DECTED TO AL PLOTECTION 97 MAY 29 PH 3: 17

May 27, 1997

QUARTERLY GROUNDWATER MONITORING REPORT First Quarter, 1997

625 Hegenberger Road Oakland, California

5/27/97

Project No. 2169

Prepared For

Diversified Investment and Management Corp. 400 Oyster Point Blvd., Suite 415 South San Francisco, CA 94080

Prepared By

All Environmental, Inc. 3364 Mt. Diablo Boulevard Lafayette, CA 94549 (800) 801-3224

Environmental Engineering & Construction

May 27, 1997

Mr. Barney Chan, Hazardous Materials Specialist Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Rm 250 Alameda, CA 94502-6577

RE: Quarterly Groundwater Monitoring Report First Quarter of 1997 625 Hegenberger Road Oakland, California Project No. 2169

Dear Mr. Chan:

This Quarterly Groundwater Monitoring Report is submitted by All Environmental, Inc. (AEI) on the behalf of Diversified Investment and Management Corp., for the former fuel service station location at 625 Hegenberger Road, Oakland, California. AEI measured the depth to groundwater and collected water samples from five groundwater monitoring wells on March 25, 1997. This groundwater monitoring episode is being conducted to monitor groundwater contamination caused by the release of hydrocarbon fuels at the site and to measure various chemical parameters to judge the suitability of the site for groundwater bioremediation.

Background

In October, 1993, three underground storage tanks and related structures were removed from the site under the observation of Levine Fricke. Approximately 300 cubic yards (cy) of soil was excavated during the tank removal. Levine Fricke and Subsurface Consultants performed several shallow soil borings and installed six groundwater monitoring wells at the site. Results of the comprehensive soil investigation indicated that hydrocarbon contamination was present in elevated levels at the site.

The quarterly monitoring of the six monitoring wells was performed by Levine Fricke through January, 1995. AEI began monitoring the wells in October, 1995. In March 1996, AEI destroyed one of the wells (designated MW-24) in anticipation of excavation activities.

AEI excavated and aerated 1,600 cubic yards of contaminated soil in the spring and summer of 1996 as detailed in AEI's report, "Phase II Environmental Site Assessment" dated March 3, 1997. The excavation extended to the vadose zone, approximately 5 to 7

Corporate Headquarters:

3364 Mt. Diablo Blvd. Lafayette, CA 94549 Phone: (510) 283-6000 Fax: (510) 283-6121 Sacramento Office:

5524 Assembly Ct., Suite 10 Sacramento, CA 95823 Phone: (916) 429-0776 Fax: (916) 424-0182 Los Angeles Office:

111 N. Sepulveda Bivd., #250 Manhattan Beach, CA 90266 Phone: (310) 328-8878 Fax: (310) 798-2841 Mr. Barney Chan, Hazardous Materials Specialist Alameda County Health Care Services Agency May 27, 1997 Page 2

feet below ground surface (bgs). Figure 1 shows the areas excavated. AEI believes that all significant sources of groundwater contamination have been abated and that only minor contaminant concentrations remain within the soil at the site. The groundwater contamination should eventually attenuate to low levels. The site is currently being evaluated as a candidate for groundwater bioremediation to expedite the reduction of contamination. For this reason, measurements of dissolved oxygen and oxidationreduction (redox) potential were collected during the current monitoring episode.

Summary of Activities

Well locations are also shown in Figure 1. The sampling procedure for each monitoring well involved measuring water levels, purging the wells, and collecting a water sample. The depth from the top of the well casing and the total well depth were measured prior to sampling with an electric water level indicator. The wells were purged and a groundwater sample was collected from each well using a battery powered submersible pump. Temperature, pH, dissolved oxygen, conductivity, oxidation-reduction (redox) potential, and turbidity were measured during the purging of the wells. AEI removed approximately 4 to 5 well volumes per well and, provided that the water quality parameters stabilized, a water sample was collected.

Water samples were poured slowly into laboratory-provided glass sampling containers, capped, and shipped on ice under proper chain of custody to McCampbell Analytical Inc. The samples were analyzed for Total Petroleum Hydrocarbons (TPH) as gasoline by EPA Method 5030/8015, benzene, toluene, ethylbenzene, and total xylenes (BTEX) by EPA Method 602, methyl tertiary butyl ether (MTBE), and TPH as diesel. AEI discontinued the analysis of samples for Total Petroleum Hydrocarbons as oil (TPHo) by EPA Methods 3510/8015 following the recommendations of the quarterly monitoring report dated March 20, 1996.

Field Results

No free product was encountered during monitoring activities. Groundwater levels for March 25, 1997 range from 1.45 to 1.87 feet below mean sea level (msi). These groundwater elevations were an average of 0.8 feet higher than the April, 1996 levels (1.98 to 3.27 feet below msl). The general direction of the groundwater flow at the time of measurement was towards the west. The groundwater hydraulic gradient ranged from 0.003 to 0.004 ft/ft. Groundwater elevation data are summarized in Table 1 and shown in Figure 1. The groundwater elevation contours and the groundwater flow directions are shown in Figure 1. A summary of field parameters measured during sampling is presented in Table 2.

Mr. Barney Chan, Hazardous Materials Specialist Alameda County Health Care Services Agency May 27, 1997 Page 3

Groundwater Quality

In general, analysis of samples retrieved from wells MW-8 through MW-16 did not show a substantial increase or decrease in contamination levels. Contaminant concentrations did not change by a significant amount in relation to previous monitoring episodes. A summary of groundwater quality data, including available historic data, is presented in Table 3. Laboratory analysis data are presented in Appendix A.

A list of critical environmental factors affecting microbial activity for the biodegredation of hydrocarbon contamination is listed in Table 3-1 from EPA's handbook, "Ground Water Volume II: Methodology," dated July, 1991 included with this report. The table indicates that for conditions favorable for hydrocarbon degradation to occur, a concentration of greater than 0.2 mg/L dissolved oxygen is required. This table also suggests that a redox potential of 50 mV or greater is conducive to biodegredation. The negative redox potential measured in the field would not be conducive to biodegredation. However, the levels pH and temperature do lie within the ranges favorable for microbial activity.

Conclusions / Recommendations

Contaminant concentrations appear to have stabilized in relation to the previous monitoring episode. AEI recommends continuing quarterly monitoring for TPH as gasoline, TPH as diesel, MTBE, and BTEX.

Oxygen deficient and strongly reducing conditions characterize the groundwater beneath the site. Bioactivity would be stimulated by increasing the concentration of dissolved oxygen. Additional oxygen would also raise the redox potential of groundwater and change the environment from reducing to oxidizing. Measurements of dissolved oxygen and redox potential should continue along with the other water quality parameters listed in Table 2. Concentrations of carbon dioxide, nitrogen, and phosphorous listed in EPA's Table 3-1 should also be measured during the next monitoring episode. Mr. Barney Chan, Hazardous Materials Specialist Alameda County Health Care Services Agency May 27, 1997 Page 4

Please do not hesitate to call either of the undersigned, if you have any questions.

Sincerely, All Environmental, Inc.

Bryan Campbell Project Geologist

Joseph P. Derhake, PE, CAC Senior Author

Attachments

cc: Dinesh Maniar, Diversified Investment and Management Corp.
400 Oyster Point Boulevard, Suite 400, South San Francisco, CA 94080

Table 1 **Groundwater Elevations** 625 Hegenberger Road, Oakland, California

		Well	Depth	Groundwater
		Elevation	to Water	Elevation
Well ID	Date	(ft msl)	(ft)	(ft msl)
MW-8	12/22/93	4.88	6.72	-1.84
MW-10	12/22/93	4.21	6.00	-1.79
MW-11	12/22/93	5.04	6.84	-1.80
MW-12	12/22/93	4.58	6.07	-1.49
MW-16	12/22/93	5,53	7.48	-1.49
WIW-16	142493	5,35	/.40	-1.95
MW-8	6/30/94	4.88	6.55	-1.67
MW-10	6/30/94	4.21	5.79	-1.58
MW-11	6/30/94	5.04	6,73	-1.69
MW-12	6/30/94	4.58	6.06	-1.48
MW-16	6/30/94	5,53	7.28	-1.75
MW-8	9/27/94	4.88	7.20	-2.32
MW-10	9/27/94	4.21	6.39	-2.18
MW-11	9/27/94	5,04	7.41	-2.37
MW-12	9/27/94	4.58	6,57	-1.99
MW-16	9/27/94	5.53	7.93	-2.40
MW-8	1/4/95	4.88	6.21	-1.67
MW-10	1/4/95	4.21	5.42	-1.58
MW-11	1/4/95	5.04	6.45	-1.69
MW-12	1/4/95	4.58	5.50	-1.48
MW-16	1/4/95	5.53	7,03	-1.50
MW-8	1/10/95	4,88	5.09	-2.32
MW-10	1/10/95	4.33	4.67	-2.18
MW-10 MW-11	1/10/95	5.04	4.87 5,72	-2.18
MW-12	1/10/95	4,58	4.46	-1.99
MW-16	1/10/95	5.53	6,21	-2,40
MW-24	1/10/95	5.49	5,97	-0,48
		5.15	2.27	0,10
MW-8	10/2/95	4.88	7,66	-2.78
MW-10	10/2/95	4.21	6.87	-2.66
MW-11	10/2/95	5.04	7.85	-2.81
MW-12	10/2/95	4.58	6.99	-2.41
MW-16	10/2/95	5.53	8.40	-2.87
MW-24	10/2/95	5.49	8.31	-2.82
MW-8	1/8/96	4.88	7 45	2.67
	1/8/96		7.45	-2.57
MW-10		4.21	6.82	-2.61
MW-11	1/8/96	5.04	7.91	-2.87
MW-12	1/8/96	4.58	6.65	-2.07
MW-16	1/8/96	5.53	8.23	-2.70
MW-24	1/8/96	5.49	8.08	-2.59
MW-8	4/25/96	4,88	7.32	-2.44
MW-10	4/25/96	4.21	7.48	-3.27
MW-11	4/25/96	5.04	7.51	-2.47
MW-12	4/25/96	4,58	6,56	-1.98
MW-16	4/25/96	5.53	8.06	-2.53
MW-8	3/25/97	4.88	6.75	-1.87
MW-10	3/25/97	4.21 5.04	5.83	-1.62
MW-11 MW-12	3/25/97		6.83	-1.79
	3/25/97	4.58	6,03	-1.45
MW-16	3/25/97	5.53	7.35	-1.82

Notes:

All well elevations are measured from the top of casing.

ft msl = feet above mean sea level

NA = not available All well elevation data was extracted from past Levine-Fricke reports.

r

Table 2 Water Quality Parameters 625 Hegenberger Road, Oakland, California

Well ID	Date	Well Volume (gallons)	Volume Withdrawn (gallons)	Well Volumes Withdrawn	Stabilized Temperature (deg. C)	Qualitative Tubidity	Stabilized pH	Stabilized Disolved Oxygen (mg/L)	Stabilized Redox Potential (mV)
MW-8	12/22/93	1.5	4.50	3.00	19.40	turbid*			
MW-10	12/22/93	1.6	7.00	4,38	20.80	moderately turbid			20 20 2
MW-11	12/22/93	1.5	4.50	3,00	20.20	turbid			10 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
MW-12	12/22/93	1.5	5.30	3.31	20.20	moderately turbid			
						-	anning a fantarar	the factor of the	
MW-16	12/22/93	1.1	4.50	4.09	20.50	turbid			
MW-8	6/30/94	l.5	8.00	5,33	21.00	turbid*			
MW-10	6/30/94	1.6	6.00	3.75	21.00	turbid			Sec. 123
MW-11	6/30/94	1.4	6.00	4.29	20.20	turbid			1. Sec. 7
MW-12	6/30/94	1.6	6,00	3.75	20,60	moderately turbid	CONTRACT CARDING		- 10 A - 1
MW-16	6/30/94	1.1	4.50	4.09	21.80	turbid			
MW-8	9/27/94	1.4	4.50	3.21	21.60	turbid*			
MW-10	9/27/94	1.5	6.00	4.00	22.60	turbid		in the second	
MW-11	9/27/94	1.3	3.00	2.31	21.00	turbid			1 1 H -
MW-12	9/27/94	1.5	6.00	4.00	22.50	turbid			
MW-16	9/27/94	1.0	3.00	3.00	22.60	turbid		and the second second	44 - A
									2005 - 200 - 20
MW-8	1/10/95	1.7	5.30	3.12	17.20	turbid*			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
MW-10	1/10/95	1.8	6.00	3.33	19.50	turbid			
MW-1 1	1/10/95	1.6	5.30	3,31	18,60	turbid			in an an the second
MW-12	1/10/95	1.8	6.00	3.33	19.30	turbid			
MW-16	1/10/95	1.2	6.00	5,00	19.30	turbid	THE REPORT OF A	in fluide destruction	
MW-24	1/1 0/95	4.9	41.00	8.37	18.90	turbid			a service de la composición de la compo
MW-8	10/2/95	1.1	11.00	10.00	22.80	moderately turbid	6.49		
MW-10	10/2/95	1.5	11.00	7.33	22.60	turbid	7.20		1.
MW-11	10/2/95	1.0	12.00	12.00	22.00		6.85		
						moderately turbid		Non-Alexand	in the second second
MW-12	10/2/95	1.3	11.00	8,46	22.90	turbid	7.20		
MW-16 MW-24	10/2/95 10/2/95	1.1 3.4	11.00 20.00	10.00 5.88	22.60 22.80	turbid turbid	7.20 7.10		
141 44-74	10/2/95	J.4	20.00	2.00	22.60	tin bigi	7.10		
MW-8	1/8/96	1.1	12.00	10.91	17.30**	slightly turbid	6.74**		
MW-10	1/8/96	1.5	10.00	6.67	17.90**	slightly turbid	6.62**		
MW-11	1/8/96	1.0	5.50	5.50	17.60**	slightly turbid	6.65**		
MW-12	1/8/96	1.2	10.00	8.33	18.00**	slightly turbid	6.49**		
MW-16	1/8/96	0.9	5.00	5.56	19.00**	slightly turbid	7.50**		1. A. A.
MW-24	1/8/96	3.4	35,00	10.29	17.60**	slightly turbid	6.67**		
MUZ 9	A/75/04		5.00	1 55	11 11		6 40		
MW-8	4/25/96	1,1	5.00	4.55	21.11	clear	6.53		
MW-10	4/25/96	1.4	5.00	3.57	22.83	slightly turbid	6.70		
MW-11	4/25/96	1,1	5.50	5.00	21.39	clear	6.58		
MW-12	4/25/96	1.2	5.00	4.17	22.39	clear	6,50		
MW-16	4/25/96	1.2	5,00	4.17	25.33	slightly turbid	7.12		
MW-8	3/25/97	2.2	10.00	4.55	18.17	clear	6.67	0.23	-140.00
MW-10	3/25/97	3.4	12.00	3.57	19.72	slightly turbid	6.79	0.35	-131.00
MW-11	3/25/97	2.0	10.00	5,00	18.56	clear	6.64	0.19	-120.00
MW-12	3/25/97	2.4	10.00	4.17	18.44	clear	6.67	0.19	-79.00
MW-16	3/25/97	2.4	10.00	4.17	17.94	slightly turbid	7.02	0.10	-135,00

Notes: * A slight hydrocarbon sheen was reported, ** Only one measurement collected.

Table 3 Historic Water Quality 625 Hegenberger Road, Oakland, California (concentrations reported in milligrams per liter)

Well ID	Date	Consultant/ Lab		TPHg	MTBE	Benzene	Toluene		Ethyl- Benzene	Xylenes	TPHo	ТРНа	Total Lead
MW-8	(1)	SUB	(2)	NA	NA	3.7	BDL		0.29	0.69	NA	NT A	יחם
1111 0	5/28/93	HC/SUP	(4)	19	NA	5.7 6.4	0.028		0.29	0.036		NA	BDL
			(4)					(5)			NA	1	(3)
	12/22/93	LF/AEN	(4)	56	NA	16	5,9993	(5)	0.65	2.7	<0.2	0.3	<0.04
	6/30/94	LF/AEN	(4)	41	NA	11	4.8		2.2	8.2	0.5	<0.5	<0.04
	9/27/94	LF/AEN		28	NA	8.5	0.26		1.6	5.3	<0.2	0.62	<0.04
	1/10/95	LF/AEN		58	NA	10	11		2.4	12	<0.2	0.07	NA
	10/2/95	AEI/PEL		28	NA	0.051	0.016		0,054	0.08	<0.5	<0.05	NA
	1/8/96	AEI/MAI		72	NA	8,6	13		2.2	12	<0.25	3.7	NA
duplicate	1/8/96	AEI/MAI		62	NA	7.2	9.5		1.6	8	NA	NA	NA
	4/25/96	AEI/MAI		33	NA	7.6	2.3		1.5	4.8	NA	3.1	NA
	3/25/97	AEI/MAI		23	1.5	8.3	0.08		0.35	- 0.38	NA	∵ ≈13 •	NA*
MW-10	(1)	SUB		NA	NA	0.0017	BDL		BDL	BDL	NA	NA	BDL
	5/28/93	HC/SUP		<0.05	NA	<0.0003	<0.0003		<0.0003	<0.0009	NA	0.054	(3)
	12/22/93	LF/AEN		<0.05	NA	<0,0005	<0.0003	(5)	<0.0005	< 0.0002	<0.2	0.58	<0.04
	6/30/94	LF/AEN		<0.05	NA	<0.0005	<0.0005	()	<0.0005	<0.0002			<0.04
											0.6	<0.05	
	9/27/94	LF/AEN		<0.05	NA	<0.0005	<0.0005		<0.0005	< 0.0002	<0.2	0.61	<0.04
	1/10/95	LF/AEN		<0.05	NA	<0.0005	<0.0005		<0.0005	<0.0002	<0.2	0.6	NA
	10/2/95	AEI/PEL		0.35	NA	0.0044	0.0026		0.0023	0.0064	<0.5	<0.05	NA
	1/8/96	AEI/MAI		0.05	NA	0.0058	0.0071		0.0012	0,0064	<0.25	<0.05	NA
	4/25/96	AEI/MAI		<0.05	NA	<0.0005	<0.0005		<0.0005	<0.0005	NA	<0.05	NA
	3/25/97	AEI/MAI		<0.05	<0.005	<0,0005	<0.0005		<0.0005	<0.0005	NA	<0.05	NA
MW-11	(1)	SUB	(6)	NA	NA	0.053	BDL		BDL	BDL	NA	NA	0.21
	5/28/93	HC/SUP		1.2	NA	0.45	0,017		0.0015	0.0021	NA	<0,05	(3)
	12/22/93	LF/AEN		9.2	NA	4,5	0.0383	(5)	0.012	0.043	<0.2	0.53	<0.04
	6/30/94	LF/AEN		8.8	NA	1.5	0.013	(-)	0.69	1.2	1.1	<0.05	< 0.04
duplicate	6/30/94	LF/AEN		9.7	NA	1.7	0.015		0.73	1.3	NA	NA	NA
dupneate	9/27/94			15		6.5			0.73			0.91	<0.04
		LF/AEN			NA		0.026			0.59	<0.2		
	1/10/95	LF/AEN		14	NA	0.89	0.22		0.84	2.4	0.2	1.1	NA
	10/2/95	AEI/PEL		7.1	NA	0.047	0.0057		0.011	0.036	<0.5	<0.05	NA
	1/8/96	AEI/MAI		12	NA	1.2	0.099		0,79	1.4	<0.25	2	NA
	4/25/96 3/25/97	AEI/MAI AEI/MAI		5.8 0.76	NA 0.13	0.23 0.13	0.059 0.949		0.2	0.77 0.091	na Na	1.4 2 0 49	NA MA

MW-12	(1)	SUB		NA	NA	0.0017	BDL		BDL	BDL	NA	NA	BDL
	5/28/93	HC/SUP		<0.05	NA	<0.0003	< 0.0003		<0.0003	<0.0009	NA	<0.05	(3)
	12/22/93	LF/AEN		0.05	NA	<0.0005	<0.0007	(5)	<0.0005	<0.0002	<0.2	0,3	<0.04
	6/30/94	LF/AEN		< 0.05	NA	<0.0005	<0.0005		<0.0005	<0.0002	0.4	<0.05	<0.04
	9/27/94	LF/AEN		<0,05	NA	<0.0005	<0.0005		<0.0005	<0.0002	<0.2	0.4	<0.04
duplicate	9/27/94	LF/AEN		<0.05	NA	<0.0005	<0.0005		<0.0005	<0.0002	NA	NA	NA
	1/10/95	LF/AEN		<0.05	NA	<0.0005	<0.0005		<0.0005	<0.0002	<0.2	0.3	NA
	10/2/95	AEI/PEL		<0.05	NA	<0.0005	<0.0005		<0.0005	< 0.0005	<0.5	<0.05	NA
	1/8/96	AEI/MAI		<0.05	NA	0.0024	0.0027		0.00054	0,0028	<0.25	<0.05	NA
	4/25/96	AEI/MAI		<0.05	NA	<0.0005	<0.0005		<0.0005	<0.0005	NA	<0.05	NA
	3/25/97	AEI/MAI		<0.05	16	<0.0005	<0.0005		<0.0005	<0.0005	NA	<0.05	NA
MU 16		01 m	(2)	37.4	374	DDI	DDI		זיזם	זרום	X 7 4	NT A	BDL
MW-16	(l) 5/29/02	SUB	(7)	NA <0.05	NA	BDL	BDL		BDL <0.0007	BDL <0.0000	NA NA	NA <0.05	
	5/28/93	HC/SUP		<0.05	NA	0.0028	<0.0003	<i>(</i>)	<0.0007	<0.0009	NA 100	< 0.05	(3)
	12/22/93	LF/AEN		2.2	NA	<0.0005	<0.0007	(5)	<0.0005	<0.0002	<0.2	0.52	<0.0
	6/30/94	LF/AEN		<0.05	NA	0.008	<0.0005		<0.0005	<0.0002	0,9	<0.05	<0.0
	9/27/94	LF/AEN		0.07	NA	0.017	<0.0005		<0.0005	<0.0002	<0.2	0.59	<0.0
	1/10/95	LF/AEN		0.3	NA	0.19	<0.0005		<0.0005	<0.0002	<0.2	0.7	NA
	10/2/95	AEI/PEL		0.55	NA	0.0077	0.0007		0.0035	0.013	<0,5	<0.05	NA
	1/8/96	AEI/MAI		0,36	NA	<0.0005	<0.0005		0.004	0.0097	<0.25	0.14	NA
					3.7.4	0.00	0.0000		0.0020	0.01.4	3.14		NA
	4/25/96	AEI/MAI		1.1	NA	0.39	0.0037		0.0032	0.014	NA	0.33	INA

		Consultant/					Ethyl-				Total
Well ID	Date	Lab	TPHg	MTBE	Benzene	Toluene	Benzene	Xylenes	TPHo	TPHd	Lead
MW-24	1/10/95	LF/AEN	31	NA	12	1.9	1.1	1.3	0.2	0.9	NA
duplicate	1/10/95	LF/AEN	31	NA	12	2	1.1	1.3	0.2	0.8	NA
	10/2/95	AEI/PEL	8.6	NA	0.044	0.011	0.012	0.04	<0.5	<0.05	NA
	1/8/96	AEI/MAI	(8) 22	NA	8.8	0.14	0.5	0.28	<0.25	1.5	NA
Blanks											
Trip Blank	5/28/93	HC/SUP	<0.05		<0.0003	<0.0003	< 0.0003	<0.0009	NA	NA	BDL
MW-12-BB	12/22/93	LF/AEN	<0.05		<0,0005	0.0007	<0.0005	<0.0002	NA	NA	(3)
MW-16-BB	12/22/93	LF/AEN	NA		NA	NA	NA	NA	NA	NA	<0.04
MW-12-BB	6/30/94	LF/AEN	<0.05		<0.0005	<0.0005	<0.0005	<0.0002	NA	NA	<0.04
MW-12-BB	9/27/94	LF/AEN	<0.05		<0.0005	<0.0005	<0.0005	<0.0002	NA	NA	NA
Trip Blank	9/27/94	LF/AEN	<0.05		<0.0005	<0.0005	<0.0005	<0.0002	NA	NA	NA
MW-11-BB	1/10/95	LF/AEN	<0.05		<0,0005	<0.0005	<0.0005	<0.0002	NA	NA	NA

Notes

BDL	below detection limit
NA	not analyzed
NS	not sampled
TPHd	total petroleum hydrocarbons as diesel
TPHg	total petroleum hydrocarbons as gasoline
TPHo	total petroleum hydrocarbons as oil
MTBE	methyl tertiary butyl ether
AEN	American Environmental Networks, Pleasant Hill, California
нс	HartCrowser, San Francisco, California
LF	Levine Fricke, Emeryville, California
SUB	Subsurface Consultants, Oakland, California
SUP	Superior Analytical Laboratories, Martinez, California
AEI	All Environmental, Inc., San Ramon, California
PEL	Priority Analytical Laboratories, Milpitas, California
MAI	McCampbell Analytical Inc., Pacheco, California
(1)	Date of groundwater sampling unavailable.
(2)	18 mg/ total volatile hydrocarbons also detected
(3)	All May 1993 samples also analyzed for total organic lead (DHS Method). The compound was not detected
• /	above the detection limit of 4 mg/l.
(4)	A slight hydrocarbon sheen was observed on the surface of the well water.
(5)	Toluene detection for 22-Dec-93 were qualified using 0.0007 mg/l as a baseline.

- The bailer blank (MW-12-BB) contained toluene at 0.0007 mg/. 0.24 mg/l total volatile hydrocarbons also detected 0.28 mg/l total volatile hydrocarbons also detected
- (6) (7) (8)
- 0.38 mg/i total volatile hydrocarbons also detected Well Mw-8 was abandoned on April 5, 1996.

Environmental Factor	Optimum Levels
Available soil water	25-85% of water holding capacity; -0.01 MPa
Oxygen	Aerobic metabolism: Greater than 0.2 mg/l dissolved oxygen, minimum air-filled pore space of 10% by volume; Anaerobic metabolism: O ₂ concentrations less than 1% by volume
Redox potential	Aerobes & facultative anaerobes: greater than 50 millivolts; Anaerobes: less than 50 millivolts
рH	pH values of 5.5 - 8.5
Nutrients	Sufficient nitrogen, phosphorus, and other nutrients so as to not limit microbial growth (Suggested C:N:P ratio of 120:10:1)
Temperature	15 - 45° C (Mesophiles)

Table 3-1. Critical Environmental Factors for Microbial Activity (Sims and others, 1984; Huddleston and others, 1986; Paul and Clark, 1989)

McCAMPBELL ANALYTICAL INC.

All Enviro	nmental, Inc.		Client Projec	t ID: # 128	86; Hegenbe	Date Sampled: 03/25/97						
3364 Mt. D	iablo Blvd.						Date Receive	ed: 03/26/9	7			
Lafayette,	CA 94549		Client Conta	et: Bryan C	Campbell		Date Extracted: 03/29-03/31/97					
			Client P.O:				Date Analyzed: 03/29-03/31/97					
	ne Range (C6-C s 5030, modified 80							BTEX*				
Lab ID	Client ID	Matrix	TPH(g) ⁺	MTBE	Benzene	Toluen	e Ethylben- zene	Xylenes	% Rec. Surrogat			
747 9 8	MW-8	w	23,000,b,c	1500	8300	80	350	380	93			
747 99	MW-10	w	ND	ND	ND	ND	ND	ND	95			
74800	MW-11	w	760,b,c	130	49	0.83	2.9	1.0	105			
74801	MW-12	w	ND	16	ND	ND	ND	ND	97			
74802	MW-16	w	310,b,c	2100	ND	ND	ND	1.4	100			
Reporting	g Limit unless e stated; ND	w	50 ug/L	5.0	0.5	0.5	0.5	0.5				
means r	tot detected reporting limit	s	1.0 mg/kg	0.05	0.005	0.005	0.005	0.005				

* water and vapor samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP extracts in mg/L

 $^{\#}$ cluttered chromatogram; sample peak coelutes with surrogate peak

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (?); f) one to a few isolated peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment; j) no recognizable pattern.

DHS Certification No. 1644

]]]

Edward Hamilton, Lab Director

McCAMPBELL ANALYTICAL INC.

All Environme	ntal, Inc.	Client Pro	ject ID: # 1286; Hegenberger	Date Sampled: 03/	25/97			
3364 Mt. Diabl	o Blvd.			Date Received: 03	/26/97			
Lafayette, CA	94549	Client Con	itact: Bryan Campbell	Date Extracted: 03	3/26/97			
		Client P.O	:	Date Analyzed: 03/26-03/27/97				
EPA methods mod			C23) Extractable Hydrocarbons nia RWQCB (SF Bay Region) method		D(3510)			
Lab ID	Client ID	Matrix	TPH(d) ⁺		% Recover Surrogate			
74798	MW-8	w	1900,d		109			
74799	MW-10	w	ND		108			
74800	MW-11	w	490,d		105			
74801	MW-12	W	W ND		106			
74802	MW-16	W 120,b/d			106			
			· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·			· ····································				
Reporting Li	imit unless other- ND means not de-	w	50 ug/L					
tected above f	the reporting limit	S	1.0 mg/kg					

* water samples are reported in ug/L, soil and sludge samples in mg/kg, and all TCLP and STLC extracts in mg/L

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺ The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) medium boiling point pattern that does not match diesel (?); f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen is present; i) liquid sample that contains greater than ~ 5 vol. % sediment.

DHS Certification No. 1644

11

Edward Hamilton, Lab Director

QC REPORT FOR HYDROCARBON ANALYSES

Date: 03/26/97

Matrix: Water

	Concent	ration	(mg/L)		% Reco	very	
Analyte	Sample			Amount			RPD
	(#74673) 	MS	MSD	Spiked 	MS	MSD	
TPH (gas)	0.0	105.3	97.0	100.0	105.3	97.0	8.2
Benzene	0.0	8.8	9.3	100.0	88.0	93.0	5.5
Toluene	0.0	9,1	9.7	10.0	91.0	97.0	6.4
Ethyl Benzene	0.0	9.9	10.1	10.0	99.0	101.0	2.0
Xylenes	0.0	29.9	30.6	30.0 	99.7	102.0	2.3
TPH (diesel)	0	120	135	150	80	90	12.0
TRPH (oil & grease)	0	26500	26400	23700	112	111	0.4

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

McCAMPBELL ANALYTICAL INC.

QC REPORT FOR HYDROCARBON ANALYSES

Date: 03/29/97

Matrix: Water

, **- -** ,

Concent:	ration	(mg/L)	1	🖁 🖁 🖁 🖁	very	
Sample			Amount			RPD
(#74694)	MS	MSD	Spiked	MS	MSD	
0.0	101.6	103.7	100.0	101.6	103.7	2.0
0.0	8.9	8.6	10.0	89.0	86.0	3.4
0.0	9.9	9.5	10.0	99.0	95.0	4.1
0.0	10.5	10.2	10.0	105.0	102.0	2.9
0.0	31.4	31.4	30.0 	104.7	104.7	0.0
0	139	136	150	92	91	1.6
 N/A 	N/A	N/A	N/A	N/A	N/A	N/A
	Sample (#74694) 0.0 0.0 0.0 0.0	Sample (#74694) MS 0.0 101.6 0.0 8.9 0.0 9.9 0.0 10.5 0.0 31.4 0 139	Sample (#74694) MS MSD 0.0 101.6 103.7 0.0 8.9 8.6 0.0 9.9 9.5 0.0 10.5 10.2 0.0 31.4 31.4 0 139 136	Sample Amount (#74694) MS MSD Spiked 0.0 101.6 103.7 100.0 0.0 8.9 8.6 10.0 0.0 9.9 9.5 10.0 0.0 10.5 10.2 10.0 0.0 31.4 31.4 30.0 0 139 136 150	Sample Amount (#74694) MS MSD Spiked MS 0.0 101.6 103.7 100.0 101.6 0.0 8.9 8.6 10.0 89.0 0.0 9.9 9.5 10.0 99.0 0.0 10.5 10.2 10.0 105.0 0.0 31.4 31.4 30.0 104.7 0 139 136 150 92	Sample Amount (#74694) MS MSD Spiked MS MSD 0.0 101.6 103.7 100.0 101.6 103.7 0.0 8.9 8.6 10.0 89.0 86.0 0.0 9.9 9.5 10.0 99.0 95.0 0.0 10.5 10.2 10.0 105.0 102.0 0.0 31.4 31.4 30.0 104.7 104.7 0 139 136 150 92 91

% Rec. = (MS - Sample) / amount spiked x 100

 $RPD = (MS - MSD) / (MS + MSD) \times 2 \times 100$

ALL ENVIRONME 3364 Mt. Diablo I Lafayette, CA 945 510) 283-6000	Boulevar	d	-6121 8	346	- A	AL	-E (37		- : 	•	7 7 _{PAGE}				T • •
AEI PROJECT MANAGER: PROJECT NAME: PROJECT NUMBER: 72.8	BRY HEGENB	AN CAM	<u>√ æ. [/</u>	TPEF.Ganiline (EDA 3031,801).		4 602 312 0) Dienel 3510 :	AN 7	ALY	$\frac{SIS}{7}$	REQ	(us	 IL CALLER CORRECTION	1 4 B.C. 5 de	_	NUMBER OF CONTAINERS	
SAMPLE I.D. <u>MW-8</u> <u>MW-10</u> <u>MW-11</u> <u>MW-12</u> <u>MW-16</u>	DATE 3/25/17 "" ""	TIME								PRESE	VOAS TIVE			7.	3 3 3 3 798 4799 74800 74801 74802	· ·
ANALYHCAL 1.All:	. ()		ELINQUISTIED Signature D-ST/Ro Printed Name AEI Company eSISS pm Date	¥		opla Sigi Cola Mint Mint	IVED I Jathre I Vde ed Nam T mpany OM Da	livs	2	ELINQU Signa Printed Com	lure Name	 	CEIVE Signatur Inted N Compa	rc Janie		

Monitoring Well Number: MW-8

Project Name: Hegenberger	Date of Sampling: 3/25/97
Job Number: 2169	Name of Sampler: Dusty Roy
Project Address: 625 Hegenberger Road	Oakland, CA

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"
Seal at Grade Type and Condition	
Well Cap & Lock OK/Replace	
Elevation of Top of Casing	4.88
Depth of Well	
Depth to Water	6.75
Water Elevation	-1.87
Three Well Volumes (gallons)*	•
2" casing: (TD - DTW)(0.16)(3)	· · · · · · · · · · · · · · · · · · ·
4" casing: (TD - DTW)(0.65)(3)	
6" casing: (TD - DTW)(1.44)(3)	
Actual Volume Purged (gallons)	5
Appearance of Purge Water	Clear

		GROU	NDWAT	ER SAMPLI	ES	
Number of	f Samples/Contai	iner Size	2 X	40 ml VOA	s; 2 X 1 liter	
Time	Vol Remvd	Temp C	pН	Cond	Dissolved	Redox
	(gal)	}		(mS)	Oxygen	Potential
					(mg/L)	(mV)
	2	18.11	6.65	4414	0.57	-126
	3	18.17	6.66	4536	0.48	-131
	4	18.17	6.67	4437	0.44	-133
	6	18.17	6.66	4575	0.36	-135
	8	18.17	6.67	4571	0.26	-139
	10	18.17	6.67	4582	0.23	-140

TD - Total Depth of Well DTW - Depth To Water

.

Monitoring Well Number: MW-10

Project Name: Hegenberger	Date of Sampling: 3/25/97
Job Number: 2169	Name of Sampler: Dusty Roy
Project Address: 625 Hegenberger Road	Oakland, CA

MONITORING WELL DATA			
Well Casing Diameter (2"/4"/6")	2"		
Seal at Grade Type and Condition			
Well Cap & Lock OK/Replace			
Elevation of Top of Casing	4.21		
Depth of Well			
Depth to Water	5.83		
Water Elevation	-1.62		
Three Well Volumes (gallons)*			
2" casing: (TD - DTW)(0.16)(3)			
4" casing: (TD - DTW)(0.65)(3)			
6" casing: (TD - DTW)(1.44)(3)			
Actual Volume Purged (gallons)			
Appearance of Purge Water			

GROUNDWATER SAMPLES

Time	Vol Remvd	Temp C	pН	Cond	Dissolved	Redox
	(gal)			(mS)	Oxygen (mg/L)	Potential (mV)
	2	19.78	6.86	6215	0.85	-84
	4	19.78	6.82	6219	0.67	-108
	6	19.72	6.80	6230	0.50	-122
	8	19.72	6.80	6234	0.43	-128
	10	19.72	6.80	6237	0.39	-131
	12	19.72	6.79	6240	0.35	(no reading)

TD - Total Depth of Well DTW - Depth To Water

Monitoring Well Number: MW-11

Project Name: Hegenberger	Date of Sampling: 3/25/97
Job Number: 2169	Name of Sampler: Dusty Roy
Project Address: 625 Hegenberger Road	Oakland, CA

MONITORING WELL DATA

OIGHO WELL DATA
2"
5.04
6.83
-1.79
Clear

GROUNDWATER SAMPLES

Гime	Vol Remvd (gal)	Temp C	pН	Cond (mS)	Dissolved Oxygen (mg/L)	Redox Potential (mV)
	2	17.89	6.58	2379	0.41	-60
	3	18.17	6.58	2007	0.33	-80
	4	18.33	6.60	1816	0.31	-94
	6	18.44	6.62	1713	0.28	-108
	8	18.56	6.63	1650	0.21	-118
	10	18.56	6.64	1653	0.19	-120

TD - Total Depth of Well DTW - Depth To Water

Monitoring Well Number: MW-12

Project Name: Hegenberger	Date of Sampling: 3/25/97
Job Number: 2169	Name of Sampler: Dusty Roy
Project Address: 625 Hegenberger Road	Oakland, CA

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"
Seal at Grade Type and Condition	
Well Cap & Lock OK/Replace	
Elevation of Top of Casing	4.58
Depth of Well	
Depth to Water	6.03
Water Elevation	-1.45
Three Well Volumes (gallons)*	
2" casing: (TD - DTW)(0.16)(3)	
4" casing: (TD - DTW)(0.65)(3)	
6" casing: (TD - DTW)(1.44)(3)	
Actual Volume Purged (gallons)	
Appearance of Purge Water	Clear

Number of Samples/Container Size			2 X	2 X 40 ml VOAs; 2 X 1 liter			
Time	Vol Remvd (gal)	Temp C	pH	Cond (mS)	Dissolved Oxygen (mg/L)	Redox Potential (mV)	
	2	18.28	6.76	2623	0.35	13	
	4	18.33	6.69	2525	0.27	-22	
	5	18.33	6.67	2474	0.25	-50	
	7	18.39	6.67	2462	0.24	-64	
	8	18.39	6.67	2432	0.22	-71	
	10	18.44	6.67	2434	0.19	-79	

TD - Total Depth of Well DTW - Depth To Water

Monitoring Well Number: MW-16

Project Name: Hegenberger	Date of Sampling: 3/25/97
Job Number: 2169	Name of Sampler: Dusty Roy
Project Address: 625 Hegenberger Road	Oakland, CA

MONITORING WELL DATA

Well Casing Diameter (2"/4"/6")	2"		
Seal at Grade Type and Condition			
Well Cap & Lock OK/Replace			
Elevation of Top of Casing	5.53		
Depth of Well			
Depth to Water	7.35		
Water Elevation	-1.82		
Three Well Volumes (gallons)*			
2" casing: (TD - DTW)(0.16)(3)	·····		
4" casing: (TD - DTW)(0.65)(3)			
6" casing: (TD - DTW)(1.44)(3)			
Actual Volume Purged (gallons)			
Appearance of Purge Water	Turbid, clear to 5 gallons.		

GROUNDWATER SAMPLES								
Sumber of Samples/Container Size				2 X 40 ml VOAs; 2 X 1 liter				
						· • • • •		
Time	Vol Remvd	Temp C	pН	Cond	Dissolved	Redox		
	(gal)			(mS)	Oxygen	Potential		
					(mg/L)	(mV)		
	3	17.83	7.07	2675	0.20	(no reading)		
	4	17.89	7.05	2704	0.16	-92		
	6	17.89	7.03	2735	0.14	-115		
	7	17.94	7.03	2741	0.13	-121		
	8	17.94	7.03	2755	0.11	-131		
	10	17.94	7.02	2768	0.10	-135		
	· · · · · · · · · · · · · · · · · · ·	· · ·		· · ·				
·	COMMENT	S (i.e., samp	le odor, w	ell recharge	time & percent, e	tc.)		

TD - Total Depth of Well DTW - Depth To Water