
PROTECTIONAL -96 NOV 32 AM 10: 46

Lush Geosciences P R

GEOLOGICAL AND ENVIRONMENTAL SERVICES

0/12/6/96 A MTBE reporting regid,

- MW-17MW-2,4MW-4 had low levels & TPH-6+BTEX which is higher or similar to past events.
- MW-3 is consistant w/historical levels.
- -lould consider teducing Sampling frequency to 2x/yr (one wet + one dry event/yr) & concentrate on defining to the N-NW.

- Schoole meeting to get Jier I RBCA underway!

QUARTERLY MONITORING REPORT BECK ROOFING HAYWARD, CALIFORNIA

LUSH GEOSCIENCES JOB NO. 423-001

NOVEMBER 26, 1996

F. William Welter Project Manager

Andrew P. Lush

RG 4421

No. 4421

/o/9 & CALIFORNIA

LUSH Geosciences, Inc.

T	A 1	RI	II.	OF	CON	יותרונו	JTS
1		DJ		OF.	CUL	112	4 T E

1.0 INTRODUCTION	1
2.0 SITE BACKGROUND	1
2.1 Previous Work	1
3.0 QUARTERLY GROUNDWATER SAMPLING	2
3.1 FIELD PROCEDURES	2
3.2 GROUNDWATER ANALYSES	4
3.3 GROUNDWATER GRADIENT	7
3.4 QUALITY ASSURANCE/QUALITY CONTROL	10
3.4.1 Laboratory QA/QC	10
4.0 CONCLUSIONS AND DISCUSSION	11
5.0 RECOMMENDATIONS	11
6.0 LIMITATIONS	11

LIST OF TABLES

TABLE 1 - PURGED WATER PARAMETERS, GROUNDWATER V	VELLS3
TABLE 2 - RESULTS OF LABORATORY ANALYSES,GROUNDWATER SAMPLES	5
TABLE 3 - GROUNDWATER ELEVATION DATA	7

LIST OF FIGURES

FIGURE 1 - SITE LOCATION MAP

FIGURE 2 - GROUNDWATER POTENTIOMETRIC SURFACE MAP (11/5/96)

APPENDICES

APPENDIX A - REPORTS OF LABORATORY ANALYSES

1.0 INTRODUCTION

This report was prepared to summarize quarterly monitoring work performed in the investigation of contamination associated with one former 1,000-gallon underground gasoline storage tank at the Beck Roofing Facility in Hayward, California (site). The report describes methods and procedures used to evaluate groundwater quality near the former tank. The methods and procedures used during this phase of investigation included:

- Collecting groundwater samples from the four previously installed wells;
- Analyzing the groundwater samples; and,
- Preparing this report.

This report summarizes the field and laboratory operations conducted, the methods and procedures used, the data obtained, and presents conclusions and recommendations.

2.0 SITE BACKGROUND

The site is an operating roofing company. One wooden structure located on the northwest side of the site contains office and warehouse space. The remainder of the site is used for equipment and materials storage. In May of 1990, a 1,000-gallon underground fuel tank, used to store gasoline, was removed. When the tank was removed, evidence of leakage was noted in soil adjacent to the tank.

We have attached a Generalized Site Plan (Figure 2), showing the site configuration.

2.1 Previous Work

Previous work, performed by other consultants, includes excavation of approximately 350 cubic yards of contaminated soil, drilling and sampling 20 soil borings, installation of four groundwater monitoring wells, excavation of an additional 400 cu yd of contaminated soil, and quarterly monitoring of the wells. Previous analyses have shown variable contaminant concentrations in one well (MW3), and slight to non-detectable levels in the remaining wells.

3.0 QUARTERLY GROUNDWATER SAMPLING

3.1 Field Procedures

Groundwater samples were collected from each well on November 5, 1996. Sampling activities were conducted as follows:

- Water and product levels were determined using an electronic water sensitive measuring device. Depth to water or product was measured to an accuracy of 0.01ft. No free product was encountered.
- Prior to sampling, each well was purged with a submersible pump until at least 3 well volumes of water were removed. The purged water was monitored for temperature, pH, and electrical conductivity (Table 1). Purging continued until these parameters stabilized. The well was allowed to recover until at least 80% of the initial water level had been reached.
- After each well stabilized, a sample was collected with an unused, clean, disposable polyethylene bailer. The collected sample was transferred from the bailer to appropriate 40-ml glass sample vials. All sample containers were filled completely with a convex meniscus to eliminate any trapped air or headspace. Each sample container cap was fitted with a Teflon septum.
- After sampling, the samples were labeled, showing the sample number, well number, date, time, samplers name, and preservation. The samples were refrigerated in a cooler containing ice until delivery to the laboratory to perform the specified analyses. Chain-of-custody documentation was maintained from the sampling location to the laboratory. The chain-of custody was signed by the sampler and placed in the container holding the samples.

TABLE 1
PURGED WATER PARAMETERS
GROUNDWATER MONITORING WELLS
BECK ROOFING FACILITY
HAYWARD, CALIFORNIA
Page 1 of 2

i			X 44	50 1 01 2			
Well		Subjective					Volume
Number	Date	Evidence	T(°F)	pН	K	3WV	Purged
MW1	10/25/94	No Odor	64.7	6.98	1930	27	30
MW2	10/25/94	No Odor	63.8	6.92	2600	27	30
MW3	10/25/94	No Odor	66.5	6.90	2600	27	30
MW4	10/25/94	No Odor	64.5	8.61	2400	27	30
MW1	1/20/95	No Odor	62.9	7.37	570	27	30
MW2	1/20/95	No Odor	62.1	7.20	775	27	30
MW3	1/20/95	No Odor	63.6	7.10	870	27	30
MW4	1/20/95	No Odor	63.3	7.26	728	27	30
MW1	4/11/95	No Odor	65.9	6.66	637	30	35
MW2	4/11/95	No Odor	72.9	6.63	926	30	35
MW3	4/11/95	Odor	70.8	6.62	873	30	35
MW4	4/11/95	No Odor	69.2	6.68	791	30	35
MW1	7/13/95		INACC	CESSIBLE			
MW2	7/13/95	No Odor	73.6	6.30	819	30	35
MW3	7/13/95	Odor	75.0	6.60	800	30	35
MW4	7/13/95	No Odor	75.0	7.0	739	30	35
MW1	10/10/95	No Odor	68.7	7.2	544	30	30
MW2	10/10/95	No Odor	68.4	7.05	732	30	30
MW3	10/10/95	Odor	68.0	7.79	704	30	30
MW4	10/10/95	No Odor	68.1	7.01	693	30	30
			Continue	d on Next I	Page		

K = Conductivity in micromhos

T = Temperature in degrees Fahrenheit

pH = Hydrogen ion concentration

3WV = Calculated three well volumes in gallons

TABLE 1
PURGED WATER PARAMETERS
GROUNDWATER MONITORING WELLS
BECK ROOFING FACILITY
HAYWARD, CALIFORNIA
Page 2 of 2

Well	<u></u>	Subjective					Volume
Number	Date	Evidence	T(°F)	pН	K	3WV	Purged
MW1	1/11/96	No Odor	67.0	6.81	565	30	30
MW2	1/11/96	No Odor	65.8	6.43	734	30	30
MW3	1/11/96	No Odor	63.1	7.59	690	30	30
MW4	1/11/96	No Odor	63.2	7.59	644	30	30
MW1	4/23/96	No Odor	67.3	6.54	1187	30	30
MW2	4/23/96	No Odor	67.9	6.51	1613	30	30
MW3	4/23/96	No Odor	66.5	6.87	980	30	30
MW4	4/23/96	No Odor	66.4	6.52	1416	30	30
MW1	7/30/96	No Odor	68.2	6.74	511	30	30
MW2	7/30/96	No Odor	68.0	6.60	686	30	30
MW3	7/30/96	Sl. Odor	70.8	6.90	664	30	30
MW4	7/30/96	No Odor	69.0	6.62	626	30	30
MW1	11/5/96	No Odor	64.6	6.6	940	30	30
MW2	11/5/96	No Odor	65.7	6.7	1155	30	30
MW3	11/5/96	Sl. Odor	65.5	6.6	1155	30	30
MW4	11/5/96	No Odor	65.1	6.6	1100	30	30

K = Conductivity in micromhos

3.2 Groundwater Analyses

Groundwater samples from each accessible well were analyzed for TPHg using Environmental Protection Agency (EPA) Method 8015 (modified for gasoline) with purge and trap EPA Method 5030, and for the associated volatile constituents BTEX using EPA Method 602 with purge and trap EPA Method 5030. Results of the analyses are summarized in Table 2; copies of laboratory reports are attached as Appendix A. All analyses were conducted by

T = Temperature in degrees Fahrenheit

pH = Hydrogen ion concentration

³WV = Calculated three well volumes in gallons

Excelchem Environmental Laboratories of Roseville, California, which is certified by the State of California for the requested analyses.

TABLE 2
RESULTS OF LABORATORY ANALYSES
GROUNDWATER SAMPLES
BECK ROOFING FACILITY
HAYWARD, CALIFORNIA
Page 1 of 2

Well Numbe	er			Ethyl-	Total
and Date	TPHg	Benzene	Toluene	benzene	Xylenes
MW1					
8/4/94	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0005
10/25/94	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
1/20/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
4/11/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
7/13/95		INACCES	SSIBLE		
10/10/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	0.0012
1/11/96	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
4/23/96	0.53	< 0.0003	0.00064	< 0.0003	0.00082
7/30/96	< 0.05	0.0013	0.0021	0.00064	0.003
11/5/96	0.139	0.0022	0.0073	0.0022	0.0231
MW2					
8/4/94	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0005
10/25/94	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
1/20/95	< 0.05	0.0010	< 0.0003	< 0.0003	< 0.0003
4/11/95	< 0.05	0.0012	< 0.0003	< 0.0003	< 0.0003
7/13/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
10/10/95	< 0.05	0.00069	< 0.0003	< 0.0003	0.052
1/11/96	< 0.05	< 0.0003	< 0.0003	< 0.0003	0.00067
4/23/96	0.039	0.00029	0.00068	< 0.0003	0.00066
7/30/96	< 0.05	0.0034	0.0056	0.0017	0.0093
11/5/96	0.292	0.0093	0.0293	0.0057	0.057

Continued on Next Page

TPHg = Total petroleum hydrocarbons

Results given in milligrams per liter (parts per million)

< = Less than laboratory minimum detection limits

MW1 = Monitoring well number

TABLE 2 RESULTS OF LABORATORY ANALYSES GROUNDWATER SAMPLES BECK ROOFING FACILITY HAYWARD, CALIFORNIA Page 2 of 2

			age 2 of 2		
Well Numbe	 er			Ethyl-	Total
and Date	TPHg	Benzene	Toluene	benzene	Xylenes
MW3					
8/4/94	4.2	0.45	< 0.003	0.18	0.16
10/25/94	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
1/20/95	4.4	0.58 <	0.002	0.130	0.160
4/11/95	1.8	0.088	0.0014	0.033	0.027
7/13/95	3.4	0.5	< 0.0003	0.130	0.094
10/10/95	4.2	0.360	0.0024	0.190	0.096
1/11/96	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
4/23/96	0.079	0.0012	0.00033	0.00045	0.00048
7/30/96	3.8	0.24	0.0082	0.014	0.091
11/5/96	3.09	0.242	0.036	0.070	0.116
		~ 26.72	bas		
MW4		V-0.16	~ 555		
8/4/94	< 0.05	< 0.003	0.0005	< 0.0003	< 0.0005
10/25/94	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
1/20/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
4/11/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
7/13/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
10/10/95	< 0.05	< 0.0003	< 0.0003	< 0.0003	< 0.0003
1/11/96	< 0.05	0.0021	0.004	< 0.0003	0.00079
4/23/96	0.043	0.00042	0.0011	0.00039	0.00079
7/23/96	< 0.05	0.00097	0.0017	0.00067	0.003
11/5/96	0.090	0.0022	0.0067	0.002	0.0112
TDII Total	-1 to le	- dua a ault a - a			

TPHg = Total petroleum hydrocarbons

Results given in milligrams per liter (parts per million)

<= Less than laboratory minimum detection limits

MW1 = Monitoring well number

3.3 Groundwater Gradient

The groundwater gradient was approximated from calculations made using surveyed wellhead elevations and locations in combination with depth to groundwater measurements made on November 5, 1996, (Table 3) (Figures 3 and 4). The data indicate that groundwater flow direction was oriented S66°W. The gradient data is very consistent with data generated during the preceding twelve months indicating a southwesterly flow across the site.

		TABLE 3		
	GR	OUNDWATER ELEVA	TION DATA	
		BECK ROOFING FAC		
		HAYWARD, CALIFO	ORNIA	
		Page 1 of 4		
	Elevation of	Depth to	Water-level	
Well	Top of Casing	Water	Elevation	Gradient
Number	(ft. above MSL)	(ft. below top of casing)	(ft. above MSL)	and Direction
8/4/94				
MW1	58.55	29.96	29.29	
MW2	58.65	29.35	29.30	
MW3	58.52	29.27	29.25	
MW4	58.01	28.80	29.21	
10/25/94				
MW1	58.55	30.10	28.45	
MW2	58.65	30.15	28.50	0.0009 ft/ft
MW3	58.52	30.10	28.42	S22°W
MW4	58.01	29.60	28.41	
1/20/95				
MW1	58.55	26.57	31.98	
MW2	58.65	26.65	32.00	0.0002 ft/ft
MW3	58.52	26.54	31.98	S0°W
MW4	58.01	26.03	31.98	
4/11/95				
MW1	58.55	23.87	34.68	
MW2	58.65	23.92	34.73	0.0009 ft/ft
MW3	58.52	23.87	34.65	S24°W
MW4	58.01	23.38	34.63	
4. ····	, -	Continued on Next l	Page	
TOC = Tor	of the well casing	(elevation in ft. above me	Ü	1.)
	groundwater gradie			-,
	groundwater flow	-		

TABLE 3 GROUNDWATER ELEVATION DATA BECK ROOFING FACILITY HAYWARD, CALIFORNIA Page 2 of 4

		1 age 2 01 1		
	Elevation of	Depth to	Water-level	
Well	Top of Casing	Water	Elevation	Gradient
Number	(ft. above MSL)	(ft. below top of casing)	(ft. above MSL)	and Direction
5/09/95				
MW2	58.55	24.65	33.90	
MW2	58.65	24.735	33.915	0.00125ft/ft
MW3	58.52	24.66	33.86	S65°W
MW4	58.01	24.20	33.81	
6/09/95				
MW1	58.55	25.39	33.16	
MW2	58.65	25.47	33.18	0.0008ft/ft
MW3	58.52	25.40	33.12	S59°W
MW4	58.01	24.92	33.10	
7/13/95				
MW1	58.55	INACCESSIBLE		
MW2	58.65	26.0	32.65	
MW3	58.52	25.95	32.57	
MW4	58.01	25.5	32.51	
8/10/95				
MWI	58.55	26.33	32.16	
MW2	58.65	26.48	32.17	
MW3	58.52	26.43	32.09	
MW4	58.01	25.97	32.04	
9/14/95				
MW1	58.55	26.84	31.71	
MW2	58.65	26.92	31.73	
MW3	58.52	26.87	31.65	
MW4	58.01	26.42	31.30	
10/10/95				
MW1	58.55	27.18	31.37	
MW2	58.65	27.27	31.38	
MW3	58.52	27.22	31.30	
MW4	58.01	26.76	31.25	

TOC = Top of the well casing (elevation in ft. above mean sea level- AMSL)

Gradient = groundwater gradient in ft per ft

Direction = groundwater flow direction

TABLE 3
GROUNDWATER ELEVATION DATA
BECK ROOFING FACILITY
HAYWARD, CALIFORNIA
Page 3 of 4

		1 age 3 01 4		
	Elevation of	Depth to	Water-level	
Well	Top of Casing	Water	Elevation	Gradient
Number	(ft. above MSL)	(ft. below top of casing)	(ft. above MSL)	and Direction
11/7/95				
MW1	58.55	27.52	31.03	
MW2	58.65	27.60	31.05	0.001ft/ft
MW3	58.52	27.55	30.97	S65°W
MW4	58.01	27.08	30.93	
12/6/95				
MW1	58.55	27.80	30.75	
MW2	58.65	27.88	30.77	0.001ft/ft
MW3	58.52	27.83	30.65	S63°W
MW4	58.01	27.37	30.64	
1/11/96				
MW1	58.55	26.76	31.79	
MW2	58.65	26.84	31.81	0.001ft/ft
MW3	58.52	26.77	31.75	S67°W
MW4	58.01	26.30	31.71	
2/7/96				
MW1	58.55	24.24	34.31	
MW2	58.65	24.32	34.33	0.0007ft/ft
MW3	58.52	24.26	34.26	S57°W
MW4	58.01	23.76	34.25	
4/23/96				
MW1	58.55	23.02	35.53	
MW2	58.65	23.09	35.56	0.0014ft/ft
MW3	58.52	23.06	35.46	S63°W
MW4	58.01	22.60	35.41	

TOC = Top of the well casing (elevation in ft. above mean sea level- AMSL)

Gradient = groundwater gradient in ft per ft

Direction = groundwater flow direction

TABLE 3 GROUNDWATER ELEVATION DATA BECK ROOFING FACILITY HAYWARD, CALLEOPNIA										
HAYWARD, CALIFORNIA Page 4 of 4										
	Elevation of	Depth to	Water-level							
Well	Top of Casing	Water	Elevation	Gradient						
Number	(ft. above MSL)	(ft. below top of casing)	(ft. above MSL)	and Direction						
7/30/96			<u>-</u>							
MW1	58.55	25.18	33.37							
MW2	58.65	25,25	33.40	0.0015ft/ft						
MW3	58.52	25.23	33.29	S69°W						
MW4	58.01	24.79	33.22							
11/5/6										
MW1	58.55	26.69	31.86							
MW2	58.65	26.76	31.89	0.0012						
MW3	58.52	26.72	31.80	S66°W						
MW4	58.01	26.27	31.74							

TOC = Top of the well casing (elevation in ft. above mean sea level- AMSL)

Gradient = groundwater gradient in ft per ft

Direction = groundwater flow direction

3.4 Quality Assurance/Quality Control

All field equipment was cleaned and decontaminated prior to being introduced into the sampling environment. Each sample was collected using a dedicated, disposable bailer. Care was taken to prevent the bailer from becoming contaminated prior to being introduced into the sampling environment.

3.4.1 Laboratory QA/QC

Excelchem is certified by the CalEPA Hazardous Waste Testing Laboratory Certification Program to conduct the analyses requested. The methods used by the laboratory are published and approved analytical methods which have built-in QA/QC practices. Other QA/QC practices are part of CalEPA's certification program. The laboratory provided pertinent QA/QC documents pertaining to the analytical protocol. These QA/QC documents include surrogate recovery data and analytical charts including those of the spikes and matrix spike duplicates. Copies of these documents were incorporated into the laboratory reports of analyses (Appendix A).

4.0 CONCLUSIONS AND DISCUSSION

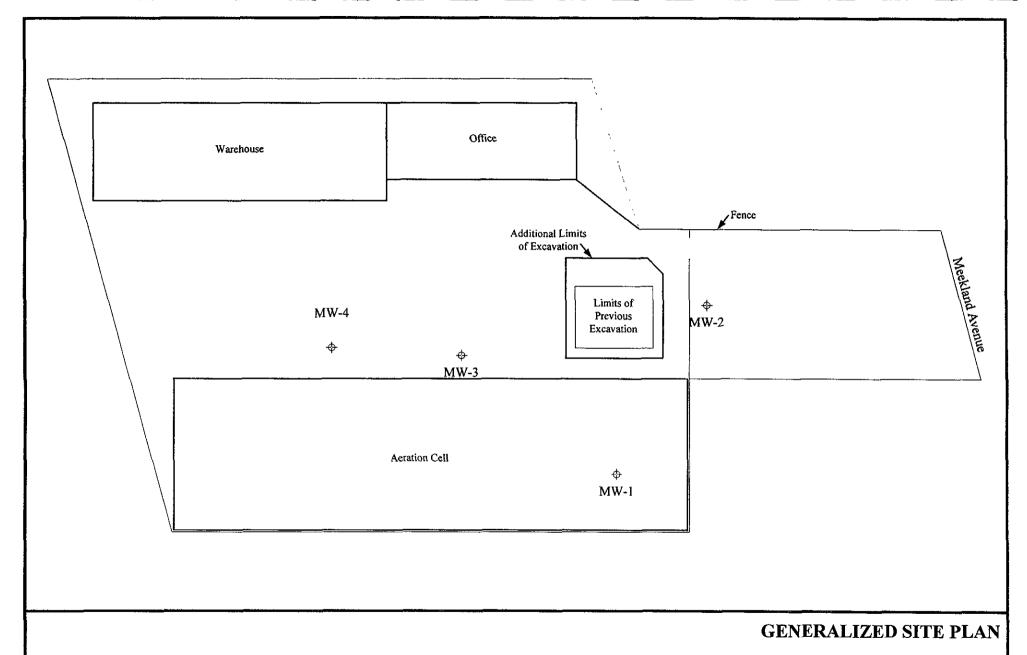
Gasoline in was detected in MW3 at a concentration of 3.09 ppm with proportionate concentrations of all of the volatile constituents. Generally, the concentrations are consistent with earlier historic data for that well. Gasoline was detected in wells MW1, MW2, and MW4 at concentrations of 0.139, 0.292, and 0.090 ppm respectively. All of the volatile constituents were also detected in those wells at proportionate concentrations. The detection of petroleum hydrocarbons in wells MW1, MW2, and MW3 during this sampling event, and recent previous events, may still be indicative the plume is migrating.

Monthly groundwater elevation data indicates that the groundwater has been receding since April 1996. The groundwater elevation measured during this event is roughly 1.5 ft lower than was measured during the last regular quarterly monitoring event in July 1996.

5.0 RECOMMENDATIONS

The present data continues to suggest the groundwater contamination plume may be beginning to migrate. It is our understanding that Alameda County Department of Environmental Health (ACDEH) is considering closure of the site. Consequently, further quarterly monitoring, or additional evaluation should be undertaken as directed by ACDEH.

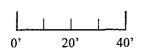
6.0 LIMITATIONS


The above conclusions are based on our assessment of conditions indicated to exist as of the dates of our field work. Our assessment included review of previous documents and interviews with state or local regulatory persons familiar with the area. This assessment was conducted in accordance with generally accepted standards of environmental geological practice at the time it was performed. The results of this assessment do not preclude the possibility that substances that are currently, or which in the future may be defined as hazardous, may be present on the property because of activities that we could not identify, or in locations which were not sampled.

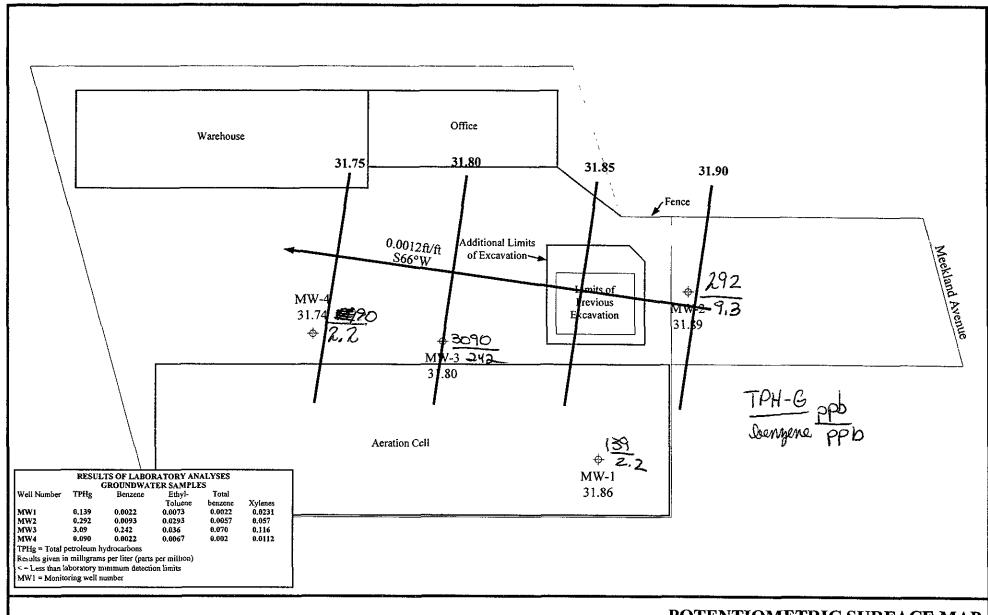
Our conclusions are based on groundwater sample analyses representative of contaminant concentrations at the locations sampled. These results are considered indicative of site conditions, but such conditions may vary away from the points sampled. Further investigation, including additional subsurface exploration and laboratory testing of soil and groundwater

Beck Roofing Hayward, California November 26, 1996 Quarterly Monitoring Report

samples can reduce the uncertainties inherent in this type of limited environmental assessment. No soil engineering or geotechnical references are made, nor should they be inferred.

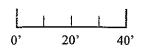


7


North

Monitoring Well Location

BECK ROOFING FACILTY 21123 MEEKLAND AVENUE HAYWARD, CALIFORNIA


LUSH GEOSCIENCES

North

Monitoring Well Location

POTENTIOMETRIC SURFACE MAP NOVEMBER 5, 1996 BECK ROOFING FACILTY 21123 MEEKLAND AVENUE

LUSH GEOSCIENCES

Excelchem Environmental Labs Project Manager: Company/Address: Project Number: Project Name: Project Name:					CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST																																
Project Manager:	11/2	- Lan				Pho	ne#: 737-928g					7	ANAL					YSIS REQUEST					1/96024							7							
Company/Addre	1 66 3-00	050 10 0.0.#:	·/	<u> </u>		Proj	(#: ject	Nan	フラ ne:	37	_ <i>S</i>	29	7	7	020/8015)				/E,F,C)								1114.11		F	Τ. (<i>,</i>	7)					24 hr) ir) or (1 wk)	0
Project Location:	IAND		f			San		r sig	gnat 24	ure:	DO L	LA	/		soline (60	(8015)	(6	Total Oil & Grease (5520 B/E,F)	Total Oil & Grease IR (5520 B/E,F,C)	50 - mour Fish bloassay			Pesticides	CBs			100	Reactivity, Corrosivity, Ignitibility CAM - 17 Metals	EPA - Priority Pollutant Metals	1/239.2)	=				T 027	RUSH SERVICE (12 hr) or (24 hr) EXPEDITED SERVICE (48 hr) or (1 wk)	STANDARD SERVICE (2WK)
Sample	Sam	pling			aine			Mei res				/latr	ix ——	02/8020	H as G	Diesel	31 (8015	& Greas	& Grea	1 C+ C0/	8020	/8150	- 0808/	7808/	/8240	/8270	מולים מו	Ty, Corr	ority Po	120/7421	b, Zn, N					TED SE	ARD SE
ID	DATE	TIME	VOA	SLEEVE	1L PLASTIC		HCI	HNOS			WATER	SOIL		BTEX (602/8020)	BTEX/TF	TPH as Diesel	TPH as Oil (8015)	Total Oil	Total Oi	90 - HOUI FISH	EPA 602/8020	EPA 615/8150	EPA 608/8080 -	EPA 608/8080-PCBs	EPA 624/8240	EPA 625/8270	מינים לי	CAM - 17 Metals	EPA - Pr	LEAD(7420/7421/239.2)	Cd, Cr, Pb, Zn, Ni					RUSH o	STAND/
Mw-1	11-5	1300	2	1							7		-		7				1	-	-			W	1	10	L	00	7	ع			_	_		1	Y
MW-2	<u></u>	1335	2	+				\dashv	_	-	7		+		オオ			+	+	+	+	-		2	/ /	\	''	00 00		8		-	\perp	+	+	+	7
Mu-4	V	1315	2								Y				Ý				1				1	W	,	" 	7	00		9						1	Ż
				_				_		-	′		+	+	+		-	1	+	1	-			_	4	_	1	+		_			\perp		-	\bot	
				╁				\dashv	+				-	+	_		-	+	╁	+	╁			\dashv	+	-	+	-	-	-			-			+	\vdash
			\top	\top									\top	T		$ \cdot $	\top	\dagger	\dagger	t				\neg	+		\dagger	+		\vdash			\top	-	T	+	\vdash
				_					\perp	-				\perp	\perp		4	-	\downarrow	+	-			_	4	-	\perp	_		_					_	\downarrow	L
Relinquished b)V: /		ate	 Tii	ne		R	ece	ived	i by:			,	ᆚ					+	 Rei	 mai	rks	 :						1	<u>l</u>							L_
Buil		to H	4		63,	0				, .	/																										
Relinquished b	y /	D	ate			7	R	ece	ive	by:	/					". "																					
Relinquished b	N To the second	11/	ate		ne 36		R	ece	ived	(Lab	orato	ry:		<i>\</i>	0	_		-	3ill	To:																

EXCELCHEM ENVIRONMENTAL LABS

500 Giuseppe Court, Suite 9 Roseville, CA 95678

Phone#: (916) 773-3664 Fax#: (916) 773-4784

ANALYSIS REPORT

Attention:	3560 Busin	Velter COSCIENCES ness Drive, Sui o, CA 95618	ite 120	Date Sample Date Receiv BTEX Anal TPHg Analy	ed: yzed:	11-05-96 11-05-96 11-07-96 11-07-96
Project:	423-001/B	eck Roofing		Matrix:		Water
Reporting Limi	Ī	Benzene PPB),5	Toluene PPB 0.5	Ethylbenzene PPB 0.5	Total Xylenes PPB 0.5	TPHg PPB 50
SAMPLE		<i>y</i> .5	0,5	<u> </u>	<u> </u>	
Laboratory Ide	entification:					
MW-1 W1196076		2.2	7.3	2.2	23.1	139
MW-2 W1196077	9	9.3	29.3	5.7	57.0	292
MW-4 W1196079	:	2.2	6.7	2.0	11.2	90

ppb= Parts per billion = ug/L = micrograms per liter

ND = Not detected. Compound(s) may be present at concentrations below the reporting limit.

ANALYTICAL PROCEDURES

BTEX- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are analyzed by using EPA Method 602 which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID).

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are analyzed by using modified EPA Method 8015, which utilizes a GC equipped with an FID.

Laboratory Representative

11-12-96 Date Reported

EXCELCHEM ENVIRONMENTAL LABS

500 Giuseppe Court, Suite 9 Roseville, CA 95678

Phone#: (916) 773-3664 Fax#: (916) 773-4784

ANALYSIS REPORT

Attention:	3560 Bu	Welter EOSCIENCES siness Drive, So nto, CA 95618	uite 120	Date Samp Date Receir BTEX Ana TPHg Anal	11-05-96 11-05-96 11-07-96 11-07-96	
Project:	423-001/	Beck Roofing		Matrix:		Water
		Benzene PPB	Toluene PPB	Ethyl- benzene <u>PPB</u>	Total Xylenes PPB	TPHg PP <u>B</u>
Reporting Limi	it:	10	10	10	10	1000
SAMPLE						
Laboratory Ide	ntification					
MW-3 W1196078		242	36	70	116	3090

ppb= Parts per billion = ug/L = micrograms per liter

ND = Not detected. Compound(s) may be present at concentrations below the reporting limit.

ANALYTICAL PROCEDURES

BTEX-- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are analyzed by using EPA Method 602 which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID).

TPHg-Total petroleum hydrocarbons as gasoline (low-to-medium boiling points) are analyzed by using modified EPA Method 8015, which utilizes a GC equipped with an FID.

Laboratory Representative

11-12-96 Date Reported

EXCELCHEMENVIRONMENTAL LABS

500 Giuseppe Court, Suite 9 Roseville, CA 95678

Phone#: (916) 773-3664 Fax#: (916) 773-4784

OA/OC REPORT

Attention:	Mr. Bill Welter LUSH GEOSCIEN 3560 Business Drive Sacramento, CA 95	e, Suite 120 5618	BTEX Analy Matrix:	zed:	11-07-96 Water					
Project:	423-001/Beck Roof	ing								
Reporting Limi	it:	Benzene PPB 0.5	Toluene PPB 0.5	Ethyl- benzene PPB 0.5	Total Xylenes PPB 0.5					
QA/QC PARA	METER									
Matrix Blank		ND	ND	ND	ND					
PERCENT RECOVERIES										
Matrix Spike		105%	105%	104%	108%					
Matrix Spike Duplicate		99%	98%	98%	102%					

ppb = parts per billion = ug/L = microgram per liter

All surrogate recoveries were within 30% of target values. Spikes & Spike Duplicates were each spiked with 250 ng BTEX standard.

ANALYTICAL PROCEDURES

BTEX-- Benzene, toluene, ethylbenzene, and total xylene isomers (BTEX) are measured by extraction using EPA Method 5030 followed by analysis using EPA Method 602 which utilizes a gas chromatograph (GC) equipped with a photoionization detector (PID).

aboratory Representative

11-12-96 Date Reported

ND = Not detected. Compound(s) may be present at concentrations below the reporting limit.

LUSH GEOSCIENCES

GEOLOGICAL AND ENVIRONMENTAL SERVICES

PROTECTION 96 NOV 32 AM 10: 46

November 26, 1996 423-001

Ms. Juliet Shin Arm Leed Alameda County Health Services 1131 Harbor Bay Parkway Alameda, California 94502

Subject: Transmittal of the Quarterly Monitoring Report for Beck Roofing Facility 21123 Meekland Avenue, Hayward, California

Dear Ms. Shin.

Enclosed, please find one copy of the Quarterly Monitoring Report for Beck Roofing Facility located at 21123 Meekland Avenue in Hayward, California. If you have any questions regarding this report or any other aspect of this project, please do not hesitate to call.

Sincerely

LUSH GEOSCIENCES

Andrew P. Lush

President