RECEIVED

By Alameda County Environmental Health at 2:52 pm, Dec 02, 2013

November 22, 2013

Ms. Keith Nowell Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

Subject:

Corrective Action Plan

Site:

76 Station No. 5191/5043

449 Hegenberger Road Oakland, California

Fuel Leak Case No. RO0000219

Dear Mr. Nowell:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call:

Walter T. Sprague

Pacific Convenience & Fuel

7180 Koll Center Parkway, Suite 100

Pleasanton, California 94566

Tel: (925) 931-5714

Fax: (925) 905-2746

WSprague@pcandf.com

Sincerely,

PACIFIC CONVENIENCE & FUEL

WALTER SPRAGUE

Director of Retail Services

Attachment

Corrective Action Plan

76 Station No. 5191/5043 449 Hegenberger Road Oakland, California

Alameda County Health Care Services Agency Fuel Leak Case No. RO0000219

San Francisco Bay, Regional Water Quality Control Board Case No. 01-1601

GeoTracker Global ID No.T0600101476

Antea Group Project No. 142705191 November 22, 2013

Prepared for:
Mr. Keith Nowell
Alameda County Health Care
Services Agency
1131 Harbor Bay Parkway,
Suite 250
Alameda, CA 94502-6577

Prepared by:
Antea®Group
11050 White Rock Road,
Suite 110
Rancho Cordova, CA
95670
+1 800 477 7411

Table of Contents

1.0	INTRODUCTION	1
2.0 2.1 2.2	SITE LOCATION AND DESCRIPTION Site Location Site Description	1
3.0 3.1 3.2 3.3 3.4	SITE SETTING	1 1 2
4.1 F 4.2 D	FURE AND EXTENT OF SOURCESormer USTs	3 3
5.0 5.1 5.2	CLEAN-UP TARGET LEVELS	6
6.0 6.1 6.2 6.3 6.4 6.5	PREVIOUS REMEDIATION EFFORTS Product Line Overexcavation Waste Oil Tank Removal Hoist and Oil/Water Separator Removal and Overexcavation UST Fueling /Waste Oil and Dispenser Island Removal and Site Restoration Activities Dual Phase Extraction (DPE) Pilot Test	8 8 8
7.0 7.1 7.1 7.2 7.3 7.4	CORRECTIVE ACTION PLAN Alternative 1: Soil Excavation and Off-Site Disposal .1 Soil Excavation Amendment: Oxygen Release Compound Alternative 2: Dual Phase Extraction Alternative 3: In-Situ Chemical Oxidation (ISCO) Alternatives Comparison Matrix	9 10 11 12
8.0	DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS	14
9.0	REMARKS	17
10.0	REFERENCES	18

Figures

Figure 1	Site Location Map
Figure 2	Site Plan with Utilities
Figure 3	Geologic Cross Section A-A'
Figure 4	Geologic Cross Section B-B'
Figure 5	Groundwater Elevation Contour Map – September 10, 2013
Figure 6	Site Plan with Historical Sample Locations and Concentrations -

Figure 7 Site Plan with Historical Sample Locations and Concentrations - B

Figure 8 Site Plan with Historical Sample Locations

Figure 9 Site Plan with Proposed Excavations

Tables

Table 1 Monitoring Well and Boring Construction DetailsTable 2 Historical Groundwater Gauging and Analytical Data

Table 3 Historical Soil Analytical Data

Appendices

Appendix A Regulatory Correspondence

Appendix B Site Details and Summary of Previous Environmental Investigations

Appendix C Aerial Photograph Figures

Appendix D Boring Logs

Appendix F Regenesis Case Studies

Appendix F Unocal Correspondence

ii www.anteagroup.com

Corrective Action Plan

76 Station No. 5191/5043 449 Hegenberger Road, Oakland, California Antea Group Project No. I42705191

1.0 INTRODUCTION

Antea®Group is pleased to submit this *Corrective Action Plan (CAP)*, for the referenced site in Oakland, CA (**Figure 1**). This *CAP* reviews the technical and cost feasibility of selected remediation technologies to address the residual petroleum hydrocarbon impacts and makes a recommendation for remedial implementation. This report also addresses comments made by the Alameda County Health Care Services Agency (ACHCSA) in a letter dated June 21, and October 8, 2013. A copy of these letters are presented as **Appendix A**. This report has received a technical review by Mr. Dennis Dettloff, California Professional Geologist No. 7480.

2.0 SITE LOCATION AND DESCRIPTION

2.1 Site Location

The subject site is an operating 76 station located on the southwestern corner of Hegenberger Road and Edgewater Drive in Oakland, California.

2.2 Site Description

This site contains six fuel dispensers on two islands under a single canopy, three fuel underground storage tanks (USTs) on the north side of the site, a carwash facility on the west side of the site, and a station building in the central portion of the site. The current site features are shown on **Figure 2**. A summary of previous site assessment, environmental investigations, remedial activities, and sensitive receptors are presented in **Appendix B**.

3.0 SITE SETTING

The following sections provide a summary of the regional geological and hydrological setting.

3.1 Regional Geological Setting

The site is located on the western portion of the East Bay Plain Subbasin near the Oakland Airport. This area is primarily underlain by bay mud and artificial fill.

3.2 Regional Hydrogeologic Setting

According to the California Department of Water Resources' (DWR) California's Groundwater, Bulletin 118 -

Update 2004, the site is located in the Santa Clara Valley Groundwater Basin – East Bay Plain Subbasin. Groundwater bearing formations in the subbasin include the Early Pleistocene Santa Clara Formation, Late Pleistocene Alameda Formation, Early Holocene Temescal Formation, and artificial fill. The East Bay Plain Subbasin has existing beneficial uses as irrigation, municipal, and domestic water supplies (DWR, 2004).

3.3 Site Hydrogeologic Conditions

The site is underlain by Holocene-age bay mud. The bay mud typically consists of unconsolidated, saturated clay and sandy clay that is rich in organic material. The bay mud locally contains lenses and stringers of silt, well-sorted sand and gravel, and beds of peat. Based on the boring log from monitoring well MW-12A the bay mud continues to a depth of approximately 32 feet below ground surface (bgs). From 32 feet bgs to a depth of approximately 37 feet bgs the bay mud is mixed with well graded sand (transition zone). Below this transition zone is well graded sand to a depth of 43 feet bgs. Cross-sections are presented as **Figures 3 and 4**.

The most recent monitoring and sampling event was conducted at the site on September 10, 2013 (Antea Group, 2013). The measured depth to groundwater ranged from 2.63 feet to 6.54 feet below top of casing (TOC). The groundwater flow direction was south with a hydraulic gradient of 0.014 foot per foot (**Figure 5**).

3.4 Sensitive Receptors

On April 24, 2006 TRC completed a sensitive receptor survey for the site (TRC, 2006). According to the Department of Water Resources (DWR) records, there are two irrigation wells and one industrial well located within one-half mile of the site. The nearest well, is an irrigation well located approximately 1,080 feet southeast of the site. The other irrigation well is located approximately 2,623 feet southeast of the site and the industrial well is located approximately 2,570 feet northeast of the site. In addition, two surface water bodies were observed within a one-half mile radius of the site. San Leandro Creek is located approximately 1,400 feet southwest of the site and flows into the San Leandro Bay and Elmhurst Creek is located approximately 2,220 feet north of the site and also flows into the San Leandro Bay.

4.0 NATURE AND EXTENT OF SOURCES

The following sections provide a summary of the extent of the site's primary COCs: total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as diesel (TPHd), benzene, ethylbenzene, and methyl tertiary-butyl ether (MTBE) in soil and groundwater. Refer to Delta and Antea Group's site assessment reports dated February 15, 2010, July 26, 2010, and August 26, 2011 for more details regarding recent soil data. Refer to

Antea Group's Quarterly Summary Report – Third Quarter 2013 for additional details regarding current groundwater conditions.

On July 25th and 26th, Cascade Drilling (Cascade) advanced ten direct push borings, SB-1 through SB-10, under the direction of an Antea Group geologist. The borings were advanced in the southwest portion of the site, in the vicinity of monitoring wells, MW-6 and MW-14. The purpose of this investigation was to determine the horizontal and vertical extent of the petroleum hydrocarbon and MTBE impact, in soil, in this area for potential excavation. Antea Group is currently preparing a Site Investigation Report describing this work. A brief summary of this work and the findings are presented below in section 4.4.

4.1 Former USTs

In October 1991, the product lines were excavated during dispenser island modifications. During the excavation four (4) soil samples were collected at 3 feet bgs. Maximum concentrations of petroleum hydrocarbons reported in the soil samples were 9,000 milligrams per kilogram (mg/kg) TPHg, 8,400 mg/kg TPHd, 48 mg/kg benzene, and 330 mg/kg ethylbenzene. The excavation was completed to 4.5 feet bgs.

In September 1994, a 280-gallon waste oil tank was removed from the site. The tank was reported to be in good condition upon removal with no visible holes or cracks. Soil around the tank was excavated to a depth of nine (9) feet bgs. A confirmation soil sample was collected from beneath the tank at nine (9) feet bgs. Concentrations of TPHg, TPHd, benzene, and ethylbenzene were reported below the laboratory's indicated reporting limits for each constituent.

In September 1994, one (1) oil-water separator and three (3) hydraulic hoists were removed from the site. Maximum concentrations of petroleum hydrocarbons reported in the soil samples were 1.6 mg/kg TPHg, <1.0 mg/kg TPHd, 0.014 mg/kg benzene, and 0.15 mg/kg ethylbenzene.

In March and April 1995, two 10,000-gallon gasoline USTs and one 10,000-gallon diesel UST were removed during a site rebuild. The product lines, dispenser islands, and the station building were also removed and excavation in those areas took place. Approximately 2,729 cubic yards of soil were removed from the site during the excavations. Maximum concentrations of petroleum hydrocarbons reported in the soil samples were 3,300 mg/kg TPHg, 330 mg/kg TPHd, 18 mg/kg benzene, and 110 mg/kg ethylbenzene.

4.2 Distribution of Contaminants in Groundwater

Monitoring well and boring construction details are presented in **Table 1**. The historical groundwater monitoring well, analytical data is summarized in **Table 2**. The most recent grab groundwater samples were collected at the site during a 2009 investigation. The highest concentrations of petroleum hydrocarbons in groundwater during the

2009 investigation were reported in grab groundwater samples collected from boring B-5 at a depth of 20 feet bgs, located east of the dispenser islands. TPHg was reported in the sample at a concentration of 23,500,000 micrograms per liter (μ g/L), TPHd was reported at a concentrations of 20,400,000 μ g/L, benzene was reported at a concentration of 324,000 μ g/L, and MTBE was reported at <50 μ g/L. MTBE was reported at a maximum concentration of 632 μ g/L in a grab groundwater sample collected from boring B-5, at a depth of 32 feet bgs.

Based on the recent third quarter 2013 groundwater sampling data, the dissolved-phase plume extends off-site in the east direction from MW-17 and to the west from MW-14. The greatest concentrations of COCs are reported in the vicinity of the southeast dispenser island and planter and south-southwest of the station building. Aerial Photograph figures depicting site features, the estimated benzene plume, and potential sensitive receptors are presented as **Appendix C**.

4.3 Distribution of Contaminants in Soil

Lateral and vertical extents of the COCs in soil are depicted in **Figure 6 and 7** which includes historical concentrations reported in soil samples collected at the site and in the site vicinity. Historical soil analytical data collected during site investigations are presented in **Table 3**. The following table contains maximum concentrations of COCs in soil before the excavations that took place in 1995.

Constituent	Maximum Concentration (mg/kg)	Sample Location
TPHg	14,000	P2 at 3 feet bgs
TPHd	8,400	MW-1 at 2.5 feet bgs
Benzene	160	MW-1 at 2.5 feet bgs
Ethylbenzene	470	MW-1 at 2.5 feet bgs
MTBE	*	*

Notes:

bgs = below ground surface

In 1995, the USTs, the product piping, and the fuel dispenser islands were removed and upgraded. During this time the soils in the vicinity of the USTs, product piping, and the fuel dispensers were excavated to varying depths ranging from four feet bgs, underneath the current station building, to 16 feet bgs in the vicinity of the USTs and former monitoring wells MW-1 and MW-2. The location, size, and depths of the excavated areas are shown on **Figure 8**. In some areas (SW2 and SW8), in the vicinity of the USTs, the soil was over excavated to remove known petroleum hydrocarbon impact.

^{*=} No MTBE reported in soil samples collected prior to 1995

Based on the analytical data from this investigation and subsequent investigations conducted at this site, the remaining soil impact appears to be east of the fuel dispenser islands and south-southwest of the current station building. All other remaining petroleum hydrocarbon impact appears to be residual in nature and not a source for the current groundwater plume. Maximum concentrations of COCs reported in soil since the 1995 excavation are detailed in the table below.

	Maximum Concentration	
Constituent	(mg/kg)	Sample Location
TPHg	31,000	SB-1 at 5.5 feet bgs
TPHd	900	SB-8 at 8 feet bgs
Benzene	85	SB-1 at 5.5 feet bgs
Ethylbenzene	650	SB-1 at 5.5 feet bgs
MTBE	0.19	MW-15 at 8 feet bgs

Antea Group does not believe that the soil data collected during the installation of MW-12A is representative of actual soil impacts at depth.

Analytical data obtained from soil samples collected from the borings advance east of the fuel dispenser islands appear to indicate that the soil is significantly impacted to depths ranging from 26.5 feet bgs (B-5) to 32 feet bgs (MW-12A). However, soils samples collected from adjacent borings B-6 and MW-12 indicated that the soil in this area is significantly impacted only to a maximum depth of 14 feet bgs (B-6).

As stated above, the boring log from monitoring well MW-12A indicates that fill is present to a depth of 1 foot bgs. Below the fill is bay mud to a depth of approximately 32 feet bgs. From 32 feet bgs to a depth of approximately 37 feet bgs the bay mud is mixed with well graded sand (transition zone). Below this transition zone is well graded sand to a depth of 43 feet bgs. In addition, based on the groundwater sampling and monitoring data collected at the site, no significant vertical gradient is indicated using monitoring wells MW-12 (shallow) and MW-12A (deep). Historical depth to groundwater beneath the site ranges from 0.07 feet BTOC to 8.42 BTOC.

Monitoring well MW-12A is screened from 30 to 34 feet bgs and has been sampled 14 times since installation. The groundwater samples collected during the initial sampling event in July, 2010 contained 664 μ g/L TPHg, 18 μ g/L benzene, and 14 μ g/L MTBE. In September of 2010, three months later, all constituents tested were below the laboratory's indicated report limits, except for MTBE which was reported at 8.5 μ g/L. With the exception of occasional MTBE and TPHd, at low concentrations, in the samples collected from this monitoring well, this well has not been impacted since the initial sampling event conducted in July, 2010. This indicates that the initial impact

reported in the groundwater samples collected from monitoring well MW-12A was introduced into the well, likely during borehole advancement, and not representative of site conditions.

Due to the lack of significant impact to the groundwater samples collected from monitoring well MW-12A, the lack of a vertical gradient between monitoring wells MW-12 and MW-12A, and bay mud with their low permeability extending from 2 feet bgs to a depth of 32 feet bgs, it is unlikely that the impacted soils indicated at depths ranging from 26.5 feet bgs (B-5) to 32 feet bgs (MW-12A) are representative of conditions beneath the site on the east side of the fuel dispenser islands. It is more likely that the petroleum hydrocarbon impact to the soils in this area do not extend below a depth of approximately 14 feet bgs as indicated in boring B-6, and that the impact indicated in borings B-5 and MW-12A was introduced (brought down) to these lower depths during borehole advancement.

4.4 Soil Borings Advancement

On July 26th and 27th Cascade, under supervision of an Antea Group field geologist, advanced ten direct push soil borings SB-1 through SB-10. Boring locations are shown on **Figure 2**. The purpose of these borings was to determine the extent of the potential excavation in the southwest portion of the site. Each of the ten borings, were advanced to a maximum depth of 15 feet bgs. The soil samples collected and submitted for analysis from these ten borings were analyzed by Kiff Analytical LLC (Kiff) for TPHg, TPHd, benzene, toluene, ethylbenzene, and total xylenes (BTEX), MTBE, tertiary amyl-methyl either (TAME), diisopropal either (DIPE), ethyl tertiary-butyl either (ETBE), tertiary butyl alcohol (TBA), 1,2 dichloroethane (1,2-DCA), ethylene dibromide (EDB), naphthalene, and ethanol by Environmental Protection Agency (EPA) Method 8260B and TPHd by EPA Method 8015. The analytical results are presented in **Table 3**. The boring logs are included as **Appendix D**.

Based on the analytical data from this investigation, the proposed excavation will likely extend to the north as far as borings SB-3 and SB-7, to the west as far as boring SB-3 and monitoring well MW-14, to the south as far as borings SB-4 and SB-6, and to the east as far as borings SB-6 and SB-7. Most of the impacted soil is located at depths ranging from 5.5 feet to 8 feet bgs with minor impact as deep as 11 feet bgs. The proposed extent of the excavation is shown on **Figure 9**.

5.0 CLEAN-UP TARGET LEVELS

5.1 Groundwater Clean-up Target Levels

The California Regional Water Quality Control Board (RWQCB) has published Environmental Screening Levels (ESLs) for chemicals commonly found in soil and groundwater at sites where releases of chemicals have occurred. The RWQCB notes "The ESLs are considered to be conservative." The tables below compare site specific soil and groundwater concentrations for TPHg, TPHd, benzene, ethylybenzene, and MTBE with ESLs for various potential

sensitive receptors. The ESL tables for various sensitive receptors as found in the May 2013 publication are referenced below.

	ESL Table	TPHg	TPHd	Benzene	Ethyl Benzene	MTBE
		(μg/L)	(μg/L)	(µg/L)	(μg/L)	(μg/L)
Current Concentration		36,000	470	8,200	2,300	820
Groundwater (09/10/13)		(MW-17)	(MW-6)	(MW-17)	(MW-14)	(MW-16)
RWQCB ESL	F-1a	100	100	1.0	30	5
California Maximum Contaminant Level (MCL)	F-3	100	100	1.0	300	13

Alternative groundwater cleanup target levels determined by risk based closure evaluations, including the State Water Resources Control Board Low-Threat Underground Storage Tank Case Closure Policy (LTCP) (Resolution No. 2012-0016), will be discussed during the remediation evaluation discussion.

5.2 Soil Clean-up Target Levels

The following table reports the general ESLs and the LTCP screening levels for COCs in soil and the greatest concentration of each COC reported to date:

	ESL Table	TPHg	TPHd	Benzene	Ethyl Benzene	MTBE	Naphthalene	PAH
		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/kg)	(mg/kg)
		31,000	900	85	650	0.19	150	NS
Maximum Soil Concentrations		(SB-1@5.5 feet bgs)	(SB-8@8 feet bgs)	(SB- 1@5.5 feet bgs)	(SB-1@5.5 feet bgs)	(MW- 15@8 feet bgs)	(SB-1@5.5 feet bgs)	
RWQCB ESL	A-2	580	580	0.044	3.3	0.023	1.2	NA
RWQCB ESL	C-2	580	530	0.044	3.3	0.023	1.2	NA
LTCP 0 to 5 fbgs (Commercial/Indu strial)	Table 1	NA	NA	8.2	89	NA	45	0.68
LTCP 5 to 10 fbgs (Commercial/Indu strial)	Table 1	NA	NA	12	134	NA	45	NA

6.0 PREVIOUS REMEDIATION EFFORTS

6.1 Product Line Overexcavation

In their December 17, 1991 *Stockpiled Soil Sampling* report, Kaprealian Engineering, Inc. (KEI) documented activities related to the excavation and disposal of impacted soil reported beneath product piping lines and canopy footers to a depth of approximately 4.5 feet below grade. In October and November 1991, approximately 110 cubic yards of soil were excavated and transported off-site for disposal (KEI, 1991).

6.2 Waste Oil Tank Removal

In their *Third Quarter 1994 Quarterly Summary Report*, KEI reported that a 280 gallon waste oil tank was removed from the site on September 20, 1994. Details of this over-excavation were further summarized in a KEI report dated October 7, 1994 (KEI, 1994). A copy of Third Quarter 1994 Summary Report was unavailable for review during this report preparation.

6.3 Hoist and Oil/Water Separator Removal and Overexcavation

In September 1994, Geostrategies Incorporated (GSI) oversaw the removal of an oil/water separator and hydraulic hoists from the site. These activities are summarized in GSI's December 14, 1994 Abandonment of Hydraulic Hoists and Oil/Water Separator report. According to GSI, approximately 20 cubic yards of soil were removed from the former hoist locations (GSI, 1994).

6.4 UST Fueling /Waste Oil and Dispenser Island Removal and Site Restoration Activities

In March and April 1995, KEI oversaw the excavation and removal of the site fueling USTs and the over-excavation and disposal of impacted soil discovered during the removal of the fueling system and site renovation activities. A detailed accounting of these activities is summarized in KEI's June 2, 1995 *Soil Sampling Report and Continuing Groundwater Investigation* report. Generally, the scope of work conducted in 1995 as part of this site restoration included the following: removal of the two 10,000 gallon underground unleaded gasoline storage tanks and one 10,000 gallon underground diesel storage tank; excavation of former product dispenser islands, demolition of the station building, over-excavation of impacted soils beneath the former station building and adjacent areas, as well as the dewatering, treatment and disposal of a total of 125,000 gallons of groundwater recovered from the open excavation areas (KEI, 1995).

This report did not provide a total summary of the amount of impacted soil removed during these excavation activities. The site history summary on Geotracker estimates that approximately 6,000 cubic yards of soil were excavated in 1995.

6.5 Dual Phase Extraction (DPE) Pilot Test

On May 24, 2005, TRC submitted a *Dual-Phase Extraction* report summarizing the results of a 24-hour DPE test at the site using monitoring well MW-6. The 24-hour DPE test was only moderately successful at removing vapor-phase petroleum hydrocarbons from the subsurface (TRC, 2005).

7.0 CORRECTIVE ACTION PLAN

Antea Group has evaluated the following remedial approaches for addressing the COCs identified beneath the site. Three remediation alternatives were subjected to comparative analysis identifying the relative performance, implementability, cost, timeframe to achieve clean-up goals, and advantages and disadvantages of each alternative. Each of the alternative strategies is discussed below.

7.1 Alternative 1: Soil Excavation and Off-Site Disposal

According to the United States Environmental Protection Agency (EPA), "the excavation of contaminated soil from a site involves digging it up for "ex situ" (above-ground) treatment or for disposal in a landfill. Removing these potential sources of contamination keeps people from coming into contact with contamination and helps speed the cleanup of contaminated groundwater that may be present." Soil excavations generally involve more upfront capital investments than some traditional remediation technologies, however when the lifecycle costs for site remediation are taken into account, the excavation of residual hydrocarbons either adsorbed onto soil or entrained in the pore space can provide long-term costs savings and provides a guaranteed mass removal.

In order to adequately design a soil excavation cleanup strategy, the proposed areas of excavation must be adequately delineated to determine the contaminant mass distribution, evaluate the total mass of hydrocarbons remaining and gather geotechnical information for shoring and/or dewatering designs and other safety considerations. In the April 23, 2013 *Remedial Action Plan (RAP)*, Antea Group proposed conducting such a site assessment to further delineate the proposed area A2, prior to finalizing our excavation design (Antea 2013). In July 2013, ten soil borings (SB-1 through SB-10) were advanced to a maximum depth of 15 feet bgs in the vicinity of the proposed excavation area A2. Based on analytical results of soil samples collected during the investigation, most of the impacted soil is located at depths ranging from 5.5 feet to 8 feet bgs with minor impact as deep as 11 feet bgs. It is worth noting that in the proposed excavation areas, in the April 2013 *RAP*, there is some overlap of former excavation areas, although the depth of these former excavations averages approximately 5 feet below grade. However, boring logs from borings B-5, B-6, MW-12, and MW-12A indicated the fill in area A1 to depths ranging from one to two feet bgs. This appears to indicate that this area was not previously excavated. Former excavation areas as well as the proposed excavation areas are shown on Figure 9.

At this site, there is also a limited window of opportunity to coordinate the source excavation of the areas with the current landowner, Convenience Retailers, LLC, also known as Pacific Convenience & Fuels (PC&F). PC&F is in the process of permitting a complete station renovation, which involves removing the current station building, canopy, fueling dispensers and product lines and reinstalling a new station layout in an effort to modernize the station facility. At the time of this *CAP* preparation, it is our understanding that only the current location of the USTs will remain the same. PC&F has offered to coordinate their site renovation efforts with our recommendation to conduct a soil source excavation. PC&F now estimates that their site renovation work will take place in the second or third quarter of 2014.

Using the areas and depths initially recommended in the April 2013 *RAP* and updated with the results of the recent soil delineation event, we estimate that the costs to conduct the soil excavation including monitoring well abandonment & replacement, shoring installation, dewatering and treatment, soil excavation and disposal and backfill of the excavations to range from \$375,000 to \$425,000. Depending on the results of the soil assessment conducted in the two proposed areas, this cost could change based on a reduced (likely) or increased (unlikely) soil excavation footprint.

7.1.1 Soil Excavation Amendment: Oxygen Release Compound

Following the removal of impacted soils during an excavation, a residual groundwater plume can remain in the pore space of soils located outside of the excavation limits. Once backfill of the excavation is completed and dewatering is halted, this formation water can flow back into the former excavation area. In addition, due to financial and risk based considerations, there is the possibility minor soil impacts being left in place below or adjacent to the proposed excavation areas. As a preemptive measure, and to accelerate biodegradation of the remaining hydrocarbon plume, a common industry practice is to apply Regenesis brand Advanced Formula Oxygen Release Compound®- Advanced (ORC®-A) to the excavated area prior to backfilling. Case studies of ORC-A based remediation strategies are presented as **Appendix E**.

According to Regenesis, ORC-A is a proprietary formulation of food-grade, calcium oxy-hydroxide that produces a controlled-release of molecular oxygen for periods of up to 12 months upon hydration. ORC-A will supply controlled-release molecular oxygen to the subsurface environment where it will accelerate the rate of naturally occurring aerobic contaminant biodegradation in groundwater and saturated soils for periods of up to 12 months on a single application. ORC-A was not evaluated during the in-situ chemical oxidation (ISCO) pilot testing as a chemical that could be used for oxidation of the residual impacts. Based on the extensive use of ORC-A on previous remediation cleanups of petroleum hydrocarbons, we do not believe that a pilot test of ORC-A is warranted or cost

effective. A discussion of the limitations of using a slurry injection of ISCO technologies as a sole remediation strategy is presented in Section 7.3.

ORC-A is normally applied in one of two methods, either with direct push technologies into boreholes at continuous / discrete depth intervals, or applied via mixed slurry by spraying it onto an open excavation. In the case of this site, the recommended injection method would be via spray onto the excavation. As presented in the April 2013 *RAP*, approximately 1,200 pounds of ORC-A is proposed. The cost for this application event is approximately \$10,000.

7.2 Alternative 2: Dual Phase Extraction

Based on the 24-Hour DPE pilot testing TRC summarized in their May 24, 2005 *Dual –Phase Extraction Report*, and taking into consideration the former dewatering data summarized during the UST excavation and site renovation work, a tight network of DPE wells could be used to recover dissolved phase impacts in a limited source area. This cleanup strategy would have significant limitations and expenses if implemented. During the 24-hour pilot test, an estimated 2,000 gallons of water were extracted from the pilot test extraction well. Based on analytical data; an estimated 1.77 pounds of hydrocarbons were removed in recovered groundwater. Influent air concentrations decreased substantially after only 5 hours of run time. This low extracted mass, along with an average extraction rate of only 6.6 cubic feet per minute (CFM), led TRC to conclude that "DPE is not a viable long-term remedial alternative for removing source hydrocarbons from this site".

Based on a review of the DPE Pilot Test report, site boring logs and groundwater sampling logs, the likelihood of a successful implementation of DPE to address any adsorbed soil impacts would be poor. The native and fill soils, consisting of bay mud and fine grained materials, are not ideal matrixes for DPE technology to remove vapors and adsorbed petroleum hydrocarbons from a wide radius. Compared to other technologies presented herein, utilizing DPE for a complete remediation would increase the overall required remediation timeframe cost and would be significantly limited by its ability to recover vapors from the subsurface at this site.

We agree with TRC's assessment in 2005 that DPE is not the optimal remediation technology to address adsorbed and dissolved phase impacts across the entire site. A focused DPE system installed in the remaining source area could be used to reduce the source impacts, although the cost would be high. Antea Group estimates that implementing DPE strategy would achieve source area clean-up in approximately 3-5 years. The estimated cost of permitting, installing and operating a fixed, DPE system to remediate the site to acceptable closure levels would range from \$800,000 to \$1,000,000.

7.3 Alternative 3: In-Situ Chemical Oxidation (ISCO)

The remediation of groundwater contamination using ISCO involves injecting oxidants and potentially coamendments or activators directly into the source zone and down gradient and lateral gradient plume areas. The injected or applied chemicals react with the contaminants, oxidizing them, and eventually producing innocuous substances such as carbon dioxide and water. However, there may be many chemical reaction steps required to reach those end points, and some reaction intermediates can be toxic. In most cases if an adequate oxidant dose is applied in a targeted radius and depth interval, oxidation of petroleum hydrocarbons is successful. There is significant case study and peer-reviewed that shows that degradation of petroleum hydrocarbons can be achieved using a wide variety of ISCO chemicals.

Based on data presented in the May 15, 2012 ISCO Pilot Test Work Plan, injections of water based solutions appear to be technically feasible in the fine-grained formation found beneath this site. Based on data presented in Appendix B of the April 23, 2013 RAP, Total Oxidant Demand (TOD) testing using a proprietary blend of calcium peroxide activated sodium persulfate called OxygenBioChem (OBC) could be used to remediate residual petroleum hydrocarbons at the site. It should be noted that in the text of the April 2013 RAP described the ISCO feasibility test as using hydrogen peroxide activated sodium persulfate. This was an incorrect statement; as the lab report in Appendix B of the 2013 RAP details, the actual ISCO amendment solution used for the TOD test was OBC.

In order to determine the efficacy of a full-scale remediation effort using OBC ISCO injections, a pilot test would need to be implemented in targeted areas to measure the true potential of injecting a slurry OBC amendment solution into the formation. The previous ISCO feasibility work conducted to date provides cursory information about the potential for the formation to accept injected water at a given pressure and flow rate. ISCO amendment solutions like OBC are significantly more viscous in nature than water and could create injection back pressure, leading to formation fracturing and unequal distribution issues in the fine grained formation at this site. The cost to perform an initial pilot test injection and required post ISCO monitoring are approximately \$60,000. Assuming the ISCO injection pilot test was successful and showed that a full scale injection schema could be developed, the tentative design model for further injection events calls for one large scale injection and several smaller, polishing, injection events. A tight network of injection points would be required to provide adequate lateral and even depth coverage. In addition to the required pilot testing, the cost to implement the full scale ISCO injections, three polishing injection events and monitoring program at this site are estimated to be \$250,000.

In our professional opinion, based on our firms and our injection contractors experience with ISCO injections into fine-grained formations like the one at this site, there is a moderate probability of a successful remediation of soil and groundwater impacts using ISCO injections. Fine grained soils often resist injections of most slurry solutions to the point of formation fracturing, resulting in rapid injection or possible surfacing of the injection solution along a

preferential pathway. It is unlikely that the injections will get an equal distribution around an injection point, resulting in the need for a tighter spacing of injection points during each event. These additional injection events can quickly increase the lifecycle remediation costs for site cleanup.

7.4 Alternatives Comparison Matrix

Alternative	Relative	Implementability	Cost	Implementation	Advantages and
	Performance		Effectiveness	Time Frame	Disadvantages
	Result		/Estimate		
Soil Excavation	Very good for	Good. Additional site	Fair	Estimated 2-4 weeks	Advantages:
with ORC-A	addressing soil	assessment	>\$375,000	to complete work,	-Removes bulk hydrocarbon
application and	source impacts.	warranted to finalize		pre-excavation	mass in smear zone and
off-site disposal	Good for	excavation footprint.		permitting and a	effectively would remove soil
	addressing	Dewatering and		CEQA review may be	impacts locked-up in tight
	residual	shoring needed.		needed by the owner	clay formation
	dissolved phase	Work will only be		for their site	-If ORC-A application is used
	(removes	conducted if it can be		restoration plans.	in conjunction with the
	leaching source	coordinated with the		There is a small	proposed excavation
	to groundwater,	planned site		window of	activities, enhanced
	and ORC-A	renovation by the		opportunity to	bioremediation of the
	provides	current		coordinate this	residual groundwater plume
	bioremediation	land/business owner.		excavation effort	can occur.
	enhancements).			with the business	<u>Disadvantages:</u>
				stakeholder's site	-Must be coordinated with
				renovation efforts.	stakeholder activities.
					- There is the potential to
					remove 4-6 feet of previously
					excavated areas for parts of
					the proposed footprint.
					-Excavation backfill using
					controlled density fill to
					support new building
					foundation, limiting
					replacement MW locations.
DPE	Fair for GW	Fair. System	Poor. \$800,0000	4-6 months for	Advantages:
	impacts, poor for	installation and	to \$1,000,000 to	permitting and	-Targets removal of COCs in
	soil impacts.	permitting is	complete site	system installation.	both saturated and
		straightforward.	remediation.	3 to 5 years for	unsaturated zones
		Design of well		system operation	-Can effectively remove non-
		network would be		and monitoring.	aqueous phase liquids
		substantial to			Disadvantages:
		account for low			-High operational
		effective radius of			requirements for O&M
		influence.			-low air flow recovery rate
					would limit influence on
					unsaturated impacted zones.

13 www.anteagroup.com

Alternative	Relative	Implementability	Cost	Implementation	Advantages and
	Performance		Effectiveness	Time Frame	Disadvantages
	Result		/Estimate		
					-Low air flow recovery rates
					would extend the
					remediation timeframe
					-Extensive discharge
					permitting for air and
					groundwater recovered
					-Stakeholder issues for
					compound footprint on newly
					renovated site.
ISCO Injections	Fair	Fair to Good. Pilot	Good to Fair.	Estimated 1.5 to 2	Advantages:
using Oxygen		test warranted with	\$310,000	years to complete	-Targets removal of COCs in
BioChem (OBC)		3 month monitoring		pilot testing,	both saturated and
		period.		main/polishing	unsaturated zones
		Subsequent		injections and	-With effective volumes and
		injections via direct		performance	applications, can effectively
		push would likely		monitoring.	oxidize petroleum
		include at least 1			hydrocarbons to carbon
		large and 3 or more			dioxide and water.
		polishing events.			Disadvantages:
					- Site lithology would require
					a tight network of injection
					points.
					-Presence of NAPL or other
					unidentified hotspots of
					contamination could reduce
					the effectiveness of
					injections.
					-Potential for formation
					fracturing or uneven
					distribution of product in the
					subsurface could increase the
					required number of injections
					and overall timeframe.

8.0 DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

Antea Group analyzed site conditions from the potential sources, the fuel dispenser, the product piping, and the USTs in an attempt to determine the source of the petroleum hydrocarbon impact in the vicinity of monitoring wells, MW-6 and MW-14. In the vicinity of these monitoring wells there are utilities and the sumps from the

nearby carwash that potentially could act as preferential pathways in this area. However, this does not explain how the impact got to this location and is not found in monitoring wells MW-15, located between the fuel dispensers and the station building and monitoring well, MW-16, located between the known impact on the east side of the site, the fuel dispensers and monitoring wells MW-6 and MW-14. However, based on the boring logs from monitoring wells MW-6 and MW-14, it appears that the fill located in these areas extends down to a depth of approximately three feet bgs. Boring logs are presented in **Appendix D**. Historically, groundwater beneath the site has been as shallow as 0.7 feet below the top of casing in monitoring well, MW-9. Therefore, this fill material with hydraulic conductivity (K) values ranging from 10⁻⁵ to 10⁻³ centimeters per second (cm/sec), when compared to clay (bay mud) with K values ranging from 10⁻⁹ to 10⁻⁶ cm/sec could be acting as a preferential pathway. This still does not explain how the free product got into monitoring well, MW-6 in 1996, after the excavation work conducted at the site in 1995.

Appendix F contains email correspondence and fingerprint analysis of a sample of the free product collected from monitoring well MW-6 in 1996. Based on this correspondence and the subsequent fingerprint analysis, it appears that the free product found in monitoring well MW-6 came from an outside source and did not originate from a release at this site. The fingerprint analysis indicates that the collected sample contained leaded gasoline and was not representative of the fuel refined by Unocal at that time.

In addition, the petroleum hydrocarbon impact observed in monitoring well MW-14 is also likely a result of the introduction of gasoline into monitoring well MW-6 from an outside source, due to the shallow depth to groundwater, the fill material found in the vicinity of monitoring wells MW-6 and MW-14, and groundwater flow direction periodically being to the southwest beneath the site (**Figure 2**, **Appendix C**). It is likely that the petroleum hydrocarbon impacted groundwater in the area of monitoring well MW-6, caused by the introduction of gasoline into MW-6 from an outside source, flowed from MW-6, through the fill material, to the area of monitoring well MW-14.

Under the LTCP there are three COCs for petroleum hydrocarbon impacted soils. The COCs are benzene, ethylbenzene and naphthalene. During previous investigations soil samples were not collected and analyzed for naphthalene. However, during the most recent investigation conducted by Antea Group in July 2013, naphthalene was analyzed for in the soil samples collected. In each of these collected soil samples, the reported naphthalene concentrations were below the limits allowed under the LTCP, except for the sample collected from boring SB-1 at 5.5 feet bgs.

As indicated above, based on the analytical data from the 1995 UST, product piping, and fuel dispenser over excavation investigation and subsequent investigations done at this site, the remaining soil impact appears to be east of the fuel dispenser islands and south-southwest of the current station building. All other remaining impact

appears to be residual in nature and not a source for the current groundwater plume. COC's (benzene, and ethylbenzene) remaining in the soil subsequent to the 1995 UST, product piping, and fuel dispenser over excavation were below the limits allowed by the LTCP. However, benzene, ethylbenzene, and napththalene concentrations reported in borings advanced east of the current fuel dispensers and south-southwest of the current station building contain benzene, ethylbenzene, and napththalene concentrations greater than those allowed under the LTCP.

Therefore, based on the evaluation and comparison of the three alternatives, and taking into consideration the opportunity to conduct work concurrently with a planned site renovation, Antea Group recommends implementing the soil source excavation and ORC-A. This source removal also appears to be the best current option to help reduce remaining petroleum hydrocarbon and MTBE impact to the groundwater beneath and down-gradient of the site. Upon approval of this CAP and the recommendations made herein, Antea Group will submit an updated Remedial Action Plan for consideration.

16 www.anteagroup.com

9.0 REMARKS

The recommendations contained in this report represent Antea USA, Inc.'s professional opinions based upon the currently available information and are arrived at in accordance with currently accepted professional standards. This report is based upon a specific scope of work requested by the client. For any reports cited that were not generated by Delta or Antea Group, the data from those reports is used "as is" and is assumed to be accurate. Antea Group does not guarantee the accuracy of this data for the referenced work performed nor the inferences or conclusions stated in these reports. The contract between Antea USA, Inc. and its client outlines the scope of work, and only those tasks specifically authorized by that contract or outlined in this report were performed. This report is intended only for the use of Antea USA, Inc.'s client and anyone else specifically identified in writing by Antea USA, Inc. as a user of this report. Antea USA, Inc. will not and cannot be liable for unauthorized reliance by any other third party. Other than as contained in this paragraph, Antea USA, Inc. makes no express or implied warranty as to the contents of this report.

Prepared by:

Josh Mahoney

Senior Project Manager

Antea Group

Edward T. Weyrens, G.I.T.

Project Professional

Antea Group

Date:

Information, conclusions, and recommendations provided by Antea Group in this document regarding the site have been prepared under the supervision of and reviewed by the licensed professional whose signature appears below.

> **DENNIS SHANNON** DETTLOFF No. 7480

> > OF CALIFOR

Licensed Approver:

Dennis S. Dettloff, P.G.

Senior Project Manager

California Registered Professional Geologist No. 7480

Antea Group

cc:

GeoTracker (upload)

10.0 REFERENCES

Antea Group, Site Investigation Report, February 15, 2010

Antea Group, Site Investigation Report - Revised, July 26, 2010

Antea Group, Revised Site Investigation Report, August 26, 2011

Antea Group, ISCO Pilot Test Work Plan, May 15, 2012

Antea Group, Quarterly Summary Report, Fourth Quarter 2012, January 16, 2013.

Antea Group, Remedial Action Plan, April 23, 2013

California Department of Water Resources' (DWR) California's Groundwater, Bulletin 118 -

Update 2004

California Regional Water Quality Control Board, Environmental Screening Levels (ESLs) - May 2013

Geostrategies Incorporated, Abandonment of Hydraulic Hoists and Oil/Water Separator Report, December 14, 1994

Kaprealian Engineering, Inc., Stockpiled Soil Sampling Report, December 17, 1991

Kaprealian Engineering, Inc., Soil Sampling Report, October 7, 1994

Kaprealian Engineering, Inc., Soil Sampling Report and Continuing Groundwater Investigation, June 2, 1995

TRC, Dual-Phase Extraction Report, May 24, 2005

TRC, Sensitive Receptor Survey. April 24, 2006

State Water Resources Control Board Low-Threat Underground Storage Tank Case Closure Policy (Resolution No. 2012-0016)

C.W. Fetter, Applied Hydrogeology, Second Edition, 1988

Figures

Figure 1	Site Location Map
Figure 2	Site Plan with Utilities
Figure 3	Geologic Cross Section A-A'
Figure 4	Geologic Cross Section B-B'
Figure 5	Groundwater Elevation Contour Map – September 10, 2013
Figure 6	Site Plan with Historical Sample Locations and Concentrations - A
Figure 7	Site Plan with Historical Sample Locations and Concentrations - B
Figure 8	Site Plan with Historical Sample Locations
Figure 9	Site Plan with Proposed Excavations

FIGURE 1 SITE LOCATION MAP

76 STATION NO. 5191/5043 449 HEGENBERGER ROAD OAKLAND, CALIFORNIA

PROJECT NO.	PREPARED BY	DRAWN BY
142705191	EW	DR/JH
DATE	REVIEWED BY	FILE NAME
1/31/11	DD	5043-SiteLocator

Tables

Table 1	Monitoring Well and Boring Construction Details
Table 2	Historical Groundwater Gauging and Analytical Data
Гable 3	Historical Soil Analytical Data

Table 1 Monitoring Well and Boring Construction Details

76 Station No. 5191/5043 449 Hegenberger Road Oakland, CA

		W	'ell	Scr	een	Screen	
Well	Drill	Depth	Diameter	Тор	Bottom	Length	Comments
I.D.	Date	(feet bgs)	(inches)	(feet bgs)	(feet bgs)	(feet)	
Monitoring We	ells						
MW-1	02/05/91	13.5	2	2.0	13.0	11.0	Abandoned
MW-2	02/05/91	15.0	2	3.0	15.0	12.0	Abandoned
MW-3	02/05/91	14.0	2	2.0	14.0	12.0	
MW-4	08/21/92	13.5	2	2.5	13.5	11.0	Abandoned
MW-5	08/21/92	13.5	2	2.5	13.5	11.0	Abandoned
MW-6	08/21/92	13.5	2	2.5	13.5	11.0	
MW-7	04/21/97	13.0	2	3.0	13.0	10.0	
MW-8	04/21/97	15.0	2	3.0	15.0	12.0	
MW-9	01/25/95	13.0	2	3.0	13.0	10.0	
MW-10	01/25/95	13.0	2	3.0	13.0	10.0	
MW-11	06/22/10	20.0	4	5.0	20.0	15.0	
MW-12	06/22/10	20.0	4	5.0	20.0	15.0	
MW-12A	06/23/10	34.0	2	30.0	34.0	4.0	
MW-13	06/22/10	15.0	2	5.0	15.0	10.0	
MW-14	05/17/11	13.0	2	3.0	13.0	10.0	
MW-15	05/17/11	13.0	2	3.0	13.0	10.0	
MW-16	05/17/11	13.0	2	3.0	13.0	10.0	
MW-17	05/18/11	13.0	2	3.0	13.0	10.0	
Soil Borings							
B-4	12/17/09	20.0					
B-5	12/17/09	32.0					
B-6	05/18/11	26.0					
SB-1	07/25/13	15.0					
SB-2	07/25/13	15.0		-			
SB-3	07/25/13	15.0		-	-	-	
SB-4	07/25/13	15.0					
SB-5	07/25/13	15.0					
SB-6	07/26/13	15.0					
SB-7	07/26/13	15.0					
SB-8	07/26/13	15.0					
SB-9	07/26/13	15.0					
SB-10	07/26/13	15.0		-			

Explanation

Wells are of poly-vinyl-chloride (PVC) construction

bgs = Below ground surface

TABLE 2 HISTORICAL GROUNDWATER GAUGING AND ANALYTICAL DATA 76 STATION NO. 5191/5043 449 HEGENBERGER ROAD OAKLAND, CALIFORNIA

			GROUNDWATER	GALIGING DATA		GROUNDWATER ANALYTICAL DATA														
												MTBE	MTBE	U.I. DAIA					1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	(SW8021B) (ug/L)	(SW8260B) (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	
	2/18/1992	NSVD	NG	NG	NG	13,000	150,000	17,000	26,000	5,200	26,000									
	5/20/1992	NSVD	NG	NG	NG															
	8/31/1992	NSVD	NG	NG	NG	8,900	64,000	13,000	12,000	2,500	22,000									
	11/30/1992 2/4/1993	NSVD NSVD	NG NG	NG NG	NG NG															
	5/4/1993	8.96	2.13	0.10	6.91	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	8/4/1993	8.96	2.92	0.03	6.06	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	11/3/1993	7.38	3.04	NP	4.34	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
MW-1	2/7/1994	7.38	2.55	0.03	4.85	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	5/19/1994	7.38	2.23	0.01	5.16	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	6/25/1994	7.38	2.49	0.01	4.90	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	7/27/1994	7.38	3.10	NP	4.28															
	8/15/1994	7.38	2.85	0.11	4.61	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	11/14/1994	7.38	2.97	0.12	4.50	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	2/21/1995	7.38	1.53	0.02	5.87	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	5/18/1995 2/18/1992	NSVD NSVD	WD NG	WD NG	WD NG	WD 4,300	WD 29,000	1,000	WD 5,300	WD 260	7,900	WD 	WD 	WD 	WD 	WD 	WD 	WD 	WD 	WD
	5/20/1992	NSVD	NG	NG	NG	4,300	24,000	2,200	7,600	630	11,000									
	8/31/1992	NSVD	NG	NG	NG	1,600	9,000	1,800	640	140	2,000									
	11/30/1992	NSVD	NG	NG	NG	5,700	29,000	2,000	3,400	1,200	6,900									
	2/4/1993	NSVD	NG	NG	NG	6,100	18,000	1,600	3,000	ND	6,900									
	5/4/1993	8.96	2.48	NP	6.48	7,100	63,000	3,200	17,000	470	17,000									
	8/4/1993	8.96	3.20	NP	5.76	1,800	45,000	2,100	6,600	1,400	12,000									
MW-2	11/3/1993	8.58	3.37	NP	5.21	2,600	72,000	3,700	16,000	3,700	20,000									
10100 2	2/7/1994	8.58	2.40	NP	6.18	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	5/19/1994	8.58	2.13	NP	6.45	3,000	42,000	2,500	1,300	2,300	13,000									
	6/25/1994	8.58	2.65	NP	5.93															
	7/27/1994	8.58	3.44	NP	5.14	2 000	 2F 000													
	8/15/1994 11/14/1994	8.58 8.58	3.25 2.13	NP NP	5.33 6.45	2,800 10,000	35,000 43,000	2,400 2,200	850 6,500	1,700 1,800	15,000 14,000									
	2/21/1995	8.58	1.65	NP	6.93	2,000	44,000	2,200	3,200	1,300	1,500									
	5/18/1995	NSVD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD
	2/18/1992	NSVD	NG	NG	NG	ND	230	5	22	2	33									
	5/20/1992	NSVD	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI
	8/31/1992	NSVD	NG	NG	NG	92	210	1	ND	ND	ND									
	11/30/1992	NSVD	NG	NG	NG	94	790	ND	ND	ND	ND									
	2/4/1993	NSVD	NG	NG	NG	550	3,300	320	ND	96	6									
	5/4/1993	7.84	4.32	NP	3.52	250	1,800	95	ND	ND	ND									
	8/4/1993	7.84	4.94	NP	2.90	100	210	ND	ND	ND	ND									
	11/3/1993	7.42	4.53	NP	2.89	160	640	ND	ND ND	ND	ND ND									
	2/7/1994 5/19/1994	7.42	2.40 3.60	NP NP	5.02 3.82	620 480	2,700 1,800	110 83	ND ND	17 6	ND 9									
MW-3	6/25/1994	7.42	4.58	NP NP	2.84															
	7/27/1994	7.42	4.58	NP	2.84															
	8/15/1994	7.42	4.65	NP	2.77	110	130	1	1	ND	1									
	11/14/1994	7.42	3.18	NP	4.24	150	1,600	ND	ND	ND	ND									
	2/21/1995	7.42	1.81	NP	5.61	850	3,800	350	ND	130	22									
	5/18/1995	7.42	4.56	NP	2.86	150	1,300	42	ND	ND	ND									
	8/17/1995	7.42	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI
	7/26/1996	7.42	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI
	10/28/1996	7.42	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO	WO
	1/29/1997	7.42	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI
	4/15/1997	7.42	WI 2.4F	WI	WI 3.07	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI
	5/27/1997 6/1/1997	7.42 7.42	3.45 3.50	NP NP	3.97 3.92	610	670	7	ND	ND 	ND 	250								
	7/15/1997	8.04	3.50	NP NP	4.33	240	240	ND	 ND	ND	ND	490								
	10/9/1997	8.04	3.70	NP NP	4.34	500	270	1	ND ND	2	1	910								
	1/14/1998	8.04	2.16	NP	5.88	340	310	ND	ND	1	1	140								
	4/1/1998	8.04	2.20	NP	5.84	320	370	6	ND	ND	ND	93								
	7/15/1998	8.04	3.38	NP	4.66	510	460	ND	ND	ND	ND	230								
								•	•					•			•	-	•	•

TABLE 2 HISTORICAL GROUNDWATER GAUGING AND ANALYTICAL DATA 76 STATION NO. 5191/5043 449 HEGENBERGER ROAD OAKLAND, CALIFORNIA

			GROUNDWATER	GAUGING DATA	,	GROUNDWATER ANALYTICAL DATA														
												MTBE	MTBE						1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	(SW8021B) (ug/L)	(SW8260B) (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	
	10/16/1998	8.04	2.30	NP	5.74	67	330	5	ND	ND	ND	60								
Ī	1/25/1999	8.04	2.42	NP	5.62	120	420	2	ND	ND	ND	180								
	4/15/1999	8.04	2.16	NP	5.88	170	290	1	ND	ND	ND	160								
	7/14/1999 10/21/1999	8.04 8.04	2.35 2.49	NP NP	5.69 5.55	420 350	290 360	3 1	ND ND	ND ND	ND ND	160 82								
ŀ	1/20/2000	8.04	2.49	NP	5.66	2,060	ND	1	ND	ND ND	ND	54								
	4/13/2000	8.04	2.76	NP	5.28	200	250	1	ND	ND	ND	91	150	ND	ND	ND	ND	ND	ND	ND
	7/14/2000	8.04	3.26	NP	4.78	423	345	ND	ND	ND	ND	95								
	10/26/2000	8.04	3.12	NP	4.92	330	480	6.0	ND	ND	ND	120								
}	1/3/2001 4/4/2001	8.04 8.04	3.65 3.98	NP NP	4.39 4.06	287 360	364 417	1	ND ND	ND ND	ND 1	118 237								
ŀ	7/17/2001	8.04	3.12	NP	4.92	270	480	ND	ND	ND	ND	150								
	10/1/2001	8.04	3.25	NP	4.79	270	310	1.0	<0.50	<0.50	<0.50	53								
	1/31/2002	8.04	2.27	NP	5.77	250	250	4	<1.0	<1.0	<1.0	110								
	4/18/2002	8.04 8.04	3.55	NP	4.49	320	300	<2.0 <0.50	<2.0	<2.0 <0.50	<2.0 <1.0		59							
ŀ	7/28/2002 10/9/2002	8.04	2.55 2.47	NP NP	5.49 5.57	310 700	500 690	<0.50 <5	<0.50 <5	<0.50 <5	<1.0		130 120							
	1/2/2003	8.04	1.70	NP	6.34	210	310	<0.50	<0.50	<0.50	<1.0		110	<2.0	<2.0	<2.0	<100	<500	<2.0	<2.0
ļ	4/1/2003	8.04	3.48	NP	4.56	200	250	<1.0	<1.0	<1.0	<2.0		210							
	7/1/2003	8.04	2.65	NP	5.39	380	450	<2.5	<2.5	<2.5	<5.0		70					<2500		
	10/2/2003	8.04 8.04	3.12	NP NP	4.92	300 200	<250 300	<2.5 <0.50	<2.5	<2.5	<5.0		210 66					<2500 <500		
ŀ	1/9/2004 4/26/2004	8.04	2.39 3.11	NP NP	5.65 4.93	160	440	3	6	3	9		81					<500 <50		
ļ	7/22/2004	8.04	2.51	NP	5.53	330	420	<0.5	<0.5	<0.5	<1		72					<1000		
Ī	10/29/2004	8.04	2.00	NP	6.04	200	460	6	15	10	46		48					<50		
	1/10/2005	8.04	1.52	NP	6.52	250	280	<0.50	1	<0.50	2		64					<50		
	6/15/2005	8.04	2.00	NP	6.04	360	460	<0.50	0.70	0.56	2		110					<50		
	9/27/2005 12/13/2005	8.04 8.04	1.90 2.35	NP NP	6.14 5.69	<200 230	210	<0.50 <0.50	0.60 <0.50	<0.50 <0.50	<1.0 <1.0		100 92	<0.50	<0.50	<0.50	79 	<250 <250		
ŀ	3/23/2006	8.04	1.84	NP	6.20	260	290	<0.50	<0.50	<0.50	<1.0		88					<250		
MW-3	6/23/2006	8.04	2.26	NP	5.78	330	500	<0.50	<0.50	<0.50	<1.0		75					<250		
	9/26/2006	8.04	2.08	NP	5.96	260	270	<0.50	<0.50	<0.50	<0.50		73					<250		
	12/22/2006	8.04	1.88	NP	6.16	250	260	<0.50	<0.50	<0.50	1		71					<250		
	3/30/2007 6/28/2007	8.04 8.04	2.47 2.54	NP NP	5.57 5.50	210 290	390 370	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		120 55					<250 <250		
ŀ	9/25/2007	8.04	2.56	NP	5.48	210	350	<0.50	<0.50	<0.50	<0.50		61					<250		
	12/28/2007	8.04	2.29	NP	5.75	150	260	<0.50	<0.50	<0.50	<1.0		66					<250		
	3/22/2008	8.04	3.26	NP	4.78	230	390	<0.50	<0.50	<0.50	<1.0		39					<250		
	6/23/2008	8.04	2.60	NP	5.44	130	200	<0.50	<0.50	<0.50	<1.0		46					<250		
	9/19/2008 12/31/2008	8.04 8.04	3.45 2.55	NP NP	4.59 5.49	93 110	180 190	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0		120 38					<250 <250		
	3/27/2009	8.04	2.37	NP	5.67	130	150	<0.50	<0.50	<0.50	<1.0		50					<250		
ļ	5/28/2009	8.04	3.32	NP	4.72	120	190	<0.50	<0.50	<0.50	<1.0		60					<250		
Ţ	9/17/2009	8.04	2.63	NP	5.41	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2009	8.04	2.13	NP	5.91	338	300	<0.50	<0.50	1	<1.5		43					<250		
	3/29/2010 6/30/2010	8.04 10.81	2.22 2.91	NP NP	5.82 7.90	90	261	<0.50	<0.50	<0.50	<1.5		89.0					<250		
ŀ	7/6/2010	10.81	2.91	NP NP	7.90 8.15			<0.50	<0.50	<0.50	<1.5		89.0					<250		
ļ	9/20/2010	10.81	3.12	NP	7.69															
ļ	12/8/2010	10.81	2.37	NP	8.44	137	306	<0.50	<0.50	<0.50	<1.5		58.8					<250		
ļ	3/14/2011	10.81	2.26	NP	8.55															
,	6/2/2011	10.81	2.43	NP ND	8.38	155	283	0.58	1.3	<0.50	2.2		42.1				55.7	<250		
ŀ	9/7/2011 12/5/2011	10.81 10.81	2.36 2.55	NP NP	8.45 8.26	81.7	381	<0.50	<0.50	<0.50	<1.5		41.8					<250		
ļ	3/6/2012	10.81	2.63	NP	8.18															
ļ	6/11/2012	10.81	2.99	NP	7.82	87.9	371	<0.50	<0.50	<0.50	<1.5		55.7				77.2	<250		
Ţ	9/6/2012	10.81	2.50	NP	8.31															
ļ	12/13/2012	10.81	2.50	NP	8.31	<50	130	<0.50	<0.50	<0.50	<0.50		28				77	<5.0		
}	3/14/2013 6/11/2013	10.81 10.81	2.63 3.31	NP NP	8.18 7.5	 <50	190	<0.50	<0.50	<0.50	<0.50		44				97	<5.0		
ŀ	9/10/2013	10.81	3.25	NP NP	7.56					<0.50 					-					
NAVA / A	8/31/1992	NSVD	NG	NG	NG	90	240	ND	ND	ND	0.54									
MW-4	11/30/1992	NSVD	NG	NG	NG	61	420	ND	ND	ND	ND									

			GROUNDWATER	GALIGING DATA								GROUND	WATER ANALYTIC	CAL DATA						
												MTBE	MTBE	CALDAIA					1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	(SW8021B) (ug/L)	(SW8260B) (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	
	2/4/1993	NSVD	NG	NG	NG	ND	ND	ND	ND	ND	ND									
	5/4/1993	9.00	4.09	NP	4.91	ND	110	0.95	ND	ND	ND									
	8/4/1993	9.00 8.41	5.01 4.23	NP NP	3.99 4.18	81 68	250 130	ND ND	3.5 ND	ND ND	4.1 ND									
	11/3/1993 2/7/1994	8.41	3.35	NP NP	5.06	ND	56	ND ND	ND ND	ND ND	ND ND				-					
MW-4	5/19/1994	8.41	3.92	NP	4.49	90	140	ND	ND	ND	ND									
	6/25/1994	8.41	4.35	NP	4.06															
	7/27/1994	8.41	4.28	NP	4.13															
	8/15/1994	8.41	4.27	NP	4.14	72	59	ND	0.6	ND	ND									
	11/14/1994 2/21/1995	8.41 NSVD	4.05 WD	NP WD	4.36 WD	ND WD	130 WD	ND WD	ND WD	ND WD	ND WD	WD	WD	WD	 WD	WD	WD	WD	WD	WD
	8/31/1993	NSVD	NG	NG	NG	690	78	1	ND ND	ND ND	13					WD		WD 		WD
	11/30/1992	NSVD	NG	NG	NG	470	930	70	290	1	14									
	2/4/1993	NSVD	NG	NG	NG	5,500	5,700	38	ND	620	170									
	5/4/1993	8.95	4.37	NP	4.58	4,600	7,400	41	ND	1,000	35									
	8/4/1993	8.95	5.81	NP	3.14	970	1,500	130	1	460	11									
	11/3/1993	8.95	5.68	NP	3.27	2,100	13,000	350	ND	3,500	530									
MW-5	2/7/1994 5/19/1994	8.95 8.95	5.11 5.09	NP NP	3.84 3.86	830 600	2,000 260	87 44	ND ND	370 32	110 4									
	6/25/1994	8.95	4.55	NP	4.40															
	7/27/1994	8.95	5.72	NP	3.23															
	8/15/1994	8.95	5.68	NP	3.27	860	1,600	110	ND	340	72									
	11/14/1994	8.95	5.63	NP	3.32	290	250	40	ND	ND	5				-					
	2/21/1995	NSVD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD	WD
	8/31/1992	NSVD	NG NC	NG	NG NC	750	ND 0.200	ND 550	ND ND	ND 740	ND 1,600									
	11/30/1992 2/4/1993	NSVD NSVD	NG NG	NG NG	NG NG	1,400 890	9,200 3,600	340	ND ND	290	550									
	5/4/1993	9.12	3.72	NP	5.40	1,800	4,900	360	18	450	430									
	8/4/1993	9.12	5.15	NP	3.97	1,100	3,400	390	ND	440	190									
	11/3/1993	8.87	5.25	NP	3.62	390	1,400	320	ND	200	8									
	2/7/1994	8.87	4.55	NP	4.32	970	4,900	650	ND	250	35									
	5/19/1994	8.87	4.62	NP	4.25	1,400	3,600	300	2	210	41									
	8/15/1994 11/14/1994	8.87 8.87	5.08 5.30	NP NP	3.79 3.57	790 800	1,300 730	130 50	7 ND	54 ND	57 39									
	2/21/1995	8.87	5.37	NP	3.50	730	2,000	250	5	25	30									
	5/18/1995	8.87	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI
	8/17/1995	8.87	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI	WI
	7/26/1996	8.87	6.40	3.33	4.97	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	10/28/1996	8.87	4.10	0.21	4.93	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	11/13/1996 11/25/1996	8.87 8.87	4.02 4.01	0.25 0.75	5.04 5.42	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH
	12/4/1996	8.87	3.65	0.50	5.60	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
MW-6	12/19/1996	8.87	4.80	2.20	5.72	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	1/8/1997	8.87	4.84	1.75	5.34	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	1/14/1997	8.87	4.51	1.15	5.22	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	1/27/1997	8.87 8.87	4.00	1.75	6.18	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	1/29/1997 2/11/1997	8.87 8.87	3.24 4.65	0.31 1.20	5.86 5.12	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH
	2/11/1997	8.87	4.81	1.10	4.89	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	3/10/1997	8.87	4.60	0.95	4.98	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	3/17/1997	8.87	4.50	0.89	5.04	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	3/31/1997	8.87	4.65	1.00	4.97	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	4/15/1997	8.87	4.90	1.03	4.74	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	4/28/1997	8.87	4.78	0.03	4.11	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	5/15/1997 5/27/1997	8.87 8.87	4.60 4.50	0.25 0.25	4.46 4.56	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH
	6/9/1997	8.87	4.60	0.23	4.42	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	6/24/1997	8.87	4.50	0.25	4.56	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	7/9/1997	8.87	4.80	0.60	4.52	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	7/15/1997	8.87	4.63	0.42	4.56	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH

			GROUNDWATER	GAUGING DATA								GROUND	WATER ANALYTI	CAL DATA						
										"		MTBE	MTBE						1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes	(SW8021B)	(SW8260B)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane	
		(11)	(11)	Thickness (It)	Elevation (it)					(ug/L)	(ug/L)	(ug/L)	(ug/L)						(EDB) (ug/L)	(ug/L)
	7/21/1997	8.87	4.75	0.25	4.31	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	8/6/1997	8.87	4.50	0.10	4.45	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	8/20/1997	8.87	4.55	0.10	4.40	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	9/2/1997	8.87	4.75	0.05	4.16	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	10/9/1997	8.87	4.84	0.04	4.06	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	1/14/1998 2/12/1998	8.87 8.87	3.90 3.35	0.94	5.68 6.00	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH
	3/3/1998	8.87	4.51	0.02	4.38	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	4/1/1998	8.87	3.67	1.60	6.40	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	5/26/1998	8.87	4.11	0.50	5.14	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	6/15/1998	8.87	5.03	0.30	4.07	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	7/15/1998	8.87	4.56	0.05	4.35	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	8/21/1998	8.87	4.77	0.02	4.12	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	9/30/1998	8.87	5.08	0.03	3.81	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	10/16/1998	8.87	4.31	2.40	6.36	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	11/6/1998	8.87	3.98	0.17	5.02	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	11/25/1998	8.87	3.92	0.10	5.03	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	12/28/1998	8.87	3.90	0.20	5.12	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	1/25/1999	8.87 8.87	4.18 4.07	0.60	5.14 4.97	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH	LPH LPH
	2/22/1999 3/22/1999	8.87	4.07	0.22	4.97	LPH	LPH	LPH	LPH	LPH	LPH	LPH LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	4/15/1999	8.87	4.23	0.95	5.35	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	5/28/1999	8.87	4.38	0.39	4.78	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	6/29/1999	8.87	4.12	0.02	4.77	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	7/14/1999	8.87	4.20	0.03	4.69	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	8/23/1999	8.87	4.51	0.24	4.54	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	9/30/1999	8.87	4.17	0.17	4.83	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	10/21/1999	8.87	4.27	0.12	4.69	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	11/29/1999	8.87	4.18	NP	4.69															
MW-6	12/20/1999	8.87	4.26	0.01	4.62	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH	LPH
	1/20/2000	8.87	4.31	NP	4.56	67,600	130,000	2,900	8,600	2,000	16,000	ND								
	2/26/2000	8.87	3.98	NP	4.89															
	3/31/2000	8.87 8.87	4.14 4.04	NP NP	4.73 4.83	8,700	140,000	5,000	14,000	3,600	27,000	7,700								
	4/13/2000 5/26/2000	8.87	4.04	NP NP	4.65															
	6/17/2000	8.87	4.35	NP	4.52															
	7/14/2000	8.87	4.47	NP	4.40	133,000	259,000	7,670	13,700	6,860	40,700	ND	ND							
	8/24/2000	8.87	3.71	NP	5.16															
	9/27/2000	8.87	4.33	NP	4.54															
	10/26/2000	8.87	4.32	NP	4.55	61,000	110,000	7,000	6,200	3,700	12,000	670	43							
	1/3/2001	8.87	4.52	NP	4.35	929	84,700	3,950	4,130	3,650	11,800	ND	ND							
	4/4/2001	8.87	4.29	NP	4.58	18,000	69,800	2,060	2,840	3,650	10,900	ND	48	ND	ND	ND	ND	ND	ND	ND
	7/17/2001	8.87	4.37	NP	4.50	20,000	100,000	3,200	3,300	3,400	12,000	ND 1000								
	10/1/2001	8.87	4.45	NP	4.42	24,000	110,000	3,200	2,400	4,500	13,000	<1000								
	1/31/2002 4/18/2002	8.87 8.87	4.03 3.45	NP NP	4.84 5.42	11,000 3,500	230,000 94,000	2,400 6,800	1,800 13,000	5,400 3,000	16,000 19,000	<2500 <500								
	7/28/2002	8.87	2.24	NP NP	6.63	27,000	110,000	530	170	3,200	7,300	<500	<100							
	10/9/2002	8.87	3.53	NP	5.34	170,000	970,000	10,000	39,000	13,000	94,000		<2000							
	1/2/2003	8.87	2.34	NP	6.53	66,000	270,000	6,100	15,000	5,400	37,000		<200							
	4/1/2003	8.87	3.17	NP	5.70	35,000	3,000,000	8,000	39,000	37,000	260,000		<2000							
	7/1/2003	8.87	3.55	NP	5.32	11,000	38,000	2,100	990	2,700	6,500		<100					<25000		
	10/2/2003	8.87	3.82	NP	5.05	<50	100,000	5,600	6,900	4,700	18,000		<800					<200000		
	1/9/2004	8.87	2.80	NP	6.07	20,000	170,000	2,800	3,300	4,700	16,000		<200					<50000		
	4/26/2004	8.87	3.40	NP	5.47	13,000	97,000	5,900	9,000	5,100	23,000		<50					<5000		
	7/22/2004	8.87	3.54	NP	5.33	33,000	110,000	4,100	5,100	4,000	16,000		<200					<300000		
	10/29/2004	8.87	3.03	NP	5.84	78,000	100,000	5,200	6,100	4,200	15,000		<50					<5000		
	1/10/2005	8.87	2.35	NP	6.52	12,000	71,000	1,600	3,700	2,100	9,900		<50					<5000		
	6/15/2005	8.87	2.47	NP	6.40	16,000	130,000	800	1,800	2,200	9,300		<50					<5000		
	9/27/2005	8.87	2.55	NP	6.32	2,500	13,000	82 1 500	120	430	990		1	2	<0.50	<0.50	<10	<250		
	12/13/2005	8.87	3.28	NP	5.59	18,000	68,000	1,500	1,100	2,200	7,700		<50					<25000		

			GROUNDWATER	GAUGING DATA								GROUND	WATER ANALYTIC	CAL DATA						
14/-II I B	D-4-	T0051								511 11	T. 1. 1. 1	MTBE	MTBE						1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	(SW8021B)	(SW8260B)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane	Dichloroethane
		(1.)	` '	THICKITCSS (TC)	Lictation (it)						(46/1)	(ug/L)	(ug/L)						(EDB) (ug/L)	(ug/L)
	3/23/2006	8.87	2.87	NP	6.00	73,000	41,000	290	140	1,500	2,700		<50					<25000		
	6/23/2006 9/26/2006	8.87 8.87	3.15 3.08	NP NP	5.72 5.79	35,000 22,000	50,000 130,000	2,200 2,200	1,400 1,000	1,900 2,900	5,700 8,800		<12 <50					<6200 <25000		
	12/22/2006	8.87	2.90	NP NP	5.79	62,000	90,000	940	610	1,900	4,700		<50					<25000		
	3/30/2007	8.87	3.26	NP	5.61	62,000	210,000	1,100	560	3,400	12,000		<10					<5000		
	6/28/2007	8.87	3.46	NP	5.41	71,000	67,000	2,200	1,300	2,700	10,000		<25		-			<12000		
	9/25/2007	8.87	3.52	NP	5.35	58,000	56,000	2,900	720	2,400	9,000		<25		-			<12000		
	12/28/2007	8.87	3.27	NP	5.60	18,000	78,000	28,000	2,700	4,000	8,100		16,000					<12000		
	3/22/2008 6/23/2008	8.87 8.87	2.48 3.54	NP NP	6.39 5.33	68,000 68,000	66,000 59,000	380 1,600	150 130	1,500 1,800	2,400 4,100		<25 25					<12000 <12000		
	9/19/2008	8.87	4.06	NP	4.81	180,000	65,000	2,000	230	2,000	4,500		<12					<6200		
	12/31/2008	8.87	3.45	NP	5.42	68,000	91,000	2,000	320	5,300	13,000		<50					<25000		
	3/27/2009	8.87	3.09	NP	5.78	170,000	150,000	1,300	240	2,800	7,200		<50					<25000		
	5/28/2009	8.87	3.49	NP	5.38	78,000	53,000	1,700	200	2,300	5,400		<50					<25000		
	9/17/2009	8.87	3.64	NP	5.23	250,000 T4	77,000	2,100	1,400	2,600	8,500		<12					<6200		
	12/17/2009	8.87	3.14	NP	5.73	30,300	59,100	1,730	199	2,260	5,460		20					<250		
MW-6	3/29/2010 6/30/2010	8.87 11.55	3.16 3.50	NP NP	5.71 8.05	106,000 170,000	48,400 78,700	1,980 2,130	208 281	3,070 2,860	8,070 8,400		12 6		-			<250 <250		
	7/6/2010	11.55	3.49	NP NP	8.06		78,700													
	9/20/2010	11.55	3.75	NP	7.80	18,800	64,500	2,300	170	2,770	6,260		19					<250		
	12/8/2010	11.55	8.42	NP	3.13	28,700	78,400	1,300	1,680	3,490	20,600		11					<250		
	3/14/2011	11.55	3.40	NP	8.15	93,000	44,600	912	338	728	3,670		16				134	<250		
	6/2/2011	11.55	2.76	NP	8.79	33,700 T4	56,200	780	262	651	3,890		7				81.0	<250		
	9/7/2011	11.55	2.83	NP	8.72	6,780 T4	16,600	16	11	90	339		<0.50					<250		
	12/5/2011 3/6/2012	11.55 11.55	3.56 3.43	NP NP	7.99 8.12	20,200 T4 14,800 T4	64,600 55,000	646 1,020	95 131	924 1,320	4,050 4,730		15 19		-		316	<250 <1250		
	6/11/2012	11.55	3.33	NP	8.22															
	6/12/2012					47,100 T4	33,400	773	61	840	3,110		11				123	<250		
	9/6/2012	11.55	2.85	NP	8.70	<1000	24,000	450	51	610	1,800		6	<4.0	<4.0	<4.0	82	<40	<4.0	<4.0
	9/11/2012																			
	12/13/2012	11.55	2.90	NP	8.65	470	20,000	200	16	350	1,100		<4.0				22	<40		
	3/14/2013 6/11/2013	11.55 11.55	3.69 3.86	NP NP	7.86 7.69	680 2,400	24,000 87,000	500 1,800	25 250	540 2,000	1,700 9,400		8 13		-		110 230	<40 <40		
	9/10/2013	11.55	4.11	NP NP	7.44	470	28,000	440	19	530	1,500		10				170	<40		
	5/27/1997	8.83	4.50	NP	4.33		68	ND	ND	ND	ND ND	ND								
	6/1/1997	8.83	4.54	NP	4.29	69														
	7/15/1997	8.83	4.70	NP	4.13	ND	ND	ND	ND	ND	ND	ND								
	10/9/1997	8.83	4.30	NP	4.53	190	ND	ND	ND	ND	ND	ND								
	1/14/1998	8.83	2.88	NP	5.95	65	ND	ND	ND	ND	ND	36								
	4/1/1998 7/15/1998	8.83 8.83	3.13 4.45	NP NP	5.70 4.38	ND 74	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
1	10/16/1998	8.83	3.45	NP NP	5.38	ND	ND	ND ND	ND	ND ND	ND ND	ND ND								
	1/25/1999	8.83	3.22	NP	5.61	ND	ND	ND	ND	ND	ND	ND			-					
	4/15/1999	8.83	3.11	NP	5.72	ND	ND	ND	ND	ND	ND	ND								
1	7/14/1999	8.83	3.34	NP	5.49	69	ND	ND	ND	ND	ND	ND								
1	10/21/1999	8.83	3.43	NP	5.40	ND	ND	ND	ND	ND	ND	ND								
	1/20/2000 4/13/2000	8.83 8.83	3.29 3.39	NP NP	5.54 5.44	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.2 ND		-						
MW-7	7/14/2000	8.83	4.42	NP NP	4.41	68.0	ND ND	ND ND	ND ND	ND ND	ND ND	7.83								
	7/17/2001	8.83	5.06	NP	3.77	ND	ND	ND	ND	ND	ND ND	ND			-					
	10/1/2001	8.83	4.98	NP	3.85	<51	<50	<0.50	<0.50	<0.50	<0.50	<5.0			-					
1	1/31/2002	8.83	3.88	NP	4.95	90	<50	<0.50	<0.50	<0.50	<0.50	<2.5								
	4/18/2002	8.83	4.03	NP	4.80	78	<50	<0.50	<0.50	<0.50	<0.50	5.7								
	7/28/2002	8.83	3.59	NP	5.24	<50	<50	<0.50	<0.50	<0.50	<1.0		3.9							
	10/9/2002	8.83 8.83	4.53 3.36	NP NP	4.30 5.47	<96 78	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0		3.9 <2.0							
	4/1/2003	8.83	3.36	NP NP	4.89	67	71	<0.50	<0.50	0.50 0.71	<1.0		3.4							
	7/1/2003	8.83	4.60	NP	4.23	68	64	<0.50	<0.50	0.77	2.0		35		-			<500		
	10/2/2003	8.83	5.46	NP	3.37	82	<50	<0.50	<0.50	<0.50	<1.0		4.9					<500		
	1/9/2004	8.83	3.55	NP	5.28	75	54	<0.50	<0.50	<0.50	<1.0		2.4		-			<500		
	4/26/2004	8.83	4.49	NP	4.34	<50	<50	<0.50	<0.50	<0.50	1.5		2.3					<50		
1	7/22/2004	8.83	4.93	NP	3.90	<200	82	0.90	2.0	3.5	9.9		1.4					<1000		
	10/29/2004	8.83	3.71	NP	5.12	54	210	0.67	1.6	1.7	5.8		<0.50					<50		

			GROUNDWATER	GAUGING DATA								GROUND	WATER ANALYTI	CAL DATA						
Well I.D.	Date			LNAPL						Ethylhanzan	Total Vulana-	MTBE	MTBE						1,2-	1,2-
weii i.b.	Date	TOC Elevation (ft)	(ft)	Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	(SW8021B) (ug/L)	(SW8260B) (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	1/10/2005	8.83	2.77	NP	6.06	<50	74	0.51	2.2	1.7	7.0		<0.50					<50		
	6/15/2005 9/27/2005	8.83 8.83	3.40 3.44	NP NP	5.43 5.39	<50 <200	<50 <50	<0.50 0.59	<0.50 1.2	<0.50 <0.50	<1.0 <1.0		0.88	<0.50	<0.50	<0.50	<10	<50 <250		
	12/13/2005	8.83	3.44	NP NP	4.85	<200	<50 <50	<0.50	<0.50	<0.50	<1.0		0.96					<250		
	3/23/2006	8.83	3.37	NP	5.46	<200	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	6/23/2006	8.83	5.25	NP	3.58	<200	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	9/26/2006 12/22/2006	8.83 8.83	4.13 3.63	NP NP	4.70 5.20	<50 630	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		0.77 <0.50					<250 <250		
	3/30/2007	8.83	4.31	NP	4.52	94	<50	<0.50	<0.50	<0.50	<0.50		<0.50					<250		
	6/28/2007	8.83	4.62	NP	4.21	<50	<50	<0.50	<0.50	<0.50	<0.50		0.54					<250		
	9/25/2007	8.83	4.65	NP NP	4.18 4.84	<50 75	<50 <50	<0.50	<0.50	<0.50	<0.50 <1.0		<0.50					<250 <250		
	12/28/2007 3/22/2008	8.83 8.83	3.99 4.08	NP NP	4.84	< 50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0		<0.50 <0.50					<250		
	6/23/2008	8.83	4.10	NP	4.73	<50	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	9/19/2008	8.83	4.86	NP	3.97	<50	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	12/31/2008 3/27/2009	8.83 8.83	4.17 4.00	NP NP	4.66 4.83	<50 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0		<0.50 <0.50					<250 <250		
MW-7	5/28/2009	8.83	4.00	NP NP	4.63	<50	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	9/17/2009	8.83	4.87	NP	3.96	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/29/2010	8.83	WI	WI	WI															
	6/30/2010 7/6/2010	11.64 11.64	4.45 4.63	NP NP	7.19 7.01	66.0	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250 		
	9/20/2010	11.64	4.85	NP	6.79		-													
	12/8/2010	11.64	3.99	NP	7.65	57.7	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
	3/14/2011	11.64	3.81	NP	7.83															
	6/2/2011	11.64	3.90 3.72	NP NP	7.74 7.92	63.0 T4		<0.50	<0.50	<0.50	<1.5		<0.50				<5.0	<250		
	9/7/2011 12/5/2011	11.64 11.64	4.60	NP NP	7.92	<50.0	-	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
	3/6/2012	11.64	4.54	NP	7.10		-													
	6/11/2012	11.64	4.93	NP	6.71	<37.9		<0.50	<0.50	<0.50	<1.5		<0.50				<5.0	<250		
	9/6/2012 12/13/2012	11.64 11.64	4.03 3.43	NP NP	7.61 8.21	 <50		<0.50	<0.50	<0.50	<0.50		<0.50				 <5.0	 <5.0		
	3/14/2013	11.64	4.9	NP	6.74		-													
	6/11/2013	11.64	6.92	NP	4.72	96	<50	<0.50	<0.50	<0.50	<0.50		<0.50				7	<5.0		
	9/10/2013	11.64	6.54	NP	5.1															
	5/27/1997 6/1/1997	8.52 8.52	3.42 3.46	NP NP	5.10 5.06	320	310	0.88	0.67	15 	70	ND 								
	7/15/1997	8.52	3.49	NP	5.03	ND	ND	ND	ND	2.7	3.8	ND								
	10/9/1997	8.52	3.73	NP	4.79	390	590	1.4	ND	32	4.1	ND								
	1/14/1998	8.52	1.92	NP	6.60	230	ND	ND	ND	ND	ND	ND								
	4/1/1998 7/15/1998	8.52 8.52	2.38 3.53	NP NP	6.14 4.99	510 140	ND ND	ND ND	ND ND	ND 0.56	ND 1.1	4.7 ND								
	10/16/1998	8.52	3.04	NP	5.48	170	ND	ND	ND	ND	ND	ND								
	1/25/1999	8.52	2.92	NP	5.60	ND	ND	ND	ND	ND	ND	ND								
	4/15/1999	8.52 8.52	2.40 3.03	NP NP	6.12 5.49	91 120	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
	7/14/1999 10/21/1999	8.52 8.52	3.03	NP NP	5.49	110	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
	1/20/2000	8.52	3.06	NP	5.46	583	ND	ND	ND	ND	ND	ND								
MW-8	4/13/2000	8.52	2.84	NP	5.68	80	ND	ND	ND	ND	ND	ND								
	7/14/2000 7/17/2001	8.52 8.52	3.39 3.46	NP NP	5.13 5.06	113 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
	10/1/2001	8.52 8.52	3.46	NP NP	5.06	ND <50	<50	<0.50	<0.50	<0.50	<0.50	<5.0								
	1/31/2002	8.52	2.75	NP	5.77	260	<50	<0.50	<0.50	<0.50	<0.50	<2.5								
	4/18/2002	8.52	2.98	NP	5.54	160	<50	<0.50	<0.50	<0.50	<0.50	<2.5								
	7/28/2002 10/9/2002	8.52 8.52	2.41 2.09	NP NP	6.11 6.43	140 120	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0		<2.0 <2.0							
	1/2/2003	8.52	1.98	NP NP	6.54	210	<50 <50	<0.50	<0.50	<0.50	<1.0		<2.0							
	4/1/2003	8.52	2.66	NP	5.86	220	<50	<0.50	<0.50	<0.50	<1.0		<2.0							
	7/1/2003	8.52	3.08	NP	5.44	170	<50	<0.50	<0.50	<0.50	<1.0		<2.0					<500		
	10/2/2003 1/9/2004	8.52 8.52	3.89 2.38	NP NP	4.63 6.14	350 180	540 <50	3.9 <0.50	15 <0.50	29 <0.50	80 <1.0		<2.0 <2.0					<500 <500		
	4/26/2004	8.52	2.38	NP NP	5.63	100	<50 <50	<0.50	<0.50	<0.50	<1.0		<0.50					<500		
	7/22/2004	8.52	3.25	NP	5.27	250	<50	<0.5	<0.5	<0.5	<1		<0.5					<1000		

Mathematical Math				GROUNDWATER	GAUGING DATA								GROUND	WATER ANALYTI	CAL DATA						
19	Wellin	Data									Ethylhanzan	Total Vulana-								1,2-	1,2-
March 1987 1988	well I.D.	Date					TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)				(SW8260B)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)		
March Marc			(1.)	(1.1)	THICKNESS (IV)	Lievation (it)					(46/1)	(46/1)	(ug/L)	(ug/L)						(EDB) (ug/L)	(ug/L)
March Marc															!		+		1	-	+
March Marc															1	1	1			1	1
## 1989/99 159																				-	+
1989/1986 1982 19																				+	
94/200																					
1/2/2006		6/23/2006	8.52	2.65	NP	5.87	<230	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
Mar.			8.52						<0.50		<0.50			<0.50					<250		
March 1979 1979 1970																					
Fig. 1966 1975 1976															1	ł	1				1
10/2007 15.0 2 24 10 pc 1.50 130 120 120 120 120 120 120 120 120 120 12																1	+			1	1
MARIE STATE																1				+	1
MY 19																					
Marie 1977 1978		6/23/2008	8.52	3.13	NP	5.39	<58	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
March Marc																					
\$\frac{\text{W}_{1}}{\text{\$\frac{\text{\$\general}{\tex																					
	MW-8													ł	1	1	1			1	1
1379/2010 11.21 2.10																1					
MANDON 1137 2.50 RP 8.77 122 650 650 630																					
March Marc							182	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
126/2010 1132 2.82		7/6/2010	11.32	3.03	NP	8.29															
\$\frac{87347931}{642701} 13132		9/20/2010	11.32	3.33		7.99				-											
\$\frac{972011}{9772011} 1132																	1			1	
97/7031 1132 2.84 NP 8.48															!		+			-	
12/5/2011 1132 2.68													1	1	1	1	1		1	1	+
May															!		+			-	1
\$\frac{8\frac{6}{1012}}{1132} = 2.91																 			+	+	1
13/13/2013 13.22 2.31		6/11/2012	11.32	3.08	NP	8.24	<37.9	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50				8.3	<250		
\$\frac{314\{7}\{7}\{7}\{7}\{7}\{9}\{9}\{8}\{8}\{9}\{8}\{9}\{9}\{9}\{8}\{9}\{8}\{1}\{9}\{9}\{9}\{9}\{9}\{9}\{9}\{9}\{9}\{9																					
Felt 1132 1132 3.4 NP																			1		+
Syl(0/2013 11,32 3,54																					
2721/1995														ł	1	ł					1
STAR1995 8.39 3.47 NP																	+		+		
7/25/1995																 			+	+	1
10/28/1996 8.29 1.15 NP 7.14 99 ND ND ND ND ND ND ND		8/17/1995	8.29	1.49	NP	6.80	ND	ND	ND	ND	ND	ND									
1/23/1997 8.29 1.05 NP 7.24 54 ND ND ND ND ND ND ND N		7/26/1996	8.29	0.28	NP	8.01	98	ND	ND	ND	ND	ND	ND								
## A15/1997 8.29 1.88 NP 6.41 94 NO ND ND ND ND ND ND S.4														1		1	1		1		1
5/27/1997 8.29 1.05 NP 7.24																					
7/15/1997 8.29 1.90 NP 6.39 NO														+	1	1	1		1	1	1
10/9/1997 8.29 1.76 NP 6.53 160 ND ND ND ND ND ND ND N														+	!		+			-	+
A/I/1998 8.29 0.85 NP 7.44 110 ND ND ND ND ND ND ND N																 			+	+	1
7/15/1998 8.29 1.52 NP 6.77 200 ND		1/14/1998	8.29	1.26	NP	7.03	110	ND	ND	ND	ND	ND	3.0								
MW-9 10/16/1998 8.29 0.81 NP 7.48 ND ND ND ND ND ND ND N														ł		1				1	
1/25/1999 8.29 0.92 NP 7.37 ND														1		1	1		1	1	1
4/15/1999 8.29 0.90 NP 7.39 ND 75 21 ND ND 1.1 680	MW-9																				
7/14/1999 8.29 1.04 NP 7.25 140 ND 1.9 ND ND ND 260														+		1	1		1	1	1
10/21/1999 8.29 1.23 NP 7.06 210 ND ND ND ND 170														+		1			1	1	+
1/20/2000 8.29 1.18 NP 7.11 519 ND 1.1 ND ND ND 35																			1		+
7/14/2000 8.29 1.43 NP 6.86 107 ND ND ND ND ND ND ND 20.2																 	1		+	+	1
10/26/2000 8.29 1.38 NP 6.91 240 240 2.9 ND ND 56 <td></td>																					
1/3/2001 8.29 1.66 NP 6.63 164 166 0.763 0.776 ND 1.28 50.2 <td></td> <td>ł</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td></td>														ł		1				1	
4/4/2001 8.29 1.27 NP 7.02 240 296 0.738 ND ND 0.907 135														ł		1				1	
7/17/2001 8.29 1.38 NP 6.91 ND ND ND ND ND ND ND ND T3 10/1/2001 8.29 1.93 NP 6.36 <52 51 <0.50 <0.50 <0.50 <0.50 <0.50 5.0														.		ł					
10/1/2001 8.29 1.93 NP 6.36 <52 51 <0.50 <0.50 <0.50 <0.50 5.0														.		ł			1		+
														1		1	1		1	1	+
		1/31/2002	8.29	2.08	NP	6.21	200	<50	<0.50	<0.50	<0.50	<0.50	5.8	1		1			1	1	+

			GROUNDWATER	GAUGING DATA								GROUND	WATER ANALYTI	CAL DATA						
Well I.D.	Date	TOC Elevation		LNAPL	Water					Ethylbonzono	Total Xylenes	MTBE	MTBE						1,2-	1,2-
weii i.b.	Date	(ft)	(ft)	Thickness (ft)	Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	(ug/L)	(SW8021B) (ug/L)	(SW8260B) (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	Dichloroethane (ug/L)
	4/18/2002	8.29	1.76	NP	6.53	<50	<50	<0.50	<0.50	<0.50	<0.50	5.1								
	7/28/2002	8.29	1.57	NP	6.72	<50	<50	<0.50	<0.50	<0.50	<1.0		3.5							
	10/9/2002	8.29	1.45	NP	6.84	100	<50	<0.50	<0.50	<0.50	<1.0		17							
	1/2/2003	8.29	1.18	NP	7.11	<50	<50	<0.50	<0.50	<0.50	<1.0		8.6							
	4/1/2003	8.29 8.29	2.04	NP NP	6.25 5.49	56 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0		9.4 3.2					<500		
	7/1/2003 10/2/2003	8.29	2.80	NP NP	5.49	<50 <50	<50 <50	<0.50	<0.50	<0.50	<1.0		<2.0					<500		
	1/9/2004	8.29	1.90	NP	6.39	91	74	<0.50	0.98	2.3	6.2		<2.0					<500		
	4/26/2004	8.29	1.62	NP	6.67	<50	51	<0.50	<0.50	<0.50	<1.0		0.51					<50		
	7/22/2004	8.29	1.88	NP	6.41	<200	<50	<0.5	<0.5	<0.5	<1		0.78					<1000		
	10/29/2004	8.29	1.28	NP	7.01	76	<50	<0.50	<0.50	<0.50	1.0		<0.50					<50		
	1/10/2005 6/15/2005	8.29 8.29	0.07 1.70	NP NP	8.22 6.59	77 67	93 <50	0.60 <0.50	2.3 <0.50	2.4 <0.50	9.0 <1.0		<0.50 6.6					<50 <50		
	9/27/2005	8.29	1.98	NP	6.31	<200	<50	<0.50	0.73	<0.50	<1.0		2.3	<0.50	<0.50	<0.50	<10	<250		
	12/13/2005	8.29	2.26	NP	6.03	<200	<50	<0.50	<0.50	<0.50	<1.0		2.9		-			<250		
	3/23/2006	8.29	1.32	NP	6.97	<200	<50	<0.50	<0.50	<0.50	<1.0		2.7					<250		
	6/23/2006	8.29	1.98	NP	6.31	<200	<50	<0.50	<0.50	<0.50	<1.0		1.9					<250		
	9/26/2006	8.29 8.29	2.52 1.98	NP NP	5.77 6.31	<50 150	<50 <50	<0.50 <0.50	<0.50 0.57	<0.50 1.8	<0.50 4.6		<0.50 1.6					<250 <250		
	3/30/2007	8.29	2.01	NP	6.28	72	<50	<0.50	<0.50	<0.50	<0.50		3.4		-			<250		
	6/28/2007	8.29	1.90	NP	6.39	1000	<50	<0.50	<0.50	<0.50	<0.50		4.9					<250		
	9/25/2007	8.29	1.57	NP	6.72	100	<50	<0.50	<0.50	<0.50	<0.50		<0.50					<250		
	12/28/2007	8.29	1.98	NP	6.31	56	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
MW-9	3/22/2008	8.29	0.80	NP	7.49	<50	<50	<0.50	<0.50	<0.50	<1.0		0.61					<250		
	6/23/2008 9/19/2008	8.29 8.29	1.80 2.43	NP NP	6.49 5.86	<50 56	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.0 <1.0		<0.50 3.9					<250 <250		
	12/31/2008	8.29	2.66	NP	5.63	<50	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	3/27/2009	8.29	2.01	NP	6.28	<50	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	5/28/2009	8.29	2.20	NP	6.09	<50	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	9/17/2009	8.29	1.83	NP	6.46	NS	NS	NS	NS	NS 0.70	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	12/17/2009 3/29/2010	8.29 8.29	1.52 2.21	NP NP	6.77 6.08	105	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
	6/30/2010	10.94	2.32	NP	8.62	95.0	<50.0	<0.50	<0.50	<0.50	<1.5		0.85					<250		
	7/6/2010	10.94	2.02	NP	8.92										-					
	9/20/2010	10.94	2.03	NP	8.91				-											
	12/8/2010	10.94	1.77	NP	9.17	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
	3/14/2011 6/2/2011	10.94 10.94	2.24	NP NP	8.70 8.70	<50.0 <50.0	<50.0 <50.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.5		<0.50 <0.50				<5.0 <5.0	<250 <250		
	9/7/2011	10.94	2.46	NP	8.48															
	12/5/2011	10.94	2.43	NP	8.51	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		4.0					<250		
	3/6/2012	10.94	3.03	NP	7.91				-											
	6/11/2012	10.94	1.75	NP	9.19	<37.9	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50				<5.0	<250		
	9/6/2012 12/13/2012	10.94 10.94	1.24 1.80	NP NP	9.70 9.14	 <50	 <50	<0.50	<0.50	<0.50	<0.50		<0.50				 <5.0	<5.0		
	3/14/2013	10.94	2.38	NP	8.56															
	6/11/2013	10.94	2.81	NP	8.13	<50	<50	<0.50	<0.50	<0.50	<0.50		4.2				<5.0	<5.0		
	9/10/2013	10.94	2.63	NP	8.31															
	2/21/1995	8.62	4.69	NP	3.93	270	1500	250	26	9.1	160									
	5/18/1995 8/17/1995	8.62 8.62	4.92 4.05	NP NP	3.70 4.57	75 ND	810 67	520 25	ND ND	18 2.4	23 ND									
	7/26/1996	8.62	4.05	NP NP	4.54	ND ND	ND	3.7	ND ND	ND	ND ND	 ND								
	10/28/1996	8.62	4.09	NP	4.53	ND	ND	1.1	ND	ND	ND	ND								
	1/29/1997	8.62	2.94	NP	5.68	ND	210	41	0.67	7.2	4.8	11								
	4/15/1997	8.62	4.07	NP	4.55	ND	110	12	ND	0.77	ND	9.7								
MW-10	5/27/1997 7/15/1997	8.62 8.62	4.40 4.19	NP NP	4.22 4.43	 ND	 ND	2.1	 ND	0.67	0.73	 ND								
	10/9/1997	8.62	4.19	NP NP	3.87	ND ND	190	38	0.92	6.6	7.6	ND ND								
	1/14/1998	8.62	2.66	NP	5.96		59	9.5	0.85	1.2	1.7	4.5								
	4/1/1998	8.62	3.45	NP	5.17	62	230	66	1.7	12	17	6.4								
	7/15/1998	8.62	4.21	NP	4.41	78	290	98	45	21	38	21								
	10/16/1998	8.62	4.11	NP	4.51	ND ND	160	44	0.96	2.5	10	17								
	1/25/1999 4/15/1999	8.62 8.62	3.26 3.63	NP NP	5.36 4.99	ND ND	140 120	27 18	ND ND	2.8 1.8	6.8 5.1	23 14								
	4/15/1999	0.02	3.03	INP	4.99	NU	120	18	טאו	1.8	5.1	14			-					

			GROUNDWATER	GAUGING DATA	\							GROUND	WATER ANALYTI	ICAL DATA						
										l		MTBE	MTBE						1,2-	1,2-
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	(SW8021B) (ug/L)	(SW8260B) (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	Dibromoethane (EDB) (ug/L)	
	7/14/1999	8.62	3.89	NP	4.73	180	280	55	3.2	11	31	6.1								
	10/21/1999	8.62	4.09	NP	4.53	96	140	22	0.59	1.7	7.7	5.3								
	1/20/2000	8.62	3.92	NP	4.70	252	ND	0.73	0.86	ND	ND	5.2								
	4/13/2000	8.62	3.85	NP	4.77	69	67	54	ND	2.6	ND	3.8								
	7/14/2000	8.62	4.18	NP	4.44	149	ND	0.547	ND	ND	ND 1.5	ND								
	10/26/2000	8.62 8.62	3.96 4.14	NP NP	4.66 4.48	83 126	ND 52.7	3.3 5.15	ND ND	0.83 0.823	1.5 1.57	ND ND								
	4/4/2001	8.62	3.88	NP	4.74	75	129	28.1	1.67	4.97	10.1	ND								
	7/17/2001	8.62	4.08	NP	4.54	ND	ND	4.1	ND	1.0	1.8	ND								
	10/1/2001	8.62	4.22	NP	4.40	100	140	30	0.51	4.0	12	<5.0								
	1/31/2002	8.62	3.68	NP	4.94	170	110	16	<0.50	2.3	5.6	<2.5								
	4/18/2002	8.62	4.01	NP	4.61	130	<50	11	<0.50	1.4	4.5	<2.5								
	7/28/2002 10/9/2002	8.62 8.62	4.11 3.97	NP NP	4.51 4.65	58 <94	67 <50	15 0.67	<0.50 <0.50	0.94 <0.50	7.3 <1.0		<2.0 <2.0							
	1/2/2003	8.62	3.03	NP	5.59	64	<50	<0.50	<0.50	<0.50	<1.0		<2.0							
	4/1/2003	8.62	3.83	NP	4.79	76	<50	11	<0.50	<0.50	<1.0		<2.0							
	7/1/2003	8.62	4.13	NP	4.49	87	<50	<0.50	<0.50	<0.50	<1.0		<2.0					<500		
	10/2/2003	8.62	4.05	NP	4.57	160	77	9.9	0.78	2.3	4.9		<2.0					<500		
	1/9/2004	8.62	3.40	NP	5.22	74	53	1.2	<0.50	0.70	1.6		<2.0					<500		
	4/26/2004	8.62	3.89	NP	4.73	<50	<50	2.8	1.3	1.0	2.9		<0.50					<50		
	7/22/2004 10/29/2004	8.62 8.62	3.73 3.41	NP NP	4.89 5.21	<200 <50	<50 100	<0.5 2.0	<0.5 1.2	<0.5 1.1	<1 3.6		<0.5 <0.50					<1000 <50		
	1/10/2005	8.62	2.68	NP	5.94	94	84	7.8	2.7	2.2	8.9		<0.50					<50		
	6/15/2005	8.62	4.63	NP	3.99	62	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<50		
	9/27/2005	8.62	3.96	NP	4.66	<200	<50	<0.50	<0.50	<0.50	<1.0		<0.50	<0.50	<0.50	<0.50	<10	<250		
	12/13/2005	8.62	3.75	NP	4.87	<200	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	3/23/2006	8.62	3.13	NP	5.49	<200	50	13	<0.50	<0.50	<1.0		<0.50					<250		
	6/23/2006	8.62	3.90	NP	4.72	<200	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
MW-10	9/26/2006 12/22/2006	8.62 8.62	3.66 3.56	NP NP	4.96 5.06	<50	<50 <50	<0.50	<0.50 <0.50	<0.50 <0.50	<0.50 1.8		<0.50 <0.50					<250 <250		
10100-10	3/30/2007	8.62	3.56	NP NP	4.69	81 82	<50 <50	<0.50 <0.50	<0.50	<0.50	<0.50		<0.50					<250		
	6/28/2007	8.62	4.03	NP	4.59	57	<50	<0.50	<0.50	<0.50	<0.50		<0.50					<250		
	9/25/2007	8.62	3.91	NP	4.71	82	<50	<0.50	<0.50	<0.50	<0.50		<0.50					<250		
	12/28/2007	8.62	3.64	NP	4.98	62	<50	2.1	<0.50	<0.50	<1.0		<0.50					<250		
	3/22/2008	8.62	4.00	NP	4.62	<50	64	13	<0.50	<0.50	<1.0		<0.50					<250		
	6/23/2008	8.62	3.90	NP	4.72	<50	94	30	0.53	3.4	3.5		<0.50					<250		
	9/19/2008 12/31/2008	8.62 8.62	3.85 3.69	NP NP	4.77 4.93	<50 <50	130 82	15 11	1.7 <0.50	5.7 0.81	11 1.7		<0.50 <0.50					<250 <250		
	3/27/2009	8.62	3.75	NP NP	4.93	730	210	28	1.4	1.2	3.9		<0.50					<250		
	5/28/2009	8.62	3.66	NP	4.96	<50	<50	0.91	<0.50	<0.50	<1.0		<0.50					<250		
	9/17/2009	8.62	3.85	NP	4.77	65	<50	<0.50	<0.50	<0.50	<1.0		<0.50					<250		
	12/17/2009	8.62	3.00	NP	5.62	57.7	<50.0	1.2	<0.50	<0.50	<1.5		<0.50					<250		
	3/29/2010	8.62	3.81	NP	4.81	82.2	<50.0	0.77	<0.50	<0.50	3.4		<0.50					<250		
	6/30/2010	10.97	3.90	NP	7.07	53.4	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
	7/6/2010 9/20/2010	10.97 10.97	3.73 3.85	NP NP	7.24 7.12	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					 <250		
	12/8/2010	10.97	3.63	NP NP	7.12	<50.0	<50.0	1.8	<0.50	<0.50	<1.5		<0.50					<250		
	3/14/2011	10.97	3.46	NP	7.51	63.3	<50.0	1.1	<0.50	<0.50	<1.5		<0.50				<5.0	<250		
	6/2/2011	10.97	3.92	NP	7.05	<50.0	58.7	4.8	4.2	0.96	5.1		<0.50				<5.0	<250		
	9/7/2011	10.97	4.06	NP	6.91	<50.0	<50.0	4.1	<0.50	0.66	2.4		<0.50					<250		
	12/5/2011	10.97	3.82	NP	7.15	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
	3/6/2012	10.97	3.74	NP	7.23	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50				58.7	<250		
	6/11/2012 9/6/2012	10.97 10.97	3.99 4.00	NP NP	6.98 6.97	<37.9	<50.0 64	0.79	<0.50	<0.50 1.8	<1.5 3.9		0.72 <0.50	<0.50	<0.50	<0.50	17.2 <5.0	<250 <5.0	<0.50	<0.50
	9/6/2012	10.97	4.00	NP 	6.97	110		6.9	0.89	1.8	3.9		<0.50	<0.50	<0.50	<0.50	<5.0	<5.0	<0.50	<0.50
	12/13/2012	10.97	3.40	NP	7.57	<50	120	15	1.1	1.7	5.2		<0.50				<5.0	<5.0		
	3/14/2013	10.97	4.00	NP	6.97	<50	86	25	<0.50	0.6	0.8		<0.50				<5.0	<5.0		
	6/11/2013	10.97	4.20	NP	6.77	<50	<50	<0.50	<0.50	<0.50	<0.50		<0.50				<5.0	<8.0		
	9/10/2013	10.97	3.92	NP	7.05	<50	<50	<0.50	<0.50	<0.50	1.2		<0.50				<5.0	<5.0		
·	7/6/2010	10.53	2.44	NP	8.09	226	99.2	<0.50	<0.50	<0.50	<1.5		165	<0.50	<0.50	<0.50	174	<250	<1.0	<1.0
MW-11	9/20/2010	10.53	2.80	NP	7.73	<50.0	76.4 1n	<0.50	<0.50	<0.50	<1.5		82.7					<250		
	12/8/2010	10.53	1.90	NP	8.63	52.7	<50.0	<0.50	<0.50	<0.50	<1.5		59.1				 	<250		
	3/14/2011	10.53	1.89	NP	8.64	67.8	<50.0	<0.50	<0.50	<0.50	<1.5		44.0				<5.0	<250		

	1		CDOUNDWATER	CALICINIC DATA								CDOUND	NAVATED ANIALVTI	CAL DATA						
			GROUNDWATER	GAUGING DATA	1			1		I			WATER ANALYTIC	CAL DATA			I	1	1.3	1.3
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (SW8021B)	MTBE (SW8260B)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	
	6/2/2011	10.53	1.75	NP	8.78	69.0 T4	<50.0	<0.50	0.61	<0.50	<1.5	(ug/L) 	(ug/L) 24.9				7.1	<250	(EDB) (ug/L)	(ug/L)
	9/7/2011	10.53	1.56	NP	8.97	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		3.8					<250		
	12/5/2011	10.53	2.05	NP	8.48	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		26.4					<250		
	3/6/2012	10.53	2.31	NP	8.22	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		35.3		-		5.7	<250		
MW-11	6/11/2012	10.53	2.24	NP	8.29	<37.9	<50.0	<0.50	<0.50	<0.50	<1.5		20.9				10.4	<250		
	9/6/2012 12/13/2012	10.53 10.53	1.70 1.56	NP NP	8.83 8.97	64 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		7.7	<0.50	<0.50	<0.50	<5.0 <5.0	<5.0 <5.0	<0.50	<0.50
	3/14/2013	10.53	2.20	NP	8.33	<50	<50	<0.50	<0.50	<0.50	<0.50		20				<5.0	<5.0		
	6/11/2013	10.53	2.92	NP	7.61	<50	<50	<0.50	<0.50	<0.50	<0.50		32				<5.0	<5.0		
	9/10/2013	10.53	2.98	NP	7.55	<50	<50	<0.50	<0.50	<0.50	<0.50		22				<5.0	<5.0		
	7/6/2010	11.01	4.00	NP	7.01	990	20,300	1,030	955	311	2,450		1,650	<0.50	<0.50	1.0	1,430	<250	<1.0	<1.0
	9/20/2010 12/8/2010	11.01 11.01	4.18 3.92	NP NP	6.83 7.09	5,220 428	73,700 3,350	6,020 249	6,390 117	2,970 90	18,300 558		894 1,470					<250 <2500		
	3/14/2011	11.01	3.70	NP	7.31	283	2,420	287	81	49	243		1,020				70	<250		
	6/2/2011	11.01	4.40	NP	6.61	1,330 T4	12,200	688	71	225	619		824				110	<250		
	9/7/2011	11.01	4.37	NP	6.64	1,270 T4	7,900	920	25	187	267		896					<2500		
NAVA/ 12	12/5/2011	11.01	4.32	NP	6.69	286 T4	2,240	296	38	38.0	122		1,040				70	<250		
MW-12	3/6/2012 6/11/2012	11.01 11.01	4.01 4.20	NP NP	7.00 6.81	272 T4	1,260	193		29 	81 		835				78 	<250		
	6/12/2012					957 T4	1,030	178	17.0	24	69		993				448	<250		
	9/6/2012	11.01	4.15	NP	6.86	<200	580	120	10	15	37		840	<1.5	<1.5	<1.5	15	<15	<1.5	14
	12/13/2012	11.01	3.35	NP	7.66	<50	480	70	4.60	7.20	19		820				19	<15		
	3/14/2013 6/11/2013	11.01 11.01	4.11 4.3	NP NP	6.90 6.71	<50 62	370 290	76 51	3.40 <1.5	12.00 4.30	18 6		810 840				21 19	<15 <15		
	9/10/2013	11.01	3.96	NP	7.05	<50	340	52	1.90	6.40	5		820				17	<15		
	7/6/2010	11.29	4.22	NP	7.07	89	664	18	0.78	2.30	50	-	14	<0.50	<0.50	<0.50	12	<250	<1.0	<1.0
	9/20/2010	11.29	4.39	NP	6.90	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		8.50	-	-			<250		
	12/8/2010	11.29	4.00	NP	7.29	76	<50.0	<0.50	<0.50	<0.50	<1.5		9.40					<250		
	3/14/2011 6/2/2011	11.29 11.29	3.81 4.20	NP NP	7.48 7.09	62 <50.0	<50.0 <50.0	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.5		<0.50 <0.50				<5.0 <5.0	<250 <250		
	9/7/2011	11.29	4.42	NP	6.87	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		0.74					<250		
MW-12A	12/5/2011	11.29	4.30	NP	6.99	<50.0	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50					<250		
12	3/6/2012	11.29	4.32	NP	6.97	52.0 T4	<50.0	<0.50	<0.50	<0.50	<1.5		<0.50				<5.0	<250		
	6/11/2012 9/6/2012	11.29 11.29	4.36 4.45	NP NP	6.93 6.84	<37.9 300	<50.0 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <0.50		<0.50 <0.50	<0.50	<0.50	<0.50	<5.0 <5.0	<250 <5.0	<0.50	<0.50
	12/13/2012	11.29	3.80	NP	7.49	62	<50	<0.50	<0.50	<0.50	<0.50		<0.50				<5.0	<5.0		
	3/14/2013	11.29	4.36	NP	6.93	<50	<50	<0.50	<0.50	<0.50	<0.50		<0.50				<5.0	<5.0		
	6/11/2013	11.29	4.53	NP	6.76	<50	<50	<0.50	<0.50	<0.50	<0.50		0.78				<5.0	<5.0		
	9/10/2013 7/6/2010	11.29 11.08	4.4 4.26	NP NP	6.89 6.82	<50 469	<50 122	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <1.5		6.3 217	<0.50	<0.50	<0.50	<5.0 199	<5.0 <250	<1.0	<1.0
	9/20/2010	11.08	4.81	NP	6.27	<50.0	250 1n	<0.50	<0.50	<0.50	<1.5		272					<250		
	12/8/2010	11.08	5.02	NP	6.06	97.0	177 1n	<0.50	<0.50	<0.50	<1.5		390					<250		
	3/14/2011	11.08	4.32	NP	6.76	162	127	<0.50	<0.50	<0.50	<1.5		241	-	-	-	125	<250		
	6/2/2011 9/7/2011	11.08 11.08	3.98 5.74	NP NP	7.10 5.34	89.9 T4 <50.0	260 1n 167	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<1.5 <1.5		228				45 	<250 <250		
	12/5/2011	11.08	5.00	NP NP	6.08	<50.0	166 1n	<0.50	<0.50	<0.50	<1.5		215		-			<250		
MW-13	3/6/2012	11.08	5.37	NP	5.71	<50.0	63.9 1n	<0.50	<0.50	<0.50	<1.5		110				39	<250		
	6/11/2012	11.08	5.73	NP	5.35															
	6/12/2012	11.00				<37.9	118 1n	<0.50	<0.50	<0.50	<1.5		220	 -0.F0	 -0.F0		82	<250	 -0.F0	 -0.F0
	9/6/2012 12/13/2012	11.08 11.08	4.14 3.80	NP NP	6.94 7.28	87 <50	<50 <50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50	<0.50 <0.50		140 130	<0.50	<0.50	<0.50	10 14	<5.0 <5.0	<0.50	<0.50
	3/14/2013	11.08	4.20	NP	6.88	<50	<50	<0.50	<0.50	<0.50	<0.50		110		-		24	<5.0		
	6/11/2013	11.08	4.10	NP	6.98	<50	<50	<0.50	<0.50	<0.50	<0.50		97				31	<5.0		
	9/10/2013	11.08	4.20	NP	6.88	<50	<50	<0.50	<0.50	<0.50	0.62		64				47	<5.0		
	6/2/2011 9/7/2011	12.00 12.00	3.58 3.02	NP NP	8.42 8.98	4,180 T4 2,970 T4	51,600 42,600	2,750 1,050	67.9 28.1	1,790 2,990	13,400 7,300		1.9 <25.0				27.2	<250 <12500		
	12/5/2011	12.00	4.05	NP	7.95	3,980 T4	14,000	709	9.1	1,420	2,530		0.97					<250		
	3/6/2012	12.00	3.94	NP	8.06	3,640 T4	16,600	959	15.0	2,330	3,830		<2.5				28.1	<1250		
	6/11/2012	12.00	3.91	NP	8.09	4.500		1 200		4 500					-					
MW-14	6/12/2012 9/6/2012	12.00	3.35	 NP	8.65	4,580 <2000	15,700 12,000	1,200 210	14.0 9.1	1,580 1,100	3,010 1,800		1.4 <4.0	<4.0	<4.0	<4.0	23.3 <20	<250 <40	<4.0	<4.0
	9/11/2012																			
	12/13/2012	12.00	3.26	NP	8.74	<50	10,000	72	5.8	610	780		<1.5				<7.0	<15		
	3/14/2013	12.00	4.16	NP	7.84	<50	5,700	290	11	750	960		<1.5		-		12	<15		
	6/11/2013 9/10/2013	12.00 12.00	7.37 4.88	NP NP	7.37 7.12	<50 120	6,900 31,000	630 1,500	5.3 39	480 2,300	680 5,200		<1.5 <1.5				24 32	<15 <15		
MW-15	6/2/2011	11.11	2.50	NP	8.61	124 T4	357	<0.50	<0.50	<0.50	<1.5		15				6.4	<250		

TABLE 2 HISTORICAL GROUNDWATER GAUGING AND ANALYTICAL DATA 76 STATION NO. 5191/5043

76 STATION NO. 5191/5043 449 HEGENBERGER ROAD OAKLAND, CALIFORNIA

			GROUNDWATER	GAUGING DATA	\	1						GROUND	WATER ANALYTI	CAL DATA						
Well I.D.	Date	TOC Elevation (ft)	Depth to Water (ft)	LNAPL Thickness (ft)	Water Elevation* (ft)	TPHd (ug/L)	TPHg (ug/L)	Benzene (ug/L)	Toluene (ug/L)	Ethylbenzene (ug/L)	Total Xylenes (ug/L)	MTBE (SW8021B) (ug/L)	MTBE (SW8260B) (ug/L)	DIPE (ug/L)	ETBE (ug/L)	TAME (ug/L)	TBA (ug/L)	Ethanol (ug/L)	1,2- Dibromoethane (EDB) (ug/L)	1,2- Dichloroethane (ug/L)
	9/7/2011	11.11	2.54	NP	8.57	<50.0	412	6.2	<0.50	43	<1.5		128					<250		
	12/5/2011	11.11	2.70	NP	8.41	50.5 T4	201	6.6	<0.50	0.93	<1.5		142					<250		
	3/6/2012	11.11	2.69	NP	8.42	56.2 T4	<50.0	<0.50	<0.50	<0.50	<1.5		106				101	<250		
	6/11/2012	11.11	2.84	NP	8.27															
MW-15	6/12/2012					<37.9	74.3 1n	<0.50	<0.50	<0.50	<1.5	-	114				91	<250		
10100-13	9/6/2012	11.11	2.24	NP	8.87	64	59	<0.50	<0.50	<0.50	<0.50	-	76	<0.50	<0.50	<0.50	45	<5.0	<0.50	<0.50
	12/13/2012	11.11	2.51	NP	8.60	<50	<50	<0.50	<0.50	<0.50	<0.50		33				7.4	<5.0		
	3/14/2013	11.11	2.91	NP	8.20	<50	<50	<0.50	<0.50	<0.50	<0.50		46				21.0	<5.0		
	6/11/2013	11.11	3.36	NP	7.75	<50	<50	<0.50	<0.50	<0.50	<0.50		73				31.0	<5.0		
	9/10/2013	11.11	3.28	NP	7.83	<50	68	<0.50	<0.50	<0.50	<0.50		120				39.0	<5.0		
	6/2/2011	10.98	3.00	NP	7.98	509 T4	1,420 1n	79	<0.50	4	<1.5		1,200				257	<250		
	9/7/2011	10.98	2.65	NP	8.33	90.0 T4	934	<0.50	<0.50	<0.50	<1.5		1,240					<250		
	12/5/2011	10.98	3.18	NP	7.80	196 T4	948 1n	<0.50	<0.50	<0.50	<1.5		1,320					<250		
	3/6/2012	10.98	2.91	NP	8.07	204 T4	392 1n	<0.50	<0.50	<0.50	<1.5		1,090				134	<250		
	6/11/2012	10.98	3.04	NP	7.94															
MW-16	6/12/2012					48.1 T4	430 1n	<0.50	<0.50	<0.50	<1.5		1,100				374	<250		
	9/6/2012	10.98	2.61	NP	8.37	390	<150	<1.5	<1.5	<1.5	<1.5		960	<1.5	<1.5	<1.5	70	<15	<1.5	<1.5
	12/13/2012	10.98	2.50	NP	8.48	52	<150	<1.5	<1.5	<1.5	<1.5		980				55	<20		
	3/14/2013	10.98	3.15	NP	7.83	<50	<200	<2.0	<2.0	<2.0	<2.0		950				67	<20		
	6/11/2013	10.98	3.19	NP	7.79	<50	<150	<1.5	<1.5	<1.5	<1.5		820				70	<15		
	9/10/2013	10.98	3.44	NP	7.54	<50	<50	<0.50	<0.50	<0.50	0.67		240				440	<5.0		
	6/2/2011	11.52	5.78	NP	5.74	687 T4	9,130	2,530	960	35	907		1		-		366	<250		
	9/7/2011	11.52	4.56	NP	6.96	1,900 T4	47,200	9,620	5,510	1,210	4,510		<25.0					<12500		
	12/5/2011	11.52	4.70	NP	6.82	1,790 T4	17,300	4,720	511	238	747		<2.5					<1250		
	3/6/2012	11.52	4.64	NP	6.88	1,530 T4	1,580	2,090	24	39	166		1				481	<250		
	6/11/2012	11.52	4.67	NP	6.85															
MW-17	6/12/2012					1,090 T4	4,950	2,340	123	153	610		<2.5				411	<1250		
	9/6/2012	11.52	4.39	NP	7.13	<1000	18,000	4,300	170	370	1,100		<10	<10	<10	<10	300	<100	<10	110
	9/11/2012																			
	12/13/2012	11.52	4.20	NP	7.32	<100	55,000	7,300	2,700	1,700	4,600		<10				300	<100		
	3/14/2013	11.52	4.70	NP	6.82	<200	63,000	13,000	5,400	3,100	8,800		<15				260	<150		
	6/11/2013	11.52	4.83	NP	6.69	710	110,000	10,000	11,000	3,100	12,000		<25				<150	<250		
Causina Nata	9/10/2013	11.52	4.60	NP	6.92	160	36,000	8,200	510	1,200	2,400		<15				320	<150		

Gauging Notes:

TOS - Top of Screen ft - Feet

NP - LNAPL not present

. LNAPL - Light non-aqueous phase liquid

* - Corrected for LNAPL if present (assumes LNAPL specific gravity = 0.75)

-- - No information available

Analytical Notes:

< - Below laboratory's indicated reporting limit

ug/L - micrograms/liter

DRO- diesel range organics

TPHd- Total petroleum hydrocarbons as diesel

TPHg- Total petroleum hydrocarbons as gasoline

MTBE- Methyl tertiary-butyl ether

TBA- Tertiary-butyl alcohol

Bold - Above the laboratory's indicated reporting limit

1n - The TPHg result for this sample did not match the laboratory standard for gasoline. This is likely due to the presence of MTBE in the sample.

T4- Result reported for the hydrocarbons within the method-specific range that do not match pattern of laboratory standard.

TABLE 3

HISTORICAL SOIL ANALYTICAL Data

76 Station No. 5191/5043 449 Hegenberger Raod, Oakland, California

Sample ID	Date	Sample Depth (feet)	TPHg (mg/kg)	TPHg* (mg/kg)	TPHd (mg/kg)	TPHd* (mg/Kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	TAME (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	Ethanol (mg/kg)	EDB (mg/kg)	1,2-DCA (mg/kg)	Naphthalene (mg/kg)	Lead (mg/kg)
P1	10/25/1991	3	3,200	NA	420	NA	33	120	110	540	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P2	10/25/1991	3	9,000	NA	8,400	NA	46	120	330	1,500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P3	10/25/1991	3	7,100	NA	1,100	NA	48	410	220	1,200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P4	10/25/1991	3	370	NA	460	NA	7.4	39	12	77	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW1(2.5)	2/5/1992	2.5	14,000	NA	1,200	NA	160	680	470	2,400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW2(3.5)	2/5/1992	3.5	9,000	NA	2,400	NA	74	440	280	1,400	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW2(4.5)	2/5/1992	4.5	31	NA	29	NA	2.4	0.14	3	9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW3(3)	2/5/1992	3	<1.0	NA	49	NA	<0.005	<0.005	<0.005	0.011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW3(4.5)	2/5/1992	4.5	<1.0	NA	<1.0	NA	<0.005	<0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW4(5)	8/21/1992	5	<1.0	NA	<1.0	NA	<0.005	<0.005	<0.005	0.0066	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW5(6)	8/21/1992	6	340	NA	43	NA	1.1	1.2	7.8	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW6(5)	8/21/1992	5	3.7	NA	1.2	NA	0.9	<0.005	1	0.05	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WO1	9/20/1994	9	<1.0	NA	NA	NA	<0.005	<0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	5.0
MW9(3)	1/25/1995	3	1.7	NA	2.6	NA	0.016	<0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW10(2.5)	1/25/1995	2.5	44	NA	17	NA	2	1.5	2.3	5.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW1	3/10/1995	8	11	NA	NA	NA	2.8	<0.005	1.6	0.067	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW2	3/10/1995	8	11	NA	NA	NA	3.8	<0.005	0.79	0.034	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW2(4)	3/10/1995	4	2,000	NA	140	NA	<0.005	53	42	240	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW3	3/10/1995	8	1	NA	<1.0	NA	0.009	0.006	0.007	0.014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW4	3/10/1995	8	<1.0	NA	1.8	NA	<0.005	<0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW5	3/10/1995	8	<1.0	NA	1.4	NA	<0.005	<0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW6	3/10/1995	8	<1.0	NA	NA	NA	<0.005	<0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW7	3/10/1995	8	<1.0	NA	NA	NA	<0.005	<0.005	<0.005	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW8	3/10/1995	8	140	NA	NA	NA	2.6	5.3	2.7	12	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D1	3/24/1995	3	760	NA	46	NA	1.5	19	15	73	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D2	3/24/1995	3	1,200	NA	97	NA	1.6	16	22	110	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B1	3/28/1995	6	<1.0	NA	<1.0	NA	0.13	0.026	0.0088	0.059	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B2	3/28/1995	6	3.4	NA	<1.0	NA	2.8	0.041	0.19	0.28	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B3	3/28/1995	6	<1.0	NA	<1.0	NA	<0.005	0.01	<0.005	0.017	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B4	3/28/1995	6	<1.0	NA	<1.0	NA	<0.005	0.017	<0.005	0.032	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BD1	3/28/1995	6	<1.0	NA	<1.0	NA	0.21	0.011	0.018	0.038	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BD2	3/28/1995	6	12	NA	4.8	NA	2.6	0.68	0.56	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BD3	3/28/1995	6	<1.0	NA	<1.0	NA	0.012	0.014	0.012	0.043	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
BD4	3/28/1995	6	<1.0	NA	<1.0	NA	<0.005	0.011	0.0072	0.037	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
S1	3/28/1995	4	110	NA	<1.0	NA	3.5	0.61	7	13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
S2	3/28/1995	4	1.4	NA NA	9.4	NA	0.028	0.012	0.015	0.019	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
S3	3/28/1995	4	22	NA NA	2.9	NA	1.2	1.2	0.65	1.9	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA
S4	3/28/1995	4	150	NA	5.8	NA	6.8	5.6	5.3	27	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

TABLE 3

HISTORICAL SOIL ANALYTICAL Data

76 Station No. 5191/5043 449 Hegenberger Raod, Oakland, California

Sample ID	Date	Sample Depth (feet)	TPHg (mg/kg)	TPHg* (mg/kg)	TPHd (mg/kg)	TPHd* (mg/Kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	TAME (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	Ethanol (mg/kg)	EDB (mg/kg)	1,2-DCA (mg/kg)	Naphthalene (mg/kg)	Lead (mg/kg)
RF1	3/31/1995	3	2,000	NA	330	NA	8.8	68	55	280	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
RF2	3/31/1995	3	3,300	NA	230	NA	18	160	110	550	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SW8(6)	4/3/1995	8	<1.0	NA	<1.0	NA	0.0085	<0.005	0.0084	0.011	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FB1	4/3/1995	4.5	25	NA	8.6	NA	2.1	0.058	2.2	1.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FB2	4/3/1995	4.5	7.1	NA	1.6	NA	0.4	0.018	0.81	1.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FB3	4/3/1995	4.5	1.6	NA	<1.0	NA	0.028	<0.005	0.13	0.26	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FB4	4/3/1995	4.5	1.4	NA	<1.0	NA	0.23	0.022	0.05	0.15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FBSW1	4/3/1995	3	7.4	NA	1.3	NA	0.066	0.021	1	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FBSW2	4/3/1995	3	70	NA	7.6	NA	0.11	0.096	2.1	6.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FBSW3	4/3/1995	3	2.3	NA	7.8	NA	0.012	0.01	0.018	0.012	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FBSW4	4/3/1995	3	9	NA	3.7	NA	0.25	0.036	0.93	0.062	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW1SW1	4/5/1995	5	25	NA	2.8	NA	2.1	0.025	2.4	0.19	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW1SW2	4/5/1995	5	4.2	NA	1.2	NA	0.17	0.01	0.68	0.048	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WE1	4/5/1995	4.5	26	NA	3.4	NA	0.31	0.3	0.59	2.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WE2	4/5/1995	4.5	2.7	NA	5.1	NA	0.0054	0.0065	0.038	0.17	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
WE3	4/5/1995	4.5	8.2	NA	1.6	NA	0.21	0.074	1.6	0.0076	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
FS-1	4/5/1995	4	12	NA	<1.0	NA	0.28	<0.005	1.5	0.016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW8(6)	4/21/1997	6	1.3	NA	<1.0	NA	0.0051	<0.005	0.015	0.041	<0.005	NA	NA	NA	NA	NA	NA	NA	NA	NA
Delta 2009																				
B-4@6	12/17/2009	6	20.4	NA	11.4	10.1	0.046	0.18	1	4.2	0.061	0.091	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	NA	NA
B-4@15	12/17/2009	15	<4.9	NA	<5.8	<5.8	0.0036	0.0069	0.011	0.049	0.0081	0.036	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	NA	NA
B-4@20	12/17/2009	20	<4.9	NA	<5.6	<5.6	<0.003	<0.003	<0.003	<0.006	<0.003	<0.015	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	NA	NA
B-5@8	12/17/2009	8	1,060	NA	285	269	6.2	21.6	30.9	143	<0.0029	0.079	0.068	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	NA	NA
B-5@17.5	12/17/2009	17.5	136	NA	27.8	26.9	0.55	1.4	2.7	15.8	<0.003	0.035	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	NA	NA
B-5@26.5	12/17/2009	26.5	1,570	NA	338	346	16.2	73.5	52.8	255	0.02	0.11	<0.0028	<0.0028	<0.0028	<0.0028	<0.0028	<0.0028	NA	NA
B-5@32	12/17/2009	32	<4.8	NA	<5.9	<5.9	0.007	0.0087	0.0057	0.031	<0.0029	<0.015	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	NA	NA
Delta 2010																				
MW-11@10	6/22/2010	10	NA	<0.18	NA	3.2	<0.0022	<0.0022	<0.0022	<0.0066	0.011	<0.011	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022	<0.0022	NA	6.1
MW-11@20	6/22/2010	20	NA	<0.25	NA	27.3	<0.0027	<0.0027	<0.0027	<0.0081	<0.0027	<0.013	<0.0027	<0.0027	<0.0027	<0.0027	<0.0027	<0.0027	NA	3.4
MW-12@8	6/22/2010	8	NA	210	NA	45.7	5.2	9.1	6.7	33.3	<0.0028	0.021	<0.0028	<0.0028	<0.0028	<0.0028	<0.0028	<0.0028	NA	8.6
MW-12@10	6/22/2010	10	NA	422	NA	73.6	4	3.5	11.0	31.4	<0.0029	<0.015	0.023	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	NA	9.5
MW-12@20	6/22/2010	20	NA	<0.24	NA	<2.0	0.019	<0.0028	<0.0028	<0.0085	<0.0028	<0.014	<0.0028	<0.0028	<0.0028	<0.0028	<0.0028	<0.0028	NA	6.6
MW-12A@26	6/23/2010	26	NA	6,840	NA	2,210	80.9	232	178	607	<0.0027	<0.014	<0.0027	<0.0027	<0.0027	<0.0027	<0.0027	<0.0027	NA	13.1
MW-12A@32	6/23/2010	32	NA	943	NA	267	4.9	15.5	12.0	42.6	0.045	0.044	0.048	<0.0028	<0.0028	<0.0028	<0.0028	<0.0028	NA	6.6
MW-12A@34	6/23/2010	34	NA	<0.22	NA	<1.9	<0.0027	0.0097	0.0074	0.033	<0.0027	<0.013	<0.0027	<0.0027	<0.0027	<0.0027	<0.0027	<0.0027	NA	4.9
MW-13@8	6/22/2010	8	NA	<0.21	NA	<2.0	<0.0026	<0.0026	<0.0026	<0.0077	0.064	<0.013	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	<0.0026	NA	3.6
MW-13@15	6/22/2010	15	NA	<0.24	NA	<2.0	<0.0029	<0.0029	<0.0029	<0.0087	<0.0029	<0.014	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	<0.0029	NA	5.9

TABLE 3

HISTORICAL SOIL ANALYTICAL Data

76 Station No. 5191/5043 449 Hegenberger Raod, Oakland, California

Sample ID	Date	Sample Depth (feet)	TPHg (mg/kg)	TPHg* (mg/kg)	TPHd (mg/kg)	TPHd* (mg/Kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	TAME (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	Ethanol (mg/kg)	EDB (mg/kg)	1,2-DCA (mg/kg)	Naphthalene (mg/kg)	Lead (mg/kg)
Antea Group 201	1																			
MW-14d7	5/17/2011	7	NA	<0.23	<2.0	<2.0	<0.0027	<0.0027	<0.0027	<0.0081	<0.0027	<0.014	<0.0027	<0.0027	<0.0027	<0.36	<0.0027	<0.0027	NA	6.6
MW-14d10	5/17/2011	10	NA	1,740	45.5 1n	45.9 1n	1.8	0.2	44	140	<0.0026	< 0.013	<0.0026	<0.0026	<0.0026	<0.34	<0.0026	<0.0026	NA	7
MW-14d13	5/17/2011	13	NA	1	<2.0	<2.0	<0.0027	<0.0027	0.037	0.066	<0.0027	< 0.014	<0.0027	<0.0027	<0.0027	<0.36	<0.0027	<0.0027	NA	6.6
MW-15d8	5/17/2011	8	NA	2.3	6.2	5.2	0.023	<0.0038	1.9	0.25	0.19	0.16	<0.0038	<0.0038	<0.0038	<0.51	<0.0038	<0.0038	NA	7
MW-15d13	5/17/2011	13	NA	<0.23	<1.9	<1.9	<0.0028	<0.0028	<0.0028	<0.0083	0.015	0.022	<0.0028	<0.0028	<0.0028	<0.37	<0.0028	<0.0028	NA	7
MW-16d8	5/17/2011	8	NA	<0.23	<2.0	<2.0	<0.0027	<0.0027	<0.0027	<0.0081	0.15	0.014	<0.0027	<0.0027	<0.0027	<0.36	<0.0027	<0.0027	NA	5.7
MW-16d13	5/17/2011	13	NA	<0.23	<2.0	<2.0	<0.0028	<0.0028	<0.0028	<0.0084	<0.0028	<0.014	<0.0028	<0.0028	<0.0028	<0.37	<0.0028	<0.0028	NA	5.5
MW-17d9	5/18/2011	9	NA	633	39.6 1n	36.7 1n	6	14.1	17.9	58	<0.0026	0.03	<0.0026	<0.0026	<0.0026	<0.35	<0.0026	<0.0026	NA	16.3
MW-17d13	5/18/2011	13	NA	5.4	2.9 1n	2.5 1n	2.7	0.46	1.4	2.8	<0.0027	0.029	<0.0027	<0.0027	<0.0027	<0.36	<0.0027	<0.0027	NA	6.4
B-6d9	5/18/2011	9	NA	2,490	72.0 1n	68.6 1n	26.4	73.9	58.1	230	<0.0031	<0.015	<0.0031	<0.0031	<0.0031	<0.41	<0.0031	<0.0031	NA	10.1
B-6d14	5/18/2011	14	NA	194	258 1n	250 1n	3.6	5.1	5.1	22	<0.0025	<0.013	<0.0025	<0.0025	<0.0025	<0.33	<0.0025	<0.0025	NA	9.2
B-6d21	5/18/2011	21	NA	7.2	<2.0	<2.0	0.67	0.86	0.25	0.94	0.036	0.014	<0.0027	<0.0027	<0.0027	<0.37	<0.0027	<0.0027	NA	6.8
B-6d26	5/18/2011	26	NA	17	3.4 1n	2.9 1n	0.83	1.2	0.46	1.7	0.086	0.021	<0.0026	<0.0026	<0.0026	<0.34	<0.0026	<0.0026	NA	6.6
Antea Group 2013	3																			
SB-1d5.5	7/25/2013	5.5	31,000			450	85	1,000	650	3,400	<2.5								150	
SB-1d11	7/25/2013	11	73			3.1	1.2	2.5	1.7	9.3	<0.005								0.7	
SB-1d15	7/25/2013	15	5			3.1	0.0085	0.0072	0.048	0.13	<0.005				-				0.015	
SB-2d1	7/25/2013	1	<1.0			10	<0.005	<0.005	<0.005	<0.005	<0.005				-				< 0.005	
SB-2d3	7/25/2013	3	<1.0			2.1	<0.005	<0.005	<0.005	<0.005	<0.005								<0.005	
SB-2d5	7/25/2013	5	<1.0			5.9	<0.005	<0.005	<0.005	<0.005	<0.005								<0.005	
SB-2d11	7/25/2013	11	<1.0			<1.0	<0.005	<0.005	<0.005	<0.005	<0.005								<0.005	
SB-2d15	7/25/2013	15	<1.0			<1.0	<0.005	<0.005	<0.005	<0.005	0.0059								<0.005	
SB-3d7.5	7/25/2013	7.5	310			330	0.13	<0.05	7.5	30	<0.05								<0.05	
SB-3d15	7/25/2013	15	<1.0			<1.0	<0.005	<0.005	<0.005	<0.005	<0.005								<0.005	
SB-4d1	7/25/2013	1	<1.0			13	<0.005	<0.005	<0.005	<0.005	<0.005								<0.005	
SB-4d3	7/25/2013	3	<1.0			2.6	<0.005	<0.005	<0.005	< 0.005	<0.005								<0.005	
SB-4d5	7/25/2013	5	<1.0			4.7	<0.005	<0.005	<0.005	< 0.005	<0.005								<0.005	
SB-4d8	7/25/2013	8	4,600			31	0.5	0.23	160	130	<0.025								40	
SB-4d15	7/25/2013	15	<1.0			<1.0	<0.005	<0.005	<0.005	< 0.005	<0.005								<0.005	
SB-5d6	7/25/2013	6	100			52	0.02	<0.005	3.4	1.7	<0.005								3.3	
SB-5d15	7/25/2013	5	<1.0			<1.0	<0.005	<0.005	<0.005	<0.005	<0.005								<0.005	
SB-6d6.5	7/26/2013	6.5	1,900			360	0.57	1.1	44	220	<0.25								12	
SB-6d15	7/26/2013	15	<1.0			<1.0	<0.005	<0.005	<0.005	<0.005	<0.005								<0.005	
SB-7d6	7/26/2013	6	21			11	0.019	<0.005	0.13	0.012	<0.005								0.8	
SB-7d11	7/26/2013	11	57			17	0.17	0.39	1	4.1	<0.005								0.54	
SB-7d13	7/26/2013	13	1.8			1.5	0.018	0.0086	0.11	0.37	< 0.005				-				0.055	

TABLE 3

HISTORICAL SOIL ANALYTICAL Data

76 Station No. 5191/5043 449 Hegenberger Raod, Oakland, California

Sample ID	Date	Sample Depth (feet)	TPHg (mg/kg)	TPHg* (mg/kg)	TPHd (mg/kg)	TPHd* (mg/Kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethyl- benzene (mg/kg)	Total Xylenes (mg/kg)	MTBE (mg/kg)	TBA (mg/kg)	TAME (mg/kg)	DIPE (mg/kg)	ETBE (mg/kg)	Ethanol (mg/kg)	EDB (mg/kg)	1,2-DCA (mg/kg)	Naphthalene (mg/kg)	Lead (mg/kg)
SB-8d8	7/26/2013	8	3,300			900	<0.5	<0.5	15	54	<0.5								4.6	
SB-8d11	7/26/2013	11	<1.0			<1.0	<0.005	< 0.005	0.018	0.0075	<0.005			-		-			< 0.005	
SB-9d6	7/26/2013	6	<1.0			5.9	<0.005	< 0.005	< 0.005	<0.005	<0.005			-		-			< 0.005	
SB-9d15	7/26/2013	15	<1.0			<1.0	<0.005	< 0.005	< 0.005	<0.005	<0.005			-		-			< 0.005	
SB-10d8	7/26/2013	8	<1.0			1.9	<0.005	< 0.005	< 0.005	<0.005	<0.005			-		-			< 0.005	
SB-10d11	7/26/2013	11	<1.0			<1.0	<0.005	< 0.005	< 0.005	<0.005	<0.005			-		-			< 0.005	

Notes:

TPHg = total petroleum hydrocarbons as gasoline by EPA Method 8015

TPHg* = total petroleum hydrocarbons as gasoline by CA LUFT

TPHd = total petroleum hydrocarbons as diesel by EPA Method 8015B

DRO* = total petroleum hydrocarbons as diesel by EPA Method 8015 Silica Gel Treated

BTEX = benzene, toluene, ethylbenzene, total xylenes by EPA Method 8260B

MTBE = methyl tertiary-butyl ether by EPA Method 8260

TBA = tertiary-butyl alcohol by EPA Method 8260

TAME = tert-amyl methyl ether by EPA Method 8260

DIPE = Diisopropyl ether by EPA Method 8260

ETBE = Ethyl-tert-butyl-ether by EPA Method 8260

EDB = 1,2-Dibromoethane by EPA Method 8260

1,2-DCA = 1,2-Dichloroethane by EPA Method 8260

mg/kg = milligrams per kilogram

NA = not applicable

Corrective Action Plan
76 Station No. 5191/5043
449 Hegenberger Road, Oakland, California
Antea Group Project No. I42705191

Appendix A

Regulatory Correspondence

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

June 21, 2013

Walter Sprague
Pacific Convenience & Fuel
7180 Knoll Center Parkway, Suite 100
Pleasanton, CA 94566
(Sent via E-mail to WSprague@pcandf.com)

Catalina Espino Devine
Chevron Environmental Management Company
6101 Bollinger Canyon Road
San Ramon, California 94583
(Sent via E-mail to: espino@Chevron.com)

Ed Ralston
Phillips 66 Company
76 Broadway, Sacramento, CA 95818
(Sent via E-mail to: Ed.C.Ralston@p66.com)

Subject: Fuel Leak Case No. RO0000219 and GeoTracker Global ID T0600101476, UNOCAL #5043, 449 Hegenberger Road, Oakland, CA 94621

Dear Messrs. Sprague and Ralston and Ms. Espino Devine:

Alameda County Environmental Health (ACEH) staff has reviewed the case file for the abovereferenced site including the following documents prepared by Antea Group (Antea) for the subject site on your behalf.

- Work Plan- Additional Site Investigation (Work Plan), dated November 14, 2011. The Work Plan proposes the advancement of five test borings to help assess if in-situ chemical oxidation (ISCO) is a viable remediation option to address impacted soil and groundwater beneath the site.
- ISCO Pilot Test Work Plan (ISCO WP) dated May 15, 2012. The ISCO WP details the
 approach for conducting an in-situ chemical oxidation (ISCO) pilot test using alkaline
 activated sodium persulfate. The ISCO WP stated the pilot test will consist of four
 phases:
 - i. Baseline groundwater characterization of Contaminants of Concern (COCs) and geochemical parameters in selected monitoring wells;
 - ii. Initial round of ISCO injection within the two proposed pilot test areas and process monitoring to optimize injection pressure and flow rates, spacing of injection points, and the volume and strength of amendment slurry;
 - iii. Performance monitoring and assessment; and
 - iv. Potential expansion of the pilot test to additional areas throughout the site.

The ISCO WP presented the results of pressure and flow characteristics at five boring locations at various depths to a total depth of 13 feet below the ground surface (BGS). In each case, the data showed that fluid could be moved through the formation using acceptable pressures. The ISCO WP stated that prior to conducting a pilot test, soil

buffering tests would be used to confirm the soil's ability to resist changes in pH when calcium peroxide is applied and provide a ratio of calcium peroxide per kilogram of soil required to maintain the pH of the soil. Subsequent to the completion of the soil buffering test, Antea stated that the information gained will be used to determine the ideal amendment concentrations, volumes, and injection pressures for the final configuration of the remediation system. The injection intervals at the two pilot test areas were reported as 5 to 16 BGS.

In addition to the suite of petroleum fuel related compounds and mixtures, the ISCO WP identified geochemical and field parameters for monitoring the affects of ISCO injection. The geochemical parameters identified for analyses were methane, sulfate, sulfide, total iron, ferrous iron, ferric iron, nitrate, nitrite, alkalinity, trivalent and hexavalent chromium, total and dissolved manganese, and total dissolved solids (TDS). Additionally, field parameters were identified for monitoring and included depth to water, groundwater temperature, pH, oxidation-reduction potential (ORP), specific conductance, and dissolved oxygen (D.O.).

- Quarterly Summary Report, Fourth Quarter 2012 (GWMR) dated January 16, 2013. The GWMR states Antea, as detailed in the May 15, 2012 ISCO WP reviewed in Item 2 above, has recovered soil samples from one hand auger boring as part of the pilot test for in-situ remediation and will continue the pilot test for in-situ remediation.
- 4. Remedial Action Plan (RAP) dated April 23, 2013. The RAP proposes:
 - Excavation of two areas including excavation sampling density and scope of analysis for the collection of confirmation soil samples;
 - ii. Destruction of three monitoring wells (MW-6, MW-12, and MW-12a) in preparation for the excavation;
 - Advancement of seven soil borings in the vicinity of monitoring well MW-6 to refine the boundaries of the proposed excavation;
 - iv. Addition of an oxygen release compound (ORC) to the excavation backfill for groundwater remediation; and
 - Replacement of monitoring well MW-6 subsequent to the remediation excavation and ORC application.

The RAP provides an attachment presenting the results of a Total Oxygen Demand (TOD) bench scale test on soil samples from the hand auger boring referenced in the January 16, 2013 GWMR report reviewed in Item 3 above. The RAP states the test evaluated TOD and the oxidant persistence during chemical oxidation treatment using stabilized hydrogen peroxide activated sodium persulfate. Based on the test results Antea does not recommend the use of hydrogen peroxide activated sodium persulfate for site remediation.

ACEH has evaluated the data and recommendations presented in the above-mentioned reports, in conjunction with the case files. Based on our review, ACEH does not agree with the work as proposed in the RAP. Therefore, at this juncture ACEH requests that you address the following technical comments prior to ACEH making a determination on the appropriateness of corrective

Messrs. Sprague and Ralston and Ms. Espino Devine RO0000219 June 21, 2013, Page 3

actions and send us the report in accordance with the schedule provided in the Technical Report Request section below.

TECHNICAL COMMENTS

1. Feasibility Study/Corrective Action Plan. ACEH requests that you prepare a Feasibility Study/Corrective Action Plan (FS/CAP) that meets the provisions of section 2725 of the Underground Storage Tank (UST) regulations provided in the California Code of Regulations (CCR) Title 23, Chapter 16, section 2600, et seq. According to the UST regulations, a FS/CAP must present an evaluation of a minimum of two active remedial alternatives including discussion of feasibility, cost effectiveness, and estimated time to reach cleanup goals, and the advantages and limitations for each remediation alternative. To date although two remedial technologies have been explored by Antea in the documents listed above excavation and ISCO injection - neither of these methods has been completely evaluated. The RAP presents Antea's recommended corrective action for the site alternative combining two technologies - excavation and ORC application in the excavation pit. ACEH considers this recommendation premature as a FS has not been performed that presents two fully developed alternatives as required by the UST regulations.

i. Excavation-

- a. Approximately 6,200 cubic yards of soil have been previously excavated and transported off site for disposal. The depth of the excavation was up to 16 feet BGS. The removed soil was replaced by clean import fill. The RAP proposes excavating two areas to a depth of 11 feet BGS, both of which contain areas previously excavated and backfilled with clean import. It is unclear to ACEH if the removal of several feet of clean overburden to excavate an additional three to six feet of additional soil is cost effective.
- b. The 11-foot depth of the proposed excavation does not appear to be technically justified. The Antea ISCO WP states the depth of contamination east of the dispenser islands is extends to a depth of 20 feet BGS. ACEH's review of the case file indicates, a soil sample collected in area of the proposed excavation A1 at a depth of 26.5 feet BGS has a reported concentration of total petroleum hydrocarbons as gasoline of 6,840 milligrams per kilogram (mg/kg) and 80.9 mg/kg benzene.
- c. The borings proposed for delineating contamination within the A2 excavation area are proposed to be advanced to a depth of 11 feet BGS the depth of the proposed excavation. The 11-foot depth does not appear to be technically justified. ACEH believes the boring depth for delineation should exceed the anticipated depth of excavation.
- d. The proposed boring locations for determining the extent of the A2 excavation are not shown on the figures provided in the RAP. ACEH cannot comment on the appropriateness of these initial delineation borings.
- e. Confirmation sidewall soil samples should be recovered from two different depths and be recovered from native material. Samples should be collected from the 0- to 5-foot and from the 5- to 10-foot BGS intervals. Sample depths can be staggered to maintain the one sample per 20- linear feet sampling interval outlined in the RAP.

f. The RAP proposes abandonment of two monitoring wells (MW-12 and MW-12A) located in the area A1 excavation, but does not propose replacement wells. ACEH is of the opinion that the areas to be excavated should be delineated prior to well abandonment. As, well MW-12A is the only site well that monitors deeper groundwater, ACEH is of the opinion that the well should be replaced.

ii. In-Situ Chemical Oxidation -

- a. The ISCO WP reported fluid could be moved through the formation using acceptable pressures. This test was performed to a depth of 13 feet BGS; however, the proposed pilot test injection depth is 16 feet BGS. Depth to contamination exceeds the test depth of 13 feet. The flow test is considered incomplete as it does not evaluate the entire contaminated interval. Additionally the radius of influence was not determined.
- b. Based on the ISCO bench test data, Antea does not recommend the use of hydrogen peroxide activated sodium persulfate for site remediation. There is no evaluation of alternative chemical oxidation compounds for remediation application; however, Antea proposes the use of ORC in conjunction with backfilling the excavated areas without technical justification. It is unclear to ACEH if ORC is a suitable remediation compound or if ORC injection would be a more appropriate application technique to target contamination.
- c. The 2012 ISCO Work Plan indicates the injection chemical would be a proprietary blend of sodium persulfate and calcium peroxide; however, it was reported that the bench test was performed using hydrogen peroxide, which was shown not to be suitable. There was no evaluation of the suitability or use of calcium peroxide as an activator or a discussion of activators as it relates to the effectiveness of the persulfate application.
- d. The 2012 ISCO WP stated process monitoring to optimize injection pressure and flow rates, spacing of injection points, and the volume and strength of amendment slurry would be determined during the pilot test. ACEH has not been provided the data for these determinations.
- e. The 2012 ISCO WP stated performance monitoring and assessment would be performed. ACEH has not been provided with the performance reports.
- f. The 2012 ISCO WP stated potential expansion of the pilot test to additional areas throughout the site may occur. ACEH has not been provided data documenting the performance of the ISCO pilot test or submittal of a work plan proposing to expand the pilot test.
- g. The ISCO evaluation did not evaluate alternative chemicals for remediation application.
- Meeting ACEH would like to schedule a meeting at our office with you and Antea to discuss the case and the technical comments above in order to determine the most effective strategy for moving this case forward. Please contact us by the date listed below with proposed dates for the meeting.

Messrs. Sprague and Ralston and Ms. Espino Devine RO0000219
June 21, 2013, Page 5

TECHNICAL REPORT REQUEST

Please submit technical reports to ACEH (Attention: Keith Nowell), according to Attachment 1 and the following schedule:

- July 9, 2013 Provide ACEH with schedule containing times/dates for a meeting to be held at the ACEH office.
- August 23, 2013 Feasibility Study/Corrective Action Plan.
 (File to be named: RO219_FEASSTUD_R_ yyyy-mm-dd

If you have any questions or concerns regarding this correspondence or your case, please call me at (510) 567-6764 or send me an electronic mail message at keith.nowell@acgov.org.

Sincerely,

Digitally signed by Keith Nowell
DN: cn=Keith Nowell, o, ou,
email= keith.nowell@acgov.org,
c=US
Date: 2013.06.21 18:30:12-07'00'

Keith Nowell, P.G., C.HG. Hazardous Materials Specialist

Attachment 1: Responsible Party(ies) Legal Requirements/Obligations and ACEH Electronic

Report Upload (ftp) Instructions

cc: Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA 94612-2032 (Sent via E-mail to: lariffin@oaklandnet.com)

Dennis Dettloff, Antea Group, 11050 White Rock Road, Suite 110, Rancho Cordova, CA 95670 (Sent via E-mail to: dennis dettloff@anteagroup.com)

Donna Drogos, ACEH (Sent via E-mail to: donna.drogos@acgov.org)
Dilan Roe (Sent via E-mail to: dilan.roe@acgov.org)
Keith Nowell, ACEH (Sent via E-mail to: keith.nowell@acgov.org)
GeoTracker

File

ATTACHMENT 1

Responsible Party(ies) Legal Requirements/Obligations
& ACEH Electronic Report Upload (ftp) Instructions

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website for more information on these requirements. (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/)

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SCP)

REVISION DATE: July 25, 2012

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005; December 16, 2005; March 27, 2009; July 8, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- <u>Do not</u> password protect the document. Once indexed and inserted into the correct electronic case file, the
 document will be secured in compliance with the County's current security standards and a password.
 <u>Documents with password protection will not be accepted.</u>
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO#_Report Name_Year-Month-Date (e.g., RO#5555_WorkPlan_2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to .loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload). If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY

ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

October 8, 2013

Walter Sprague
Pacific Convenience & Fuel
7180 Knoll Center Parkway, Suite 100
Pleasanton, CA 94566
(Sent via E-mail to WSprague@pcandf.com)

Rick Horn Chevron Environmental Management Company 6101 Bollinger Canyon Road San Ramon, California 94583 (Sent via E-mail to: Rhorn@Chevron.com)

Ed Ralston
Phillips 66 Company
76 Broadway, Sacramento, CA 95818
(Sent via E-mail to: Ed.C. Ralston@p66.com)

Subject: Fuel Leak Case No. RO0000219 and GeoTracker Global ID T0600101476, UNOCAL #5043, 449 Hegenberger Road, Oakland, CA 94621

Dear Mr. Sprague:

Thank you for coming to meet with us on September 13, 2013 at our office to discuss site UNOCAL 5043, 449 Hegenberger Rd, Oakland, Alameda County Environmental Health (ACEH) case file # RO0000219. It was a pleasure to put a face to the name ACEH has been working with. Items for discussion included the recent submittals by ANTEA Group (ANTEA) regarding the work plans for the In-Situ Chemical Oxidation (ISCO) Pilot Test, dated May 15, 2012 and for the abandonment of well MW-12A, dated February 11, 2013, and the April 23, 2013 Remedial Action Plan outlining soil excavation, and the ACEH Directive Letter dated June 21, 2013.

At this juncture ACEH requests that you address the technical comments and perform the requested work identified below.

Technical Comments

- 1. **Groundwater Assessment- As** discussed at our meeting please assess groundwater conditions at the site including the following items:
 - The monitoring well network in relation to the groundwater flow direction, using groundwater flow direction for the justification of down gradient well(s) placement to delineate the leading edge of the contaminant plume.
 - The immediate risk to sensitive receptors from shallow groundwater migrating offsite.
 - The monitoring well network with regard to proposed ISCO injection points to capture the effects of the ISCO injection.
 - Why the isoconcentration contours appear to be perpendicular the direction of groundwater flow.

Please include your assessment in the Feasibility Study / Corrective Action Plan (FS/CAP) described in Item 2 below.

- 2. Feasibility Study / Corrective Action Plan- Please prepare a FS/CAP evaluating at least two viable alternatives for remedying or mitigating the actual or potential adverse affects of the unauthorized release(s) besides the 'no action' and 'monitored natural attenuation' remedial alternatives. Please evaluate each alternative for cost-effectiveness and its timeframe to reach cleanup levels and cleanup goals, and present your recommendations for the preferred alternative. ACEH understands the two remedial methods being evaluated are soil excavation and ISCO injection. Please include the following items in the FS/CAP:
 - Cross sections showing utilities and preferential pathways;
 - A site map using a photographic base showing site and nearby features. Include on
 the figure a rose diagram, well and boring locations, and the estimated benzene
 isoconcentration contour map showing the <u>estimated</u> plume boundary. As discussed
 in the meeting, please use the State Water Resources Control Board's (SWRCBs)
 Low Threat Underground Storage Tank Case Closure Policy (LTCP) Technical
 Justification Groundwater Paper to support the estimated plume length. Identify
 nearby potential receptors on the site map.
- **3.** Public Participation Notification- Please prepare a draft Public Participation Notification Fact Sheet for the FS/CAP to include the following items:
 - Language for the two remedial methods (soil excavation and ISCO injection);
 - A section addressing the effect the remedial actions will have on the public during implementation.

ACEH will review the draft Fact Sheet and provide a final Fact Sheet and list of recipients for you to distribute to. ACEH has included an example Fact Sheet for your use as Attachment A. Following distribution of the Fact Sheet, please provide your personal certification by email or letter, that the Fact Sheet was distributed by U.S. Mail to the list of recipients.

- 4. **Remedial Design-** Subsequent to the completion of the public comment period on the FS/CAP please prepare a Remedial Design Implementation Plan document identifying the steps for implementation details. The discussion of the selected remedial method should include, but not be limited to, the following items:
 - Post-remediation monitoring and verification plans with proposed strategy for collecting groundwater, soil and soil vapor monitoring and confirmation samples, as appropriate. This may require the installation of replacement onsite groundwater monitoring wells;
 - A detailed cost estimate for the proposed work;
 - Implementation schedule with milestone dates;
 - A strategy for collecting soil data within the upper 10 feet of soil at the site during ISCO injection or excavation, if appropriate, to help fulfill the requirements for the LTCP Media Specific Criteria for Direct Contact and Outdoor Air.

If excavation is selected, the discussion of the excavation remediation alternative should include, but not be limited to, the following items:

 Possible segregation of clean surficial materials from deeper impacted soil, stockpile placement and stockpile profiling; Responsible Parties RO0000219 October 8, 2013, Page 3

- Use of shoring support for excavation sidewalls;
- Excavation dewatering.

If ISCO is selected, the discussion of the ISCO remediation alternative should include, but not be limited to, the following items:

- Well spacing and depths;
- · injection intervals and pressures;
- · injection radius of influence;
- The adequacy of the monitoring well network to evaluate the effectiveness of the ISCO treatment.

Please note, implementation of the CAP is contingent on public notification and the submittal and ACEH acceptance of the CAP Implementation Plan.

- 5. Groundwater Monitoring- ANTEA has proposed the decommissioning of monitoring well MW-12A. ACEH concurs that groundwater in the deeper water zone monitored by well MW-12A has not been impacted by the petroleum hydrocarbons identified in the shallow groundwater zone. However, ACEH requests to keep the well until the FS/CAP has been accepted. Well MW-12A can be removed from the quarterly well sampling program until the final disposition of the well is determined.
- 6. Gant Chart- Path to Closure Project Schedule The SWRCB passed Resolution No. 2012-0062 on November 6, 2012 which requires development of a "Path to Closure Plan" by December 31, 2013 that addresses the impediments to closure for the site. The Path to Closure must have milestone dates tied to calendar quarters which will achieve site cleanup and case closure in a timely and efficient manner and minimizes the cost of corrective action. Therefore, by the date listed below please prepare a Path to Closure Schedule (further detailed in Attachment B) for your site that incorporates the items identified by ACEH in the Technical Comments above as impediments to closure. ACEH will review the schedule to ensure that all key elements are included.

Schedule

Please upload technical reports to the ACEH ftp site (Attention: Keith Nowell), and to the State Water Resources Control Board's Geotracker website, in accordance Attachment 1 and the following specified file naming convention and schedule:

- November 8, 2013- Draft Feasibility Study / Corrective Action Plan Report (file name: RO0000219_FEAS_CAP_R_yyyy-mm-dd)
- November 8, 2013- Quarterly Groundwater Monitoring Report (file name: RO0000219_GWM_R_yyyy-mm-dd)
- November 8, 2013- Path to Closure Project Schedule (file name: RO0000219_ PROJ_SCH_R_yyyy-mm-dd)
- December 6, 2013- Draft Fact Sheet (file name: RO0000219_CAP_L_yyyy-mm-dd)
- January 31, 2014- Quarterly Groundwater Monitoring Report (file name: RO0000219_GWM_R_yyyy-mm-dd)

Responsible Parties RO0000219 October 8, 2013, Page 4

- TBD- Fact Sheet (Certified) (file name: RO0000219_ CAP_PPRL_L_yyyy-mm-dd)
- TBD Remedial Design Implementation Plan (file name: RO0000219 RDIP R yyyymm-dd)

If your email address does not appear on the cover page of this notification ACEH is requesting you provide your email address so that we can correspond with you quickly and efficiently regarding your case.

If you have any questions or concerns regarding this correspondence or your case, please call me at (510) 567-6764 or send me an electronic mail message at keith.nowell@acgov.org.

Sincerely,

Digitally signed by Kelth Nowell Level . Novell o, ou, email-keith novvell eacgov.org, c=US

Date: 2013.10.08 11:06:05 -07'00"

Keith Nowell, P.G., C.HG. Hazardous Materials Specialist

Enclosures: Attachment 1 - Responsible Party (ies) Legal Requirements / Obligations

Electronic Report Upload (ftp) Instructions

Attachment A - Example Fact Sheet

Attachment B - Path to Closure Project Schedule Requisite Elements

Leroy Griffin, Oakland Fire Department, 250 Frank H. Ogawa Plaza, Ste. 3341, Oakland, CA CC: 94612-2032 (Sent via E-mail to: lgriffin@oaklandnet.com) Dennis Dettloff, Antea Group, 11050 White Rock Road, Suite 110, Rancho Cordova, CA 95670 (Sent via E-mail to: dennis.dettloff@anteagroup.com)

Dilan Roe (Sent via E-mail to: dilan.roe@acgov.org)

Keith Nowell, ACEH (Sent via E-mail to: keith.nowell@acgov.org)

GeoTracker

File

ATTACHMENT 1

Responsible Party(ies) Legal Requirements/Obligations
& ACEH Electronic Report Upload (ftp) Instructions

Attachment 1

Responsible Party(ies) Legal Requirements/Obligations

REPORT/DATA REQUESTS

These reports/data are being requested pursuant to Division 7 of the California Water Code (Water Quality), Chapter 6.7 of Division 20 of the California Health and Safety Code (Underground Storage of Hazardous Substances), and Chapter 16 of Division 3 of Title 23 of the California Code of Regulations (Underground Storage Tank Regulations).

ELECTRONIC SUBMITTAL OF REPORTS

ACEH's Environmental Cleanup Oversight Programs (Local Oversight Program [LOP] for unauthorized releases from petroleum Underground Storage Tanks [USTs], and Site Cleanup Program [SCP] for unauthorized releases of non-petroleum hazardous substances) require submission of reports in electronic format pursuant to Chapter 3 of Division 7, Sections 13195 and 13197.5 of the California Water Code, and Chapter 30, Articles 1 and 2, Sections 3890 to 3895 of Division 3 of Title 23 of the California Code of Regulations (23 CCR). Instructions for submission of electronic documents to the ACEH FTP site are provided on the attached "Electronic Report Upload Instructions."

Submission of reports to the ACEH FTP site is in addition to requirements for electronic submittal of information (ESI) to the State Water Resources Control Board's (SWRCB) Geotracker website. In April 2001, the SWRCB adopted 23 CCR, Division 3, Chapter 16, Article 12, Sections 2729 and 2729.1 (Electronic Submission of Laboratory Data for UST Reports). Article 12 required electronic submittal of analytical laboratory data submitted in a report to a regulatory agency (effective September 1, 2001), and surveyed locations (latitude, longitude and elevation) of groundwater monitoring wells (effective January 1, 2002) in Electronic Deliverable Format (EDF) to Geotracker. Article 12 was subsequently repealed in 2004 and replaced with Article 30 (Electronic Submittal of Information) which expanded the ESI requirements to include electronic submittal of any report or data required by a regulatory agency from a cleanup site. The expanded ESI submittal requirements for petroleum UST sites subject to the requirements of 23 CCR, Division, 3, Chapter 16, Article 11, became effective December 16, 2004. All other electronic submittals required pursuant to Chapter 30 became effective January 1, 2005. Please visit the SWRCB website more information for on these requirements: (http://www.waterboards.ca.gov/water_issues/programs/ust/electronic_submittal/).

PERJURY STATEMENT

All work plans, technical reports, or technical documents submitted to ACEH must be accompanied by a cover letter from the responsible party that states, at a minimum, the following: "I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge." This letter must be signed by an officer or legally authorized representative of your company. Please include a cover letter satisfying these requirements with all future reports and technical documents submitted for this fuel leak case.

PROFESSIONAL CERTIFICATION & CONCLUSIONS/RECOMMENDATIONS

The California Business and Professions Code (Sections 6735, 7835, and 7835.1) requires that work plans and technical or implementation reports containing geologic or engineering evaluations and/or judgments be performed under the direction of an appropriately registered or certified professional. For your submittal to be considered a valid technical report, you are to present site specific data, data interpretations, and recommendations prepared by an appropriately licensed professional and include the professional registration stamp, signature, and statement of professional certification. Please ensure all that all technical reports submitted for this fuel leak case meet this requirement.

UNDERGROUND STORAGE TANK CLEANUP FUND

Please note that delays in investigation, late reports, or enforcement actions may result in your becoming ineligible to receive grant money from the state's Underground Storage Tank Cleanup Fund (Senate Bill 2004) to reimburse you for the cost of cleanup.

AGENCY OVERSIGHT

If it appears as though significant delays are occurring or reports are not submitted as requested, we will consider referring your case to the Regional Board or other appropriate agency, including the County District Attorney, for possible enforcement actions. California Health and Safety Code, Section 25299.76 authorizes enforcement including administrative action or monetary penalties of up to \$10,000 per day for each day of violation.

Alameda County Environmental Cleanup Oversight Programs (LOP and SCP)

REVISION DATE: July 25, 2012

ISSUE DATE: July 5, 2005

PREVIOUS REVISIONS: October 31, 2005;

December 16, 2005; March 27, 2009; July 8, 2010

SECTION: Miscellaneous Administrative Topics & Procedures

SUBJECT: Electronic Report Upload (ftp) Instructions

The Alameda County Environmental Cleanup Oversight Programs (petroleum UST and SCP) require submission of all reports in electronic form to the county's FTP site. Paper copies of reports will no longer be accepted. The electronic copy replaces the paper copy and will be used for all public information requests, regulatory review, and compliance/enforcement activities.

REQUIREMENTS

- Please do not submit reports as attachments to electronic mail.
- Entire report including cover letter must be submitted to the ftp site as a single Portable Document Format (PDF) with no password protection.
- It is preferable that reports be converted to PDF format from their original format, (e.g., Microsoft Word) rather than scanned.
- Signature pages and perjury statements must be included and have either original or electronic signature.
- Do not password protect the document. Once indexed and inserted into the correct electronic case file, the document will be secured in compliance with the County's current security standards and a password. Documents with password protection will not be accepted.
- Each page in the PDF document should be rotated in the direction that will make it easiest to read on a computer monitor.
- Reports must be named and saved using the following naming convention:

RO# Report Name Year-Month-Date (e.g., RO#5555 WorkPlan 2005-06-14)

Submission Instructions

- 1) Obtain User Name and Password
 - a) Contact the Alameda County Environmental Health Department to obtain a User Name and Password to upload files to the ftp site.
 - i) Send an e-mail to deh.loptoxic@acgov.org
 - b) In the subject line of your request, be sure to include "ftp PASSWORD REQUEST" and in the body of your request, include the Contact Information, Site Addresses, and the Case Numbers (RO# available in Geotracker) you will be posting for.
- 2) Upload Files to the ftp Site
 - a) Using Internet Explorer (IE4+), go to ftp://alcoftp1.acgov.org
 - (i) Note: Netscape, Safari, and Firefox browsers will not open the FTP site as they are NOT being supported at this time.
 - b) Click on Page located on the Command bar on upper right side of window, and then scroll down to Open FTP Site in Windows Explorer.
 - c) Enter your User Name and Password. (Note: Both are Case Sensitive.)
 - d) Open "My Computer" on your computer and navigate to the file(s) you wish to upload to the ftp site.
 - e) With both "My Computer" and the ftp site open in separate windows, drag and drop the file(s) from "My Computer" to the ftp window.
- 3) Send E-mail Notifications to the Environmental Cleanup Oversight Programs
 - a) Send email to deh.loptoxic@acgov.org notify us that you have placed a report on our ftp site.
 - b) Copy your Caseworker on the e-mail. Your Caseworker's e-mail address is the entire first name then a period and entire last name @acgov.org. (e.g., firstname.lastname@acgov.org)
 - c) The subject line of the e-mail must start with the RO# followed by **Report Upload**. (e.g., Subject: RO1234 Report Upload). If site is a new case without an RO#, use the street address instead.
 - d) If your document meets the above requirements and you follow the submission instructions, you will receive a notification by email indicating that your document was successfully uploaded to the ftp site.

ATTACHMENT A

Public Fact Sheet

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

September 27, 2013

FACT SHEET ON ENVIRONMENTAL STATUS

Former Park Avenue Cleaners 7100 – 7120 Dublin Boulevard, Dublin, CA Site Cleanup Program No. RO0003113 Geotracker Global ID T10000001616

Summary - This fact sheet has been prepared to inform community members and other interested stakeholders of the status of environmental work at the former Park Avenue Cleaners facility (the Site), located at 7104 Dublin Boulevard in Dublin, California (Figure 1). The Site is currently enrolled in a voluntary cleanup program under local oversight by Alameda County Environmental Health (ACEH).

This fact sheet contains information concerning site background, results of recent investigation activities, planned interim cleanup activities, and information contacts.

Site Background - The Site is part of a commercial retail shopping center that is developed with three one-story multi-tenant commercial buildings, associated parking and landscaped areas known as "Dublin Crossroads" (7100-7120 Dublin Boulevard).

Park Avenue Cleaners operated a laundry and dry cleaning facility at 7102B Dublin Boulevard

from 1990 to 2004. In 2004, Park Avenue Cleaners relocated to the adjacent retail space at 7104 Dublin Boulevard. In late July 2013, Park Avenue Cleaners vacated the Site; all associated dry cleaning equipment was removed.

Environmental Impacts **Environmental** investigation commenced at the Site in 2012 to evaluate the potential for subsurface impacts associated with the former dry cleaning operation. Additional investigation was performed in July and August 2013 to evaluate the extent of subsurface impacts across the property. investigations identified that volatile organic compounds (VOCs) were detected in the subsurface at concentrations greater than applicable regulatory agency screening levels. The VOCs found beneath the Site are tetrachloroethene (PCE) and its associated breakdown components trichloroethene (TCE) and cis-1,2- dichloroethene (DCE).

Maximum concentrations of PCE in soil, groundwater, soil vapor and sub-slab soil vapor were detected in the vicinity of the former dry cleaning machine at the 7104 tenant space exceeding commercial use screening levels. Soil, groundwater and soil vapor impacts were not detected in other locations beneath the Site at levels that would pose a threat to human health or the environment. Elevated soils containing PCE were only found within portions of the 7102 and 7104 tenant spaces in the vicinity of the former dry cleaning machine and to a depth below 10 feet indicating that the subsurface impacts appear to be localized and limited in both lateral and vertical extent.

VOCs are able to move in the environment, from soil to groundwater, from groundwater to soil, and from groundwater or soil to air. The shallow groundwater in this area is not used for drinking water or other household/industrial purposes. Of particular interest is the potential for movement of VOCs into the interior of buildings

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

where people could be exposed to elevated levels of contaminated indoor air. This process is called vapor intrusion into indoor air. The concentrations of PCE detected in the soil gas and sub-slab vapor samples beneath the former dry cleaning machine indicate a potential vapor intrusion health risk concern in this vicinity. Concentrations of PCE in the sub-slab soil vapor samples collected at distance away from the former dry cleaning machine were below commercial use screening levels. The presence of these chemicals at concentrations exceeding regulatory screening levels does not indicate that adverse impacts to human health or the environment are necessarily occurring, but rather indicates that a potential for adverse risk may exist.

Interim Removal Activities – The current vacant tenant spaces provide an excellent opportunity to remove presumed source soils beneath the Site that are of limited extent. Removal of these soils by excavation inside the building will likely reduce the potential for vapor intrusion in the vicinity of the former dry cleaning machine and remove the residual source of PCE beneath the Site in vadose soil.

Approximately 300 cubic yards of soil containing VOCs is planned to be removed from a small excavation measuring 20 feet by 40 feet by up to 10 feet deep in the vicinity of the former dry cleaning machine overlapping a small portion of the vacant 7102 and 7104 tenant spaces.

Confirmation soil samples will be collected from the floor and sidewalls of the excavation to demonstrate that established remedial action objectives have been achieved. In addition, soil vapor conditions within the sub-slab material to the east and north of the planned excavation will be monitored before, during and after excavation to evaluate vapor conditions for both existing and future occupants beneath the Site.

Offsite Disposal and Trucking Routes -Excavated soils will be placed into roll-off bins for transport via covered trucks by appropriately licensed waste haulers to designated disposal facility. Approximately 30 roll-off bin/trucks are likely needed to transport the VOC containing soils

During soil transport activities, trucks will pick up the roll-off bins that will be staged onsite (in the eastern and southern portions of the parking lot). Trucks will enter and leave the Site from the south along Village Parkway. A flag person will be located at the Site to assist the truck drivers to safely drive onto the Site. Transportation will be coordinated in such a manner that on-site trucks will be in communication with the Site trucking coordinator.

In addition, vehicles will be required to maintain slow speeds (i.e., less than 5 mph) for safety and for dust control purposes.

Trucks will depart the Site from the south and turn left onto Village Parkway and make the first right onto Dublin Boulevard. Trucks will then turn right onto Dougherty Road and merge onto Interstate 580 East towards Stockton, California. Trucks will then proceed until arrival of the disposal facility.

Prior to exiting the Site, the vehicle will be swept (as needed) to remove extra soil from areas not covered or protected. This cleanup or decontamination area will be set up as close to the loading area as possible so as to minimize the potential for spreading impacted soil. As the trucks leave the Site, the flag person will assist the truck drivers so that they can safely merge with traffic on Village Parkway.

Timeline - Excavation activities are anticipated to begin in late September or early October 2013 and take approximately three weeks to complete.

ALAMEDA COUNTY HEALTH CARE SERVICES AGENCY ALEX BRISCOE, Agency Director

ENVIRONMENTAL HEALTH DEPARTMENT ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

How to Get More Information - The proposed interim removal actions are presented in the Revised Interim Removal Action Plan (IRAP), dated September 20, 2013, prepared by Iris Environmental on behalf of Shelter Bay Retail Group. The IRAP as well as the entire case file can be viewed over the internet on the ACEH

website at http://www.acgov.org/aceh/lop/ust.htm
or at the State of California Water Resources
Control Board Geotracker website at
http://geotracker.swrcb.ca.gov.

For additional information, please contact:

Dilan Roe Site Cleanup Program Manager Alameda County Environmental Health 1131 Harbor Bay Parkway Suite 250 Alameda, CA 94502

Phone: 510-567-6767 Email: dilan.roe@acgov.org Craig Pelletier Environmental Consultant Iris Environmental

Phone: 510-834-4747 Email:craig@irisenv.com

ATTACHMENT B

Path to Closure Project Schedule Requisite Elements

ATTACHMENT B

Path to Closure Project Schedule Requisite Elements

The State Water Resources Control Board passed Resolution No. 2012-0062 on November 6, 2012 which requires development of a "Path to Closure Plan" by December 31, 2013 that addresses the impediments to closure for the site. The Path to Closure must have milestone dates tied to calendar quarters which will achieve site cleanup and case closure in a timely and efficient manner and minimizes the cost of corrective action. ACEH will review the schedule to ensure that all key elements are included.

Please submit an electronic copy that includes, but is not be limited to, the following key environmental elements and milestones as appropriate:

- · Preferential Pathway Study
- Soil, Groundwater, and Soil Vapor Investigations
- Initial, Updated, and Final/Validated SCMs
- Interim Remedial Actions
- Feasibility Study/Corrective Action Plan
- Pilot Tests
- Remedial Actions
- Soil Vapor and Groundwater Monitoring Well Installation and Monitoring
- Public Participation Program (Fact Sheet Preparation/Distribution/Public Comment Period, Community Meetings, etc.)
- Case Closure Tasks (Request for closure documents, ACEH Case Closure Summary Preparation and Review, Site Management Plan, Institutional Controls, Public Participation, Landowner Notification, Well Decommissioning, Waste Removal, and Reporting.)

Please include time for regulatory and RP in house review, permitting, off-site access agreements, and utility connections, etc.

Please use a critical path methodology/tool to construct a schedule with sufficient detail to support a realistic and achievable Path to Closure Schedule. The schedule is to include at a minimum:

- Defined work breakdown structure including summary tasks required to accomplish the project objectives and required deliverables
- Summary task decomposition into smaller more manageable components that can be scheduled, monitored, and controlled
- Sequencing of activities to identify and document relationships among the project activities using logical relationships
- Identification of critical paths, linkages, predecessor and successor activities, leads and lags, and key milestones
- Identification of entity responsible for executing work
- Estimated activity durations (60-day ACEH review times are based on calendar days)

Corrective Action Plan
76 Station No. 5191/5043
449 Hegenberger Road, Oakland, California
Antea Group Project No. I42705191

Appendix B

Site Details and Summary of Previous Environmental Investigations

76 Station No. 5191/5043 Oakland, California Antea Group Project No. 142705191

PREVIOUS INVESTIGATION AND SITE HISTORY SUMMARY

October 1991 - Four soil samples were collected from the product pipe trenches at depths of approximately 3 feet below ground surface (bgs) during a dispenser island modification. The product pipe trenches were subsequently excavated to the groundwater depth at 4 to 4.5 feet bgs.

<u>February 1992</u> - Three monitoring wells, MW-1 through MW-3, were installed at the site to depths ranging from 13.5 to 15 feet bgs.

<u>August 1992</u> - Three additional monitoring wells, MW-4 through MW-6, were installed at the site to a depth of 13.5 feet bgs.

<u>September 1994</u> - One 280-gallon waste-oil UST was removed from the site. The UST was made of steel, and no apparent holes or cracks were observed in the UST. One soil sample was collected from beneath the former UST at a depth of approximately 9 feet bgs. No petroleum hydrocarbons were reported.

<u>January 1995</u> - Two additional monitoring wells, MW-9 and MW-10, were installed to depths of 13 and 15 feet bgs. In addition, monitoring wells MW-4 and MW-5 were destroyed by over-drilling the wells and backfilling with neat cement.

<u>March 1995</u> - Two 10,000-gallon gasoline USTs and one 10,000-gallon diesel UST were removed from the site. Groundwater was encountered in the tank cavity at a depth of approximately 8.5 feet bgs. Soil samples contained total petroleum hydrocarbons as diesel (TPHd) and benzene, and TPH as gasoline (TPHg). Approximately 125,000 gallons of groundwater were pumped from the site for remediation and properly disposed off-site. Four fuel dispenser islands and associated product piping were also removed. Based on the results of the confirmation samples, the product dispenser islands were over excavated to approximately 6 feet bgs.

<u>March-April 1995</u> - During demolition activities of the former station building, soil samples were collected from two excavations, which were subsequently over excavated. Confirmation samples contained petroleum hydrocarbons. An additional area on the south side of the former station building was excavated based on photo-ionization detector (PID) readings. Two monitoring wells, MW-1 and MW-2, were destroyed in order to allow for over excavation activities to extend to an area adjacent to the dispenser islands in the southeastern quadrant of the site. The excavated areas were subsequently backfilled with clean-engineered fill.

<u>April 1997</u> - Two additional monitoring wells, MW-7 and MW-8, were installed off-site to the south and east on the neighboring property to a depth of 13 feet bgs. In addition, monitoring well MW-3, which was damaged during site renovation activities, was fully drilled out and reconstructed in the same borehole.

October 2003 - Site environmental consulting responsibilities were transferred to TRC.

A-1 rev.20110110 www.anteagroup.com

76 Station No. 5191/5043

Oakland, California

Antea Group Project No. 142705191

<u>April 8-9, 2005</u> - TRC conducted a 24-hour dual phase extraction (DPE) test at the site using monitoring well MW-6. The 24-hour DPE test was only moderately successful at removing vapor-phase petroleum hydrocarbons from the subsurface; therefore, TRC recommended DPE no longer be considered a viable remedial alternative for the site.

October 2007 - Site environmental consulting responsibilities were transferred to Delta Consultants.

<u>December 2009</u> - Delta advanced two borings, B-4 and B-5, to depths of 20 feet bgs and 32 feet bgs, respectively. Analytical results from the soil and groundwater samples collected from these two borings indicated that the soil and the groundwater were impacted by petroleum hydrocarbons at these locations.

<u>June 2010</u> – Delta installed two 4-inch diameter monitoring/extraction wells, MW-11 and MW-12, and two 2-inch diameter monitoring wells, MW-12A and MW-13, at the site. Analytical results from the soil and groundwater samples collected from the MW-12 and MW-12A boring locations indicated that the soil and the groundwater were impacted by petroleum hydrocarbons at these locations.

May 2011 – Antea Group (formally Delta Consultants) installed four 2-inch diameter monitoring wells, MW-14 through MW-17, and advanced one soil boring, B-6, at the site. All four monitoring wells were installed with ten feet of screen from 3 feet bgs to 13 feet bgs. Analytical results of soil samples collected during the monitoring well installation reported TPHg concentrations ranging from 1.0 milligrams per kilogram (mg/kg) (MW-14d13) to 2,490 mg/kg (B-6d9), benzene concentrations ranging from 0.67 mg/kg (B-6d21) to 26.4 mg/kg (B-6d9), toluene concentrations ranging from 0.2 mg/kg (MW-14d10) to 73.9 mg/kg (B-6d9), ethylbenzene concentrations ranging from 0.037 mg/kg (MW-14d13) to 58.1 mg/kg (B-6d9), total xylenes concentrations ranging from 0.066 mg/kg (MW-14d13) to 230 mg/kg (B-6d9), methyl tertiary-butyl ether (MTBE) concentrations ranging from 0.015 mg/kg (MW-15d13) to 0.19 mg/kg (MW-15d8), tertiary-butyl alcohol (TBA) concentrations ranging from 0.014 mg/kg (MW-16d8 and B-6d21) to 0.16 mg/kg (MW-15d8), and lead concentrations ranging from 5.5 mg/kg (MW-16d13) to 16.3 mg/kg (MW-17d9). Diesel range organics (DRO) and DRO with silica gel concentrations were reported; however, all of the results did not match the laboratory standard for diesel. Concentrations ranged from 2.5 mg/kg (MW-17d13) to 250 mg/kg (B-6d14).

<u>March 2012</u> – Antea Group advanced five soil borings (HPB-1 through HPB-5) at the site. The borings were advanced using direct push technology. The borings were used to obtain a hydraulic profile of the substrate beneath the site. The data obtained during the investigation will be used to determine the best path forward in terms of remediation.

A-2 rev.20110110 www.anteagroup.com

76 Station No. 5191/5043 Oakland, California Antea Group Project No. 142705191

SENSITIVE RECEPTORS

April 24, 2006, TRC completed a sensitive receptor survey for the site. According to the Department of Water Resources (DWR) records, three water supply wells are located within one-half mile of the site. The closest well is an irrigation well, reported to be, approximately 1,080 feet southeast of the site. In addition, two surface water bodies were observed within a one-half mile radius of the site. San Leandro Creek is located approximately 1,400 feet southwest of the site and flows into the San Leandro Bay. Elmhurst Creek is located approximately 2,220 feet north of the site and also flows into the San Leandro Bay.

Current Consultant: Antea Group

A-3 rev.20110110 www.anteagroup.com

Corrective Action Plan
76 Station No. 5191/5043
449 Hegenberger Road, Oakland, California
Antea Group Project No. I42705191

Appendix C

Aerial Photograph Figures

<u>LEGEND</u>

APPROXIMATE PROPERTY BOUNDARY

MONITORING WELL

ABANDONED MONITORING WELL Ø MW-

SOIL BORING LOCATION (ANTEA GROUP 2013)

SOIL BORING LOCATION (ANTEA GROUP 2012)

BORING LOCATION

DISSOLVED PHASE BENZENE ISOOCONCENTRATION (µg/L) (440)

DISSOLVED PHASE BENZENE ISOCONTOUR (µg/L) -DASHED WHERE INFERRED

NOTES:

= MICROGRAMS PER LITER
= LESS THAN LABORATORY INDICATED REPORTING LIMIT
= NOT SAMPLED
= NOT USED IN CONTOURING

SITE PLAN

76 STATION NO. 5191/5043 449 HEGENBERGER ROAD OAKLAND, CALIFORNIA

N.	PROJECT NO. 142705191	PREPARED BY EW	JH	
n	DATE	REVIEWED BY	FILE NAME	
	11/19/13	DD	5191-SiteS_aerial	

SENSITIVE RECEPTORS

- 1 LIGHTHOUSE COMMUNITY CHARTER SCHOOL
- 2 LIGHTHOUSE CHAPEL INTERNATIONAL
- 3 OCCUPATIONAL HEALTH SERVICES
- 4 TEAMSTERS ASSOCIATION PROGRAM

SENSITIVE RECEPTOR MAP

76 STATION NO. 5191/5043 449 HEGENBERGER ROAD OAKLAND, CALIFORNIA

	PROJECT NO.	PREPARED BY	DRAWN BY	
100	142705191	EW	JH	
¢	DATE	REVIEWED BY	FILE NAME	
to	11/19/13	DD	5191-SiteS_aerial	

Corrective Action Plan
76 Station No. 5191/5043
449 Hegenberger Road, Oakland, California
Antea Group Project No. I42705191

Appendix D

Boring Logs

				В	ORING	GLOG	····
Project No. KEI-P91-1004			1	Boring 6	& Casing	Diameter 2"	Logged By D.L.
Project Name U			1	Well Co 7.67	ver Eleva feet	ation	Date Drilled 2/5/91
Boring No. MW3				Drilling Method		Hollow-stem Auger	Drilling Company West Hazmat
Penetration blows/6"	Depth (feet) Samp	ļ	Stra grap US(hy	Desc	ription	
		- "				Asphalt pavement o	ver sand and gravel base.
				SP		moist, dark greenish	<u> </u>
1/1/1		F		ML			ery fine-grained, very soft, very moist h gray with organic matter.
1/1/I 2/2/2		_ _ _ 5		МН		Clayey silt, very sol dark greenish gray.	It to soft, very moist to wet,
	-			OL		Peat, soft, wet, dark	greenish gray, spongy feel
				ОН		Silty clay, highly or remains.	rganic, firm, moist, black, with plant
3/4/5		- 10 - 10) =	СН		medium-grained sa	estimated 10 to 15% fine- to nd content, firm to stiff, moist, dark plant remains and organic matter.
7/9/10			E			medium-grained sa	estimated 10 to 15% fine- to nd content, stiff, to very stiff, moist, brown, with root holes.
		15				TOTAL	DEPTH: 14'

			,			BOR	ING LOG	
Project No. KEI-P91-1004	ļ					ing Dian		Logged By \(\mathcal{T}66\) D.L. \(\mathcal{E}6\) (\(\mathcal{E}6\) (653)
Project Name 449 Hegenber					Well	Cover I	Elevation	Date Drilled 8/21/92
Boring No. MW6	1W6					ling hod	Hollow-stem Auger	Drilling Company West Hazmat
Penetration blows/6"	G. W. level	(fe	epth eet) ample	es	Strat grap USC	hy		Description
		F	0 –	\exists			Asphalt pavement over sa	nd and gravel base.
				1			Gravelly clay with sand, s disturbed (fill).	stiff, moist, black and olive gray,
3/4/4		_	_	Ħ	СН		Clay with silt, stiff, moist, graded and well graded sa	, black (5Y 2.5/1) lensed with poorly and.
4/5/7	<u>-</u>		5 -		ML			d sand, stiff, moist to wet, dark greenish ith clayey silt between 4.5 and 5.5 feet.
3/3/4			-		OL			lack (5Y 2.5/1) and very dark gray (5Y ant organic matter (bay mud).
5/7/8		_	10 -	月	ОН		Silty clay, stiff, moist, bla matter.	ck (2.5YR 2.5/0), with abundant organi
5/7/9					СН		Silty clay, stiff, moist, ve matter.	ry dark gray (5Y 3/1), with organic
			-				Silty clay, trace fine-grain (5GY 4/1).	ned sand, stiff, moist, dark greenish gray
			15 -				ТОТ	'AL DEPTH 13.5'
			20					

						BORING LOG	
Project KEI-P 9		I.P8			Boring Dia	nmeter 8.5"	Logged By 566 D.L. (£6 /633
	enberg	ger Road	S/S #5043		Well Cover		Date Drilled 4/21/97
Boring	No.				Drilling Method	Hollow-stem Auger	Drilling Company Woodward Drilling
Pene- tration blows/6"	tration level (P.P.M.) (feet)					Desc	cription
						A.C. pavement over sand and g	ravel base.
	<u></u>			S	P	Poorly graded sand, predominal grading to saturated, brown (fill	ntly medium-grained, loose, moist).
	5 —				w ====1	Well graded sand with gravel, le (fill). Clayey silt, soft, wet, black and	dark greenish gray, mottled.
1/1/1					L ====	Sandy silt, soft, wet, dark green	ish gray.
17171	1/1/1			Р М		Clayey silt, soft, wet, black, wit	h abundant plant remains.
6/7/9				C	Н	Silty clay, stiff, moist, dark gray	y, with plant remains and root holes.
						ТОТ	AL DEPTH: 13'

						BORING LOG	
Project KEI-P 9		.P8			oring Dia asing Dia		Logged By TGG D.L. CEG /633
Project 499 Heg Oakland	enberg	ger Road	S/S #5043	W	ell Cover	r Elevation N/A	Date Drilled 4/21/97
Boring I MW8	No.				rilling lethod	Hollow-stem Auger	Drilling Company Woodward Drilling
Pene- tration blows/6''	Pene- tration level (P.P.M.) Depth S					De	scription
			0 			A.C. pavement over sand and	gravel base.
						Pocketed clay, silt and sand, fi dark greenish gray (fill and or	irm to stiff, moist, dark olive gray and disturbed native soil).
						Silty gravel, medium dense, m	noist to very moist, (fill).
2/2/4	2/2/4					Silty very fine to fine-grained stiff, very moist, dark gray.	sand, estimated at 20-30% silt, firm to
2/2/2						Clayey silt, firm, very moist to abundant plant remains lensed	o wet, black and dark greenish gray, with I with black sandy silt, wet.
2/5/6			10	CL		Silty clay, stiff, moist, black, common.	with minor plant remains, root holes
6/12/24			15	МН		very stiff, moist, dark greenis	0% silt, trace fine-grained sand, stiff to sh gray and olive, mottled, with at fibers, clay content increases with
						TOTA	L DEPTH: 15'

					BORING	LOG	
Project KEI-P 9		4		Boring D		8.5" 2"	Logged By 566 D.L. C=6/633
Project 499 Heg Oakland	enber	ger road	S/S #5()43	Well Cov	er Elevation N/A		Date Drilled 1/25/95
Boring MW9	No.			Drilling Method	Holl Aug	ow-stem er	Drilling Company V & W Drilling
Pene- tration blows/6"	G.W. level	O.V.M. (P.P.M.)	Depth (feet) Samples	Stratigraphy USCS		.,	Description
1.00			0 = 0	CI/			and gravel base.
1/2/2	<u>-</u>			ML SP	gray, with	organic matter aded sand, prede	(fill and/or disturbed native soil). ominantly fine to medium-grained, loose, l, dark greenish gray.
			_ 5 _	MI.	Silt, estim	ated at 5-15% v	rariable clay content, soft, wet, dark greenish
1/2/2			-	ML ML	= brown and	ł błack.	ck, with abundant plant fibers and organic
2/4/5			10	CL	Silty clay, matter.	firm to stiff, me	oist, black, with plant fibers and organic
13/15/18						e and dark oliv	-15% sand, trace gravel, very stiff to hard, e gray, mottled with olive brown below
							TOTAL DEPTH: 13'

						BORING LOG	
				Τ_			
Project KEI-P 9		4		-	ring Dia sing Dia		Logged By ブ6 C D.L. <i>C € C</i> / C 3 3
	enberg	ger Road	S/S #5043	We	ell Cove	r Elevation N/A	Date Drilled 1/25/95
Boring MW10	No.		1.001		illing ethod	Hollow-stem Auger	Drilling Company V & W Drilling
Penc- tration blows/6"	G.W level	O.V.M. (P.P.M.)	Depth (feet) Samples		graphy ICS	Desc	ription
4/4/5) I		0 =====================================	CL/ ML			base. by, trace-15% sand and gravel, stiff, hish gray, with abundant plant fibers
1/2/2	1/2/2					Silty clay, soft to firm, wet, blac organic matter.	k, with ahundant plant fibers and
3/5/5			10	C L			ides to dark greenish gray below 10 ic matter, trace sand below 10 feet.
9/11/13				SC			% clay and 10-15% silt, trace gravel, nish gray, with plant libers and organic
			15			TOTA	L DEPTH: 13'

		1								
		Project		I42705:			Clie		Delta/ELT	Well No: MW-11
		Logged Driller:		Jonatha	ın Fillinç	game		ation:	449 Hegenberger Road, Oa	akland Page 1 of 1
	+ ~		Method:	Gregg	thom A.			e Drille		2 01
Del	La	_	methoa: ng Metho			iger		e Diame e Depth		J/128 97:11 Jun-14/1
Consulta		Casing	•	Sch 40				l Diame		
Consuita	ants	Slot Siz		0.020	FVC			Depth	Manage	W-11 4
		Gravel		#3 Monterey Sand 🔀				-		
		0.010.	· com	0 . 10.1	, 0				er Depth: 2.5'	÷ WK-13
		Elevation	on:	Northing:					Easting:	
Well	<u></u>	γı	0	g	ı.	co.	mple			
Completion	Water Level	Blow Counts	PID Reading (ppm)	Sample Identification	Depth (feet)			Soil Type		
ng Gill	e l	ŭ	Rea	amp	E .	l e	zec	<u>–</u>	LITHOL	LOGY / DESCRIPTION
Backfili Casing	Nat	Š Š	Д, Д,	Sign)eb	Recovery	Analyzed	So		
			<u> </u>	ĭ			₹			
l t								10:7:27	4" Asphalt	
Cement					1 1-			10/3		brown, 60% fine to coarse
0								1679		ay, medium plasticity, 10% f
				Air-Knife	2 —	_		(4,4)	gravel, damp.	
Neat	<u> </u>	-		추]				Clavov GDAVEL with	h Sand (GC) ; brown, 60% i
	<u> </u>	- 1		<u>÷</u>	3 —		<u> </u>	*/ ()		se, 20% clay, 20% fine to
		i I		~					coarse sand, wet.	se, 20 % clay, 20 % fille to
K## K##					4 —			(*/ ()	coarse saria, wet.	
						+				
					5	_	l	(*,4)	Clavev GRAVEL wit	h Sand (GC); brown, 50% f
[· ːːː]		i i		ł		+				se, 30% clay, 20% fine to
[· : .] - [· : . ·]					6			(* /	coarse sand, wet.	,,, ,
:`.•: - :`.•:					_, '	200				
<u> </u>					/			[◆ .★)		
: : : - : : : :				ļ	8	1 1				
			0.2		0	¥.				
::: - ::::					9	28.9				
-						-10%		[◆ , ♦)		
		}			10-	2.4			ol- Conveilion	23. The second control of the second control
				MW-11			1	[* ,∕ \$)		c); brown, 60% fine gravel,
				@10	11-				100se, 30% clay, 10%	6 fine to coarse sand, moist.
						1 had		*/\	• • · · · · · · · · · · · · · · · · · ·	and the state of t
` · <u>: </u>			0.7		12 —	1.			Clavey CDAVEL (CC	; brown, 60% fine gravel,
			0.7					*, (),		ine to coarse sand, wet.
					13—	1.7	-		1003C, 30 /0 Clay, 1070	o fine to course suria, wet.
						7 : 5		*,4)		
:::: - ::::::					14	77				
_ []								(*,/ ()		
			0.4		15	1.5		1///	Lean CLAY (CL); gre	een-grey, medium plasticity,
					16				stiff, moist.	
: : : : - : : : :					16—			(444)	,	
[]-					17—			• •	No Recovery	
: [- [:]					1 /					
: : : : - : : : :					18			[•, †]		
· . : ·] - · . · · ·					10					
					19 —				•	VEL with Sand (GP); brow
;.·· - ;.··				MW-11		-				e, 20% medium to coarse
· . · . - · . · .			4.6	@20	20	\perp		^	sand, wet.	
					-					
					21—					
						\vdash				
					22					

	Project No:	I42705			Clie	= .	Delta/ELT Well No: MW-12
	Logged By:		n Fillinga	ame		ation:	449 Hegenberger Road, Oakland Page 1 of 1
Dalta	Driller:	Gregg				e Drilled	
Delta	Drilling Method:		_	er		e Diame	- 1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	Sampling Metho					e Depth	
Consultants	Casing Type:	Sch 40	PVC			l Diame	The state of the s
	Slot Size: Gravel Pack:	0.020	nd √7		Depth:	The state of the s	
	Graver Pack.	#3 11011	#3 Monterey Sand \(\subseteq \) F				r Depth: 4.5'
	Elevation:		Northin		Jiai	ic wate	Easting:
Well _	s D						
Sackfill OCasing Logistics Water Level	w Counts Reading (ppm)	Sample Identification	Depth (feet)		nple	P.	
	Co Co	Sample	h (f	ery	zed	Soil Type	LITHOLOGY / DESCRIPTION
Backfill Casing Water 1	Blow PID R (Pl	Sa	ept	Recovery	Analyzed	Soil	
	Δ 6	밀		Se e	An		
4							4" Asphalt
Cement]		1			9: 0	Fill (Silty SAND with Gravel); brown, 60% fine to
Leg							coarse sand, 20% silt, 20% fine to coarse gravel,
		ife	2				chuncks of asphalt, damp.
Neat		Ā		_			Lean CLAY (CL); dark greenish grey, 95% clay,
		Air-Knife	3 —			1///	medium stiff, medium plasticity, 5% fine sand,
		<	_	+			moist. Lean CLAY (CL) ; dark brownish grey and black,
			4				90% clay, stiff, medium plasticity, 5% fine sand,
			_	+			5% organics/roots, moist, hydrocarbon odor.
	32.9		5 —	4.4			Lean CLAY with Gravel (CL); dark brownish grey,
]]2.5		_	197		9	80% clay, stiff, low plasticity, 20% fine gravel,
[]			6	\$ 10 ·			Clayey GRAVEL (GC); dark brown, 50% fine
							gravel, loose, 40% clay, low plasticity, 10% fine to
• • • - • • • •			/			1///	coarse sand, moist.
			-	188			
	2365	MW-12	8		54 A		1 10 10 10 10 10 10 10 10 10 10 10 10 10
		@8	9	35.7			10 1 1 1 m 2 m 10 m 10 m 10 m 10 m 10 m
:,•• - :,••							
			10 —	1.5	. 51512		
		MW-12		- W. 7.	- (3)		Lean CLAY (CL); dark grey to black, soft, medium
• • • • • • •		@10	11	- 1			plasticity, wet, hydrocarbon odor.
				71.5			Appendix of the second
	203		12				ALCO CONTRACTOR CONTRA
	203	ļ		75.4			
			13	133			
[:::-]-[::::-]				1			Lean CLAY with Sand (CL); green grey, 85%
			14	100	**********		clay, stiff, medium plasticity, 15% fine to medium
			_ 15				sand, moist.
		1		1.5			Color Change to Brown.
	160		16			1111	
						2.4	Fat CLAY (CH); black, very soft, high plasticity,
[]-[]			17	1		[//	wet.
		1		 		44	Fat CLAY (CH); greenish grey, 90% clay, soft, high
			18	 		44	plasticity, 10% fine sand, moist.
							Lean CLAY (CL); brown with black spots, very stiff,
			19	-			medium plasticity, damp.
	335	MW-12 @20		┼┼			medium piasucity, damp.
[, ' + ' , ' +	333	@/Z()	20			11/1	
			21 —	1 1			
·			22				
1			22	1			

			,										
			Project		I427051		name.	Clier		Delta/ELT Well No: MW-12A 449 Hegenberger Road, Oakland Page 1 of 2			
			Logged	ву;	Jonatha	n Filling	game		ition: e Drillec				
	√ +	- ~	Driller:		Gregg					3 /			
De	JIL	.a	1	Method:			iger		Diame				
				_				Hole Depth: 44'					
Cons	ulta	nts	Casing		Sch 40 F	200			Well Diameter: 2"				
			Slot Siz		0.020	\		Depth:					
			Gravei I	Раск;					First Water Depth: 5.5' Static Water Depth: 6'				
			Elevatio	vn·				Stat	ic wate	Easting:			
Well							119.			Lucion gr			
Complet	ion	vel	Counts	ing	tior	Depth (feet)	Sar	nple	l ø				
= 0		Water Level	8	Readi (ppm)	g g	¥	2	eq	Soil Type	LITHOLOGY / DESCRIPTION			
Backfill Casing)ter	š	Blow Counts PID Reading (ppm)	(ppm) Sample Identification] ╆	ove.	lyz	<u>.</u>				
Bac		Š	%	PIG	Ide	De	Recovery	Analyzed	· ·				
							+-	$\overline{}$		4" Asphalt			
Cement									011 111				
Ĕ						1 -			////	coarse sand, 20% silt, 20% fine to coarse gravel,			
Ca					l w		+			chuncks of asphalt, damp.			
Neat					Air-Knife	2			1///	Lean CLAY (CL); dark greenish grey, 95% clay,			
Se					¥		+			medium stiff, medium plasticity, 5% fine sand,			
					Air	3 -				moist.			
							+		1///	Lean CLAY (CL); dark brownish grey and black,			
						4-				90% clay, stiff, medium plasticity, 5% fine sand,			
										5% organics/roots, moist, hydrocarbon odor.			
		77		32,9		5-	1.		1///	Lean CLAY with Gravel (CL); dark brownish grey,			
				2,5		_	1 2		2/	80% clay, stiff, low plasticity, 20% fine gravel,			
		▼				6-			17/1/	Clayey GRAVEL (GC); dark brown, 50% fine			
					ľ		344		2/	gravel, loose, 40% clay, low plasticity, 10% fine to			
						/-			7///	coarse sand, moist.			
				2365		8-	1337						
							1,6%						
						9-	187						
						10_							
						10-	1997			Lean CLAY (CL); dark grey to black, soft, medium			
						11	2.5			plasticity, wet, hydrocabon odor.			
						* *	190						
						12-			1///	The state of the s			
				203			1800						
						13-	8412.		1///	/ /			
					ļ		276			Land CLAY with Canal (CINTOR on around 950)			
						14-	1			Lean CLAY with Sand (CL); green grey, 85%			
							V .~			clay, stiff, medium plasticity, 15% fine to medium			
						15-	1.424			sand, moist.			
				160						Color Change to Brown.			
				160		16-	170		144	Fat CLAY (CH); black, very soft, high plasticity,			
							27.5		1/1	'I			
						17 —			123	wet. Fat CLAY (CH); greenish grey, 90% clay, soft, high			
									157	//			
						18-			11/	plasticity, 10% fine sand, moist.			
										Lean CLAY (CL); brown with black spots, very stiff,			
						19 –							
				225			-			medium plasticity, damp.			
				335		20 -			1///	No Pocovory			
	_									No Recovery			
						21-							
									1111	<u> </u>			
						22 —							
									1///				

		Dr 2	N	1407051	0.1		C1.		D-1/F17	Mcli No. Mar 404
		Project Logged		I427051 Jonathar		m^	Clie	nt: ation:	Delta/ELT 449 Hegenberger Road, (Well No: MW-12A Oakland Page 2 of 2
		Driller:	•	Gregg	, i ilinga	me		e Drilled		- II II I I I I I I I I I I I I I I I I
Delt	-			Hollow S	item Aug	ıer		Diame	· · ·	8 10 12 11 1
	La			d: Direct		,		Depth	-	- 1 LU 8 1 Twith 1
Consulta	nts	Casing	-	Sch 40 F				Diame	1	10
		Slot Siz	- •	0.020			Well	Depth:	34'	Wa-11 4
1		Gravel	Pack:	#3 Mont	erey Sar				Depth: 5.5'	
		(5)			Nat.		Stat	ic Wate	r Depth: 6'	+ un-13
Well		Elevation			Northin	g: 		T	Easting:	
Backfill Casing Casing	Water Level	Blow Counts	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery &	Analyzed de	Soil Type	LITHO	OLOGY / DESCRIPTION
Cement					23 —			1/	No recovery	. , , , , , , , , , , , , , , , , , , ,
Ř							ļ	1/1		THE RESIDENCE THE SECOND PROPERTY OF SECOND PROPERT
					24 —			1/2	*3 * 100/1/4/4 * *	
Neat					-			1//		
Z					25			7.5		
		}	1277		26	- · ·	ļ	122	Eat CLAY (CHY, El	ack coft high placticity wat
			1277	MW-12A	-			152	hydrocarbon odor.	ack, soft, high plasticity, wet,
				@26	27	+	<u> </u>	11/1	nydrocarbon odor.	
						1			Lean CLAY (CL); b	prown, greenish grey, 90% clay,
					28				stiff, medium plastic	city, 10% fine to coarse sand,
					29				moist.	
				ĺ	-	4	ļ			
					30 —	1				
					_	+				
			3400		31	73.			Sandy Lean CLAY	(CL); brown, 70% clay, stiff,
::::: = :::::::				MW-12A		1				30% fine to coarse sand, moist.
			1	@32	32 —					
:.·:[<u>-</u>]::::]					33—	7.5				
			47.0		_	100	ļ	1. %		; brown, 60% fine to medium
[-]]			47.9	MW-12A	34 —	+		• %	Sand, loose, 40% Cl	lay, stiff, medium plasticity, wet. D with Clay (SW-SC); brown,
				@34	-	+		• 7.5		sand, dense, 10% clay, wet.
''''					35	387		• × × ×	50 % lifte to course	saria, derise, 10 % ciay, wet.
////					20 -			• \(\frac{\pi}{2}\). \(\frac{\pi}{2}\).		
////					36			%%); brown, 60% fine to medium
					37			%.%	sand, 40% clay, we	
////						ļ.,,		`• `•		O (SW); brown, fine to coarse,
					38				wet.	
					_	-		•••	Well Graded SAND	O (SW); brown, 90% medium to
////					39	1.00		• • • •		10% fine gravel, wet.
					40	ļ		• . • .		(SW) ; brown, 95% fine to
Sand Caved in while					40 —			•••	coarse sand, loose,	5% clay, wet.
Augers were					41-			*•*•		O (SW) ; brown, 95% fine to
removed					_	1 2 2 2 2		`• `•	coarse sand, loose,	5% fine gravel, wet.
(slough)					42	<u> </u>		• • •		
						-				
					43 —	-		• • • •	Clayey SAND (SC)	; brown, 60% fine to medium
								7%	sand, loose, 40% cl	
					44				. ,	

		Project		142705			Clie		Delta/ELT Well No: MW-13
		Logged	•		ın Fillinga	ame		ation:	449 Hegenberger Road, Oakland Page 1 of 1
	+~	Driller:		Gregg				e Drilled	_,,,
De	lla	1	Method:			ger		e Diame	
		1 '	ing Metho					e Depth	
Consul	tants	Casing Slot Siz		Sch 40 0.020	PVC			l Diame	95.11
		Gravel			torov Sa	nd 🔽		I Depth:	Depth: 3.5'
		Graver	rack,	#3 11011	iterey 3a				rr Depth: 4.5'
		Elevati	on:		Northin		. 0 (0		Easting:
Well		Ŋ	0	Ë		T			
Completion	Water Level	Blow Counts	PID Reading (ppm)	Sample Identification	Depth (feet)		mple	Soil Type	
E 60	<u>"</u>	၂ ပိ	Rea	I mp	<u>ا</u> ج	ery	zed	<u>F</u>	LITHOLOGY / DESCRIPTION
Backfill	Vate	l o	ا ۾	Sa	e bt	Recovery	Analyzed	Soi	
	>	_ m	<u> </u>	l a		Re	A		
nt									4" Asphalt
Cement		1		1	1			▼ •%.9	Well Graded SAND with Clay and Gravel (SW-SC); brown,
Ja					-		<u> </u>	12.7	50% fine to coarse sand, 40% fine graver 10% clay, moist.
				Air-Knife	2 —			1///	Fat CLAY with Sand (CL); dark greenish grey, 80% Clay,
Neat				Α̈́	-		ļ		soft, high plasticity, 20% fine to coarse sand, moist.
7777	7 57			;	3	+	-		Lean CLAY (CL) ; brown, 85% clay, stiff, medium plasticity, 10% medium sand, 5% peat, damp.
	/ 	1		~	-	+-		14/	plasticity, 10% medium sand, 5% peat, damp.
	4 😈				4-	+		₹ *,/¶,	Clayey GRAVEL with Sand (GC); brown, 50% fine
 	·	1							to coarse gravel, loose, 30% clay, 20% fine to
	.				5—	+		'	coarse sand, wet.
[- : : :] _ [- : : :]	·,	1				_		9/9/	Clayey SAND (SC); grey, 70% fine to medium
[:::::]-[::::::	•				6—	1			sand, loose, 30% clay, wet.
	. 1		[to the substitute of the second secon
:::: - ::::]				′	3835			
: - :	1			MW-13	8	1,3	100	%%	And the supplementation in the state of the supplementation of the s
k -: 11- k -: 1	.]		2.8	@8]	1.5		1/2/2	Clayey SAND (SC); grey, 60% fine to medium
F	<i>:</i>				9	77.		1/2/2	sand, loose, 30% clay, 10% fine gravel, wet.
[:-':]-[:-':]				-	1,50		% %	Clayey SAND (SC); grey, 60% fine to medium
					10	108		0:1:7	sand, loose, 40% clay, wet. Sandy Lean CLAY (CL); grey, 60% clay, stiff,
	•	1			-	1,716.3			medium plasticity, 40% fine sand, wet.
	1				11	1978			mediam plasticity, 40 % mile same, wet.
- : : : ₋ - : : :	·]				-				Lean CLAY (CL); dark grey, 90% clay, stiff,
	•]		0.2		12				medium plasticity, 10% fine sand, moist.
<i>!``</i> , ∙: - <i>'`</i> `, ∙;	1				-	\$57.		6/3/	Clayey SAND (SC); grey, 60% fine to medium
[• • • • - • • • •	`.			}	13—	,,,,		%	sand, dense, 40% clay, wet.
:::-: - ::::-	•				14	7.5		//	
-	.1			MW-13		2.45			Lean CLAY (CL); dark grey to black, 90% clay,
			0.1	@15	15	ļ	١	1///	stiff, medium plasticity, 10% fine sand, moist.
					-	_		ļ	
					16				
					-	-			NA . I
					17 —				and the state of t
						-			
,	1				18	-			*
					_				
					19 —				
					30				
					20				
					21				
					Z1				
					22				

		Project	No	142705	101		Clier	at.	ELT	Paring /Mall No. 4
		Logged		E. Weyr				าเ: ition:	449 Hegenberger Rd.	Boring/Well No: 4 Page 1 of 1
		Driller:	ъy.	-	CIIS				= =	
$D_{\alpha}I+$	\circ			Gregg				Drilled		Location Map
Delt	a	_	Method:	Direct P	rusn			Diame		
			ng Method					Depth:		
Consultan	its	Casing ⁷		NA				Diame		
		Slot Siz		NA		_		Depth:		
		Gravel I	Pack:	NA					Depth: 3'	
		F1			Inc	\vee	Stati	ic Wate	r Depth: 13'	4
Well		Elevatio			Northin	g:			Easting:	1
Coasing Casing C	Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery g	Interval a	Soil Type	LITH	HOLOGY / DESCRIPTION
_					_				4" of Asphalt	
					1				6" of Aggregate Ba	ase
					'			CL	Lean Clay, 95% cla	ay, 5% fine sand, olive green,
\neg					2—				moist	
								SM	Silty Sand w/ grav	el, 60% sand, 25% silt, 15%
7		lacksquare			3-			<u> </u>	gravel, medium sa	nd, olive green, loose,
					3			CL	moist	
7									Lean Clay, 95% cla	ay, 5% fine sand, olive green,
					4	1			wet, strong odor	
7										
					5—	Х				
					_	Х		1		
			15.6	B-4@6	6-	Х	0	1		
				10:50		Х		1		
					/—	Х		1		
						Х		1		
-			37.5		8—	Х	0	SC	Clavev Sand, 80%	fine sand, 20% clay, black
					_	Х		1	wet, loose	,, ,, ,
					9—	X		1	11011	
					-	X		1		
					10 —	X		1		
-					_	X		ł		
					11 —	X		CL	Lean Clay 05% cla	ay, 5% fine sand, black, medium
			2.4		_	X	0	CL	stiff, wet, root part	-
			2.4		12 —	X	U	SC	•	
\dashv					-	_		3C		fine sand, 15% clay, black,
		∇			13 —	X	}	ļ	Loose, wet	
4					-		}	ļ		
					14 —	X	}	ļ		
4					-	X	}	ļ		
			20.4	D + C : -	15 —	X		CI	Loop Class OFOC 1	ov E 0/ fine cond all to the
4			38.4	B-4@15	-	X	0	CL		ay, 5 % fine sand, olive green,
				11:05	16	X		60	medium stiff, wet	fine cond 150/ -l-: II I
4					-	X	}	SC		fine sand, 15% clay, black,
					17 —	X	}	ļ	loose, wet	
\dashv					-	X				
					18—	X		0.		F0/ 6' ' '
_					-	Х		CL		ay, 5% fine sand, olive green,
					19—	X			wet, medium stiff	
					_	Х	ļ			
			2.0	B-4@20	20—	Х	0	CL		ay, 5% fine sand, light brown
				11:13	_				medium stiff, mois	t
					21—					
					22—					

r	1							r
	Project No:	1427051			Clier		ELT	Boring/Well No: 5
	Logged By:	E. Weyr	ens		Loca		449 Hegenberger Rd.	Page 2 of 2
$D_{\alpha}I_{\alpha}$	Driller:	Gregg				Drilled		Location Map
Delta	Drilling Method:		ush			Diame		
	Sampling Metho					Depth		
Consultants	Casing Type:	NA				Diame		
	Slot Size:	NA		_		Depth:		
	Gravel Pack:	NA					Depth: 5'	
	Elevation:		Northin	∇	Stat	ic Wate	er Depth: 18' Easting:	
Well							Easting:	
Backfill Ocasing unital unital water Level	Moisture Content PID Reading (ppm)	Penetration (blows/6")	Depth (feet)	Recovery S	Interval aldu	Soil Type	LITH	OLOGY / DESCRIPTION
	<u> </u>		23—	Х	_	CL		y, 10% fine sand, dark grey,
			23 _	Χ			moist	
	384		24—	Х	0			y, 10% fine sand, light brown,
				Х			stiff, moist	
			25—	Χ			Black, strong odor	
				Χ				
			26—	Х				
	942	B-5@26.5	_	Х	0			75% clay, 25% fine sand,
		15:05	27—	Х			light brown, wet, so	
			_	X			Stiff, 95% clay, 5%	sand
			28—	Х				
_	137		_	X	0			
			29—	X				
			30—	Х				
_			_	X		SC		fine sand, 35% clay, brown,
			31 —	X			moist, medium den	sity
_	02.4	D 5 @ 00	_	X	0			
	92.4	B-5@32 15:25	32—	 ^	U			
-		15.25	_					
			33—					
-			_					
$\overline{}$			34 —	1				
\dashv			-	+				
			35—					
			-					
			36—	1				
\dashv			-					
			37—	1				
\exists				1				
			38—					
			39—					
			39					
			40—					
			41					
			' -					
			42-					
\rightarrow			43—					
			111-					
			44 —					

			l							
1		2	Project Logged		I427051 ETW	91		Clie	nt: ition:	COP-ELT 449 Hegenberger Road Boring/Well No: B-6 Page 2 of 2
1	(Driller:	Бу:	Gregg D	rillina			Drille	
~	tana	roun	1	Method: [Diame	
di	nteag	oup	1	ng Method					Depth	
1			Casing						Diame	
1			Slot Siz				_		Depth	
1			Gravel I	Pack:						er Depth: 7.5'
1			Elevatio	n:		Northir		Stat	ic Wate	ter Depth: Easting:
	Well	ซีอั			5			mple		
	mpletion වූ	Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)			Soil Type	LITHOLOGY / DESCRIPTION
Backfill	Casing	Wate	δΩ	PID (Sa Ident	Dept	Recovery	Interval	Soi	
						23	X		CL	-
	-						X	-		
	1 —					24—	X	\vdash		
	_					-	X	\vdash		
			ĺ			25—	Х		SC	Clayey sand; 55% fine sand, 45% clay, light brown
				84.6	B-6d26	26—	X	0		wet, strong odor
1							_	Ш		Total Depth explored = 26 feet
1]			27 —	+	\vdash	,	
						28—	+			
1						-	_	\square		
1						29 —	+-	-		
1				ı		30 —				
l						-				
l	-					31—				
1		-	ľ			32 <i>-</i>	1			
l	-						+	\vdash		
l						33—				
						34—	 			
						35 —				
	=					_	-			
		J	1			36 —				
	-					37—	1			
						38—				
					ĺ	_				
						39—				- 4
						40—	+-			
						41—	<u> </u>			
	_	}				-1				
			-			42—	\vdash			
						43—				
						-	+-			
						44	T	\dashv		

		Project No:	142705191			Clien	t:	COP/ELT Boring No: SB-1
		Logged By:	Jonathan Fillir	game		Locat		449 Hegenberger Road, Oakland Page 1 of 1
		Driller:	Cascade Drilli	_			Drilled:	7/25/2013 SB-3-
		Drilling Metho	d: Direct Push	ь			Diameter	ar: 2 in
antea g	roup	Sampling Met	nod: Continuous				Depth:	15 ft
								MW=14 HPB-1 SB-1 HPB-2 4'5"
					∇	First	Water De	epth: 5 ft
						Statio	c Water D	Depth: NA
Boring	Т =	Elevation:	· T	Northing	g: 		ı	Easting: FI FCTRICAL SB-5
Completion	Static Water Level	Moisture Content	Sample Identification	Depth (feet)	Recovery	Analyzed al	Soil Type	LITHOLOGY / DESCRIPTION
				_				4" Asphalt
				1—			7/2/	Gravel Fill
_				_				Lean CLAY (CL) - black, 95% clay 5% fine to medium sand medium
			_	2 —				plasticity, stiff moist.
-			Hand Auger	-				
		5	y pu	3—				Lean CLAY (CL) - greenish grey, 95% clay, 5% fine to medium san
_			Har					medium plasticity, stiff moist.
				4—				
	∇			5			<u> </u>	<u> </u>
-		13	70 SB-1d5.5	' <u>-</u>				Clayey SAND (SC) - dark grey, 80% fine to medium sand, 20% cla
				6-		H	///////	dense, wet, hydrocarbon odor.
=				-			<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	9
me —		80	,	7—			° // // // // // // // // // // // // // // // /	7 9
e -								y
neat cement				8-				Lean CLAY (CL) - black, 100% clay, medium plasticity, soft, wet,
		78	3	9_				hydrocarbon odor.
_				_				
_		400		10—		-		Overnia SOU (OL) block with brown arganics 70% day 20%
-		199	9.0 SB-1d11	_				Organic SOIL (OL) - black with brown organics, 70% clay, 30% plant matter (roots or grass), medium plasticity, soft, wet.
		6.		11—				plant matter (100ts of glass), medium plasticity, sort, wet.
	_	0.	SB-1d12	-			////	Lean CLAY (CL) - dark grey, 100% clay, medium plasticity, very
		21		12 —				stiff, moist.
				13—				
_		18	.5	_				Lean CLAY (CL) - blueish grey, 100% clay, medium plasticity, very
				14—		-		stiff, moist.
-		9.	5 SB-1d15	-				<u> </u>
		9.	2 3P-1012	15 —				Total Depth 15 feet below ground surface
_	_						1	Total Depth 13 feet below ground surface
				16—			1	
				17—			1	
				1/				
				18—			_	
_						<u> </u>	-	
	-			19—	-	-	-	
_	-			-	+	<u> </u>	1	
	-			20—	+		1	
_	1			-			1	
				21—			1	
	1			22]	
	1		1	22—		Ì	1	

	Project No:	I42705191		Clien	t:	COP/ELT	Boring No: SB-3
	Logged By:		ame	Loca		449 Hegenberger Road, C	
0		Jonathan Filling					SB-3 + Page 1 of 1
	Driller:	Cascade Drilling	g		Drilled:	7/25/2013	+
nteargroup	Drilling Method:	Direct Push			Diameter		3'11* SB-7 → SB-2 → MW 5 → SS HPB-3 ★
ntea group	Sampling Metho	d: Continuous		Hole	Depth:	15 ft	MW-14 SB-8 SB-8 SB-8 SB-8 SB-8 SB-8 SB-8 SB-8
							HPB-1 SB-1 MFB-2
			-				₩ SB-9
			_	_	Water De		→SB-4
	Electrical de la constant de la cons			Stati	c Water D		→ SB-10 2'8"
Boring a	Elevation:	T	Northing:		I	Easting:	FI FCTRICAI → SB-5
Static Water Level	Moisture Content PID Reading (ppm)	u	-	Sample			
. ter	Con	Sample	Depth (feet)	· -	Soil Type		LITUOLOGY / DESCRIPTION
× ×	ure	Sam	pth	yzec	l io		LITHOLOGY / DESCRIPTION
atic	oist	Idel	De	recovery Analyzed	Š		
St	ΣΙΙ		,	<u> </u>			
			1 4		XXX	4" Asphalt	
	0		1—			-	el with sand (GP) - brown, 60% fine grave
)	35% fine to coarse sa	and, 5% clay, dense, moist.
			2				
			' 丁		, `, ▼ ,		
			3				
	0		3]///	Lean CLAY (CL) - darl	grey, 90% clay, 5% fine to medium sand,
						organics, medium pl	asticity, stiff, moist.
			4			Lean CLAY (CL) - darl	k grey, 90% clay, 15% fine to medium sand
	0				<u> </u>	medium plasticity, st	
			5		- //:://::		eddish brown, 60% fine to coarse sand, 40
			I . 🕇			clay, loose, wet.	
	98		6				, 95% clay, 5% fine to medium sand, medi
			_			plasticity, soft, wet.	
	167	SB-3d7.5	7			Lean Clay (CL) - dark	grey, 95% clay, 5% fine to medium sand,
e —	107	05 347.3	_			plasticity, medium st	
neat cement			8		1////		prown, grey, 90% plant matter (roots or
	17.8		1 +		-	grass), 10% clay, soft	
	17.8		9		1	Organic SOIL (OL) - 0	lark grey, 70% clay, 30% plant matter (roo
	3.4		_				ity, medium stiff, wet.
	3.4		10				ck, 90% clay, 10% plant matter, medium
		CD 2411	l +				
	0.2	SB-3d11	11			plasticity, stiff, moist	 k, 95-100% clay, 5% organics, medium
			l +				
	0.2		12			plasticity, stiff, moist	
			4				
	0		13		<u> </u>		
					<u> </u>	4	enish grey 95-100% clay, 5% organics, low
	0		14		1///	plasticity, very stiff, i	noist.
			⁻				
	0	SB-3d15	15				
]	Total Depth 15 feet b	pelow ground surface
			16]		
			10				
7			17				
			1/		1		
\neg			10		1		
			18		1		
7				\neg	1		
			19——		1		
\dashv			1. +	\top	1		
\rightarrow			20	-	1		
\dashv			+	+	1		
$\overline{}$			21	+	1		
-			-		-		

		Project No:	142	2705191		(lient:		COP/ELT		Boring No: SB-4
		Logged By:		nathan Fillinga	ıme		ocation:		449 Hegenberger Road, Oal	kland	Page 1 of 1
		Driller:		ascade Drilling			Date Drill		7/25/2013	SB-3-	
		Drilling Meth	od: Dire	ect Push	,		lole Dian			23	3'11* SB-7 + SB-2
a ntea gr	oup	Sampling Me	thod: Co	ontinuous			tole Dept		. 2 15 ft	1.	MW-6
J		Jampinig inc				•	.o.c Dep			MW−14 / ,HPE	SB-8 SB-1 HPB-2 4'5*
											METAL UTILITY
						√ F	irst Wate	er De	pth: 2.9 ft	1	▼SB-9
							tatic Wa			37	\$B-4
		Elevation:			Northing:				Easting:	FI FCTRIC	→ SB-10 → SB-5
Boring	ivel	ent	om)	_							
Completion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Samı		/be			
	Wat	nre (adin	amp tific	oth (/ery	Analyzed	Soil Type		LITHOLOGY	/ / DESCRIPTION
	atic \	oistu	. Rei	S Iden	Dep	Recovery	naly	S			
	Sta	Š	PIC			ď	⋖				
_							_×	X	4" Asphalt		
	_		0	SB-4d1	1		(•,		I =	-	GP) - light grey, 60% fine grave
_	_				_			•	40% fine to coarse san	id, medium o	dense, dry.
	_				2	\vdash	`-	A			
			_		_		-	///			ay, 5% fine to medium sand, 59
	∇		0	SB-4d3	3		9:/	<u>/ / /</u>	organics, medium plas		
	4				_	┢		:%:°,		ey, 70% fine i	to medium sand, 30% clay,
	_				4		<u> </u>	%:	loose, wet.	v FF0/ fine	to modium cond 450/ day
_	_		_	CD 4-15	_		——	:%:		ey, 55% fine	to medium sand, 45% clay,
			0	SB-4d5	5 —		9:/	. % . %	loose, wet.	700/ fine	to medium sand, 30% clay,
_					_		<u> </u>	/:.:./ : %/.		ey, 70% fille	to medium sand, 30% ciay,
			2.9		6			/::'' :'''	loose, wet.	0E% clay E%	6 fine sand, low plasticity, very
-	1				_		7.6	<u>:/:.9</u>	stiff, moist.	3370 Clay, 37	o fine saild, low plasticity, very
mer —	1				7					SD) - black 1	.00% medium sand, dense, we
neat cement		13	338	SB-4d8	_			<u>//</u>	oil odor.	3F) - Diack, 1	.00% medium sand, dense, we
eat			330	3b-4u6	8		<u> </u>	;;;;	on odor.		
<u> </u>					_						nedium plasticity soft moist
	1		2		9		-//		Lean CLAT (CL) grey,	10070 Clay, 11	nedium plasticity, soft, moist.
	_				_				Lean CLAY (CL) - black	. 95% clav. 5	% organics, medium plasticity,
					10 —		- ///		stiff, moist.	, , , , .	, · ga,, p. a, ,
_	1		2	SB-4d11	_			//			
				00 .011	11		_//				
		0).4		I		- //				
					12 —		-	//,	Lean CLAY (CL) - grev.	100% clav. lo	ow plasticity, stiff, moist.
_					l –		-//	///			······································
	1).1		13						
	1				1.		_//	///	Lean CLAY (CL) - green	nish grey, 959	% clay, 5% fine to medium san
					14		- //	//	low plasticity, very stif		•
_	Ī		0	SB-4d15	1			///			
					15 —				Total Depth 15 feet be	low ground	surface
_					16				······		
					16—						
					17						
					17—						
_					10_						
					18—						
					19						
					19						
					20						
					20						
					21					······	
_					21						
					1 22	$\Box \top$	7				
					22—						
		I I			1						

		Project No	0:	142705191			Clien	t:	COP/ELT Boring No: SB-5	
	7	Logged By		Jonathan Fillinga	ame		Locat		449 Hegenberger Road, Oakland Page 1 of 1	
C		Driller:		Cascade Drilling				Drilled:	SR_3	\prod
		Drilling M	lethod: [Direct Push	,			Diameter	•	7
ntea gr	oup	Sampling	Method:	Continuous				Depth:	→ WW-5 UDD 3	×
3		- CapB						эсре	15 ft	4'5"
									METAL UTILITY	_
						∇	First	Water De	Depth: 4 ft	
						T		c Water D	Depth: NA	
		Elevation:			Northing	g:			Easting: FI FCTRICAL SB-10	3-5
Boring	evel	ent	om)	u						
Completion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Sar	mple	be		
	Wat	nre (adin	Sample	oth (/ery	zed	Soil Type	LITHOLOGY / DESCRIPTION	
	atic \	oistu	Re	S	Dep	Recovery	Analyzed	S		
	Sta	ž	PIC			Ä	⋖			
					<u> </u>			$\times\!\!\times\!\!\times$	4" Asphalt	
			0		1—			•	Poorly Graded Gravel with sand (GP) - reddish brown, 60%	fine
					-				gravel, 30% fine to coarse sand, 10% clay, moist.	
					2—			• 4		
_			_		-			•	(
			0		3 —	-	<u> </u>		Lean CLAY (CL) - brown, 90% clay, 10% fine to coarse sand, s	citt,
	_				-	+	<u> </u>		low plasticity, moist.	
	$-\nabla$				4-				• Well graded CAND (CM) gray 1000/ fine to coarse send lev	000
_			_		-			• • • • • • • • • • • • • • • • • • • •	Well graded SAND (SW) - grey, 100% fine to coarse sand, loc	ose,
			0		5 —				wet.Lean CLAY (CL) - grey, 90% clay, 10% fine to coarse sand, stif	f f
_			70.0		-			7///	-1	١,
			78.0	SB-5d6.5	6—			////	medium plasticity, wet. Organic SOIL (OL) - grey, 90% clay, 10% organics, soft, wet.	
-			12.4	38-500.5	-				Poorly Graded Sand (SP) - grey, 95% medium sand, 5% clay,	loo
mer —			12.4		7—				wet.	100.
neat cement			4.0		-			1	Organic SOIL (OL) - grey, 60% organics, 40% clay, medium	
eat —			4.0		8—		-		plasticity, medium stiff, wet.	
<u> </u>			1.8		-		Н		Lean CLAY (CL) - dark grey, 90% clay, 10% organics, soft, med	diun
			1.0		9—			1///	plasticity, wet.	aiaii
			2.3		-				Lean CLAY (CL) - dark grey, 90% clay, 10% organics, stiff, med	diun
			2.3		10 —				plasticity, wet.	
			0.3	SB-5d11	-				Lean CLAY (CL) - dark grey, 100% clay, stiff, medium plasticit	V.
			0.0	00 0011	11—				Amoist.	
			0.1		l				Lean CLAY (CL) - dark grey, 95% clay, 5% organics, very stiff,	
					12—					
			0		l				medium plasticity, moist. Lean CLAY (CL) - greenish grey, 100% clay, very stiff, medium	า
					13—				plasticity, moist.	
			0		-				/	
					14—				/	
			0	SB-5d15	1,5					
					15—				Total Depth 15 feet below ground surface	
					16—					
					10					
					17—					
					',					
					18—			_		
						_				
					19—			_		
					15 -			_		
					20—		<u> </u>	_		
					21—	_				
								_		
					22_]		
					22—					

		Project No	0:	I42705191			Clien	t:	COP/ELT		Boring No: SB-6
		Logged By		Jonathan Fillinga	ame		Locat		449 Hegenberger Road, O	akland	Page 1 of 1
0		Driller:		Cascade Drilling				Drilled:	7/26/2013	SB-3-	I ugc I oi I
		Drilling M	lethod: D	irect Push	•			Diameter		2.0	3'11" SB-7 SB-2
i ntea igro	up	Sampling	Method:	Continuous				Depth:	. 2 15 ft	i	MW-5
3		Jumping	ivictilou.	Continuous			11010	Берип.	25 1.	9 MW−14 / 3 ;HPE	SB-8 SB-1 HPB-2 4'5"
											METAL
						∇	First	Water De	pth: 4.5 ft	1	→ SB-9
						T		Water D			\$B-4 E 2'8"
		Elevation:	:		Northing	g:			Easting:	FI FCTRIC	→ SB-10 → SB-5
Boring	evel	ent	om)	_							
Completion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Sar	mple	/be			
	Wat	re (adin	Sample	oth (very	zed	Soil Type		LITHOLOGY	/ / DESCRIPTION
	atic '	oistı) Rei	S Iden	Dep	Recovery	Analyzed	S			
	Stã	Σ	PIC			ω.	_				
					_			$\times \times \times$	4" Asphalt		
					1—			• •	=	-	GP) - reddish brown, 60% fine
			0.1		-			9:/:::/	gravel, 30% fine to co		
					2-			/:6:/:9 9:/::/			60% fine to medium sand, 40%
			0		-	+		1977	clay, medium dense,		% clay, 20% fine to medium
					3—	+	-	1///		• .	% ciay, 20% tine to medium
					-	+			sand, stiff, low plastic	ity, moist.	
	$\overline{}$		0.1		4 —	-	<u> </u>		Lean CLAV (CL) - gree	nich grav 959	% clay, 5% fine to medium san
	∇		0.1		-				stiff, medium plasticit		or clay, 5% fine to meaning an
			16		5—				still, illedidili piasticii	ty, wet.	
			40		-				Poorly Graded Sand ((SP) - grev. 10	00% medium sand, medium
			2567	SB-6d6.5	6—				dense, wet, hydrocar		
			33.5		-			9/29/0			fine to medium sand, 40% clay
					7—			9//	medium dense, wet.	<i>3</i> ,,	•
neat cement			29.2		-					, 90% clay, 10	% fine to medium sand, soft,
					8-			••••	medium plasticity, we	-	
			2.9		_						3% medium sand, 5% clay, 2%
					9-				organics, medium dei		
			1.9		10				Lean CLAY (CL) - dark	grey, 90% cla	ay, 10% organics, stiff, mediun
					10—				plasticity, wet.		
				SB-6d11	11—				Lean CLAY (CL) - dark	grey, 100% c	lay, stiff, medium plasticity,
			1.8						moist.		
					12—						ay, 5% organics, very stiff,
					** .		$oxed{oxed}$		medium plasticity, mo	oist.	
			0.1		13—		_		Lean CLAY (CL) - gree	nish grey, 100	0% clay, very stiff, medium
					-		_		plasticity, moist.		
			0.2		14—		-				
				CD C !:=	-						
			0.1	SB-6d15	15—				Total Double 45 f 11		
\dashv					-	+	-	ł	Total Depth 15 feet b	elow ground	surrace
					16—	-	_	1			
\dashv					-	+	<u> </u>	ł			
-					17—	+	<u> </u>	1			
\dashv					-			1			
					18—	+	1	1			
\dashv					-	+		1			
					19—	+		1			
\dashv					-			1			
-					20—	+		1			
\dashv					-	+		1			
					21—	+		1			
\dashv							1	1			
					22 —	1	l	1			

		l.	Project N	0:	142705191		Clie	nt:	COP/ELT		Boring No: SB-7
			Logged B		Jonathan Filling	ame		ntion:	449 Hegenberger Road, O	akland	Page 1 of 1
			Driller:		Cascade Drilling			e Drilled:	7/26/2013	SB-3-	I age I of I
			Drilling M	1ethod: [Direct Push	•		e Diameter		2	3'11* SB-7 SB-2
int	eag	oup	Sampling	Method:	Continuous			e Depth:	15 ft	į,	MW-6
								- -	-5	₩—14 / Я ;HPE	SB-8 SB-1 HPB-2 4'5"
											METAL UTILITY
								: Water De	pth: 4 ft	1	+ SB-9 + SB-9
							▼ Stat	ic Water D	epth: NA	37	\$B-4 \$B-10 2'8"
		1	Elevation			Northing:		1	Easting:	FI FCTRIC	E 100 10
	oring pletion	evel	Moisture Content	PID Reading (ppm)	u	Ξ	Sample				
Com	piction	Static Water Level	Con	J) B(Sample Identification	Depth (feet)		Soil Type			/ DECORIDE ON
		Wa	ure	sadir	Sample	pth	Recovery Analyzed	l io		LITHOLOGY	/ DESCRIPTION
		tatic	loist	D Re	iapl	De	Recovery Analyzed	S			
_	_	Si	2	PI			- 		All Asials It		
	_			0		\perp		- 	4" Asphalt	al with cand (GP) - reddish brown, 60% fine
	_			U		1-		┤~, ♥ ,	gravel, 30% fine to co		-
	_					1 +		7			wn, 50% fine to coarse gravel
	_			0		2		*. /•,	25% fine to coarse sa		•
	_								Clayey Gravel with s	and (GC) - gre	y, 50% fine to coarse gravel,
	_					3		*	25% fine to coarse sa	ınd, 25% clay	(in clumps), moist brown,
	_	abla							50% fine to coarse gr	avel, 25% fine	e to coarse sand, 25% clay (in
						4		7	clumps), moist.		
				0		5			Lean CLAY (CL) - grey	, 90% clay, 10	% fine to coarse sand, soft,
									medium plasticity, w	et.	
	_			0.4	SB-7d6	6					
	_ ـ	=						?/::9/s		ey, 60% fine t	o medium sand, 40% clay,
	ner					7—			dense, wet.		
	neat cement			0.4		l →			Large CLAY (CL)	4000/ -1	oft, medium plasticity, wet.
	at —			0.4		8—		-////	Lean CLAY (CL) - grey	, 100% clay, s	off, medium plasficity, wef.
	<u> </u>			2.9		1 +		1///	Lean CLAV (CL) - dark	grev 95% cla	y, 5% fine to coarse sand, sof
	_			2.9		9		-////	medium plasticity, w		iy, 570 fille to coarse sarid, sor
	_			7.6		1 1		1///	Lean CLAY (CL) - dark	grev. 95% cla	y, 5% fine to coarse sand, stif
	_			7.0		10			low plasticity moist		
	_			14.8	SB-7d11	1 🕇			Lean CLAY (CL) - dark	grey, 90% cla	y, 5% fine to coarse sand, 5%
	_					11		-////	organics, stiff, low pl	asticity, moist	
				4.9					Lean CLAY (CL) - dark	grey, 93% cla	y, 5% fine to coarse sand, 2%
						12			organics, stiff, low pl	asticity, moist	
	_			42.2	SB-7d13	13					
									Lean CLAY (CL) - gree	enish grey, 939	% clay, 5% fine to coarse sand
				0.9		14			2% organics, very stif	f, low plastici	ty, moist.
	_					1 - 4					
				0.6		15			T . 15 .1456 .1		· · · · · · · · · · · · · · · · · · ·
	_					\perp		4	Total Depth 15 feet b	elow ground	surface
						16-		4			
	_	1				+	+	┨			
		1				17		-			
	_	1				+	+	┪			
		1				18		1			
		1				1 +	\dashv	1			
		1				19		1			
		1				1,20	_	7			
						20					
		1				21]			
						21					

		Project No:		I42705191			Clien	t:	COP/ELT		Boring No: SB-8
		Logged By:		142705151 Jonathan Fillinga	ame		Locat		449 Hegenberger Road, Oa	akland	Page 1 of 1
	9	Driller:		Cascade Drilling				Drilled:	7/26/2013	SB-3-	I age I of I
		Drilling Meth	od. D	irect Push	5			Diameter	• •	2	→
ntea g	roup	Campling Me	thad:	Continuous				Depth:	. 2 III 15 ft	33	3'11* SB-7 + SB-2 + MW-6 + HPB-3 ×
		Sampling Me	etilou.	Continuous			поіе	рериі.	1511	D MW−14 X	SB-1 HPB-2 4'5'
						∇	First	Water De	pth: 5 ft		₩ SB-9
						T		c Water D		35	\$B−4 ≥ 2'8°
		Elevation:			Northing	<u> </u>			Easting:	FI FCTRICA	→ SB-10 + SB-5
Boring	ivel	ent	om)	_							
Completion	Static Water Level	Moisture Content	PID Reading (ppm)	Sample Identification	Depth (feet)	Recovery	Analyzed ald	Soil Type		LITHOLOGY	/ DESCRIPTION
	ÿ	2	础			+	$\overset{\cdot}{\Box}$	XXX	4" Asphalt		
-								• 4		l with sand (G	iP) - reddish brown, 60% fine
					1-			, · • • .	gravel, 30% fine to co	arse sand, 10	% clay, moist.
		C	0.1		, -			7			wn, 50% fine to coarse grave
					2—				25% fine to coarse sa	nd, 25% clay (in clumps), moist.
					2_			\ F ./			
] 3—				Well Graded SAND (S	SW) - grey, 959	% fine to coarse sand, 5% cla
_		C	0.4		4			<u> </u> :::•	loose, moist.		
_					-			<i>%</i> %%			medium sand, 20% clay,
	∇	(0.1		5-			9/2:9/	medium dense, moist	t.	
_					_		_	9//9//	Wet at 5 feet.		
_					6—		_		Lean CLAY (CL) - grey,	, 100% clay, st	iff, medium plasticity, moist
-		7	7.2		-		┝			4000/ 1	
					7-		┝			grey, 100% cl	ay, stiff, medium plasticity,
neat cement			44	00.010	_			/////	moist.	(CD) -	
- sat		14	207	SB-8d8	8—				=		ey to black, 100% fine sand,
ne –			, ,		-		-	1///	dense, wet, hydrocarl		ay, soft, medium plasticity,
			1.7		9 —		Н	1///	wet.	grey, 100% ci	ay, sort, medium piasticity,
-			1.1		-			1///		< 1 inch thick	at 9.5 feet below grade
					10 —			1///	Lean CLAY (CL) - dark	grev. 100% cl	ay, stiff, medium plasticity,
		1	1.1	SB-8d11	11—				moist.		
_					-		┝	1///			
			0.4		12—						ery stiff, medium plasticity,
_			0.2		-				moist.	,	,
					13—				Lean CLAY (CL) - gree	nish grey, 100	% clay, very stiff, medium
_		C	0.3		14—				plasticity, moist.		
					14—						
		C	0.5		15—			<u> </u>			
_					-				Total Depth 15 feet b	elow ground	surface
					16—			1			
_					-	-		1			
					17—	-	<u> </u>	-			
=					-		<u> </u>	-			
					18—			-			
_					-		<u> </u>	1			
					19—			1			
-					-			1			
					20 —			1			
-					-			1			
					21—			1			
=							1	1			
	-				22—	-	 	1			

		Project N	0:	142705191			Clien	t:	COP/ELT Boring No: SB-10
		Logged By		Jonathan Fillinga	ame		Locat		449 Hegenberger Road, Oakland Page 1 of 1
0		Driller:	, .	Cascade Drilling				Drilled:	7/26/2013 SB-3 + Tage 1 0 1
		Drilling M	lethod:	Direct Push	•			Diameter	
ntea gro	up	Sampling	Method	: Continuous				Depth:	MW 6 HOD 3
J									15 ft SB_8 SB_1 HPB-2 \$\$ \$8-1 HPB-2 \$\$ \$45°
									METAL UTILITY
						∇	First	Water De	epth: 4.75 ft
						lacksquare	Statio	Water D	SR_10
D		Elevation			Northing	g:			Easting: FI FCTRICAL SB-5
Boring Completion	Static Water Level	Moisture Content	PID Reading (ppm)	uc	_	Sai	mple		
,	iter l	Con	l) Bu	Sample Identification	Depth (feet)		•	Soil Type	LITHOLOGY / DESCRIPTION
	, Wa	ture	eadi	Sarr	pth	Recovery	Analyzed	lio.	LITHOLOGY / DESCRIPTION
	tatic	Aois	ID R	lde	۵	Reco	Ana	0,	
-	S		Ь		1		1	XXX	4" Asphalt
_					-				Poorly Graded Gravel with sand (GP) - grey, 60% fine to coarse
			0		1-			, · , • ,	gravel, 40% fine to coarse sand, dry.
									8.0.000 10.000 00.000 00.000 00.000 00.000
					2—			, ,	
					, -				
			0		3—]::::::::::::::::::::::::::::::::::::::	Poorly Graded SAND (SP) - brown, 100% fine sand, loose, moist
					4-				
	abla				' -				Lean CLAY (CL) - grey, brown, 90% clay, 10% fine to medium sar
			0		5—			////	very stiff, low plasticity, wet.
					-		_	/6 // 9	Clayey SAND (SC) - grey, 60% fine to medium sand, 40% clay,
			0		6—		_		medium dense, wet.
=			0		-		Н		Lean CLAY (CL) - grey, 100% clay, stiff, low plasticity, wet.
mer —			0		7 —				Poorly Graded SAND (SP) - grey, 95% fine sand, 5% clay, dense,
- Ce			0	SB-10d8	-				wet.
neat cement				35 1000	8-			7777	Sandy Lean CLAY (CL) - grey, 70% clay, 30% fine sand, soft, low
_			0		_				plasticity, wet.
					9-				Lean CLAY (CL) - grey, 90% clay, 5% fine sand, 5% organics, stiff,
			0		10_				medium plasticity, moist.
					10—				
			0	SB-10d11	11—				Lean CLAY (CL) - dark grey, 90% clay, 5% fine sand, 5% organics,
							_		stiff, medium plasticity, moist.
			0		12—		_		/
					-		_		Lean CLAY (CL) - greenish grey, 90% clay, 5% fine sand, 5%
			0		13 —		-		
			0		-		-		organics, very stiff, medium plasticity, moist.
			U		14—				
			0		-				<u> </u>
					15—			1////	Total Depth 15 feet below ground surface
_					-			1	
					16—				
7					17			1	
					17—]	
					18—				
					10				
					19—			1	
					-	-		1	
					20—			1	
4					_	-	<u> </u>	1	
					21—	+	<u> </u>	ł	
_						\vdash	_	1	
					22—		 	1	

Corrective Action Plan
76 Station No. 5191/5043
449 Hegenberger Road, Oakland, California
Antea Group Project No. I42705191

Appendix E

Regenesis Case Studies

Advanced Technologies for Groundwater Resources

ORC Advanced[®] Injection Reduces Petroleum Hydrocarbons towards Cleanup Goals

CASE SUMMARY

Former Service Station, Alberta, Canada

Past operations at a former service station resulted in petroleum hydrocarbons including TPHq, TPHd, and benzene. ethylbenzene. and xylenes (BTEX) contamination in soil groundwater. During site investigations, leaking underground storage tanks (USTs) were discovered and excavation activities were performed. In 2001, a total of 1,900 m³ of contaminated soil was excavated and disposed of off-site and the five former USTs removed. Due to a newly constructed building, a small wedge of contaminated soil remained. It was determined that excavating the area would compromise the structure and instead a less disruptive approach was needed to continue site cleanup. Groundwater monitoring was performed in order to complete an

assessment of the remaining subsurface contamination. In June 2005, sampling results indicated concentrations as high as 27,000 parts per billion (ppb) BTEX and 33,000 ppb TPHg remained within the contaminated area. To address the hot spot beneath the building in-situ enhanced aerobic bioremediation using ORC Advanced® was applied in November 2005.

Table 1. June 2005 Sampling Results (ppb)

Figure 1. Site Map Indicating Remaining Hot Spot

Contaminant	TH02-1	TH02-7	Cleanup Goal	
TPHg	33,000	20,000	2,200	
TPHd	5,800	5,100	1,100	
Benzene	200	6,600	5	
Toluene	900	300	24	
Ethylbenzene	3,200	1,700	2.4	
Xylenes	23,000	3,800	300	
Total BTEX	27,300	12,400	N/A	

Table 2. Application Details

	TH02-1	TH02-7			
Treatment Area	1,100 ft ²				
Treatment Thickness	~6 ft				
Injection Spacing	10 ft on-center				
Injection Points	32 points				
Injection Rate	~19 lbs/ft ~11 lbs/ft				
ORC Adv. Applied	1,100 1,800				

REMEDIATION APPROACH

The remaining area of concern included wells TH02-1 and TH02-7 (Figure 1). To reduce concentrations to Canadian Drinking Water Quality (CDWQ) Standards as regulated by Alberta Environment, ORC Advanced was applied using similar grid layouts around both wells (Figure 2). A higher injection rate was used to treat TH02-1 to counteract the potential impact of residual soil contamination (Table 2). A total of 2,900 pounds of ORC Advanced was applied to treat the remaining petroleum hydrocarbons.

• Soil Type: Silty Sand

Groundwater Velocity: 0.35 ft/day

Groundwater Flow Direction: Southeast

■ Depth to Groundwater: 9 ft

Application Type: Grid Applications

Product: ORC Advanced[®]
 Quantity Applied: 2,900 lbs

RESULTS

In TH02-1, Total BTEX has declined from an initial 21,410 ppb to approximately 140 ppb, a 99% reduction. All contaminants with the exception of benzene have reached the cleanup goals. Benzene remains slightly above the CDWQ Standard at 20 ppb. TPHg and TPHd concentrations reached the cleanup goals within 8 months of the injection.

A more gradual decline was observed in TH02-7 as explained by a less significant dosing rate. Reductions have continued for almost 2 years following the ORC Advanced injection. Total BTEX has declined to approximately 3,500 ppb and TPHg has been reduced by 86%.

CONCLUSION

The initial soil excavation was successful in removing the majority of contamination on-site. However, excavation activities were limited due to the location of the hot spot residing beneath an on-site structure. The in-situ injection of ORC Advanced to treat the remaining contamination beneath the building allowed for minimal site disturbance and significant cost savings. The application reduced BTEX concentrations towards regulatory compliance and has sustained reductions 20 months post-injection. Monitoring is on-going as concentrations continue to decline.

CONTACT Todd Herrington

Rocky Mountain District Manager

303-399-1622 I therrington@regenesis.com

Consultant contact information available upon request. Please contact the Regenesis representative listed above.

Site Closure via In Situ Aerobic Bioremediation of Petroleum Hydrocarbons in British Columbia, Canada

Summary

A former fueling facility in Port Coquitlam, BC contained four USTs and accompanying dispensers. The USTs were removed in 1990 after volatile petroleum hydrocarbon (VPH) concentrations were found above regulatory limits. Well BH206 had significant VPH and naphthalene concentrations reaching 13,000 μ g/L and 240 μ g/L, respectively. In addition, wells BH 303 and BH 205A had concentrations of VPH as high as 5,600 μ g/L.

Figure 1. Site map with plume outline and monitoring well locations

Table 1. Cleanup Goals (μg/L)							
Contaminant BH206 Cleanup Concentrations Goal							
VPH	13,000	1,500					
LEPH	2,600	500					
Naphthalene	240	10					

In-Situ Application Details

- ➤ **Remediation Objective:** Reduce concentrations of VPH, LEPH, and Naphthalene to cleanup goals. See Table 1.
- > **Application Type:** Grid
- > Soil Type: Sand
- ➤ Quantity Applied: ORC® 1,350 lbs
 - ORC Advanced® 500 lbs
- ➤ **Total Product Cost:** \$23,955 CAN; \$17,957 US

VPH Time Lapse Shots

VPH Plume Day 0

VPH Plume Day 300

VPH Plume Day 930

Remediation Approach

Excavation activities removed approximately 1,300 m³ of contaminated soil which were later disposed of at a permitted facility. Following the excavation, a groundwater remediation program was implemented using 1,350 lbs of Oxygen Release Compound (ORC®). An ORC slurry was added to the backfill and injected into the groundwater plume to further reduce VPH concentrations as well as light extractable petroleum hydrocarbons (LEPH). A second application using 500 lbs of ORC Advanced® was applied one year after the ORC application to continue reducing trends of petroleum hydrocarbons.

Table 2. Naphthalene Concentrations (μg/L)							
Naphthalene Baseline Day 510							
BH 108	86	24					
BH 206	240	120					
BH 302	140	42					
BH 303	160	110					
BH 305	12	ND					
BH 306	35	2					
BH 403	49	83					
BH 503	69	ND					

Results

As shown in the VPH time lapse shots on the front, VPH reduction occurred across the plume. Approximately, one year after injection VPH declined from 13,000 μ g/L to 4,300 μ g/L in well BH206 and well BH303 showed a decrease of 80%. Downgradient of the source area VPH was reduced below cleanup goals. Prior to injection, a total of 7 wells had LEPH concentrations above the standard (500 μ g/L). By day 510, four wells reached concentrations below cleanup goals. Reduction of naphthalene was also seen across the contaminated area (Table 2). Most notable are the 3 wells that reached the cleanup standard 510 days after injection.

Within 3 years of the initial application, all contaminants of concern were reduced to below the cleanup goals. Concentrations of VPH and LEPH were reduced by 1 to 2 orders of magnitude and naphthalene declined from a high of 280 μ g/L to 7.9 μ g/L. The site achieved closure approximately 5 years after commencing remedial treatment.

Oxygen Release Compound A D V A N C E D TM

High Benzene Concentrations Reduced Using ORC Advanced – Sheboygan, WI

SITE SUMMARY

Elevated levels of petroleum hydrocarbons were discovered near the former dispenser island at a former service station in Sheboygan, WI. In hopes of reducing concentrations, soil excavation activities took place in June 2003. A total of 500 tons of hydrocarbon-impacted soils were removed and transported to a landfill for disposal. However, residual contamination continued to affect the groundwater after the excavation. By March 2004, benzene and ethylbenzene had risen to 2,500 ug/L and 1,300 ug/L, respectively. In situ bioremediation using ORC Advanced was chosen to reduce BTEX, naphthalene, and trimethylbenzenes. In the northwest corner of the site, the location of the former UST basin, a total of 480 pounds of ORC Advanced was injected. In the southeast corner, the area of highest contamination, a total of 2,370 pounds of ORC Advanced was injected.

REMEDIATION APPROACH

Remediation Objective: Reduce concentrations of Benzene to cleanup goals at the entire site. See Table 1.

> Application Type: Grid > Product: ORC Advanced **Quantity Applied:** 2,850 lbs

➤ **Application Rate:** NW Corner–4 lbs/ft; SE Corner-11.9 lbs/ft > Injection Spacing: 10 ft

Table 1. Cleanup Goals

Contaminant	Concentration
Benzene	5 ug/L
Toluene	1,000 ug/L
Ethylbenzene	700 ug/L
Xylenes	10,000 ug/L

SITE CHARACTERISTICS

> **Product Cost:** \$24,225

General

Name: Former Marathon Unit #3697

Location: Sheboygan, WI > Industry: Service Station Contaminants of Concern:

Table 2. Well MW-8 Concentrations

Contaminant	Concentration
Benzene	1,700 ug/L
Toluene	530 ug/L
Ethylbenzene	1,300 ug/L
Xylenes	3,190 ug/L

Hydrogeology

> Treatment Area: NW Corner 1,200 ft²

SE Corner 1,800 ft²

Soil Type: Silty sand lenses in clay matrix ➤ Groundwater Flow Direction: Southeast

Depth to Groundwater: 12-15 ft

Percent Contaminant Reduction

i ci cent conta	mmant Reduction
Contaminant	Percent Reduction
Benzene	98%
Toluene	96%
Ethylbenzene	99%
Xylenes	96%

Post Treatment Concentrations

Contaminant	Concentration
Benzene	30 ug/L
Toluene	18 ug/L
Ethylbenzene	5.8 ug/L
Xylenes	115 ug/L

Concentrations vs. Time

Note: The significant decrease seen from day -60 is indicative of the gap between data points as concentrations most likely stayed their course, increasing, until ORC Advanced was injected and a new data point collected at day 30.

CONCLUSION

Groundwater sampling results after excavation activities show an increasing trend of contamination. On average, concentrations continued to increase up until the ORC Advanced application due to residual contamination. Concentrations peaked before ORC Advanced injection followed by a significant reduction across the plume. In well MW-5, benzene spiked to 160 ug/L while naphthalene rose to 170 ug/L and in well MW-4 BTEX, naphthalene and trimethylbenzenes all increased. Significant decreases of all contaminants were seen shortly after ORC Advanced injection. In well MW-8 total BTEX was reduced from 6,720 ug/L to 168.8 ug/L, a 97% reduction. Naphthalene concentrations were above the MCL of 20 ug/L in wells MW-1, MW-4, MW-5. ORC Advanced reduced concentrations to non-detect in wells MW-4 and MW-5, leaving 38 ug/L in well MW-1. Monitoring is on-going as concentrations continue to decrease towards MCLs.

CONTACTS

Consultant: Steve Sittler
Handex of Indiana

Regenesis: Scott Mullin

Central U.S. Regional Manager

630-753-0836

smullin@regenesis.com

All Rights Reserved 2006 Regenesis -1011 Calle Sombra, San Clemente, CA 92673 www.regenesis.com

Corrective Action Plan
76 Station No. 5191/5043
449 Hegenberger Road, Oakland, California
Antea Group Project No. I42705191

Appendix F

Unocal Correspondence

Dewitt, David B.

From: Stout, Scott
To: Dewitt, David B.

Subject: 5043

Date: Tuesday, August 27, 1996 2:34PM

Dave.

Attached is a memo describing the MW-6 free product from SS5043. (Only Table 1 and the fingerprint are missing). The final memo should come your way in a few days.

< < File Attachment: MEMO1.DOC> >

I hope that this helps. This was a very complicated sample because of the mixed nature of it. We can definatively say, however, that the product does not contain any significant amount (and probably no) recently-refined SFR gasoline. This should answer the immediate ojective of whether or not there's a problem with the USTs or piping system.

I am still a bit puzzled by the sample given the fact that product has not reappeard in the well. You may be on to something with the tampering theory, however, they'd of had to have poured a significant amount of leaded gasoline down there. Puzzling???

I would recommend keeping a close eye on things out there. If more product shows up there could be a problem. Let me know if this work results in any cost savings, e.g., no need to test the TLS350 system.

I am in Portland the rest of the week and in Rhode Island next week. I'll be checking my voice mail though if you have any questions.

Cheers, Scott

Dewitt, David B.

To:

Todd, Barbara F.

Cc:

Bock, Ronald E. -CERT; LaBeaux, Sandy X.; Cerovac, Scott

Subject:

Free product identification from SS #5043, Oakland

I have reviewed the memo from Dr. Scott Stoudt of FTS/ERS on his investigation of the free product recovered from monitor well MW-6 at this site. I have discussed the results with Dr. Scott and the following conclusions can be made:

- 1. The characteristics of the recovered fuel indicate that the fuel is not a recently refined Unocal gasoline (i.e., RFG). I also interpret this to indicate the TLS 350 did not "miss" a leak and the system is functional.
- 2. Based upon the compilation of a number of different points of evidence, there is apparently more than one source of gasoline and the characteristics of those gasolines are not from Unocal.
- 3. There is some evidence that some "old" gasoline is present and may be Unocal fuel; however, this fuel was know to be there prior to the Reformat of the site.
- 4. Based upon the volume of recovered fuel from the well (slightly more than two gallons), the lack of recharge to the well and the relatively "fresh" nature of the fuel, I am convinced that most of this fuel is the result of vandalism of the well (i.e., dumping fuel in the well). This is not unheard of in our business.

Copies of Dr. Stoudt's memo are available if you need it.

August 23, 1996

To: Dave DeWitt

From: Scott A. Stout, Ph.D., R.G.

CHARACTERIZATION OF FREE PRODUCT FROM UNOCAL SS#5043, OAKLAND, CA

INTRODUCTION

At your request, the free product collected July 31, 1996 from a monitoring well (MW-6) at the Unocal service station (SS#5043) located in Oakland, California has been characterized. The sample was analyzed at Global Geochemistry Corp. (Canoga Park, CA) using; (1) high resolution gas chromatography (HRGC)¹, (2) lead alkyls content and distribution and ethylene dibromide/ethylene dichloride analysis², (3) oxygenate analysis using a GC via ASTM Method D4815, and (4) BTEX via EPA Method 8020. A split of the sample was also sent to Inchape Testing Services for determination of the sulfur content via ASTM D5453.

Approximately 3 feet of free product had accumulated in MW-6 at this site where there had been no previous product. Suspicions of a leaking UST system, in spite of new USTs and the station's use of a state-of-the-art TLS350 leak detection system, prompted immediate concern. The well was bailed free of product and a sample collected on July 31, 1996. No free product has returned to the well over the past three weeks. The lack of recurrence has now raised some suspicion that well tampering may have occurred.

The <u>objective</u> of the investigation was to describe the nature of the free product and to provide a basis for concluding whether or not it represented a recently released Unocal product(s).

RESULTS and DISCUSSION

Nature of the Free Product

The HRGC fingerprint for the free product is shown in Fig. 1. The free product is shown to contain hydrocarbons (HC) ranging from C4 to C14, i.e., its comprised almost exclusively of gasoline range organics (GRO; C3-C10). Most compounds within this range are identified and their relative weight% are listed in Table 1. For comparison, Table 1 also contains data relating to three 1993

¹HRGC analyses were performed on an HP 6890 GC containing a 0.25 mm x 100 m capillary column coated with 0.25 micron thick SPB-1 stationary phase and equipped with a FID detector (det. temp. 320 °C). The oven program used was from 35°C (5 min) at 3 °C /min to 140 °C (o min) and then 8 °C /min up to 315 °C (40 min). The pressure program use was from 28.4 psig (0 min) then 0.5 psi/min to 78 psig. A 1 ml autosampler injection (inj. temp. 320 °C) with a split of 400:1 and air flow of 300 ml/min was used. Compound identifications are based on retention time comparisons to known standards and were regulated by the presence of three internal calibration standards.

²EDB, EDC and the five Pb alkyls (TML, TMEL, DMEL, MTEL, and TEL) are determined by direct injection GC-ECD (electron capture detector) using a 0.25 mm x 60 m DB-5 stationary phase (0.25 micron thick coating) capillary column. The oven program used was from 90°C to 186°C at 8°C/min. A 5 ppm (ug/ml) detection limit is achieved.

Unocal gasolines refined at our San Francisco Refinery (SFR). Unfortunately, data relating to more recently-refined normal or the even newer reformulated gasolines (RFG) from SFR have not been analyzed by this method.

The identified compounds within the GRO are dominated by iso-paraffins (39.3 %wt) and aromatic HC (38.4 %wt; Table 1). The relatively high percentage of both of these octane-boosting compound classes indicates that the GRO are undoubtedly derived from a blended gasoline.

The iso-alkanes include over 10% of iso-pentane (2-methylbutane) and significant amounts of 2-and 3-methylpentane (Table 1). In total, the C5-C6 iso-paraffins account for 23.3 wt% of sample. This abundance of C5-C6 iso-paraffins indicates that the parent gasoline(s) was probably refined using a C5-C6 isomerization unit. SFR has had an isomerization unit since mid to late 1987. Therefore, this criteria cannot be used to dismiss the possibility of an SFR gasoline's presence.

There is also 0.61 wt% iso-octane (aka 2,2,4-trimethylpentane; Table 1) which suggests that the parent(s) also included an alkylate blend produced from an alkylation unit. This amount of iso-octane far exceeds the trace amounts expected in the 1993 SFR gasolines (0.1-0.3 wt%; Table 1). This would argue for the presence of a non-SFR gasoline component. However, SFR has been blending alkylate from LAR into the premium unleaded gasoline since Oct. 1995. Therefore, on this basis alone it cannot be determined that there is no SFR gasoline present.

The aromatic HC include the BTEX compounds (only minor B) and numerous C3-alkylbenzenes (e.g., 1,3,5- and 1,2,4-trimethylbenzenes). These are common components of most gasolines and generally appear in distributions similar to those observed in the MW-6 sample. The slightly reduced concentration of benzene is probably the result of weathering via water-washing (see below). Additional considerations regarding the BTEX compounds are discussed below. The presence of BTEX and C3-alkylbenzenes in this distribution is indicative of a reformate blended into the gasolines. Reformers are commonly in most refineries, therefore, this is not useful in a forensic sense. (In fact, SFR employs two reformers).

The presence of a small amount of olefins (1.40 wt%; Table 1) indicates that the parent gasoline(s) was probably refined using an catalytic or thermal cracking process (and not hydrocracking). SFR gasolines have historically not contained more than 0.5 wt% olefins (Table 1) because of the use of a Unicracker since the early 1970's. However, since Oct. 1995 SFR has received a light CAT blending stock from LAR which has resulted in up to 5.0 wt% olefins in our unleaded gasolines. Therefore, on this basis alone it cannot be determined that there is no SFR gasoline present.

In summary, the molecular characteristics of the sample indicate that the parent gasoline's (or at least one component in a mixture of gasolines) blend included; (1) isomerate from a C5-C6 isomerization unit, (2) an alkylate from an alkylation unit, and (3) a catalytical blend from an FCC or thermal cracker. Given the refining history described in the proceeding paragraphs it is not possible to determine that there is no SFR-refined (or blended) gasoline present in the sample. All that can be said is that if the parent gasoline is entirely a Unocal SFR product then it must be no older than October 1995.

Aromatic Hydrocarbon Results

The results of the EPA Method 8020 analysis are given in Table 2. The separate BTEX analysis (EPA 8020) indicated that the free product contained 6280 ug/ml of benzene which corresponds

μg/ml	Benzene	Toluene	Ethyl benzene	Xylenes	Total
MW-6	6290	49600	14500	73800	144190
MW-6 dupl.	6270	50000	15500	74200	145970
Average	6280	49800	15000	74000	145080
detection limit					

Table 2: BTEX results for the MW-6 free product studied.

to 0.71 %vol benzene. Benzene content of reformulated gasoline (RFG) have been limited to <a> <1.0 %vol since March 1995. Prior to this time there were no limits on the benzene content of gasolines sold in California (which typically ran 2-3 %vol). On this basis it cannot be determined for sure whether or not the free product is a pre- or post-RFG gasoline. The reason for this uncertainty is the potential for benzene to have been removed from the free product due to preferential weathering. (Of course, if the benzene content of the free product had been > 1 %vol then it could be safely concluded that a pre-RFG gasoline was present).

The ratio of B/T (0.13) is relatively low for most brands of fresh gasolines. However, SFR's high octane gasoline have typically been enriched in toluene due to the use of a significant reformate blending component to maintain octane. Therefore, the low B/T ratio in the free product could be indicating that (1) some benzene has been preferentially removed via water-washing or (2) the gasoline was refined with excess toluene (as was the case in pre-RFG SFR gasolines). Other BTEX-based ratios indicate other similarities with pre-RFG SFR gasolines. For example the T/BTEX (0.34) and T/X (0.67) ratios are consistent with previously studied 1993 (pre-RFG) SFR gasolines (Table 1). Therefore, on the basis of the BTEX results there is no argument to be made against the free product being a pre-March 1995 SFR gasoline.

Oxygenate Analysis

Results of the ASTM D4815 analysis are given in Table 3. The sample was shown to contain no oxygenated compounds (alcohols and ethers) other than TAME (2-methyl-2-methoxylbutane).

Table 3: Results of the Oxygenate Analysis on MW-6 Free Product.

μg/ml (ppm)	Methanol	Ethanol	tert- Butanol	MTBE	ETBE	TAME
MW-6	nd	nd	nd	nd	nd	915
MW-6 duplicate	nd	nd	nd	nd	nd	905
detection limit	200	200	200	200	200	200

MTBE - methyl tert-butyl ether

ETBE - ethyl tert-butyl ether

TAME - tert-amyl methyl ether; this result was double-checked by co-injection of a TAME standa

On average the sample contained 910.5 μ g/ml of TAME.³ This corresponds to about 0.12 wt% TAME, or only 0.019 wt% oxygen. RFG refined in California since March 1995 have been required to contain between 1.8 and 2.2 wt% oxygen. Therefore, this free product contains only about 1% of the required amount of oxygen for new reformulated gasolines. TAME is far less soluble in groundwater than MTBE (6000 vs. 43,000 mg/L @20°C) and therefore its concentration in the sample is not expected to have been significantly reduced due to water-washing. This suggests that the TAME-containing gasoline component present in the sample is probably only a fraction (1% ?) of the total free product.

TAME has never been intentionally added to gasolines refined at SFR; only perhaps as a contaminant in an MTBE blend. However, since MTBE is absent from this sample it is safe to assume that the TAME-containing component of the free product was not an SFR gasoline. Unfortunately, the small amount of TAME argues that this non-Unocal component is only a minor component of the free product. Because TAME has a lower blending ((R+M)/2) octane number (105 vs. 110) and a lower mass% oxygen (15.7% vs. 18.2%), it is far less commonly used than MTBE. This characteristic may help to identify a Bay Area source(s) of the TAME-containing component in the free product. Unfortunately, the available oxygenate unit construction records (Oil and Gas Journal's annual update) indicate that there are no West Coast refiners that are producing TAME.

Sulfur Analysis

Prior to RFG limits implemented in March 1995, the sulfur content of gasolines sold in California was limited to <300 ppm. Since March 1995 the maximum allowable S content was reduced to 40 ppm. It was determined that the MW-6 free product sample contained 108 ppm sulfur. The high S content argues that the free product must (at least) contain a pre-March 1995 gasoline.

Gasolines refined at SFR had historically contained very low S (<1 ppm) due to use of the fixed-bed hydrotreater (which tends to remove sulfur as H₂S and thereby protect the catalysts used in the Unicracker, two reformers and isomerization units). Since early 1995, the S content of SFR gasolines was increased to between 10-30 ppm S (average ~12.5 ppm) when a light CAT blending component was initially imported from LAR. (This light CAT contains higher S due to LAR's use of an FCC unit in which sulfur is not removed as effectively due to its fluid-bed nature). The historically low values of S in SFR gasolines argues that the pre-March 1995 gasoline component in the free product (with its 108 ppm) is not an SFR gasoline. Of course, the presence of a low sulfur SFR gasoline component cannot be dismissed since the possibility of mixing exist.

Lead Alkyl Results

The results of the lead alkyl analysis is given in Table 4. This table shows that the MW-6 free product contained all five Pb alkyls in an abundance totaling 0.679 grams Pb per gallon (glpg).

Table 4: Results of the lead alkyl analysis of MW-6 free product.

³TAME is one of several oxygenates available to be added to gasolines (at volumes up to 20%) to boost octane while minimizing ozone-harmful emissions. It is produced from a C5 olefin stream reacted with ethanol (MTBE is produced from a C4 olefin stream reacted with ethanol). TAME's advantage is its lower vapor pressure (compared to MTBE) which allows more butane to be added and still maintain vapor pressure requirements.

	wt. %	MW-	6 (avei	rage)	% Stand	lard Reacte	d Mixes	Other	Mixes	Theoretical Mix
									<u> </u>	10:25:55:10
										RM25:TEL:PM80:
	lead	μg/mL	%	gipg	RM25	RM50	RM75	TEL only	PM80	RM50
TEL	0.640582	101.5	40.0	0.25	28.8	4.8	0.1	100	20	39.4
MTEL.	0.669629	24.0	9.4	0.06	49.5	25.6	3.6	0	0	7.5
DEDML	0.701435	8.0	3.1	0.02	18.6	42.4	20.5	0	0	6.1
TMEL	0.736388	10.5	4.1	0.03	3.0	23.4	49.6	0	0	2.6
TML	0.775035	110.0	43.3	0.32	0.1	3.8	26.2	0	80	44.4
TOTAL		254	100	0.679	_					

This concentration of Pb is typical of leaded gasolines refined in the early to mid-1980's when the EPA mandated Pb maximum was reduced from 1.1 to 0.5 glpg. Since there is only a small amount of oxygenates (TAME) present, there is no reason to call upon a significant unleaded gasoline component to be present in this sample. Therefore, there is no reason to believe that there is a mixture of a leaded gasoline with an unleaded gasoline, resulting in the reported glpg value. This supports an early-to-mid 1980's age for the free product's parent gasoline.

Corporate records indicate that SFR had used specific Pb alkyl packages through time. Between 1975 and 1985 SFR used a reacted mix, RM50, in both the regular and premium leaded gasolines. As can be seen in Table 4, the mixture of lead alkyls in an RM50 lead package is very different from that found in the MW-6 free product. This makes it highly unlikely that the free product was derived from a leaded gasoline refined at SFR in the early 1980's.

In fact the Pb alkyl distribution in the free product does not resemble any single Pb package available for gasoline blending. Therefore, a mixture of leaded gasolines each containing different lead packages must be present. One can ask whether or not it is possible to derive the observed mixture in the free product from any of the lead packages used over time at SFR.⁴ In theory, it would require a minimum of a 4-component blend to achieve a Pb alkyl distribution comparable to that observed in the free product. This is reflected in the theoretical mixture listed in Table 4. Such a mixture, if composed only of SFR gasolines, would require mixing of leaded gasolines over the minimum time period of 1975 to 1985. While this may be possible it appears to me as being extremely remote.

Degree of Weathering

The free product contains an abundance of light (<C5) components. This indicates that the original release had probably occurred below ground thereby minimizing evaporative losses. The gasoline component does exhibit some indications of weathering due to water-washing. This is reflected in the low proportion of toluene relative to xylenes. Toluene is typically present in near equal abundance to xylenes in fresh regular gasolines ($T/X\sim0.6-1.0$). (In premium gasolines the T/X ratio can be as high as 4.8). However, because toluene is more water soluble than the xylenes, it is preferentially removed upon exposure to groundwater. This free product appears to have lost toluene due to water-washing ($T/X\sim0.4$; Table 1). Benzene is even more soluble and the presence of a small amount of benzene (0.07 %vol of GRO; Table 1) indicates that water-washing is not complete. In my experience, I would consider this gasoline to be moderately water-washed.

⁴The other lead packages that have been used at various times at SFR include a physical mix of 80% TML and 20% TEL (1963-1975 premium gasolines), TEL-only (1963-1975 regular gasolines), and RM25 (1985-1986 premium gasoline; no regular leaded gasoline was produced at this time). After 1986 there was no leaded gasoline produced at SFR.

The process of biodegradation typically accompanies water-washing. The most susceptible compounds to biodegradation are the n-alkanes and olefins. This sample contains only slightly reduced quantities of both of these compound classes as compared to fresh gasolines. This indicates that the gasoline component of this free product is only slightly biodegraded.

Given the limited data and the necessarily relative nature of the weathering 'data', it would be imprudent to try and assign an absolute age to the free product. Given my experience, however, I would hesitate to call the gasoline component fresh due to the slight to moderate weathering observed. I cannot be as definitive for the diesel fuel component since its nature is rather typical.

Origin of the Gasoline and Diesel Components

The prominence of 2,2,4-trimethylpentane or iso-octane (??? %vol of GRO) strongly suggests that an alkylate blending stock was among the blending components used in the parent gasoline. Unocal's San Francisco refinery (SFR) does not have an alkylation unit and therefore, our gasolines are typically reduced in isoparaffins (particularly, isopentane). However, beginning in October 1995 alkylate was piped to SFR from Unocal's Los Angeles refinery for blending with SFR gasolines. Therefore, the presence of iso-octane (and other isoparaffins) in this sample could indicate the presence of either (1) a non-Unocal gasoline or (2) a post-Oct. 1995 Unocal gasoline.

The presence of 1.65 %vol olefins in the gasoline range is more informative since SFR gasolines are typically reduced in olefins (< 0.5 %vol). This characteristic arises from the fact that we employ a hydrocracking unit (rather than an catalytic cracking unit). Hydrocracking produces an isomaxate gasoline blending component with little or no olefins. The presence of 1.65 %vol olefins argues strongly that the gasoline component of this free product is not a Unocal refined gasoline.

The nature of the diesel fuel is less descriptive as to its origin. The pristane/phytane (Pr/Ph) ratio of the diesel fuel (1.84; Table 1) should reflect that of its parent crude oil. SFR runs primarily Cook Inlet crudes for diesel fuel #2 production. Undegraded Cook Inlet crudes have Pr/Ph ratios between in the range 2.0 to 3.5 (B. Bromley, personal communication, 1994). The slightly lower Pr/Ph ratio of the free product's diesel fuel component suggests that the parent crude oil was probably not from the Cook Inlet. This conclusion is further substantiated by the high Pr/nC17, given the Ph/nC18 ratio.⁵

CONCLUSIONS

The free product which accumulated in MW-6 at Unocal service station #5043 was analyzed by a variety of techniques. The primary objective of the study was to determine whether or not the sample consisted a recently-refined Unocal gasoline. The answer to this question is <u>no</u>; the free product is not a recently released gasoline refined at Unocal's San Francisco refinery. The basis for this conclusion is:

⁵The basis for this statement is that Cook Inlet crude oils tend to fall along a single trend when the Ph/nC18 and Pr/nC17 ratios are cross-plotted. This trend line represents different degrees of biodegradation that had occurred in the original oil field reservoir. These ratios for the free product sample fall well off of the Cook Inlet trend indicating that the parent crude oil for this diesel fuel was probably not a Cook Inlet crude oil.

- (1) the free product contains a significant amount of lead and SFR has not produced leaded gasolines since 1986,
- (2) the free product contains sulfur well above the reformulated gasoline (RFG) maximum which SFR began producing in March 1995, and
- (3) the free product doesn't contain MTBE as would be expected in recently-refined SFR gasolines.

These results clearly indicate that the free product is not a recently refined SFR gasoline. However, the MW-6 free product exhibits a diverse set of characteristics which, in my opinion, argues that it represents a mixture of gasolines. Thus the question shifts as to whether or not the MW-6 free product contains a recently-refined SFR gasoline as one of its components.

The presence of lead indicates that <u>at least</u> one of the components in the mixture must be a leaded gasoline. The peculiar lead alkyl distribution (Table 2) actually argues for a mixture of leaded gasolines being present. Therefore, while the lead content (0.679 glpg) argues for an early-to-mid 1980's age, the fact that the free product is a mixture means that all that can be said for sure is that there must be a leaded gasoline component that is from 1985 or earlier present. Based on the lead alkyl packages used at SFR in the 1970's and 80's, it would have been possible, though highly unlikely, to obtain mixture consistent with the MW-6 free product. This argues for the presence of someone else's leaded gasolines being present.

The presence of a small amount of TAME argues that there may be a more recent unleaded component also present in the mixture. Based on the low concentration of TAME (and absence of other oxygenates) this would seem to be a very small component (1%?) in the mixture. Furthermore since SFR has never used TAME, it certainly could not be an SFR unleaded gasoline.

Based on the molecular characteristics at least one of the components included blends from; (1) a C5-C6 isomerization unit, (2) an alkylation unit, and (3) an FCC or thermal cracker. All three of these blending stocks have been available at SFR since Oct. 1995 (when the latter two stocks were first piped up from LAR). Since a mixture is known to exist, the refining characteristics alone do not argue against the potential for an SFR gasoline being among the components.

The high sulfur content (108 ppm) argued for a pre-March 1995 gasoline (see above). However, the historically low values of S in SFR gasolines argues that the pre-March 1995 gasoline component in the free product (with its 108 ppm) is not an SFR gasoline.

The gasoline mixture appears to be only moderately water-washed and slightly biodegraded. This alone would argue for it being a relatively 'fresh' gasoline, however, there is too much evidence that a significant portion of the product is historic (pre-1985). This discrepancy may be explained by the occurrence of a large pool in which the gasoline has not biodegraded over time. This seems highly unlikely given the non-recurrence of free product in the weeks following well purging.

Obviously, a definitive answer to the origin of the MW-6 product is elusive. It can be confidently stated that the product is not exclusively a recently-refined SFR gasoline. The origin remains unclear but is certainly worthy of considering the possibility of off-site (3rd party) sources and closely watching any additional appearances of free product in the area.

If you have any questions concerning these conclusions please call me (at 714-577-1296 or at network 268-1296).

FIGURE 1: HRGC FINGERPRINT OF MW-6 FREE PRODUCT FROM SS# 5043 (Collected July 31, 1996).