SoilVapor	11.45	22.9	ND	1	N/A	
008A	SG-8	SoilVapor	11.48	22.94	ND	1	N/A	
009A	SG-9	SoilVapor	11.96	23.84	ND	1	N/A	
-	ing Limit for $DF = 1$;	W			NA	Ν	JA	
	ans not detected at or the reporting limit	SoilVapor			500	n	L/L	

*soil vapor samples are reported in nL/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

j) sample diluted due to high organic content.

Angela Rydelius, Lab Manager

DHS ELAP Certification N° 1644

1534 Willow Pass Road, Pittsburg, CA 94565-1701 Web: www.mccampbell.com E-mail: main@mccampbell.com Telephone: 877-252-9262 Fax: 925-252-9269

QC SUMMARY REPORT FOR TO15

W.O. Sample Matrix: Soil Vapor

QC Matrix: Soil Vapor

WorkOrder: 0805392

EPA Method TO15	Extrac	tion TO	15		Bat	tchID: 35	670	Sp	iked Samp	le ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%))
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
tert-Amyl methyl ether (TAME)	N/A	25	N/A	N/A	N/A	107	107	0	N/A	N/A	70 - 130	30
Benzene	N/A	25	N/A	N/A	N/A	110	110	0	N/A	N/A	70 - 130	30
t-Butyl alcohol (TBA)	N/A	25	N/A	N/A	N/A	95.4	95.3	0.103	N/A	N/A	70 - 130	30
Diisopropyl ether (DIPE)	N/A	25	N/A	N/A	N/A	106	106	0	N/A	N/A	70 - 130	30
Ethyl tert-butyl ether (ETBE)	N/A	25	N/A	N/A	N/A	103	103	0	N/A	N/A	70 - 130	30
Ethylbenzene	N/A	25	N/A	N/A	N/A	103	102	1.20	N/A	N/A	70 - 130	30
Methyl-t-butyl ether (MTBE)	N/A	25	N/A	N/A	N/A	104	103	0.413	N/A	N/A	70 - 130	30
Toluene	N/A	25	N/A	N/A	N/A	104	106	1.93	N/A	N/A	70 - 130	30
Xylenes	N/A	75	N/A	N/A	N/A	98.2	94.9	3.44	N/A	N/A	70 - 130	30
%SS1:	N/A	500	N/A	N/A	N/A	94	94	0	N/A	N/A	70 - 130	30
%SS2:	N/A	500	N/A	N/A	N/A	105	108	2.45	N/A	N/A	70 - 130	30
%SS3:	N/A	500	N/A	N/A	N/A	93	87	6.56	N/A	N/A	70 - 130	30

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 35670 SUMMARY								
Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed	
0805392-001A	05/14/08 10:10 AM	05/15/08	05/22/08 2:52 AM	0805392-002A	05/14/08 11:47 AM	05/15/08	05/22/08 3:37 AM	
0805392-003A	05/14/08 12:35 PM	I 05/15/08	05/22/08 4:17 AM	0805392-004A	05/14/08 3:23 PM	05/15/08	05/22/08 5:04 AM	
0805392-005A	05/14/08 3:51 PM	I 05/15/08	05/22/08 5:54 AM	0805392-006A	05/14/08 12:57 PM	05/15/08	05/22/08 6:43 AM	
0805392-007A	05/14/08 1:23 PM	I 05/15/08	05/22/08 7:33 AM	0805392-008A	05/14/08 2:32 PM	05/15/08	05/22/08 8:12 AM	
0805392-009A	05/14/08 2:57 PM	I 05/15/08	05/22/08 8:57 AM					

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

NONE

"When Ouality Counts"

QC SUMMARY REPORT FOR TO3

W.O. Sample Matrix: Soil Vapor

QC Matrix: Soil Vapor

WorkOrder: 0805392

EPA Method TO3	EPA Method TO3 Extraction TO3					BatchID: 35552 Spiked Sample ID: N/A					N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(g)	N/A	1250	N/A	N/A	N/A	101	101	0	N/A	N/A	70 - 130	20
All target compounds in the Method E								e following			,	

BATCH 35552 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805392-001A	05/14/08 10:10 AM	05/15/08	05/20/08 6:21 PM	0805392-002A	05/14/08 11:47 AM	05/15/08	05/20/08 6:59 PM
0805392-003A	05/14/08 12:35 PM	05/15/08	05/20/08 7:35 PM	0805392-004A	05/14/08 3:23 PM	05/15/08	05/20/08 8:13 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

"When Ouality Counts"

QC SUMMARY REPORT FOR TO3

W.O. Sample Matrix: Soil Vapor

QC Matrix: Soil Vapor

WorkOrder: 0805392

EPA Method TO3	Extrac	tion TO	3		Bat	chID: 35	671	Sp	iked Samp	le ID:	N/A	
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acce	eptance	Criteria (%)	
Analyte	nL/L	nL/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	RPD	LCS/LCSD	RPD
TPH(g)	N/A	1250	N/A	N/A	N/A	98.5	98.6	0.0663	N/A	N/A	70 - 130	20

NONE

BATCH 35671 SUMMARY

Lab ID	Date Sampled	Date Extracted	Date Analyzed	Lab ID	Date Sampled	Date Extracted	Date Analyzed
0805392-005A	05/14/08 3:51 PM	05/15/08	05/20/08 8:49 PM	0805392-006A	05/14/08 12:57 PM	05/15/08	05/20/08 9:28 PM
0805392-007A	05/14/08 1:23 PM	05/15/08	05/21/08 9:48 AM	0805392-008A	05/14/08 2:32 PM	05/15/08	05/20/08 10:42 PM
0805392-009A	05/14/08 2:57 PM	05/15/08	05/20/08 11:18 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate. NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

DHS ELAP Certification N° 1644

APPENDIX C

Well Survey

Monitoring Well Exhibit Prepared For: **AEI Consultants**

DESCRIPTION	NORTHING	EASTING	LATITUDE	LONGITUDE	ELEV (PVC)	ELEV (BOX)
MW-08	2098479.9	6071106.7	37. 7458223	-122. 1967402	10. 01	10, 97
MW-10	2098581.7	6071161.7	37. 7461047	-122. 1965564	10. 25	10, 70
MW-11	2098422.8	6071081.2	37. 7456644	-122. 1968246	11. 07	11, 78
MW-12	2098407.4	6071192.2	37. 7456274	-122. 1968247	10. 66	11, 36
MW-26	2098463.5	6070859.3	37. 7457648	-122. 1975944	11. 17	11, 45
MW-27	2098545.7	6070762.0	37. 7457858	-122. 1979361	10. 06	10, 66
EW-01	2098545.5	6071090.9	37. 7457654	-122. 1967934	11. 30	11, 66

BASIS OF COORDINATES AND ELEVATIONS:

COORDINATES ARE CALIFORNIA STATE PLANE ZONE 3 COORDINATES FROM GPS OBSERVATIONS USING UNIVERSITY OF CALIFORNIA BAY AREA DEFORMATION CORS STATION OBSERVATION FILES AND BASED ON THE CALIFORNIA SPATIAL REFERENCE CENTER DATUM, REFERENCE EPOCH 2000.35.

COORDINATE DATUM IS NAD 83(CORS).

DATUM ELLIPSOID IS GRS80.

REFERENCE GEOID IS GEOID03.

CORS STATIONS USED WERE FARB AND TIBB.

VERTICAL DATUM IS NAVD 88 FROM GPS OBSERVATIONS.

Monitoring Well Survey 625 Hegenberger Road Oakland Alameda County California

paul