

December 20, 2000

Mr. Paul Supple

P.O. Box 6549 Moraga, CA 94570

ARCO Products Company

3164 Gold Camp Drive Suite 200 Rancho Cordova, CA 95670-6021 U.S.A. 916/638-2085 FAX: 916/638-8385

Subject: Quarterly Groundwater Monitoring Report, Third Quarter 2000

ARCO Service Station No. 2162 15135 Hesperian Boulevard San Leandro, California Project No. D000-310

Dear Mr. Supple:

Delta Environmental Consultants, Inc. is submitting the attached report that presents the results of the third quarter 2000 groundwater monitoring program at ARCO Products Company Service Station No. 2162, located at 15135 Hesperian Boulevard, San Leandro, California. The monitoring program complies with the Alameda County Health Care Services Agency requirements regarding underground tank investigations.

The interpretations contained in this report represent our professional opinions and are based, in part, on information supplied by the client. These opinions are based on currently available information and are arrived at in accordance with currently accepted hydrogeological and engineering practices at this time and location. Other than this, no warranty is implied or intended.

If you have any questions concerning this project, please contact Steven W. Meeks at (916) 536-2613.

Sincerely,

DELTA ENVIRONMENTAL CONSULTANTS, INC.

Trevor L. Atkinson Project Engineer

Steven W. Meeks. P.E

Project Manager

California Registered Civil Engineer No. C057461

TLA (Lrp002.310.doc) Enclosures

cc: Mr. Scott Seery - Alameda County Health Care Services Agency

W. Mals

Mr. John Jang - California Regional Water Quality Control Board, San Francisco Bay Region

Mr. Mike Makaldin - City of San Leandro Fire Department

Date: December 20, 2000

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.: 2162 Address: 15135 Hesperian Boulevard, San Leandro, CA

ARCO Environmental Engineer/Phone No.: Paul Supple 925-299-8891

Consulting Co./Contact Person Delta Environmental Consultants, Inc.

Steven W. Meeks, P.E.

Consultant Project No.: D000-310

Primary Agency/Regulatory ID No. Alameda County Health Care Services Agency

WORK PERFORMED THIS QUARTER

Performed quarterly groundwater monitoring for third quarter 2000.

WORK PROPOSED FOR NEXT QUARTER

Prepare and submit quarterly groundwater monitoring report for third quarter 2000.

Perform quarterly groundwater monitoring and sampling for fourth quarter 2000.

3. Evaluate site for closure during third quarter 2000

QUARTERLY MONITORING:

Current Phase of Project	Monitoring
Frequency of Groundwater Sampling:	Quarterly: MW-1, MW-2, MW-3, MW-4
Frequency of Groundwater Monitoring:	Quarterly
Is Free Product (FP) Present On-Site:	No
FP Recovered this Quarter:	N/A
Cumulative FP Recovered to Date:	None
Bulk Soil Removed This Quarter:	None
Bulk Soil Removed to Date:	None
Current Remediation Techniques:	Natural Attenuation
Approximate Depth to Groundwater:	8.81 feet
Groundwater Gradient:	0.01 ft/ft toward southwest

DISCUSSION:

- Methyl tertiary butyl ether (MTBE), total petroleum hydrocarbons as gasoline (TPHg) and benzene were not detected at or above the laboratory reporting limits for the sample collected from MW-1.
- Benzene was detected at 1.02 μg/L in a sample collected from MW-4. MTBE was detected at 128 and 12.2 µg/L in samples collected from MW-3 and MW-4, respectively. TPHg was detected at 266 μg/L in a sample collected from MW-2.

ATTACHMENTS:

•	Table 1	Groundwater Elevation and Analytical Data
-	I GUIC I	Cidalidwater Elevation and Anaivillar Data

Table 2 **Groundwater Flow Direction and Gradient**

Figure 1 Groundwater Analytical Summary Map

 Figure 2 **Groundwater Elevation Contour Map**

Appendix A Sampling and Analysis Procedures

 Appendix B Historical Data Tables (IT Corporation)

 Appendix C Certified Analytical Reports with Chain-of-Custody Documentation

Appendix D Field Sampling Data

TABLE 1
GROUNDWATER ANALYTICAL DATA

ARCO Service Station No. 2162 15135 Hesperian Boulevard San Leandro, California

Well Number	Date Sampled	Top of Riser Elevation (ft)	Depth to Groundwater (ft)	Groundwater Elevation (ft)	Benzene (μg/L)	Toluene (μg/L)	Ethyl- benzene (μg/L)	Total Xylenes (μg/L)	TPH as Gasoline (μg/L)	MTBE (μg/L)
MW-1	6/20/00	31.19	8.33	22.86	<0.5	8.0	<0.5	<1.0	<50	<10
	9/29/00		9.07	22.12	<0.5	<0.5	<0.5	<0.5	<50	<2.5
MW-2	6/20/00	30.38	7.38	23.00	NS	NS	NS	NS	NS	NS
	9/29/00		8.08	22.30	<0.5	<0.5	<0.5	<0.5	266	<2.5
MW-3	6/20/00	30.30	7.75	22.55	NS	NS	NS	NS	NS	NS
	9/29/00	•	8.46	21.84	<0.5	<0.5	<0.5	<0.5	<50	128
MW-4	6/20/00	30.39	8.87	21.52	NS	NS	NS	NS	NS	NS
	9/29/00		9.61	20.78	1.02	<0.5	<0.5	<0.5	<50	12.2

TPH = Total Petroleum Hydrocarbons

MTBE = Methyl tertiary butyl ether analyzed by EPA Method 8021B unless otherwise noted μg/L = Micrograms per liter

NS = Not sampled

Note: Please refer to Appendix B for Historical Groundwater Elevation and Analytical Data Tables developed by IT Corporation

TABLE 2

GROUNDWATER FLOW DIRECTION AND GRADIENT

ARCO Service Station No. 2162 15135 Hesperian Boulevard San Leandro, California

Date Measured	Average Flow Direction	Average Hydraulic Gradient
06/20/00	Southwest	0.01
09/29/00	Southwest	0.01

Note: Please refer to Appendix B for Historical Groundwater Elevation and Analytical Data Tables developed by IT Corporation

LEGEND:

MW-1

MONITORING WELL LOCATION

→ VW-1

SOIL VAPOR EXTRACTION WELL LOCATION

<50 <0.5 <10 TPH AS GASOLINE IN MICROGRAMS PER LITER BENZENE IN MICROGRAMS PER LITER MTBE IN MICROGRAMS PER LITER

NS

NOT SAMPLED

NOTE: SITE MAP ADAPTED FROM IT CORPORATION FIGURES. SITE DIMENSIONS AND FACILITY LOCATIONS NOT VERIFIED.

FIGURE 1

GROUND WATER ANALYTICAL SUMMARY THIRD QUARTER 2000 (9/29/00) ARCO STATION NO. 2162 15135 HESPERIAN BOULEVARD

	SAN LEANDRO,	CALIFORNIA
PROJECT NO. D000-310	DRAWN BY TLA 11/1/00	•
FILE NO. 2162-1	PREPARED BY TLA	
REVISION NO.	REVIEWED BY	

LEGEND:

MW-1 MONITORING WELL LOCATION

→ VW-1 SOIL VAPOR EXTRACTION WELL LOCATION

GROUND WATER ELEVATION IN FEET ABOVE MEAN

(22.12) SEA LEVEL (MSL)

22.0 — WATER TABLE CONTOUR IN FEET ABOVE MSL

GROUND WATER FLOW DIRECTION

APPROXIMATE GROUND WATER FLOW GRADIENT

NOTE: SITE MAP ADAPTED FROM IT CORPORATION FIGURES.
SITE DIMENSIONS AND FACILITY LOCATIONS NOT VERIFIED.

FIGURE 2

GROUND WATER ELEVATION CONTOUR MAP THIRD QUARTER 2000 (9/29/00) ARCO STATION NO. 2162 15135 HESPERIAN BOULEVARD SAN LEANDRO, CALIFORNIA

PROJECT NO. D000-310	DRAWN BY TLA 8/2/00
FILE NO. 2162-1	PREPARED BY
REVISION NO.	TLA REVIEWED BY
	1

APPENDIX A

Sampling and Analysis Procedures

FIELD METHODS AND PROCEDURES

1.0 GROUND WATER AND LIQUID-PHASE HYDROCARBON DEPTH ASSESSMENT

A water/liquid-phase hydrocarbon (LPH) interface probe was used to assess the thickness of LPH, if present, and a water level indicator was used to measure ground water depth in monitoring wells that did not contain LPH. Depth to ground water was measured from the top of each monitoring well casing. The tip of the water level indicator was subjectively analyzed for LPH sheen. All measurements and physical observations were recorded in the field.

2.0 SUBJECTIVE ANALYSIS OF GROUND WATER

Prior to purging, a water sample was collected from the monitoring well for subjective analysis. The sample was retrieved by gently lowering a clean, disposable bailer to approximately one-half the bailer length past the air/liquid interface. The bailer was then retrieved and the sample contained within the bailer was examined for LPH and the appearance of a LPH sheen.

3.0 MONITORING WELL PURGING AND SAMPLING

Monitoring wells were purged using a centrifugal pump or disposable bailers until pH, temperature, and conductivity of the purge water had stabilized and a minimum of three to four well volumes of water had been removed. Ground water removed from the wells was stored in 55-gallon barrels at the site. The barrels were labeled with corresponding monitoring well numbers and the date of purging. After purging, ground water levels were allowed to stabilize. A ground water sample was then removed from each of the wells using a dedicated disposable bailer. If the well was purged dry, it was allowed to sufficiently recharge and a sample was collected. Samples were collected in air-tight vials, appropriately labeled, and stored on ice from the time of collection through the time of delivery to the laboratory. A chain-of-custody form was completed to document possession of the samples. Ground water samples were transported to the laboratory and analyzed within the EPA-specified holding times for the requested analyses. Purge water will be collected from the storage barrels in a vacuum truck and transported to an appropriate facility for treatment and/or disposal.

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low–flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol previously stated in the first paragraph of this sub-section. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low–yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

APPENDIX B

Historical Data Tables

IT Corporation

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

	Date	Well	Depth to	Groundwater	TPPH as			Ethyl-		MTBE	МТВЕ	Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MW-1	02/26/96	31.19	7.14	24.05	<50	< 0.5	<0.5	<0.5	< 0.5	NA	NA	NA	
MW-1	05/23/96	31.19	7.70	23.49	<50	< 0.5	<0.5	< 0.5	< 0.5	NA	NA	NA	
MW-1	08/21/96	31.19	8.75	22.44	210	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	NA	NA	
MW-1	11/20/96	31.19	8.62	22.57	91	< 0.5	< 0.5	< 0.5	< 0.5	2.6	NA	NA	
MW-1	04/01/97	31,19	8.70	22.49	<50	<0.5	< 0.5	<0.5	<0.5	<2.5	NA	NA	NP
MW-1	06/10/97	31.19	8.45	22.74	94	< 0.5	< 0.5	0.68	0.56	6.4	NA	NA	NP
MW-1	09/17/97	31.19	9.20	21.99	<50	< 0.5	< 0.5	<0.5	< 0.5	10	NA	1.0	NP
MW-1	12/12/97	31.19	8.00	23.19	<200	<2	<2	<2	<2	180	NA	2.0	NP
MW-1	03/25/98	31.19	7.00	24.19	<200	<2	<2	3	<2	180	NA	2.0	
MW-1	05/14/98	31.19	7.46	23.73	<50	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	1.17	P
MW-1	07/31/98	31.19	8.10	23.09	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	2.0	NP
MW-1	10/12/98	31.19	8.60	22.59	<50	< 0.5	<0.5	<0.5	< 0.5	9	NA	2.5	NP
MW-1	02/11/99	31.19	7.32	23.87	< 50	< 0.5	< 0.5	< 0.5	< 0.5	25	NA	1.0	P
MW-1	06/23/99	31.19	8.40	22.79	55	< 0.5	< 0.5	< 0.5	< 0.5	<3	NA	1.36	NP
MW-1	08/23/99	31.19	8.85	22.34	<50	<0.5	0.6	< 0.5	< 0.5	5	NA	1.42	NP
MW-1	10/27/99	31.19	8.50	22.69	< 50	< 0.5	< 0.5	< 0.5	<1	90	NA	0.83	NP
MW-1	02/09/00	31.19	8.11	23.08	<50	<0.5	<0.5	<0.5	<1	9	NA	0.77	NP
MW-2	02/26/96	30.38	6.41	23.97	770	<0.5	<0.5	45	28	NA	NA	NA	
MW-2	05/23/96	30.38	6.80	23.58	590	0.50	< 0.5	35	18	NA	NA	NA	
MW-2	08/21/96	30.38	7.80	22.58	170	< 0.5	< 0.5	21	6.3	<2.5	NA	NA	
MW-2	11/20/96	30.38	7.73	22.65	88	< 0.5	< 0.5	7.9	1.1	<2.5	NA	NA	
MW-2	04/01/97	30.38	7.83	22.55	66	< 0.5	< 0.5	3.6	0.56	33	NA	NA	
MW-2	06/10/97	30.38	7.52	22.86	<50	<0.5	< 0.5	< 0.5	< 0.5	<2.5	NA	NA	NP
MW-2	09/17/97	30.38	8.24	22.14	<50	<0.5	<0.5	< 0.5	<0.5	<3.0	NA	0.6	NP
MW-2	12/12/97	30.38	7.10	23.28	<50	<0.5	< 0.5	< 0.5	< 0.5	< 3.0	NA	1.2	NP
MW-2	03/25/98	30.38	6.27	24.11	<50	< 0.5	< 0.5	0.7	0.5	55	NA	1.0	-
MW-2	05/14/98	30.38	6.54	23.84	210	< 0.5	< 0.5	3.3	<0.5	42	NA	1.47	P
MW-2	07/31/98	30.38	7.14	23.24	230	<0.5	< 0.5	3.9	< 0.5	6	NA	1.0	P

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

Well Number	Date Gauged/ Sampled	Well Elevation (feet, MSL)	Depth to Water (feet, TOC)	Groundwater Elevation (feet, MSL)	TPPH as Gasoline (ppb)	Benzene (ppb)	Toluene (ppb)	Ethyl- benzene (ppb)	Xylenes (ppb)	MTBE 8021B* (ppb)	MTBE 8260 (ppb)	Dissolved Oxygen (ppm)	Purged/ Not Purged (P/NP)
MW-2	10/12/98	30.38	7.65	22.73	110	<0.5	< 0.5	1.5	<0.5	<3	NA	1.0	P
MW-2	02/11/99	30.38	6.55	23.83	660	< 0.5	< 0.5	6.7	0.7	3	NA	1,0	P
MW-2	06/23/99	30.38	7.48	22.90	270	< 0.5	< 0.5	2.2	0.8	<3	NA	NM	P
MW-2	08/23/99	30.38	7.89	22.49	200	< 0.5	0.9	1.8	< 0.5	<3	NA	1.17	P
MW-2	10/27/99	30.38	8.30	22.08	2,100	1.0	2.5	14	3	3	NA	0.75	NP
MW-2	02/09/00	30.38	8.02	22.36	<50	< 0.5	< 0.5	<0.5	<1	5	NA	0.69	NP
MW-3	02/26/96	30.30	6.72	23.58	120	5.0	<0.5	<0.5	<0.5	NA	NA	NA	
MW-3	05/23/96	30.30	7.18	23.12	140	12	< 0.5	<0.5	< 0.5	NA	NA	NA	
MW-3	08/21/96	30.30	8.17	22.13	< 50	1.1	< 0.5	<0.5	< 0.5	130	NA	NA	
MW-3	11/20/96	30.30	8.03	22.27	55	< 0.5	< 0.5	< 0.5	< 0.5	59	NA	NA	
MW-3	04/01/97	30.30	8.09	22.21	< 50	< 0.5	<0.5	<0.5	< 0.5	180	NA	NA	NP
MW-3	06/10/97	30.30	7.97	22.33	< 50	< 0.5	< 0.5	<0.5	< 0.5	1,900	NA	NA	NP
MW-3	09/17/97	30.30	8.54	21.76	<5,000	<50	<50	<50	<50	1,100	860	2.2	NP
MW-3	12/12/97	30.30	7.50	22.80	560	< 5.0	< 5.0	<5.0	5.0	370	NA	1.4	NP
MW-3	03/25/98	30.30	6.60	23.70	< 500	<5	<5	<5	<5	470	NA	1.0	
MW-3	05/14/98	30.30	7.13	23.17	750	<5	<5	<5	<5	630	NA	1.97	P
MW-3	07/31/98	30.30	7.58	22.72	< 500	<5	<5	<5	<5	590	NA	1.0	P
MW-3	10/12/98	30.30	8.00	22.30	<500	<5	<5	<5	<5	600	NA	2.0	P
MW-3	02/11/99	30.30	6.90	23.40	< 500	<5	<5	<5	<5	280	NA	1.0	P
MW-3	06/23/99	30.30	7.82	22.48	220	< 0.5	3.2	<0.5	<0.5	7 4 0	NA	1.98	P
MW-3	08/23/99	30.30	8.28	22.02	<50	<0.5	1.1	<0.5	< 0.5	230	NA	1.20	P
MW-3	10/27/99	30.30	9.27	21.03	< 50	<0.5	< 0.5	<0.5	<1	<3	NA	0.81	NP
MW-3	02/09/00	30.30	7.45	22.85	<50	<0.5	<0.5	<0.5	<1	. 80	NA	0.81	P .
MW-4	02/26/96	30.39	7.59	22.80	110	9.9	<0.5	<0.5	<0.5	NA	NA	NA	
MW-4	05/23/96	30.39	8.22	22.17	69	8.0	< 0.5	<0.5	< 0.5	NA	NA	NA	
MW-4	08/21/96	30.39	9.28	21.11	<50	6.8	< 0.5	<0.5	<0.5	<2.5	NA	NA	
MW-4	11/20/96	30.39	9.12	21.27	95	10	0.59	<0.5	0.52	3.8	NA	NA	

Table 1
Groundwater Elevation and Analytical Data
Total Purgeable Petroleum Hydrocarbons
(TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

	Date	Well	Depth to	Groundwater	TPPH as			Ethyl-	<u> </u>	MTBE	MTBE	Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	8021B*	8260	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MW-4	04/01/97	30.39	8.45	21.94	73	5.7	<0.5	<0.5	<0.5	<2.5	NA	NA	
MW-4	06/10/97	30.39	9.00	21.39	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 2.5	NA	NA	NP
MW-4	09/17/97	30.39	9.76	20.63	<50	3.2	< 0.5	<0.5	< 0.5	8.0	NA	0.2	NP
MW-4	12/12/97	30.39	8.45	21.94	< 50	2.9	< 0.5	<0.5	< 0.5	14	NA	1.0	NP
MW-4	03/25/98	30.39	7.52	22.87	58	2.8	< 0.5	<0.5	< 0.5	<3	NA	3.0	
MW-4	05/14/98	30.39	8.03	22.36	< 50	< 0.5	< 0.5	<0.5	<0.5	<3	NA	3.24	NP
MW-4	07/31/98	30.39	8.67	21.72	< 50	< 0.5	< 0.5	<0.5	< 0.5	<3	NA	2.0	NP
MW-4	10/12/98	30.39	9.15	21.24	< 50	<0.5	< 0.5	<0.5	< 0.5	4	NA	1.5	NP
MW-4	02/11/99	30.39	7.80	22.59	61	2.5	< 0.5	<0.5	< 0.5	6	NA	1.0	P
MW-4	06/23/99	30.39	9.00	21.39	<50	< 0.5	< 0.5	<0.5	< 0.5	<3	NA	1.42	NP
MW-4	08/23/99	30.39	9.31	21.08	< 50	< 0.5	< 0.5	<0.5	< 0.5	6	NA	1.53	NP
MW-4	10/27/99	30.39	9.80	20.59	<50	<0.5	<0.5	< 0.5	<1	6	NA	0.98	NP
MW-4	02/09/00	30.39	8.63	21.76	<50	< 0.5	<0.5	< 0.5	<1	7	NA	0.74	NP

TPPH = Total purgeable petroleum hydrocarbons by modified EPA method 8015

BTEX = Benzene, toluene, ethylbenzene, total xylenes by EPA method 8021B. (EPA method 8020 prior to 10/27/99).

MTBE = Methyl tert -Butyl Ether

EPA method 8020 prior to 10/27/99

MSL = Mean sea level TOC = Top of casing

ppb = Parts per billion

ppm = Parts per million

NA = Not analyzed NM = Not measured

= Denotes concentration not present above laboratory detection limited stated to the right

Table 2 Groundwater Flow Direction and Gradient

ARCO Service Station 2162 15135 Hesperian Boulevard, San Leandro, California

Date	Average	Average
Measured	Flow Direction	Hydraulic Gradient
02/26/96	Southwest	0.009
05/23/96	South-Southwest	0.010
08/21/96	South-Southwest	0.01
11/20/96	South-Southwest	0.011
04/01/97	South-Southwest	0.004
06/10/97	South-Southwest	0.010
09/17/97	South-Southwest	0.01
12/12/97	Southwest	0.01
03/25/98	South-Southwest	0.008
05/14/98	Southwest	0.01
07/31/98	Southwest	0.01
10/12/98	Southwest	0.01
02/11/99	Southwest	0.008
06/23/99	Southwest	0.02
08/23/99	Southwest	0.013
10/27/99	South-Southwest	0.02
02/09/00	Southwest	0.01

APPPENDIX C

Certified Analytical Reports And Chain-of-Custody Documentation

October 16, 2000

Steven Meeks
Delta Environmental Consultants - Rancho Cordova
3164 Gold Camp Drive Ste. 200
Rancho Cordova, CA 95670

RE: ARCO 2162, San Leandro, CA/S010028

Dear Steven Meeks

Enclosed are the results of analyses for sample(s) received by the laboratory on October 2, 2000. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Sandra R. Hanson

Client Services Representative

Lito Diaz

Laboratory Director

CA ELAP Certificate Number 1624

Project: ARCO 2162, San Leandro, CA

Sampled: 9/28/00 to 9/29/00

3164 Gold Camp Drive Ste. 200

Project Number: N/A

Received:

10/2/00

Rancho Cordova, CA 95670

Project Manager: Steven Meeks

Reported: 10/16/00

ANALYTICAL REPORT FOR S010028

Sample Description	Laboratory Sample Number	Sample Matrix	Date Sampled
MW-1-9	S010028-01	Water	9/29/00
MW-2-8	S010028-02	Water	9/29/00
MW-3-8	S010028-03	Water	9/29/00
MW-4-9	S010028-04	Water	9/29/00
ТВ	S010028-05	Water	9/28/00

Delta Environmental Consultants - Rancho Cordova Project: ARCO 2162, San Leandro, CA Sampled: 9/28/00 to 9/29/00 3164 Gold Camp Drive Ste. 200 Project Number: N/A Received: 10/2/00

3164 Gold Camp Drive Ste. 200 Project Number: N/A Received: 10/2/00 Rancho Cordova, CA 95670 Project Manager: Steven Meeks Reported: 10/16/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Sacramento

	Batch	Date	Date	Surrogate	Reporting	D14	I Init-	Notes*
Analyte	Number	Prepared	Analyzed	Limits	Limit	Result	Units	Notes
MW-1-9			S0100	28-01			<u>Water</u>	
Purgeable Hydrocarbons	0100145	10/13/00	10/16/00		50,0	ND	ug/l	
Benzene	"	#	n		0.500	ND	н	
Toluene	H	•	11		0.500	ND	11	
Ethylbenzene	н		17		0.500	ND	**	
Xylenes (total)	ni	11	n		0.500	ND	í)	
Methyl tert-butyl ether	•	#	v		2.50	ND	. #	
Surrogate: a,a,a-Trifluorotoluene	,,	PT .	H	60.0-140		97.9	%	
Bur oguic. u,u,u 11 ytuor otorucise								
MW-2-8			S0100	<u> 28-02</u>			Water	
Purgeable Hydrocarbons	0100145	10/13/00	10/16/00		50.0	266	ug/l	1
Benzene	17	17	11		0.500	ND	17	
Toluene	m	H	n .		0.500	ND	н	
Ethylbenzene	н	п	**		0.500	ND	n	
Xylenes (total)	**	н	**		0.500	ND	H	
Methyl tert-butyl ether	н	н	**		2.50	ND	H	
Surrogate: a,a,a-Trifluorotoluene	n	37	"	60.0-140		89.8	%	
<u>MW-3-8</u>			<u>\$0100</u>	<u> 28-03</u>			<u>Water</u>	
Purgeable Hydrocarbons	0100145	10/13/00	10/16/00		50.0	ND	ug/l	
Benzene	19	H	21		0.500	ND	*1	
Toluene	n	Ħ	н		0.500	ND	11	
Ethylbenzene	H	11	Ħ		0.500	ND	H	
Xylenes (total)	**	и	11		0.500	ND	,,	
Methyl tert-butyl ether	**	11	11		2.50	128		
Surrogate: a,a,a-Trifluorotoluene	n	n	11	60.0-140		99.3	%	
			00100	20.04			<u>Water</u>	
<u>MW-4-9</u>		10/12/00	<u>S0100</u>	<u> 28-04</u>	50.0	ND	ug/i	
Purgeable Hydrocarbons	0100145	10/13/00	10/16/00		0.500	1.02	ա թյ	
Benzene	"	"	"				**	
Toluene	**	н			0.500	ND	**	
Ethylbenzene	n	**	11		0.500	ND	 H	
Xylenes (total)	н	91	n		0.500	ND		
Methyl tert-butyl ether	m	71 	**		2.50	12.2	n	
Surrogate: a,a,a-Trifluorotoluene	"	"	n	60.0-140		89.2	%	
TD			\$0100	<u> 28-05</u>			<u>Water</u>	
TB Purgeable Hydrocarbons	0100124	10/12/00	10/12/00	20 00	50.0	ND	ug/l	
	0100124	10/12/00	H 12/00		0.500	ND	17	
Benzene	 H	10	71		0.500	ND	tt	
Toluene		н	Ħ		0.500	ND	19	
Ethylbenzene	,,	" #	11		0.500	ND	R	
Xylenes (total)	.,				0.500	ND		

Sequoia Analytical - Sacramento

*Refer to end of report for text of notes and definitions.

Project: ARCO 2162, San Leandro, CA

Sampled: 9/28/00 to 9/29/00

3164 Gold Camp Drive Stc. 200 Rancho Cordova, CA 95670 Project Number: N/A

Received: 10/2/00

Project Manager: Steven Meeks

Reported: 10/16/00

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Sacramento

Analyte	Batch Number	Date Prepared	Date Analyzed	Surrogate Limits	Reporting Limit	Result	Units	Notes*
TB (continued)			S01002	<u> 28-05</u>			<u>Water</u>	
Methyl tert-butyl ether	0100124	10/12/00	10/12/00		2.50	ND	ug/l	
Surrogate: a,a,a-Trifluorotoluene	e	п	n	60.0-140		93.3	%	

Project: ARCO 2162, San Leandro, CA

Sampled: 9/28/00 to 9/29/00

3164 Gold Camp Drive Ste. 200 Rancho Cordova, CA 95670 Project Number: N/A

Received: 10/2/00 Reported: 10/16/00

Project Manager: Steven Meeks

Total Purgeable HydrocarBons (ECCED), BYEN and MIBE by DHS EBEI/Quality Control
Sequoja Analyficils—Sacramentos

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD					
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*				
										.				
Batch: 0100124	Date Prepar	ed: 10/12	<u>/00</u>		Extraction Method: EPA 5030B (MeOH)									
<u>Blank</u>	<u>0100124-BI</u>	<u>K1</u>												
Purgeable Hydrocarbons	10/12/00			ND	ug/l	50.0								
Benzene	н			ND	19	0.500								
Toluene	н .			ND	H	0.500								
Ethylbenzene	17			ND	Ħ	0.500				-				
Xylenes (total)	n			ND	n	0.500								
Methyl tert-butyl ether	10			ND	н	2.50								
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.40	n	60.0-140	94.0							
LCS	0100124-BS	<u>:1</u>												
Benzene	10/12/00	10.0		11.4	ug/l	70.0-130	114							
Toluene	H	10.0		11.0	Ħ	70.0-130	110							
Ethylbenzene	17	10.0		10.9	11	70.0-130	109							
Xylenes (total)	n	30.0		32.7	11	70.0-130	109							
Methyl tert-butyl ether	rr	10.0		11.1	51	70.0-130	111							
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.98	n	60.0-140	99.8							
Matrix Spike	0100124-M	<u>sı s</u>	010018-01											
Benzene	10/12/00	10.0	ND	10.7	ug/l	60.0-140	107							
Toluene	It	10.0	ND	10.7	н	60.0-140	107							
Ethylbenzene	n	10.0	ND	10.7	н	60.0-140	107							
Xylenes (total)	11	30.0	ND	32.1	н	60.0-140	107							
Methyl tert-butyl ether	11	10.0	ND	10.4	n	60.0-140	104							
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.52	"	60.0-140	95.2							
Matrix Spike Dup	0100124-M	<u>SD1</u> <u>S</u>	010018-01											
Benzene	10/12/00	10.0	ND	11.0	ug/l	60.0-140	110	25.0	2.76					
Toluene	*1	10.0	ND	11.0	H	60.0-140	110	25.0	2.76					
Ethylbenzene	77	10.0	ND	10.8	11	60.0-140	108	25.0	0.930					
Xylenes (total)	**	30.0	ND	32.6	н	60.0-140	109	25.0	1.85					
Methyl tert-butyl ether	**	10.0	ND	10.1	"	60.0-140	101	25.0	2.93					
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.42	н	60.0-140	94.2							
Batch: 0100145	Date Prepa	red: 10/13.	<u>/00</u>		Extrac	tion Method: EP	A 5030B	(MeOH)	!					
<u>Blank</u>	<u>0100145-BI</u>	<u>.K1</u>												
Purgeable Hydrocarbons	10/16/00			ND	ug/l	50.0								
Benzene	H			ND	n	0.500								
Toluene	**			ND	н	0.500								
Ethylbenzene	it			ND		0.500								
Xylenes (total)	**			ND	11	0.500								
Methyl tert-butyl ether	19			ND	n	2.50								

Sequoia Analytical - Sacramento

*Refer to end of report for text of notes and definitions.

Project: ARCO 2162, San Leandro, CA

Project Number: N/A

3164 Gold Camp Drive Ste. 200 Rancho Cordova, CA 95670

Project Manager: Steven Meeks

Sampled: 9/28/00 to 9/29/00

Received: 10/2/00 Reported: 10/16/00

	Date	Spike	Sample	QC		Reporting Limit	Recov.	RPD	RPD	
Analyte	Analyzed	Level	Result	Result	Units	Recov. Limits	%	Limit	%	Notes*
Blank (continued)	0100145-BI	LKI								
Surrogate: a,a,a-Trifluorotoluene	10/16/00	10.0		9.46	ug/l	60.0-140	94.6			
LCS	0100145-BS	<u>81</u>	•							
Benzene	10/16/00	10.0		11.2	ug/l	70.0-130	112			
Toluene	*	10.0		10.8	н	70.0-130	108			
Ethylbenzene	Ħ	10.0		10.8	()	70.0-130	108			
Xylenes (total)	17	30.0		32.2	11	70.0-130	107			
Methyl tert-butyl ether	m	10.0	-	11.4	0	70.0-130	114			
Surrogate: a,a,a-Trifluorotoluene	n	10.0		9.93	n	60.0-140	99.3			
Matrix Spike	0100145-M	<u>S1 S</u>	010028-01							
Benzene	10/16/00	10.0	ND	10.6	ug/l	60.0-140	106			
Toluene	H	10.0	ND	10.6	tt	60.0-140	106			
Ethylbenzene	n	10.0	ND	10.6	H	60.0-140	106			
Xylenes (total)	**	30.0	ND	32.1	11	60.0-140	107			
Methyl tert-butyl ether	**	10.0	ND	10.5	IP .	60.0-140	105			
Surrogate: a,a,a-Trifluorotoluene	n	10.0	,	9.31	it	60.0-140	93.1			
Matrix Spike Dup	0100145-M	SD1 S	010028-01							
Benzene	10/16/00	10.0	ND	10.7	ug/l	60.0-140	107	25.0	0.939	
Toluene	#	10.0	ND	10.6	17	60.0-140	106	25.0	0	
Ethylbenzene	17	10.0	ND	10.6	11	60.0-140	106	25.0	0	
Xylenes (total)	n	30.0	ND	32.2	11	60.0-140	107	25.0	0	
Methyl tert-butyl ether	H	10.0	ND	14.1	97	60.0-140	141	25.0	29.3	2
Surrogate: a,a,a-Trifluorotoluene	"	10.0		9.38	rr .	60.0-140	93.8			

Project: ARCO 2162, San Leandro, CA

Sampled: 9/28/00 to 9/29/00

3164 Gold Camp Drive Ste. 200 Rancho Cordova, CA 95670

Project Number: N/A

Received: 10/2/00 Reported: 10/16/00 Project Manager: Steven Meeks

Notes and Definitions

#	Note
1	Chromatogram Pattern: Weathered Gasoline C6-C12
2	The RPD and/or spike recovery for this QC sample is outside of established control limits due to sample matrix interference.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
Recov.	Recovery
RPD	Relative Percent Difference

ARCO I	Prod	ucts	Comp	any ompany	\			Task Or	der No.	25	5 9¢	770	00										hain of Custody
ARCO Facilit	y no. 2	162	<u> </u>	Cit (Fa	y Icility) S	'AN	LEAT	ngro		Project (Consul	menag	er S	ste	ve	Me	:ek	<u>'S</u>						Columbia Mola
ARCO engine	er T	301	Ss	Pal	<u> </u>		Telephon (ARCO)	e no.		Project manager Steve Meeks (Consultant) Steve Meeks Telephone no (Consultant) (916) 630-2005 Fax no (Consultant) (916) 638-8375												.	Contract number
ARCO engine Consultant no	ame T	721	+A	· • • • • • • • • • • • • • • • • • • •			<u> </u>	Address (Consulta														Common	
				Matrix		Prese	rvation		<u> </u>		9 C							Q≇i	00220				Method of shipment
Semple 1.D.	Lab 70.	Container no.	Soil	Water	Other	lce	Acid	Sempling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH 4-1-TTS E EPA MODZINOZOUSOIS	TPH Modified 8015 Gas (Diesel	Oit and Grease 413.1 ☐ 413.2 ☐	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/6240	EPA 625/8270	TCLP Serri	CAM Metas EPA 60	Leed Ong JOHS			Special detection
P-1-WM				×		×	×	9-29-0	7801		X							00	,				Limit/reporting
Mur-2-8								}	815											02			
MW-3-8									830											03			
MW-4-9									855											04			Special QA/QC
TB	,							9-28-00												05			·
									000		.								 				
								<u> </u>															
																							Remarks
			ļ																	ļ			
																	ļ			ļ			
			ļ		ļ																		
			<u> </u>		<u> </u>																		
																							Lab number
İ																							Cab Horrison
																							Turnaround time
																							Priority Rush 1 Business Day
Condition of	sample				·					Temp	erature	receive	ed:	•		•							Rush
Relinquished	by san	مرا	775	,	<u></u>		Date (0-2	2-00	Time 1040	Recei	ved by	1		vec	10							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2 Business Days
Relinquished	l by	/ (d)	ucle	root	F ▼		Date //- Z		Time //35	Recei	W	An	Ca	6	reg	73 73	m		192	00	1135	<u> </u>	Expedited 5 Business Days
Relinquished	1 бу	1					Date		Time	Recel	ved by	laborat	ory		7	١	Date			Time			Standard 10 Business Days

3164 Gold Camp Drive, Suite 200 Rancho Cordova, California 95670 Direct: (916) 638-2085 Fax: (916) 638-8385

Arco Site Address:	15135 Hesperian Blvd	Arco Site Number:	Arco 2162
	San Leandro, California	Delta Project No.:	D000-310
Arco Project Manager:	Paul Supple	Delta Project PM:	Steve Meeks

Site

	7 WOO T TO JOSE WAITING GOT.			
Contact & Phone Number:	Site Sampled By:	Doulos	Date Sampled:	09/29/00

		Water Le	vel Data	l		F	orge Vo	lume Ca	culation	s		Sam	pling An	alytes		Sar	nple Rec	ord
Well ID	Time	Depth to Water (feet)	Top of Screen Interval (feet)	Total Depth of Well (feet)	Check if Purge Not Required	Casing Water Column (A)	Well Diameter (inches)	Multiplier Value (B)	Three Casing Volumes (gallons)	Actual Water Purged (gallons)	BTEX (8020) VOA	TPH-g (8015M) VOA	MTBE (8020) VOA	Other	Dissolved Oxygen (mg/L)	Sample Freqency (A, S, Q)	Sample t.D.	Sample Time
MW-1	7:40	9.07	8.0	15.9		6.78	4 inch	2.0	13.6	13.2	\ <u>\</u>	\ <u>\</u>	ি		1.09	Q/5,8,11	MW-1	
MW-2	7:43	8.08	8.0	15.9		7.79	4 inch	2.0	15.6	15.2	>	<	হ		1.34	Q/5,8,11	MW-2	
MW-3	7:46	8.46	9.0	14.8		6.30	4 inch	2.0	12.6	12.3	Image: second content of the content	[5]	[7]		1.29	Q/5,8,11	MW-3	
MW-4	7:50	9.61	8.0	17.5		7.84	4 inch	2.0	15.7	15.3	>	7	>		1.32	Q/5,8,11	MW-4	
																		l
																		<u> </u>
																	724	
										-								
																		1

(A)-Casing Water Column: Depth to Bottom - Depth to Water (B)-Multiplier Values: (2" Well: 0.5) (4" Well: 2.0) (6" Well: 4.4)

Sampling Sequence: Quarterly: MW-3, MW-4, MW-1, MW-2

Sampling Notes:

List depth of Sample on C.O.C. [I.e. MW-1(30)]. Make Sure to Note on C.O.C. "Provide Lowest Reporting Limit Available."

If the water level is below the top of the screen, take a grab sample and check box for NO PURGE (NP). If the water level is above the screen, purge as normal.

3164 Gold Camp Drive, Suite 200 Rancho Cordova, California 95670 Direct: (916) 638-2085 Fax: (916) 638-8385 Arco Site Address: 15135 Hesperian Blvd

Arco Site Number: _

Arco 2162

San Leandro, California Delta Project No.:

D000-310 Steve Meeks

Arco Project Manager: Paul Supple

_____ Delta Project PM: ____

09/29/00

Site Contact & Phone Number:

Site Sampled By: Doulos Date Sampled:

Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-1	7:56	24.4	7.30	1,569	1												
	7:57	23.9	7.26	1,562	2							l					
ľ	7:58	23.6	7.24	1,559	3				MI 1 1								
Ì																	
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-2	8:06	23.0	7.86	219	1												
•	8:07	22.6	7.79	210	2									·			
ľ	8:08	22.2	7.74	203	3												
							•										
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gailons
MW-3	8:24	24.6	7.36	225	1												
	8:25	24.0	7.29	219	2							!		1			
	8:26	23.7	7.25	216	3												
	and the second second second second					<u> </u>				- DEALTH							
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
MW-4	8:46	23.4	7.58	233	1												
	8:47	22.9	7.50	227	2												
	8:48	22.3	7.47	223	3												
					,			<u> </u>									
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons
	•																

			·										·				
]				144 11.15	-) T PO	-1111-4-	0-0	Callana
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	remp C	ph Units	Sp. Cond.	Gallons
		ļ															<u> </u>
														 			├──
														 			
	-2	<u> </u>				144 11 13		 			0.1	197-11-10	T l	Tame 20		 Co. C	Gallons
Well ID	Time	Temp °C	pH Units	Sp. Cond.	Gallons	Well ID	Time	Temp *C	pH Units	Sp. Cond.	Gallons	Well ID	Time	remp -C	ph Units	Sp. Cond.	Gallons
								ļ								ļ	<u> </u>
																	<u> </u>
						[<u></u>				
		i		l				1						<u> </u>			

Notes: NP = NO PURGE