KEI-P91-1004.R4 October 12, 1992

Unocal Corporation 2000 Crow Canyon Place, Suite 400 P.O. Box 5155 San Ramon, California 94583

\$110 521

Attention: Mr. Tim Howard

RE: Continuing Ground Water Investigation and Quarterly Report Unocal Service Station #5043 449 Hegenberger Road Oakland, California

Dear Mr. Howard:

This report presents the results of Kaprealian Engineering, Inc's. (KEI) soil and ground water investigation for the referenced site, in accordance with KEI's proposal (KEI-P91-1004.P2) dated July 7, 1992. The purpose of the investigation was to further determine the degree and extent of soil and ground water contamination at the site. This report also presents the results of the most recent quarter of monitoring and sampling of the monitoring wells at the referenced site. The wells are currently monitored monthly and sampled on a quarterly basis. This report covers the work performed by KEI from June through August of 1992. The scope of the work performed by KEI consisted of the following:

Coordination with regulatory agencies

Geologic logging of three borings for the installation of three monitoring wells

Soil sampling

Ground water monitoring, purging, and sampling

Laboratory analyses

Data analysis, interpretation, and report preparation

SITE DESCRIPTION AND BACKGROUND

The subject site contains a Unocal service station facility. The site is characterized by gently sloping, west to west-southwest trending topography, and is located approximately 1,250 feet northeast of the existing drainage channel of San Leandro Creek.

KEI's initial field work was conducted on October 25, 1991, when four soil samples, labeled P1 through P4, were collected from the product pipe trenches (at depths of approximately 3 feet below grade) during an island modification project at the site. point locations are as shown on the attached Figure 3. addition, two shallow borings were drilled to ground water (which was encountered at a depth of approximately 4 to 4.5 feet below grade) by the use of a hand auger. The product pipe trenches were subsequently excavated to the ground water depth.

All samples were analyzed by Sequoia Analytical Laboratory in Concord, California. All soil samples were analyzed for total

as gasoline at 370 ppm for sample P4, while samples P1, P2, and P3 showed levels of TPH as gasoline at 3,200 ppm, 9,000 ppm, and 7,100 ppm, respectively. The analytical results further indicated levels of TPH as diesel at 420 ppm and 460 ppm for samples P1 and P4, respectively. Samples P2 and P3 indicated levels of TPH as diesel at 8,400 ppm and 1,100 ppm, respectively. The results of TPH as diesel at 8,400 ppm and 1,100 ppm, respectively. The results of TPH as diesel at 8,400 ppm and 1,100 ppm, respectively. The results of TPH as diesel at 8,400 ppm and 1,100 ppm, respectively. The results of TPH as diesel at 8,400 ppm and 1,100 ppm, respectively. The results of TPH as diesel at 8,400 ppm and 1,100 ppm, respectively.

based on the analytical results, KEI proposed the installation of three monitoring wells. Documentation of the sample collection techniques and the analytical results of the soil samples collected from the product pipe trenches are summarized in KEI's report (KEI-J91-1004.R1) dated December 17, 1991.

On February 5, 1992, three two-inch diameter monitoring wells (designated as MW1, MW2, and MW3 on the attached Figure 1) were installed at the site. The monitoring wells were drilled and completed to total depths ranging from 13.5 to 15 feet below grade. Ground water was encountered at depths ranging from approximately 3 to 5 feet beneath the surface during drilling. The surface of each well cover was surveyed by Kier & Wright of Pleasanton, California, to Mean Sea Level (MSL) and to a vertical accuracy of 0.01 feet. The wells were developed on February 10, 1992, and were initially sampled on February 18, 1992.

Water and selected soil samples were analyzed at Sequoia Analytical Laboratory in Concord, California. The soil and water samples were analyzed for TPH as gasoline, BTX&E, and TPH as diesel.

The analytical results of the soil samples collected from the boring for monitoring well MW3 indicated non-detectable levels of TPH as gasoline and BTX&E, except for 0.011 ppb of xylenes in

sample MW3(3). Also in MW3, both soil samples showed non-detectable levels of TPH as diesel, except for sample MW3(3), which showed a level of 49 ppm. All soil samples analyzed from MW1 and MW2 showed levels of TPH as gasoline ranging from 31 ppm to 14,000 ppm, levels of benzene ranging from 2.4 ppm to 160 ppm, and levels of TPH as diesel ranging from 29 ppm to 2,400 ppm.

The analytical results of the ground water samples collected from monitoring wells MW1, MW2, and MW3 indicated levels of TPH as gasoline ranging from 230 ppb to 150,000 ppb, benzene levels ranging from 4.8 ppb to 17,000 ppb, and levels of TPH as diesel ranging from 4,300 ppb to 13,000 ppb, except for MW3, which showed a non-detectable level of TPH as diesel. The results of the soil analyses are summarized in Table 3, and the results of the water analyses are summarized in Table 2.

Based on the analytical results, KEI recommended the implementation of a monthly monitoring and quarterly sampling program. Documentation of the well installation protocol, sample collection techniques, and the analytical results are presented in KEI's report (KEI-P91-1004.R3) dated March 26, 1992. In KEI's first quarterly report (KEI-P91-1004.QR1) dated July 7, 1992, KEI recommended the installation of three additional monitoring wells at the site in order to further define the extent of contamination.

RECENT FIELD ACTIVITIES - WELL INSTALLATION

On August 21, 1992, three additional two-inch diameter monitoring wells (designated as MW4, MW5, and MW6 on the attached Figure 1) were installed at the site. The wells were each drilled, constructed, and completed in accordance with the guidelines of the Regional Water Quality Control Board (RWQCB) and the California Well Standards (per Bulletin 74-90). The subsurface materials penetrated and details of the construction of the wells are described in the attached Boring Logs.

The three wells were each drilled and completed to total depths of 13.5 feet below grade. Ground water was encountered between 5.5 to 6.5 feet beneath the surface during drilling. Soil samples were collected for laboratory analysis and for lithologic logging purposes at a maximum spacing of 5 foot intervals, at significant changes in lithology, at obvious areas of contamination, and at or within the soil/ground water interface, beginning at a depth of approximately 5 feet below grade and continuing until ground water was encountered. A representative soil sample of the saturated zone was collected from well MW5 at a depth of 9 feet below grade, and was submitted to Harlan Tait Associates of San Francisco for particle size analysis (sieve and hydrometer analysis) for verification of casing slot size and filter pack design. Other

soil sampling conducted below the ground water table was for lithologic logging purposes only. The undisturbed soil samples were collected by driving a California-modified split-spoon sampler (lined with brass liners) ahead of the drilling augers. The two-inch diameter brass liners holding the samples were sealed with aluminum foil, plastic caps and tape, and stored in a cooled ice chest for delivery to a state-certified laboratory. Each well casing was installed with a watertight cap and padlock. A round, watertight, flush-mounted well cover was cemented in place over each well casing.

The surface of each well cover was surveyed by Kier & Wright of Pleasanton, California, to MSL and to a vertical accuracy of 0.01 feet.

The new wells (MW4, MW5, and MW6) were developed on August 24, 1992. Prior to development, the wells were checked for the depth to the water table (by the use of an electronic sounder) and the presence of free product (by the use of an interface probe or paste tape). No free product was noted in any of the wells. After recording the monitoring data, the three new wells were each purged (by the use of a surface pump) of 18 to 40 gallons (until the evacuated water was clear and free of suspended sediment). Monitoring and well development data are summarized in Table 1.

RECENT FIELD ACTIVITIES - MONITORING AND SAMPLING

The three previously existing monitoring wells (MW1 through MW3) were monitored three times and were sampled once during the quarter. Monitoring well MW3 was not monitored during two of the monitoring events due to inaccessibility. During monitoring, the wells were checked for depth to water and the presence of free product. During sampling, the wells were also checked for the presence of sheen. No free product or sheen was noted in any of the wells during the quarter, except for well MW1, where free product was noted during two of the three monitoring events. Monitoring data are summarized in Table 1.

Water samples were collected from the previously existing wells (MW1 through MW3) on August 31, 1992. Prior to sampling, the wells were each purged of between 6.5 and 7.5 gallons by the use of a surface pump. Samples were collected by the use of a clean Teflon bailor. Samples were decanted into clean VOA vials and/or one-liter amber bottles, as appropriate, which were then sealed with Teflon-lined screw caps, labeled, and stored in a cooler, on ice, until delivery to a state-certified laboratory.

The new wells (MW4 through MW6) were also sampled on August 31, 1992. Prior to sampling, monitoring data were collected, and the

wells were each purged of between 4 to 5.5 gallons of water. The samples were collected, handled, and delivered to a state-certified laboratory as previously described.

ANALYTICAL RESULTS

Water samples from all of the wells, and selected soil samples from the borings for MW4 through MW6, were analyzed at Sequoia Analytical Laboratory. All samples analyzed were accompanied by properly executed Chain of Custody documentation. The samples were analyzed for TPH as gasoline by EPA method 5030/modified 8015, TPH as diesel by EPA methods 3550/Modified 8015(soil) and 3510/Modified 8015(water), and BTX&E by EPA method 8020.

Concentrations of TPH as gasoline, benzene, and TPH as diesel detected in the ground water samples collected on August 31, 1992, are shown on the attached Figure 2. The results of the soil analyses are summarized in Table 3, and the results of the water analyses are summarized in Table 2. Copies of the laboratory analyses and Chain of Custody documentation are attached to this report.

HYDROLOGY AND GEOLOGY

The measured depth to ground water at the site on August 31, 1992, ranged between 3.13 and 7.80 feet below grade. The water levels in all of the three previously existing wells have shown net decreases ranging from 0.47 to 0.88 feet since May 20, 1992. Based on the water level data gathered on August 31, 1992, the predominant ground water flow direction appeared to be to the west, as shown on the attached Figure 1. The flow direction reported this quarter is unchanged from the westerly flow direction reported in the previous two quarters. The average hydraulic gradient across the site on August 31, 1992, varied between approximately 0.022 and 0.07.

Based on review of regional geologic maps (U.S. Geological Survey Professional Paper 943 "Flatland Deposits - Their Geology and Engineering Properties and their Importance to Comprehensive Planning" by E.J. Helley and K.R. Lajoie, 1979), the subject site is underlain by Holocene-age Bay Mud (Qhbm). The Bay Mud typically consists of unconsolidated, saturated clay and silty clay that is rich in organic material. The Bay Mud locally contains lenses and stringers of well-sorted silt, sand, and beds of peat.

The results of our subsurface studies to date (the borings for wells MW1 through MW6) indicate that the site is underlain by artificial fill materials that extend to approximately 2 to 4 feet below grade. The fill materials are underlain by Bay Mud, which consists predominantly of organic-rich silty clay and clayey silt,

with minor interbeds of sand, peat, sandy silt, and silty clay. The unsaturated zone (in August 1992) at the site ranges between 3 and 8 feet thick.

A representative soil sample of the saturated zone was collected from MW5 at a depth of 9 feet below grade. The sample was submitted to Harlan Tait Associates of San Francisco for particle size analysis (sieve and hydrometer analysis) for verification of casing slot size and filter pack design. The results of the analysis indicated that the sample is composed of approximately 70% clay, 27% silt, and 3% fine-grained sand. The sample is classified as an organic clay with silt (OH). The results of the particle size analysis are shown on Plate 1.

DISCUSSION AND RECOMMENDATIONS

Based on the analytical results of the samples collected to date, KEI recommends the continuation of the current ground water monitoring and sampling program, per KEI's proposal (KEI-P91-1004.P2) dated July 7, 1992. The wells are currently monitored monthly and sampled quarterly. The results of the monitoring and sampling program will be documented and evaluated after each monitoring and sampling event. Recommendations for altering or terminating the program will be made as warranted.

Based on the analytical results from the recently installed monitoring wells, the extent of contamination at the subject site has not been defined. Because of the need to complete the delineation of contamination over an area encompassing both the Unocal site and the site vicinity, KEI proposes conducting a Hydropunch study, followed by the installation of additional wells. KEI will perform a site reconnaissance to determine feasible locations for the Hydropunch study, and a work plan/proposal for the study will be submitted in the near future. After review of the analytical results of samples obtained during the Hydropunch study, KEI will make recommendations for additional monitoring wells.

As an interim measure until remediation of the site can be implemented, KEI has installed a free-product skimming device in MW1. This device is designed to continuously skim free product from the water table in the vicinity of this well. The free product is removed from the device during the regular monitoring events.

DISTRIBUTION

A copy of this report should be sent to Alameda County Health Care Services Agency, and to the Regional Water Quality Control Board, San Francisco Bay Region.

LIMITATIONS

Soil deposits and rock formations may vary in thickness, lithology, saturation, strength and other properties across any site. In addition, environmental changes, either naturally-occurring or artificially-induced, may cause changes in the extent and concentration of any contaminants. Our studies assume that the field and laboratory data are reasonably representative of the site as a whole, and assume that subsurface conditions are reasonably conducive to interpolation and extrapolation.

The results of this study are based on the data obtained from the field and laboratory analyses obtained from a state-certified laboratory. We have analyzed this data using what we believe to be currently applicable engineering techniques and principles in the Northern California region. We make no warranty, either expressed or implied, regarding the above, including laboratory analyses, except that our services have been performed in accordance with generally accepted professional principles and practices existing for such work.

Should you have any questions regarding this report, please do not hesitate to call me at (510) 602-5100.

Sincerely,

Kaprealian Engineering, Inc.

Thomas J. Berkens

Thomas J. Berkins

Senior Environmental Engineer

Joel G. Greger, C.E.G.

Senior Engineering Geologist

License No. 1633 Exp. Date 6/30/94

Timothy R. Ross Project Manager

/bp

Attachments: Tables 1 through 4

Location Map

Potentiometric Surface Map - Figure 1

Petroleum Hydrocarbon Concentration Map - Figure 2

Sample Point Locations Map - Figure 3

Particle Size Analysis - Plate 1

Boring Logs

Laboratory Analyses

Chain of Custody documentation

TABLE 1
SUMMARY OF GROUND WATER MONITORING AND PURGING DATA

Well #	Ground Water Elevation (feet)	Water (feet)	Thickness (feet)	<u>Sheen</u>	Gallons Pumped
	(Monitore	d and Sampl	ed on August	31, 199	2)
MW1	4.65	3.13	0	No	7
MW2	5.18	3.78	0	No	7.5
EWM	2.77	5.07	0	No	6.5
MW4	3.51	5.49	0	No	5.5
MW5	2.67	6.60	0	No	5
MW6	1.32	7.80	0	No	.4
MW4 MW5 MW6	3.51 -1.80 -3.38	5.49 11.07 12.50	oed on August 0 0 0	 	40 18 18
	(Mo	onitored on	July 13, 19	92)	
MW1* MW2 MW3	5.06 5.66 WELL WAS II	2.87 3.30 NACCESSIBLE	0.2	N/A	0 0
	(Mo	onitored on	June 18, 19	92)	
MW1* MW2 MW3	5.75 5.71 WELL WAS IN	3.25	1.2 · · · · · · · · · · · · · · · · · · ·	N/A %	2 0

TABLE 1 (Continued)

SUMMARY OF GROUND WATER MONITORING AND PURGING DATA

Well #	Surface Elevation**(feet)
MW1	7.78
MW2	8.96
MW3	7.84
MW4	9.00
MW5	9.27
MW6	9.12

- -- Sheen determination was not performed.
- * The ground water elevation was modified due to the presence of free product by using an assumed specific gravity of 0.77.
- ** The elevations of the tops of the well covers have been surveyed relative to MSL, per the City of Oakland Benchmark #3880. (Elevation = 20.37 MSL).

TABLE 2
SUMMARY OF LABORATORY ANALYSES
WATER

<u>Date</u>	Sample <u>Number</u>	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	Xylenes	Ethyl- <u>benzene</u>
8/31/9	2 MW1 MW2 MW3 MW4 MW5 MW6	8,900 \\ 1,600 \\ 92 \\ 90 \\ 690 \\ 750 \\	64,000 9,000 210* 240* 78 ND	13,000 1,800 1.0 ND 0.89	12,000 640 ND ND ND ND	22,000 2,000 ND 0. 13 ND	2,500 140 ND 54 ND ND ND
5/20/9	2 MW1 MW2 MW3	NOT SAM 4,300♦ WELL WA	MPLED DUE ' 24,000 AS INACCES		7,600	FREE PRO 11,000	DUCT 630
2/18/9	2 MW1 MW2 MW3	13,000 4,300 ND	150,000 29,000 230	17,000 1,000 4.8	26,000 5,300 22	26,000 7,900 33	5,200 260 1.8

- * Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be gasoline.
- ♦ Sequoia Analytical Laboratory reported that the hydrocarbons detected did not appear to be diesel.
- ♦♦ Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be diesel and non-diesel mixture.

ND = Non-detectable.

Results in parts per billion (ppb), unless otherwise indicated.

KEI-P91-1004.R4
October 12, 1992

TABLE 3
SUMMARY OF LABORATORY ANALYSES
SOIL

<u>Date</u>	Sample Number	Depth (feet)	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Xylenes</u>	Ethyl- <u>benzene</u>
2/05/92	MW1(2.5)	2.5	1,200	14,000	160	680	2,400	470
	MW2(3.5) MW2(4.5)		2,400 29	9,000 31	7 4 2.4	440 0.1	1,400 4 9.0	280 3.0
	MW3(3) MW3(4.5)	3.0 4.5	49 ND	ND ND	ND ND	ND ND	0.0 ND	11 ND ND
8/21/92	2 MW4(5)	5.0	ND	ND	ND	ND	0.0	066 ND
	MW5(6)	6.0	43*	340	1.1	1.2	13	7.8
	MW6(5)	5.0	1.2	2 3.	7 0.90	ON O	0.0	5 1.0

^{*} Sequoia Analytical Laboratory reported that the hydrocarbons detected appeared to be a diesel and non-diesel mixture.

ND = Non-detectable.

Results in parts per million (ppm), unless otherwise indicated.

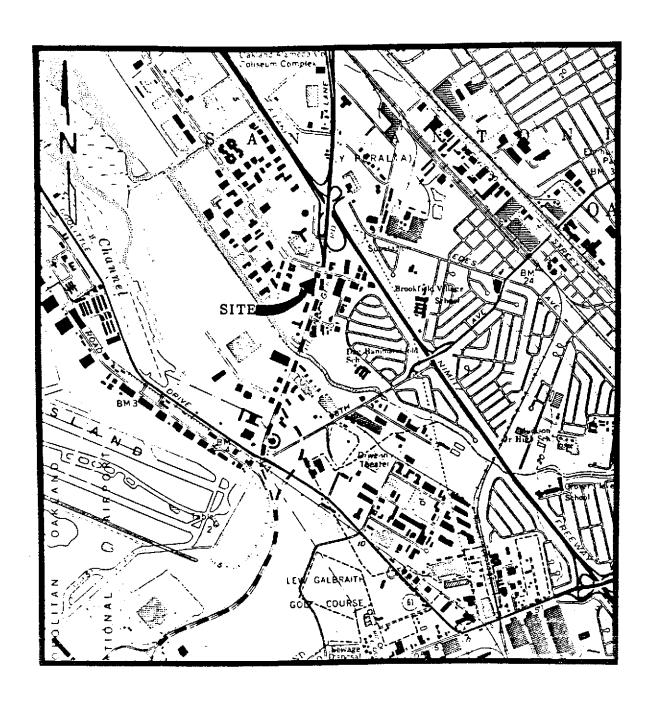
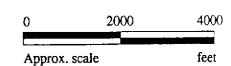
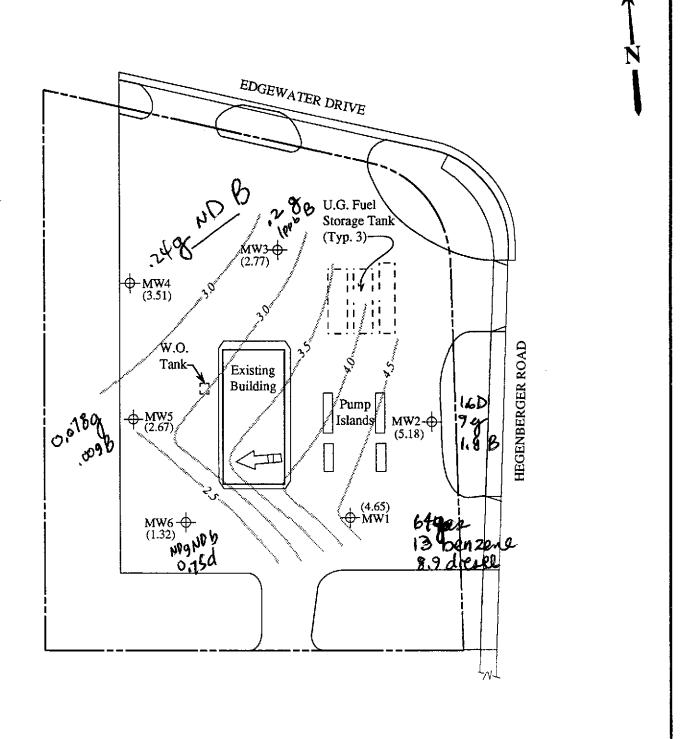

KEI-P91-1004.R4 October 12, 1992

TABLE 4


				TABLE					
			SUMMARY	OF LABORAT	CORY ANALY	intu	I trene	Lyping Dample Ethyl-	12
<u>Date</u>	<u>Sample</u>	Depth <u>(feet)</u>	TPH as <u>Diesel</u>	TPH as <u>Gasoline</u>	<u>Benzene</u>	<u>Toluene</u>	<u>Xylenes</u>	Ethyl- <u>benzene</u>	
10/25/9	1 P1	3	420	3,200	33	120	540	110	
	P2	3	8,400	9,000	46	120	1,500	330	
	P3	3	1,100	7,100	48	410	1,200	220	
	P4	3	460	370	7.4	39	77	12	

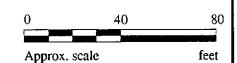
ND = Non-detectable.

Results in parts per million (ppm), unless otherwise indicated.



Base modified from 7.5 minute U.S.G.S. San Leandro Quadrangle (photorevised 1980)

UNOCAL SERVICE STATION #5043 449 HEGENBERGER ROAD OAKLAND, CA LOCATION MAP

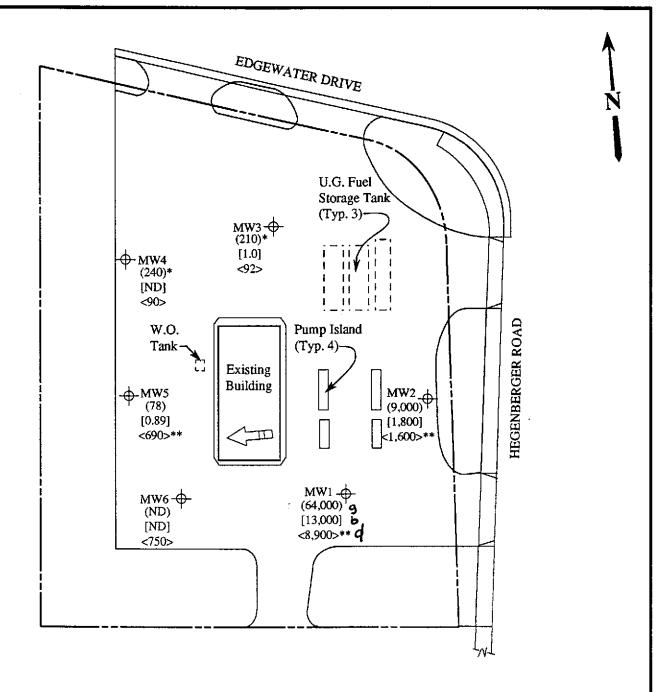

LEGEND

→ Monitoring well

() Ground water elevation in feet above Mean Sea Level

Direction of ground water flow

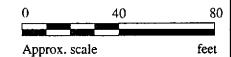
Contours of ground water elevation



POTENTIOMETRIC SURFACE MAP FOR THE AUGUST 31, 1992 MONITORING EVENT

UNOCAL SERVICE STATION #5043 449 HEGENBERGER ROAD OAKLAND, CA FIGURE

1

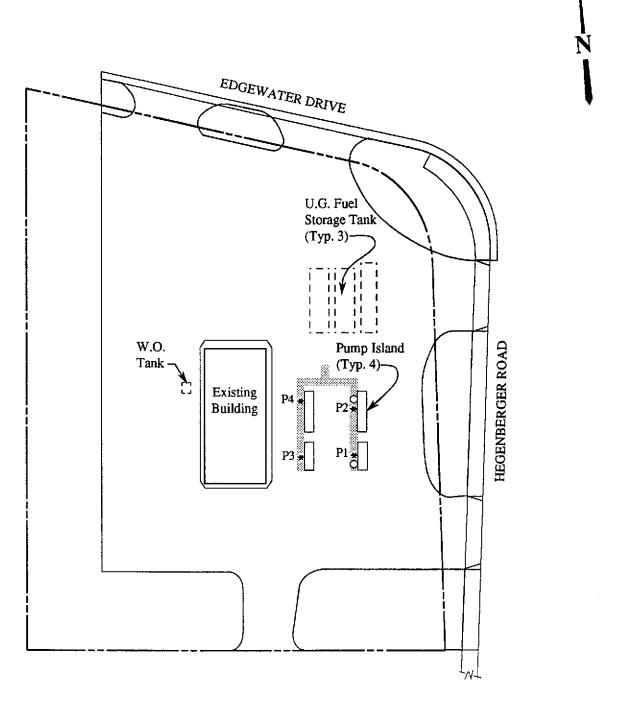


LEGEND

- → Monitoring well
- () Concentrations of TPH as gasoline in ppb
- [] Concentrations of benzene in ppb
- < > Concentrations of TPH as diesel in ppb

ND = Non-detectable

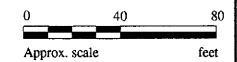
- * The lab reported that the hydrocarbons detected did not appear to be gasoline.
- ** The lab reported that the hydrocarbons detected did not appear to be diesel.


PETROLEUM HYDROCARBONS IN GROUND WATER ON AUGUST 31, 1992

UNOCAL SERVICE STATION #5043 449 HEGENBERGER ROAD OAKLAND, CA

FIGURE

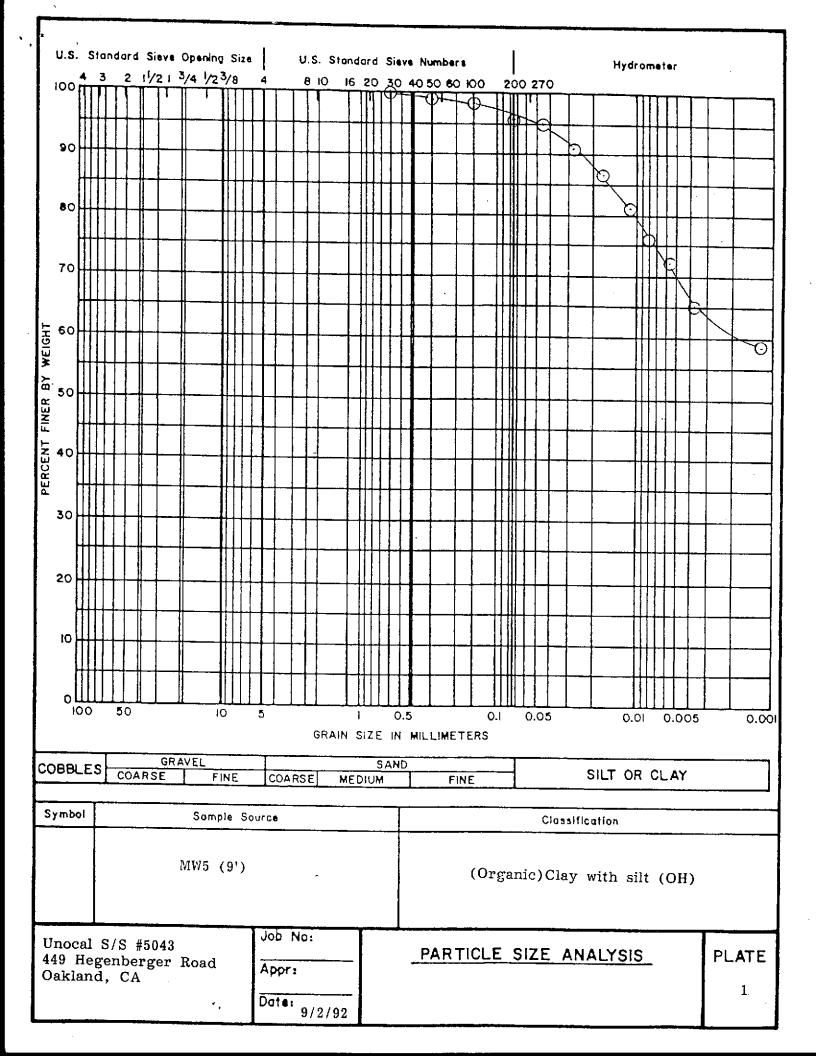
2



LEGEND

- * Sample point location
- O Hand augered boring location

Area excavated to ground water (approx. 4 – 4.5 feet below grade)

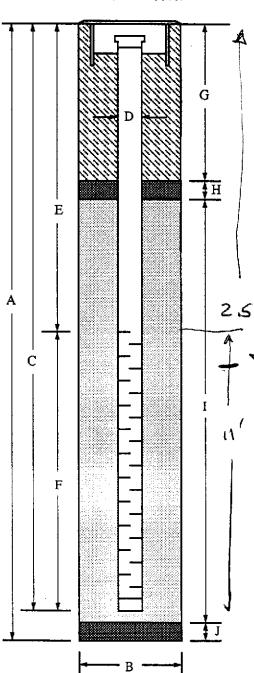

Samples collected on 10/25/91

SAMPLE POINT LOCATIONS MAP

UNOCAL SERVICE STATION #5043 449 HEGENBERGER ROAD OAKLAND, CA FIGURE 3

M.	AJOR DIVISIONS	SYMBOLS		TYPICAL SOIL DESCRIPTIONS		
	GRAVELS	GW		Well graded gravels or gravel - sand mixtures, little or no fines		
, , }	(More than 1/2 of coarse	GP		Poorly graded gravels or gravel - sand mixtures, little or no fines		
; ; ; ;	fraction > No. 4 sieve size)	GM		Silty gravels, gravel - sand - silt mixtures		
, , ; ;		GC		Clayey gravels, gravel - sand - clay mixtures		
	<u>SANDS</u>	sw		Well graded sands or gravelly sands, little or no fines		
	(More than 1/2 of coarse fraction < No. 4 sieve size)	SP		Poorly graded sands or gravelly sands, little or no fines		
		SM		Silty sands, sand - silt mixtures		
		SC	9 9 9 9 9 9 9 9 9	Clayey sands, sand - clay mixtures		
	SILTS & CLAYS	ML		Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity		
 	<u>LL < 50</u>	CL		Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays		
1 1 1		OL		Organic silts and organic silty clays of low plasticity		
	SILTS & CLAYS	МН		Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts		
1 1 1 1 1 1 1 1	<u>LL > 50</u>	СН		Inorganic clays of high plasticity, fat clays		
i i i i		ОН		Organic clays of medium to high plasticity, organic silty clays, organic silts		
1 1 1	HIGHLY ORGANIC SOILS	Pt		Peat and other highly organic soils		
	DUAL (TRANSITION) SOILS			naracterisitics are transitional between the soil ications listed above		

- `					BOR	ING LOG	
Project No. KEI-P91-1004					Boring Diameter 9" Logged By JC D.L. CE		
Project Name 449 Hegenberg		-		We	ll Cover	Elevation	Date Drilled 8/21/92
Boring No. MW4				lling thod	Hollow-stem Auger	Drilling Company West Hazmat	
Penetration blows/6"	G. W. level	(fe	epth eet) amples	gra	trati- raphy Description USCS		
			0 =		<u> </u>	Asphalt pavement.	
•		 	 - -	-		Gravelly clay with sand, s gray (5Y 5/3), disturbed (f	tiff, moist, black (5Y 2.5/1) and olive fill).
7/7/8	55		-	СН		Silty clay, trace sand, stiff lenses of fine-grained sand	, moist, black (5Y 2.5/1) with thin l, olive gray (5Y 5/3).
8/15/15	≤5 <u>¥</u>	- - - -	5 -	ML		Sandy silt, firm, wet, blac is medium to fine-grained	k (5Y 2.5/1) with organic matter, sand
2/2/5			ŀ	sw		Well graded sand, loose, s	saturated, very dark gray (5Y 3/1).
		<u> </u>	T -	СН		Silty clay, stiff, moist, bla	ck (5Y 2.5/1), organic matter (bay mud)
3/4/8		E	10	CH/ SW		Silty clay, firm, moist, bla sand, loose, saturated, ver	ck (5Y 2.5/1) lensed with well graded y dark gray (5Y 3/1).
			[. -	СН			
6/6/9							ck (5Y 2.5/1) with organic matter, ay (5G 4/1), becomes stiffer with depth.
			15 —			тот	AL DEPTH 13.5'
			1.) -				
			- 				
		_	-			1	
			20 —				
			-				


WELL COMPLETION DIAGRAM

PROJECT NAME: Unocal S/S #5043, 449 Hegenberger Rd., Oakland WELL NO. MW4

PROJECT NUMBER: KEI-P91-1004

WELL PERMIT NO.: ACFCD & WCD #92368

Flush-mounted Well Cover

- A. Total Depth: 13.5'
- B. Boring Diameter: 9"

Drilling Method: Hollow Stem Auger

C. Casing Length: 13.5'

Material: Schedule 40 PVC

D. Casing Diameter: OD = 2.375"

ID = 2.067"

- E. Depth to Perforations: 2.5'
- F. Perforated Length: _____11'

Perforation Type: Machined Slot

Perforation Size: 0.010"

G. Surface Seal: 1'

Seal Material: Neat Cement

H. Seal: 0.5'

Seal Material: Bentonite

I. Filter Pack: ______ 12'

Pack Material: _____ RMC Lonestar Sand

Size: #2/12

J. Bottom Seal: None

Seal Material: N/A

, 						BOR	RING LOG	
Project No. KEI-P91-1004	1	•	·		}	ring Dian		Logged By 766 D.L. 666/633
Project Name 449 Hegenber				 -	_		Elevation	Date Drilled 8/21/92
Boring No. MW5			Dril Met		Hollow-stem Auger	Drilling Company West Hazmat		
Penetration G. W. Depth blows/6" level (feet) Samples			grap	Strati- graphy Description USCS				
			: 0 =				Asphalt pavement.	
			-	-				l sands, stiff, moist, many colors,
3/5/7	•				СН		Clay with silt, stiff, moist, poorly graded sand.	, very dark gray (5Y 3/1), lensed with
5/9/14		\vdash	_	H				
4/3/3	6,5	Ę	5 -		ML/ GM			oist, black (5Y 2.5/1), interbedded with el, loose, wet, black (5Y 2.5/1).
	=				Pt			, soft, very moist, brown and black,
6/8/8			-		OL		fibrous. Clayey silt, trace sand, sti abundant organic matter.	ff, very moist, black (5Y 2.5/1),
			10 -		ОН		Clay with silt, stiff, moist matter.	, black (2.5YR 2.5/0), abundant organic
4/5/9				F	O. I.		Silty clay, stiff, moist, bla	ck (5Y 2.5/1), organic matter.
5/8/12			-		СН		Silty clay, trace fine-grain gray (5GY 4/1), organic n	ed sand, very stiff, moist, dark greenish
								AL DEPTH 13.5'
			15 -					
			-					
		E	20					
		F		_				

WELL COMPLETION DIAGRAM

Unocal S/S #5043, 449 Hegenberger Rd., Oakland MW5 PROJECT NAME: . WELL NO. .

KEI-P91-1004 PROJECT NUMBER: .

ACFCD & WCD #92368 WELL PERMIT NO .: .

Flush-mounted Well Cover

		G 2iS
A C		
F	- B	j

Α.	Total Depth:	13.5'	

B. Boring Diameter: _____ Hollow Stem Auger

Drilling Method: 13.5

Material: ____ Schedule 40 PVC

OD = 2.375" D. Casing Diameter: ID = 2.067"

2.5' E. Depth to Perforations:

C. Casing Length:

F. Perforated Length:

Perforation Type: _____ Machined Slot

0.010" Perforation Size:

G. Surface Seal;___

Neat Cement Seal Material:

0.5" H. Seal: _____

> Seal Material: Bentonite

12' I. Filter Pack:_____

> Pack Material: RMC Lonestar Sand

#2/12 Size: _____

J. Bottom Seal:_____ None

> N/A Seal Material:

						BOR	RING LOG		
Project No. KEI-P91-100	4					Boring Diameter 9" Logged By JGG Casing Diameter 2" D.L. C € G 16 3			
Project Name 449 Hegenber	Unocal S	S/S #S aklan	 5043 d	***			Elevation	Date Drilled 8/21/92	
Boring No. MW6				ling hod	Hollow-stem Auger	Drilling Company West Hazmat			
Penetration G. W. Depth level (feet) Samples			Stra grap USO	hy		Description			
	 -	F	· · -	\exists			Asphalt pavement over san	nd and gravel base.	
							Gravelly clay with sand, st disturbed (fill).	tiff, moist, black and olive gray,	
3/4/4	٨,		•		СН		Clay with silt, stiff, moist, graded and well graded sar	black (5Y 2.5/1) lensed with poorly nd.	
	5 [₹]		5 -		ML		Silt with very fine-grained sand, stiff, moist to wet, dark gree gray (5GY 4/1), lensed with clayey silt between 4.5 and 5.5 fe		
3/3/4			_		OL		Clayey silt, stiff, moist, bla 3/1) mottled, with abundar	ack (5Y 2.5/1) and very dark gray (5Y nt organic matter (bay mud).	
5/7/8			10 -		ОН		Silty clay, stiff, moist, blac matter.	k (2.5YR 2.5/0), with abundant organi	
5/7/9		_			CH		matter.	y dark gray (5Y 3/1), with organic	
	:		-				Silty clay, trace fine-graine (5GY 4/1).	d sand, stiff, moist, dark greenish gray	
			15 -				TOTA	AL DEPTH 13.5'	

WELL COMPLETION DIAGRAM

PROJECT NAME: Unocal S/S #5043, 449 Hegenberger Rd., Oakland WELL NO. MW6

PROJECT NUMBER: KEI-P91-1004

WELL PERMIT NO.: ACFCD & WCD #92368

Flush-mounted Well Cover

1 1	Î		_	! †
			-[[{\cappa}]	
		1/1/1/1/	111110	
	1	11/1/1	ililili.	Ġ
	1	11/1/1/		
	- 1	[] [][][]]	D ####	
	i	dilili	iiiiii	
	1	11/1/11	1/1/1/3	
	İ	11/1/13	lilili	1
				H
	<u> </u>	Consissors		- 1 · · ·
	E			i 1
	1			
1 1		0.0000000000000000000000000000000000000		
				{
A				
A		000000000000000000000000000000000000000		
	↓ ·	160000000000000000000000000000000000000		
-	+	-	-	
Ċ				
1				
'				I
		20200200		1
1		33303030	- 3000000	
		000000000000000000000000000000000000000		
		1.17972		
ļ	F]	
	ì	State of the state		
1		244.000000000000		
ł		-		
			- 1888	
			- 33000000	
	+		10000000000000000000000000000000000000	
—				↓
1				J
				<u> </u>
		<u>L</u> .	ا۔ ہ	
		,	₃ 	
			•	

A. Total Depth : ______13.5'

Boring Diameter:

Drilling Method: Hollow Stem Auger

8"

C. Casing Length: 13.5'

Material: Schedule 40 PVC

D. Casing Diameter: OD = 2.375"

ID = 2.067"

E. Depth to Perforations: 2.5'

F. Perforated Length: 11'

Perforation Type: _____Machined Slot

Perforation Size: 0.010"

G. Surface Seal: 1'

Seal Material: Neat Cement

H. Seal: 0.5'

Seal Material: Bentonite

I. Filter Pack: 12'

Pack Material: RMC Lonestar Sand

Size: #2/12

J. Bottom Seal: None

Seal Material: N/A

MAJOR DIVISIONS	SYMBOLS		TYPICAL SOIL DESCRIPTIONS					
GRAVELS	GW	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Well graded gravels or gravel - sand mixtures, little or no fines					
(More than 1/2 of coarse	GP	F	Poorly graded gravels or gravel - sand mixtures, little or no fines					
fraction > No. 4 sieve size)	GM 2	223 223 223	Silty gravels, gravel - sand - silt mixtures					
	GC #	(Clayey gravels, gravel - sand - clay mixtures					
SANDS	sw	7	Well graded sands or gravelly sands, little or no fines					
(More than 1/2 of coarse	SP	F	Poorly graded sands or gravelly sands, little or no fines					
fraction < No. 4 sieve size)	SM	S	Silty sands, sand - silt mixtures					
	SC 5	999 939 339	Clayey sands, sand - clay mixtures					
SILTS & CLAYS	ML		norganic silts and very fine sands, rock flour, silty or clayey ine sands or clayey silts with slight plasticity					
LL < 50	CL		norganic clays of low to medium plasticity, gravelly clays, andy clays, silty clays, lean clays					
	OL		Organic silts and organic silty clays of low plasticity					
SILTS & CLAYS	МН		norganic silts, micaceous or diatomaceous fine sandy or silty oils, elastic silts					
LL > 50	СН	I	norganic clays of high plasticity, fat clays					
	ОН		Organic clays of medium to high plasticity, organic silty clays, organic silts					
HIGHLY ORGANIC SOILS	Pt	F	Peat and other highly organic soils					
DUAL (TRANSITION) SOILS			icterisitics are transitional between the soil tions listed above					

Concord, CA 94520

Attention: Mardo Kaprealian, P.E.

Client Project ID: Sample Matrix:

Analysis Method:

First Sample #:

Unocal, 449 Hegenberger Rd., Oakland

EPA 5030/8015/8020

208-1344

Water

Sampled:

Aug 31, 1992 Aug 31, 1992

Received: Reported:

Sep 11, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 208-1344 MW 1	Sample I.D. 208-1345 MW 2	Sample I.D. 208-1346 MW 3*	Sample I.D. 208-1347 MW 4*	Sample I.D. 208-1348 MW 5	Sample I.D. 208-1349 MW 6
Purgeable Hydrocarbons	50	64,000	9,000	210	240	78	N.D.
Benzene	0.5	13,000	1,800	1.0	N.D.	0.89	N.D.
Toluene	0.5	12,000	640	N.D.	N.D.	N.D.	N.D.
Ethyl Benzene	0.5	2,500	140	N.D.	N.D.	N.D.	N.D.
Total Xylenes	0.5	22,000	2,000	N.D.	0.54	13	N.D.
Chromatogram Pat	tern:	Gasoline	Gasoline	Discrete Peak	Discrete Peak	Gasoline	

Quality Control Data

Report Limit Multiplication Factor:	200	5.0	1.0	1.0	1.0	1.0
Date Analyzed:	9/8/92	9/8/92	9/8/92	9/8/92	9/8/92	9/8/92
Instrument Identification:	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2
Surrogate Recovery, %: (QC Limits = 70-130%)	101	96	93	93	82	82

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Scott A. Chieffo Project Manager Please Note:

^{*} The above samples do not appear to contain gasoline. Purgeable Hydrocarbons are due to discrete peaks in the MTBE range.

Concord, CA 94520

Client Project ID:

Unocal, 449 Hegenberger Rd., Oakland

Sampled: Aug 31, 1992

Sample Matrix: Analysis Method:

EPA 5030/8015/8020

Received: Aug 31, 1992

Attention: Mardo Kaprealian, P.E.

First Sample #:

Matrix Blank

Reported: Sep 11, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Water

Analyte	Reporting Limit μg/L	Sample I.D. Matrix Blank			
Purgeable Hydrocarbons	50				
Benzene	0.5				
Toluene	0.5				
Ethyl Benzene	0.5		·		
Total Xylenes	0.5				
Chromatogram Patte	ern:				

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Analyzed:

9/8/92

Instrument Identification:

ML-2

Surrogate Recovery, %:

88

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

2081344.KEI <2>

Concord, CA 94520

Client Project ID:

Unocal, 449 Hegenberger Rd., Oakland

Sampled:

Aug 31, 1992

Sample Matrix: Analysis Method:

EPA 3510/3520/8015

Received: Reported: Aug 31, 1992

Attention: Mardo Kaprealian, P.E.

First Sample #:

208-1344

Water

Sep 11, 1992

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 208-1344 MW-1	Sample I.D. 208-1345 MW-2	Sample I.D. 208-1346 MW-3	Sample I.D. 208-1347 MW-4	Sample I.D. 208-1348 MW-5	Sample I.D. 208-1349 MW-6
Extractable Hydrocarbons	50	8900	1600	92	90	690	750
Chromatogram Pai	ttern:	Non-Diesel Mixture (< 16)	Non-Diesel Mixture (< 16)	Diesel and Non-Diesel Mixture (< C16)	Diesel and Non-Diesel Mixture (< C16)	Non-Diesel Mixture . (< 16)	Diesel and Non-Diesel Mixture (< 16)

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Date Extracted:	9/5/92	9/5/92	9/5/92	9/5/92	9/5/92	9/5/92
Date Analyzed:	9/10/92	9/10/92	9/10/92	9/10/92	9/10/92	9/10/92
Instrument Identification:	HP-3B	HP-3B	HP-3B	НР-ЗВ	HP-38	HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Scott A. Chieffo Project Manager

2081344.KEI <3>

Concord, CA 94520

Attention: Mardo Kaprealian, P.E.

Client Project ID: Sample Matrix:

Unocal, 449 Hegenberger Rd., Oakland

Water

Analysis Method: EPA 3510/3520/8015 First Sample #:

Matrix Blank

Sampled:

Aug 31, 1992

Received: Aug 31, 1992 Reported: Sep 11, 1992

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte

Reporting Limit

Sample I.D.

 $\mu g/L$

Matrix Blank

Extractable

Hydrocarbons

50

Chromatogram Pattern:

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Extracted:

9/5/92

Date Analyzed:

9/10/92

Instrument Identification:

HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

2081344.KEL <4>

Client Project ID: Unocal, 449 Hegenberger Rd., Oakland

Concord, CA 94520

Attention: Mardo Kaprealian, P.E. QC Sample Group: 2081344-1349

Reported: Sep 11, 1992

QUALITY CONTROL DATA REPORT

ANALYTE			Ethyl-			
71706116	Benzene	Toluene	Benzene	Xylenes	Diesel	
<u></u>						
	EPA	EPA	EPA	EPA		
Method:	8015/8020	8015/8020	8015/8020	8015/8020	EPA8015	
Analyst:	J. Dinsay	J. Dinsay	J. Dinsay	J. Dinsay	K.Wimer	
Reporting Units:	μg/L	μg/L	μg/L	μg/L	μg/L	
Date Analyzed:	Sep 8, 1992	Sep 8, 1992	Sep 8, 1992	Sep 8, 1992		
QC Sample #:	Matrix Blank	i				
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.	
Spike Conc.						
Added:	10	10	10	30	300	
Conc. Matrix	0.0	0.0	0.0	20	242	
Spike:	9.9	9.8	9.8	29	343	
Matrix Spike						
% Recovery:	99	98	98	97	114	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Conc. Matrix						
Spike Dup.:	10	10	9.8	30	291	
Matrix Spike						
Duplicate						
% Recovery:	100	100	98	98	97	
Relative					40	
% Difference:	1.0	2.0	0.0	1.0	16	

Laboratory blank contained the following analytes: None Detected

% Recovery:

SEQUOIA ANALYTICAL

Project Manager

Relative % Did

Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

Conc. of M.S. - Conc. of Sample

2081344.KEI <5>

x 100

Client Project ID: Unocal, 449 Hegenberger Rd., Oakland

Concord, CA 94520

Attention: Mardo Kaprealian, P.E. QC Sample Group: 2081344-1349

Reported: Sep 11, 1992

QUALITY CONTROL DATA REPORT

SURROGATE

Method: Analyst:

Sample #:

EPA 8015

EPA 8015 K. Wimer

EPA 8015 K. Wimer EPA 8015 K. Wimer

EPA 8015 K. Wimer

EPA 8015 K. Wimer

EPA 8015 K. Wimer

Reporting Units: Date Analyzed: K. Wimer μg/L

208-1344

Sep 10, 1992

μg/L Sep 10, 1992 208-1345

μg/L

208-1346

 μ g/L 208-1347

μg/L Sep 10, 1992 Sep 10, 1992 Sep 10, 1992 Sep 10, 1992 208-1348

μg/L 208-1349

μg/L Sep 10, 1992 Matrix Blank

Surrogate

% Recovery:

102

97

83

94

95

102

117

SEQUOIA ANALYTICAL

Project Manager

% Recovery:

Conc. of M.S. - Conc. of Sample

x 100

Spike Conc. Added

Relative % Difference:

Conc. of M.S. - Conc. of M.S.D

x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2081344.KEI <6>

KAPREALIAN ENGINEERING, INC.

CHAIN OF CUSTODY

SAMPLER			į					IE & ADDRESS		ANALYSES REQUESTED				TURN AROUND TIME:			
Val7 WITHESSING			 					akland bergar Ro	A.	BTX E				 			Regular-
SAMPLE ID NO.	DATE	TIME	 soil (WATER	 GRĀB	T COMP	NO. OF		IPLING	TPHS	TPHD	1 1 1	 	. : :		İ	REMARKS
HW 1	18/31/92	10:45 au.	 	7	17		3	Honitoring	well	X	X	2	08	34	4/	10	NOA's HCI Preserved.
MW 2	m	, 	, 	X	X	, 	3	4.7	7	X	Х	 		139	154	tc	;
nw3	<u> </u>		 	X	X	 	3	i,	<i>y</i>	1 1	X	<u> </u>	<u>i </u>	13	46/	1c	
MWH	; ; ;	ļ <u> </u>	 	X	X	 	। दु	`	4	i X	X	 		3	17/	<u>4C</u>	
MW 5	7	i (X	Ϊχ		3	6.	<i>ب</i>	X	X	<u> </u>	<u>i</u>	13	481	4 <u>C</u>	! !
MW6	 	2:05 Pm	 	X	<u> </u>	 	3	.	4	K	<u> </u>	 	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	3	49	4c	,
			 	 	 	 	 				 - 	 - 		 	 		
Relinquishe	ed by: (Si		0:	ate/Ii /92. 	me	 -	Receive	ed by: (Signat	iure)	Em	for	nalys	s:				the laboratory accepting samples nalysis been stored in ice?
Relinquishe		gnature)	9/1/	ete/Ti	те Э :ДС	pm	Receive	ed by: (Signat	ure)								d until analyzed?
i Relinquishe 		gnature)	Da	ate/Ti	me		Receive	ed by: (Signat	ure)	1	١.					1/	alysis have head space?
Relinquishe	ed by: (Si	gnature)	De	ate/Ti	me		Receive	ed by: (Signat	ure)		4. 	(nature	In appi		4	teiners and property packaged?

Concord, CA 94520

Attention: Mardo Kaprealian, P.E.

Client Project ID: Unocal, 449 Hegenberger Rd., Oakland

Sample Matrix: Analysis Method:

First Sample #:

Water d: EPA 5030/8015/8020

208-1344

Sampled: Aug 31, 1992

Received: Aug 31, 1992 Reported: Sep 11, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. 208-1344 MW 1	Sample I.D. 208-1345 MW 2	Sample I.D. 208-1346 MW 3*	Sample I.D. 208-1347 MW 4*	Sample I.D. 208-1348 MW 5	Sample I.D. 208-1349 MW 6
Purgeable Hydrocarbons	50	64,000	9,000	210	240	78	N.D.
Benzene	0.5	13,000	1,800	1.0	N.D.	0.89	N.D.
Toluene	0.5	12,000	640	N.D.	N.D.	N.D.	N.D.
Ethyl Benzene	0.5	2,500	140	N.D.	N.D.	N.D.	N.D.
Total Xylenes	0.5	22,000	2,000	N.D.	0.54	13	N.D.
Chromatogram Par	itern:	Gasoline	Gasoline	Discrete Peak	Discrete Peak	Gasoline	
Quality Control Da	ata				· <u></u>		
Report Limit Multip	lication Factor:	200	5.0	1.0	1.0	1.0	1.0
Date Analyzed:		9/8/92	9/8/92	9/8/92	9/8/92	9/8/92	9/8/92
Instrument Identific	ation:	ML-2	ML-2	ML-2	ML-2	ML-2	ML-2
Surrogate Recover (QC Limits = 70-13	4 '	101	96	93	93	82	82

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

Please Note:

* The above samples do not appear to contain gasoline.

Purgeable Hydrocarbons are due to discrete peaks in the MTBE range.

2081344.KEI <1>

Concord, CA 94520

Attention: Mardo Kaprealian, P.E.

Client Project ID:

Sample Matrix:

Analysis Method: First Sample #:

Water EPA 5030/8015/8020

Matrix Blank

Unocal, 449 Hegenberger Rd., Oakland

Sampled:

Aug 31, 1992

Received: Aug 31, 1992 Reported: Sep 11, 1992

TOTAL PURGEABLE PETROLEUM HYDROCARBONS with BTEX DISTINCTION

Analyte	Reporting Limit μg/L	Sample I.D. Matrix Blank		
Purgeable Hydrocarbons	50			
Benzene	0.5			
Toluene	0.5			
Ethyl Benzene	0.5			
Total Xylenes	0.5			
Chromatogram Patt	ern:			

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Analyzed:

9/8/92

Instrument Identification:

ML-2

Surrogate Recovery, %:

88

(QC Limits = 70-130%)

Purgeable Hydrocarbons are quantitated against a fresh gasoline standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Scott A. Chieffo Project Manager

2081344.KEI <2>

Concord, CA 94520

Client Project ID: Sample Matrix:

Unocal, 449 Hegenberger Rd., Oakland

Water

Sampled: Received:

Aug 31, 1992

Attention: Mardo Kaprealian, P.E.

Analysis Method: First Sample #:

EPA 3510/3520/8015 208-1344

Reported:

Aug 31, 1992 Sep 11, 1992

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte	Reporting Limit μg/L	Sample I.D. 208-1344 MW-1	Sample I.D. 208-1345 MW-2	Sample I.D. 208-1346 MW-3	Sample I.D. 208-1347 MW-4	Sample I.D. 208-1348 MW-5	Sample I.D. 208-1349 MW-6
Extractable Hydrocarbons	50	8900	1600	92	90	690	750
Chromatogram Pa	ttern:	Non-Diesel Mixture (< 16)	Non-Diesel Mixture (< 16)	Diesel and Non-Diesel Mixture (< C16)	Diesel and Non-Diesel Mixture (<c16)< td=""><td>Non-Diesel Mixture (< 16)</td><td>Diesel and Non-Diesel Mixture (< 16)</td></c16)<>	Non-Diesel Mixture (< 16)	Diesel and Non-Diesel Mixture (< 16)

Quality Control Data

Report Limit Multiplication Factor:	1.0	1.0	1.0	1.0	1.0	1.0
Date Extracted:	9/5/92	9/5/92	9/5/92	9/5/92	9/5/92	9/5/92
Date Analyzed:	9/10/92	9/10/92	9/10/92	9/10/92	9/10/92	9/10/92
Instrument Identification:	HP-3B	HP-3B	НР-3В	HP-3B	HP-3B	HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

2081344.KEI <3>

Concord, CA 94520

Attention: Mardo Kaprealian, P.E.

Client Project ID: Sample Matrix:

Unocal, 449 Hegenberger Rd., Oakland

Water

Analysis Method: EPA 3510/3520/8015 First Sample #:

Matrix Blank

Sampled:

Aug 31, 1992

Received: Aug 31, 1992 Reported: Sep 11, 1992

TOTAL EXTRACTABLE PETROLEUM HYDROCARBONS

Analyte

Reporting Limit

Sample I.D.

 μ g/L

Matrix Blank

Extractable

Hydrocarbons

50

Chromatogram Pattern:

Quality Control Data

Report Limit Multiplication Factor:

1.0

Date Extracted:

9/5/92

Date Analyzed:

9/10/92

Instrument Identification:

HP-3B

Extractable Hydrocarbons are quantitated against a fresh diesel standard. Analytes reported as N.D. were not detected above the stated reporting limit.

SEQUOIA ANALYTICAL

Project Manager

2081344.KEI <4>

Client Project ID: Unocal, 449 Hegenberger Rd., Oakland

Concord, CA 94520

Attention: Mardo Kaprealian, P.E. QC Sample Group: 2081344-1349

Reported: Sep 11, 1992

QUALITY CONTROL DATA REPORT

ANALYTE		· · · · · · · · · · · · · · · · · · ·	Ethyl-		
	Benzene	Toluene	Benzene	Xylenes	Diesel
	EPA	EPA	EPA	EPA	
Method:	8015/8020	8015/8020	8015/8020	8015/8020	EPA8015
Analyst:	J. Dinsay	J. Dinsay	J. Dinsay	J. Dinsay	K.Wimer
Reporting Units:	μg/L	μg/L	μg/L	μg/L	μg/L
Date Analyzed:	Sep 8, 1992	Sep 8, 1992	Sep 8, 1992	Sep 8, 1992	-
QC Sample #:	Matrix Blank	Matrix Blank	Matrix Blank	Matrix Blank	Matrix Blank
Sample Conc.:	N.D.	N.D.	N.D.	N.D.	N.D.
Spike Conc.					
Added:	10	10	10	30	300
Conc. Matrix					
Spike:	9.9	9.8	9.8	29	343
-p.m.s.	O.D	U. 5	0.5		
Matrix Spike					
% Recovery:	99	98	98	97	114
Conc. Matrix					
Spike Dup.:	10	10	9.8	30	291
Matrix Spike					
Duplicate					
% Recovery:	100	100	98	98	97
Relative % Difference:	1.0	0.0	0.0	1.0	16
% Difference:	1.0	2.0	U.U	1.0	10

Laboratory blank contained the following analytes: None Detected

SEQUOIA ANALYTICAL

Project Manager

Conc. of M.S. - Conc. of Sample % Recovery:

Spike Conc. Added

Conc. of M.S. - Conc. of M.S.D. Relative % Difference: x 100 (Conc. of M.S. + Conc. of M.S.D.) / 2

2081344.KEI <5>

x 100

Client Project ID: Unocal, 449 Hegenberger Rd., Oakland

Concord, CA 94520

Attention: Mardo Kaprealian, P.E. QC Sample Group: 2081344-1349

Reported: Sep 11, 1992

QUALITY CONTROL DATA REPORT

SURROGATE							
Method: Analyst: Reporting Units: Date Analyzed: Sample #:	EPA 8015 K. Wimer μg/L Sep 10, 1992 208-1344	EPA 8015 K. Wimer μg/L Sep 10, 1992 208-1345	EPA 8015 K. Wimer μg/L Sep 10, 1992 208-1346	EPA 8015 K, Wimer μg/L Sep 10, 1992 208-1347	EPA 8015 K. Wimer μg/L Sep 10, 1992 208-1348	EPA 8015 K. Wimer μg/L Sep 10, 1992 208-1349	EPA 8015 K. Wimer μg/L Sep 10, 1992 Matrix Blank
Surrogate % Recovery:	102	97	83	94	95	102	117

SEQUOIA ANALYTICAL

Project Manager

% Recovery: Conc. of M.S. - Conc. of Sample

Spike Conc. Added

Relative % Difference: Conc. of M.S. - Conc. of M.S.D. x 100

(Conc. of M.S. + Conc. of M.S.D.) / 2

2081344.KEI <6>

x 100

KAPREALIAN ENGINEERING, INC.

CHAIN OF CUSTODY

SAMPLER Valthes WITHESSING AGENCY			SITE NAME & ADDRESS							ANALYSES REQUESTED							TURN AROUND TIME:		
		 	Unveal / Oakland 449 Hegenberger Rd.					87XE		 		1			 	Regular-			
SAMPLE ID NO.	DATE	TIME	 soir (WATER	 GRAB	 COMP	NO. OF		PLING ATION	TP#5:1	TPHD		 	1	 			REMARKS	
nu 1	18/31/92	10:45		1 %	17	 	3	Honitoring	well	X	Х		26	ZY	34	4/	40	1 VOA's HCI Preserved.	
HW 2	<u> </u>			X	X	 	3	٠.	7	X	Х	 			34	5	1C] 	
nω3	1 7	<i>!</i>	 	X	χ	 	3	ų	۶	X	<u> </u>	 - 		Ĭ	3	16	4c	1 1	
MW4	i 4	 	 -	X	X	 	3		5	1X	X	 		Ċ	3	(7	AC	'	
MW 5	; 7 	1	 	X	χ	 	3	د.	4	İχ	X	İ		Ì	3	48	AC	• • •	
MW6	4	2;05 Fun.	 	 X	X	 	3	6-	4	<u> </u>	X 	 	4		3	49,	AC	' 	
		 	 ₁	i 	 	, 	 			i 	 	 		 			, 	 	
Relinquished by: (Signature) Date/Time 8/21/92 4:05		1 1	Received by: (Signature)			The following MUST 8E completed by for analysis:							Ì						
Retinquished by: (Signature) Date/Time 9/1/92 12:00			me	Received by: (Signature)] 	Have all samples received for analysis been stored in ice? Will samples remain refrigerated until analyzed?										
Relinquished by: (Signature) Date/Time			!	Received by: (Signature)				3. Did any samples received f							<i>NJ</i> i				
			ate/fi	me	Received by: (Signature)					4. Were samples in appropriate containers and properly packaged? Signature Signature Signature									