March 28, 2003

RISK EVALUATION AND CLOSURE REPORT

625 Hegenberger Road Oakland, California

AEI Project No. 6274

Prepared For

Diversified Investment and Management Corporation 400 Oyster Point Boulevard South San Francisco, CA 94080

Prepared By

AEI Consultants 2500 Camino Diablo, Suite 200 Walnut Creek, CA 94597 (925) 283-6000

۰.

TABLE OF CONTENTS

1.0 INTRODUCTION	1
2.0 SITE DESCRIPTION & BACKGROUND	2
3.0 Environmental Setting	5
3.1 Geology and Hydrology	
3.2 Exposure Pathways 3.2.1 Groundwater Exposure Pathways	
3.2.2 Soil & Soil Vapor Exposure Pathways	
4.0 CONTAMINANT FATE AND TRANSPORT ANALYSIS	8
5.0 CONTAMINANTS OF CONCERN	9
6.0 RISK ASSESSMENT	10
6.1 City of Oakland Tiered Analysis	10
6.2 RWQCB RBSL Comparative Analysis	11
6.2 RWQCB RBSL Comparative Analysis	11 11
6.2 RWQCB RBSL Comparative Analysis	11 11
6.2 RWQCB RBSL Comparative Analysis	11 <i>11</i> <i>12</i>
6.2 RWQCB RBSL Comparative Analysis	11 <i>11</i> <i>12</i> 13
 6.2 RWQCB RBSL Comparative Analysis	11 <i>11</i> <i>12</i> 13 13
6.2 RWQCB RBSL Comparative Analysis	11 <i>11</i> <i>12</i> 13 13 13
6.2 RWQCB RBSL Comparative Analysis	11 11 12 13 13 13

Figures

FIGURE 1	SITE LOCATION MAP
FIGURE 2	OFF-SITE WELL LOCATIONS
FIGURE 3	SITE PLAN
FIGURE 4	WATER TABLE CONTOURS: 9/11/02
FIGURE 5	HYDROCARBON CONCENTRATIONS: 9/11/02
FIGURE 6	TPH-G CONCENTRATION CONTOURS
FIGURE 7	BENZENE CONCENTRATION CONTOURS
FIGURE 8	MTBE CONCENTRATION CONTOURS
FIGURE 9	GROUNDWATER TREATMENT SYSTEM COMPONENT LOCATIONS
FIGURE 10	MW-08: HYDROCARBON CONCENTRATION TRENDS
FIGURE 11	MW-11: Hydrocarbon Concentration Trends
FIGURE 12	EW-01: HYDROCARBON CONCENTRATION TRENDS
FIGURE 13	GEOLOGIC CROSS SECTION

Risk Evaluation & Closure Report AEI Project No. 6274 March 28, 2003 Page i

<u>Tables</u>

TABLE 1	FINAL EXCAVATION SIDEWALL SOIL SAMPLE ANALYTICAL DATA
TABLE 2	Post Aeration Confirmation Soil Sample Analytical Data
TABLE 3	WATER TABLE ELEVATION DATA
TABLE 4	GROUNDWATER QUALITY DATA
TABLE 5	GROUNDWATER SAMPLE ANALYTICAL DATA
TABLE 6	GROUNDWATER SAMPLE ANALYTICAL DATA: AEI-B28
TABLE 7	GROUNDWATER TREATMENT SYSTEM OPERATION SUMMARY
TABLE 8	TIER 2GROUNDWATER RBSLs (OAKLAND)
TABLE 9	TIER 2SURFACE SOIL RBSLs (OAKLAND)
TABLE 10	TIER 2SUBSURFACE SOIL RBSLS (OAKLAND)
TABLE 11	GROUNDWATER RBSLS (RWQCB)
TABLE 12	SURFACE SOIL RBSLS (RWQCB)
TABLE 13	SUBSURFACE SOIL RBSLS (RWQCB)

Appendices

APPENDIX A APPENDIX B ELIGIBILITY CHECKLIST (OAKLAND RBSLS) FATE & TRANSPORT MODEL OUTPUTS

1.0 INTRODUCTION

AEI Consultants (AEI) has prepared this Site Closure Report on behalf of the Diversified Investments & Management Corporation (Diversified), owners of the property located at 625 Hegenberger Road in the City of Oakland, California (refer to Figures 1 and 3). AEI has been retained by Diversified to provide environmental engineering and consulting services related to the release of fuel hydrocarbons from the former underground storage tank (UST) system at the property. The Alameda County Health Care Services Agency (ACHCSA) is the lead local oversight agency for this site, working under cooperative agreement with the San Francisco Bay Regional Water Quality Control Board (RWQCB), and providing regulatory guidance during the mitigation of the release.

As requested by ACHCSA, this report presents and evaluation of the risk to human health and the environment posed by the release of petroleum hydrocarbons from the site. The evaluation was performed in accordance with the guidance provided by the City of Oakland Public Works Agency, *Oakland Urban Land Redevelopment Program: Guidance Document* (January 2000) and the RWQCB's *Application of Risk Based Screening Levels and Decision Making to Sites with Impacted Soil and Groundwater* (December 2001). A summary of historical site conditions, investigative efforts, and treatment activities is presented.

The evaluations discussed herein conclude that although localized dissolved phase hydrocarbons remain, the case should be eligible for "no further action" status. The following conditions support this recommendation:

- Soil treatment activities successfully removed nearly all hydrocarbon mass from unsaturated zone soils.
- Hydrocarbon mass in the shallow aquifer began to decrease upon completion of soil treatment and continued to decrease as the groundwater treatment program was implemented the former source area. Groundwater monitoring data has proven that the remaining dissolved phase hydrocarbons are localized to the former source area. Modeling confirms that the MTBE plume should not spread past its current extent, and should begin to recede. The vertical extent of the release was confirmed to be limited and a regional aquitard was identified that would limit the potential for impact to deeper aquifers of the area.
- The comparative human health risk evaluation indicates the low concentrations of hydrocarbons remaining in the shallow soil and groundwater does not pose a significant risk to human health or the environmental.
- No existing production wells or surface water were identified that could be impacted by this release.

2.0 SITE DESCRIPTION & BACKGROUND

The site is located on the northwestern corner of Collins Drive and Hegenberger Road in an area of the City of Oakland zoned for commercial and light industrial use. The property is bound on the north by a commercial warehouse and on the west by the Oakland-Alameda County Coliseum Complex. The site is currently vacant and unimproved.

<u>Prior to 1993</u>

The property was reportedly developed as a gasoline service station in the mid 1960s, which was subsequently abandoned in the mid 1970s. Subsurface Consultants performed two phases of site investigation in 1988 and 1990, during which a total of 23 soil borings (labeled 1 through 23) were advanced, five of which were converted to groundwater monitoring wells (labeled MW-8, MW-10, MW-11, MW-12, and MW-16. The borings were located around the former tank hold and dispenser island. The highest concentrations of petroleum hydrocarbons were detected adjacent to and east of the former tank (areas that were subsequently excavated).

Tank Removal - October 1993

In October 1993, three underground gasoline storage tanks (12,000 gallons each), one 260 gallon waste oil tank (also identified as a "sump"), and related underground piping were removed from the site under the observation of Levine Fricke. Approximately 250 cubic yards (cy) of soil was excavated during the tank removal, which was stockpiled onsite. During the tank removal activities, tank and piping failures were evident upon inspection. Seventeen (17) soil samples and two groundwater samples collected by Levine Fricke during the tank removal activities confirmed that impacted soils and groundwater was present at the site. Please refer to the *Tank Closure Report on Removal of Underground Fuel Storage Tanks and Related Structures*, January 24, 1994 by Levine Fricke for details on the tank removal and previous sampling activities. The location of the former tanks and dispensers are presented on Figure 3.

<u>Site Investigation – January 1995</u>

In January 1995, Levine Fricke advanced an additional thirteen (13) soil borings (labeled LF24 though LF36), one of which was converted to a monitoring well (MW-24). Again, soil sample analytical data revealed that impacted soils were located around the former tank hold. Groundwater monitoring of the resulting network of six monitoring wells, which occurred on January 10, 1995, confirmed that a dissolved phase hydrocarbon plume was present, primarily in the area of MW-8. Refer to the *Report on a Supplemental Site Investigation and a Conceptual Remediation Plan 625 Hegenberger Road Oakland, California*, April 5, 1995 by Levine Fricke for details of the investigation.

The quarterly monitoring of the six monitoring wells was performed by Levine Fricke through January 1995. AEI began monitoring the wells in October 1995. In March 1996, AEI destroyed one of the wells (designated MW-24) in anticipation of excavation activities.

Soil Treatment - April to August 1996

Beginning in April 1996, AEI excavated a total of 1,600 cubic yards of impacted soils from around

the former tank hold and dispenser locations. The final extent of the excavation is shown on Figure 3. Soil samples were collected from the sidewalls of the excavation at several stages during the excavation work. The analytical data of samples from the farthest extent of the excavation are presented in Table 1. With the exception of approximately 20 cy of soil impacted with oil range hydrocarbons which was transported to a disposal facility, the excavated soil was aerated onsite. The soil was aerated in two batches, measuring approximately 150' by 180' and 12 inches deep. Baseline samples were collected from the stockpiles. Bi-weekly tilling was performed between April 12, 1996 and June 19, 1996 for the first aeration batch and between July 17, 1996 and September 5, 1996 for the second.

Following aeration, 22 samples collected from the treated soil (refer to Table 2). Petroleum hydrocarbons were detected at very low concentration in only two of the 22 samples (benzene at 0.007 mg/kg, toluene at 0.011 mg/kg, and xylenes at 0.010 mg/kg), and based in these results, Mr. Barney Chan of the ACHCSA authorized the reuse of the treated soil to backfill the excavation.

The excavation was backfilled with pea gravel, to bridge the capillary fringe, to approximately ¹/₂ foot above static groundwater. The remainder of the excavation was filled with the treated soil. Refer to the *Phase II Environmental Site Assessment* report, March 3, 1997 prepared by AEI for detailed methods and results of the soil treatment activities.

August 1997 – June 2000

In August 1997, AEI submitted a Remedial Action Plan (RAP) the ACHCSA, which described a plan to enhance in-situ biodegradation to reduce dissolved phase hydrocarbon concentrations within the area of the former excavation. On October 1, 1999, AEI installed one (1) 4" diameter well (EW-01) just west of the former tank hold. The well was placed in the center of the plume and screened from 5 to 22.5 feet bgs, for use as an extraction well for batch groundwater treatment.

Two additional groundwater monitoring wells (MW-26 and MW-27) were installed on the western end of the site (Figure 3) in June 2000. The wells were constructed of 2" diameter well casing, screened from 5 to 15 feet bgs. Also in June 2000, one soil boring (AEI-B28) was advanced (Figure 3). The boring was placed in the apparent center of the dissolved hydrocarbon plume. The boring was advanced to 44.5 feet bgs to determine the vertical extent of the plume. Three groundwater samples were analyzed, the results of which revealed significant attenuation with depth of the hydrocarbon plume (Table 6). Refer to the *Soil Boring and Groundwater Monitoring Well Installation and Sampling Report*, dated September 10, 2000 for detailed results of these activities.

Groundwater Treatment – June 2001 to February 2002

A groundwater treatment program was initiated in June 2001, and was based on the August 1997 RAP, with several modifications. The system was designed to supplement natural bacterial colonies present in the shallow water table aquifer with bacterial colonies cultured to metabolize aromatic hydrocarbons. The system consisted of an extraction well (EW-01), batch treatment tank, batch injection network of 12 batch injection points, and air sparging system consisting of a compressor and 12 sparge points. The goal of the treatment program was to reduce dissolved

hydrocarbon concentrations, specifically TPH-g and BTEX, within the source area. Of particular importance when designing the system was the presence of the pea gravel backfill material placed within the bottom of the former excavation in the source area. This material has a higher porosity and hydraulic conductivity than the native soils, therefore allowing for distribution of the oxygenated water and injected waters.

The system operated from June 2001 through February 2002, during which time 27 batches were treated, totaling approximately 13,000 gallons. The treated water was then re-injected, to "spike" the groundwater system with oxygenated water and active culture. System operation statistics are presented in Table 7 and a site plan with system components is presented on Figure 9. Refer to the *Groundwater Treatment and Site Closure Summary Report*, May 3, 2002 and the *Monitoring and Treatment Report*, dated November 21, 2002, for details on system operation.

Supplemental Treatment (MW-8) – July to September 2002

Due to the remnant hydrocarbons present in this well after treatment had ceased (TPH-g at 32,000 μ g/l and benzene at 2,000 μ g/l), localized treatment of this well was requested by ACHCSA. On July 29, 2002, MW-8 was purged of approximately 5 gallons and a water sample was collected. Following sample collection, a total of nine (9) socks of Regensis, Inc. Oxygen Release Compound (ORC) were suspended in the well, which were placed to cover the water column exposed by the well. The socks were allowed to remain in the well until September 11, 2002, when the next monitoring event of the entire well network occurred.

Throughout the history of the site, groundwater monitoring and sampling activities have been performed. Historical water table elevation data, groundwater quality data, and sample analytical data are summarized in Tables 3 through 5. Water table contours and dissolved phase hydrocarbon concentrations from the September 11, 2002 event are presented on Figures 4 and 5. Iso-concentration contours for TPH-g, benzene, and MTBE are presented on Figures 6 through 8. Dissolved phase hydrocarbon trends are presented for selected wells MW-8, MW-11 and EW-01 on Figures 10 through 12.

3.0 Environmental Setting

3.1 Geology and Hydrology

According to logs of borings advanced by AEI, the near surface sediments beneath the site generally consist of clay soils with silt and fine sand to approximately 10 feet bgs. First encountered groundwater exists beneath the site between 5 and 6.5 feet bgs. The water bearing deposits in this shallow saturated zone consists of clay with fine to medium sand with angular clasts up to 2 cm in size. Sand increases with depth to approximately 16 feet bgs.

The deeper soil boring (AEI-B28) revealed silty clay below 16 feet. Sands and sub-angular to angular gravel increase with depth to approximately 37 feet bgs below which stiff, tight clay was encountered. Refusal conditions were encountered at 44.5 feet bgs. The presence of a clay aquitard in this depth range was confirmed during a review of logs for deep borings performed at the Oakland Coliseum Complex. A geologic cross-section of the site based in borings advanced by AEI is presented on Figure 13.

Water level measurements have been collected from the eight existing wells in order to estimate the groundwater flow direction. Water table contours for the most recent event (September 2002) are presented on Figure 4, along with a rose diagram of historic groundwater flow direction. Although water table contours reveal a complicated water table; a westerly or northwesterly flow direction is observed. Over the course of assessment at this site, groundwater has consistently flowed to the west, with a hydraulic gradient generally of 10^{-3} ft/ft. Water table elevations are summarized in Table 3.

3.2 Exposure Pathways

An exposure pathway analysis has been performed to identify which specific exposure pathways are complete for exposure of human or environmental receptors. Each pathway is discussed in detail in following sections.

Medium	Exposure Pathway	Complete at this site (yes / no)	Rationale
Surface Soil	Ingestion, dermal contact, & vapor inhalation	Yes	
Subsurface Soil*	Vapor inhalation - indoor	Yes	Assuming slab-on-grade commercial development
	Vapor inhalation - outdoor	Yes	
	Drinking water impacted by leachate	No	No drinking water wells, resources in area (Sec. 3.2.1)
	Vapor inhalation – indoor	Yes	
Groundwater	Vapor inhalation - outdoor	Yes	
	Ingestion of groundwater	No	No water wells in area and no threat to deeper aquifers (Sec 3.2.1).
Surface Water	Ingestion and dermal contact, ecological concerns	No	No surface waters within 2,600 feet of site (Sec. 3.2.1)

Exhibit 1: Exposure Pathway Summary

* Subsurface soil: defined as soils greater than 3 feet deep by Oakland (Jan. 2000) and 10 feet deep by RWQCB (Dec. 2001).

3.2.1 Groundwater Exposure Pathways

The site is located approximately 3 miles east of the San Francisco Bay, however several sloughs or channels exist throughout the area, the nearest of which is the a tidal area of the Airport Channel, located approximately 1,600 feet to west of the site. No reservoirs or any other surface water bodies were identified closer to the site. Due to the distance from the property and the fact that western extent of the hydrocarbon plume is confined to beneath the property, these surface waters will not be considered threatened by the release. In addition, no preferential pathways are known to exist within or directly around the former source area that could lead to preferential contaminant migration.

According the San Francisco Bay RWQCB Water Quality Control Plan – San Francisco Bay Basin (Basin Plan), the site is located in the Lake Merritt sub-basin of the South Bay Basin. Table 2.4 of the Basin Plan (p. 2-17) indicates that the only beneficial uses of water within the sub-basin are surface water recreation and waters (assumed to be surface waters) for spawning and general wildlife. No beneficial use of groundwater is noted in the plan for this sub-basin. Although no current beneficial use was noted, based on the well survey discussed below, historical groundwater pumping from the area is known. However, all production wells identified in the area are screened 100 to 300 feet below the shallow water table aquifer and below the clay aquitard that exists in the area. Groundwater quality beneath the site has generally been low, with high dissolved solids, as indicated by

specific conductivity measurements of greater than 2,000 μ S/cm during many of the monitoring events, precluding these waters from use for municipal purposes.

A survey of deep wells within ¹/₂ mile radius of the site was performed at the Department of Water Resources (DWR) in Sacramento. Additionally, information was provided to AEI by ACHCSA regarding several reportedly abandon well field in the site area. Please refer to the following table for information on the wells identified and to Figure 2 for their locations.

Exhibit	2: Offsite	e Wells

Location	Distance (feet)	Direction	Depth (feet)	Screen Interval	Use
1) Fitchburg well group (20 wells?)	~ 2,500	Northwest	NA	NA	Municipal
2) Damon well group	~ 4,500	North	NA	NA	Municipal
3) Oakland Coliseum (11 wells)	1,000 - 2,500	Northwest	70 - 112	78 - 98	Observation
4) 7825 San Leandro Street (1 well)	1,250	Northeast	510	324 – 479	Industrial
5) 550 85 th Avenue (2 wells?)	1,850	Southeast	448	130-240	Industrial

NA -- Information not available

Although the screened interval of the Fitchburg and Damon well groups were not available, the other well logs indicate that the wells at the Coliseum site are screened in the 70 to 100 foot bgs range. The other two wells are screened below 100 feet deep. Although these various wells may pose as a conduit to deeper water bearing zones for near surface impacted groundwater vertical migration, these wells are all outside of the limit of impacted groundwater associated with this site. The exact locations of the abandoned former municipal well fields have not been determined; however, the dissolved hydrocarbon plume associated with this site is confined to beneath the property is each direction toward the suspected well fields. Unless further information becomes available regarding currently unknown deep wells, AEI does not consider any of the wells identified to date as threatened by this site.

3.2.2 Soil & Soil Vapor Exposure Pathways

Three forms of exposure pathways warrant consideration: 1) direct contact with impacted surface soil, including dermal contact and ingestion, 2) volatilization of organic compounds to both indoor breathing space and outdoor ambient air, and 3) leaching of contaminants from soils to groundwater. At this site, each on of these potential exposure pathways could be considered complete. Although the property us currently undeveloped, future commercial development will be assumed.

4.0 CONTAMINANT FATE AND TRANSPORT ANALYSIS

Contaminant fate and transport modeling was performed utilizing the Domenico analytical model (Tong, et al, 1999). Modeling for predicted MTBE plume extent was performed because MTBE is the only contaminant detected outside of the source area and, therefore, the only contaminant that could migrate from the site.

The model is an analytical solution to the advection-dispersion partial-differential equation of organic contaminant transport processes in groundwater. The model contains one dimensional groundwater velocity, three-dimensional dispersion (longitudinal, transverse, and vertical), first order degradation rate constant, finite contaminant source dimensions. The result is a predicted contaminant concentration along the centerline of the plume, and therefore estimate plume length.

The use of the model requires contaminant spatial concentrations data at a minimum of one source well and one to two down gradient wells. The data must also show a reasonable plume pattern (contaminant concentration is highest in the source well, decreasing down gradient). After input of well locations and concentrations, the model is calibrated by adjusting three model input parameters to fit the observed groundwater concentration pattern. After calibration, the model is used to predict the horizontal plume length. General model assumptions are as follows:

- The source area is finite
- The source is present at a steady state concentration
- The aquifer is homogeneous
- Groundwater flows in one dimension
- Degradation is determined by a first order decay constant
- The contaminant concentration predictions are along the centerline of bilaterally symmetrical plume
- Chemical transport occurs only as a result of advection
- Molecular diffusion is neglected
- Sorption (retardation) is neglected

The model has been run utilizing MTBE concentrations detected at the site in September 2002. The retardation factor for MTBE is approximately 2, therefore the model is adequately conservative for this use.

Well EW-01 was selected as the source area well, which had MTBE detected at 470 μ g/l. Wells MW-16 (250 μ g/l MTBE) and MW-27 (0.52 μ g/l MTBE) were selected as wells along the plume centerline. This is appropriate based on the fairly consistent westerly groundwater flow direction (rose diagram, Figure 4).

The input and results of the model for the site conditions are presented in Appendix B (Run #1). As can be seen for the logarithmic plot of normalized concentrations vs. distance, the low source area concentration of 470 μ g/l does not support the plume configuration present at the site. With these inputs, iterations of the variables for decay, dispersivity, groundwater velocity were varied in an attempt to get a line fit. When a much higher source area concentration (3,000 μ g/l MTBE) is

input (Run #2), the other input variables can be iterated to find a plot that strongly agrees with the observed contaminant distribution. This finding supports the argument that the plume MTBE plume will begin to recede, as the effects of reduced source area MTBE concentrations propagate throughout the aquifer.

The values for decay, dispersivity, groundwater velocity that were found by iteration to provide a best fit with the data are within a range that can be expected for groundwater flow through clayey soils. The reader is referred to Domenico Spreadsheet Analytical Model Manual (Tong, et al, 1999) for a detailed sensitivity analysis of these variables.

Based on this model, it is concluded that the very low MTBE concentrations present in the source area cannot support an expanding dissolved phase plume and the plume will not spread down gradient of the site.

5.0 CONTAMINANTS OF CONCERN

The investigation efforts performed to date have identified that the material released from the site is consistent with gasoline range fuel hydrocarbons. For the purpose of identifying and assessing the risk to human health and the environment, a summary of each specific Contaminant of Concern (COC) identified at the site is presented here. As a conservative assumption, the highest concentrations of each COC present, after treatment of soil and water is used, along with arithmetic mean concentrations, which reveal a much lower concentrations representative of the overall subsurface conditions.

Contaminant	Maximum and Mean** Concentration Remaining (sample ID)					
	Surface Soil (< 3 ft bgs) in mg/kg*		Subsurface Soil (<water table and >3 ft bgs) in mg/kg*</water 		Groundwater in µg/l (all data as of 9/11/02)	
	Max	Mean	Max	Mean	Max	Mean
Benzene	0.007 (AR8)	0.0027	0.25 (EP7)	0.06	520 (MW-8)	115
Toluene	0.011 (AR8)	0.0029	1.0 (NW14)	0.12	5.4 (MW-8)	1.5
Ethyl benzene	<0.005 (all)	-	0.28 (EW12)	0.03	22 (EW-01)	4.3
Xylenes (total)	0.010 (B9)	0.0052	2.0 (EW12)	0.023	56 (EW-01)	8.3
MTBE	-	-	-	-	470 (EW-01)	156
TPH-g (C6-C12)	<1.0 (all)	_	38 (EW12)	5.1	2,000 (MW-8)	468

Exhibit 3: Contaminants of Concern

* Due to the thin vadose zone at this site (+/-5 feet), highest concentrations of post soil treatment samples are used for surface soils and highest unsaturated zone excavation sidewall samples for subsurface soils (see Tables 1 and 2).

** Arithmetic mean calculated using ½ of the detection limit for samples with non-detect results (not calculated when all samples below detection limits).

The Oakland guidance document defines surface soils as soils from ground surface to 1 meter (3 feet) bgs and subsurface soils as those from 3 feet bgs to the water table. The RWQCB RBSL document defines surface soils as soils from ground surface to 3 meters (10 feet) bgs and

subsurface soils as those between 10 feet bgs and the water table. For most COCs present at this site, screening levels presented by the RWQCB for volatile organics are the same for both surface and subsurface soils, therefore the data presented above is according the Oakland definitions. The water table beneath this site has historically existing at between 4.4 and 8.4 feet bgs since monitoring began in 1993. Based on this and the definition of subsurface soils in the RWQCB RBSL document the highest concentration of each COC remaining in the soil at the site will be used for both surface and subsurface soils, regardless of the depth collected.

In addition to the COCs identified above, the presence of the following have been analyzed for and found to not be significant at the site: lead, diesel and oil range hydrocarbons, and the fuel additives diisopropyl ether (DIPE), ethyl tert-butyl ether (ETBE), tert amyl methyl ether (TAME), 1,2-dibromoethane (EDB), and 1,2-dichloroethane (1,2-DCA). T-butyl alcohol (TBA) was detected in three of the groundwater samples during the September 2002 monitoring event, up to 98 μ g/l. TBA is a breakdown product of aerobic MTBE degradation and generally degrades along the same pathway as MTBE.

6.0 **RISK ASSESSMENT**

Although the City of Oakland Guidance Document and the RWQCB RBSLs each have differing assumptions and exposure parameters, each are based on similar theories of human and environmental exposure to impacted soils and groundwater.

In general, the human health risk posed by an individual chemical is expressed in terms of a noncancer hazard quotient and a cancer risk (for carcinogenic chemicals). Generally, an acceptable incremental additional cancer risk of 1×10^{-4} to 1×10^{-6} (1 in 10,000 to 1 in 1,000,000) and an overall hazard quotient (sum of all chemicals) of less than 1 are acceptable. The development of screening levels is performed by assuming exposure scenarios along each pathway based on land use, either residential or commercial / industrial, and groundwater use. A reference dose (noncancer hazard evaluation) and slope factor (cancer evaluation), along with the exposure assumptions, is used in the calculations to determine the screening level for each chemical. With the exception of site-specific conditions discussed in the following section, the calculations used to derive the screening levels are assumed valid and the reader is referred to the referenced guidance documents for details.

6.1 City of Oakland Tiered Analysis

The Oakland Urban Land Redevelopment Program: Guidance Document (Guidance Document) outlines a tiered analysis for assisting in the investigation and cleanup of impacted sites. Tier 1 risk based screening levels (RBSLs) are established for sites were minimal historical research and site-specific data are available with respect to a release. Tier 1 RBSL are most conservative to account for unknowns remaining after minimal investigation, and are based on an acceptable cancer risk of 10⁻⁶. The Tier 2 RBSLs are intended for sites that have concentrations above Tier 1 RBSL and where additional site-

specific data is available, including a thorough characterization of the release and site geology. In addition, the Tier 2 analyses are based on an incremental additional cancer risk of 10^{-5} . Prior to performing the RBSL comparison, the Eligibility Checklist was completed for the site (Guidance Document p. 5). See Appendix A for a copy of the Checklist.

In this case, sufficient data is available for use of the Tier 2 analysis. Both residential and commercial/industrial RBSLs are presented for comparison. Refer to Tables 7 through 9 for comparison of Tier 2 RBSLS with site concentrations for each complete exposure pathway (Exhibit 3).

Based on the comparison presented in these tables, it is apparent no concentrations of BTEX or MTBE present in the surface or subsurface soils or groundwater are over the Tier 2 screening levels.

6.2 RWQCB RBSL Comparative Analysis

The RWQCB screening levels are similar to the Oakland Guidance document, however several additional components have been added. These additional considerations include evaluation of exposure to construction / trench workers exposed to subsurface soils, a more thorough consideration of impact to aquatic life by discharge of groundwater to surface water bodies, and a consideration of degradation of surface water quality. In addition, screening levels for total petroleum hydrocarbons are presented.

Because exposure scenarios are different for the derivation of residential versus the commercial / industrial land use screening levels, site specific concentrations are compared against levels for both land use scenarios.

6.2.1 Groundwater Screening Levels

For evaluation of risk posed by impacted groundwater to human health and the environment, a total of four individual components are identified for site specific consideration: indoor air impact, based soil type; ceiling levels, based on either nuisance odor at discharge to surface water or an upper limit; aquatic life protection; and general surface water quality considerations. A summary of these screening levels is presented in Table 11, along with site groundwater concentrations.

As stated in Section 3.2.1, no existing beneficial use of groundwater was noted in the Basin Plan or identified during a review of well logs for the area. Therefore, the screening levels presented in Table 11 reflect non-drinking water levels. In addition, no surface water exists within 1,600 feet of the site. Therefore, screening level components for aquatic life protection (which assume no dilution at groundwater discharge to surface water body) and general surface water quality are not considered relevant to this evaluation. This argument is supported by the fact that hydrocarbon concentrations outside of the source area were found to be below detection limits or well below concentrations located within the source area.

Maximum concentrations of benzene, toluene, ethyl-benzene, xylenes, and MTBE concentrations in groundwater beneath the site are below the two remaining screening level components appropriate for the site, indoor air impacts for finegrained soils and the upper limit. Although indoor air impact screening levels for TPH-g are not presented, the maximum concentration at the site (2,000 μ g/l) is below the upper limit stated as 50,000 μ g/l.

6.2.2 Soil Screening Levels

The RWQCB Guidance identifies surface soils as less than 3 meters (10 feet) deep, in comparison to 3 feet in the Oakland Guidance. The remaining soils in the vadose zone (unsaturated soils) are identified as subsurface soils. Based on the presence of the water table at a depth of between 4 and 8 feet bgs at this site, maximum concentrations remaining in unsaturated soils will be used for comparison with RWQCB subsurface soil RBSLs.

The surface screening levels include direct exposure scenarios for both residential and commercial/industrial land use and an ecotoxicity level. It should be noted that both indoor air quality screening levels and groundwater protection screening levels are identical for each land use scenario. Subsurface soils screening levels are comprised of four exposure component levels: direct exposure (based on construction / trench worker exposure scenario), indoor air quality (both residential and commercial), protection of groundwater quality, and soil quality ceiling levels. Tables 12 and 13 present the component screening levels for surface and subsurface soils, respectively for comparison against site data.

All COCs are below the commercial/industrial land use screening levels applicable for this site. With the exception of benzene, all other COCs at the site are below residential land use screen levels. However, the average benzene concentration (0.06 mg/kg) in these samples is well below the residential land use RBSL.

The maximum concentration of benzene detected at the site is 0.25 mg/kg, which was detected in one of the sidewall samples, collected at the greatest extent of the excavation. It should be noted that benzene was detected at or below detection limits (0.005 mg/kg) in 8 of the 14 sidewall samples.

7.0 CONCLUSIONS

7.1 Characterization and Treatment

The release was adequately characterized prior to the soil treatment activities undertaken by AEI in April 1997. Approximately 1600 cubic yards of soil excavated from above the water table were treated onsite to nearly non-detect concentrations prior to replacement back into the excavation.

Following soil treatment, dissolved phase hydrocarbon concentrations were observed to decrease significantly due to the removal of source material. In effort to accelerate mass reduction, in-situ groundwater treatment through bio augmentation was undertaken. As can be seen in Figures 10 through 12, hydrocarbon concentrations have decreased significantly since 1997 and are expected to continue to decrease.

The minimal hydrocarbon mass present in the dissolved phase is limited to around the former source area. Mass reduction is expected to continue via natural attenuation mechanism. One dimensional contaminant fate and transport modeling indicates that the plume is not expected to spread beyond the property boundaries and will like recede, as the effects of source area reduction propagate along the flow path.

7.2 Risk Assessment

A comparative risk analysis was performed to evaluate risk to human health and the environment using both the City of Oakland Guidance Document and the RWQCB Risk Based Screening Levels (RBSLs).

The comparative risk analyses did not reveal any elevated significant risk to human health or the environment posed by the low mass of contaminants remaining at the site for the commercial/industrial land use scenario. Although the maximum concentration of benzene detected in 1997 was slightly above the most conservative residential direct exposure and indoor air impact pathway, the majority of soil samples indicate that the highest detection is not representative of the entire property.

7.3 Closing Statement

The evaluations discussed herein conclude that although localized dissolved phase hydrocarbons remain, the case should be eligible for "no further action" status. The following conditions support this recommendation:

- Soil treatment activities successfully removed nearly all hydrocarbon mass from unsaturated zone soils.
- Hydrocarbon mass in the shallow aquifer began to decrease upon completion of soil

treatment and continued to decrease as the groundwater treatment program was implemented the former source area. Groundwater monitoring data has proven that the remaining dissolved phase hydrocarbons are localized to the former source area. Modeling confirms that the MTBE plume should not spread past its current extent, and begin to recede. The vertical extent of the release was confirmed to be limited and a regional aquitard was identified that would limit the potential for impact to deeper aquifers of the area.

- The comparative human health risk evaluation indicates the low concentrations of hydrocarbons remaining in the shallow soil and groundwater does not pose a significant risk to human health or the environmental.
- No existing production wells or surface water were identified that could be impacted by this release.

Once final case closure is granted, the existing wells should be decommissioned according to applicable state and local regulation.

8.0 **REFERENCES**

All Environmental Inc. (AEI), Phase II Site Assessment, March 3, 1997

All Environmental Inc. (AEI), Quarterly Groundwater Monitoring Report – First Quarter 1997, May 27, 1997

All Environmental Inc. (AEI), Quarterly Groundwater Monitoring Report, August 26, 1997

All Environmental Inc. (AEI), Quarterly Groundwater Monitoring Report – Third Quarter 1997, December 31, 1997

AEI Consultants (AEI), Quarterly Groundwater Monitoring Report – First Quarter 2000, March 21, 2000

AEI Consultants (AEI), Quarterly Groundwater Monitoring Report – First Quarter 2000, March 21, 2000

AEI Consultants (AEI), Soil Boring and Groundwater Monitoring Well Installation and Sampling Report, September 10, 2000

AEI Consultants (AEI), Groundwater Treatment and Site Closure Summary Report, May 3, 2002

AEI Consultants (AEI), Monitoring and Treatment Report, November 21, 2002.

American Society for Testing and Materials, Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites, Designation E 1739-95

California Regional Water Quality Control Board – San Francisco Bay Region, Application of Risk Based Screening Levels and Decision Making to Sites With Impacted Soil and Groundwater, December 2001.

City of Oakland Public Works Agency, Oakland Urban Land Redevelopment Program: Guidance Document, January 1, 2000.

Levine-Fricke, Report on Supplemental Site Investigation and a Conceptual Remediation Plan 625 Hegenberger Road Oakland, Califronia, April 5, 1995

Levine-Fricke, Tank Closure Report on Removal of Underground Fuel Storage Tanks and Related Structures, January 24, 1994

Tong, W., and Rong, Y., Domenico, California Regional Water Quality Control Board – Los Angeles Region, *Spreadsheet Analytical Model Manual*, December 1, 1999

9.0 LIMITATIONS AND SIGNATURES

This report presents a summary of work completed by AEI, including observations and descriptions of site conditions. Where appropriate, it includes analytical results for samples taken during the course of the work. The number and location of samples are chosen to provide required information, but it cannot be assumed that they are entirely representative of all areas not sampled. In addition, where appropriate, mathematical analyses of health risks and/or chemical migration may have been made using equations referenced in this report. Assumptions for the values of applicable physical and physiological constants have been made, where appropriate; the values of which may not be representative of all possible site conditions. Therefore, the results of these estimates cannot be considered to be valid for all possible site conditions. All conclusions and recommendations are based on these analyses, observations, calculations and the governing regulations. Conclusions beyond those stated and reported herein should not be inferred from this document.

These services were performed in accordance with generally accepted practices in the environmental engineering and construction field that existed at the time and location of the work.

Sincerely, AEI Consultants

Peter McIntyre Project Manager, Geologist

Joseph P. Derhake, PE Principal

2.0 SITE DESCRIPTION & BACKGROUND

The site is located on the northwestern corner of Collins Drive and Hegenberger Road in an area of the City of Oakland zoned for commercial and light industrial use. The property is bound on the north by a commercial warehouse and on the west by the Oakland-Alameda County Coliseum Complex. The site is currently vacant and unimproved.

Prior to 1993

The property was reportedly developed as a gasoline service station in the mid 1960s, which was subsequently abandoned in the mid 1970s. Subsurface Consultants performed two phases of site investigation in 1988 and 1990, during which a total of 23 soil borings (labeled 1 through 23) were advanced, five of which were converted to groundwater monitoring wells (labeled MW-8, MW-10, MW-11, MW-12, and MW-16. The borings were located around the former tank hold and dispenser island. The highest concentrations of petroleum hydrocarbons were detected adjacent to and east of the former tank (areas that were subsequently excavated).

Tank Removal - October 1993

In October 1993, three underground gasoline storage tanks (12,000 gallons each), one 260 gallon waste oil tank (also identified as a "sump"), and related underground piping were removed from the site under the observation of Levine Fricke. Approximately 250 cubic yards (cy) of soil was excavated during the tank removal, which was stockpiled onsite. During the tank removal activities, tank and piping failures were evident upon inspection. Seventeen (17) soil samples and two groundwater samples collected by Levine Fricke during the tank removal activities confirmed that impacted soils and groundwater was present at the site. Please refer to the *Tank Closure Report on Removal of Underground Fuel Storage Tanks and Related Structures*, January 24, 1994 by Levine Fricke for details on the tank removal and previous sampling activities. The location of the former tanks and dispensers are presented on Figure 3.

Site Investigation – January 1995

In January 1995, Levine Fricke advanced an additional thirteen (13) soil borings (labeled LF24 though LF36), one of which was converted to a monitoring well (MW-24). Again, soil sample analytical data revealed that impacted soils were located around the former tank hold. Groundwater monitoring of the resulting network of six monitoring wells, which occurred on January 10, 1995, confirmed that a dissolved phase hydrocarbon plume was present, primarily in the area of MW-8. Refer to the *Report on a Supplemental Site Investigation and a Conceptual Remediation Plan 625 Hegenberger Road Oakland, California*, April 5, 1995 by Levine Fricke for details of the investigation.

The quarterly monitoring of the six monitoring wells was performed by Levine Fricke through January 1995. AEI began monitoring the wells in October 1995. In March 1996, AEI destroyed one of the wells (designated MW-24) in anticipation of excavation activities.

Soil Treatment – April to August 1996

Beginning in April 1996, AEI excavated a total of 1,600 cubic yards of impacted soils from around

the former tank hold and dispenser locations. The final extent of the excavation is shown on Figure 3. Soil samples were collected from the sidewalls of the excavation at several stages during the excavation work. The analytical data of samples from the farthest extent of the excavation are presented in Table 1. With the exception of approximately 20 cy of soil impacted with oil range hydrocarbons which was transported to a disposal facility, the excavated soil was aerated onsite. The soil was aerated in two batches, measuring approximately 150' by 180' and 12 inches deep. Baseline samples were collected from the stockpiles. Bi-weekly tilling was performed between April 12, 1996 and June 19, 1996 for the first aeration batch and between July 17, 1996 and September 5, 1996 for the second.

Following aeration, 22 samples collected from the treated soil (refer to Table 2). Petroleum hydrocarbons were detected at very low concentration in only two of the 22 samples (benzene at 0.007 mg/kg, toluene at 0.011 mg/kg, and xylenes at 0.010 mg/kg), and based in these results, Mr. Barney Chan of the ACHCSA authorized the reuse of the treated soil to backfill the excavation.

The excavation was backfilled with pea gravel, to bridge the capillary fringe, to approximately ¹/₂ foot above static groundwater. The remainder of the excavation was filled with the treated soil. Refer to the *Phase II Environmental Site Assessment* report, March 3, 1997 prepared by AEI for detailed methods and results of the soil treatment activities.

<u>August 1997 – June 2000</u>

In August 1997, AEI submitted a Remedial Action Plan (RAP) the ACHCSA, which described a plan to enhance in-situ biodegradation to reduce dissolved phase hydrocarbon concentrations within the area of the former excavation. On October 1, 1999, AEI installed one (1) 4" diameter well (EW-01) just west of the former tank hold. The well was placed in the center of the plume and screened from 5 to 22.5 feet bgs, for use as an extraction well for batch groundwater treatment.

Two additional groundwater monitoring wells (MW-26 and MW-27) were installed on the western end of the site (Figure 3) in June 2000. The wells were constructed of 2" diameter well casing, screened from 5 to 15 feet bgs. Also in June 2000, one soil boring (AEI-B28) was advanced (Figure 3). The boring was placed in the apparent center of the dissolved hydrocarbon plume. The boring was advanced to 44.5 feet bgs to determine the vertical extent of the plume. Three groundwater samples were analyzed, the results of which revealed significant attenuation with depth of the hydrocarbon plume (Table 6). Refer to the *Soil Boring and Groundwater Monitoring Well Installation and Sampling Report*, dated September 10, 2000 for detailed results of these activities.

Groundwater Treatment – June 2001 to February 2002

A groundwater treatment program was initiated in June 2001, and was based on the August 1997 RAP, with several modifications. The system was designed to supplement natural bacterial colonies present in the shallow water table aquifer with bacterial colonies cultured to metabolize aromatic hydrocarbons. The system consisted of an extraction well (EW-01), batch treatment tank, batch injection network of 12 batch injection points, and air sparging system consisting of a compressor and 12 sparge points. The goal of the treatment program was to reduce dissolved

hydrocarbon concentrations, specifically TPH-g and BTEX, within the source area. Of particular importance when designing the system was the presence of the pea gravel backfill material placed within the bottom of the former excavation in the source area. This material has a higher porosity and hydraulic conductivity than the native soils, therefore allowing for distribution of the oxygenated water and injected waters.

The system operated from June 2001 through February 2002, during which time 27 batches were treated, totaling approximately 13,000 gallons. The treated water was then re-injected, to "spike" the groundwater system with oxygenated water and active culture. System operation statistics are presented in Table 7 and a site plan with system components is presented on Figure 9. Refer to the *Groundwater Treatment and Site Closure Summary Report*, May 3, 2002 and the *Monitoring and Treatment Report*, dated November 21, 2002, for details on system operation.

Supplemental Treatment (MW-8) – July to September 2002

Due to the remnant hydrocarbons present in this well after treatment had ceased (TPH-g at 32,000 μ g/l and benzene at 2,000 μ g/l), localized treatment of this well was requested by ACHCSA. On July 29, 2002, MW-8 was purged of approximately 5 gallons and a water sample was collected. Following sample collection, a total of nine (9) socks of Regensis, Inc. Oxygen Release Compound (ORC) were suspended in the well, which were placed to cover the water column exposed by the well. The socks were allowed to remain in the well until September 11, 2002, when the next monitoring event of the entire well network occurred.

Throughout the history of the site, groundwater monitoring and sampling activities have been performed. Historical water table elevation data, groundwater quality data, and sample analytical data are summarized in Tables 3 through 5. Water table contours and dissolved phase hydrocarbon concentrations from the September 11, 2002 event are presented on Figures 4 and 5. Iso-concentration contours for TPH-g, benzene, and MTBE are presented on Figures 6 through 8. Dissolved phase hydrocarbon trends are presented for selected wells MW-8, MW-11 and EW-01 on Figures 10 through 12.

3.0 ENVIRONMENTAL SETTING

3.1 Geology and Hydrology

According to logs of borings advanced by AEI, the near surface sediments beneath the site generally consist of clay soils with silt and fine sand to approximately 10 feet bgs. First encountered groundwater exists beneath the site between 5 and 6.5 feet bgs. The water bearing deposits in this shallow saturated zone consists of clay with fine to medium sand with angular clasts up to 2 cm in size. Sand increases with depth to approximately 16 feet bgs.

The deeper soil boring (AEI-B28) revealed silty clay below 16 feet. Sands and sub-angular to angular gravel increase with depth to approximately 37 feet bgs below which stiff, tight clay was encountered. Refusal conditions were encountered at 44.5 feet bgs. The presence of a clay aquitard in this depth range was confirmed during a review of logs for deep borings performed at the Oakland Coliseum Complex. A geologic cross-section of the site based in borings advanced by AEI is presented on Figure 13.

Water level measurements have been collected from the eight existing wells in order to estimate the groundwater flow direction. Water table contours for the most recent event (September 2002) are presented on Figure 4, along with a rose diagram of historic groundwater flow direction. Although water table contours reveal a complicated water table; a westerly or northwesterly flow direction is observed. Over the course of assessment at this site, groundwater has consistently flowed to the west, with a hydraulic gradient generally of 10^{-3} ft/ft. Water table elevations are summarized in Table 3.

3.2 Exposure Pathways

An exposure pathway analysis has been performed to identify which specific exposure pathways are complete for exposure of human or environmental receptors. Each pathway is discussed in detail in following sections.

AEI CONSULTANTS 3210 OLD TUNNEL RD, STE B, LAFAYETTE, CA

SITE LOCATION MAP

625 HEGENBERGER ROAD OAKLAND, CALIFORNIA FIGURE 1 PROJECT NO. 6274

AEI CONSULTANTS 3210 OLD TUNNEL RD, STE B, LAFAYETTE, CA

OFFSITE WELL LOCATIONS

625 HEGENBERGER ROAD OAKLAND, CALIFORNIA FIGURE 2 PROJECT NO, 6274

OAKLAND, CALIFORNIA

WITH MICROSOFT EXCEL 2000

FIGURE 11 AEI PROJECT NO 6274

Sample ID	Date	Depth	TPH-g mg/kg	Benzene mg/kg	Toluene mg/kg	E'benzene mg/kg	Xylenes mg/kg
EP5	5/8/96	4.5	<1	0.22	0.051	0.008	0.1
EP6	5/8/96	4.5	<1	0.13	0.031	0.008	0.034
EP7	5/8/96	4.5	2.4	0.25	0.19	0.012	0.063
EW17	5/8/96	5	<1	<0.005	< 0.005	<0.005	< 0.01
EP8	4/12/96	5	<1	< 0.005	<0.005	< 0.005	<0.01
EP9	4/12/96	5	<1	< 0.005	< 0.005	< 0.005	<0.01
EP10	4/12/96	4.5	<1	< 0.005	< 0.005	< 0.005	<0.01
EP11	4/12/96	4.5	<1	0.005	< 0.005	< 0.005	< 0.01
NW18	4/12/96	5	<1	0.005	< 0.005	< 0.005	<0.01
EW 12	4/12/96	5	38	0.06	0.43	0.28	2.0
NW13	7/12/96	4.5	<1	0.018	< 0.005	< 0.005	<0.01
NW14	7/12/96	4.5	25	0.21	1.0	0.14	1.0
WW15	7/12/96	5	<1	< 0.005	< 0.005	< 0.005	<0.01
WW16	7/12/96	5	<1	<0.005	<0.005	<0.005	<0.01

 Table 1

 Final Excavation Sidewall Soil Sample Analytical Data

Source: Phase II Environmental Site Assessment report, AEI March 3, 1997

Sample ID	Date	Batch #	TPH-g mg/kg	Benzene mg/kg	Toluene mg/kg	E'benzene mg/kg	Xylenes mg/kg
AR1	6/19/96	А	<1	<0.005	<0.005	<0.005	<0.01
AR2	6/19/96	Ă	<1	< 0.005	<0.005	<0.005	< 0.01
AR3	6/19/96	Â	<1	< 0.005	< 0.005	< 0.005	<0.01
AR4	6/19/96	A	<1	< 0.005	< 0.005	< 0.005	< 0.01
AR5	6/19/96	A	<1	< 0.005	<0.005	< 0.005	<0.01
AR6	6/19/96	Α	<1	< 0.005	< 0.005	< 0.005	< 0.01
AR7	6/19/96	Α	<1	< 0.005	< 0.005	< 0.005	<0.01
AR8	6/19/96	Α	<1	0.007	0.011	< 0.005	<0.01
AR9	6/19/96	Α	<1	< 0.005	< 0.005	< 0.005	< 0.01
AR10	6/19/96	Α	<1	< 0.005	<0.005	< 0.005	<0.01
AR 11	6/19/96	Α	<1	< 0.005	< 0.005	< 0.005	< 0.01
AR12	6/19/96	А	<1	< 0.005	< 0.005	<0.005	<0.01
B1	9/5/96	В	<1	< 0.005	<0.005	< 0.005	<0.01
B2	9/5/96	В	<1	< 0.005	< 0.005	<0.005	<0.01
B3	9/5/96	в	<1	< 0.005	< 0.005	<0.005	< 0.01
B4	9/5/96	В	<1	< 0.005	< 0.005	< 0.005	< 0.01
B5	9/5/96	В	<1	< 0.005	< 0.005	< 0.005	<0.01
B6	9/5/96	В	<1	< 0.005	< 0.005	< 0.005	<0.01
B7	9/5/96	В	<1	<0.005	< 0.005	< 0.005	<0.01
B 8	9/5/96	В	<1	< 0.005	< 0.005	< 0.005	<0.01
В9	9/5/96	В	<1	< 0.005	< 0.005	< 0.005	0.010
B10	9/5/96	В	<1	< 0.005	< 0.005	< 0.005	<0.01

 Table 2

 Post Aeration Confirmation Soil Sample Analytical Data

Source: Phase II Environmental Site Assessment report, AEI March 3, 1997

Table 3Water Table Elevations

1

Well ID	Date	Well Elevation	Depth to Water	Groundwater Elevation
		(ft msl)	(ft)	(ft msl)
MW-8	12/22/1993	4.88	6.72	-1.84
MW-10	12/22/1993	4.21	6.00	-1.79
MW-11	12/22/1993	5.04	6.84	-1.80
MW-12	12/22/1993	4.58	6.07	-1.49
MW-16	12/22/1993	5.53	7.48	-1.95
MW-8	6/30/1994	4.88	6.55	-1.67
MW-10	6/30/1994	4.21	5.79	-1.58
MW-11	6/30/1994	5.04	6.73	-1.69
MW-12	6/30/1994	4.58	6.06	-1.48
MW-16	6/30/1994	5.53	7.28	-1.75
MW-8	9/27/1994	4.88	7.20	-2.32
MW-10	9/27/1994	4.00	6.39	-2.18
MW-11	9/27/1994	5.04	7.41	-2.37
MW-12	9/27/1994	4.58	6.57	-1.99
MW-12 MW-16	9/27/1994	4.38 5.53	7.93	-2.40
LANK/ 0			())	-1.67
MW-8	1/4/1995	4.88	6.21	
MW-10 MW-11	1/4/1995	4.21 5.04	5.42 6.45	-1.58 -1.69
	1/4/1995			
MW-12	1/4/1995	4.58	5.50	-1.48
MW-16	1/4/1995	5.53	7.03	-1.50
MW-8	1/10/1995	4.88	5.09	-2.32
MW-10	1/10/1995	4.21	4.67	-2.18
MW-11	1/10/1995	5.04	5.72	-2.37
MW-12	1/10/1995	4.58	4.46	-1.99
MW-16	1/10/1995	5.53	6.21	-2.40
MW-24	1/10/1995	5.49	5.97	-0.48
MW-8	10/2/1995	4.88	7.66	-2.78
MW-10	10/2/1995	4.21	6.87	-2.66
MW-11	10/2/1995	5.04	7.85	-2.81
MW-12	10/2/1995	4.58	6.99	-2.41
MW-16	10/2/1995	5.53	8.40	-2.87
MW-24	10/2/1995	5.49	8.31	-2.82
MW-8	1/8/1996	4.88	7.45	-2.57
MW-10	1/8/1996	4.21	6.82	-2.61
MW-11	1/8/1996	5.04	7.91	-2.87
MW-12	1/8/1996	4.58	6.65	-2.07
MW-16	1/8/1996	5.53	8.23	-2.70
MW-24	1/8/1996	5.49	8.08	-2,59
MW-8	4/25/1996	4.88	7.32	-2.44
MW-10	4/25/1996	4.21	7.48	-3.27
MW-11	4/25/1996	5.04	7.51	-2.47
MW-12	4/25/1996	4.58	6.56	-1.98
MW-16	4/25/1996	5.53	8.06	-2,53
MW-8	3/25/1997	4.88	6.75	-1.87
MW-10	3/25/1997	4.08	5.83	-1.62
MW-11	3/25/1997	5.04	6.83	-1.02
MW-12	3/25/1997	4.58	6.03	-1.45
MW-16	3/25/1997	5.53	7.35	-1.82
MW-8	7/3/1997	4.88	8.70	-3.82
MW-10	7/3/1997	4.88	5.87	-1.66
MW-11	7/3/1997	5.04	6.83	-1.79
MW-12		4.58	6.03	-1.45
198 77 ° L 4	7/3/1997	4.30	0.05	-1.4.

		Table 3: Continue Well	Depth	Groundwater
Well ID	Date	Elevation	to Water	Elevation
	27414	(ft msl)	(ft)	(ft msl)
	10/0/0005	1.00		4.00
MW-8	10/2/1997	4.88	6.70	-1.82
MW-10	10/2/1997	4.21	5.90	-1.69
MW-11	10/2/1997	5.04	6.85	-1.81
MW-12	10/2/1997	4.58	6.08	-1.50
MW-16	10/2/1997	5.53	7.36	-1.83
MW-8	1/28/1998	4.88	5.20	-0.32
MW-10	1/28/1998	4.21	4.40	-0.19
MW-11	1/28/1998	5.04	5.33	-0.29
MW-12	1/28/1998	4.58	4.54	-0.04
MW-16	1/28/1998	5.53	5.90	-0.37
MW-8	2/9/2000	4.88	5.12	-0.24
MW-10	2/9/2000	4.88	5.25	-0.24 -1.04
	2/9/2000			-1.04 -1.21
MW-11		5.04	6.25 5.22	
MW-12	2/9/2000	4.58	5.33	-0.75
MW-16	2/9/2000	5.53	6.81	-1.28
MW-8	8/9/2000*	3.96	5.15	-1,19
MW-10	8/9/2000	4.20	5.33	-1.13
MW-11	8/9/2000	5.01	6.20	-1.19
MW-12	8/9/2000	4.58	5.14	-0.56
MW-16	8/9/2000	5.51	6.74	-1.23
MW-26	8/9/2000	5.12	5.81	-0.69
MW-27	8/9/2000	4.06	5.12	-1.06
EW-01	8/9/2000	5.19	6.38	-1.19
Em-01	0/3/2000	J.19	0,58	-1.19
MW-8	5/31/2001	3.96	5.54	-1.58
MW-10	5/31/2001	4.20	5.81	-1.61
MW-11	5/31/2001	5.01	6.65	-1.64
MW-12	5/31/2001	4.58	6.28	-1.70
MW-16	5/31/2001	5.51	7.14	-1.63
MW-26	5/31/2001	5.12	6.25	-1.13
MW-27	5/31/2001	4.06	5.84	-1.78
EW-01	5/31/2001	5.19	6.84	-1.65
MW-8	4/8/2002	3.96	4.85	-0.89
MW-10	4/8/2002		4.85	-0.89
MW-10 MW-11		4.20	4.93 5.94	
	4/8/2002	5.01		-0.93
MW-12	4/8/2002	4.58	5.08	-0.50
MW-16	4/8/2002	5.51	6.45	-0.94
MW-26	4/8/2002	5.12	5.88	-0.76
MW-27	4/8/2002	4.06	5.32	-1.26
EW-01	4/8/2002	5.19	6.11	-0.92
MW-8	7/29/2002	3.96	5.22	-1.26
MW-8	9/11/2002	3.96	5.39	-1.43
MW-10	9/11/2002	4.20	5.57	-1.37
MW-11	9/11/2002	5,01	6.50	-1.49
MW-12	9/11/2002	4.58	5.67	-1.09
MW-16	9/11/2002	5.51	7.01	-1.50
MW-16 MW-26	9/11/2002	5.12	6.54	-1.42
MW-20 MW-27			6.04	-1.42 -1.98
	9/11/2002	4.06		-1.98
EW-01	9/11/2002	5.19	6.66	-1.4/

Notes: All elevations are measured from the top of casing.

ft msl = feet above mean sea level

NA = Not Available

ł

1

*All well elevations were re-surveyed 9/5/00 by Logan Survey (lic. # 5003)

Table 4

1

Groundwater Quality Data

Well ID	Date	Volume Withdrawn (gallons)	Temperature (deg. C)	Qualitative Tubidity	pH	Stabilized Disolved Oxygen (mg/L)	Specific Conductivy µSeimens/cm	N (mg/L)	P (mg/L)	К (mg/)
MW-8	12/22/1993	4.5	19.4	turbid*				_	-	
MW-10	12/22/1993	7.0	20.8	moderately turbid	_	_	_	_		
MW-11	12/22/1993	4.5	20.3	turbid	-	-	•	-	-	-
MW-12					-	-,	-	-	-	
MW-12 MW-16	12/22/1993 12/22/1993	5.3	20.3	moderately turbid	-	-	-	-	-	
MW-10	12/22/1993	4.5	20.5	turbid	-	-	-	-	-	-
MW-8	6/30/1994	8.0	21.0	turbid*	-	-	-	•	-	-
MW-10	6/30/1994	6.0	21.0	turbid	-	-	-	-	-	-
MW-11	6/30/1994	6.0	20.2	turbid	-	-	-	-	-	-
MW-12	6/30/1994	6.0	20.6	moderately turbid	-	-	-		-	-
MW-16	6/30/1994	4.5	21.8	turbid	•	-	-	-	-	-
MW-8	9/27/1994	4.5	21.6	turbid*		_				
MW-10	9/27/1994	6.0	22.6	turbid	_	_	_	_	_	-
MW-10	9/27/1994	3.0	22.0	turbid		-	-			
MW-12	9/27/1994	5.0	21.0		-	•	-	•	-	
MW-12 MW-16	9/27/1994 9/27/1994	3.0	22.5	turbid turbid	-	-	-	-	-	-
WIW-10	9/2//1994	3.0	22.0	turoid	-	-	-	-	-	-
MW-8	1/10/1995	5.3	17.2	turbid*			-	-	-	-
MW-10	1/10/1995	6.0	19.5	turbid	-	-	-	-	-	-
MW-11	1/10/1995	5.3	18.6	turbid	-	-	-	-	-	-
MW-12	1/10/1995	6.0	19.3	turbid	-	· _	-	-	-	-
MW-16	1/10/1995	6.0	19,3	turbid	-	-	-	-	-	-
MW-24	1/10/1995	41.0	18.9	turbid						
MW-8	10/2/1995	11.0	22.8	moderately turbid	6.49	-	-	-	-	-
MW-10	10/2/1995	11.0	22.6	turbid	7.20	-	-	-	-	-
MW-11	10/2/1995	12.0	22.0	moderately turbid	6.85	-	-	-	-	-
MW-12	10/2/1995	11.0	22.9	turbid	7.20	-	-	-	-	-
MW-16	10/2/1995	11.0	22.6	turbid	7.20	-	-	-	-	-
MW-24	10/2/1995	20.0	22.8	turbid	7.10					
MW-8	1/8/1996	12.0	17.30**	slightly turbid	6.74**	-	-	-	-	-
MW-10	1/8/1996	10.0	17.90**	slightly turbid	6.62**	-	-	_	_	-
MW-11	1/8/1996	5.5	17.60**	slightly turbid	6.65**			_	_	_
MW-12	1/8/1996	10.0	18.00**	slightly turbid	6.49**		-	-	-	-
MW-16	1/8/1996	5.0	19.00**	slightly turbid	0.49 7.50**	-	-		-	
MW-24	1/8/1996	35.0	17.60**	slightly turbid	6.67**	-	-	-	-	-
	101770	2210	11100	oughing teroits	0.07					
MW-8	4/25/1996	5.0	21.1	clear	6.53	-	-	-	-	-
MW-10	4/25/1996	5.0	22.8	slightly turbid	6.70	-	-		-	-
MW-11	4/25/1996	5.5	21.4	clear	6.58	-	-	-	-	-
MW-12	4/25/1996	5.0	22.4	clear	6.50	-	-	-	-	-
MW-16	4/25/1996	5.0	25.3	slightly turbid	7,12	-	-	-	-	-
N 10 1 0	3/3511/00/7	10.0	10.0							
MW-8	3/25/1997	10.0	18.2	clear	6.67	0.23	•	-	-	-
MW-10	3/25/1997	12.0	19.7	slightly turbid	6.79	0.35	-	-	-	-
MW-11 MW-12	3/25/1997	10.0	18.6	clear	6.64	0.19	-	-	-	-
MW-12 MW-16	3/25/1997 3/25/1997	10.0 10.0	18.4 17.9	clear slightly turbid	6.67 7.02	0.19 0.10	-	-	-	-
				cagany tarona	,	0.10				
MW-8	7/3/1997	12.0	19.6	clear	6.43	0.04		<0.5	1.8	-
MW-10	7/3/1997	12.0	21.5	slightly turbid	6.67	0.17	-	-	-	-
MW-11	7/3/1997	12.0	19.4	clear	6.36	0.05	-	<0.5	1.8	-
MW-12	7/3/1997	12.0	20.6	clear	6.50	0.10	-	-	-	-
MW-16	7/3/1997	12.0	19.7	clear	6.76	0.06	-	-	-	-
1 1117 0	10/0/000-	4-								
MW-8	10/2/1997	4.5	21.2	clear	6.93	-	-	-	-	-
MW-10	10/2/1997	5.0	23.0	slightly turbid	7.26	-	-	-	-	-
MW-11	10/2/1997	7.0	22,9	clear	6.73	-	-	-	-	-
MW-12	10/2/1997	4.5	20.9	clear	7.15	-	-	-	-	-
MW-16	10/2/1997	7.0	19.1	slightly turbid	7.22	-	-	-	-	-
MW-8	1/28/1998	15.0	18.5	slightly greenish	6.86	0.10	-	-		-
MW-10	1/28/1998	15.0	20.9	moderately turbid	7.05	0.09		-	-	-
MW-11	1/28/1998	15.0	20.1	slightly greenish	6.74	0.11		-	-	-
	1/28/1998	14.0	19.8	moderately turbid	6.90	0.11	-	-	-	-
MW-12										

						Stabilized				
		Volume	Stabilized			Disolved	Specific	N	Р	K
		Withdrawn	Temperature	Qualitative	Stabilized	Oxygen	Conductivy	(mg/L)	(mg/L)	(mg/L
Well ID	Date	(gallons)	(deg. C)	Tubidity	рH	(mg/L)	µSeimens/cm			
MW-8	2/9/2000	5.0	63.00***	slightly greenish	8.35	1.24	3120	19	3.4	35
MW-10	2/9/2000	5.0	67.7	slightly turbid	8.56	0.70	5610	15	6.4	66
MW-11	2/9/2000	5.0	63.5	slightly turbid	8.35	0.62	2980	<0.2	2.1	49
MW-12	2/9/2000	5.0	62.8	clear	8.41	1.28	2150	10	3.1	33
MW-16	2/9/2000	5.0	63.2	slightly turbid	8.63	3.13	1640	<0.2	1.8	12
EW-01	2/9/2000	32.0	60.0	slightly turbid	8.48	0.51	3190	21	1.7	51
MW-8	8/9/2000	5.0	18.9	Slightly turbid	6.68	1.55	365	-	-	-
MW-10	8/9/2000	5.0	21.9	Turbid - clears	6.68	1.63	565	-	-	-
MW-11	8/9/2000	5.5	19.7	Slightly turbid	6.48	1.48	268	-	-	-
MW-12	8/9/2000	5.0	21.3	clear	6.72	1.69	217	-	-	-
MW-16	8/9/2000	4.0	20.5	Turbid - clears	6.62	1.33	286	-	-	-
MW-26	8/9/2000	5.0	21.3	Turbid - clears	6.99	2.78	123	-	-	-
MW-27	8/9/2000	5.0	24.4	clear	6.93	2.21	146	-	-	-
EW-01	8/9/2000	31.0	18.4	Turbid - clears	6.69	1.32	471	-	-	-
MW-8	5/31/2001	4.25	18.8	clears	7.09	0.93	1339	-	-	
MW-10	5/31/2001	4.75	20.6	clears quickly	6.98	0.86	>2000	-	_	
MW-11	5/31/2001	5.0	18.8	clears quickly	7.09	1.28	1331	-	_	-
MW-12	5/31/2001	5.0	19.8	clears quickly	7.07	1.47	962	-	-	-
MW-16	5/31/2001	3.0	20.3	Slightly turbid	7.03	1.44	1307	-	-	-
MW-26	5/31/2001	5.0	19.6	clears quickly	7.01	1.20	615	-	-	
MW-27	5/31/2001	5.0	22.1	clears quickly	7.06	1.74	790	-	-	-
EW-01	5/31/2001	30.0	17.8	clears quickly	7.09	1.50	>2000	-	-	-
MW-8	4/8/2002	5.0	17.3	Clears	7.30	1.02	>4000			-
MW-10	4/8/2002	5.5	19.2	Clears	7.31	1.15	>4000	-	-	
MW-10 MW-11	4/8/2002	5.0	19.2	Clears quickly	7.28	0.96	2645	-	-	-
MW-12	4/8/2002	5.0	17.9		7.28	2.86	2604	•	-	
MW-12 MW-16	4/8/2002	3.0	17.9	Clears quickly Clear		2.60	2604 3293	-	-	
MW-26	4/8/2002	5.0	18.0		7.29		1428	-	-	2
MW-27	4/8/2002	6.0	17.5	Greyish, clear by 2 g	7.31 7.32	0.88 1.13	1428	-	-	-
EW-01	4/8/2002	32.0	13.9	Black, clear by 3 g Clears quickly	7.32	1.13	>4000	-	-	
1244-01		32.0	17.0	Clears quickly	1.32	1.50	24000	-	-	-
MW-8	9/11/2002	10.0	19.8	clears quickly	6.97	3.41	>3999	-	-	-
MW-10	9/11/2002	6.0	21.4	clears quickly	7.19	1.73	>3999	-	-	-
MW-11	9/11/2002	5.0	20.0	clears quickly	7.00	1.77	2686	-	-	-
MW-12	9/11/2002	5.0	21.1	clears quickly	7.32	1.30	2488	•	-	-
MW-16	9/11/2002	3.0	20.2	Black, clear by 1 g	7.34	1.21	3123	-	-	-
MW-26	9/11/2002	4.5	2.8	Greyish, clear by 2 g	6.97	0.42	1367	-	-	-
MW-27	9/11/2002	6.0	21.0	Greyish, clear by 1 g	7.31	1.64	3990	-	-	-
EW-01	9/11/2002	31.0	19.8	clears quickly	7.03	0.60	>3999	-	-	-

Notes:

ļ

* A slight hydrocarbon sheen was reported. -= Data not obtained or available

** Only one measurement collected.

*** Temperature expressed in degrees Farenheight

N = Nitrogen (total)

 $\mathbf{P} = \mathbf{Phosphorous}$ (total)

K = Potassium

Table 5
Groundwater Sample Analytical Data

	_	трн-в	TPH-d	TPH-0	Benzene	Toluene	Ethyl-	Xylenes	MTBR	MTBE	DIPE	ETBE	TAME	TBA	EBD	1, 2-D
	Date	µg/L	μg/L	μg/L	µg/L	μg/L	benzene	μg/L	µg/L	μg/L	µg/L	μg/L	µg/L	µg/L	µg/L	µ8/Л
		E	PA method 801	5M		1	µg/L PA method 80	20				Е	PA method 826	0 H		
MW-8	5/28/1993	19000	1000	-	6400	28	160	36	-	-	-	-		-	-	-
	12/22/1993	56000	300	<200	16000	5999.3	650	2700	-	-	-	-	-	-	-	-
	6/30/1994	41000	<500	500	11000	4800	2200	8200	-	-	-	-	-	-	-	-
	9/27/1994	28000	620	<200	8500	260	1600	5300	-	-	-	-	-	-	-	-
	1/10/1995	58000	70	<200	10000	11000	2400	12000	-	-	-	-	-	-		-
	10/2/1995	28000	<50	<500	51	16	54	80	-	-	•	-	-	-	-	-
	1/8/1996	72000	3700	<250	8600	13000	2200	12000	-	-	-	-	-	-	-	-
	1/8/1996	62000	-	-	7200	9500	1600	8000	-	-	-	-	-	-	-	-
	4/25/1996	33000	3100	-	7600	2300	1500	4800	-	-	-	-	-	-	_	-
	3/25/1997	23000	1900	-	8300	80	350	380	1500	-	-	-	-	-	-	-
	7/3/1997	14000	1400	-	6600	32	190	100	1300	_	_	_	_	_		
	7/3/1997	15000	1400	_	7300	34	160	110	1700	-	-	_	_	-	-	
	10/2/1997	7600	810	-	3500	14	37	21	890		_		_		_	
	1/28/1998	21000	2700	_	5500	270	730	780	900				_	_	-	-
	9/9/1999	2500	2700	-	790	2.8	4.7	8	380							
	2/9/2000	39000	-	-	6400	4300	950	390	460	-	-	-	-	-	-	
	2/9/2000 8/9/2000	5500	-	-	1700	4300	130	390	400 540	-	-	-	-		•	-
	5/31/2001	14,000	-	-	2,800	63	610	540	340	-	-	-	-	-	-	
	8/10/2001	4,400	-			41		170	370	-	-	-	-	-	-	
			-	-	1,200		160			-	-	-	-	-	-	-
	9/25/2001	2,100	-	-	470	7.2	6.5	7.1	210	-	-	-	-	-	-	-
	12/14/2001	1800	-	-	230	34	67	150	26	-	-	-	-	-	-	
	4/8/2002	32000	-	-	2000	820	1100	2300	62	-	-	-	-	-	-	
	7/29/2002	4300	-	-	1200	21	58	69	280	-	-	-	-	-	-	
	9/11/2002	2000	-	•	520	5.4	11	8.7	430	270	-5.0	<5.0	<5.0	<50	<5.0	4
MW-10	5/28/1993	<50	54	-	<0.3	<0.3	<0.3	<0.9	-	-	-	-	-	-	-	
	12/22/1993	<50	580	<200	<0.5	<0,7	<0.5	<0.2	-	-	-	-	-	-	-	
	6/30/1994	<50	<50	600	<0.5	<0.5	<0.5	<0.2		-	-	-	-	-	-	
	9/27/1994	<50	610	<200	<0.5	<0.5	<0.5	<0.2	-	-	-	-	-	-		
	1/10/1995	<50	600	<200	<0.5	<0.5	<0.5	<0.2	-	-	-	-	-	-	-	
	10/2/1995	350	<50	<500	4.4	2.6	2.3	6.4	-	-	-	-	-	-		
	1/8/1996	50	<50	<250	5.8	7.1	1.2	6.4	-	-	-	-	-	-	-	
	4/25/1996	<50	<50	-	<0.5	<0.5	⊲0.5	<0.5	-	-	-	-	-	-	-	
	3/25/1997	<50	<50	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	
	7/3/1997	<50	<50	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	_	_	-	-	
	10/2/1997	<50	110	-	⊲0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-		
	1/28/1998	<50	<50	-	5.7	<0.5	<0.5	<0.5	<5.0	-	-	_	_	-	-	
	8/19/1999	<50	-	-	5.7	<0.5	<0.5	<0.5	<5.0	-	-	-	-		-	
	2/9/2000	<50	-	-	5.7	<0.5	<0.5	<0.5	<5.0	-	-		-	-	_	
	8/9/2000	<50	-	-	5.7	⊲0.5	<0.5	<0.5	<5.0		-	-	-			
	5/31/2001	<50		-	<0.5	<0.5	<0.5	<0.5	<5.0		-	-	-			
	8/10/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	-		-	-	-	-	
	9/25/2001	-	-	-	-	-	-	-		-	-	_	_	_	-	
	12/14/2001	-	-	-	-	-	-	-	-	-	-	-	-			
	4/8/2002	- <50	-	-	<0.5	- ⊲0.5	- <0.5	<0.5	<5.0	•	-	-	-		-	

1 20102 5: 1 .00100000	Table	5:	Continue
------------------------	-------	----	----------

	1	TPH-g	TPH-d	TPH-0	Benzene	Toluene	Ethyl-	Xylenes	MTBE	MTBE	DIPE	ETBE	TAME	TBA	EBD	1,2-DC
	Date	μg/L	μg/L	μg/L	µg/L	µg/L	benzene	μg/L	µg/I.	µg/I.	யத/ட	μ g/L	µg/L	μg/L	μg/L	μg/L
]	EP	A method 801.	5M		Б	µg/L. PA method 802	'n				F	PA method 8260	1B		
		1.1	Transcinou 601.	51 41			1 11 IIKALIOG 602	.0					A method 6200			
MW-11	5/28/1993	1200	<50	-	450	17	1.5	2.1	-	-	-	-	-	-	-	-
	12/22/1993	9200	530	<200	4500	38.3	12	43	-	-	-	-	-	-	-	-
	6/30/1994	8800	<50	1100	1500	13	690	1200	-	-	-	-	-	-	-	-
	6/30/1994	9700	-	-	1700	14	730	1300	-	-	-	-	-	-	-	-
	9/27/1994	15000	910	<200	6500	26	870	590	-	-	-	-	-	-	-	-
	1/10/1995	14000	1100	<200	890	220	840	2400	-	-	-	-	-	-	-	-
	10/2/1995	7100	<50	<500	47	5.7	11	36	-	-	-	-	-	-	-	-
	1/8/1996	12000	2000	<250	1200	99	790	1400	-	-	-	-	-	-	-	-
	4/25/1996	5800	1400	-	230	59	200	770	-	-	-	-	-	-	-	-
	3/25/1997	760	490	-	130	49	2.9	1	130	-	-	-	-	-		-
	7/3/1997	290	<50	-	<0.5	<0.5	600	<0.5	380	-	-	-	-	-	-	-
	10/2/1997	220	220	-	8.8	0.73	<0.5	0.67	720	-	-	-	-	-	-	-
	1/28/1998	540	160	-	140	0.81	<0.5	<0.5	360	-	-	-	-	-	-	-
	8/19/1999	590	-	-	180	3.2	<0.5	<0.5	720	-	-	-	-	-	-	-
	2/9/2000	680	-	-	100	3.1	<0.5	2,9	280	-		-	-	-	-	-
	8/9/2000	350	-	-	1.7	2.6	<0.5	0.84	410	-	-	-	-	-	-	-
	5/31/2001	280	-	-	1.1	1.6	0.25	0.25	430	-	-	-	-	-	-	-
	8/10/2001	300	-	-	0.95	1.6	0.25	0.66	340	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	12/14/2001	250	-	-	2.8	1.7	0.25	0.9	300	-	-	-	-	-		-
	4/8/2002	86		-	0.7	0.77	<0.5	<0.5	300							
	9/11/2002	<50	-	-	<0.5	<0.5	<0.5	<0.5	320	250	<2.5	<2.5	<2.5	98	<2.5	<2.5
MW-12	5/28/1993	<50	<50	-	<0.3	<0.3	<0.3	<0.9				_		_		-
	12/22/1993	50	300	<200	<0.5	<0.7	<0.5	<0.2	-	-		-	-			-
	6/30/1994	<50	<50	400	<0.5	<0.5	<0.5	<0.2	-	_		_		-		-
	9/27/1994	<50	400	<200	<0.5	<0.5	<0.5	<0.2	_	-		-	-	-		-
	9/27/1994	<50	-	-	<0.5	<0.5	<0.5	<0.2	_	_		_		-		-
	1/10/1995	<50	300	<200	<0.5	<0.5	<0.5	<0.2	_	-	•	-	-	-	•	-
	10/2/1995	<50	<50	<500	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-
	1/8/1996	<50	<50	<250	2.4	2.7	0.54	2.8	-	-	-	-	-	-	•	-
	4/25/1996	<50	<50		<0.5	<0.5	<0.5	<0.5		-	-	-	-	-	-	-
	3/25/1997	<50	<50	-	<0.5	<0.5	<0.5	<0.5	16	-	-	· -	-	-	•	-
	7/3/1997	<50	<50	-	<0.5	<0.5	<0.5	<0.5	16	-	-	-	-	-	-	-
	10/2/1997	<50	120	-		<0.5	<0.5 <0.5			-	-	-	-	-	-	-
	1/28/1998			-	<0.5			<0.5	17	-	-	-	-	-	-	-
		<50	<50	-	1.3	<0.5	<0.5	<0.5	13	-	-	-	-	-	•	-
	8/19/1999	<50 -<0	-	-	<0.5	<0.5	<0.5	<0.5	9.1	-	-	-	-	-	-	-
	2/9/2000	<50	-	-	<0.5	<0.5	<0.5	<0.5	6.2	-	-	-	-	-	•	-
	8/9/2000	<50	-	-	⊲0.5	<0.5	<0.5	<0.5	6.4	-	-	-	-	-	-	-
	5/31/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	6.5	-	-	-	-	-	-	-
	8/10/2001	<50	-	-	⊲0.5	<0.5	<0.5	<0.5	5.3	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	-	-	-	-	-	-	-	-	-	-	-	-	-		-
	4/8/2002	51	-	-	3.1	0.98	1,2	2	<5.0	-	-	-	-	-	-	-
	9/11/2002	<50	-	-	<0.5	<0.5	<0.5	< 0.5	6.2	3.6	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5

(1997) (1997) (1997)

	Date	TPH-g µg/L	T₽H-d µg/L	Т РН-ө µg/L	Benzene µg/L	Toluene µg/L	Ethyl- benzene	Xylenes µg/L	МТВЕ µg/L	МТВЕ µg/I.	DIPE µg/I.	ETBE µg/1.	TAME μg/L	TBA μg/L	EBD μg/L	1 ,2-D C. μg/L
<u> </u>		EF	A method 801	iM		E	µtg/L PA method 803	20				E	PA method 8260)B		
MW-16	5/28/1993	<50	<50	-	2.8	0.3	<0.7	<0.9								
	12/22/1993	2200	520	<200	<0.5	<0.7	<0.5	<0.2		-	-	-	-	-	-	_
	6/30/1994	<50	<50	900	8	<0.7	<0.5	<0.2	-	-	-	-	-	-	-	-
	9/27/1994	70	590	<200	17	<0.5	<0.5	<0.2	-	-	-	-	-	-	-	-
	1/10/1995	300	390 700	<200	17	<0.5	<0.5	<0.2	-	-	•	-	-	-	-	-
	10/2/1995	550	<50	<500	7.7	0.7	3.5	13	-	-	-	-	-	-	-	-
	1/8/1996	360	140	<250	<0.5	<0.5	4	13 9.7	-	-	-	-	-	-	-	-
	4/25/1996	500 1100	330					9.) 14	-	-	-	-	-	-	-	-
				-	390	3.7	3.2		-	-	-	-	-	•	-	-
	3/25/1997	310	120	-	<0.5	<0.5	<0.5	1.4	2100	-	-	-	-	-	-	-
	7/3/1997	250	130	-	<0.5	<0.5	<0.5	<0.5	1900	-	-	-	-	•	-	-
	10/2/1997	290	180	-	⊲0.5	<0.5	<0.5	<0.5	2000	-		-	-	-	-	-
	1/28/1998	150	130	-	<0.5	<0.5	<0.5	<0.5	1900	-	-	-	-	•	-	-
	9/9/1999	<50	-	-	<0.5	<0.5	<0.5	<0.5	880	-	-	-	-	-	-	-
	2/9/2000	<50	-	-	<0.5	0.6	<0.5	8.7	88	-	-	-	-	-	-	-
	8/9/2000	<50	-	÷	<0.5	<0.5	<0.5	<0.5	800	-	-	-	-	-	-	-
	5/31/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	69	-	-	-	-	-	-	-
	8/10/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	300	-	-	-	-	•	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
	12/14/2001	-	-	-	-	-	-	-	-	-	-		-	-	-	-
	4/8/2002	<50	-	-	1.7	0,61	0,78	1.4	45	-	-	-	-	-	-	-
	9/11/2002	<50		•	<0.5	<0.5	<0.5	-0-5	280	250	<2.5	<2.5	<2.5	33	<2.5	<2.5
EW-01	2/9/2000	2600	-	-	800	48	21	91	750	-	-	-	-	-	-	-
	8/9/2000	6700	-	-	2700	19	120	31	1300	-	-	-	-	-	-	-
	5/31/2001	3,100	-	-	580	24	36	32	850	-	-	-	-	-	-	-
	8/10/2001	210	-	-	14	2.2	1.0	1.1	620	-	-	-	-	-	-	-
	9/25/2001	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	12/14/2001	2,400	-	-	320	57	23	70	510	-	-	-	-	-	-	-
	4/8/2002	230	-	-	37	3.1	1.5	1	190	-	-	-	-	-	-	-
	9/11/2002	1600	-	-	400	5.2	22	56	630	470	<5.0	<\$.0	<5.0	77	<5.0	<5.0
MW-26	8/9/2000	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	-		-	-			-
	5/31/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	8.3	-	-	-	-	-	-	-
	8/10/2001	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	9/25/2001	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	12/14/2001		-	-	-	-	-	-	-	-	-	-	-		-	-
	4/8/2002	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	-	-	-	-
	9/11/2002	< 3 0	•	•	<0.5	<0.5	<0.5	<0.5	<5.0	0.80	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
MW-27	8/9/2000	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	-	-	-	_	_	_	-
	5/31/2001	<50	-	-	<0.5	<0.5	<0.5	<0.5	<5.0	_	-		_		_	-
	8/10/2001	-	-	_	-	-	-	-0.5		_	-	-	-	-	-	-
	9/25/2001		-	-			-	-		-	-	-	-	-	-	-
	12/14/2001		-	-	-		_	_		-	-	-	-	-	-	-
	4/8/2002	<50	-	-	<0.5	- <0.5	<0.5	<0.5	<5.0	-	-		-	-	-	-
	9/11/2002	<30 <50	-	-	<0.5	<0.5 <0.5	<0.5	<0.5	<5.0	0.52	<0.5	<0.5	<0.5	<0.5	<0.5	- <0.5

TPH-g = TPH as gasoline TPH-d = TPH as dissel

 111 111 111

TPH-o = TPH as motor oil

Sample ID	TPH as gasoline µg/L	MTBE µg/L	Benzene µg/L	Toluene μg/L	Ethyl- benzene µg/L	Xylenes µg/L
D B- 6' DB-20'	150,000 80,000	<3,300 <600	13,000 3,500	15,000 8,900	3,400 1,800	23,000 13,000
DB-20 DB-27'	1,700	<5	29	82	28	220
MDL	50	5	0.5	0.5	0.5	0.5

Table 6Groundwater Sample Analytical Data: AEI-B28June 8, 2000

MDL = Method Detection Limit

ND = Not detected above the Method Detection Limit (unless otherwise noted)

 $\mu g/L = micrograms per liter (ppb)$

Table 7
Groundwater Treatment System Operation Summary

	Extraction	Inje	ction	Sp	arging
Week of	volume	Volume	Target	Target	Duration (hours)
	(gallons)	(gallons)	(IW-X)	(IW-X)	Duration (hours)
6/18/2001	500	0	•	_	0
6/25/2001	400	400	3,4,7,8	3,4,7,8	36
7/2/2001	700	400	1,2,5,6	3,4,7,8	38
7/9/2001	400	700	1,2,5,6	1,2,5,6	18
7/16/2001	375	400	7,8,11,12	7,8,11,12	28
7/23/2001	400	350	3,4,7,8	7,8,11,12	36
7/30/2001	700	400	3,4,7,8	3,4,7,8	32
8/6/2001	400	700	1,2,5,6	3,4,7,8	32
8/13/2001	450	400	1,2,5,6	1,2,5,6	21
8/20/2001	500	500	5,6,9,10	1,2,5,6	28
8/27/2001	750	400	5,6,9,10	5,6,9,10	35
9/3/2001	800	750	1,2,3,6	5,6,9,10	36
9/10/2001	400	0	-	1,2,3,6	9
11/12/2001*	500	0	-	-	0
11/19/2001	800	400	10,11,6,7	10,11,12,7	36
11/26/2001	400	700	3,4,7,8	3,4,7,8	27
12/3/2001	400	400	1,2,5,6	3,4,7,8	27
12/10/2001	450	400	5,6,9,10	1,2,5,6	36
12/17/2001	400	450	5,6,9,10	5,6,9,10	27
1/7/2002	500	400	1,2,3,6	5,6,9,10	36
1/14/2002	400	450	1,2,3,6	1,2,3,6	27
1/21/2002	400	400	2,3,6,7	1,2,3,6	18
1/28/2002	350	400	2,3,6,7	2,3,6,7	27
2/4/2002	0	400	7,8,11,12	2,3,6,7	9
2/11/2002	500	400	7,10,11	7,8,11,12	28
2/18/2002	400	400	7,8,11,12	7,8,11,12	36
2/25/2002	400	400	7,8,11,12	3,4,6,7	27
3/4/2002	450	850	1,2,3 & 6,7	2,3,6,7	36
Totals (approx):	13125	11850			746

,

*Equipment stolen, vandalism occurred between September 15 and 21, 2001

ļ

	Pathway	Risk Type (Cancer /	Tier 2 Residential	RBSL Com. / Ind.	Site Maximum /		
	<i>.</i>	Hazard)	μgΛ	µgЛ	Mean ¹ µgЛ		
0	Inhalation of indoor	Cancer	5600	89000			
Benzene	air vapors	Hazard	19000	540000	520 / 115		
Ben	Inhalation of outdoor	Cancer	>SOL	>SOL	5207 115		
	air vapors	Hazard	>SOL	>SOL			
	Inhalation of indoor	Cancer	nc	nc			
Toluene	air vapors	Hazard	>SOL	>SOL	5.4/1.5		
Tolı	Inhalation of outdoor	Cancer	nc	nc	5.471.5		
	air vapors	Hazard	>SOL	>SOL			
e e	Inhalation of indoor	Cancer	nc	nc			
E-benzene	air vapors	Hazard	>SOL	>SOL	22/4.3		
per	Inhalation of outdoor	Cancer	nc	nc	2274.5		
Ш.	air vapors	Hazard	>SOL	>SOL			
	Inhalation of indoor	Cancer	nc	nc			
Xylenes	air vapors	Hazard	>SOL	>SOL	56/8.3		
Xyl	Inhalation of outdoor	Cancer	nc	nc	5078.5		
	air vapors	Hazard	>SOL	>SOL			
	Inhalation of indoor	Cancer	пс	nc			
MTBE	air vapors	Hazard	36000	>SOL	470 / 156		
IW	Inhalation of outdoor	Cancer	nc	пс	4/0/150		
	air vapors	Hazard	>SOL	>SOL			

Table 8Tier 2 Groundwater RBSLs (Oakland)

nc - chemical not considered carcinogenic

>SOL: RBLS exceeds the solubility of chemical in water SAT: RBSL exceeds the saturation of chemical in soil Source: Oakland, 2000.

¹ Data from monitoring event, September 11, 2002

	Pathway	Risk Type (Cancer / Hazard)	Tier 2 Residential mg/kg	RBSL Com. / Ind. mg/kg	Site Maximum / mean mg/kg	
kene	Soil Ingestion,	Cancer	19	49	0.007 (1) (0.0007	
Benzene	dermal contact, and vapor inhallatoin	Hazard	63	300	0.007 (1) / 0.0027	
Toluene	Soil Ingestion, dermal contact, and	Cancer	nc	пс	0.011 (1) / 0.0029	
Tolu	vapor inhallatoin	Hazard	7,100	34,000	0.011 (1)7 0.002)	
E-benzene	Soil Ingestion, dermal contact, and	Cancer	nc	nc	<0.005	
E-ber	vapor inhallatoin	Hazard	3,900	18,000	\U.UU	
Xylenes	Soil Ingestion, dermal contact, and	Cancer	nc	nc	- 0.010 (2) / 0.0052	
Xyl	vapor inhallatoin	Hazard	53,000	260,000	0.010 (2)7 0.0032	
MTBE	Soil Ingestion, dermal contact, and	Cancer	nc	nc	na	
ĹW	vapor inhallatoin	Hazard	200	930		

Table 9Tier 2 Surface Soil RBSLs (Oakland)

nc - chemical not considered carcinogenic

>SOL: RBLS exceeds the solubility of chemical in water

SAT: RBSP exceeds the saturation of chemical in soil

Source: Oakland, 2000.

(1) data from post aeration analyses Batch #A

(2) data from post aeration analyses Batch #B

Mean not presented if all samples were below detection limits

		D' L T	Tier 2	RBSL	0: 36 : (
	Pathway	Risk Type (Cancer / Hazard)	Residential mg/kg	Com. / Ind. mg/kg	Site Maximum / Mean mg/kg	
υ	Inhalation of	Cancer	1.9	30		
zen	indoor air vapors	Hazard	6.2	180	0.25 (1) / 0.06	
Scn	Inhalation of	Cancer	160	620	0.23 (1)7 0.00	
MTBH MI Inh Inh Inh Inh Inh Inh Inh Inh Inh In	outdoor air vapors	Hazard	650	SAT		
പ	Inhalation of	Cancer	nc	nc		
jene	indoor air vapors	Hazard	930	SAT	1.0 (2) / 0.12	
	Inhalation of	Cancer	nc	nc	1.0(2)/0.12	
ind ind ind ind ind ind ind ind	outdoor air vapors	Hazard	SAT	SAT		
ne	Inhalation of	Cancer	ΠC	nc		
IZEI	indoor air vapors	Hazard	SAT	SAT	0.28 (3) / 0.03	
Per	Inhalation of	Cancer	nc	nc	0.28 (3)7 0.03	
<u> </u>	outdoor air vapors	Hazard	SAT	SAT		
s	Inhalation of	Cancer	пс	nc	·····	
ene	indoor air vapors	Hazard	SAT	SAT	2.0 (3) / 0.23	
<u> Kyl</u>	Inhalation of	Cancer	nc	nc	2.0 (3)7 0.23	
~	outdoor air vapors	Hazard	SAT	SAT		
>	Inhalation of	Сапсег	nc	nc		
BE BE	indoor air vapors	Hazard	14,000	SAT		
L H	Inhalation of	Cancer	nc	nc	na na	
r	outdoor air vapors	Hazard	SAT	SAT		

Table 10Tier 2 Subsurface Soil RBSLs (Oakland)

nc - chemical not considered carcinogenic

>SOL: RBLS exceeds the solubility of chemical in water

SAT: RBSP exceeds the saturation of chemical in soil

Source: Oakland, 2000.

<LDL - less than laboratory detection limits, generally 0.1 to 0.05 for MTBE

(1) - Sample EP7 (sidewall sample) 5/8/96

(2) - Sample NW14 (sidewall sample) 4/12/96

(3) - Sample EW12 (sidwall sample) 4/12/96

			Ceiling	Level	Indoor Ai	ir Impacts	Aquatic Life	Curfuge Weter
Chemical	Site Maximum*	Site Mean*	Nuisance Odor (upon discharge to surface)	Upper Limit	Coarse Soils	Fine Soils	Protection (upon discharge to surface water)	Surface Water Concentration
TPH-gasoline	2,000	468	5000	50000	na	na	500	na
Benzene	520	115	20000	50000	84	5800	46	71
Toluene	5.4	1.5	400	50000	76000	530000 (sol)	130	200000
Ethyl-Benzene	22	4.3	300	50000	170000 (sol)	170000 (sol)	290	29000
Xylenes	56	8.3	5300	50000	150000	160000 (sol)	13	na
MTBE	470	156	1800	50000	50000	490000	8000	na

Table 11 Groundwater RBSLs (RWQCB): Drinking Water Resource Not Threatened (All Concentrations Expressed in mg/l)

Components Shown in Red are not considered valid or complete for this site (see text) * Data from 9/11/02 groundwater monitoring event

Source: RWQCB, 2000

	St4-					Direct E	:		Indo	or Air		Groundwater Protection			
Chemical	Site Maximum	Site Mean	Ceiling	Urban Area			C	Com. / Ind.	Resi	Residential		/ Ind.	or our of the second se		
	****	****		Ecotoxicity	Cancer	Non-cancer (HQ = 0.2)	Cancer	Non-cancer (HQ = 0.2)	Coarse Soils	Fine Soils	Coarse Soils	Fine Soils	Target GW Conc** (µg/l)	DAF	Soil Level
TPH-gasoline	38	5.1	500	na	na	na	na	na	Da	na	na	na	500	834	400
Benzene	0.25	0.06	500	25	0.18	1.4	0.39	4.8	0.18*	0.18*	0.39*	0.39*	46	44.8	2.1
Toluene	1.0	0.12	500	150	na	120	na	400	30	310	89	520 (sat)	130	64.2	8.4
Ethyl-Benzene	0.28	0.03	230	па	па	300(sat=230)	na	1200(sat=230)	76	230 (sat)	220	230 (sat)	290	82.1	24
Xylenes	2.0	0.23	210	na	па	270(sat=210)	ла	890(sat=210)	210 (sat)	210 (sat)	210 (sat)	210 (sat)	13	78.5	1
MTBE	na	na	100	ла	34	140	79	2100	3.4	68	12	290	1800	5.59	10

Table 12 Surface Soil RBSLs (RWQCB) (All Concentrations Expressed in mg/kg)

.

Components Shown in Red are not considered valid or complete for this site (see text) * Indoor Air exposure pathway levels for benzene set as direct exposure levels (RWQCB, 2001)

** Target groundwater concentration based on lowest component of Table 9, rather than lowest relevant component
 *** No MTBE detected in soil above water table. Highest laboratory detection limit shown.
 Groundwater Protection Soil Level = Dilution-attenuation factor (DAF) x Target Groundwater Concentration x 0.001 mg/ml

	Site	Site Mean	C	eiling	Direct Exposure Construction/Trenchworker				ər Air		Groundwater Protection		
Chemical	Maximum	Site Mean					Residential		Com. / Ind.				
	****	****	Res.	Com./Ind.	Cancer	Non-cancer (HQ = 0.2)	Coarse Soils	Fine Soils	Coarse Soils	Fine Soils	Target GW Conc** (µg/l)	DAF	Soil Level
TPH-gasoline	38	5,1	5000	5000	na	na	па	na	па	na	500	834	400
Benzene	0.25	0.06	1000	1100	16	58	0,18	0.18	0.39	0.39	46	44.8	2.1
Toluene	1.0	0.12	520	520	na	4700(sat=520)	30	310	89	520(sat)	130	64.2	8.4
Ethyl-Benzene	0.28	0.03	230	230	na	12000(sat=230)	76	230(sat)	220	230(sat)	290	82.1	24
Xylenes	2.0	0.23	210	210	na	11000(sat=210)	210(sat)	210(sat)	210(sat)	210(sat)	13	78.5	1
MTBE	na na 500 10		1000	2900	4900	3.4	68	12	290	1800	5.59	10	

 Table 13

 Subsurface Soil RBSLs (RWQCB)

 (All Concentrations Expressed in mg/kg)

.

Components Shown in Red are not considered valid or complete for this site (see text)

* Indoor Air exposure pathway levels for benzene set as direct exposure levels (RWQCB, 2001)

** Target groundwater concentration based on lowest component of Table 9, rather than lowest relevant component

*** No MTBE detected in soil above water table. Highest laboratory detection limit shown.

Groundwater Protection Soil Level = Dilution-attenuation factor (DAF) x Target Groundwater Concentration x 0.001 mg/ml

**** Highest concentrations remaining used for both surface and subsurface soils for RWQCB RBSL comparision

***** Highest mean or either surface or subsurface soil, see text Exhibit 3

Source: RWQCB, 2000

2.2 Qualifying for the Oakland RBCA Levels

The Oakland Tier 1 RBSLs and Tier 2 SSTLs are intended to address human health concerns at the majority of sites in Oakland where commonly-found contaminants are present. Complicated sites-especially those with continuing releases, ecological concerns or unusual subsurface conditions-will likely require a Tier 3 analysis. The checklist that comprises Table 1 is designed to assist you in determining your

site's eligibility for the Oakland RBCA levels.⁶

Oakland RBCA Eligibility Checklist Table 1.

. <u> </u>	CRITERIA	YES	NO
1	To these and the second s		
1.	Is there a continuing, <i>primary</i> source of a chemical of concern, such as a		
2.	leaking container, tank or pipe? (This does not include residual sources.)	Ц	Х
	Is there any mobile or potentially-mobile free product? Are there more than five chemicals of concern at the site at a concentration		X
9.	greater than the lowest applicable Oakland RBCA level?	[]	57
4.	Is there a preferential vapor migration pathway—such as a gravel channel or a		M
	utility corridor—that is less than 1 meter from <i>both</i> of the following?		
	(a) A source area containing a volatile chemical of concern		
	(b) A structure where inhalation of indoor air vapors is of concern		
5.	Do both of the following conditions exist?		
	(a) Groundwater is at depths less than 300 cm (10 feet)		
	(b) Inhalation of volatilized chemicals of concern from groundwater in indoor		
6	or outdoor air is a pathway of concern but groundwater ingestion is not*		\mathbf{A}
0.	Are there any existing on-site or off-site structures intended for future use		
	where inhalation of indoor air vapors from either soil or groundwater is of concern <i>and</i> one or more of the following four conditions is present?		
	(a) Chemicals of concern located less than one meter below the structure		
	(b) A slab-on-grade foundation less than 15 cm (6 inches) thick		
	(c) An enclosed, below-grade space (e.g., a basement) that has floors or walls		
	less than 15 cm (6 inches) thick		
	(d) A crawl space that is not ventilated		\succ
7.	The more any minimulate, acute nearin risks to numans associated with		t-and
0	contamination at the site, including explosive levels of a chemical?		Σ
δ.	Are there any existing or potential exposure pathways to nearby ecological		
	receptors, such as endangered species, wildlife refuge areas, wetlands, surface		
*If	water bodies or other protected areas?		<u>N</u>

oncern, the associated Oakland RBCA levels will be more stringent than those for any groundwater-related inhalation scenario, rendering depth to groundwater irrelevant in the risk analysis.

If the answer to all questions is "no", your site is eligible for both the Oakland Tier 1 RBSLs and Tier 2 SSTLs. Proceed to Section 2.3 for guidance on meeting the minimum Tier 1 and Tier 2 site characterization requirements.

OAKLAND URBAN LAND REDEVELOPMENT PROGRAM

625 Hegenberger Road, C)akland: N	ITBE		Range							
Source concentration	C₀	470	ppb		Distance	x/(2*a _L)	exp()	erf(Y)	erf(Z)	С	C/Co
X axis dispersivity	αχ	0.10	ft	0.1 - 4	0						1
Y axis dispersivity	α	0.05	ft	α _y =(0.33~0.65)α _x	50	250	0.18992	1	1	89	0.1899
Z axis dispersivity	α _z	0.01	ft		100	500	0.03607	1	1	17	0.0361
Distance to source well	х	340	ft		150	750	0.00685	1	1	3	0.0069
Groundwater velocity	u	0.03	ft/day	0.1 - 10	200	1000	0.0013	1	1	1	0.0013
Source dimension Y	Y	100			250	1250	0.00025	1	1	0	0.0002
Source dimension Z	Z	10			300	1500	4.7E-05	1	1	0	0.0000
First order attenuation rate		0.001	1/day	0.01 - 0.001	350		8.9E-06	1	1	0	0.0000
	$x/(2^*\alpha_x)$	1700.0			400	2000	1.7E-06	1	1	0	0.0000
[1-(1+(4laL/u))^(1/2)]	[]	-0.0066			450	2250	3.2E-07	1	1	0	0.0000
Y/4(aTx)^(1/2)	Y/	6.0634			500	2500	6.1E-08	1	1	0	0.0000
	erf(Y)	1.0000			550	2750	1.2E-08	1	1	0	0.0000
Z/4(a _v x)^(1/2)	Z/	5.7294			600	3000	2.2E-09	1	1	0	0.0000
	erf(Z)	1.0000			650	3250	4.2E-10	1	1	0	0.0000
	exp()	0.0000			700	3500	7.9E-11	1	1	0	0.0000
$C = C_0 * exp() * erf(Y) * erf(Y)$	C	0	ug/L		750	3750	1.5E-11	1	1	0	0.0000
	λ/u	0.03333333		-	800	4000	2.9E-12	1	1	0	0.0000
Well Name	e Well No	Distance	С	C/C0	850	4250	5.4E-13	1	1	0	0.0000
Source Wel	I MW-8	1	470	1	900	4500	1E-13	1	1	0	0.0000
Downgradient Well 1	MW-16	80	250	0.531914894	950	4750	2E-14	1	1	0	0.0000
Downgradient Well 2	2 MW-27	260	0.52	0.001106383	1000	5000	3.7E-15	1	1	0	0.0000

Values in GREEN are site specific Values in RED are iterated

SPREADSHEET MODEL EVALUATION

625 Hegenberger Road, Oakland: MTBE				Range							
Source concentration	Co	3,000	ppb		Distance	x/(2*a _L)	exp()	erf(Y)	erf(Z)	С	C/Co
X axis dispersivity	αχ	0.10	ft	0.1 - 4	0						1
Y axis dispersivity	αγ	0.05	. ft	$\alpha_{y} = (0.33 \sim 0.65) \alpha_{x}$	50	250	0.18992	1	1	570	0.1899
Z axis dispersivity	α _z	0.01	ft		100	500	0.03607	1	1	108	0.0361
Distance to source well	X	340	ft		150	750	0.00685	1	1	21	0.0069
Groundwater velocity	u	0.03	ft/day	0.1 - 10	200	1000	0.0013	1	1	4	0.0013
Source dimension Y	Y	100			250	1250	0.00025	1	1	1	0.0002
Source dimension Z	Z	10			300	1500	4.7E-05	1	1	0	0.0000
First order attenuation rate		0.001	1/day	0.01 - 0.001	350	1750	8.9E-06	1	1	0	0.0000
	x/(2*α _x)	1700.0			400	2000	1.7E-06	1	1	0	0.0000
[1-(1+(4laL/u))^(1/2)]	[]	-0.0066			450	2250	3.2E-07	1	1	0	0.0000
Y/4(aTx)^(1/2)	Y/	6.0634			500	2500	6.1E-08	1	1	0	0.0000
	erf(Y)	1.0000			550	2750	1.2E-08	1	1	0	0.0000
Z/4(a _v x)^(1/2)	Z/	5.7294			600	3000	2.2E-09	1	1	0	0.0000
	erf(Z)	1.0000			650	3250	4.2E-10	1	1	0	0.0000
	exp()	0.0000			700	3500	7.9E-11	1	1	0	0.0000
$C = C_0 * exp() * erf(Y) * er$	f(C	0	ug/L		750	3750	1.5E-11	1	1	0	0.0000
	λ/u	0.03333333		-	800	4000	2.9E-12	1	1	0	0.0000
Well Nam	e Well No	Distance	С	C/C0	850	4250	5.4E-13	1	1	0	0.0000
Source Well MW-8 1 3000		1	900	4500	1E-13	1	1	0	0.0000		
Downgradient Well 1 MW-16 80		250	0.083333333	950	4750	2E-14	1	1	0	0.0000	
Downgradient Well	2 MW-27	260	0.52	0.000173333	1000	5000	3.7E-15	1	1	0	0.0000

Values in GREEN are site specific Values in RED are iterated

Ĺ

SPREADSHEET MODEL EVALUATION

