

RECEIVED

By dehloptoxic at 9:28 am, Aug 09, 2006

ENVIRONMENTAL 📾 GEOTECHNICAL 📾 MATERIAL

June 29, 2006

Mr. Amir Gholami Alameda County Environmental Health 1131 Harbor Parkway Alameda, CA 94502

Subject:

Low-Risk Case Closure Report

Site:

Former Caltrans Hegenberger Maintenance Station, 555 Hegenberger Road,

Oakland, California

Dear Mr. Gholami:

Please find enclosed one copy of the above referenced report. The report was prepared on behalf of Caltrans for the purpose of acquiring case closure from the Alameda County Environmental Health Department.

If you have any questions concerning the contents of the report please give me a call at (925) 371-5900.

Sincerely,

GEOCON CONSULTANTS, INC.

John Love, PG

Sr. Project Geologist

LOW-RISK CASE CLOSURE SUMMARY REPORT

FORMER HEGENBERGER MAINTENANCE STATION 555 HEGENBERGER ROAD OAKLAND, CALIFORNIA

DISTRICT 4
OFFICE OF ENVIRONMENTAL ENGINEERING
111 GRAND AVENUE
OAKLAND, CALIFORNIA

PREPARED BY:

GEOCON CONSULTANTS, INC. 2356 RESEARCH DRIVE LIVERMORE, CALIFORNIA

CALTRANS CONTRACT NO. 04A1862 TASK ORDER NO. 31

GEOCON PROJECT NO. E8220-06-31

JUNE 2006

GEOTECHNICAL ENVIRONMENTAL MATERIALS

ENVIRONMENTAL 🖩 GEOTECHNICAL 🖻 MATERIAL:

Project No. E8220-06-31 June 22, 2006

Mr. Bahram Sazegar California Department of Transportation District 4 111 Grand Avenue, 14th Floor Post Office Box 23660 Oakland, California 94623-0660

Subject:

LOW RISK CASE CLOSURE SUMMARY REPORT

FORMER HEGENBERGER MAINTENANCE STATION 555 HEGENBERGER ROAD, OAKLAND, CALIFORNIA CONTRACT NO. 04A1862, TASK ORDER NO. 31

Dear Mr. Sazegar:

In accordance with California Department of Transportation (Caltrans) Contract No. 04A1862 and Task Order No. 31, Geocon has performed environmental engineering services associated with the Former Caltrans Hegenberger Maintenance Station located at 555 Hegenberger Road in Oakland, California.

The scope of services contained in this report consisted of compiling data presented in reports prepared by Geocon and other consultants for the purpose assessing subsurface soil and groundwater quality conditions with current regulatory guidelines required for case closure as a low risk soil and groundwater site.

The contents of this report were prepared using data produced by others. To that extent, Geocon is not responsible for the accuracy of the data presented in reports prepared by others. The contents of this report do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

If there are any questions concerning the contents of this report, or if Geocon may be of further service, please contact the undersigned at your convenience Sincerely,

GEOCON CONSULTANTS, INC.

John Love, PG
Sr. Project Geologist

Sr. Project Geologist No. 6318

Richard Day, CEG, CHG Regional Manager

RSD:RWD:rjk

(3) Addressee

(1) Amir Gholami, Alameda County Department of Environmental Health

JOHN W. LOVE

TABLE OF CONTENTS

	<u>Pag</u>	<u>e</u>
1.0	INTRODUCTION	
2.0	SITE LITHOLOGY AND HYDROGEOLOGIC CONDITIONS 3 2.1 Site Lithology 3 2.2 Site Hydrogeology 3	
3.0	SOIL AND GROUNDWATER QUALITY CONDITIONS	
4.0	SENSITIVE RECEPTORS	
5.0	COMPARISON OF CONTAMINANT CONCENTRATIONS AND CITY OF OAKLAND ENVIRONMENTAL RISK-BASED SCREENING LEVELS	
6.0	CONCLUSIONS AND RECOMMENDATIONS	
7.0	LIMITATIONS	
8.0	REFERENCES13	
FIGUR	ES	
Figure	1 - Vicinity Map 2 - Site Plan 3 - Cross Section Location Map 4 - Cross Section A-A'/B-B' 5 - Groundwater Elevation Map — October 1995 6 - Groundwater Elevation Map — May 2005 7 - TPHg Isoconcentration Map — October 1995 8 - TPHg Isoconcentration Map — December 2001 9 - TPHg Isoconcentration Map — May 2005 10 - Benzene Isoconcentration Map — October 1995 11 - Benzene Isoconcentration Map — December 2001 12 - Benzene Isoconcentration Map — May 2005	

TABLE OF CONTENTS (continued)

TABLES

Table 1 - Soil Sample Results

Table 2 - Historical Depth to Water and Groundwater Sample Results

Table 3 - Grab Groundwater Sample Results

Table 4 - Tier 1 RBSL Comparison Table - Groundwater to Indoor Air

Table 4A - Tier 1 RBSL Comparison Table - Groundwater to Outdoor Air

Table 5 - Tier 3 SSTL Comparison Table - Groundwater to Indoor Air

Table 5A - Tier 3 SSTL Comparison Table - Groundwater to Outdoor Air

Table 6 - Tier 1 RBSL Comparison Table - Soil to Indoor Air

Table 6A - Tier 1 RBSL Comparison Table - Soil to Outdoor Air

Table 7 - Tier 3 SSTL Comparison Table - Soil to Indoor Air

Table 7A - Tier 3 SSTL Comparison Table - Soil to Outdoor Air

Table 8 - Tier 1 RBSL Comparison Table - Direct Exposure to Soil

Table 9 - Tier 3 SSTL Comparison Table - Direct Exposure to Soil

APPENDICES

Appendix A - Boring/ Well Logs

Appendix B - TPHg and Benzene Concentration Charts

Appendix C - City of Oakland RBCA Checklist and Tier 1 RBSLs and Tier 3 SSTLs

LOW-RISK CASE CLOSURE SUMMARY REPORT

1.0 INTRODUCTION

This Low Risk Case Closure Summary Report for the California Department of Transportation (Caltrans) Former Hegenberger Maintenance Station was prepared under Caltrans Contract No. 4A1862 and Task Order (TO) No. 31. The report was prepared to summarize soil and groundwater sample results obtained during previous source removal and characterization studies for the purpose of obtaining case closure from the Alameda County Department of Environmental Health (DEH) and the Regional Water Quality Control Board – San Francisco Bay Region (RWQCB).

1.1 Site Description

The subject site is located at 555 Hegenberger Road in Oakland, California, approximately ½ mile south of the Oakland Coliseum near the northeast corner of the intersection of Interstate 880 and Hegenberger Road as shown on Figure 1, Vicinity Map. The site was formerly used by Caltrans to store and service maintenance vehicles and equipment. The site currently exists as a General Motors Corporation (GMC) Truck Center that uses the former Caltrans site to park and store vehicles.

The Caltrans site structures shown on Figure 2, which were removed from the site between 1994 and 1996, included two 2,000-gallon diesel and two 6,500-gallon steel gasoline underground storage tanks (USTs), product pipelines, vapor return lines, fuel dispenser island, and vehicle maintenance building. The former Caltrans site now exists as a flat lot paved with asphalt.

1.2 Background

In July 1993, Clayton Environmental Consultants (Clayton) conducted a limited environmental assessment of the GMC property located west of the Caltrans site. The purpose of the investigation was to assess whether petroleum hydrocarbon compounds associated with the Caltrans USTs had impacted soil and groundwater beneath the GMC site located immediately west of the Caltrans facility. Clayton advanced four soil borings (BH-1 through BH-4) along the GMC / Caltrans property boundary as shown on Figure 2. Results of the investigation indicated that total petroleum hydrocarbons as gasoline (TPHg) and as diesel (TPHd), and oil and grease (O&G) were present in soil and groundwater beneath the GMC site as a result of the Caltrans USTs.

In September 1994, the USTs, associated piping, and fuel dispensers were removed from the Caltrans site, and approximately 393 tons of petroleum hydrocarbon-impacted soil were removed and disposed offsite. Confirmation soil samples collected from the UST excavation indicated that petroleum hydrocarbons had impacted soil beneath and around the former USTs.

In September and October 1995, six temporary borings (BH-1 through BH-6) were advanced, and five monitoring wells (MW-1 through MW-5) were constructed at the site (see Figure 2) to assess the vertical and lateral extent of impacts to soil and groundwater beneath the Caltrans site. Results of the investigation indicated that a limited amount of soil in the immediate vicinities of the former USTs and pump island were impacted by petroleum hydrocarbons from the former fuel system; the O&G previously reported at the site may be naturally occurring organic matter; the maximum TPHg and benzene concentrations in groundwater beneath the site were 1.3 mg/l and 0.66 mg/l, respectively; and additional investigation would be necessary to define the lateral extent of dissolved hydrocarbons in groundwater north, west and east of the former UST excavation.

In December 2001, four soil borings (BH-6 through BH-9) were advanced at the Caltrans and GMC sites to assess the lateral extent of the petroleum hydrocarbon plume in groundwater (see Figure 2). One boring (BH-6) was drilled through the center of the former UST excavation; one boring (BH-7) was placed near the former fuel dispenser island; and two borings (BH-8 and BH-9) were positioned in the down gradient groundwater flow direction on the GMC site. Results of the December 2001 investigation indicated that low concentrations of petroleum hydrocarbons were present down gradient of monitoring wells MW-3 and MW-4 and the lateral extent of the plume beneath the area was adequately defined.

Groundwater monitoring at the Former Caltrans Hegenberger Maintenance Station has been conducted on an annual basis since 2001.

2.0 SITE LITHOLOGY AND HYDROGEOLOGIC CONDITIONS

Subsurface soil and groundwater conditions were obtained from boring logs included in site investigation reports prepared by Geocon Consultants, Inc.

2.1 Site Lithology

The site lithology consists of unconsolidated alluvium and near-shore to wetlands deposits consisting of predominantly fine sands, black bay mud, and silts inter-fingered with lesser amounts of clay and silt mixed sands and gravels.

Soils encountered during past drilling operations at the site consisted of three feet of fill material (sub-angular clayey gravel) overlying moist, black, low permeability silty clay and clay deposits that extend to depths of approximately 13 feet below ground surface (bgs) and that overly stratigraphic units of saturated, olive-brown, silty sands, clayey sands, and clayey gravels to the maximum depth drilled of 20 feet bgs. Generalized east-west and north-south geologic cross-sections are presented as Figures 3 and 4. Copies of boring logs and well completion diagrams are included in Appendix A.

2.2 Site Hydrogeology

The groundwater flow direction in the vicinity of the site appears to flow in a radial direction centered somewhere near monitoring well MW-1 (see Figures 3 and 4) at gradients ranging from 0.042 to 0.006 foot per foot (ft/ft). However, based on the contaminant concentrations reported in groundwater samples collected from the five monitoring wells, the predominant flow direction(s) impacting the distribution of contaminants in groundwater beneath the area appears to be towards the southwest to north directions.

During the installation of monitoring wells MW-1 through MW-5 in September 1995, water was first encountered while drilling at 13 to 18 feet bgs. After construction and development, static water level measurements were measured between 6.42 and 6.88 feet bgs, indicating confined or semi-confined groundwater conditions. Inspection of the well logs (Appendix A) indicate the top of the water bearing zone coincides with the base of a 13 ft. thick layer of stiff, moist, black clay with medium plasticity that acts as the confining bed. Historic depth to groundwater data are presented in Table 2.

3.0 SOIL AND GROUNDWATER QUALITY CONDITIONS

Soil and groundwater sample results were compiled from previous investigations conducted by Clayton (1993), GHH Engineering, Inc. (November and December 1994), and Geocon (January 1996, July 2002, and June 2005).

3.1 Excavation Soil Sample Results

In September 1994, the USTs, associated piping, and fuel dispensers were removed from the Caltrans site. Approximately 393 tons of petroleum impacted soil were removed from the site and disposed at the Vasco Road Class II Landfill during the UST removal activities.

Eight confirmation soil samples (TE-1 through TE-8) were collected from the over-excavated UST pit, and two soil samples (PI-1 and PI-2) were collected beneath the former fuel dispenser island (see Figure 2). Results of the soil samples indicated that TPHg was present in several sample locations at concentrations as high as 480 milligrams per kilogram (mg/kg), TPHd was present at concentrations as high as 380 mg/kg, O&G was present as high as 1,900 mg/kg, and BTEX compounds were reported as high as 7.6 mg/kg (ethylbenzene) with the highest benzene concentration being report at 2.0 mg/kg. Composite stockpile soil samples collected from over-excavated soil were reported to contain TPHg, TPHd, and O&G at concentrations ranging from non-detect to 330 mg/kg (O&G) and BTEX compounds as high as 1.010 mg/kg (benzene). The confirmation soil sample and composite stockpile sample results are presented in Table 1.

3.2 Temporary Boring and Monitoring Well Borehole Soil Sample Results

In July 1993, Clayton conducted a limited environmental assessment of the GMC property located west of the Caltrans site. The purpose of the investigation was to assess whether petroleum hydrocarbon compounds associated with the Caltrans USTs had impacted soil and groundwater beneath the GMC site located immediately west of the Caltrans facility. Clayton advanced four soil borings (BH-1 through BH-4) along the GMC / Caltrans property boundary as shown on Figure 2. Results of the investigation indicated that TPHg and TPHd, and O&G were present in soil at concentrations as high as 480 mg/kg, and TPHg and TPHd were present in groundwater at concentrations as high as 0.78 milligrams per liter (mg/l) and 47 mg/l, respectively. None of the soil or groundwater samples were analyzed for benzene, toluene, ethylbenzene, or xylenes (BTEX).

In September and October 1995, six temporary borings (BH1 through BH6) were advanced, and five monitoring wells (MW-1 through MW-5) were constructed at the site (see Figure 2). Results of the investigation indicated that soil beneath the site remained largely unaffected by the petroleum hydrocarbon release from the former Caltrans fuel system. The only TPHg and TPHd concentrations detected above the reporting limits were in borings BH6 and MW-5. TPHg was reported at a

concentration of 1.6 mg/kg in the 5-foot soil sample collected from the MW5 borehole, and TPHd was reported at concentrations of 24 mg/kg and 16 mg/kg in the 6- and 11-foot soil samples collected from boring BH6 advanced beneath the former fuel dispenser island. Likewise, BTEX compounds were reported in three boreholes at concentrations ranging from 0.006 mg/kg (ethylbenzene) to 0.88 mg/kg (xylenes), with the only benzene concentrations (0.012 mg/kg and 0.030 mg/kg) being reported in the 8- and 20-foot soil samples collected from the MW3 borehole.

Analytical laboratory results of soil samples collected during the 1995 investigation are presented in Table 1, and groundwater sample results collected from MW-1 through MW-5 are presented in Table 2.

3.3 Temporary Boring Grab Groundwater Sample Results

A total of six grab groundwater samples have been collected in conjunction with the former Caltrans USTs. Grab groundwater samples were collected from temporary borings BH1 and BH3 during the 1993 GMC site investigation conducted by Clayton, and four additional grab groundwater samples (one from each boring) were collected from borings B-6 to B-9 during the 2001 investigation conducted by Geocon.

Temporary borings BH1 and BH3 were advanced in 1993 along the west margin of the former UST excavation on the GMC site, approximately one year before the Caltrans tanks were removed (see Figure 2). The grab groundwater samples were analyzed for TPHg and TPHd (BTEX analysis was not performed during this investigation). The highest TPHg concentration reported during the 1993 investigation was 0.78 mg/l in the BH1 grab groundwater sample, and the highest TPHd concentration (47 mg/l) was in the BH3 grab groundwater sample.

The grab groundwater samples collected from borings BH-6 though BH-9 in 2001 were analyzed for TPHg, TPHd, BTEX, MTBE, and VOCs. TPHg and TPHd were reported in all grab groundwater samples analyzed for these constituents at concentrations ranging from 0.06 mg/l (TPHg) to 0.3 mg/l (TPHd). Toluene and xylenes were reported in the BH8 and BH-9 grab groundwater samples at concentrations ranging 0.0007 mg/l to 0.0015 mg/l. Benzene and MTBE were reported as non-detect in all four grab groundwater samples.

Volatile organic compounds (VOCs) 1,1,2-trichloroethane (0.010 mg/l), 1,1-dichloroethane (0.099 mg/l), and 1,1-dichloroethene (0.054 mg/l) were reported in the BH7 grab groundwater sample collected along the east property margin near Hegenberger Road; however, these compounds were not detected in any other boring location, and these analytes were attributed to an unknown offsite source.

Grab groundwater sample results from the 1995 and 2001 investigations are presented in Table 3.

3.4 Monitoring Well Groundwater Sample Results

Monitoring wells MW-1 through MW-5 were constructed in September 1995. The wells were sampled on a quarterly basis from October 1995 until November 1996, and then once in February 1998. The wells were not sampled again until March 2001, at which time annual sampling of the wells began and continued until May 2005.

Groundwater samples have been collected 12 times from monitoring wells MW-1 through MW-5 since October 1995. Groundwater samples were initially sampled for TPHg, TPHd, TPHmo, O&G, BTEX and MTBE; however, TPHmo, O&G and MTBE have since been dropped from the analyte list because they were not detected at concentrations which the DEH felt warranted additional testing. VOCs were added to the suite of analyses in December 2001; however they were eliminated from the requested analyte list in 2002 because they were not detected at concentrations of concern to the DEH.

Groundwater sample results from the five wells are presented in Table 2, and isoconcentration maps for TPHg and benzene reported for the years 1995 (initial), 2001 (interim), and 2005 (recent) are presented as Figures 7 through 12.

The lateral extent of TPHg and benzene in groundwater increased at the site between 1995 and 2001, however, sometime between 1998 and 2001 the plume size appears to have stabilized.

TPHg and benzene concentration charts for MW-1 through MW-5 are provided in Appendix B. As the charts indicate, TPHg concentrations in monitoring wells MW-1, and MW-3 through MW-5 have decreased since 2001, while concentrations in monitoring well MW-2 show an apparent increasing trend during the same time period. An additional time versus TPHg concentration graph is provided for MW-2 which indicates that while TPHg concentrations have increased in this well since 2001, the slope of the time/concentration line is nearly flat (indicating a near stable concentration trend) when concentrations since 1995 are plotted. An accurate time versus concentration trend is difficult to plot for TPHg concentrations in MW-2 because the reported TPHg concentrations are usually just above or just below the method detection limits. Additionally, the benzene concentrations in MW-2 show a decreasing trend whether data collected prior to 2001 is omitted or not.

4.0 SENSITIVE RECEPTORS

The nearest surface waters are a drainage canals located approximately 1,800 feet west and southwest of the site (see Figure 1). The canals both drain into San Leandro Bay located approximately one mile northwest of the site. Based on the site's proximity to the canals, petroleum hydrocarbons originating from the Caltrans site do not pose a threat to aquatic biota associated with San Leandro Bay or its tributaries.

Based on the site history presented in the report prepared by GHH Engineering, Inc., entitled *Initial Site Assessment, Caltrans Oakland Facility, 555 Hegenberger, Oakland, California*, dated November 1994, there should not be any utilities buried deeper than first encountered groundwater (13 feet bgs) which could provide a preferential pathway for subsurface contaminant migration.

5.0 COMPARISON OF CONTAMINANT CONCENTRATIONS AND CITY OF OAKLAND ENVIRONMENTAL RISK-BASED SCREENING LEVELS

Tier 1 Risk-Based Screening Levels (RBSLs) developed by the City of Oakland Public Works Agency, Environmental Services Division (PWA), and Tier 3 Site Specific Target Levels (SSTLs) developed using PWA software, were compared with contaminant concentrations in soil and groundwater beneath the Caltrans site. The applied RBSLs and SSTLs were based on viable exposure pathways associated with present and potential future property uses of the Caltrans site. Tier 1 RBSLs and Tier 3 SSTLs are presented in Appendix C, along with the input parameters used to develop each.

Since shallow-depth groundwater beneath the site is not used for drinking water purposes, the only exposure pathways applicable for the site are vapor intrusion from groundwater and soil to indoor and outdoor air, and direct exposure to soil (workers contacting excavated soil). Additionally, although RBSL and SSTL comparisons were made for both residential and commercial sites, the appropriate classification of the Caltrans site is that of a commercial property underlain by low permeable soils (clays and silts).

Geocon completed the City of Oakland Risk-Based Corrective Action (RBCA) Eligibility Checklist (provided in Appendix C) to determine if the site was eligible for comparison with the Tier 1 or Tier 2 RBSLs, or whether comparison with Tier 3 SSTLs was necessary. Results of the checklist indicate that establishment of Tier 3 SSTLs was necessary for the Caltrans South Oakland site because groundwater is less than 10 feet bgs, and inhalation of volatilized contaminants of concern (COCs) from groundwater to indoor air or outdoor air is a pathway of concern but groundwater ingestion is not.

Tier 3 SSTLS were calculated for the site using the City of Oakland software available on the PWA website. Based on the site lithology, Geocon used the clayey silts input default parameters, and site specific depth to groundwater and depth to subsurface soil data to calculate Tier 3 SSTLs.

Since the Tier 3 SSTLs are typically less stringent than the Tier 1 RBSLs, comparison of COC concentrations in soil and groundwater beneath the site with both the Tier 1 RBSLs and Tier 3 SSTLs are presented to further justify the site's qualification for low risk closure.

The COCs at the site include BTEX and MTBE.

5.1 Volatilization of Contaminants in Groundwater to Indoor and Outdoor Air

A comparison of COC concentrations in groundwater beneath the site with the Tier 1 RBSLs established by the City of Oakland for BTEX and MTBE volatilization from groundwater to indoor and outdoor air are shown in Tables 4 and 4A, and Tier 3 SSTL comparisons are provided in Tables 5 and 5A. For comparison purposes, the maximum reported concentrations at the site were used, as were the most recent concentrations reported during the groundwater sample event conducted in May 2005. The contaminant concentrations were compared with the RBSLs and SSTLs established for both residential and commercial sites.

The maximum reported contaminant concentrations at the site do not exceed the Tier 3 SSTLs.

The only exceedance noted in the comparison of groundwater concentrations with the Tier 1 RBSLs was benzene. The highest benzene concentration of 3.070 mg/l exceeded the Tier 1 residential and commercial carcinogenic RBSLs of 0.11 mg/kg and 1.8 mg/kg, respectively (see Table 4). No other Tier 1 RBSLs were exceeded.

5.1.1 Calculated TPHg and Benzene Half-Life Concentrations in Groundwater

After the USTs and contaminated soil surrounding the tanks were removed in 1995, TPHg and benzene concentrations in monitoring wells MW-1 through MW-5 generally increased until sometime between 1995 and 2001, at which time contaminant concentrations began to decrease in all wells. This conclusion is supported by TPHg concentration trends plotted on charts for monitoring wells MW-1 through MW-5 provided in Appendix B. The TPHg concentration plot for MW-2 shows a slight increasing trend over time; however, this is a result of low to non-detect concentrations historically reported at the location.

Both arithmatic and semi-logarithmic graphs were plotted for TPHg concentrations reported in MW-1 through MW-5 from December 2001 to May 2005. With the exception of MW-2, all wells show clear decreasing TPHg concentration trends since 2001, indicating that contaminant concentrations are attenuating with time. The apparent increasing TPHg concentrations in MW-2 are likely due to its proximity to the former UST excavation, shifting groundwater flow directions, and low concentrations (TPHg detections in MW-2 are generally just above the reporting limit). If TPHg concentrations in MW-2 are plotted from October 1995 to May 2005, the TPHg concentration trend line is nearly flat, indicating that TPHg concentrations in MW-2 have generally increased from 2001 to May 2005; however, they have remained within historical levels over the last 10 years. The potential that TPHg concentrations in MW-2 will decrease within a reasonable time frame is supported by declining benzene concentrations reported in this same well.

Arithmatic and semi-logarithmic graphs were also plotted for benzene concentrations reported in MW-1 through MW-5 from October 1995 to May 2005. Graphs were also prepared for benzene concentrations reported in MW-2 from December 2001 to May 2005 to compare with the TPHg graphs prepared for this same well (see Appendix B). The benzene concentrations in monitoring wells MW-1 through MW-5 show a decreasing concentration trend over the last 10 years.

Based on the contaminant trend slopes of each well, the half-life for TPHg and benzene concentrations in MW1 through MW5 can be calculated using the following formula:

$$t_{0.5} = \ln(0.5) / \text{slope}.$$

Where:

 $t_{0.5}$ = half-life of MTBE [days]

```
ln (0.5) = natural log of 0.5 (equals -0.693)

slope = first order degradation constant [day -1]
```

The TPHg degradation constants (trendline slope) for wells MW-1, and MW-3 through MW-5 range from -0.0003 to -0.0006. This equates to a TPHg half-life ranging from 1,155 days (3.16 years) to 2,310 days (6.33 years). The benzene degradation trendline slope for wells MW-1 through MW-5 range from -0.0038 to -0.0005. This equates to a benzene half-life ranging from 182 days (0.50 years) to 1,386 days (3.80 years).

This graphical method used to determine site-specific degradation rate and half-life is consistent with the approach presented in "Regression Techniques and Analytical Solutions to Demonstrate Intrinsic Bioremediation." (Buscheck and Alcantar, 1995).

5.2 Volatilization of Contaminants in Soil to Indoor and Outdoor Air

A comparison of COC concentrations in soil beneath the site with the Tier 1 RBSLs established by the City of Oakland for BTEX and MTBE volatilization from soil to indoor and outdoor air are shown in Tables 6 and 6A, and Tier 3 SSTL comparisons are provided in Tables 7 and 7A. For comparison purposes, the maximum reported concentrations at the site were used to compare with the RBSLs and SSTLs established for both residential and commercial sites.

The maximum reported contaminant concentrations at the site do not exceed the Tier 3 SSTLs.

The only exceedances noted in the comparison of the maximum soil concentrations with the Tier 1 RBSLs was benzene. The highest benzene concentration of 2.0 mg/kg exceeded the Tier 1 residential and commercial carcinogenic RBSLs of 0.062 mg/kg and 1.1 mg/kg for volatilization to indoor air, as well as the residential and commercial RBSLs for volatilization to outdoor air of 0.19 mg/kg and 0.73 mg/kg (see Tables 6 and 6A). No other Tier 1RBSLs were exceeded.

5.3 Direct Exposure to Contaminants in Soil

Should soil excavation take place at some point in the future as the result of redevelopment or modification to the Caltrans site, workers could potentially come into direct contact with petroleum-impacted soils. Contaminant concentrations in soil used to compare with the Tier I RBSLs and Tier 3 SSTLs for direct exposure are the maximum reported concentrations at the site. The RBSLs and SSTLs used to simulate the direct exposure pathway are those values listed under the surficial soil exposure route in the City of Oakland RBSL and SSTL tables provided in Appendix C.

The maximum reported contaminant concentrations in soil at the site do not exceed the Tier 1 RBSLs or the Tier 3 SSTLs.

6.0 CONCLUSIONS AND RECOMMENDATIONS

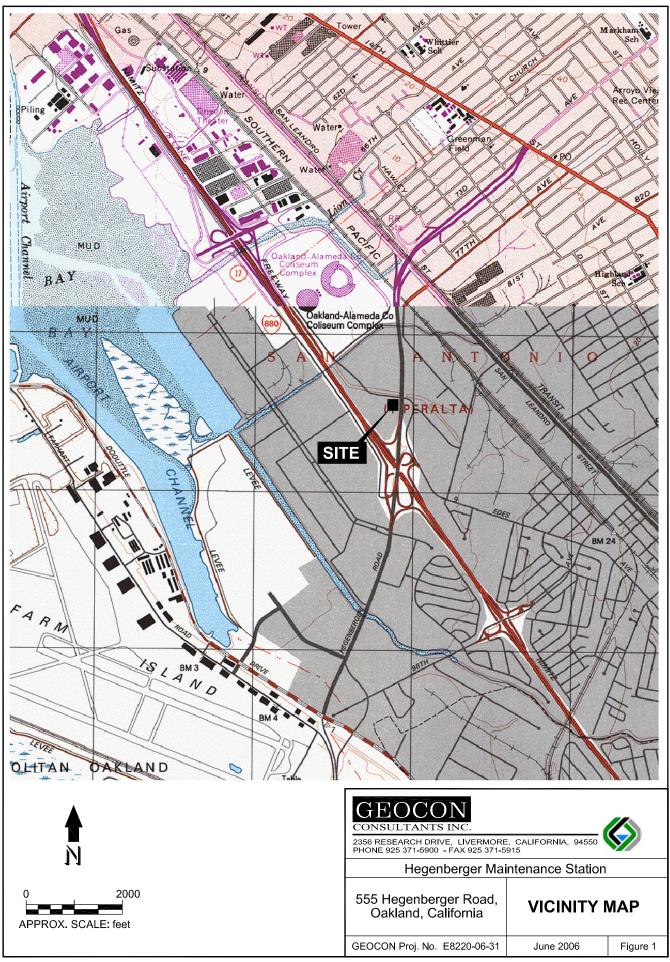
Based on the results of previous investigations and quarterly groundwater monitoring the following is concluded:

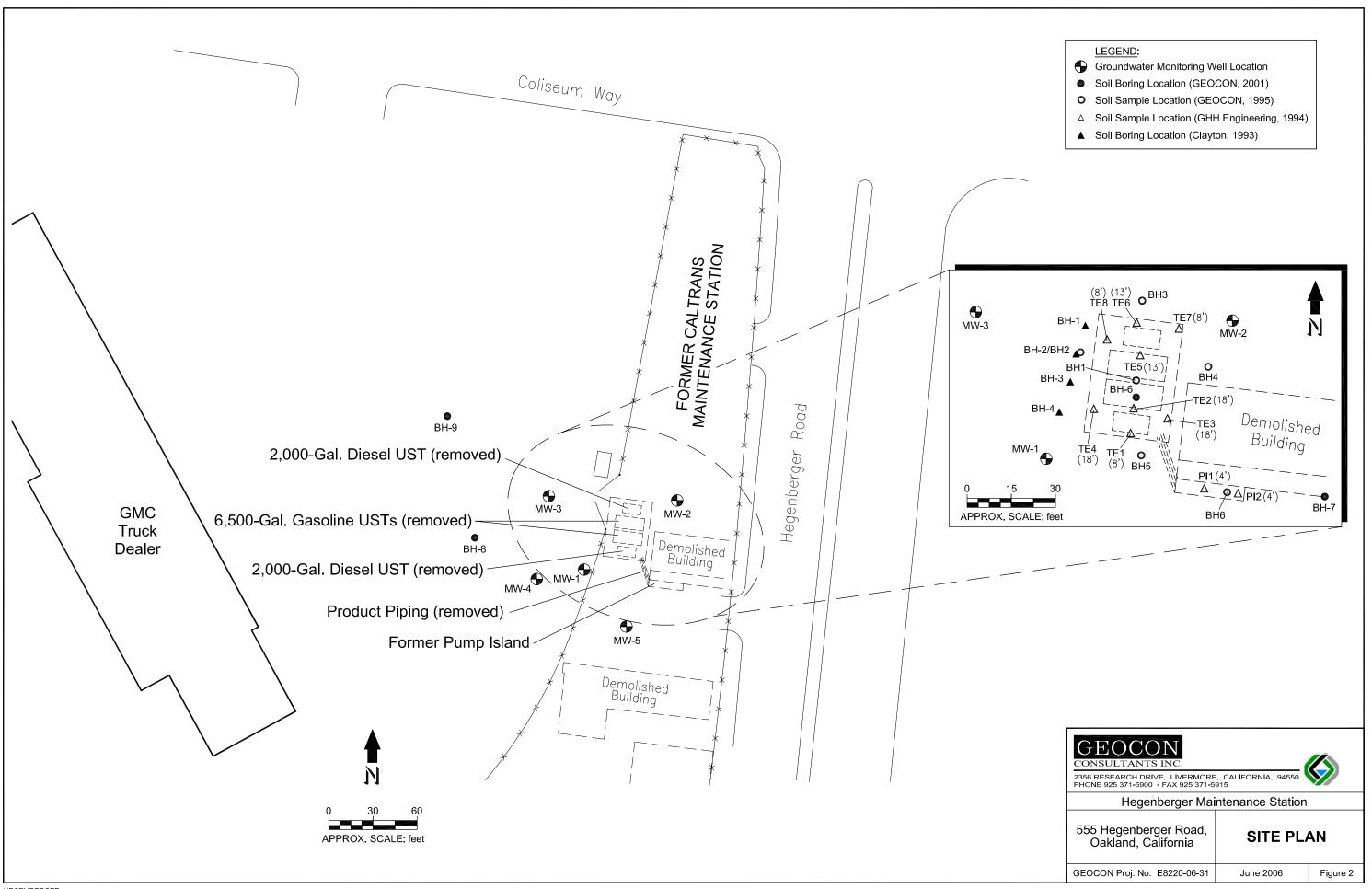
- Source removal was conducted in September 1994 when the USTs and contaminated soil surrounding the USTs were removed from the site.
- After several investigations, and quarterly groundwater monitoring events, the lateral and vertical extent of soil and groundwater contamination was adequately characterized. Impacts to soil are primarily restricted to the immediate vicinity of the former USTs.

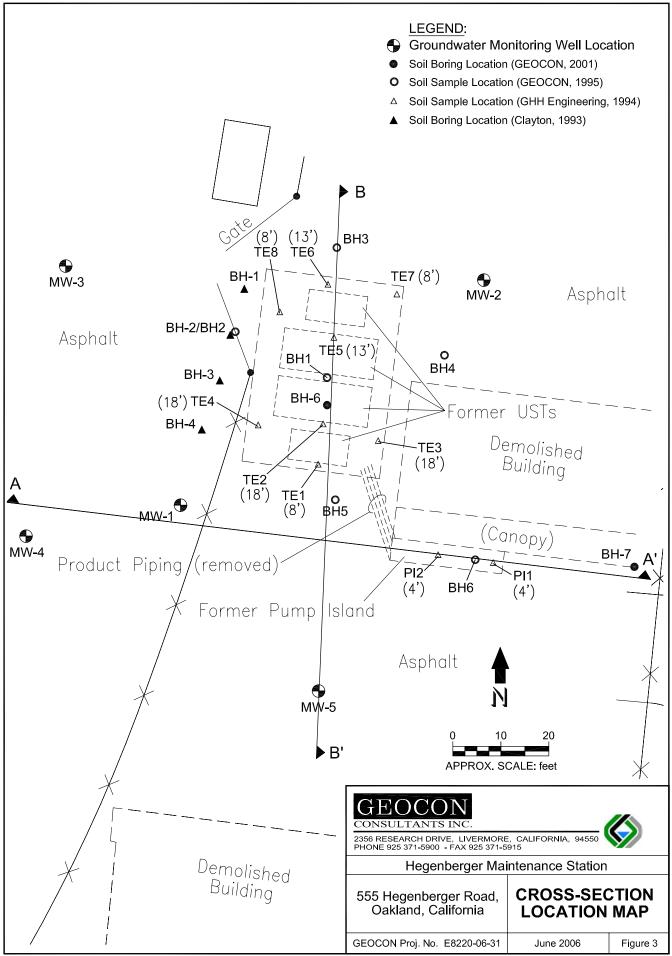
The lateral extent of the petroleum hydrocarbon plume has changed through time, as shown in Figures 7 through 12; however, the plume appears to have stabilized over the last several years and contaminant concentrations are attenuating with time. Contaminant concentrations appear to have peaked sometime between 1998 and 2001, and have generally been decreasing ever since.

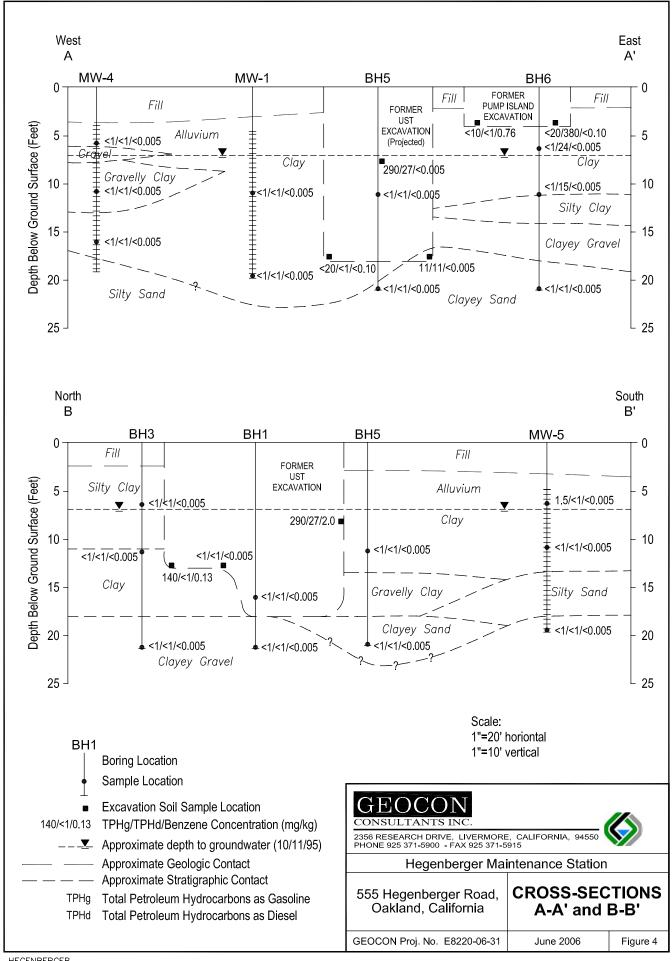
- Groundwater flow direction maps prepared for 1995 and 2005 (Figures 5 and 6) indicates
 groundwater beneath the study area flows in a radial direction centered near MW1; however,
 the distribution of contaminants in groundwater beneath the area indicates the predominant
 flow direction(s) range from northwest to southwest.
- A comparison of soil and groundwater contaminant concentrations with City of Oakland SSTLs indicates that no Tier 3 SSTL (which the site is classified under according to City of Oakland RBCA criteria) was exceeded under the residential or commercial land use scenarios. To further support case closure contaminant concentrations were also compared to Tier 1 RBSLs. The only compound which exceeds the Tier 1 RBSLs was benzene.

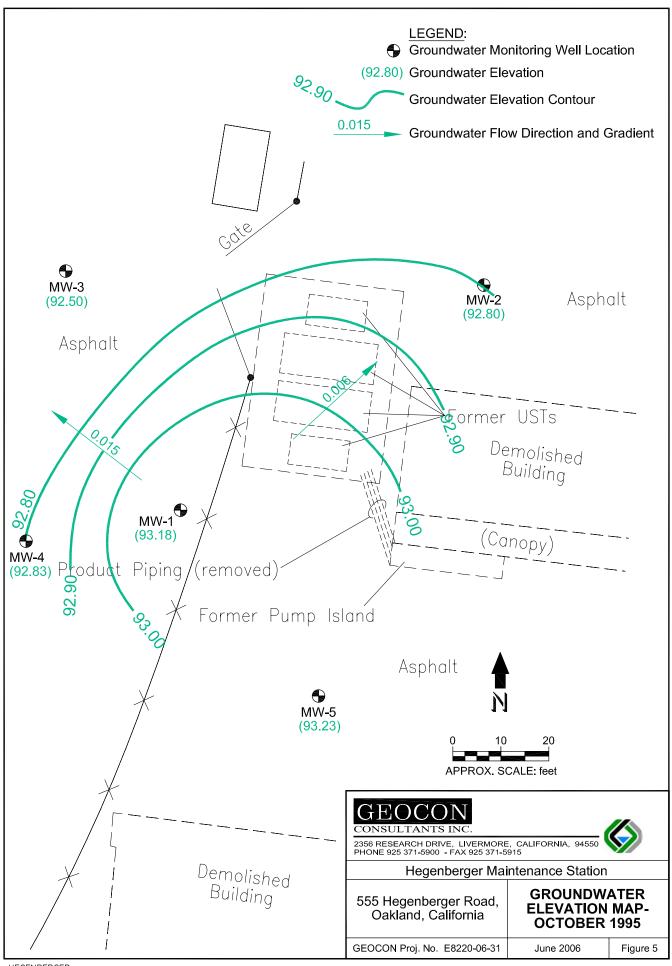
Based on the information presented in this report, the lateral extent of the plume has stabilized, and current COC concentrations do not pose an unacceptable risk to the environment or human health. Therefore, Geocon recommends the DEH consider this site for case closure as a low risk groundwater site.

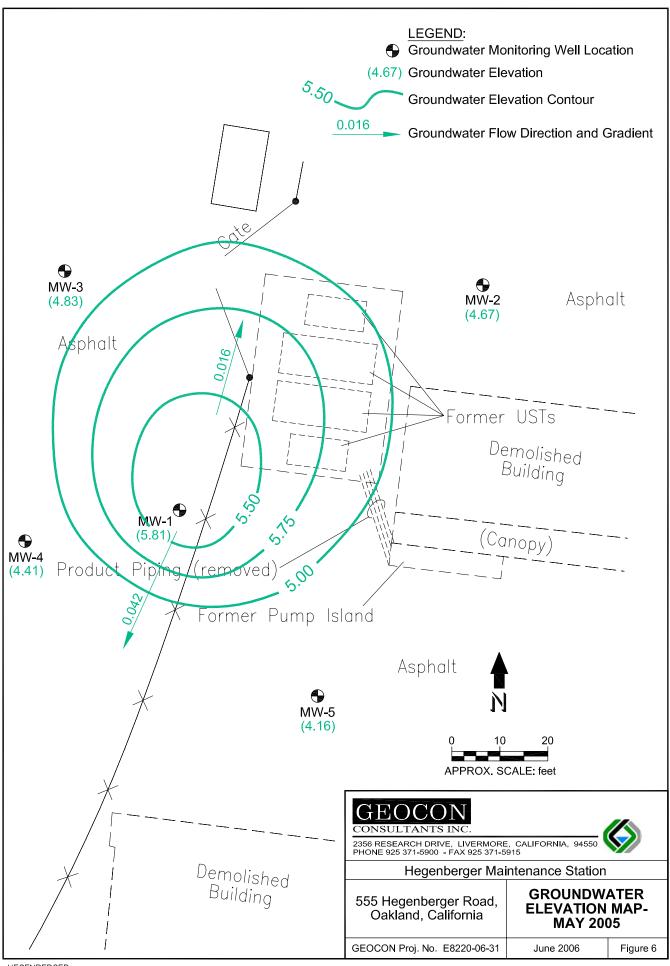

7.0 LIMITATIONS

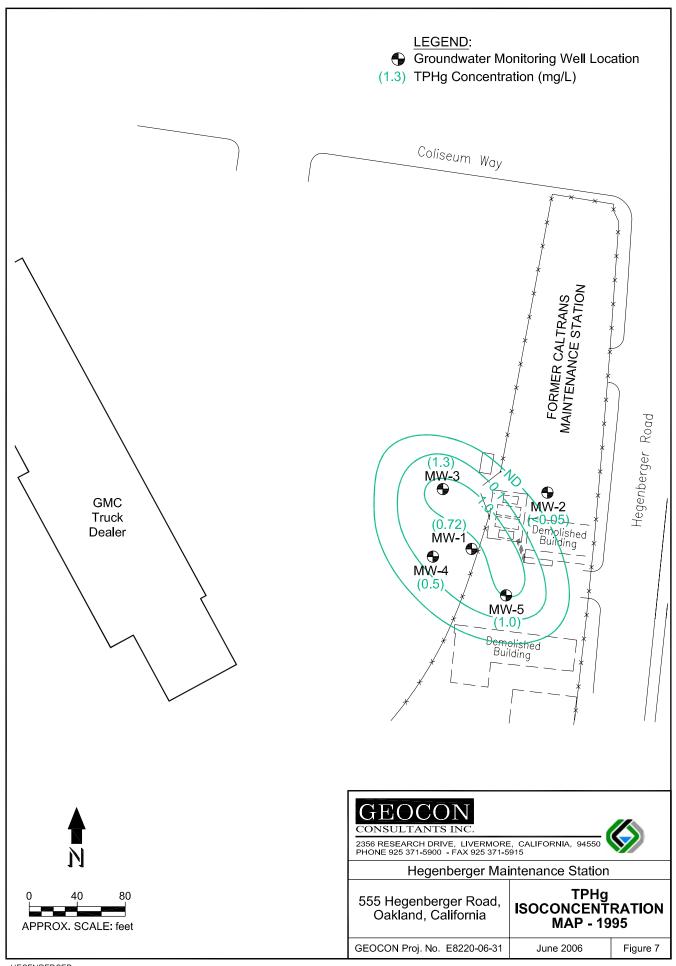

This report has been prepared exclusively for Caltrans. The information contained herein is only valid as of the date of the report, and will require an update to reflect additional information obtained.

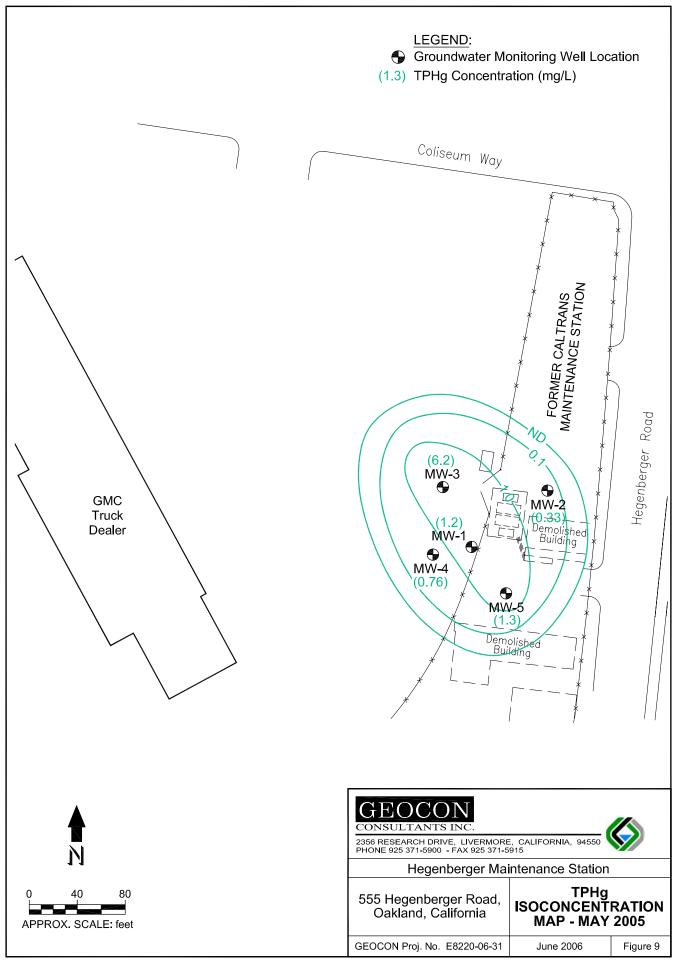

This report is not a comprehensive site characterization and should not be construed as such. The findings as presented in this report are predicated on the results of the limited sampling and laboratory testing performed. In addition, the information obtained is not intended to address potential impacts related to sources other than those specified herein. Therefore, the report should be deemed conclusive with respect to only the information obtained. We make no warranty, express or implied, with respect to the content of this report or any subsequent reports, correspondence or consultation. Geocon strived to perform the services summarized herein in accordance with the local standard of care in the geographic region at the time the services were rendered

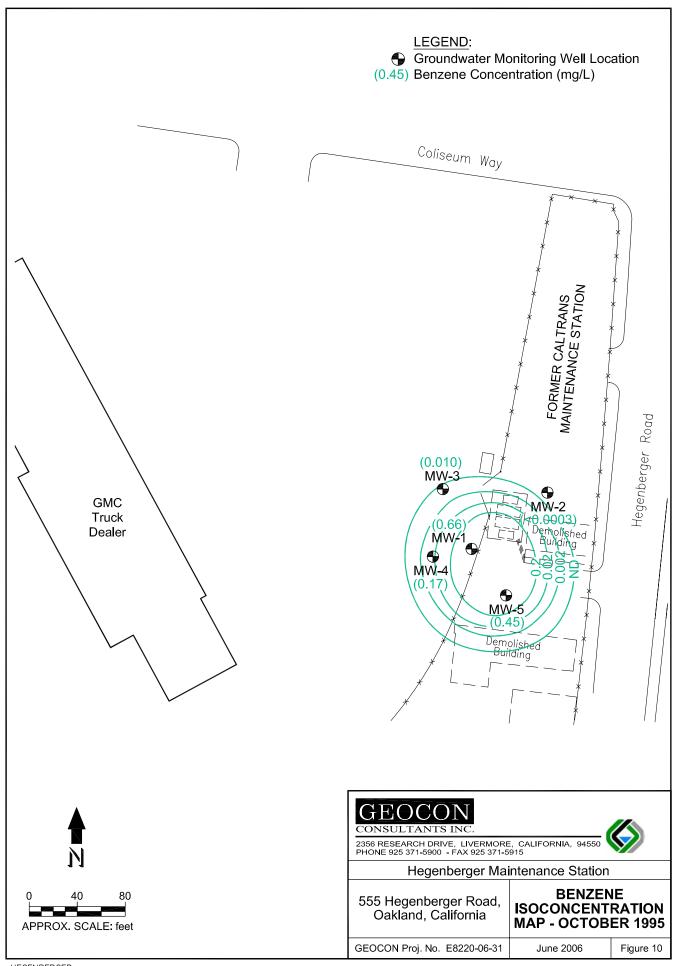

8.0 REFERENCES

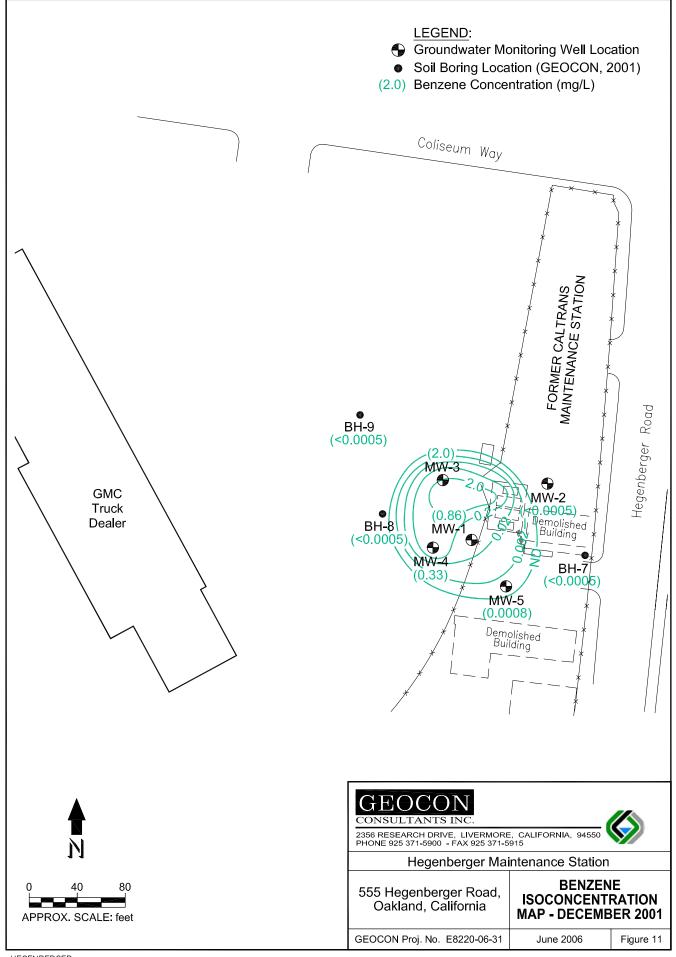

- City of Oakland Public Works Agency, January 2000, Oakland Urban Land Redevelopment Program: Guidance Document
- Clayton Environmental Consultants, September 1993, Untitled Correspondence (and Figure) to Alameda County Health Agency
- Geocon Environmental Consultants, Inc., January 1996, Site Investigation Report For Hegenberger Maintenance Station, Oakland, California
- Geocon Environmental Consultants, Inc., July 2002, Limited Soil and Groundwater Investigation and Fourth Quarter 2001 Semi-Annual Groundwater Monitoring and Sampling Report, Former Hegenberger Maintenance Station, Oakland, California
- Geocon Environmental Consultants, Inc., June 2005, 2005 Annual Groundwater Monitoring Report, Former Hegenberger Maintenance Station, 555 Hegenberger Road, Oakland, California
- GHH Engineering, Inc., November 1994, Initial Site Assessment, Caltrans Oakland Facility, 555 Hegenberger, Oakland, California
- GHH Engineering, Inc, December 1994, Tank Removal Report, Caltrans Oakland, Oakland, California











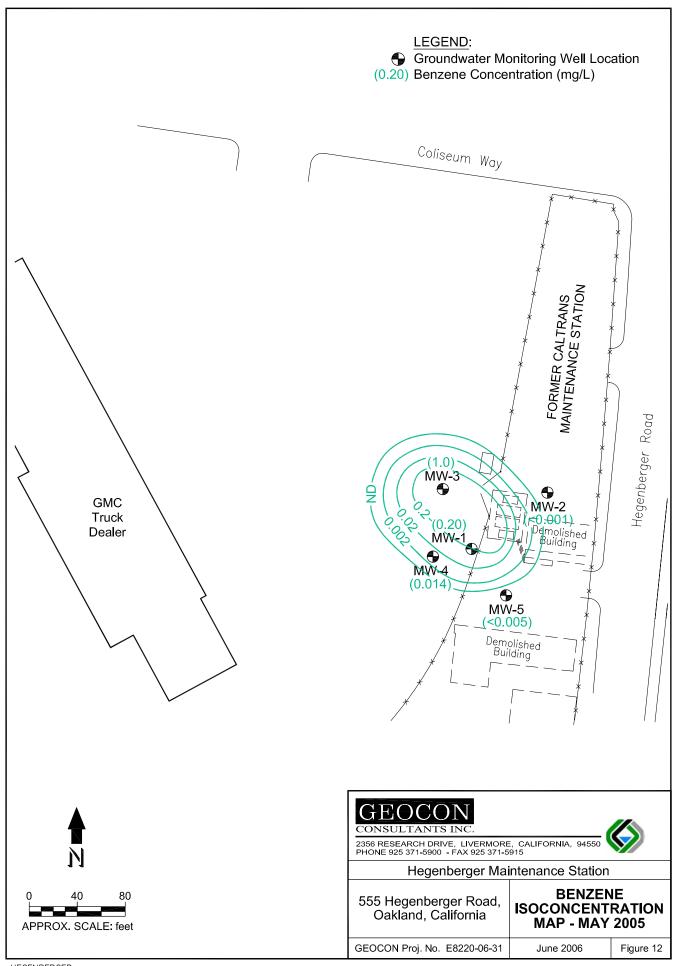


Table 1 Soil Sample Results Caltrans Former Hegenberger Maintenance Station Oakland, California

Sample			TPHg	TPHd	O&G	Benzene	Toluene	Ethylbenzene	Xylenes	Lead	Organic Lead	Other VOCs
Location	Date	Depth	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Location	Date	Deptii	(mg/kg)	(1119/119)	(9/1.9/	(9,9)	(99)	(33/	(-3-3,	(3 3/		· <u>J J</u>
BH-1	July-93	6	340	280	480							
BH-1	July-93	10.5	20	8	<50							
BH-1	July-93	15.5	0.5	10	140							
BH-3	July-93	5.5	6.3	44	0.18							
BH-4	July-93	5.5	51	17	70							
Pl1	September-94	4	<20	380	2,200	<0.10	<0.10	0.18	<0.10	13		
PI2	September-94	4	<10	<1.0	190	0.076	< 0.05	< 0.05	<0.05	13		
TE1	September-94	8	290	27	1,900	2.0	<0.5	0.74	1.2	18		
TE2	September-94	18	<1.0	<1.0	200	< 0.005	< 0.005	< 0.005	<0.005	12		
TE3	September-94	18	11	11	580	0.03	0.014	0.02	0.022	8.8		
TE4	September-94	18	<20	<1.0	70	<0.10	<0.10	<0.10	<0.10	7.6		
TE5	September-94	13	<1.0	<1.0	80	< 0.005	< 0.005	<0.005	< 0.005	9.5		
TE6	September-94	13	140	<1.0	1,200	0.13	<0.10	0.51	0.3	11		
TE7	September-94	8	400	<1.0	530	0.83	<0.5	0.62	1.2	14		
TE8	September-94	8	480	<1.0	100	1.8	0.51	7.6	8.7	8.9		
PI-1	September-94	4	<20	380		<0.10	<0.10	0.18	<0.10	13		
PI-2	September-94	4	<10.	<1.0		0.076	< 0.05	< 0.05	<0.05	13		
BH1	September-95	16	<1.0	<1.0	<50	< 0.005	< 0.005	0.006	0.021		<5.0	
BH1	September-95	21	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	<0.005		<5.0	
BH2	September-95	11	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	<0.005		<5.0	
BH2	September-95	21	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	<0.005		<5.0	
BH3	September-95	6	<1.0	<1.0	80	< 0.005	< 0.005	< 0.005	< 0.005			
BH3	September-95	11	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	<0.005		<5.0	
внз	September-95	21	<1.0	<1.0	<50	<0.005	< 0.005	< 0.005	< 0.005		<5.0	
BH4	September-95	11	<1.0	<1.0	55	<0.005	< 0.005	< 0.005	<0.005		<5.0	
BH4	September-95	21	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	< 0.005		<5.0	
BH5	September-95	11	<1.0	<1.0	<50	<0.005	< 0.005	< 0.005	<0.005		<5.0	
BH5	September-95	21	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	< 0.005		<5.0	
BH6	September-95	6	<1.0	24	80	< 0.005	< 0.005	< 0.005	< 0.005			
BH6	September-95	11	<1.0	16	65	<0.005	< 0.005	< 0.005	< 0.005		<5.0	- ~
BH6	September-95	21	<1.0	<1.0	<50	<0.005	< 0.005	< 0.005	< 0.005		<5.0	
MW-1	September-95	11	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	< 0.005		<5.0	
MW-1	September-95	19.5	<1.0	<1.0	<50	< 0.005	< 0.005	<0.005	< 0.005		<5.0	
MW-2	September-95	6	<1.0	<1.0	75	<0.005	< 0.005	< 0.005	< 0.005		<5.0	
MW-2	September-95	21	<1.0	<1.0	<50	< 0.005	< 0.005	<0.005	<0.005		< 5.0	
MW-3	September-95	7.5	<1.0	<1.0	<50	0.012	<0.005	< 0.005	< 0.005			
MVV-3	September-95	11	<1.0	<1.0	<50	<0.005	<0.005	<0.005	<0.005		<5.0	

Table 1
Soil Sample Results
Caltrans Former Hegenberger Maintenance Station
Oakland, California

Sample Location	Date	Depth	TPHg (mg/kg)	TPHd (mg/kg)	O&G (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Xylenes (mg/kg)	Lead (mg/kg)	Organic Lead (mg/kg)	Other VOCs (mg/kg)
MW-3	September-95	21	<1.0	<1.0	<50	0.03	0.028	0.03	0.058		<5.0	
MW-4	September-95	5.5	<1.0	<1.0	<50	<0.005	<0.005	< 0.005	<0.005			
MW-4	September-95	11	<1.0	<1.0	75	<0.005	<0.005	< 0.005	<0.005		<5.0	
MW-4	September-95	16	<1.0	<1.0	75	<0.005	<0.005	<0.005	<0.005		<5.0	
MW-5	September-95	6	1.6	<1.0	60	< 0.005	0.02	0.028	0.088			
MW-5	September-95	11	<1.0	<1.0	65	< 0.005	< 0.005	< 0.005	< 0.005		<5.0	
MW-5	September-95	19.5	<1.0	<1.0	<50	< 0.005	< 0.005	< 0.005	< 0.005		<5.0	
BH-6	December-01	11	<1.0	1	NA	< 0.005	< 0.005	< 0.005	< 0.005		- -	< 0.005
BH-9	December-01	6.5	<1.0	1.7	NA	< 0.005	< 0.005	< 0.005	< 0.005			< 0.005

Notes:

Bold type indicates compound detected above reporting limit

TPHg = Total Petroleum Hydrocarbons as gasoline following EPA Test Method 8015B

TPHd = Total Petroleum Hydrocarbons as diesel following EPA Test Method 8015B

BTEX = benzene, toluene, ethylbenzene, and total xylenes following EPA Test Method 8020 (8260)

MTBE = methyl tertiary butylether following EPA Test Method 8020/8260B

mg/kg = milligrams per liter

ug/kg = micrograms per liter

-- = Analysis not performed

ND = Not detected at a concentration greater than the laboratory reporting limit.

< = less than indicated reporting limit

Table 2
Historical Depth to Water and Groundwater Sample Results
Caltrans Former Hegenberger Maintenance Station
Oakland, California

		TOC Elevation	Depth to Water	Groundwater Elevation	TPHg	TPHd	TPHmo	O&G	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	
Well	Date	(feet)	(feet)	(feet amsl)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/i)	Other VOCs (mg/l)
MW-1	10/11/1995	99.73	6.55	93.18	0.72	< 0.05	<0.050	<5	0,66	0.013	0.0047	0.0028		
1010 0-1	1/17/1996	99.73	5.64	94.09	4.4	< 0.05	< 0.050		1.00	0.03	0.021	0.017		
	4/16/1996	99.73	5.46	94.27	6.05	7.45			0.914	0.0347	0.0344	0.0158		
	8/26/1996	99.73	5.91	93.82	3.8	0.43			0.780	0.023	0.021	0.020		
	11/14/1996		6.16	93.57	2.6	0.27	_		0.500	0.018	0.014	0.0089	_	
	2/18/1998	99.73	3.82	95.91	3.1	0.90	_		0.240	0.018	0.0078	0.011	0.020	_
	3/30/2001	99.73	6.19	93.54	3.6	0.48	_		0.150	0.013	0.0007	0.0108	<0.0005	<0.005
*	*** 12/26/2001	10.26	4.08	6.18	3.0	1.10	_		0.086	0.011	0.0034	0.0105	0.005	lsopropylbenzene=0.0079 n-butylbenzene=0.0051 n-proplybenzene=0.0053
	9/30/2002	10.26	5.79	4.47	0.59	< 0.05	_		0.012	0.0027	<0.0005	0.0016	< 0.0005	
	2/20/2003	10.26	4.49	5.77	2.65				0.0369	0.0106	0.007	0.0181	<0.005	
	1/12/2004	10.26	4.41	5.85	1.61				0.0056	0.0018	0.0016	0.0014		
	5/12/2005	10.26	4.45	5.81	1.2			_	0.020	<0.005	<0.005	<0.005		
MW-2	10/11/1995	99.68	6.88	92.80	< 0.05	< 0.05	<0.050	<5	<0.0003	<0.0003	<0.0003	<0.0005		
(VIV V-Z	1/17/1996	99.68	5.32	94.36	4.9	< 0.05	<0.050		2.10	<0.0015	<0.015	<0.015	_	
	4/16/1996	99.68	5.81	93.87	< 0.05	< 0.05			0.0010	< 0.0005	<0.0005	<0.0005		
	8/26/1996	99.68	5.98	93.70	< 0.05	< 0.05			<0.0005	<0.0005	<0.0005	< 0.0005		_
	11/14/1996		6.72	92.96	< 0.05	0.056			<0.0005	<0.0005	<0.0005	< 0.0005	_	<u>.</u>
	2/18/1998	99.68	5.01	94.67	< 0.05	0.260			<0.0005	<0.0005	<0.0005	< 0.0005	<0.0005	
	3/30/2001	99.68	6.54	93.14	< 0.20	0.37	_	===	0.0027	0.0008	<0.0005	0.0008	<0.0005	<0.005
*	** 12/26/2001	10.22	5.53	4.69	0.085	0.14			< 0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.005
	9/30/2001	10.22	6.48	3.74	< 0.05	< 0.05			<0.0005	<0.005	<0.0005	< 0.0015	<0.0005	
	2/20/2003	10.22	5.98	4.24	0.11			-	0.0066	<0.0005	<0.0005	<0.001	<0.0005	
	1/12/2004	10.22	5.69	4.53	0.067				<0.0005	<0.0005	<0.0005	<0.001		_
	5/12/2005	10.22	5.55	4.67	0.33				<0.001	<0.001	<0.001	<0.001		_
MW-3	10/11/1995	98.92	6.42	92.50	1,3	< 0.05	<0.050	<5	0.0010	<0.0003	<0.0003	<0.0003		_
(VIVV-3	1/17/1996	98.92	5.82	93.10	0.171	< 0.05	<0.050		0.064	< 0.0003	0.001	< 0.0003		
	4/16/1996	98.92	5.85	93.07	6.74	0.565			2.770	0.031	0.0139	0.0219		_
	8/26/1996	98.92	5.72	93.20	0.74	0.70			0.180	0.0042	0.001	0.0046		
	11/14/1996		6.28	92.64	0.3	0.12	_	_	0.0062	0.0012	0.0007	0.0014	_	200
	2/18/1998	98.92	4.65	94.27	11	2.5			3.070	0.05	0.054	0.019	0.025	
	3/30/2001	98.92	5.62	93.30	9,9	0.49			2.00	0.048	0.039	0.039	<0.0005	Isopropylbenzene = 0.092 n-Butylbenzene = 0.036 n-Propylbenzene = 0.280 sec-Butylbenzene = 0.013
*	** 12/26/2001	9.46	4.66	4.80	9.4	1.70		_	1.50	0.046	0.033	0.028	0.012	isopropyibenzene=0.085 n-Butyibenzene=0.039 n-propyibenzene=0.250
	9/30/2002	9.46	5.84	3.62	2.02	0.57	-		0.775	0.0172	0.001	0.0094	<0.0005	
	2/20/2003	9.46	5.55	3.91	4.01				1.120	<0.050	< 0.050	<0.10	<0.050	=
	1/12/2004	9.46	4.77	4.69	3.32			_	0.632	0.0269	<0.025	<0.050	***	
	5/12/2005	9.46	4.63	4.83	6.2				1.00	0.030	0.020	0.010	_	

		TOC Elevation	Depth to Water	Groundwater Elevation	TPHg	TPHd	TPHmo	0&G	Benzene		Ethylbenzene	Xylenes	MTBE	011
Well	Date	(feet)	(feet)	(feet amsl)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Other VOCs (mg/l)
								-			2 2020			
MW-4	10/11/1995	99.46	6.63	92.83	0.5	< 0.05	<0.050	<5	0.017	0.0011	<0.0003	0.0005	_	
	1/17/1996	99.46	5.77	93.69	0.46	< 0.05	<0.050		0.072	0.0041	<0.0003	0.0017		
	4/16/1996	99.46	5.89	93.57	2.20	< 0.05			0.851	0.0077	0.0014	0.0057		
	8/26/1996	99.46	6.1 4	93.32	0.30	0.11			0.055	0.0049	0.0012	<0.0005		
	11/14/1996	99.46	6. 72	92.74	0.20	0.20			0.0034	<0.0005		<0.0005		
	2/18/1998	99.46	5.02	94.44	1.60	0.28			0.320	0.0091	0.001	0.0006	0.0017	
	3/30/2001	99.46	6.21	93.25	2.7	0.35			0.320	0.016	0.0053	0.0136	<0.0005	lsopropylbenzene = 0.0064
***	12/26/2001	10.00	5.37	4.63	0.6	0,20			0.033	0.003	< 0.0005	0.0017	8000.0	<0.005
	9/30/2002	10.00	6.40	3.60	0.067	< 0.05			<0.0005	<0.0005	<0.0005	<0.0015	<0.0005	
	2/20/2003	10.00	5.83	4.17	0.57	_			0.107	< 0.010	< 0.010	<0.0020	<0.010	
	1/12/2004	10.00	5.41	4.59	0.70				0.122	0.0135	0.0006	8800.0		_
	5/12/2005	10.00	5.59	4.41	0.76	-			0.014	0.0057	<0.005	<0.005		
MW-5	10/11/1995	99.91	6.68	93.23	1.0	< 0.05	<0.050	<5	0.045	0.015	0.0019	0.0061		_
	1/17/1996	99.91	5.74	94.17	< 0.05	< 0.05	< 0.050		0.002	< 0.0003	< 0.0003	< 0.0003		
	4/16/1996	99.91	5.85	94.06	1.74	0.855	_	_	0.157	0.0201	0.0039	0.0224		_
	8/26/1996	99.91	5,99	93.92	0.90	0.27			0.055	0.0064	0.0009	0.0037		
	11/14/1996	99.91	6.70	93.21	0.70	0.32			0.031	0.0057	0.0007	0.0036		
	2/18/1998	99.91	5.74	94.17	1.20	0.58			0.014	0.0052	0.0008	0.0055	0.0095	
	3/30/2001	99.91	6.73	93.18	1.5	0.48			0.0072	0.0065	< 0.0005	0.0107	< 0.0005	n-Propylbenzene =0.0051
***	12/26/2001	10.34	5.23	5.11	5.0	7.20	_		0.0008	0.0105	0.0036	0.0105	0.0036	Isopropylbenzene=0.006
	9/30/2002	10.34	6.18	4.16	0.56	0,43			0.0018	0.0052	< 0.0005	0.0065	< 0.0005	_
	2/20/2003	10.34	5.80	4.54	1.04		_		< 0.0025	0.0086	< 0.0025	0.0113	< 0.0025	
	1/12/2004	10.34	5.60	4.74	1.82			_	0.0042	0.008	0.0006	0.0128		
	5/12/2005	10.34	6.18	4.16	1.3				< 0.005	< 0.005	< 0.005	< 0.005		-

Notes:

Bold type indicates compound present at concentration above reporting limit.

TOC = Top of well casing.

feet amsl = Feet above mean sea level

TPHg = Total Petroleum Hydrocarbons as gasoline

TPHd = Total Petroleum Hydrocarbons as diesel

TPHmo = Total Petroleum Hydrocarbons as motor oil

O&G = Oil and Grease

BTEX = benzene, toluene, ethylbenzene, and total xylenes following EPA Test Method 8020 (8260)

MTBE = Methyl tertiary butyl ether

and tertiary amyl methylether[TAME]) following EPA Test Method 8020/8260B

mg/l = milligrams per liter

- = Analysis not performed

< = less than indicated reporting limit

***= Change of base for elevation above mean sea level to the California State Coordinate System, Zone III

Table 3
Grab Groundwater Sample Results
Caltrans Former Hegenberger Maintenance Station
Oakland, California

Boring ID	Date	TPHg (mg/l)	TPHd (mg/l)	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Xylenes (mg/l)	MTBE (mg/l)	Other VOCs (mg/l)
вн1	7/23/1993	0.78	1.3						
вн3	7/23/1993		47						
BH-6	12/26/2001	0.065	0.17	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
вн-7	12/26/2001	0.078	0.098*	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	1,1,2-Trichloroethane = 0.010 1,1-Dichloroethane = 0.099 1,1-Dichloroethene = 0.054
BH-8	12/26/2001	0.089		<0.0005	0.0007	<0.0005	0.0015	<0.0005	<0.0005
BH-9	12/26/2001	0.06	0.3	<0.0005	<0.0005	<0.0005	0.0008	<0.0005	<0.0005

Notes:

Bold type indicates compound detcted above reporting limit

TPHg = total Petroleum Hydrocarbons as gasoline

TPHd = total Petroleum Hydrocarbons as diesel

BTEX = benzene, toluene, ethylbenzene, and total xylenes following EPA Test Method 8020

MTBE = methyl tertiary butylether following EPA Test Method 8260B

mg/l = milligrams per liter

--- = analysis not performed

< = less than indicated reporting limit

Table 4 Tier 1 RBSL Comparison Table Groundwater to Indoor Air **Caltrans Former Hegenberger Maintenance Station** Oakland, California

	Residen	tial	Commer	cial	Actual Concentrations		
Contaminant	Carcinogenic (mg/l)	Hazard (mg/l)	Carcinogenic (mg/l)	Hazard (mg/l)	*Maximum Concentration (mg/l)	**Most Current Concentration (mg/l)	
Benzene	0.11	3.7	1.8	112	3.070	1.0	
Toluene	NV	210	NV	>SOL	0.05	0.030	
Ethylbenzene	>SOL	>SOL	>SOL	>SOL	0.054	0.020	
Xylenes	>SOL	>SOL	>SOL	>SOL	0.039	0.010	
MTBE	NV	24,000	NV	>SOL	0.025	<0.050	

Table 4A Tier 1 RBSL Comparison Table **Groundwater to Outdoor Air** Caltrans Former Hegenberger Maintenance Station Oakland, California

	Residen	tial	Commer	cial I	Actual Concentrations		
Contaminant	Carcinogenic (mg/l)	Hazard (mg/l)	Carcinogenic (mg/l)	Hazard (mg/l)	*Maximum Concentration (mg/l)	**Most Current Concentration (mg/l)	
Benzene	5.6	222	21	1,300	3.070	1.0	
Toluene	NV	>SOL	NV	>SOL	0.05	0.030	
Ethylbenzene	>SOL	>SOL	>SOL	>SOL	0.054	0.020	
Xylenes	>SOL	>SOL	>SOL	>SOL	0	0.010	
MTBE	NV	>SOL	NV	>SOL	0.025	<0.050	

NV - No value. Compound not a known carcinogen.

^{*} Maximum concentration reported at site in either grab or monitoring well groundwater sample

^{**} Groundwater data from May 2005 groundwater sample event

>SOL - RBSL exceeds solubility of chemical in water mg/l - milligrams per liter

Table 5 Tier 3 SSTL Comparison Table Groundwater to Indoor Air Caltrans Former Hegenberger Maintenance Station Oakland, California

	Residen	tial	Commer	cial I	Actual Concentrations *Maximum **Most Current		
Contaminant	Carcinogenic (ug/l)	Hazard (ug/l)	Carcinogenic (ug/l)	Hazard (ug/l)	Concentration (ug/l)	Concentration (mg/l)	
Benzene	5.9	20	93	570	3.070	1.0	
Toluene	NV	>SOL	NV	>SOL	0.05	0.030	
Ethylbenzene	NV	>SOL	NV	>SOL	0.054	0.020	
Xylenes	NV	>SOL	NV	>SOL	0.039	0.010	
MTBE	NV	40,000	NV	>SOL	0.025	<0.050	

Table 5A Tier 3 SSTL Comparison Table Groundwater to Outdoor Air Caltrans Former Hegenberger Maintenance Station Oakland, California

	Residen	tial	Commer	cial I	Actual Concentrations *Maximum **Most Current	
Contaminant	Carcinogenic (ug/l)	Hazard (ug/l)	Carcinogenic (ug/l)	Hazard (ug/l)	Concentration (ug/l)	Concentration (mg/l)
Benzene	>SOL	>SOL	>SOL	>SOL	3.070	1.0
Toluene	NV	>SOL	NV	>SOL	0.05	0.030
Ethylbenzene	NV	>SOL	NV	>SOL	0.054	0.020
Xylenes	NV	>SOL	NV	>SOL	0.039	0.010
MTBE	NV	>SOL	NV	>SOL	0.025	<0.050

Notes-

mg/l - milligrams per liter

^{*} Maximum concentration reported at site in either grab or monitoring well groundwater sample

^{**} Groundwater data from May 2005 groundwater sample event

>SOL - RBSL exceeds solubility of chemical in water.

Table 6
Tier 1 RBSL Comparison Table
Soil to Indoor Air
Caltrans Former Hegenberger Maintenance Station
Oakland, California

	Residen	itial	Commercial /	*8.4	
Contaminant	Carcinogenic (mg/kg)	Hazard (mg/kg)	Carcinogenic (mg/kg)	Hazard (mg/kg)	*Maximum Concentration (mg/kg)
Benzene	0.062	2.3	1.1	66	2
Toluene	NV	360	NV	SAT	0.51
Ethylbenzene	NV	SAT	NV	SAT	7.6
Xylenes	NV	SAT	NV	SAT	8.7
MTBE	NV	SAT	NV	SAT	Not Analyzed

Table 6A Tier 1 RBSL Comparison Table Soil to Outdoor Air Caltrans Former Hegenberger Maintenance Station Oakland, California

	Resider	ntial	Commercial /			
Contaminant	Carcinogenic (mg/kg)	Hazard (mg/kg)	Carcinogenic (mg/kg)	Hazard (mg/kg)	*Maximum Concentration (mg/kg)	
Benzene	0.19	7.6	0.73	44	2	
Toluene	NV	SAT	NV	SAT	0.51	
Ethylbenzene	NV	SAT	NV	SAT	7.6	
Xylenes	NV	SAT	NV	SAT	8.7	
MTBE	NV	44,000	NV	SAT	Not Analyzed	

Notes-

UCL - Upper confidence limit.

mg/kg - milligrams per kilogram

SAT - RBSL exceeds saturated soil concentration of compound

Table 7 Tier 3 SSTL Comparison Table Soil to Indoor Air Caltrans Former Hegenberger Maintenance Station Oakland, California

	Resider	ntial	Commercial /	***	
Contaminant	Carcinogenic (mg/kg)	Hazard (mg/kg)	Carcinogenic (mg/kg)	Hazard (mg/kg)	*Maximum Concentration (mg/kg)
Benzene	2.1	6.9	33	200	2
Toluene	NV	1,000	NV	SAT	0.51
Ethylbenzene	NV	SAT	NV	SAT	7.6
Xylenes	NV	SAT	NV	SAT	8.7
MTBE	NV	16,000	NV	SAT	Not Analyzed

Table 7A Tier 3 SSTL Comparison Table Soil to Outdoor Air Caltrans Former Hegenberger Maintenance Station Oakland, California

1	Resider	ntial	Commercial /	Industrial	*Maximum
Contaminant	Carcinogenic (mg/kg)	Hazard (mg/kg)	Carcinogenic (mg/kg)	Hazard (mg/kg)	Concentration (mg/kg)
Benzene	250	990	950	SAT	2
Toluene	NV	SAT	NV	SAT	0.51
Ethylbenzene	NV	SAT	NV	SAT	7.6
Xylenes	NV	SAT	NV	SAT	8.7
MTBE	NV	SAT	NV	SAT	Not Analyzed

Notes-

UCL - Upper confidence limit.

mg/kg - milligrams per kilogram

SAT - RBSL exceeds saturated soil concentration of compound

Table 8 Tier 1 RBSL Comparison Table Direct Exposure to Soil Caltrans Former Hegenberger Maintenance Station Oakland, California

	Reside	ential	Comm	*Maximum	
Contaminant	Carcinogenic (mg/kg)	Hazard (mg/kg)	Carcinogenic (mg/kg)	Hazard (mg/kg)	Concentration (mg/kg)
Benzene	2.7	81	8,500	510	2
Toluene	N∨	9,000	NV	56,000	0.51
Ethylbenzene	N∨	5,100	NV	33,000	7.6
Xylenes	N∨	54,000	NV	300,000	8.7
MTBE	NV	260	NV	1,700	Not Analyzed

Table 9 Tier 3 SSTL Comparison Table Direct Exposure to Soil Caltrans Former Hegenberger Maintenance Station Oakland, California

	Reside	ential	Comm	***************************************	
Contaminant	Carcinogenic (mg/kg)	Hazard (mg/kg)	Carcinogenic (mg/kg)	Hazard (mg/kg)	*Maximum Concentration (mg/kg)
Benzene	19	63	49	300	2
Toluene	NV	7,100	NV	34,000	0.51
Ethylbenzene	N∨	3,900	NV	18,000	7.6
Xylenes	NV	53,000	NV	260,000	8.7
мтве	NV	200	NV	930	Not Analyzed

Notes-

UCL - Upper confidence limit. mg/kg - milligrams per kilogram

APPENDIX

P	R	0	IF	CT	NO.	SR	ነ በበ	-06-	-34
I.	1/	•			131.	.30	w	- (/()-	- 3 - 6

T .	AT.	щ	750	BORING/WELL NO. BH 1		
	ETR SIS IS/F	SAMPLE NO.	ITHOLOGY	DATE DRILLED 9/26/95 WATER LEVEL (ATD) 17.0'	WELL	PID HEADSPACE
	PENETRA RESIST BLWS/F	S	5	EQUIPMENT MOBILE B-57 HSA DRILLER HAZMAT	CONSTRUCTION	(PPM).
				SOIL DESCRIPTION	` ·	
	:		- TO-2X	3" ASPHALT	000000	· .
- 1 -			520	Sandy Gravel base material		
- 2 -			9/9/	FILL Stiff, moist, yellow-brown, Gravelly CLAY (CL)		
- 3 -			20	Start, most, Jenow Brown, Graveny Chiri (Ch)	- <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- 4 -			36			
- 5 -			63			
			0/0/			-
0						
Γ 7 -			26			
- 8 -			8 2			
- 9 -			6/	·		
- 10 -	-	BH1-	10/20	-No sample	- <i>VIIIIIIII</i>	_
- 11 -		10	1		-\(\)	_
- 12 -		1140	2/2/			
- 13 -			15/20/			
1		-	19	-Becomes gray, strong odor		and the state of t
- 14 -			W.	Stiff, very moist, gray, Silty CLAY, trace gravel (CL)		
- 15 -	30	вн1-	1	Siff, very moist, gray, sifty CLA1, trace graver (CL)		2
- 16 -	1	15 1145				
- 17 -			7/1/	<u> </u>		
- 18 -			0.00	Dense, wet, brown, fine grained, rounded, poorly graded GRAVEL (GP)		
- 19 -	-		19/	ALLUVIUM		
- 20 -	-	ļ. 	فر بر مر	Very dense, wet, brown, Clayey, fine to coarse GRAVEL (fine to coarse gravel with clay matrix)		
1	75	BH1- 20	16,	(GC)		<1
- 21 -	1	1155				1
- 22 -				BORING TERMINATED AT 21.5 FEET	1	
- 23 -	-				1	
- 24 -	-				-	
1	1		1			1

Figure A-1, log of Boring BH 1

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL:
DIAMETER & TYPE OF CASING:	WELL SEAL & INTERVAL:
CASING INTERVAL:	WELL SEAL QUANTITY:
WELL SCREEN:	ANNULUS SEAL/INTERVAL: Cement Bent. 0-21.5 ft.
SCREEN INTERVAL:	ADDITIVES:
WELL COVER:	WELL DEPTH:
FILTERPACK/INTERVAL:	ENGINEER/GEOLOGIST: IAN MOORHEAD

pp	\cap	TE	CT	NIA	581	$\Delta \Delta$	NΚ	21
PK				17(1)	- 22	1111-	un-	- 14

	٠		>:	DODING ////CLE NO	Ī	
F	ST.	빌.	907	BORING/WELL NO. BH_2		PID
DEPTH FEET	SI	SAMPLE NO.	ITHOLOGY	DATE DRILLED 9/26/95 WATER LEVEL (ATD) 8.0'		HEADSPACE
	PENETRA RESIST. BLWS/FT	တ	5	EQUIPMENT MOBILE B-57 HSA DRILLER HAZMAT	CONSTRUCTION	(PPH)
				SOIL DESCRIPTION		
 			:00-20	3" ASPHALT	0.00000	
- 1 -			M SOL	Sandy GRAVEL base material		
2 -				ALLUVIUM	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- 3 -				Stiff, moist, black, clay, medium to high plasticity (CL)		
				Oil staining - strong odor		1
T 4 -	1	2		· ·		
- 5 -	95	BH2-		•	<i>\\\\\\\</i>	1252
- 6 -		5 1515			<i>-{////////////////////////////////////</i>	
- 7 -		1313	19/6/	Very dense, wet, black, Clayey, fine to coarse		
L			Jo /	GRAVEL (GC)		
8 -			1//	# Strong odor		
9 -	1		197		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- 10 -	29	BH2-	19/		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	88
- 11 -	-	10		Stiff, wet, dark brown to black, CLAY, medium to		
- 12 -	1.	1520		high plasticity (CL)		
			$\mathbb{V}/$			
- 13 -	1		$\mathbb{V}/$			1
14 -			17.7			1
- 15 -	34	BH2-	1/	Medium dense, wet, olive-brown, Clayey, fine grained SAND (SC)	- (111111111111111111111111111111111111	19.5
- 16 -	- 34	15	1///	Very weak odor	- <i>VIIIIIIII</i>	19.5
	_	1525	1/5			
17 -			1//			
- 18 -	1					4
- 19 -	┨.			Medium dense, saturated, olive brown, Silty SAND, trace gravel (SM)		
- 20 -	-	DIII		States (State)		1
- 21 -	27	BH2- 20	1 1			1.0
		20 1530				1
- 22, -	1			BORING TERMINATED AT 21.5 FEET		
- 23 -	1				-	
- 24 -	-		1		-	
:	1.				1	1

Figure A-2, log of Boring BH 2

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL:
DIAMETER & TYPE OF CASING:	WELL SEAL & INTERVAL:
CASING INTERVAL:	WELL SEAL QUANTITY:
WELL SCREEN:	ANNULUS SEAL/INTERVAL: Cement Bent. 0-21.5 ft.
SCREEN INTERVAL:	ADDITIVES:
WELL COVER:	WELL DEPTH:
FILTERPACK/INTERVAL:	ENGINEER/GEOLOGIST: IAN MOORHEAD

p	p	0	T	F/	$\neg \neg$	_	N	0	,	C	Ø	1 6	7	Λ	_1	n	ĸ	_ :	11	è
•	n		IJ.	L		l l	TΑ			. 7	a.	11	.,	v	1		()		34	è

PROJE	CT NO.	S8 100-			n.	
E_+	ST.	Щ.	ттнососу	BORING/WELL NOBH_3		
DEPTH IN FEET	NET!	SAMPLE NO.	문	DATE DRILLED 9/26/95 WATER LEVEL (ATD) 9.0'	WELL	FID HEADSPAC
1	PENET RESI BLWS	ഗ	5	EQUIPMENT MOBILE B-57 HSA DRILLER HAZMAT	CONSTRUCTION	(PPH)
				SOIL DESCRIPTION		
			20,24	3" ASPHALT	000000	
- 1				Sandy GRAVEL base material		
- 2 -				ALLUVIUM Stiff, moist, black, Silty CLAY, strong odor, trace		
- 3 -				gravel (CL) Oil staining - Strong odor		
- 4						
- 5 -	16	вн3-				400
- 6 -		5 1335				
- 7 -		1333		•		
- 8				Higher ground content (10, 20%)		
- 9 -				-Higher gravel content (10-20%)		
- 10				Becomes wet		
- 10 -	22	BH3-				74
- 11 -	1	1340		Stiff, wet, gray to olive brown, mottled, CLAY,		
- 12 -	1			moderate odor (CL)		
- 13 -	•					
- 14 -	1	er in the second		•		
- 15 -	17	BH3-				26
- 16 -	↓ ' '	15		-Very weak odor		120
- 17 -		1345		- very weak oddi		
- 18 -	<u> </u>					
			19/0/	Loose, saturated, brown, Clayey, fine to coarse		
- 19 -			0/1	GRAVEL (gravel with clay matrix) (GC)		
- 20 -	8	BH3- 20				8
- 21 -		20 1350	1/2/			
- 22 -	1			BORING TERMINATED AT 21.5 FEET	· ·	· ·
- 23 -	-				-	And the Control of th
- 24 -					-	
-						

Figure A-3, log of Boring BH 3

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL:
DIAMETER & TYPE OF CASING:	WELL SEAL & INTERVAL:
CASING INTERVAL:	WELL SEAL QUANTITY:
WELL SCREEN:	ANNULUS SEAL/INTERVAL: Cement Bent. 0-21.5 ft.
SCREEN INTERVAL:	ADDITIVES:
WELL COVER:	WELL DEPTH:
FILTERPACK/INTERVAL:	ENGINEER/GEOLOGIST: IAN MOORHEAD

PROJE	CT NO.	S8100-	-06-34									
표.h	PENETRAT. RESIST. BLWS/FT.	SAMPLE NO.	ITHOLOGY	BORING/WELL NOBH_4			PID					
DEPTH IN FEET	NET ESI MS.	SAMI	모	DATE DRILLED 9/26/95 WATER LEVEL (A			HEADSPACE (PPH)					
	H. R. E.		브	EQUIPMENT MOBILE B-57 HSA DRII	LER HAZMAT							
				SOIL DESCRIPTION								
- 1 -				3" ASPHALT FILL Coarse angular GRAVEL, with sand matr	ix (GP)	0.00000						
- 4 - - 5 - - 6 - - 7 - - 8 -	8	BH4- 5 1420		ALLUVIUM Stiff, moist, black, CLAY, trace silt, trace medium to high plasticity (CL) Strong odor	e gravel,		22					
- 9 - - 10 - - 11 - - 12 -	22	BH4- 10 1425		Becomes wet -Weak odor			1.0					
- 14 - - 15 - - 16 - - 17 -	43	BH4- 15 1430		Dense, wet, yellow-brown, Clayey, fine to GRAVEL (fine to coarse gravel with clay (GC)	o coarse matrix)		<1					
- 18 - - 19 - - 20 - - 21 - - 22 - - 23 -	63	BH4- 20 1435		Very dense, saturated, brown, poorly grace coarse GRAVEL, trace silt, clay (GP) (>5 gravel) BORING TERMINATED AT 21.5	0% fine		<1					
- 24 -												
Figure	A_4 I	og of Bo	oring P	T A			WBGR					
	G ELEVA		July D	QUANTITY OF FILTE	R MATERIAL.	***************************************	noux					
		YPE OF (CASING:	WELL SEAL & INTER								
	G INTER				WELL SEAL QUANTITY:							
WELL	SCREEN:			ANNULUS SEAL/INTE		nt. 0-21.5 f	t.					
SCREE	N INTER	VAL:		ADDITIVES:								
WELL.	COVER			WELL DEPTH								

FILTERPACK/INTERVAL:

ENGINEER/GEOLOGIST: IAN MOORHEAD

1	P	R	(٦	1	1	Ξ	C	T	٠ ١	N)	S	ጸ	1	0	(_	0	6	-	3.	4	

	I.• .	м 28100-	·	BORING/WELL NO. BH 5		·
DEPTH IN FEET	PENETRAT RESIST. BLWS/FT	SAMPLE NO.	ІТНОГОСУ	DATE DRILLED 9/26/95 WATER LEVEL (ATD) 18.0'	WELL CONSTRUCTION	PID HEADSPACE (PPM)
	E R E	6	ij	EQUIPMENT MOBILE B-57 HSA DRILLER HAZMAT	CONSTRUCTION	(****)
				SOIL DESCRIPTION		
				3" ASPHALT	0000000	
- 1 -				Sandy GRAVEL base material		
- 2 - - 3 -				ALLUVIUM Stiff, moist, black, CLAY, trace gravel, strong odor (CL)		
- 1						
- 4						
- 5 -	24	вн5-		-Becomes black and gray, mottled		513
- 6 -		5 1045		-Higher gravel content (10%)		
- 7 -				-Higher graver content (10%)		
- 8 -	1					
- 9 -	-			Stiff, very moist, gray, CLAY, moderate odor (CL)		1
- 10 -	١	2215			-\/////////////////////////////////////	1,,
- 11 -	21	BH5- 10				22
	1	1050				
- 12 -						
- 13 -			16/20/		-	
- 14 -	1		6/0/	Stiff, very moist, yellow-brown, fine to coarse		
- 15 -	55	BH5-		Gravelly CLAY (CL)		2.5
- 16 -	1	1.5 1058	7/		-\/////////////////////////////////////	
- 17 -	-	1038	2	•	-\/////////////////////////////////////	
- 18 -	1		6/	Y	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- 19 -				Dense, wet, yellow-brown, Clayey, fine to coarse		
			1//	SAND (>50% fine sand) trace gravel (SC)		
- 20 -	49	BH5- 20	1//			<1
- 21 -	1	1105	11/1	AND		4
- 22 -				BORING TERMINATED AT 21.5 FEET	1	
- 23 -	+				-	
- 24 -	+				-	
	<u> </u>	<u></u>	Ш			

Figure A-5, log of Boring BH 5

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL:
DIAMETER & TYPE OF CASING:	WELL SEAL & INTERVAL:
CASING INTERVAL:	WELL SEAL QUANTITY:
WELL SCREEN:	ANNULUS SEAL/INTERVAL: Cement Bent. 0-21.5 ft.
SCREEN INTERVAL:	ADDITIVES:
WELL COVER:	WELL DEPTH:
FILTERPACK/INTERVAL:	ENGINEER/GEOLOGIST: IAN MOORHEAD

PP	n	IF	CT	NO	S81	IOO.	-06-	.34
6 1	•			131.				. , , -+

PROJECT	NO.	S8100-	06-34			
H T	1. 1.	Щ.	ITHOLOGY	BORING/WELL NO. BH 6	_	
PEET FEET	is si	SAMPLE NO.	- 달	DATE DRILLED 9/26/95 WATER LEVEL (ATD) 8.0'	MELL	PID HEADSPAC
	RESIST. BLWS/FT	<u>ភ</u>	5	EQUIPMENT MOBILE B-57 HSA DRILLER HAZMAT	CONSTRUCTION	`(PPH)
				SOIL DESCRIPTION		
			1550.55	3" ASPHALT	000000	
- 1 +				Sandy GRAVEL base material		
2 -				FILL SOIL Stiff, moist, black, gravelly CLAY, medium high plasticity, strong odor (CL)		
	ĺ					
4 7	2,000		4		-\/////////////////////////////////////	
. 5 -	11	вн6-		ALLUVIUM	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	6
6 -		5 0938		Stiff, moist, black, CLAY, medium high plasticity (CL)	<i>-\////////////////////////////////////</i>	
. 7 -		0938	\mathbb{Y}/J	-Oil staining, strong odor		
			Y/λ	포		
8 7				-		
9 -				-Becomes wet	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	1
10	_	DIIC			- /////////////////////////////////////	
- 11 -	31	BH6-				14
- 12 -		0945		Stiff, saturated, gray, Silty CLAY, trace gravel, strong		
1				odor (CL)		
- 13 -						1
14 -					-{/////////////////////////////////////	
- 15 -			3/0/	Stiff saturated dark valley brown Clavey fire to	-\/////////////////////////////////////	
- 16 -	60	BH6- 15		Stiff, saturated, dark yellow-brown, Clayey, fine to coarse GRAVEL (gravel with clay matrix) weak odor		 < 1
10		1000		(GC)		
- 17 -			1/6/		<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	
- 18 -			7.77			
- 19 -			1//	Very dense, saturated, brown, Clayey, fine to coarse SAND, trace gravel (fine to coarse SAND with clay	-\/////////////////////////////////////	
- 20 -			1///	matrix) (SC)		
1	65	BH6- 20				<1
- 21 -		1005	1/1/		-	1
- 22 -				BORING TERMINATED AT 21.5 FEET	1	
- 23 -					-	
- 24 -					-	1

Figure A-6, log of Boring BH 6

11	•	^	

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL:
DIAMETER & TYPE OF CASING:	WELL SEAL & INTERVAL:
CASING INTERVAL:	WELL SEAL QUANTITY:
WELL SCREEN:	ANNULUS SEAL/INTERVAL: Cement Bent. 0-21.5 ft.
SCREEN INTERVAL:	ADDITIVES:
WELL COVER:	WELL DEPTH:
FILTERPACK/INTERVAL:	ENGINEER/GEOLOGIST: IAN MOORHEAD

PROJECT NO. E8100-06-13

ROJECT NO.	E8100-		BORING NO. BH6		
DEPTH IN FEET PENETRAT. RESIST. BLOWS/FT.	SAMPLE NO.	LITHOLOGY	DATE DRILLED 12/26/01 WATER LEVEL (ATD) 4.75' EQUIPMENT GEOPROBE DRILLER VIRONEX	SOIL (USCS)	HEADSPAC (PPM)
			SOIL DESCRIPTION		
1 - 2 -	-		3 INCHES ASPHALT Gravel backfill	GP	
3 - 4 - 5 -	·	0000	Soft, wet, brown (10YR 4/3) Silty SAND with gravel Saturated gravel backfill	SM GP	0
6 - 7 - 8 - 9 -			Saturated, crushed asphalt		0
10			BORING TERMINATED AT 10 FEET BORING LOCATED IN FORMER UST PIT COLLECTED GRAB GROUNDWATER SAMPLE		
		7			
•					
		for a position of the state of		-	

Figure A1, Log of Boring BH6, page 1 of 1

ENV_NO_WELL HEGEN.GPJ 01/07/02

BORING ELEVATION:	NA	\prod	ENGINEER/GEOLOGIST:	MATT HANKO	

PROJECT NO. E8100-06-13

DATE DRILLED 12/26/01 WATER LEVEL (ATD) 12' EQUIPMENT GEOPROBE DRILLER VIRONEX VIRONEX	SOIL I	HEADSPACE
SOIL DESCRIPTION 1 FOOT ASPHALT/BASE Very soft, slightly moist, dark brown (10YR 3/2), Sandy SILT N	1	HEADSPACE
SOIL DESCRIPTION 1 FOOT ASPHALT/BASE Very soft, slightly moist, dark brown (10YR 3/2), Sandy SILT N	ISCS)	
1 FOOT ASPHALT/BASE Very soft, slightly moist, dark brown (10YR 3/2), Sandy SILT No. 1 - 2		(PPM)
Very soft, slightly moist, dark brown (10YR 3/2), Sandy SILT No. 2 - 3 - 4 - 5 - 6 - 7 - 6 - 7 - 8 - 9 - 10 - 11 - BH7-11 BH7-11 Very soft, slightly moist, dark brown (10YR 2/1) Clayey SILT, highly organic Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT No. 2 - 10 - 11 - 11 - 11 - 11 - 11 - 11 -		
- 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT N		
- 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT N	AL	
- 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - BH7-11 BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT N		
Firm, moist, black (10YR 2/1) Clayey SILT, highly organic - 7 8	`	
Firm, moist, black (10YR 2/1) Clayey SILT, highly organic - 7 8		
Firm, moist, black (10YR 2/1) Clayey SILT, highly organic - 7 8		0
- 7 - 8 - 9 - 10 - 11 - BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT N	. 1	
BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT)H	
BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT		
BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT		
BH7-11 Soft, moist, dark yellowish brown (10YR 4/6), Sandy SILT		
Soft, moist, dark yellowish brown (10 Y K 4/6), Sandy SiL1		
	ML	
	SM	
- 13 - Silty SAND		
	,	
Interlayers of saturated coarse SAND with gravel and stiff Silty SP	P/CL	0
- 16 - CLAY		
- 18 -		
- 19 -		
POPPIG TOP MIATER AT 20 FEFT		
BORING TERMINATED AT 20 FEET		
COLLECTED GRAB GROUNDWATER SAMPLE		
	1	
		,

Figure A2, Log of Boring BH7, page 1 of 1

ENV_NO_WELL HEGEN.GPJ 01/07/02

BORING ELEVATION: NA	ENGINEER/GEOLOGIST:	MATT HANKO	

BORING ELEVATION: NA ENGINEER/GEOLOGIST: MATT HANKO

ENV_NO_WELL HEGEN.GPJ 01/07/02

Figure A3, Log of Boring BH8, page 1 of 1

PROJECT NO. E8100-06-13

1	1 1					
H L	&AT.	LE	OGY	BORING NO. BH9	CON	1
DEPTH IN FEET	PENETRAT. RESIST. BLOWS/FT.	SAMPLE NO.	LITHOLOGY	DATE DRILLED 12/26/01 WATER LEVEL (ATD) 7.5'	SOIL	HEADSPACE
	PEI R BL	∽	LIT	EQUIPMENT GEOPROBE DRILLER VIRONEX	(USCS)	(PPM)
				SOIL DESCRIPTION		
,				1 FOOT ASPHALT/BASE		
- 1 -				Firm, slightly moist, dark brown (10YR 3/3), Silty CLAY	CL	
- 2 -				·	•	
- 3 -						
- 4 -			1K/n	Soft, moist, gray (10YR 5/1), Clayey SILT	ML	
- 5 -				ool, mole, gray (1011(5/1), orașe) olas	112	
- 6 -						
- 7 -		BH9-6.5				
8 -				☐ Loose, saturated, dark gray (10YR 4/1), fine Silty SAND Firm, moist, very dark brown (10YR 2/2), Silty CLAY	SM CL	
- 9 -						
- 10 -				Loose, saturated, dark gray (10YR 4/1), coarse SAND Firm, moist, dark gray (10YR 4/1), Silty CLAY	SP CL	
- 11 -				Firm, moist, dark gray (10 f k 4/1), Siny CLA i	CL	-
- 12 -				- -	. *	
13 -						
- 14 -				<u> </u>		
- 15 -			1/-	BORING TERMINATED AT 15 FEET		
				COLLECTED GRAB GROUNDWATER SAMPLE		
				COLLECTED GRAD GROUND WATER SAMIFLE		

Figure A4, Log of Boring BH9, page 1 of 1

ENV_NO_WELL HEGEN.GPJ 01/07/02

BORING ELEVATION:	NA	ENGINEER/GEOLOGIST:	MATT HANKO

TROJE	. 140.	S8100-		DODING MARIA NO	1	
Fala	ST.	SAMPLE NO.	ттносову	BORING/WELL NO. MW 1		PID
DEPTH ENTH FEET	PENET REST BLMS.	NO.	문	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.0'	CONSTRUCTION	HEADSPACE (PPM)
	되고점	<u> </u>		EQUIPMENT MOBILE B-57 DRILLER HAZMAT	L CONDITION TO	
	,	-		SOIL DESCRIPTION		
				3" ASPHALT	. 8	
			9/6/	FILL SOIL Sandy GRAVEL base material	0. 0.	
- 2 -			0/0	Medium dense, moist, brown, Clayey, fine to coarse GRAVEL (GC)	\bowtie	
T 3 -				ALLUYIUM	\bowtie	
- 4				Stiff, moist, black, CLAY, 10% gravel, medium		
- 5 -	40	MW1-		plasticity, oil staining, strong odor (CL)		1356
F 6 -		5 1015		•		
- 7 -		1015				
- 8 -				·		
- 9 -						
- 10 -	13	MW1- 10				22
11 -	1	1025		-Becomes very moist, rootlets, very weak odor	1: 3:	
- 12 -	1				1: =	
13 -				<u> </u>		
14 -	-			Stiff, wet, olive brown, brown mottled CLAY, medium to high plasticity, trace weathered gravel clasts (CL)	1:1	
- 15 -	18	MW1-			-	<1
- 16 -	10	15				
- 17 -		1035				
1						
18 -	21					<1
- 19 -	21				W. W. W.	
- 20 -	4	MW1- 20		DODING MAD AND THE CONTROL OF THE CO	1.6. 7.1 "6,	
- 21 -	-	20 1050		BORING TERMINATED AT 20 FEET	1	
- 22 -	-				-	
- 23 -	-				-	
- 24 -						
27						

Figure A-7, log of Boring MW 1

HBGR

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL: 8 - 1001b Bags
DIAMETER & TYPE OF CASING: 4" Dia. PVC	WELL SEAL & INTERVAL: Bentonlte Chips 2-4.0 ft.
CASING INTERVAL: 0 - 4.5 ft.	WELL SEAL QUANTITY: 1.0 - 501b Bag
WELL SCREEN: 0.02"	ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.
SCREEN INTERVAL: 4.5 to 19.5 ft.	ADDITIVES: None
WELL COVER: 12" Traffic Rated Cover	WELL DEPTH: 19.5 ft.
FILTERPACK/INTERVAL: #3 Sand 4.0 to 19.5 ft.	ENGINEER/GEOLOGIST: IAN MOORHEAD

PROJE	CT NO.	S8100-	-06-34			
E_t	IRAT. IST. /FT.	۳.	ITHOLOGY	BORING/WELL NO. MW 2		
DEPTH IN FEET	FISS	SAMPLE NO.	HOH	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.5'	_ WELL	P10 HEADSPACE
	PENET RESI BLWS.	S	H	EQUIPMENT MOBILE B-57 DRILLER HAZMAT	CONSTRUCTION	(PPM)
				SOIL DESCRIPTION		
			20.23	3" ASPHALT	- 0	
<u> 1 </u>	1		A COL	Sandy GRAVEL base material		
- 2 -	ł			ALLUVIUM Stiff maist black CLAV trace of fine to coarse	- XXX XXX	
- 3 -	ľ			Stiff, moist, black, CLAY, trace of fine to coarse GRAVEL, strong odor (CL)	-₩ ₩	
_ 1 -					$\cancel{\boxtimes}$	
5 -	13	MW2-			7	8
- 6 -	1	5 1600			十 :目:	The state of the s
- 7 -					- I	
- 8 -					- ∴	
- 9 -				-Becomes dark gray		
10 -	15	MW2-			1	
- 11 -	1	10 1605		-No recovery	1 	
- 12 -	-	1005			1 =	
- 13 -	-		\mathbb{W}		4	
- 14 -] ·					
			Hili	Dense, wet, olive brown and orange brown, Silty SAND, very weak odor (SM)		
15 -	35	MW2-	1:1	Sitting, voly weath odot (SM)	1 =	1
- 16 -	1	15 1615	1 1		1	
- 17 -	-	10.5			4. =	
- 18 -	-			Daniel Land Land CAND	1 目	
- 19 -	32	MW2-		Dense, saturated, brown, medium coarse SAND trace silt (SP)		<1
1		20 1625				
- 20 -		1023		BORING TERMINATED AT 20 FEET		
- 21 -	1			DOMING TERMINATED AT 20 FEET		`
- 22 -	1				-	
- 23 -	+				-	
- 24 -	-				-	
	1					

Figure A-8, log of Boring MW 2

HBGR

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL: 6.5 - 100lb Bags
DIAMETER & TYPE OF CASING: 4" Dia. PVC	WELL SEAL & INTERVAL: Bentonite Chips 2-4.0 ft.
CASING INTERVAL: 0 - 5.0 ft.	WELL SEAL QUANTITY: 1.0 - 501b Bag
WELL SCREEN: 0.02"	ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.
SCREEN INTERVAL: 5 to 20 ft.	ADDITIVES: None
WELL COVER: 12" Traffic Rated Cover	WELL DEPTH: 20 ft.
FILTERPACK/INTERVAL: #3 Sand 4.0 to 20 ft.	ENGINEER/GEOLOGIST: IAN MOORHEAD

	PROJE	CT NO.	S8100-	06-34		_	
	H.	RAT. ST. FT.	LE	ITHOLOGY	BORING/WELL NO. MW 3		
	DEPTH IN FEET	PENETRAT RESIST. BLHS/FT.	SAMPLE NO.	로	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.0'		PID HEADSPACE
	Ц	민교교	S	9	EQUIPMENT MOBILE B-57 DRILLER HAZMAT	CONSTRUCTION	(PPH)
					SOIL DESCRIPTION	·	
					3" ASPHALT	a . a .	
	- i -				Sandy GRAVEL base material		
	- 2 -				ALLUVIUM Stiff, moist, black CLAY, medium plasticity, moderate	\times	
	3				odor (CL)	$\otimes \otimes$	
,	- 4 -					\bowtie	
	- 5 -						
	,	40	MW3-				
	- 0 -	·	1400		-No recovery		6
}	- 7 -		MW3-		-Trace fine to coarse gravel		
1	- 8 -		8 1406				
	- 9 -				-		
,	- 10 -	16	MW3-		-	∤ ∷ ■	5.5
	- 11 -	10	10		-Weak odor		2.2
,	- 12 -		1414		- Weak Odol		
	- 13 -				¥		
ļ	l				Medium dense, wet, light olive brown, Silty SAND		
)	- 14 -	1			(SM)		
	15 -	12	MW3-				<1
	- 16 -		15 1425		-		
	- 17 -				-		
}	- 18 -				Medium dense, saturated, gray, fine grained SAND,		
1	- 19 -	-			trace silt (SP)		7.47
}	- 20 -			1		115/11/15	
j.	- 21 -	18	MW3- 20				<1
ļ	1		1430	<u> </u>		M. D. Sh	4
,	- 22 -				BORING TERMINATED 21.5 FEET	1	
}	- 23 -	1					
1	- 24 -						
	L	<u> </u>	1	Ц		L	

Figure A-9, log of Boring MW 3

HBGR

CASING ELEVATION:	
DIAMETER & TYPE OF CASING: 4" Dia. PVC	
CASING INTERVAL: 0 - 4.5 ft.	
WELL SCREEN: 0.02"	
SCREEN INTERVAL: 4.5 to 19.5 ft.	
WELL COVER: 12" Traffic Rated Cover	
FILTERPACK/INTERVAL: #3 Sand 4.0 to 19.5 ft.	

QUANTITY OF FILTER MATERIAL: 7 - 1001b Bags

WELL SEAL & INTERVAL: Bentonite Chips 2-4.0 ft.

WELL SEAL QUANTITY: 1.0 - 501b Bag

ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.

ADDITIVES: None

WELL DEPTH: 19.5 ft.

ENGINEER/GEOLOGIST: IAN MOORHEAD

PROJ	ECT NO.	S8100-	-06-34			
E	SHT.	Ш	ITHOLOGY	BORING/WELL NO. MW 4		
DEPTH IN FEET	PENETRAT RESIST. BLWS/FT	SAMPLE NO.	모	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 13.0'	WELL	PID HEADSPACE
	[문 교 님	ဟ	F	EQUIPMENT MOBILE B-57 DRILLER HAZMAT	CONSTRUCTION	(Mdd)
				SOIL DESCRIPTION	-	
			9./-/	3" ASPHALT	. 9 . 0	
- 1 - 2 - 3				FILL SOIL Medium dense, moist, brown, Clayey, fine to coarse subangular gravel		
- 4	50/6"	MW4-		ALLUVIUM Stiff, very moist, orange-brown and gray, motified CLAY, medium-high plasticity (CL)		<1
- 6 - 7 - 8		0805		Dense, wet, gray-black, Clayey, fine to coarse GRAVEL, strong odor (gravel with clay matrix) (GC)		
- 9 - 10	23	MW4-		Stiff, wet, black, gravelly CLAY, strong odor (CL)		26
- 11 - 12 - 13		10 0316		¥		
- 14 - 15		MW4-		Stiff, wet dark olive-brown CLAY, medium to high plasticity, trace of gravel, pinhole structures, very weak odor (CL)		<1
- 16 - 17	-	15 0824				
- 18 - 19				Medium dense, saturated, brown, Silty SAND, trace clay (SM)	VI VI VI	
- 20 - 21]	MW4- 20		-Very poor recovery (slough)	Seller St	-
- 22	14	0832	1		The second	
- 23				BORING TERMINATED AT 21.5 FEET	_	
- 24	T					
L		1	1.1	I		1

Figure A-10, log of Boring MW 4

HBGR

CASING ELEVATION:	QUANTITY OF FILTER MATERIAL: 7 - 1001b Bags
DIAMETER & TYPE OF CASING: 4" Dig. PVC	WELL SEAL & INTERVAL: Bentonite Chips 2-3.5 ft.
CASING INTERVAL: 0 - 4.0 ft.	WELL SEAL QUANTITY: 1.0 - 50lb Bag
WELL SCREEN: 0.02"	ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.
SCREEN INTERVAL: 4.0 to 19.0 ft.	ADDITIVES: None
WELL COVER: 12" Traffic Rated Cover	WELL DEPTH: 19.0 ft.
FILTERPACK/INTERVAL: #3 Sand 3.5 to 19.0 ft.	ENGINEER/GEOLOGIST: IAN MOORHEAD

PROJE	ECT NO.	S8100-	-06-34	·		
# -	TRAT. EST. FT.	Щ	ттногосу	BORING/WELL NO. MW 5	-	Y
DEPTH IN FEET	NETE SIS WS/	SAMPLE NO.	HOL	DATE DRILLED 9/27/95 WATER LEVEL (ATD) 18.0'	WELL	PID HEADSPACE
	PENET REST BLWS	S	5	EQUIPMENT MOBILE B-57 DRILLER HAZMAT	CONSTRUCTION	(PPH)
		,		SOIL DESCRIPTION		
				2" ASPHALT	- 0 0	
- 1 -		•	020	Sandy GRAVEL base material	0 0	
- 2				Stiff, moist, black, fine to coarse gravelly CLAY, strong odor (CL)		
				ALLUVIUM	₩ ₩	
[4				Stiff, moist, black, CLAY, medium high plasticity, trace gravel, strong odor (CL)		
	12	MW5-				-
6		0915				
7						
8 -						
- 9						
10	12	MW5-		-Becomes olive-brown, higher gravel content (10%)		<1
- 1i -	-	10 0918		very weak odor		
- 12	-					r
- 13	1		1/2/		1 =	
- 14	_			Medium dense, very moist, olive brown and yellow	1	
- 15	27	MW5-		brown, Silty SAND (SM)	一量	<1
- 16	-	15 0925	11:1		1 =	
- 17 -	1	,				
- 18	1		9//	¥	-	
- 19	27	MW5- 20 0933		Medium dense, wet, brown, Clayey, Sandy GRAVEL (Sandy gravel with clay matrix) (GC)	-	
- 20	-	0933	10/10			<1
- 21	4			BORING TERMINATED AT 20 FEET	- :	
- 22	- '					
- 23	4					
- 24	-				4	
		<u> </u>			1	

Figure A-11, log of Boring MW 5

Ruco

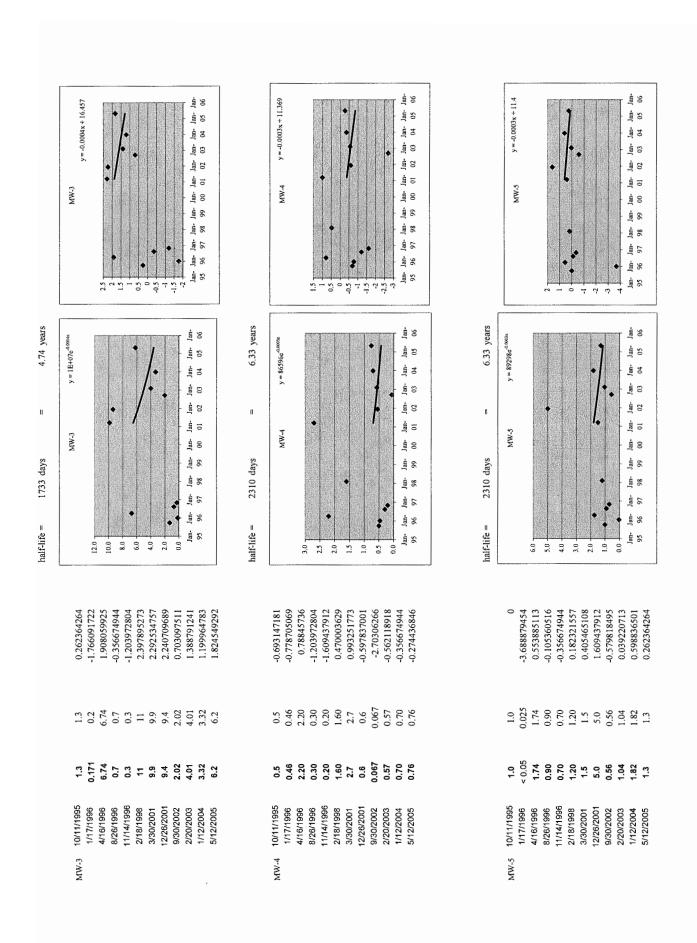
CASING ELEVATION:
DIAMETER & TYPE OF CASING: 4" Dia. PVC
CASING INTERVAL: 0 - 5.0 ft.
WELL SCREEN: 0.02"
SCREEN INTERVAL: 5.0 to 20.0 ft.
WELL COVER: 12" Traffic Rated Cover
FILTERPACK/INTERVAL: #3 Sand 4.0 to 20.0 ft.

QUANTITY OF FILTER MATERIAL: 6-3/4 - 100lb Bags

WELL SEAL & INTERVAL: Bentonite Chips 2-4.0 ft.

WELL SEAL QUANTITY: 1.0 - 50lb Bag

ANNULUS SEAL/INTERVAL: Cement Bent. 0-2.0 ft.


ADDITIVES: None

WELL DEPTH: 20.0 ft.

ENGINEER/GEOLOGIST: IAN MOORHEAD

ln(TPHg)

1 of 2

In(Benzene)

Benzene

	MW.3 y = 4.0005x + 26.7 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 6 6 7 10 10 10 10 10 10 10 10 10 10 10 10 10	MW-5 y = 0.0021x + 78 865 4 4 0 2 4 6 8 8 8 9 9 9 9 9 9 9 9 9 9
half-life = 1386 days = 3.80 years	3,500 2,500 1,500 1,500 1,500 500 1,50	NW4 900 800 600 900 900 900 900 900	MW-5 y = 2B+34qe ^{3/02114} 180 180
	4.158883083 7.926602599 5.192956851 1.824549292 8.029432841 7.60090246 7.31320387 6.652383029 7.021083964 6.498889394 6.907755279	2.833213344 4.276666119 6.746412129 4.007333185 1.223775432 5.768320996 5.768320996 3.496507561 -8.29404964 4.672828834 4.804021045 2.63905733	3.80666249 0.693147181 5.056245805 4.007333185 3.433987204 2.63905733 1.974081026 -0.223143551 0.587786665 -6.684611728 1.455084525 -5.991464547
	1 64 2,770 180 6 3,070 2,000 1,500 775 1,120 632 1,000	17 72 851 55 3.4 320 320 33 0,00025 107 122	45 2 157 157 55 31 14 7.2 0.8 1.8 0.00125 4.2
	0.0010 0.064 2.770 0.180 0.0062 3.070 1.50 0.775 1.120 0.632	0.017 0.072 0.0851 0.034 0.034 0.320 0.033 <0.0005 0.107 0.112	0.045 0.002 0.157 0.055 0.031 0.014 0.0008 0.0018 <0.0018 <0.0025 0.0025 0.0042
	10/1/1/995 1/17/1996 4/16/1996 8/26/1996 1/1/14/1996 2/18/1998 3/30/2001 1/2/2004 1/12/2004 5/12/2005	10/11/1995 11/17/1996 4/16/1996 4/16/1996 11/14/1996 2/13/2001 11/26/2001 9/30/2002 11/12/2004 5/12/2004	10/11/1995 11/17/1996 4/16/1996 8/26/1996 11/14/1998 2/18/1998 3/30/2001 12/26/2001 11/2/2005 5/12/2005
	MW-3	MW-4	MW-5

In(Benzene)
(ug/l)

Benzene (ug/l)

Benzene (ug/l)

Well Date

2 of 2

APPENDIX

C

Oakland RBCA Eligibility Checklist

The Oakland Tier 1 RBSLs and Tier 2 SSTLs are intended to address human health concerns at the majority of sites in Oakland where commonly-found contaminants are present. Complicated sites—especially those with continuing releases, ecological concerns or unusual subsurface conditions—will likely require a Tier 3 analysis. The following checklist is designed to assist you in determining your site's eligibility for the Oakland RBCA levels.

YES NO	YES	CRITERIA	
		. Is there a continuing, <i>primary</i> source of a chemical of concern, such as a	1.
		leaking container, tank or pipe? (This does <i>not</i> include residual sources.)	
			2.
		. Are there more than five chemicals of concern at the site at a concentration	3.
		greater than the lowest applicable Oakland RBCA level?	
		. Are there any preferential vapor migration pathways—such as gravel channels	4.
		or utility corridors—that are potential conduits for the migration, on-site or	
		off-site, of a volatilized chemical of concern?	
		ϵ	5.
		(a) Groundwater is at depths less than 300 cm (10 feet)	
		(b) Inhalation of volatilized chemicals of concern from groundwater in indoor	
		or outdoor air is a pathway of concern but groundwater ingestion is not*	_
		. Are there any existing on-site or off-site structures intended for future use	6.
		` ,	
		· · · · · ·	
		• •	7
		·	/.
	LJ	, 5 1	Q
			ο.
		where exposure to indoor air vapors from either soil or groundwater is of concern and one of the following three conditions is present? (a) A slab-on-grade foundation that is less than 15 cm (6 inches) thick (b) An enclosed, below-grade space (e.g., a basement) that has floors or walls less than 15 cm (6 inches) thick (c) A crawl space that is not ventilated Are there any immediate, acute health risks to humans associated with contamination at the site, including explosive levels of a chemical? Are there any complete exposure pathways to nearby ecological receptors, such as endangered species, wildlife refuge areas, wetlands, surface water bodies or other protected areas?	

If you answer "no" to all questions, your site is eligible for the Oakland RBCA levels. If you answer "yes" to any of the questions, your site is *not* eligible for the Oakland RBCA levels at this time.

^{*}If groundwater ingestion is a pathway of concern, the associated Oakland RBCA levels will be more stringent than those for any groundwater-related inhalation scenario, rendering depth to groundwater irrelevant in the risk analysis.

Tier 1 Default Inputs

		Resid	dential	Commercial/ Industrial	
Input Parameters	Units	Child	Adult	Worker	
	Soil-Specific P	arameters			
Capillary fringe thickness	cm		5		
Capillary fringe air content	cm ³ /cm ³		0.038		
Capillary fringe water content	cm ³ /cm ³		0.342		
Fraction organic carbon (FOC*)	g oc/g soil	=adult	0.01	=adult	
Groundwater Darcy velocity	cm/yr	residential	6	residential	
Groundwater mixing zone thickness	cm		1524		
Infiltration rate through the vadose zone	cm/yr		3		
Soil bulk density	g/cm ³		1.70		
Soil to skin adherence factor	mg/cm ²	0.5	0.5	0.5	
Total soil porosity	cm ³ /cm ³		0.38	=adult	
Vadose zone air content	cm ³ /cm ³	=adult	0.26		
Vadose zone water content	cm ³ /cm ³	residential	0.12	residential	
Vadose zone thickness	cm		295		
Stru	ctural and Clima	itic Parameters			
Areal fraction of cracks in building foundation	cm²/cm²		0.001	0.001	
Foundation air content	cm ³ /cm ³		0.26	=adult	
Foundation water content	cm ³ /cm ³		0.12	residential	
Foundation thickness	cm		15	15	
Lower depth of surficial soil zone	cm		100.0		
Depth to subsurface soil sources	cm	=adult residential	100		
Depth to groundwater	cm		300	=adult residential	
Width of source area parallel to wind or groundwater flow direction	cm		1500	Tosidential	
Outdoor air mixing zone height	cm		200		
Particulate emission rate	g/cm ² -s		1.38E-11	1.38E-11	
Wind speed above ground surface in outdoor air mixing zone	cm/s		322	=adult residential	

Tier 1 Default Inputs

		Resid	lential	Commercial/ Industrial
Input Parameters	Units	Child	Adult	Worker
Averaging time for carcinogens	уг	=adult residential	70	=adult residential
Averaging time for non-carcinogens	yr	6	24	25
Averaging time for vapor flux	S	=adult residential	9.46E+08	7.88E+08
Body weight	kg	15	70	70
Building air volume/floor area	cm ³ /cm ²	=adult residential	229	305
Exposure duration	yr	6	24	25
Exposure frequency	d/yr	350	350	250
Exposure frequency to water used for recreation	d/yr	120	120	0
Exposure time to indoor air	hr/d	24	24	9
Exposure time to outdoor air	hr/d	16	16	9
Exposure time to water used for recreation	hr/d	2	1.0	0
Groundwater ingestion rate	L/d	1	2	1
Indoor air exchange rate	1/s	=adult residential	5.60E-04	1.40E-03
Indoor inhalation rate	m³/d	10	15	20
Ingestion rate of water used for recreation	L/hr	0.05	0.05	0
Outdoor inhalation rate	m³/d	10	20	20
Skin surface area exposed to soil	cm ²	2000	5000	5000
Skin surface area exposed to water used for recreation	cm ²	8000	20000	0
Soil ingestion rate	mg/d	200	100	50
	TARGET RISK	LEVELS		
Individual Excess Lifetime Cancer Risk	unitless	=adult	1.0E-06	1.0E-06
Hazard quotient	unitless	residential	1.0	1.0

Medium	Exposure Pathway	Land Use	Type of Risk	Acenaph- thene	Acenaph- thylene	Acetone	Anthra- cene	Arsenic	Barium	Benz(a)- anthracene	Benzene	Benzo(a)- pyrene
	Ingestion/	Residential	Carcinogenic					3.2E-01		2.5E-01	2.7E+00	2.5E-02
Surficial Soil [mg/kg]	Dermal/		Hazard	3.1E+03	3.1E+03	4.8E+03	1.6E+04	2.0E+01	5.2E+03		8.1E+01	
	Inhalation	Commercial/	Carcinogenic					1.5E+00		7.9E-01	8.5E+00	7.9E-02
minima i di d		Industrial	Hazard	2.0E+04	2.0E+04	3.0E+04	1.0E+05	2.5E+02	9.4E+04		5.1E+02	
	Inhalatian af	Residential	Carcinogenic							SAT	6.9E-02	SAT
	Inhalation of Indoor Air		Hazard	SAT	SAT	1.5E+03	SAT				2.3E+00	
	Vapors	Commercial/	Carcinogenic	1		7				SAT	1.1E+00	SAT
		Industrial	Hazard	SAT	SAT	4.4E+04	SAT				6.6E+01	
		Residential	Carcinogenic							SAT	1.9E-01	SAT
Subsurface Soil	Inhalation of Outdoor Air	ן וט ווכ	Hazard	SAT	SAT	5.0E+03	SAT				7.6E+00	
[mg/kg]	Vapors	Commercial/	Carcinogenic	*		11,0200-11				SAT	7.3E-01	SAT
		Industrial	Hazard	SAT	SAT	2.9E+04	SAT	*(4.4E+01	; to
	Ingestion of Groundwater Impacted by Leachate	Residential	Carcinogenic					4.4E+00	1.2E+02	6.8E-01	2.1E-03	6.2E+00
			Hazard	2.0E+02	1.4E+02	3.6E-01	SAT	4.4E+00	1.2E+02		2.1E-03	6.2E+00
		Commercial/ Industrial	Carcinogenic		,			4.4E+00	1.2E+02	2.9E+00	2.1E-03	6.2E+00
			Hazard	SAT	SAT	2.4E+00	SAT	4.4E+00	1.2E+02	=	2.1E-03	6.2E+00
		Residential	Carcinogenic							>SOL	1.1E-01	>SOL
	Inhalation of Indoor Air	residential	Hazard	>SOL	>SOL	2.0E+04	>SOL				3.7E+00	
	Vapors	Commercial/	Carcinogenic			and the second	7. N	Y	N .	>SOL	1.8E+00	>SOL
	·	Industrial	Hazard	>SOL	>SOL	5.8E+05	>SOL	-	180	7	1.1E+02	
		Residential	Carcinogenic							>SOL	5.6E+00	>SOL
Groundwater	Inhalation of Outdoor Air	Residential	Hazard	>SOL	>SOL	2.1E+05	>SOL				2.2E+02	
[mg/l]	Vapors	Commercial/	Carcinogenic	4 11	P.				Y A	>SOL	2.1E+01	>SOL
	·	Industrial	Hazard	>SOL	>SOL	>SOL	>SOL	1		1	1.3E+03	
		Residential	Carcinogenic					5.0E-02	1.0E+00	5.6E-05	1.0E-03	2.0E-04
	Ingestion of	Nesiderillal	Hazard	9.4E-01	9.4E-01	1.6E+00	>SOL	5.0E-02	1.0E+00		1.0E-03	2.0E-04
	Groundwater	Commercial/	Carcinogenic					5.0E-02	1.0E+00	2.4E-04	1.0E-03	2.0E-04
		Industrial	Hazard	>SOL	>SOL	1.0E+01	>SOL	5.0E-02	1.0E+00		1.0E-03	2.0E-04
Water Used for	Ingestion/	Residential	Carcinogenic					2.0E-03		1.6E-05	6.3E-03	1.1E-06
Recreation [mg/l]	Dermal	rvesiderillal	Hazard	1.1E+00	1.7E+00	4.2E+01	>SOL	1.2E-01	2.8E+01		1.8E-01	

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Benzo(b)- fluoranthene	Benzo(g,h,i)- perylene	Benzo(k)- fluoranthene	Beryllium	Bis(2- ethylhexyl)- phthalate	Butyl benzyl phthalate	Cadmium	Carbon Disulfide
	1	Residential	Carcinogenic	2.5E-01		2.5E-01	4.5E+03	3.6E+01		2.1E+03	
Surficial Soil [mg/kg]	Ingestion/ Dermal/	residential	Hazard		2.1E+02		3.7E+02	1.0E+03	1.0E+04	3.7E+01	1.2E+03
	Inhalation	Commercial/	Carcinogenic	7.9E-01		7.9E-01	1.7E+04	1.1E+02	8 77 7	7.9E+03	
		Industrial	Hazard		1.4E+03		6.8E+03	6.8E+03	6.8E+04	6.8E+02	6.4E+03
		Residential	Carcinogenic	SAT		SAT		SAT			
	Inhalation of Indoor Air	residential	Hazard		SAT			SAT			1.1E+00
	Vapors	Commercial/	Carcinogenic	SAT	20.585.585	SAT		SAT			
		Industrial	Hazard 6	4 A ₂	SAT		*	SAT	7		3.3E+01
		Residential	Carcinogenic	SAT		SAT		SAT			
Subsurface Soil	Inhalation of Outdoor Air Vapors	residential	Hazard		SAT			SAT			3.8E+00
[mg/kg]		Commercial/	Carcinogenic	SAT	- 111	SAT		SAT		**************************************	1 T # 1
		Industrial	Hazard		SAT			SAT		-	2.2E+01
	Ingestion of Groundwater Impacted by Leachate	Residential	Carcinogenic	2.1E+00		2.1E+00	9.6E+00	3.7E+03		1.1E+00	
			Hazard		SAT		9.6E+00	SAT	SAT	1.1E+00	2.9E+00
		- Commercial	Carcinogenic	8.9E+00	12	8.9E+00	9.6E+00	1.6E+04	a*	1.1E+00	
		Industrial	Hazard	3.50	SAT		9.6E+00	SAT	SAT	1.1E+00	1.9E+01
	Inhalation of Indoor Air Vapors	Residential	Carcinogenic	>SOL		>SOL		>SOL			
		residential	Hazard		>SOL			>SOL			2.1E+00
		Commercial/	Carcinogenic	>SOL		>SOL	li d	>SOL		-	
		Industrial	Hazard		>SOL		is	>SOL			6.2E+01
		Residential	Carcinogenic	>SOL		>SOL		>SOL			
Groundwater	Inhalation of Outdoor Air	residential	Hazard		>SOL			>SOL			1.7E+02
[mg/l]	Vapors	Commercial/	Carcinogenic	>SOL	A S.	>SOL		>SOL			
		Industrial	Hazard		>SOL			>SOL			9.6E+02
		Residential	Carcinogenic	5.6E-05		5.6E-05	4.0E-03	8.0E-03		5.0E-03	
	Ingestion of	Residential	Hazard		>SOL		4.0E-03	3.1E-01	>SOL	5.0E-03	1.6E+00
	Groundwater	Commercial/	Carcinogenic	2.4E-04		2.4E-04	4.0E-03	3.4E-02		5.0E-03	
		Industrial	Hazard		>SOL		4.0E-03	>SOL	>SOL	5.0E-03	1.0E+01
Water Used for	Ingestion/	Residential	Carcinogenic	1.1E-05		1.2E-05		5.1E-02			
Recreation [mg/l]	Dermal	, todiaciliai	Hazard		>SOL		2.0E+00	>SOL	>SOL	2.0E-01	9.4E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Carbon Tetrachloride	Chloro- benzene	Chloroform	Chromium (III)	Chromium (VI)	Chrysene	Copper	Cresol(-m)	Cresol(-o)
		Residential	Carcinogenic	1.8E+00		9.1E+00		1.3E+00	2.5E+00			
Surficial Soil [mg/kg]	Ingestion/ Dermal/	residential	Hazard	3.3E+01	7.9E+02	4.8E+02	7.4E+04	3.7E+02		2.8E+03	2.6E+03	2.6E+03
	Inhalation	Commercial/	Carcinogenic	5.6E+00		2.9E+01		8.7E+00	7.9E+00			
		Industrial	Hazard	2.1E+02	4.7E+03	3.0E+03	1.4E+06	6.8E+03		5.0E+04	1.7E+04	1.7E+04
		Residential	Carcinogenic	2.7E-02		3.3E-01			SAT			
	Inhalation of Indoor Air	residential	Hazard	4.6E-01	6.2E-01	1.2E+01					SAT	SAT
	Vapors	Commercial/	Carcinogenic	4.3E-01		5.2E+00			SAT			
		Industrial	Hazard	1.3E+01	1.8E+01	3.5E+02					SAT	SAT
		Residential	Carcinogenic	7.6E-02		9.2E-01			SAT			
Subsurface Soil	Inhalation of Outdoor Air Vapors	ttori oi	Hazard	1.5E+00	2.1E+00	4.1E+01					SAT	SAT
[mg/kg]			Carcinogenic	2.9E-01		3.5E+00			SAT	r. Ferri	1	
			Hazard	8.8E+00	1.2E+01	2.4E+02	3 4,	V			SAT	SAT
	Ingestion of Groundwater Impacted by Leachate	Residential	Carcinogenic	3.0E-03	6.6E-02	1.5E-01		2.9E+00	SAT	2.8E-01		
		er	Hazard	3.0E-03	6.6E-02	1.5E-01	8.5E+07	2.9E+00		2.8E-01	2.2E+00	2.3E+00
			Carcinogenic	3.0E-03	6.6E-02	1.5E-01	h A	2.9E+00	SAT	2.8E-01		
			Hazard	3.0E-03	6.6E-02	1.5E-01	5.6E+08	2.9E+00		2.8E-01	1.5E+01	1.5E+01
		Residential	Carcinogenic	1.6E-02		7.5E-01			>SOL			
	Inhalation of Indoor Air	Residential	Hazard	2.7E-01	2.4E+00	2.8E+01					>SOL	>SOL
	Vapors		Carcinogenic	2.6E-01	1.71	1.2E+01			>SOL			9
		Industrial	Hazard	7.8E+00	6.9E+01	8.0E+02	1 1 1 1 1 1			1	>SOL	>SOL
		Residential	Carcinogenic	1.1E+00		3.4E+01			>SOL			
Groundwater	Inhalation of Outdoor Air	residential	Hazard	2.2E+01	2.0E+02	1.5E+03					>SOL	>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic	4.2E+00		1.3E+02			>SOL	3 /		31.0
		Industrial	Hazard	1.3E+02	>SOL	>SOL	100 10 10 10 10 10 10 10 10 10 10 10 10				>SOL	>SOL
		Residential	Carcinogenic	5.0E-04	7.0E-02	1.0E-01		5.0E-02	5.6E-04	1.3E+00		
	Ingestion of	residential	Hazard	5.0E-04	7.0 E -02	1.0E-01	1.6E+01	5.0E-02		1.3E+00	7.8E-01	7.8E-01
	Groundwater	Commercial/	Carcinogenic	5.0E-04	7.0E-02	1.0E-01		5.0E-02	>SOL	1.3E+00		h.
		Industrial	Hazard	5.0E-04	7.0E-02	1.0E-01	1.0E+02	5.0E-02		1.3E+00	5.1E+00	5.1E+00
Water Used for	Ingestion/	Residential	Carcinogenic	4.1E-03		3.9E-02		6.8E-03	1.6E-04			
Recreation [mg/l]	Dermal	. tooldontidi	Hazard	7.1E-02	1.2E+00	1.9E+00	3.8E+02	1.9E+00		1.5E+01	6.7E+00	6.4E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Cresol(-p)	Cyanide	Dibenz(a,h)- anthracene	Dichloro ethane (1,1-)	Dichloro ethane (1,2-) (EDC)	Dichloro ethylene (1,1-)	Dichloro ethylene (cis 1,2-)	Dichloro ethene (trans 1,2)
		Residential	Carcinogenic			7.4E-02	4.7E+01	3.9E+00	4.9E-01		
Surficial Soil	Ingestion/ Dermal/	Residential	Hazard	2.6E+02	3.0E+03		4.9E+03	1.4E+02	4.3E+02	4.8E+02	9.5E+02
[mg/kg]	Inhalation	Commercial/	Carcinogenic			2.3E-01	1.5E+02	1.2E+01	1.5E+00		
		Industrial	Hazard	1.7E+03	5.5E+04		3.1E+04	8.8E+02	2.7E+03	3.0E+03	6.1E+03
		Residential	Carcinogenic			SAT	8.6E-01	1.7E-01	9.4E-03		
	Inhalation of Indoor Air	Residential	Hazard	SAT		-	1.3E+02	6.8E+00	3.0E+00	1.4E+01	1.9E+01
	Vapors	Commercial/	Carcinogenic			SAT	1.4E+01	2.7E+00	1.5E-01	7 (2	
	·	Industrial	Hazard	SAT			SAT	2.0E+02	Dichloro ethylene (1,1-) 00	4.1E+02	5.4E+02
		Residential	Carcinogenic			SAT	2.4E+00	4.8E-01	2.6E-02		
Subsurface Soil	Inhalation of	Residential	Hazard	SAT			4.5E+02	2.3E+01	9.9E+00	4.7E+01	6.2E+01
[mg/kg]	Outdoor Air Vapors	Commercial/ Industrial	Carcinogenic			SAT	9.1E+00	1.8E+00	1.0E-01		**
			Hazard	SAT		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAT	1.3E+02	5.8E+01	2.8E+02	3.6E+02
	Ingestion of	Residential	Carcinogenic		6.0E+00	1.9E+00	6.4E-03	3.8E-04	1.5E-02	8.2E-03	2.0E-02
	Groundwater	Residential	Hazard	2.1E-01	6.0E+00		6.4E-03	3.8E-04	1.5E-02	8.2E-03	2.0E-02
	Impacted by	Commercial/	Carcinogenic		6.0E+00	8.0E+00	6.4E-03	3.8E-04	1.5E-02	8.2E-03	2.0E-02
	Leachate	Industrial	Hazard	1.4E+00	6.0E+00		6.4E-03	3.8E-04	1.5E-02	8.2E-03	2.0E-02
		Residential	Carcinogenic			>SOL	2.3E+00	7.2E-01	1.4E-02		
	Inhalation of Indoor Air	residential	Hazard	>SOL			3.6E+02	2.9E+01	4.3E+00	3.5E+01	3.2E+01
	Vapors	Commercial/	Carcinogenic			>SOL	3.6E+01	1.1E+01	2.2E-01	120	
	·	Industrial	Hazard	>SOL		3	>SOL	8.3E+02	1.2E+02	4.8E+02 3.0E+03 1.4E+01 4.1E+02 4.7E+01 2.8E+02 8.2E-03 8.2E-03 8.2E-03 8.2E-03	9.4E+02
		Residential	Carcinogenic		•	>SOL	1.1E+02	1.8E+01	9.3E-01		
Groundwater	Inhalation of Outdoor Air	Residential	Hazard	>SOL			>SOL	8.6E+02	3.5E+02	1.6E+03	2.0E+03
[mg/l]	Vapors	Commercial/	Carcinogenic			>SOL	4.0E+02	6.9E+01	3.5E+00		A
		Industrial	Hazard	>SOL			>SOL	5.0E+03	2.0E+03	>SOL	>SOL
		Residential	Carcinogenic		2.0E-01	1.6E-05	5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
	Ingestion of		Hazard	7.8E-02	2.0E-01		5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
	Groundwater	Commercial/	Carcinogenic		2.0E-01	7.0E-05	5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
		Industrial	Hazard	5.1E-01	2.0E-01		5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
Water Used for	Ingestion/	Residential	Carcinogenic			1.4E-06	2.1E-01	2.4E-02	1.3E-03		
Recreation [mg/l]	Dermal	, toolderida	Hazard	5.9E-01	7.0E+00		1.9E+01	7.2E-01	1.2E+00	1.8E+00	3.5E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Dimethyl- benza(a) anthracene (7,12)	Dimethyl phenol (2,4)	di-n-Butyl- phthalate	di-n-octyl phthalate	Dinitro toluene (2,4)	Dioxane (1,4)	Ethyl- benzene	Ethylene Dibromide	Flouran- thene
	1	Residential	Carcinogenic					9.7E-01	1.0E+01		8.4E-02	
Surficial Soil [mg/kg]	Ingestion/ Dermal/		Hazard	1.6E+03	1.0E+03	5.2E+03	1.0E+03			5.1E+03	2.7E+00	2.1E+03
	Inhalation	Commercial/	Carcinogenic	<u> </u>		, M4 .		3.0E+00	3.1E+01		2.6E-01	
		Industrial	Hazard	1.0E+04	6.7E+03	3.4E+04	6.8E+03	. t.		3.3E+04	8.4E-02 2.7E+00 2.6E-01 1.7E+01 2.8E-01 7.8E-01 4.5E+00 2.3E+01 7.9E-01 2.6E+00 3.0E+00 1.5E+01 7.8E-05 7.8E-05 7.8E-05 5.7E-01 1.6E+00 9.0E+00 4.6E+01 8.7E+00 2.9E+01 3.3E+01 1.7E+02 5.0E-05 5.0E-05 5.0E-05 5.9E-04	1.4E+04
		Residential	Carcinogenic					SAT	SAT		2.8E-01	
	Inhalation of Indoor Air		Hazard		SAT	SAT	SAT			SAT	7.8E-01	SAT
	Vapors	Commercial/	Carcinogenic			400 1110 140 140 140		SAT	SAT		4.5E+00	30 CC
		Industrial	Hazard		SAT	SAT	SAT		. 53	SAT	SAE-02 E+03 2.7E+00 2.6E-01 E+04 1.7E+01 2.8E-01 4.5E+00 3.0E+00 3.0E+00 5.7E-01 5.7E-01 5.0E-01 3.3E+01 3.3E+01 3.3E+01 3.3E+01 3.3E+01 3.3E+01 5.0L 3.3E+01 5.0L 3.3E+01 5.0L 3.3E+01 5.0L 3.3E+01 5.0L 5.0E-05 5.0E-01 5.0E-05 5.0E-0	SAT
		Residential	Carcinogenic					SAT	SAT			
Subsurface Soil	Inhalation of Outdoor Air	residential	Hazard		SAT	SAT	SAT			SAT		SAT
[mg/kg]	Vapors	Commercial/	rcial/ Carcinogenic SAT		SAT	SAT		3.0E+00	53 .			
		Industrial	Hazard		SAT	SAT	SAT		7.11-3	SAT	AT 1.5E+01	SAT
	Ingestion of	Residential	Carcinogenic					6.7E-04	1.8E-03	8.0E+00	7.8 E- 05	
	Groundwater	residential	Hazard	SAT	2.0E+00	3.9E+06	SAT			8.0E+00	7.8E-05	SAT
	Impacted by Leachate	Commercial/	Carcinogenic					2.9E-03	SAT	8.0E+00	7.8E-05	
	Leachale	Industrial	Hazard	SAT	1.3E+01	SAT	SAT			8.0E+00	8.4E-02 2.7E+00 2.6E-01 1.7E+01 2.8E-01 7.8E-01 4.5E+00 2.3E+01 7.9E-01 2.6E+00 3.0E+00 1.5E+01 7.8E-05 7.8E-05 7.8E-05 5.7E-01 1.6E+00 9.0E+00 4.6E+01 8.7E+00 2.9E+01 3.3E+01 1.7E+02 5.0E-05 5.0E-05 5.0E-05 5.9E-04	SAT
		Residential	Carcinogenic					>SOL	>SOL		5.7E-01	
	Inhalation of Indoor Air	1 Coluctitial	Hazard		>SOL	>SOL	>SOL			>SOL	1.6E+00	>SOL
	Vapors	Commercial/	Carcinogenic			1		>SOL	>SOL		8.4E-02 2.7E+00 2.6E-01 04 1.7E+01 2.8E-01 7.8E-01 4.5E+00 2.3E+01 7.9E-01 2.6E+00 3.0E+00 1.5E+01 00 7.8E-05 00 7.8E-05 00 7.8E-05 00 7.8E-05 1.6E+00 1.7E+01 1.6E+00 1.7E+01 1.6E+00 1.7E-01 1.6E+00 1.7E-05 1.7E-01 1.6E+00 1.7E-05 1.7E-01 1.7E-02 1.7E-05 1.7E-05 1.7E-05 1.7E-05 1.7E-01 1.7E-02 1.7E-05	1
	·	Industrial	Hazard		>SOL	>SOL	>SOL			>SOL	4.6E+01	>SOL
		Residential	Carcinogenic					>SOL	>SOL		8.4E-02 2.7E+00 2.6E-01 1.7E+01 2.8E-01 7.8E-01 4.5E+00 2.3E+01 7.9E-01 2.6E+00 3.0E+00 1.5E+01 7.8E-05 7.8E-05 7.8E-05 5.7E-01 1.6E+00 9.0E+00 4.6E+01 8.7E+00 2.9E+01 3.3E+01 1.7E+02 5.0E-05 5.0E-05 5.0E-05 5.9E-04	
Groundwater	Inhalation of Outdoor Air	Residential	Hazard		>SOL	>SOL	>SOL			>SOL	2.9E+01	>SOL
[mg/l]	Vapors		Carcinogenic		3	3		>SOL	>SOL		3.3E+01	
		Industrial	Hazard		>SOL	>SOL	>SOL			>SOL	1.7E+02	>SOL
		Residential	Carcinogenic					2.2E-04	2.5E-03	7.0E-01	5.0E-05	
	Ingestion of		Hazard	>SOL	3.1E-01	1.6E+00	>SOL			7.0E-01	5.0E-05	>SOL
	Groundwater	Commercial/	Carcinogenic	h				9.2E-04	1.1E-02	7.0E-01	5.0E-05	
		Industrial	Hazard	>SOL	2.0E+00	1.0E+01	>SOL			7.0E-01	5.0E-05	>SOL
Water Used for	Ingestion/	Residential	Carcinogenic					6.4E-03	>SOL		5.9E-04	
Recreation [mg/l]	Dermal	Residential	Hazard	>SOL	2.7E+00	7.3E+00	2.1E-03			3.6E+00	1.7E-02	>SOL

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Fluorene	Indeno- (1,2,3-CD) pyrene	Mercury	Methanol	Methyl ethyl ketone	Methylene Chloride	Methyl- napthalene (2-)	MTBE	Naphthalene
		Residential	Carcinogenic		2.5E-01				2.1E+01			
Surficial Soil	Ingestion/ Dermal/	residential	Hazard	2.1E+03		4.7E+00	2.4E+04	2.6E+04	3.1E+03	2.0E+03	2.6E+02	2.0E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic		7.9E-01				6.6E+01			
		Industrial	Hazard	1.4E+04		3.0E+01	1.5E+05	1.6E+05	2.0E+04	1.3E+04	1.7E+03	1.3E+04
		Residential	Carcinogenic		SAT				1.3E+00	:		
	Inhalation of Indoor Air	residential	Hazard	SAT		1.2E+01	4.5E+04	6.9E+03	7.4E+02	SAT	4.4E+03	SAT
	Vapors	Commercial/	Carcinogenic		SAT				2.0E+01		### Page 18	
		Industrial	Hazard	SAT			SAT	SAT	SAT	SAT	SAT	SAT
		Residential	Carcinogenic		SAT				3.5E+00			
Subsurface Soil	Inhalation of Outdoor Air	rtesideriliai	Hazard	SAT		4.0E+01	SAT	2.3E+04	2.5E+03	SAT	3 2.6E+02 4 1.7E+03 4.4E+03 SAT SAT SAT 7.6E-03 7.6E-03 7.6E-03 7.6E-03 7.6E-03 13 7.6E-03 13 7.6E-03 14 1.3E-02 1 1.3E-02 1 1.3E-02 1 1.3E-02 1 1.3E-02	SAT
[mg/kg]	Vapors	Commercial/	Carcinogenic		SAT				1.3E+01			
		Industrial	Hazard	SAT		2.3E+02	SAT	SAT	SAT	SAT	SAT	SAT
	Ingestion of	Residential	Carcinogenic	,	SAT	3.2E-01			3.1E-03		7.6E-03	1.2E+00
	Groundwater	Residential	Hazard	2.6E+02		3.2E-01	1.7E+00	3.3E+00	3.1E-03	1.6E+02	7.6E-03	1.2E+00
	Impacted by	Commercial/	Carcinogenic	2	SAT	3.2E-01			3.1E-03	Y	7.6E-03	1.2E+00
	Leachate	Industrial	Hazard	SAT		3.2E-01	1.1E+01	2.2E+01	3.1E-03	1.1E+03	7.6E-03	1.2E+00
		Residential	Carcinogenic		>SOL				6.7E+00			
	Inhalation of Indoor Air	Residential	Hazard	>SOL		2.6E-01	6.5E+05	6.0E+04	4.0E+03	>SOL	2.4E+04	>SOL
	Vapors	Commercial/	Carcinogenic		>SOL				1.1E+02			
	·	Industrial	Hazard	>SOL		7.6E+00	>SOL	>SOL	>SOL	>SOL	>SOL	>SOL
		Residential	Carcinogenic		>SOL				2.3E+02			
Groundwater	Inhalation of Outdoor Air	Residential	Hazard	>SOL		1.6E+01	>SOL	>SOL	>SOL	(2-)	>SOL	
[mg/l]	Vapors	1 0	Carcinogenic		>SOL	2.0			8.7E+02			,
			Hazard	>SOL		9.5E+01	>SOL	>SOL	>SOL	>SOL	>SOL	>SOL
		Residential	Carcinogenic		>SOL	2.0E-03			5.0E-03		1.3E-02	2.0E-02
	Ingestion of		Hazard	6.3E-01		2.0E-03	7.8E+00	9.4E+00	5.0E-03	6.3E-01	1.3E-02	2.0E-02
	Groundwater	Commercial/	Carcinogenic	, x :	>SOL	2.0E-03			5.0E-03		1.3E-02	2.0E-02
		Industrial	Hazard	>SOL		2.0E-03	5.1E+01	6.1E+01	5.0E-03	4.1E+00	1.3E-02	2.0E-02
Water Used for	Ingestion/	Residential	Carcinogenic		7.0E-06				1.3E-01			
Recreation [mg/l]	Dermal	Residential	Hazard	3.1E-01		3.6E-02	2.2E+02	1.5E+02	1.6E+01	6.1E-01	1.5E+00	1.5E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Nickel	Nitro benzene	PCBs	Phenan- threne	Phenol	Pyrene	Pyridine	Selenium	Silver	Stryene
		Residential	Carcinogenic	3.4E+04	5.5E+02	5.0E-02				2.8E+02		10711-1072-11 NOVE OF AND	
Surficial Soil	Ingestion/ Dermal/	Residential	Hazard	1.5E+03		1.2E+00	1.6E+04	3.1E+04	1.6E+03		3.7E+02	3.7E+02	9.8E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic	1.3E+05	1.7E+03	1.8E-01		7 "	5 F.Y.	8.9E+02			
		Industrial	Hazard	2.7E+04		1.0E+01	1.0E+05	2.0E+05	1.0E+04		6.8E+03	6.8E+03	6.3E+04
		Residential	Carcinogenic		SAT	6.9E+01				2.9E+03			
	Inhalation of Indoor Air	residential	Hazard			SAT	SAT	SAT	SAT				SAT
	Vapors	Commercial/	Carcinogenic	7 ' ' '	SAT	1.1E+03	and the Colon Barbara Sta			4.6E+04		3	_
	Ì	Industrial	Hazard		P. 4.	SAT	SAT	SAT	SAT				SAT
		Residential	Carcinogenic		SAT	1.9E+02				8.1E+03			
Subsurface Soil	Inhalation of Outdoor Air	residential	Hazard			SAT	SAT	SAT	SAT			7.7E+02 3.7E+02 8.8E+03 6.8E+03 7.7E-01 2.5E+00 7.7E-01 2.5E+00 7.7E-01 2.5E+00 7.7E-01 2.5E+00 7.7E-01 1.0E-01 5.0E-02 1.0E-01 5.0E-02 1.0E-01 5.0E-02 1.0E-01	SAT
[mg/kg]	Vapors	Commercial/	Carcinogenic		SAT	7.3E+02			y .	3.1E+04	,		24
	,	Industrial	Hazard		. + .	SAT	SAT	SAT	SAT				SAT
	Ingestion of	Residential	Carcinogenic	2.0E+01	2.9E-01	4.7E+00				1.2E-01	7.7E-01	2.5E+00	2.4E+00
	Groundwater	Residential	Hazard	2.0E+01		4.7E+00	SAT	1.0E+01	SAT		7.7E-01	2.5E+00	2.4E+00
	Impacted by Leachate	Commercial/	Carcinogenic	2.0E+01	1.2E+00	4.7E+00			Y Y Y	5.3E-01	7.7E-01	2.5E+00	2.4E+00
	Leachale	Industrial	Hazard	2.0E+01		4.7E+00	SAT	6.7E+01	SAT	IA .	7.7E-01	2.5E+00 2.5E+00 2.5E+00 2.5E+00 1.0E-01 1.0E-01	2.4E+00
		Residential	Carcinogenic		>SOL	2.3E-02				4.8E+03			
	Inhalation of Indoor Air	Residential	Hazard			>SOL	>SOL	>SOL	>SOL				>SOL
	Vapors	Commercial/	Carcinogenic		>SOL	3.6E-01			1	7.7E+04			1 28 3
		Industrial	Hazard			>SOL	>SOL	>SOL	>SOL			411	>SOL
		Residential	Carcinogenic		>SOL	3.2E-01				4.1E+04			
Groundwater	Inhalation of Outdoor Air	- Tesideritiai	Hazard			>SOL	>SOL	>SOL	>SOL				>SOL
[mg/l]	Vapors	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Carcinogenic		>SOL	>SOL				1.5E+05			
		Industrial	Hazard			>SOL	>SOL	>SOL	>SOL	4	4		>SOL
		Residential	Carcinogenic	1.0E-01	1.3E-01	5.0E-04				6.7E-02	5.0E-02	1.0E-01	1.0E-01
	Ingestion of		Hazard	1.0E-01		5.0E-04	>SOL	9.4E+00	>SOL		5.0E-02	1.0E-01	1.0E-01
	Groundwater	Commercial/	Carcinogenic	1.0E-01	5.7E-01	5.0E-04				2.9E-01	5.0E-02	1.0E-01	1.0E-01
		Industrial	Hazard	1.0E-01		5.0E-04	>SOL	6.1E+01	>SOL		5.0E-02	1.0E-01	1.0E-01
Water Used for	Ingestion/	Residential	Carcinogenic		2.8E+00	1.6E-06				2.6E+00			
Recreation [mg/l]	Dermal		Hazard	7.9E+00		4.4E-05	>SOL	1.5E+02	>SOL		2.0E+00	2.1E+00	9.3E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Oakland Tier 1 RBSLs

Medium	Exposure Pathway	Land Use	Type of Risk	Tetrachloro ethane (1,1,2,2 -)	Tetrachloro- ethylene (PCE)	Tetraethyl Lead	Toluene	Trichloro ethane (1,1,1-)	Trichloro ethane (1,1,2-)	Trichloro- ethylene (TCE)	Vanadium	Vinyl Chloride
	1	Residential	Carcinogenic	1.0E+00	5.7E+00				3.8E+00	1.9E+01		5.0E-01
Surficial Soil	Ingestion/ Dermal/	- Tooladina	Hazard	1.2E+03	4.8E+02	5.2E-03	9.0E+03	1.8E+03	1.9E+02	2.9E+02	5.2E+02	
[mg/kg]	Inhalation	Commercial/	Carcinogenic	3.1E+00	1,8E+01	April 14 Air St. 14 Ai			1.2E+01	5.9E+01		1.6E+00
		Industrial	Hazard	7.9E+03	3.0E+03	3.4E-02	5.6E+04	1.2E+04	1.2E+03	1.8E+03	9.5E+03	
		Residential	Carcinogenic	7.4E-01	3.0E-01				5.4E-01	1.1E+00		1.3E-03
	Inhalation of Indoor Air	residential	Hazard	1.0E+03	1.2E+01		3.6E+02	2.6E+02	3.1E+01	1.3E+01		
	Vapors	Commercial/	Carcinogenic	1.2E+01	4.8E+00				8.7E+00	1.7E+01		2.1E-02
		Industrial	Hazard	SAT	SAT		SAT	SAT	8.9E+02	3.6E+02		
		Residential	Carcinogenic	2.1E+00	8.4E-01				1.5E+00	3.0E+00		3.7E-03
Subsurface Soil	Inhalation of Outdoor Air	rtesideritiai	Hazard	SAT	4.1E+01		SAT	8.7E+02	1.0E+02	4.2E+01		
[mg/kg]	Vapors	Commercial/	Carcinogenic	7.8E+00	3.2E+00				5.8E+00	1.1E+01		1.4E-02
		Industrial	Hazard	SAT	2.4E+02		SAT	SAT	5.9E+02	2.4E+02		
	Ingestion of	Residential	Carcinogenic	3.0E-03	2.6E-02	2.4E+00	8.8E-01	7.8E-01	8.8E-03	2.7E-02		6.5E-04
	Groundwater	residential	Hazard	3.0E-03	2.6E-02	2.4E+00	8.8E-01	7.8E-01	8.8E-03	2.7 <i>E-</i> 02	3.3E+02	6.5E-04
	Impacted by Leachate	Commercial/	Carcinogenic	3.0E-03	2.6E-02	2.4E+00	8.8E-01	7.8E-01	8.8E-03	2.7E-02		6.5E-04
	Leachale	Industrial	Hazard	3.0E-03	2.6E-02	2.4E+00	8.8E-01	7.8E-01	8.8E-03	2.7E-02	2.2E+03	6.5E-04
		Residential	Carcinogenic	7.5E-01	2.0E-01				9.9E-01	6.9E-01		3.7E-03
	Inhalation of Indoor Air	rtesiderillar	Hazard	1.0E+03	8.4E+00		2.1E+02	2.4E+02	5.6E+01	8.1E+00		
	Vapors	Commercial/	Carcinogenic	1.2E+01	3.3E+00		4		1.6E+01	1.1E+01		5.9E-02
		Industrial	Hazard	>SOL	>SOL	2	>SOL	>SOL	1.6E+03	2.3E+02		
		Residential	Carcinogenic	1.1E+01	1.3E+01				2.2E+01	4.1E+01		2.5E-01
Groundwater	Inhalation of Outdoor Air	residential	Hazard	>SOL	>SOL		>SOL	>SOL	1.5E+03	5.7E+02		
[mg/l]	Vapors	Commercial/	Carcinogenic	4.1E+01	5.1E+01				8.4E+01	1.5E+02		9.6E-01
		Industrial	Hazard	>SOL	>SOL		>SOL	>SOL	>SOL	>SOL		
		Residential	Carcinogenic	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03		5.0E-04
	Ingestion of	, toolderillal	Hazard	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03	1.1E-01	5.0E-04
	Groundwater	Commercial/	Carcinogenic	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03	1	5.0E-04
		Industrial	Hazard	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03	7.2E-01	5.0E-04
Water Used for	Ingestion/	Residential	Carcinogenic	4.5E-03	6.0E-03				1.8E-02	4.6E-03		2.6E-03
Recreation [mg/l]	Dermal	, toolderillar	Hazard	4.9E+00	5.3E-01	6.7E-06	1.1E+01	4.3E+00	7.8E-01	7.2E-02	2.8E+00	

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Xylenes	Zinc
	I#:/	Residential	Carcinogenic		
Surficial Soil	Ingestion/ Dermal/	- Trooladinial	Hazard	5.4E+04	2.2E+04
[mg/kg]	Inhalation	Commercial/	Carcinogenic		
de 2000 for de la company		Industrial	Hazard	3.0E+05	4.1E+05
		Residential	Carcinogenic		
	Inhalation of Indoor Air		Hazard	SAT	
	Vapors	Commercial/	Carcinogenic		
		Industrial	Hazard	SAT	
	1-1-1-1-1	Residential	Carcinogenic		
Subsurface Soil	Inhalation of Outdoor Air		Hazard	SAT	
[mg/kg]	Vapors	Commercial/	Carcinogenic		
		Industrial	Hazard	SAT	
	Ingestion of	Residential	Carcinogenic	1.3E+01	
	Groundwater		Hazard	1.3E+01	8.8E+02
	Impacted by Leachate	Commercial/	Carcinogenic	1.3E+01	
	Leachate	Industrial	Hazard	1.3E+01	5.8E+03
	1-1-1-1-1	Residential	Carcinogenic		
	Inhalation of Indoor Air		Hazard	>SOL	
	Vapors	Commercial/	Carcinogenic	W	
		Industrial	Hazard	>SOL	
	1-5-1-6	Residential	Carcinogenic		
Groundwater	Inhalation of Outdoor Air		Hazard	>SOL	
[mg/l]	Vapors	Commercial/	Carcinogenic		
		Industrial	Hazard	>SOL	
		Residential	Carcinogenic	1.8E+00	
	Ingestion of		Hazard	1.8E+00	4.7E+00
	Groundwater	Commercial/	Carcinogenic	1.8E+00	
		Industrial	Hazard	1.8E+00	3.1E+01
Water Used for	Ingestion/	Residential	Carcinogenic		
Recreation [mg/l]	Dermal		Hazard	6.6E+01	1.2E+02

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Tier 3
Clayey Silts Default Parameters (modified)

		Resid	lential	Commercial/ Industrial
Input Parameters	Units	Child	Adult	Worker
	Soil-Specific P	arameters		
Capillary fringe thickness	cm		152	
Capillary fringe air content	cm ³ /cm ³		0.010	
Capillary fringe water content	cm ³ /cm ³		0.49	
Fraction organic carbon (FOC*)	g oc/g soil	=adult	0.02	=adult
Groundwater Darcy velocity	cm/yr	residential	6	residential
Groundwater mixing zone thickness	cm		1524	
Infiltration rate through the vadose zone	ст/уг		3	
Soil bulk density	g/cm ³		1.33	
Soil to skin adherence factor	mg/cm ²	1	1	1
Total soil porosity	cm ³ /cm ³		0.5	
Vadose zone air content	cm ³ /cm ³	=adult	0.1	=adult
Vadose zone water content	cm ³ /cm ³	residential	0.4	residential
Vadose zone thickness	cm		244	
Strue	ctural and Clima	itic Parameters		
Areal fraction of cracks in building foundation	cm ² /cm ²	,	0.001	0.001
Foundation air content	cm ³ /cm ³		0.26	=adult
Foundation water content	cm ³ /cm ³		0.12	residential
Foundation thickness	cm		15	15
Lower depth of surficial soil zone	cm		100.0	
Depth to subsurface soil sources	cm	=adult residential	152	
Depth to groundwater	cm		396	=adult residential
Width of source area parallel to wind or groundwater flow direction	cm		1500	
Outdoor air mixing zone height	cm		200	
Particulate emission rate	g/cm²-s		1.38E-11	1.38E-11
Wind speed above ground surface in outdoor air mixing zone	cm/s		322	=adult residential

Tier 3 Clayey Silts Default Parameters (modified)

		Resid	lential	Commercial/ Industrial
Input Parameters	Units	Child	Adult	Worker
	Exposure Par	ameters		
Averaging time for carcinogens	yr	=adult residential	70	=adult residential
Averaging time for non-carcinogens	yr	6	24	25
Averaging time for vapor flux	s	=adult residential	9.46E+08	7.88E+08
Body weight	kg	15	70	70
Building air volume/floor area	cm ³ /cm ²	=adult residential	229	305
Exposure duration	yr	6	24	25
Exposure frequency	d/yr	350	350	250
Exposure frequency to water used for recreation	d/yr	120	120	0
Exposure time to indoor air	hr/d	24	24	9
Exposure time to outdoor air	hr/d	16	16	9
Exposure time to water used for recreation	hr/d	2	1.0	0
Groundwater ingestion rate	L/d	1	2	1
Indoor air exchange rate	1/s	=adult residential	5.60E-04	1.40E-03
Indoor inhalation rate	m³/d	10	15	20
Ingestion rate of water used for recreation	L/hr	0.05	0.05	0
Outdoor inhalation rate	m³/d	10	20	20
Skin surface area exposed to soil	cm²	2000	5000	5000
Skin surface area exposed to water used for recreation	cm ²	8000	20000	0
Soil ingestion rate	mg/d	200	100	50
	TARGET RISK	LEVELS		Annual Control of Cont
Individual Excess Lifetime Cancer Risk	unitless	=adult	1.0E-05	1.0E-05
Hazard quotient	unitless	residential	1.0	1.0

Medium	Exposure Pathway	Land Use	Type of Risk	Acenaph- thene	Acenaph- thylene	Acetone	Anthra- cene	Arsenic	Barium	Benz(a)- anthracene	Benzene	Benzo(a)- pyrene
	Industion/	Residential	Carcinogenic					2.6E+00		1.7E+00	1.9E+01	1.7E-01
Surficial Soil	Ingestion/ Dermal/		Hazard	2.3E+03	2.3E+03	3.7E+03	1.2E+04	1.8E+01	5.0E+03	<u> </u>	6.3E+01	
[mg/kg]	Inhalation	Commercial/	Carcinogenic	3				9.5E+00	10 min 1882 mm	4.3E+00	4.9E+01	4.3E-01
		Industrial	Hazard	1.1E+04	1.1E+04	1.8E+04	5.6E+04	1.5E+02	7.1E+04		3.0E+02	3
		Residential	Carcinogenic							SAT	2.1E+00	SAT
	Inhalation of Indoor Air	rtooldoritia	Hazard	SAT	SAT	6.5E+03	SAT	***************************************			6.9E+00	
	Vapors	Commercial/	Carcinogenic	<u> </u>					Name and	SAT	3.3E+01	SAT
		Industrial	Hazard	SAT	SAT	1.9E+05	SAT				2.0E+02	
		Residential	Carcinogenic							SAT	2.5E+02	SAT
Subsurface Soil	Inhalation of Outdoor Air	residential	Hazard	SAT	SAT	1.9E+05	SAT				9.9E+02	
[mg/kg]	Vapors	Commercial/	Carcinogenic							SAT	9.5E+02	SAT
		Industrial	Hazard	SAT	SAT	SAT	SAT			1	SAT	
	Ingestion of	Residential	Carcinogenic					4.4E+00	1.3E+02	1.4E+01	4.5E-03	1.2E+01
	Groundwater	residential	Hazard	4.0E+02	2.7E+02	1.5E+00	SAT	4.4E+00	1.3E+02		4.5E-03	1.2E+01
	Impacted by Leachate	Commercial/	Carcinogenic		1 .	•		4.4E+00	1.3E+02	5.8E+01	4.5E-03	1.2E+01
	Leachale	Industrial	Hazard	SAT	SAT	9.7E+00	SAT	4.4E+00	1.3E+02		4.5E-03	1.2E+01
		Residential	Carcinogenic							>SOL	5.9E+00	>SOL
	Inhalation of Indoor Air	residential	Hazard	>SOL	>SOL	2.2E+04	>SOL				2.0E+01	
	Vapors	Commercial/	Carcinogenic		-4					>SOL	9.3E+01	>SOL
		Industrial	Hazard	>SOL	>SOL	6.4E+05	>SOL				5.7E+02	
		Residential	Carcinogenic							>SOL	>SOL	>SOL
Groundwater	Inhalation of Outdoor Air	resideritia	Hazard	>SOL	>SOL	>SOL	>SOL				>SOL	
[mg/l]	Vapors	Commercial/	Carcinogenic			1,111				>SOL	>SOL	>SOL
		Industrial	Hazard	>SOL	>SOL	>SOL	>SOL	3.	+		>SOL	
		Residential	Carcinogenic					5.0 E- 02	1.0E+00	5.6E-04	1.0E-03	2.0E-04
	Ingestion of	residential	Hazard	9.4E-01	9.4E-01	1.6E+00	>SOL	5.0E-02	1.0E+00	<u> </u>	1.0E-03	2.0E-04
	Groundwater	Commercial/	Carcinogenic			3		5.0E-02	1.0E+00	2.4E-03	1.0E-03	2.0E-04
		Industrial	Hazard	>SOL	>SOL	1.0E+01	>SOL	5.0E-02	1.0E+00	= _! ^r	1.0E-03	2.0E-04
Water Used for	Ingestion/	Residential	Carcinogenic					2.0E-02		1.6E-04	6.3E-02	1.1E-05
Recreation [mg/l]	Dermal	Residential	Hazard	1.1E+00	1.7E+00	4.2E+01	>SOL	1.2E-01	2.8E+01		1.8E-01	

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Benzo(b)- fluoranthene	Benzo(g,h,i)- perylene	Benzo(k)- fluoranthene	Beryllium	Bis(2- ethylhexyl)- phthalate	Butyl benzyl phthalate	Cadmium	Carbon Disulfide
		Residential	Carcinogenic	1.7E+00		1.7E+00	4.5E+04	2.4E+02		2.1E+04	
Surficial Soil	Ingestion/ Dermal/	Residential	Hazard		1.6E+02		3.6E+02	7.8E+02	7.8E+03	3.6E+01	1.4E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic	4.3E+00		4.3E+00	1.7E+05	6.2E+02	-	7.9E+04	
		Industrial	Hazard		7.4E+02		5.1E+03	3.7E+03	3.7E+04	5.1E+02	6.5E+03
		Residential	Carcinogenic	SAT		SAT		SAT			
	Inhalation of Indoor Air	residential	Hazard		SAT			SAT			3.2E+00
	Vapors	Commercial/	Carcinogenic	SAT		SAT		SAT		7.	
	·	Industrial	Hazard	2 5	SAT			SAT	2 6		9.4E+01
		Residential	Carcinogenic	SAT		SAT		SAT			
Subsurface Soil	Inhalation of Outdoor Air	Residential	Hazard		SAT			SAT			4.8E+02
[mg/kg]	Vapors	Commercial/	Carcinogenic	SAT	35	SAT		SAT		* ************************************	
	·	Industrial	Hazard	r r	SAT			SAT			SAT
	Ingestion of	Residential	Carcinogenic	SAT		SAT	9.6E+00	7.3E+04		1.1E+00	
	Groundwater	Residential	Hazard		SAT		9.6E+00	SAT	SAT	1.1E+00	6.0E+00
	Impacted by	Commercial/	Carcinogenic	SAT		SAT	9.6E+00	SAT		1.1E+00	
	Leachate	Industrial	Hazard		SAT		9.6E+00	SAT	SAT	1.1E+00	3.9E+01
		Residential	Carcinogenic	>SOL		>SOL		>SOL			
	Inhalation of Indoor Air	Residential	Hazard		>SOL			>SOL			2.6E+01
	Vapors	Commercial/	Carcinogenic	>SOL	1	>SOL		>SOL		. 7	
		Industrial	Hazard	-	>SOL			>SOL		2 2 1	7.7E+02
		Residential	Carcinogenic	>SOL		>SOL		>SOL			
Groundwater	Inhalation of Outdoor Air	residential	Hazard		>SOL			>SOL			>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic	>SOL		>SOL		>SOL	tru.		
		Industrial	Hazard		>SOL			>SOL	48		>SOL
		Residential	Carcinogenic	5.6E-04		5.6E-04	4.0E-03	8.0E-02		5.0E-03	
	Ingestion of	residential	Hazard		>SOL		4.0E-03	3.1E-01	>SOL	5.0E-03	1.6E+00
	Groundwater	Commercial/	Carcinogenic	>SOL		>SOL	4.0E-03	>SOL		5.0E-03	
		Industrial	Hazard		>SOL		4.0E-03	>SOL	>SOL	5.0E-03	1.0E+01
Water Used for	Ingestion/	Residential	Carcinogenic	1.1E-04		1.2E-04		>SOL			
Recreation [mg/l]	Dermal		Hazard		>SOL		2.0E+00	>SOL	>SOL	2.0E-01	9.4E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Carbon Tetrachloride	Chloro- benzene	Chloroform	Chromium (III)	Chromium (VI)	Chrysene	Copper	Cresol(-m)	Cresol(-o)
		Residential	Carcinogenic	1.2E+01		6.2E+01		1.2E+01	1.7E+01			
Surficial Soil	Ingestion/ Dermal/	rtesiderillar	Hazard	2.6E+01	6.6E+02	3.7E+02	7.1E+04	3.6E+02		2.6E+03	1.9E+03	1.9E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic	3.3E+01		1.6E+02		6.6E+01	4.3E+01			
		Industrial	Hazard	1.2E+02	3.1E+03	1.8E+03	1.0E+06	5.1E+03		3.8E+04	9.2E+03	9.2E+03
		Residential	Carcinogenic	7.4E-01		1.0E+01			SAT			
	Inhalation of Indoor Air	residential	Hazard	1.2E+00	2.1E+00	3.8E+01		!			SAT	SAT
	Vapors	Commercial/	Carcinogenic	-1.2E+01		1.6E+02			SAT			- 12
	•	Industrial	Hazard	3.6E+01	6.1E+01	1,1E+03			: .= .5	-	SAT	SAT
		Residential	Carcinogenic	9.2E+01		1.2E+03			SAT			
Subsurface Soil	Inhalation of Outdoor Air	Residential	Hazard	1.8E+02	3.1E+02	5.5E+03					SAT	SAT
[mg/kg]	Vapors	Commercial/	Carcinogenic	3.5E+02	#	4.7E+03			SAT	,	# 14 F	
		Industrial	Hazard	1.1E+03	SAT	SAT	7 /				SAT	SAT
	Ingestion of	Residential	Carcinogenic	5.9E-03	1.6E-01	3.4E-01		2.9E+00	SAT	1.2E+00		
	Groundwater	Residential	Hazard	5.9E-03	1.6E-01	3.4E-01	8.5E+07	2.9E+00		1.2E+00	4.8E+00	5.0E+00
	Impacted by	Commercial/	Carcinogenic	5.9E-03	1.6E-01	3.4E-01		2.9E+00	SAT	1.2E+00		
	Leachate	Industrial	Hazard	5.9E-03	1.6E-01	3.4E-01	5.6E+08	2.9E+00	1,	1.2E+00	3.2E+01	3.3E+01
		Residential	Carcinogenic	3.3E+00		3.3E+01			>SOL			
	Inhalation of Indoor Air	Residential	Hazard	5.6E+00	5.5E+01	1.2E+02					>SOL	>SOL
	Vapors	Commercial/	Carcinogenic	5.3E+01		5.2E+02	A Trans. Trans. Trans.		>SOL			2
		Industrial	Hazard	1.6E+02	>SOL	3.5E+03					>SOL	>SOL
		Residential	Carcinogenic	>SOL		>SOL			>SOL			
Groundwater	Inhalation of Outdoor Air	Residential	Hazard	>SOL	>SOL	>SOL					>SOL	>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic	>SOL		>SOL		,,4	>SOL			
		Industrial	Hazard	>SOL	>SOL	>SOL				200 - 12 200 200 200	>SOL	>SOL
		Residential	Carcinogenic	5.0E-04	7.0E-02	1.0E-01		5.0E-02	>SOL	1.3E+00		
	Ingestion of	1/coluciliai	Hazard	5.0E-04	7.0E-02	1.0E-01	1.6E+01	5.0E-02		1.3E+00	7.8E-01	7.8E-01
	Groundwater	Commercial/	Carcinogenic	5.0E-04	7.0E-02	1.0E-01		5.0E-02	>SOL	1.3E+00		
		Industrial	Hazard	5.0E-04	7.0E-02	1.0E-01	1.0E+02	5.0E-02		1.3E+00	5.1E+00	5.1E+00
Water Used for	Ingestion/	Residential	Carcinogenic	4.1E-02		3.9E-01		6.8E-02	>SOL			
Recreation [mg/l]	Dermal	- Nosiderillar	Hazard	7.1E-02	1.2E+00	1.9E+00	3.8E+02	1.9E+00		1.5E+01	6.7E+00	6.4E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Surficial Soil [mg/kg]	Ingestion/ Dermal/ Inhalation	Residential	Carcinogenic			anthracene	(1,1-)	ethane (1,2-) (EDC)	Dichloro ethylene (1,1-)	ethylene (cis 1,2-)	ethene (trans 1,2)
[mg/kg]	Dermal/	residential	Carcinogenic			4.9E-01	3.3E+02	2.7E+01	3.3E+00		
			Hazard	1.9E+02	2.8E+03		3.8E+03	1.1E+02	3.3E+02	3.7E+02	7.4E+02
		Commercial/	Carcinogenic			1.3E+00	8.7E+02	7.1E+01	8.5E+00		
		Industrial	Hazard	9.2E+02	4.1E+04	- ·	1.8E+04	5.1E+02	1.6E+03	1.8E+03	3.5E+03
	Inhalation of	Residential	Carcinogenic			SAT	2.7E+01	5.9E+00	2.5E-01		
	Indoor Air		Hazard	SAT			4.2E+02	2.3E+01	8.0E+00	4.5E+01	5.5E+01
	Vapors	Commercial/	Carcinogenic	· · · · · · · · · · · · · · · · · · ·		SAT	4.3E+02	9.4E+01	4.0E+00		
		Industrial	Hazard	SAT			SAT	6.8E+02	2.3E+02	1.3E+03	1.6E+03
	latin latin and	Residential	Carcinogenic			SAT	3.2E+03	6.3E+02	3.1E+01		
Subsurface Soil	Inhalation of Outdoor Air		Hazard	SAT			SAT	3.0E+03	1.2E+03	SAT	7.9E+03
[mg/kg]	Vapors	Commercial/	Carcinogenic	i.		SAT	SAT	2.4E+03	1.2E+02		2
_		Industrial	Hazard	SAT	1.5 ·		SAT	SAT	SAT	SAT	SAT
The state of the s	Ingestion of	Residential	Carcinogenic		6.2E+00	3.8E+01	1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-02
1	Groundwater	- Toolaolinai	Hazard	4.6E-01	6.2E+00		1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-02
	Impacted by Leachate	Commercial/	Carcinogenic		6.2E+00	1.6E+02	1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-02
	Leachate	Industrial	Hazard	3.0E+00	6.2E+00	3	1.4E-02	9.9E-04	2.8E-02	1.9E-02	4.2E-02
		Residential	Carcinogenic			>SOL	1.0E+02	1.6E+01	2.4E+00		
	Inhalation of Indoor Air	residential	Hazard	>SOL			1.6E+03	6.5E+01	7.5E+01	1.2E+02	1.8E+02
	Vapors	Commercial/	Carcinogenic			>SOL	1.6E+03	2.6E+02	3.8E+01		- Company
		Industrial	Hazard	>SOL	3		>SOL	1.9E+03	2.2E+03	>SOL	5.3E+03
		Residential	Carcinogenic		:	>SOL	>SOL	4.1E+03	9.6E+02		
Groundwater	Inhalation of Outdoor Air	residential	Hazard	>SOL			>SOL	>SOL	>SOL	>SOL	>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic			>SOL	>SOL	>SOL	>SOL		
		Industrial	Hazard	>SOL			>SOL	>SOL	>SOL	>SOL	>SOL
		Residential	Carcinogenic		2.0E-01	1.6E-04	5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
	Ingestion of	- Coluctical	Hazard	7.8E-02	2.0E-01		5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
	Groundwater	Commercial/	Carcinogenic	7	2.0E-01	7.0E-04	5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
		Industrial	Hazard	5.1E-01	2.0E-01		5.0E-03	5.0E-04	6.0E-03	6.0E-03	1.0E-02
Water Used for Recreation [mg/l]	Ingestion/ Dermal	Residential	Carcinogenic Hazard	5.9E-01	7.0E+00	1.4E-05	2.1E+00 1.9E+01	2.4E-01 7.2E-01	1.3E-02 1.2E+00	1.8E+00	3.5E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Dimethyl- benza(a) anthracene (7,12)	Dimethyl phenol (2,4)	di-n-Butyl- phthalate	di-n-octyl phthalate	Dinitro toluene (2,4)	Dioxane (1,4)	Ethyl- benzene	Ethylene Dibromide	Flouran- thene
	;	Residential	Carcinogenic	MARKET TO THE TOTAL THE TOTAL TO THE TOTAL TOTAL TO THE T				6.3E+00	7.0E+01		5.5E-01	
Surficial Soil	Ingestion/ Dermal/		Hazard	1.2E+03	7.7E+02	3.9E+03	7.8E+02			3.9E+03	2.2E+00	1.6E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic					1.7E+01	1.8E+02		1.4E+00	
		Industrial	Hazard	5.6E+03	3.7E+03	1.9E+04	3.7E+03			1.8E+04	1.0E+01	7.4E+03
		Residential	Carcinogenic					SAT	SAT		8.0E+00	,
	Inhalation of Indoor Air	Residential	Hazard		SAT	SAT	SAT			SAT	2.2E+00	SAT
	Vapors	Commercial/	Carcinogenic					SAT	SAT	Survivania in St.	1.3E+02	
		Industrial	Hazard	* 10 b	SAT	SAT	SAT			SAT	6.5E+01	SAT
		Residential	Carcinogenic					SAT	SAT		6.9E+02	
Subsurface Soil	Inhalation of	Residential	Hazard		SAT	SAT	SAT			SAT	2.3E+02	SAT
[mg/kg]	Outdoor Air Vapors	Commercial/	Carcinogenic					SAT	SAT		2.6E+03	
	V 5. P 5. S	Industrial	Hazard	# P - 1	SAT	SAT	SAT			SAT	1.3E+03	SAT
	Ingestion of	D-sidesti-1	Carcinogenic					1.5E-02	SAT	1.6E+01	1.8E-04	
	Groundwater	Residential	Hazard	SAT	4.3E+00	7.9E+06	SAT			1.6E+01	1.8E-04	SAT
	Impacted by	Commercial/	Carcinogenic			W.,	9	6.2E-02	SAT	1.6E+01	1.8E-04	
	Leachate	Industrial	Hazard	SAT	2.8E+01	SAT	SAT	rik		1.6E+01	1.8E-04	SAT
Olympia Carlotta		D	Carcinogenic				- Automotive and a second	>SOL	>SOL		9.4E+00	
	Inhalation of	Residential	Hazard		>SOL	>SOL	>SOL			>SOL	2.6E+00	>SOL
	Indoor Air Vapors	Commercial/	Carcinogenic	4 4				>SOL	>SOL	, t -	1.5E+02	7
	Vapo.o	Industrial	Hazard	7 (1 Am C)	>SOL	>SOL	>SOL			>SOL	7.6E+01	>SOL
		D	Carcinogenic					>SOL	>SOL		1.7E+03	
Groundwater	Inhalation of	Residential	Hazard		>SOL	>SOL	>SOL			>SOL	5.5E+02	>SOL
[mg/l]	Outdoor Air Vapors	Commercial/	Carcinogenic		ty and the second			>SOL	>SOL	, , , , , , , , , , , , , , , , , , ,	>SOL	Y
	Vaporo	Industrial	Hazard		>SOL	>SOL	>SOL			>SOL	3.2E+03	>SOL
			Carcinogenic					2.2E-03	>SOL	7.0E-01	5.0E-05	
	Ingestion of	Residential	Hazard	>SOL	3.1E-01	1.6E+00	>SOL			7.0E-01	5.0E-05	>SOL
	Groundwater	Commercial/	Carcinogenic		1			9.2E-03	>SOL	7.0E-01	5.0E-05	7,
		Industrial	Hazard	>SOL	2.0E+00	1.0E+01	>SOL			7.0E-01	5.0E-05	>SOL
Water Used for	Ingestion/	D 1 1 - 11 1	Carcinogenic					6.4E-02	>SOL		5.9E-03	Andrew Constitution of the
Recreation [mg/l]	Dermal	Residential	Hazard	>SOL	2.7E+00	7.3E+00	2.1E-03			3.6E+00	1.7E-02	>SOL

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Fluorene	Indeno- (1,2,3-CD) pyrene	Mercury	Methanol	Methyl ethyl ketone	Methylene Chloride	Methyl- napthalene (2-)	MTBE	Naphthalene
		Residential	Carcinogenic		1.7E+00				1.4E+02			
Surficial Soil	Ingestion/ Dermal/	residential	Hazard	1.6E+03		3.9E+00	1.9E+04	2.2E+04	2.3E+03	1.6E+03	2.0E+02	1.6E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic	1877	4.3E+00				3.7E+02			
		Industrial	Hazard	7.4E+03	A	1.8E+01	8.9E+04	1.0E+05	1.1E+04	7.4E+03	9.3E+02	7.4E+03
	_	Residential	Carcinogenic		SAT				4.6E+01			
	Inhalation of Indoor Air	Nesidential	Hazard	SAT		1.7E+01	1.9E+05	2.5E+04	2.7E+03	SAT	1.6E+04	SAT
	Vapors	Commercial/	Carcinogenic	3.	SAT		are dual ar		7.3E+02		12.12.12.12.12	
	•	Industrial	Hazard	SAT			SAT	SAT	SAT	SAT	SAT	SAT
		Residential	Carcinogenic		SAT				5.3E+03			
Subsurface Soil	Inhalation of Outdoor Air	Residential	Hazard	SAT		2.5E+03	SAT	SAT	SAT	SAT	SAT	SAT
[mg/kg]	Vapors	Commercial/	Carcinogenic		SAT				SAT	*		
	·	Industrial	Hazard	SAT	7 7	1.4E+04	SAT	SAT	SAT	SAT	SAT	SAT
	Ingestion of	Residential	Carcinogenic		SAT	3.2E-01			8.2E-03		2.1E-02	2.4E+00
	Groundwater	Residential	Hazard	5.2E+02		3.2E-01	7.1E+00	1.1E+01	8.2E-03	3.2E+02	2.1E-02	2.4E+00
	Impacted by	Commercial/	Carcinogenic	, , , , , , , , , , , , , , , , , , , ,	SAT	3.2E-01			8.2E-03		2.1E-02	2.4E+00
	Leachate	Industrial	Hazard	SAT		3.2E-01	4.7E+01	7.3E+01	8.2E-03	2.1E+03	2.1E-02	2.4E+00
		Residential	Carcinogenic		>SOL				2.0E+02			
	Inhalation of Indoor Air	Residential	Hazard	>SOL		1.5E+00	6.5E+05	6.8E+04	1.2E+04	>SOL	4.0E+04	>SOL
	Vapors	Commercial/	Carcinogenic	* ************************************	>SOL	Α,			3.2E+03			
	· ·	Industrial	Hazard	>SOL		4.3E+01	>SOL	>SOL	>SOL	>SOL	>SOL	>SOL
		Residential	Carcinogenic		>SOL				>SOL			
Groundwater	Inhalation of	Residential	Hazard	>SOL		6.3E+02	>SOL	>SOL	>SOL	>SOL	>SOL	>SOL
[mg/l]	Outdoor Air Vapors	Commercial/	Carcinogenic	1 (2)	>SOL				>SOL			
		Industrial	Hazard	>SOL		3.7E+03	>SOL	>SOL	>SOL	>SOL	>SOL	>SOL
		Residential	Carcinogenic		>SOL	2.0E-03			5.0E-03		1.3E-02	2.0E-02
	Ingestion of	Residential	Hazard	6.3E-01		2.0E-03	7.8E+00	9.4E+00	5.0E-03	6.3E-01	1.3E-02	2.0E-02
	Groundwater	Commercial/	Carcinogenic	10.8	>SOL	2.0E-03			5.0E-03		1.3E-02	2.0E-02
		Industrial	Hazard	>SOL		2.0E-03	5.1E+01	6.1E+01	5.0E-03	4.1E+00	1.3E-02	2.0E-02
Water Used for	Ingestion/	Residential	Carcinogenic		>SOL				1.3E+00			
Recreation [mg/l]	Dermal	. toolderitial	Hazard	3.1E-01		3.6E-02	2.2E+02	1.5E+02	1.6E+01	6.1E-01	1.5E+00	1.5E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Nickel	Nitro benzene	PCBs	Phenan- threne	Phenol	Pyrene	Pyridine	Selenium	Silver	Stryene
		Residential	Carcinogenic	3.4E+05	3.7E+03	3.6E-01				2.0E+03			
Surficial Soil	Ingestion/ Dermal/	Residential	Hazard	1.4E+03		9.8E-01	1.2E+04	2.3E+04	1.2E+03		3.6E+02	3.6E+02	7.7E+03
[mg/kg]	Inhalation	Commercial/	Carcinogenic	1.3E+06	9.9E+03	1.1E+00				5.1E+03			
		Industrial	Hazard	2.0E+04		5.8E+00	5.6E+04	1.1E+05	5.6E+03		5.1E+03	5.1E+03	3.7E+04
	_	Residential	Carcinogenic		SAT	1.7E+03				6.7E+04			
	Inhalation of Indoor Air	residential	Hazard			SAT	SAT	SAT	SAT				SAT
	Vapors	Commercial/	Carcinogenic		SAT	SAT		· · · · · · · · · · · · · · · · · · ·	1,4 *** ***	1.1E+06			7
	-	Industrial	Hazard	2		SAT	SAT	SAT	SAT	*			SAT
		Residential	Carcinogenic		SAT	SAT				6.0E+05			
Subsurface Soil	Inhalation of Outdoor Air	residential	Hazard			SAT	SAT	SAT	SAT				SAT
[mg/kg]	Vapors	Commercial/	Carcinogenic		SAT	SAT			4	SAT	9		7
	·	Industrial	Hazard			SAT	SAT	SAT	SAT		i i		SAT
	Ingestion of	Residential	Carcinogenic	2.0E+01	6.5E+00	9.4E+00				2.8E+00	8.0E-01	2.6E+00	4.8E+00
	Groundwater	Residential	Hazard	2.0E+01		9.4E+00	SAT	2.5E+01	SAT		8.0E-01	2.6E+00	4.8E+00
	Impacted by Leachate	Commercial/	Carcinogenic	2.0E+01	2.8E+01	9.4E+00				1.2E+01	8.0E-01	2.6E+00	4.8E+00
	Leachale	Industrial	Hazard	2.0E+01	4	9.4E+00	SAT	1.6E+02	SAT		8.0E-01	2.6E+00	4.8E+00
		Residential	Carcinogenic		>SOL	3.6E-01				4.9E+04			
	Inhalation of Indoor Air	residential	Hazard			>SQL	>SOL	>SOL	>SOL				>SOL
	Vapors	Commercial/	Carcinogenic	P.	>SOL	>SOL				7.9E+05			1
	-	Industrial	Hazard		,	>SOL	>SOL	>SOL	>SOL				>SOL
		Residential	Carcinogenic		>SOL	>SOL				9.3E+05			
Groundwater	Inhalation of Outdoor Air	Residential	Hazard			>SOL	>SOL	>SOL	>SOL				>SOL
[mg/l]	Vapors	Commercial/	Carcinogenic		>SOL	>SOL				>SOL	A grant of the		
		Industrial	Hazard			>SOL	>SOL	>SOL	>SOL				>SOL
		Residential	Carcinogenic	1.0E-01	1.3E+00	5.0E-04				6.7E-01	5.0E-02	1.0E-01	1.0E-01
	Ingestion of	residential	Hazard	1.0E-01		5.0E-04	>SOL	9.4E+00	>SOL		5.0E-02	1.0E-01	1.0E-01
	Groundwater	Commercial/	Carcinogenic	1.0E-01	5.7E+00	5.0E-04			-	2.9E+00	5.0E-02	1.0E-01	1.0E-01
		Industrial	Hazard	1.0E-01		5.0E-04	>SOL	6.1E+01	>SOL		5.0E-02	1.0E-01	1.0E-01
Water Used for	Ingestion/	Residential	Carcinogenic		2.8E+01	1.6E-05				2.6E+01			
Recreation [mg/l]	Dermal	1 (Coldential	Hazard	7.9E+00		4.4E-05	>SOL	1.5E+02	>SOL		2.0E+00	2.1E+00	9.3E+00

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Tetrachloro ethane (1,1,2,2 -)	Tetrachloro- ethylene (PCE)	Tetraethyl Lead	Toluene	Trichloro ethane (1,1,1-)	Trichloro ethane (1,1,2-)	Trichloro- ethylene (TCE)	Vanadium	Vinyl Chloride
		Residential	Carcinogenic	7.2E+00	3.8E+01				2.7E+01	1.3E+02		3.5E+00
Surficial Soil	Ingestion/ Dermal/	residential	Hazard	1.0E+03	3.7E+02	3.9E-03	7.1E+03	1.4E+03	1.5E+02	2.2E+02	5.0E+02	
[mg/kg]	Inhalation	Commercial/	Carcinogenic	1.9E+01	1.0E+02				7.0E+01	3.3E+02		9.1E+00
		Industrial	Hazard	4.7E+03	1.8E+03	1.9E-02	3.4E+04	6.5E+03	7.2E+02	1.1E+03	7.2E+03	
		Residential	Carcinogenic	1.9E+01	8.5E+00				1.6E+01	3.0E+01		3.3E-02
	Inhalation of Indoor Air	residential	Hazard	2.7E+03	3.5E+01		1.0E+03	7.4E+02	9.1E+01	3.6E+01		
	Vapors	Commercial/	Carcinogenic	3.1E+02	1,3E+02				2.6E+02	4.8E+02		5.3E-01
		Industrial	Hazard	SAT	SAT	N .	SAT	SAT	2.7E+03	1.0E+03		
		Residential	Carcinogenic	1.6E+03	SAT				1.7E+03	3.8E+03		4.1E+00
Subsurface Soil	Inhalation of Outdoor Air	Residential	Hazard	SAT	SAT		SAT	SAT	SAT	SAT		
[mg/kg]	Vapors	Commercial/	Carcinogenic	5.9E+03	SAT			4	SAT	SAT		1.6E+01
	•	Industrial	Hazard	SAT	SAT		SAT	SAT	SAT	SAT		
	Ingestion of	Residential	Carcinogenic	6.6E-03	5.2 E- 02	4.6E+00	1.8E+00	1.5E+00	2.0E-02	5.5E-02		1.1E-03
	Groundwater	Residential	Hazard	6.6E-03	5.2E-02	4.6E+00	1.8E+00	1.5E+00	2.0E-02	5.5 E- 02	3.3E+02	1.1E-03
	Impacted by	Commercial/	Carcinogenic	6.6E-03	5.2 E -02	4.6E+00	1.8E+00	1.5E+00	2.0E-02	5.5E-02		1.1E-03
	Leachate	Industrial	Hazard	6.6E-03	5.2E-02	4.6E+00	1.8E+00	1.5E+00	2.0E-02	5.5 E- 02	2.2E+03	1.1E-03
21.5		Residential	Carcinogenic	1.2E+01	2.7E+01				2.1E+01	5.5E+01		6.7E-01
	Inhalation of Indoor Air	Residential	Hazard	1.6E+03	1.1E+02		>SOL	>SOL	1.2E+02	6.5E+01		
	Vapors	Commercial/	Carcinogenic	1.9E+02	>SOL	7			3.3E+02	8.8E+02		1.1E+01
		Industrial	Hazard	>SOL	>SOL		>SOL	>SOL	3.4E+03	>SOL		
		Residential	Carcinogenic	2.0E+03	>SOL				>SOL	>SOL		2.7E+02
Groundwater	Inhalation of Outdoor Air	Residential	Hazard	>SOL	>SOL		>SOL	>SOL	>SOL	>SOL		
[mg/l]	Vapors	Commercial/	Carcinogenic	>SOL	>SOL			3	>SOL	>SOL		1.0E+03
		Industrial	Hazard	>SOL	>SOL	4.7	>SOL	>SOL	>SOL	>SOL		
		Residential	Carcinogenic	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03		5.0E-04
	Ingestion of	Residential	Hazard	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03	1.1E-01	5.0E-04
	Groundwater	Commercial/	Carcinogenic	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03		5.0E-04
		Industrial	Hazard	1.0E-03	5.0E-03	1.5E-02	1.5E-01	2.0E-01	5.0E-03	5.0E-03	7.2E-01	5.0E-04
Water Used for	Ingestion/	Residential	Carcinogenic	4.5E-02	6.0E-02				1.8E-01	4.6E-02		2.6E-02
Recreation [mg/l]	Dermal	Residential	Hazard	4.9E+00	5.3E-01	6.7E-06	1.1E+01	4.3E+00	7.8E-01	7.2E-02	2.8E+00	

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water

Medium	Exposure Pathway	Land Use	Type of Risk	Xylenes	Zinc
Surficial Soil [mg/kg]	Ingestion/ Dermal/ Inhalation	Residential	Carcinogenic		
			Hazard	5.3E+04	2.1E+04
		Commercial/ Industrial	Carcinogenic		
			Hazard	2.6E+05	3.1E+05
Subsurface Soil [mg/kg]	Inhalation of Indoor Air Vapors	Residential	Carcinogenic		
			Hazard	SAT	
		Commercial/ Industrial	Carcinogenic		- 4 Mari
			Hazard	SAT	£ *:
	tnhalation of Outdoor Air Vapors	Residential	Carcinogenic		
			Hazard	SAT	
		Commercial/ Industrial	Carcinogenic		
			Hazard	SAT	
	Ingestion of Groundwater Impacted by Leachate	Residential	Carcinogenic	2.7E+01	
			Hazard	2.7E+01	8.9E+02
		Commercial/ Industrial	Carcinogenic	2.7E+01	
			Hazard	2.7E+01	5.8E+03
Groundwater [mg/l]	Inhalation of Indoor Air Vapors	Residential	Carcinogenic		
			Hazard	>SOL	
		Commercial/ Industrial	Carcinogenic		1
			Hazard	>SOL	1 J.
	Inhalation of Outdoor Air Vapors	Residential	Carcinogenic		
			Hazard	>SOL	
		Commercial/ Industrial	Carcinogenic	-	
			Hazard	>SOL	
	Ingestion of Groundwater	Residential	Carcinogenic	1.8E+00	
			Hazard	1.8E+00	4.7E+00
		Commercial/ Industrial	Carcinogenic	1.8E+00	100
			Hazard	1.8E+00	3.1E+01
Water Used for		Residential	Carcinogenic		
Recreation [mg/l]			Hazard	6.6E+01	1.2E+02

^{*}Italicized concentrations based on California MCLs

SAT = RBSL exceeds saturated soil concentration of chemical

>SOL = RBSL exceeds solubility of chemical in water