

AN TOMPANY

| Date: _  | Decen    | nber 3, 1998                            | See Notes inside                                              |
|----------|----------|-----------------------------------------|---------------------------------------------------------------|
| Project: | 340      | )-083.9A                                |                                                               |
|          |          | , , , , , , , , , , , , , , , , , , ,   | 12/14/98 - Spoke w/ Kwenenller.                               |
| To:      | Ms F     | Eva Chu                                 | 12/14/98 - Spoke w/ Ewamanllow.<br>He was send specs; collect |
| 10.      |          | eda County Health Care Serv             | son the one                                                   |
| •        |          | Harbor Bay Parkway, 2 <sup>nd</sup> Flo |                                                               |
| •        |          | eda, California 94502-6577              | Summa conster 3.                                              |
| •        |          |                                         |                                                               |
| •        |          | •                                       | Verbal approval of wp.                                        |
| We hav   | e encl   | osed:                                   | - consider collected soil sangles at NW-4' bgs so there is so |
| Copies   |          | Description                             | detalpon Vadore zone for eyo                                  |
| 1        |          | Work Plan for Soil Vapor Sa             | ampling (PEG, December, 3, 1998)                              |
| 1        |          | DRAFT RBCA Tier 1/Tier 2                | 2 Evaluation                                                  |
|          |          |                                         |                                                               |
|          |          | <del>-</del>                            |                                                               |
|          |          |                                         |                                                               |
| For you  | r:       | X Use Approval Review Information       | New contact is ordray Mone at PEG.                            |
| Comme    | nts: _   |                                         |                                                               |
|          |          |                                         |                                                               |
|          |          |                                         |                                                               |
|          |          |                                         |                                                               |
|          | <u> </u> |                                         |                                                               |
|          |          |                                         | Keith Winemiller                                              |



AN TO COMPANY

Krissy Flesoras -

December 3, 1998, 1998 Project 340-083.9A

Ms. Eva Chu Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, 2<sup>nd</sup> Floor Alameda, California 94502-6577

Re: Work Plan for Soil Vapor Sampling

Former Texaco Service Station/Current 7-11 Store 930 Springtown Boulevard at Lassen Road Livermore, California

Dear Ms. Chu:

On behalf of Equiva Services LLC (Equiva), Pacific Environmental Group, Inc. (PEG) has prepared this work plan to perform soil vapor sampling at the site referenced above. The purpose of this work is to collect additional site-specific data that will be used to revise the *Risk-Based Corrective Action (RBCA) Analysis* (Kaprealian Engineering Inc., October 31, 1997). This analysis will be updated using current analytical data and revised to evaluate the potential health risk to residents from the indoor inhalation of petroleum hydrocarbons that could volatilize from the residual petroleum hydrocarbons at the site. The Alameda County Health Care Services Agency (ACHCSA) has verbally proposed to grant unrestricted site closure provided a RBCA analysis determines there is no increased potential health risk from this exposure pathway/setting. The proposed scope of work and schedule follows.

#### SCOPE OF WORK

# Site Health and Safety PART

A Certified Industrial Hygienist or other qualified professional will prepare a site-specific health and safety plan that describes known and potential hazards and emergency response procedures. All personnel involved in performing work on site during the investigation and remediation activities will review the plan before the beginning of each day of field activities. The plan will remain on site throughout the duration of work. This plan may be modified if warranted by site conditions.

## **Underground Utility Clearance**

Prior to the commencement of any subsurface work, PEG will mark the proposed area and notify Underground Service Alert of the impending subsurface activities.

#### **Sampling Locations**

Three soil vapor sampling borings are proposed, and their locations are shown on Figure 1. One boring will be located in the vicinity of each of the following wells: Wells MW-A, MW-B, and MW-1. These locations were selected because they represent the areas containing the highest concentrations of residual petroleum hydrocarbons in soil and/or groundwater at the site. Thus, these locations provide the greatest level of conservatism for potential health risk estimation. A soil sample will also be collected Extend boring & 6W. log boring. from each soil vapor boring for physical soil analyses. Screen al PID. 55 w/ highest PID realing sound for lawardy 5. F

## Sampling Procedures

prorte specs The soil vapor samples will be collected by inserting a hand driven sampling probe read track seal approximately 3 feet below ground surface. The sampling probe will consist of a to prevent mises hollow stem tube perforated at one end. A vacuum will then be applied to the hollow w ambout air stem tube and approximately 5 to 10 tube volumes of air will be evacuated from the pipe so that no atmospheric air is included in the vapor sample. After this is completed, a 1-liter Tedlar bag sample of the soil vapor will be collected. All Tedlar bags will be kept out of the direct sunlight in order to preserve the bag's integrity.

Soil samples for physical analysis will be retained in brass rings, capped with Teflon® sheets and plastic end caps, then sealed and labeled in plastic bags. All samples will be Soll Some immediately placed in an ice chest (at approximately 4 degrees Celsius) until delivered to the analytical laboratory courier.

Where will

(from clean

vadose zone

be collected?

All soil vapor and soil samples will be accompanied by the appropriate chain-of-custody documentation.

#### Laboratory Analyses

Only laboratories that are certified by the State of California will be used to analyze the samples.

The soil vapor samples will be analyzed by EPA Method 8015 (modified) for total petroleum hydrocarbons calculated as gasoline, and by EPA Method 8020 for benzene, toluene, ethylbenzene, and total xylenes.

The soil samples will be analyzed by American Society for Testing and Materials (ASTM) Method 584 for falling head permeability, soil bulk density, soil moisture, soil pH, and by ASTM Method D-2974 for fraction of organic carbon.

## Soil Boring Abandonment

The soil vapor borings will be abandoned in accordance with all applicable State of California and Alameda County regulations. Immediately upon completion of drilling and sampling activities, the soil vapor borings will be permanently abandoned. The abandonment procedure will consist of backfilling each boring using concrete to match existing site conditions.

#### Report Preparation

A report summarizing all field activities and results will be completed following receipt of the analytical data. A revised RBCA analysis will then be completed using the data collected from this investigation.

#### **SCHEDULE**

Equiva proposes to complete all field work within 30 days following approval of this work plan by ACHCSA, and to submit a report and revised RBCA analysis within 30 days following receipt of all analytical data.

If you have any questions or comments regarding this site, please contact me at your convenience at (408) 441-7500.

Sincerely,

Pacific Environmental Group, Inc.

Keith Winemiller, P.E.

Project Engineer

Attachment: Figure 1 - Site Map

Ms. Karen Petryna, Equiva Services LLC, 108 Cutting Boulevard, Richmond, CA 94804 Mr. Bob DeNinno, The Southland Corporation, 1022 S. W. Greenburg Road, Suite 470

Portland, OR 97223



| Aguing   Aguing cooling rate (mg/my/heyd)   1.1E+02   9.4E+01   1.1E+02   9.4E+01   1.1E+02                                                                                                                                                         |               | ··                                               |                     |                |               |            |                |            |                                          | Control of the Contro | · · · · · · · · · · · · · · · · · · · | 65.  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------|---------------------|----------------|---------------|------------|----------------|------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------|
| Sile Name: Frome: Frome: Seed Sile   Seed Interference   Seed Sile                                                                                                                                                        |               |                                                  | RBC                 | A TIER         | 1/TIER        | 2 EVAL     | UATION         |            |                                          | Out                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | put Tab                               | le 1 |
| Secretary   Company   Co                                                                                                                                                      |               |                                                  |                     |                |               |            |                |            | 11471                                    | 1000 CONTRACTOR 1000 1000 CONTRACTOR 1000 CONT | THE REAL PROPERTY.                    | 11   |
| Completed By: PEG   Final Complete By: PEG   Final Complet                                                                                                                                                      |               |                                                  |                     |                |               |            |                |            |                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 11   |
| Second   S                                                                                                                                                      |               | Site Location:                                   | 930 Springtown      |                |               |            |                | Version    | : 1.0.1                                  | NOTE OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 117                                 | [ ]  |
| Second   S                                                                                                                                                      |               |                                                  |                     | 1              | Completed By: | PEG        |                |            |                                          | NOV 2 7 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 98 III                                | 1    |
| Part                                                                                                                                                         | NOTE: values  | which differ from Tier 1 default values are show | n in bold italics a | nd underlined. |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |
| Part                                                                                                                                                         |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                     | 1    |
| Part                                                                                                                                                         | Exposura      |                                                  |                     | Residential    |               | Commerc    | ial/Industrial | Surface    |                                          | MAT-0. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | į                                     | Ĩ.   |
| Averaging lime for each each regions by 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Definition (Unite)                               | Adult               |                | (1-16 vrs)    |            |                |            | Definition (Units)                       | Pacidantial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Constroin                             |      |
| Non-part   Marging line for non-accengancy (n)   30   6   6   25   1   W   Length of affect, solip ariset to sprawfeld (n)   1,550,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00   1,00                                                                                                                                                      |               |                                                  |                     | (1-031-2)      | (1-10)(12)    | QII OIII D | COMBINE        |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1    |
| March   Body   Weight   (a)   15   15   15   70   Weight   (b)   Length of affect, and prairbile to goundweight (m)   1,554-03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               |                                                  |                     | E              | 16            | 25         | 1              |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 8    |
| Exposure Duration (yr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |                     |                |               |            | ı              |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I UETUS                               | . f  |
| Averaging films for vapor face (yr) 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Exposure Frequency (dayslyr)   300   200   200   200   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                      | ED            |                                                  |                     | 6              | 36            |            | 1              |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| F. Common                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l             |                                                  |                     |                |               |            | •              |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Popular Nation   Popu                                                                                                                                                      | -             |                                                  |                     |                |               |            | 180            |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Page                                                                                                                                                         |               |                                                  |                     |                |               |            |                | Pe         | Particulate areal emission rate (g/cm*2/ | s) 6.9E-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       |      |
| Adjustice soil ing rate (mg/yr/kp-q)   1.1E+02   9.4E+01   20   0   1   1.0E+02   0.0E+02   0.                                                                                                                                                      |               | • • • • • • • • • • • • • • • • • • • •          |                     |                |               | •          |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Rain   Inhalation rate infodor (m73/dey)   15   20   20   30   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IRs           |                                                  |                     | 200            |               |            | 100            |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Resident   Inhabition rate culdoor (m*3day)   20   20   10   1   Groundwaler care (months)   3.0E+rol   1.0E+rol   1.0E                                                                                                                                                      | Radj          | Adjusted soil ing. rate (mg-yr/kg-d)             |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                     |      |
| Section   Sect                                                                                                                                                      | IRa.in        | Inhalation rate indoor (m^3/day)                 |                     |                |               |            |                | delta.gw   |                                          | 2.0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |      |
| Agusted demmal area (em'2 yrikg)   2   ErG   1.7E-03   Ugb tr   Groundwater seepage velocity (rm/yr)   6.6E+03   6                                                                                                                                                      | IRa.out       | Inhalation rate outdoor (m^3/day)                | 20                  |                |               | 20         | 10             | ţ          | Groundwater infiltration rate (cm/yr)    | 3.0E+01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |      |
| Solito Skin adherence fazor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SA            | Skin surface area (dermal) (cm^2)                | 5.8E+03             |                | 2.0E+03       | 5.8E+03    | 5,8E+03        | Ugw        | Groundwater Darcy velocity (cm/yr)       | 2.5E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |      |
| Age   Age adjustment on soil inguestion   FALSE   FALSE   Sw   Width of groundwater connect connect (cm/m)   Age   Age adjustment on soil inguestion   FALSE   FALSE   Sw   Width of groundwater source zone (cm)   Sw   Age   FALSE   Sw   Width of groundwater source zone (cm)   Sw   FALSE   Sw   Width of groundwater source zone (cm)   Sw   FALSE   Sw   Width of groundwater source zone (cm)   Sw   FALSE   Sw   Width of groundwater source zone (cm)   Sw   FALSE                                                                                                                                                      | SAadi         | Adjusted dermal area (cm^2-yr/kg)                | 2,1E+03             |                |               | 1.7E+03    |                | Ugw.tr     | Groundwater seepage velocity (cm/yr)     | 6,6E+03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |      |
| Apr   Age equiumment on situ surface area   FALSE   FALSE   Sw. Width of groundwater source zone (cm)   Sw. Value   FALSE   FALSE   Sd. Depth of groundwater zone cone (cm)   Sw. Value   FALSE   FALSE   Sd. Depth of groundwater zone cone (cm)   Sw. Value   FALSE   FALS                                                                                                                                                      | M .           | Soil to Skin adherence factor                    | 1                   |                |               |            |                | Ks         | Saturated hydraulic conductivity(cm/s)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Second   Use EPA to date for air (or PEL based)?   FAUSE   FAUSE   PAUSE   P                                                                                                                                                      | AAFs          | Age adjustment on soil ingestion                 | FALSE               |                |               | FALSE      |                | grad       | Groundwater gradient (cm/cm)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| See PA Los data for air for PEL bases(1)?   FALSE   FALSE   Ph.Eff   Effective perceasing in mail in groundwater   FALSE   PALSE   Ph.Eff   Effective perceasing in mail in groundwater   FALSE   PALSE   PA                                                                                                                                                      | AAFd          | Age adjustment on skin surface area              | FALSE               |                |               | FALSE      |                | Sw         | Width of groundwater source zone (cm)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Mark   Commercial   Mark   M                                                                                                                                                      | tox           |                                                  | TRUE                |                |               |            |                | Şd         | Depth of groundwater source zone (cm)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Commercial   Facility   Commercial   Comme                                                                                                                                                      |               |                                                  | FALSE               |                |               |            |                | phi.eff    |                                          | 3.6E-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |      |
| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ş <u></u> .   | •                                                |                     |                |               |            |                | •          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Note   Pathways   Pa                                                                                                                                                      |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Native of Europea of Persons to   Residential   Chronic   Chronic   Constrot   Capillary zone thickness (cm)   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61   \$2,82:61 |               |                                                  |                     |                |               |            |                | BC         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Chronic   Constraint   Chronic   Constraint   Constrain                                                                                                                                                      | Matrix of Exp | osed Persons to                                  | Residential         |                |               | Commerc    | ial/Industrial |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Dut door Air Pathways:   Say   Volatiles and Particulates from Surface Soils   FALSE   FALSE   FALSE   FALSE   FALSE   No   Volatiles and particulates from Surface Soils   FALSE   FALSE   FALSE   FALSE   No   Volatiles and particulates from Surface Soils   FALSE   FALSE   FALSE   No   Volatile and particulates from Surface Soils   FALSE   FALSE   FALSE   No   Volatile and particulates from Surface Soils   FALSE   FALSE   FALSE   No   Soil density (grom'3)   1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                  |                     |                |               |            |                | Soil       | Definition (Units)                       | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |      |
| FALSE   FALS                                                                                                                                                      |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                     |      |
| Volatilization from Subsurface Solis   FALSE                                                                                                                                                      |               |                                                  | FALSE               |                |               | FALSE      | FALSE          |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| FALSE   FALS                                                                                                                                                      | S.v           |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Part   Pathways:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Volatilization from Groundwater                  | FALSE               |                |               | FALSE      |                | foc        |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Natival of   Nat                                                                                                                                                      |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| SW   Vapors from Groundwater   TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                  | TRUE                |                |               | FALSE      |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Sol   Pathways:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Second water   Parthways:   Pal.SE   Phi.a   Volumetric water content   0.342   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.12   0.1                                                                                                                                                       |               |                                                  | ENISE               |                |               | EALGE      | EALGE          |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| SW.   Groundwater Ingestion   FALSE   FALSE   Phi.w   Volumetric water content   0.342   0.12   0.12   0.12   0.13   0.038   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0.26   0                                                                                                                                                      |               |                                                  | FALSE               |                |               | FALOC      | FALOL          | μπ         | Soligiodidwater pri                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | undone                                | £    |
| Leaching to Groundwater from all Soils   FALSE   FALSE   Phi.a   Volumetric air content   0.038   0.26   0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               |                                                  | EALCE               |                |               | EALGE      |                | phi su     | Volumetria weder content                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Residential   Residential   Commercial   Lib   Building volume/area ratio (cm)   2.0E+02   3.0E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                                                  |                     |                |               |            |                | •          |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Matrix of Receptor Distance  Residential  Commercial/Industrial  ER Building air exchange rate (s^-1) 1,4E-04 2,3E-04  Inducation On- or Off-Site  Distance  On-Site  Distance  On-Site  Distance  On-Site  TRUE  TRUE  TRUE  Inhaiation receptor (cm)  IRUE  Attrix of  Target Risk (class A&B carcinogens)  Target Risk (class Carcinoge                                                                                                                                                    | a.s           | Leading to Groundwater from all Soils            | PALOE               |                |               | LWF9E      |                | pni.a      | volumentic air content                   | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.26                                  | 0.26 |
| Matrix of Receptor Distance  Residential  Commercial/Industrial  ER Building air exchange rate (s^-1) 1,4E-04 2,3E-04  Inducation On- or Off-Site  Distance  On-Site  Distance  On-Site  Distance  On-Site  TRUE  TRUE  TRUE  Inhaiation receptor (cm)  IRUE  Attrix of  Target Risk (class A&B carcinogens)  Target Risk (class Carcinoge                                                                                                                                                    |               |                                                  |                     |                |               |            |                | D1141      | Pr-41-141 411-14-3                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Matrix of Receptor Distance Residential Commercial/Industrial ER Building air exchange rate (\$^-1) 1.4E.04 2.3E-04 and Location On- or Off-Site Distance On-Site Distance On-Site Crowdedler receptor (cm) TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Individual Cumulative  Rate Target Risks (class A&B carcinogens)  Target Risk (class C                                                                                                                                                    |               |                                                  |                     |                |               | •          |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Groundwaler receptor (cm) TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.3E-04                               |      |
| Inhalation receptor (cm)  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  Transport Parameters Definition (Units)  Residential Commercial Parameters Definition (Units)  Residential Commercial Residential Residen                                                                                                                                                    |               |                                                  | Distance            |                |               | Distance   |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Adatrix of   Farameters   Definition (Units)   Residential   Commercial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GW            |                                                  |                     |                |               |            |                | eta        | Foundation crack fraction                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       |      |
| Matrix of Target Risks         Individual         Cumulative         Groundwater         Computation (Units)         Residential         Commercial           Rab         Target Risk (class A&B carcinogens)         1.0E-06         ax         Longitudinal dispersivity (cm)         5         5         5         5         7         7         7         7         7         7         7         7         7         7         7         7         7         7         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5             | Inhalation receptor (cm)                         |                     | TRUE           |               |            | TRUE           |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Matrix of Target Risks         Individual         Cumulative         Groundwater         Computation (Units)         Residential         Commercial           Rab         Target Risk (class A&B carcinogens)         1.0E-06         ax         Longitudinal dispersivity (cm)         5         5         5         5         7         7         7         7         7         7         7         7         7         7         7         7         7         7         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8         8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Individual   Cumulative   Cum                                                                                                                                                      |               |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Flaget Risks         Individual         Cumulative         Groundwater           Rab         Target Risk (class A&B carcinogens)         1.0E-06         ax         Longitudinal dispersivity (cm)           Rc         Target Risk (class C carcinogens)         1.0E-05         ay         Transverse dispersivity (cm)           HQ         Target Hazard Quotient         1.0E+00         2         Vertical dispersivity (cm)           Opt         Calculation Option (1, 2, or 3)         1         Vapor           Fier         RBCA Tier         2         dcy         Transverse dispersion coefficient (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Matrix of     |                                                  |                     |                |               |            |                |            |                                          | Residential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commercial                            |      |
| Rab         Target Risk (class A&B carcinogens)         1.0E-06         ax         Longitudinal dispersivity (cm)           Rc         Target Risk (class C carcinogens)         1.0E-05         ay         Transverse dispersivity (cm)           HQ         Target Hazard Quotient         1.0E+00         az         Vertical dispersivity (cm)           Opt         Calculation Option (1, 2, or 3)         1         Vapor           Tier         RBCA Tier         2         dcy         Transverse dispersion coefficient (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Target Risks  |                                                  | Individual          | Cumulative     |               |            |                | Groundwate | r                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| TRC Target Risk (class C carcinogens) 1.0E-05 ay Transverse dispersivity (cm)  (HQ Target Hazard Quotient 1.0E+00 az Vertical dispersivity (cm)  (pt Calculation Option (1, 2, or 3) 1 Vapor  (rier RBCA Tier 2 dcy Transverse dispersivity (cm)  Transverse dispersivity (cm)  Vapor  dcy Transverse dispersivity (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TRab          | Target Risk (class A&B carcinogens)              | 1.0E-06             |                |               |            |                | ax         | Longitudinal dispersivity (cm)           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| THQ Target Hazard Quotient 1.0E+00 az Vertical dispersivity (cm) Opt Calculation Option (1, 2, or 3) 1 Vapor Tier RBCA Tier 2 dcy Transverse dispersion coefficient (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRc           |                                                  |                     |                |               |            |                | ay         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| Opt Calculation Option (1, 2, or 3) 1 Vapor Tier RBCA Tier 2 dcy Transverse dispersion coefficient (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | THQ           |                                                  |                     |                |               |            |                |            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
| ier RBCA Tier 2 dcy Transverse dispersion coefficient (cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Opt           | •                                                |                     |                |               |            |                |            | , , , , , , , ,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tier          |                                                  | 2                   |                |               |            |                |            | Transverse dispersion coefficient (cm)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                                                  | _                   |                |               |            |                |            | Vertical dispersion coefficient (cm)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |      |

© Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

340/083/9A/RBCA3.X

| R | BCA ( | CHEMI | CAL | DA. | TAB. | ASE |
|---|-------|-------|-----|-----|------|-----|
|---|-------|-------|-----|-----|------|-----|

Physical Property Data

| CAS                              |      | Molecu<br>Weigl<br>(g/mo | ht  |          | oeff | ısion<br>icients<br>in wate<br>(cm2/s |     | log (Kor<br>log(K<br>(@ 20 - :<br>log(l/k | d)<br>25 C) | •        | .aw Constant<br>20 - 25 C) | Vapor<br>Pressur<br>(@ 20 - 25<br>(mm Hg | (C) | Solubility<br>(@ 20 - 25 (<br>(mg/L) | C)         | acid | base |   |
|----------------------------------|------|--------------------------|-----|----------|------|---------------------------------------|-----|-------------------------------------------|-------------|----------|----------------------------|------------------------------------------|-----|--------------------------------------|------------|------|------|---|
| lumber Constituent               | type | MW                       | ref | Dair     | ref  |                                       | ref | 108(11)                                   | ref         | mol      | (unitless) ref             | (1111111119                              | ref | (iligit)                             |            |      |      |   |
| 71-43-2 Benzene                  | À    | 78.1                     | 5   | 9.30E-02 | Α    | 1.10E-05                              | A   | 1.58                                      | Α           | 5.29E-03 | 2.20E-01 A                 | 9.52E+01                                 | 4   | 1.75E+03                             | — <u>A</u> |      | 1    | _ |
| 0-00-0 Benzene-CA                | 0    | 78.1                     |     | 9.30E-02 |      | 1.10E-05                              |     | 1.58                                      |             | 5.29E-03 | 2.20E-01                   | 9.52E+01                                 |     | 1.75E+03                             |            |      |      |   |
| 100-41-4 Ethylbenzene            | Α    | 106.2                    | 5   | 7.60E-02 | Α    | 8.50E-06                              | Α   | 1.98                                      | Α           | 7.69E-03 | 3.20E-01 A                 | 1.00E+01                                 | 4   | 1.52E+02                             | 5          |      |      |   |
| 1634-04-4 Methyl t-Butyl Ether   | 0    | 88.146                   | 5   | 7.92E-02 | 6    | 9.41E-05                              | 7   | 1.08                                      | Α           | 5.77E-04 | 2.40E-02                   | 2.49E+02                                 |     | 4.80E+04                             | Á          |      |      |   |
| 108-88-3 Toluene                 | Α    | 92.4                     | 5   | 8.50E-02 | Α    | 9.40E-06                              | Α   | 2.13                                      | Α           | 6.25E-03 | 2.60E-01 A                 | 3.00E+01                                 | 4   | 5.15E+02                             | 29         |      |      |   |
| 1330-20-7 Xylene (mixed isomers) | Α    | 106.2                    | 5   | 7.20E-02 | Α    | 8.50E-06                              | Α   | 2.38                                      | Α           | 6.97E-03 | 2.90E-01 A                 | 7.00E+00                                 | 4   | 1.98E+02                             | 5          |      |      |   |

Site Name: Former Texaco SS

Site Location: 930 Springtown Blvd., Li Completed By: PEG

Date Completed: 11/1/1998

Software version: 1.0.1

<sup>©</sup> Groundwater Services, Inc. (GSI), 1995-1997. All Rights Reserved.

| RBC/      |     |        |      | 7.4-3-4 |
|-----------|-----|--------|------|---------|
| 4 - 1 - 7 | * = | 111111 | <br> | 1       |
|           |     |        |      |         |

Toxicity Data

Date Completed: 11/1/1998

|                                  |          | eferen<br>Dose<br>ıg/kg/c | )          |     | i        | Slope<br>actors<br>g/kg/c | •          |     | EPA Weight | Ís             |
|----------------------------------|----------|---------------------------|------------|-----|----------|---------------------------|------------|-----|------------|----------------|
| CAS                              | Oral     |                           | Inhalation |     | Oral     |                           | Inhalation |     | of         | Constituent    |
| Number Constituent               | RfD_oral | ref                       | RfD_inhal  | ref | SF_oral  | ref                       | SF_inhal   | ref | Evidence   | Carcinogenic ? |
| 71-43-2 Benzene                  | -        |                           | 1.70E-03   | R   | 2.90E-02 | Α                         | 2.90E-02   | A   | Α          | TRÚE           |
| 0-00-0 Benzene-CA                |          |                           | 1.70E-03   |     | 1.00E-01 |                           | 1.00E-01   |     | Α          | TRUE           |
| 100-41-4 Ethylbenzene            | 1.00E-01 | Α                         | 2.86E-01   | Α   | _        |                           | _          |     | D          | FALSE          |
| 1634-04-4 Methyl t-Butyl Ether   | 5.00E-03 | R                         | 8.57E-01   | R   | _        |                           | _          |     |            | FALSE          |
| 108-88-3 Toluene                 | 2.00E-01 | A,R                       | 1.14E-01   | A.R | -        |                           | _          |     | D          | FALSE          |
| 1330-20-7 Xylene (mixed isomers) | 2.00E+00 | A,R                       | 2.00E+00   | A   | _        |                           | -          |     | D          | FALSE          |

Site Location: 930 Springtown Blvd., Completed By: PEG

Software version: 1.0.1

Site Name: Former Texaco SS

| CHEMICAL | D 4 T 4 |         |
|----------|---------|---------|
|          |         | - Y - T |
|          |         |         |

Miscellaneous Chemical Data

|            | Maximum                                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        | lative<br>orption                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | i                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                               | lf Life<br>der Decay)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Con        | taminant Level                                             | el Limit PEL/TLV Fa                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/L)                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         | (days)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MCL (mg/L) | reference                                                  | (mg/m3)                                                                                                                                | ref                                                                                                                                                                                                                                                                                                                                                                           | Oral                                                                                                                                                                                                                                                                                                                                                                                                   | Dermai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                              | ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ref                                                                     | Saturated                                                                                                                                                                                                                                                                                                                                                                                                                                     | Unsaturated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.00E-03   | 52 FR 25690                                                | 3.20E+00                                                                                                                               | OSHA                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                                                       | 720                                                                                                                                                                                                                                                                                                                                                                                                                                           | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5.00E-03   |                                                            | 3.20E+00                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         | 720                                                                                                                                                                                                                                                                                                                                                                                                                                           | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 7.00E-01   | 56 FR 3526 (30 Jan 91)                                     | 4.34E+02                                                                                                                               | ACGIH                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                                                       | 228                                                                                                                                                                                                                                                                                                                                                                                                                                           | 228                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1          |                                                            | 1.44E+02                                                                                                                               | ACGIH                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         | 360                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.00E+00   | 56 FR 3526 (30 Jan 91)                                     | 1.47E+02                                                                                                                               | ACGIH                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                                                       | 28                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1.00E+01   | 56 FR 3526 (30 Jan 91)                                     | 4.34E+02                                                                                                                               | ACGIH                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.005                                        | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S                                                                       | 360                                                                                                                                                                                                                                                                                                                                                                                                                                           | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            |                                                            |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | MCL (mg/L)<br>5.00E-03<br>5.00E-03<br>7.00E-01<br>1.00E+00 | Contaminant Level MCL (mg/L) reference  5.00E-03 52 FR 25690 5.00E-03 7.00E-01 56 FR 3526 (30 Jan 91)  1.00E+00 56 FR 3526 (30 Jan 91) | Maximum         Expos           Contaminant Level         Limit PEI           MCL (mg/L)         reference         (mg/m3)           5.00E-03         52 FR 25690         3.20E+00           5.00E-03         3.20E+00         3.20E+00           7.00E-01         56 FR 3526 (30 Jan 91)         4.34E+02           1.00E+00         56 FR 3526 (30 Jan 91)         1.47E+02 | Contaminant Level         Limit PEL/TLV           MCL (mg/L)         reference         (mg/m3)         ref           5.00E-03         52 FR 25690         3.20E+00         OSHA           5.00E-03         3.20E+00         3.20E+00           7.00E-01         56 FR 3526 (30 Jan 91)         4.34E+02         ACGIH           1.00E+00         56 FR 3526 (30 Jan 91)         1.47E+02         ACGIH | Maximum<br>Contaminant Level         Exposure<br>Limit PEL/TLV         Abs           MCL (mg/L)         reference         (mg/m3)         ref         Oral           5.00E-03         52 FR 25690         3.20E+00         OSHA         1           5.00E-03         3.20E+00         1         1           7.00E-01         56 FR 3526 (30 Jan 91)         4.34E+02         ACGIH         1           1.00E+00         56 FR 3526 (30 Jan 91)         1.47E+02         ACGIH         1 | Maximum   Exposure   Limit PEL/TLV   Factors | Maximum<br>Contaminant Level         Exposure<br>Limit PEL/TLV         Abs∪rption<br>Fall tors         Groundweight           MCL (mg/L)         reference         (mg/m3)         ref         Oral         Dermal           5.00E-03         52 FR 25690         3.20E+00         OSHA         1         0.5         0.002           5.00E-03         3.20E+00         1         0.5         0.002           7.00E-01         56 FR 3526 (30 Jan 91)         4.34E+02         ACGIH         1         0.5         0.002           1.00E+00         56 FR 3526 (30 Jan 91)         1.47E+02         ACGIH         1         0.5         0.002 | Maximum   Exposure   Limit PEL/TLV   Factors   Groundwater   (mg/L)   (mg/L)   (mg/m3)   ref   Oral   Dermal   ref   (mg/L)   ref   (mg/m3)   ref   Oral   Dermal   ref   ref   ref   (mg/m3)   ref   Oral   Dermal   ref   ref   ref   (mg/m3)   ref   Oral   Dermal   ref   ref | Maximum   Exposure   Limit PEL/TLV   Factors   (mg/L)   (mg/L)   (mg/L) | Naximum   Exposure   Limit PEL/TLV   Factors   Groundwater   (mg/k)   (mg/ky)     MCL (mg/L)   reference   (mg/m3)   ref   Oral   Dermal     0.5   0.002   C   0.005   S     5.00E-03   52 FR 25690   3.20E+00   OSHA   1   0.5   0.002   C   0.005   S     5.00E-04   56 FR 3526 (30 Jan 91)   4.34E+02   ACGIH   1   0.5   0.002   C   0.005   S     1.00E+00   56 FR 3526 (30 Jan 91)   1.47E+02   ACGIH   1   0.5   0.002   C   0.005   S | Maximum Contaminant Level         Exposure Limit PEL/TLV         Absorption Groundwater (mg/k)         Soil (First-Or (mg/k))         (first-Or (mg/k))         (dougle)         Soil (first-Or (mg/k))         (dougle)         (dougle)         (mg/k)         (dougle)         (mg/k)         (dougle)         (dougle)         (mg/k)         (dougle)         (dougle) <th c<="" td=""><td>Maximum Contaminant Level         Exposure Limit PEL/TLV         Absorption Groundwater (mg/L) (mg/ky)         Soil (First-Order Decay)           MCL (mg/L)         reference         (mg/m3)         ref         Oral         Dermail         ref         ref         Saturated         Unsaturated           5.00E-03         52 FR 25690         3.20E+00         OSHA         1         0.5         0.002         C         0.005         S         720         720           5.00E-03         3.20E+00         1         0.5         0.002         C         0.005         S         720         720           7.00E-01         56 FR 3526 (30 Jan 91)         4.34E+02         ACGIH         1         0.5         0.002         C         0.005         S         228         228           1.00E+00         56 FR 3526 (30 Jan 91)         1.47E+02         ACGIH         1         0.5         0.002         C         0.005         S         28         28</td></th> | <td>Maximum Contaminant Level         Exposure Limit PEL/TLV         Absorption Groundwater (mg/L) (mg/ky)         Soil (First-Order Decay)           MCL (mg/L)         reference         (mg/m3)         ref         Oral         Dermail         ref         ref         Saturated         Unsaturated           5.00E-03         52 FR 25690         3.20E+00         OSHA         1         0.5         0.002         C         0.005         S         720         720           5.00E-03         3.20E+00         1         0.5         0.002         C         0.005         S         720         720           7.00E-01         56 FR 3526 (30 Jan 91)         4.34E+02         ACGIH         1         0.5         0.002         C         0.005         S         228         228           1.00E+00         56 FR 3526 (30 Jan 91)         1.47E+02         ACGIH         1         0.5         0.002         C         0.005         S         28         28</td> | Maximum Contaminant Level         Exposure Limit PEL/TLV         Absorption Groundwater (mg/L) (mg/ky)         Soil (First-Order Decay)           MCL (mg/L)         reference         (mg/m3)         ref         Oral         Dermail         ref         ref         Saturated         Unsaturated           5.00E-03         52 FR 25690         3.20E+00         OSHA         1         0.5         0.002         C         0.005         S         720         720           5.00E-03         3.20E+00         1         0.5         0.002         C         0.005         S         720         720           7.00E-01         56 FR 3526 (30 Jan 91)         4.34E+02         ACGIH         1         0.5         0.002         C         0.005         S         228         228           1.00E+00         56 FR 3526 (30 Jan 91)         1.47E+02         ACGIH         1         0.5         0.002         C         0.005         S         28         28 |

Software version: 1.0.1

# REPRESENTATIVE COC CONCENTRATIONS IN SOURCE MEDIA

(Complete the following table)

|                        |            |              | Repr       | esentative COC | Conce              | ntration      |      |
|------------------------|------------|--------------|------------|----------------|--------------------|---------------|------|
| CONSTITUENT            | in Groundy | vater        | in Surface | Soil           | in Subsurface Soil |               |      |
|                        |            | value (mg/L) | note       | value (mg/kg)  | note               | value (mg/kg) | note |
| Benzene                |            | 5.1E-3       | UCL        | }              | -                  | 5.9E-1        | UCL  |
| Benzene-CA             |            | 5.1E-3       | UCL        |                |                    | 5.9E-1        | UCL  |
| Ethylbenzene           |            | 1.3E-2       | UCL        |                |                    | 1.8E+0        | UCL  |
| Methyl t-Butyl Ether   | ***        | 3.6E-2       | UCL        |                |                    | #DIV/0!       |      |
| Toluene                |            | 1.2E-2       | UCL        |                |                    | 1.6E+0        | UCL  |
| Xylene (mixed isomers) |            | 3.2E-2       | UCL        |                |                    | 8.9E+0        | UCL  |

Site Name: Former Texaco SS Site Location: 930 Springtown Blvd., Livermore, CA Completed By: PEG Date Completed: 11/1/1998

# **RBCA SITE ASSESSMENT**

Tier 2 Worksheet 5.6

Site Name: Former Texaco SS

Completed By: PEG

Site Location: 930 Springtown Blvd., Livermor Date Completed: 11/1/1998

1 of 1

# TIER 2 GROUNDWATER CONCENTRATION DATA SUMMARY

|           |                        | Analytical Method                   |                   |                   | Det                     | ected Concentrat     | ions                        |
|-----------|------------------------|-------------------------------------|-------------------|-------------------|-------------------------|----------------------|-----------------------------|
| CONSTITUE | NTS DETECTED Name      | _ Typical Detection<br>Limit (mg/L) | No. of<br>Samples | No. of<br>Detects | Maximum<br>Conc. (mg/L) | Mean<br>Conc. (mg/L) | UCL on Mean<br>Conc. (mg/L) |
| 71-43-2   | Benzene                |                                     | 16                | 16                | 3.1E-01                 | 2.1E-03              | 5.1E-03                     |
| 0-00-0    | Benzene-CA             | the second section is a             | 16                | 16                | 3.1E-01                 | 2.1E-03              | 5.1E-03                     |
| 100-41-4  | Ethylbenzene           | <b>"我们有更多的是是如果你</b> "               | 16                | 16                | 1.8E+00                 | 4.1E-03              | 1.3E-02                     |
| 1634-04-4 | Methyl t-Butyl Ether   |                                     | 16                | 16                | 1.3E+00                 | 1.8E-02              | 3.6E-02                     |
| 108-88-3  | Toluene                |                                     | 16                | 16                | 2.6E+00                 | 3.9E-03              | 1.2E-02                     |
| 1330-20-7 | Xylene (mixed isomers) |                                     | 16                | 16                | 4.8E+00                 | 8.8E-03              | 3.2E-02                     |

Serial: g-309-oex-82

Software: GSI RBCA Spreadsheet

Version: 1.0.1

SCREEN 7.1
GROUNDWATER
CONCENTRATION
CALCULATOR

Choose UCL Percentile

90%

Analytical Data (Up to 50 Data Points)

(mg/L)

(mg/L)

| 1 | 2 | • | Æ | E | ~ |  |
|---|---|---|---|---|---|--|

(mg/L)

(mg/L)

| Calculated   | Default   |                       |
|--------------|-----------|-----------------------|
| Distribution | Detection | (mg/L)                |
| of Data      | Limit     | Well Name (MW-a)      |
|              | (mg/L)    | Date Sampled 10/31/97 |

| Lognormal | 0.002 |
|-----------|-------|
| Lognormal | 0.002 |
| Lognormal | 0.002 |
| Lognormal | 0     |
| Lognormal | 0.002 |
| Lognormal | 0.005 |
|           |       |

| 10/31/97 2/6/98                 | 5/19/98 7/3      | 1/98 10/31/9             | 7 2/6/98      | 5/19/98          | 7/31/98 2/    | 6/98 7/31/98  | 2/6/98    |
|---------------------------------|------------------|--------------------------|---------------|------------------|---------------|---------------|-----------|
| 0.021 40.0021                   |                  |                          |               |                  |               |               |           |
| 0.02114.0.00211                 | 0.314 0.0        | 0025, 5, 0.13            | n an Oldstein | 0.2              | 0.00025 0.0   | 0025 0.0002   | 0.00025   |
| 0.2 0.055 d.<br>40.035 d. 0.015 | 0.0<br>1.8 ± 0.0 | 0025 1.2 4<br>0125 - 102 | 0.072         | 0.41= ui<br>0.57 | 0.00025 0.0   | 10025 10.0002 | 7 0.00025 |
| 0.048 - 0.0041                  | .0.38 . 0.0      | 0025 📲 2.6               | 0.12          | 0.94             | 0 00025 ° 0 0 | 0025 [ 0 0002 | 0.00025   |

(mg/L)

(mg/L)

(mg/L)

(mg/L)

10

(mg/L)

11

(mg/L)

è

12 13 14 15 16 17 18

| (mg/L)  | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (mg/L) | (mg/L)                                                                                                         | (mg/L) | (mg/L)           |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------|--------|------------------|
| MW-2    | MW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - MW-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100    |                                                                                                                | MW-5   | MW-5             |
| 7/31/98 | 2/6/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7/31/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                | 2/6/98 | 7/31/98          |
| 0.00025 | on sod Est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a anno e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                                                |        | i a fara falais- |
| 0.00025 | The second second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lar and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                                                                                                |        | 0.00025          |
| 0.00025 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Marie de la Companya |        | 0.00025          |
| 0.00125 | The second secon | NA TON THE PROPERTY OF THE PARTY OF THE PART |        |                                                                                                                |        | 0.00125          |
| 0.00025 | and the great state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |                                                                                                                |        | 0.00025          |

|                |                                     | RBCA                            | SITE ASS                  | ESSMENT                                                |                               |                                             |                          |                            |                          | Tier 2 Wo          | rksheet 9.3      |                  |  |
|----------------|-------------------------------------|---------------------------------|---------------------------|--------------------------------------------------------|-------------------------------|---------------------------------------------|--------------------------|----------------------------|--------------------------|--------------------|------------------|------------------|--|
| Site Name: Fo  | ormer Texaco SS                     |                                 | Completed E               | By: PEG                                                |                               |                                             |                          |                            |                          |                    |                  |                  |  |
| Site Location: | 930 Springtown Blvd., Livermore, C. | Α                               | Date Comple               | ted: 11/1/199                                          | 8                             |                                             |                          |                            |                          |                    | 1 OF 1           |                  |  |
| 9              | GROUNDWATER SSTL V                  | ALUES                           | Target                    | k (Class A & B)<br>l Risk (Class C)<br>lazard Quotient | 1.0E-5                        | ☐ MCL exposure limit? ☐ PEL exposure limit? |                          |                            | Calculation Option: 1    |                    |                  |                  |  |
|                |                                     |                                 |                           | SSTL                                                   | Results For Com               | plete Exposure                              | Pathways ("x" if         | Complete)                  |                          | -                  |                  |                  |  |
| CONSTITUEN     | NTS OF CONCERN                      | Representative<br>Concentration |                           | Groundwater                                            |                               | Groundwater Volatilization X to Indoor Air  |                          | Groundwater Volatilization |                          | Applicable<br>SSTL | SSTL<br>Exceeded | Required CRF     |  |
| CAS No.        | Name                                | (mg/L)                          | Residential:<br>(on-site) | Commercial:<br>(on-site)                               | Regulatory(MCL):<br>(on-site) |                                             | Commercial:<br>(on-site) | Residential<br>(on-site)   | Commercial:<br>(on-site) | (mg/L              | "I If ves        | Only if "yes" le |  |
| 71-43-2        | Penzene                             | 5.1E-3                          | NA                        | NA                                                     | NA                            | 1.3E-1                                      | NA                       | NA                         | NA NA                    | 1.3E-1             |                  | <1               |  |
| 0-00-0         | Benzene-CA                          | 5.1E-3                          | NA                        | NA                                                     | NA                            | 3.8E-2                                      | NA                       | NA                         | NA                       | 3.8E-2             |                  | <1               |  |
| 100-41-4       | Ethylbenzene                        | 1.3E-2                          | NA                        | NA                                                     | NA                            | >Sol                                        | NA                       | NA NA                      | NA                       | >Sol               |                  | <1               |  |
| 1634-04-4      | Methyl t-Butyl Ether                | 3.6E-2                          | NA                        | NA                                                     | NA                            | 1.7E+3                                      | NA                       | NA.                        | NA NA                    | 1.7E+3             |                  | <1               |  |
| 108-88-3       | Toluene                             | 1.2E-2                          | NA                        | NA                                                     | NA                            | 1.9E+2                                      | NA                       | NA                         | NA NA                    | 1.9E+2             |                  | <1               |  |
| 1330-20-7      | Xylene (mixed isomers)              | 3.2E-2                          | NA                        | NA                                                     | NA                            | >Sol                                        | NA NA                    | NA                         | NA NA                    | >Sol               |                  | <1               |  |
|                |                                     |                                 |                           | >Soi                                                   | indicates risk-bas            | ed target conce                             | entration preater t      | han constituent            | saluhility               |                    |                  |                  |  |

Software: GSI RBCA Spreadsheet Version: 1,0.1

Serial: g-309-oex-828

Site Name: Former Texaco SS

Completed By: PEG

Site Location: 930 Springtown Blvd., Livermore, Date Completed: 11/1/1998

1 of 1

#### TIER 2 SUBSURFACE SOIL CONCENTRATION DATA SUMMARY

|                                    |                        | Analytical Method                  |                   |                   | Det                      | Detected Concentrations |                              |  |  |  |  |
|------------------------------------|------------------------|------------------------------------|-------------------|-------------------|--------------------------|-------------------------|------------------------------|--|--|--|--|
| CONSTITUENTS DETECTED CAS No. Name |                        | Typical Detection<br>Limit (mg/kg) | No. of<br>Samples | No. of<br>Detects | Maximum<br>Conc. (mg/kg) | Mean<br>Conc. (mg/kg)   | UCL on Mean<br>Conc. (mg/kg) |  |  |  |  |
| 71-43-2                            | Benzene                |                                    | 30                | 30                | 2.7E+01                  | 2.7E-01                 | 5.9E-01                      |  |  |  |  |
| 0-00-0                             | Benzene-CA             |                                    | 30                | 30                | 2.7E+01                  | 2.7E-01                 | 5.9E-01                      |  |  |  |  |
| 100-41-4                           | Ethylbenzene           |                                    | 30                | 30                | 1.9E+02                  | 7.9E-01                 | 1.8E+00                      |  |  |  |  |
| 1634-04-4                          | Methyl t-Butyl Ether   |                                    | 0                 | 0                 | 0.0E+00                  | #DIV/0!                 | #DIV/0!                      |  |  |  |  |
| 108-88-3                           | Toluene                | Salar Brance Display               | 30                | 30                | 8.6E+01                  | 6.9E-01                 | 1.6E+00                      |  |  |  |  |
| 1330-20-7                          | Xylene (mixed isomers) |                                    | 28                | 28                | 3.1E+02                  | 3.2E+00                 | 8.9E+00                      |  |  |  |  |

Serial: g-309-oex-828

Software: GSI RBCA Spreadsheet

Version: 1.0.1

© Groundwater Services, Inc. (GSI), 1995-97. All Rights Reserved.

506 sortner Soil results should be from

SCREEN 7.3 SUBSURFACE SOILS CONCENTRATION CALCULATOR

Lognormal

Lognormal

Lognormal

#DIV/0!

Lognormal

Lognormal

0.005

0.005

0.005

0

0.005

0.005

**UCL** Percentile

-- 90%

Analytical Data (Up to 50 Data Points)

| 1 2 3 4 5 6 7 8 9 10 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1. |
|----------------------|---|---|---|---|---|---|---|---|---|----|----|
|----------------------|---|---|---|---|---|---|---|---|---|----|----|

| Calculated    | Default   |              |        |         |              |         |             |          |         |         |         |         |         |
|---------------|-----------|--------------|--------|---------|--------------|---------|-------------|----------|---------|---------|---------|---------|---------|
| Distribution  | Detection | (            | mg/kg) | (mg/kg) | (mg/kg)      | (mg/kg) | (mg/kg)     | (mg/kg)  | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) |
| of Data       | Limit     | Sample Name  | A/15** | "B/15.  | bottom       | north   |             |          |         |         | 6b/10 5 |         | SB,1E   |
| <del></del> - | (mg/kg)   | Date Sampled |        |         | A CONTRACTOR |         | \$4.4 A 1-4 | ent to t |         |         |         |         | 71      |

| # :416 N B U I C | յ <sub>անն</sub> Մ.56 <sub>1-</sub> մ | LULUI NATIONAL | ZU. St. F. C | J.UZ | $0 \times 10^{-10} \text{ or } 0.00$ | See 0.002            | 0. 4   |
|------------------|---------------------------------------|----------------|--------------|------|--------------------------------------|----------------------|--------|
| 27 0 18          | 5 HA 0.58 HL                          | arcourte       | 0            | 0.02 | 0.03                                 | 0.002                | 0 4 4  |
| 190 4 0 97       | 0.24                                  | 0 .            | 40 - 3. 0    | 0.02 | 0-1-1-10-02                          | 5 - 10 00 <b>5</b> M | n a an |
|                  | A Comment                             | 4.5 ( )        | 1000         |      |                                      |                      |        |
| 86 0 85          | 0.4-6                                 | 54:00          | 0            | 904  |                                      | n anns               |        |
| 240 2 24         | l o ooo o                             | a a            | a i i        | 104  |                                      | 5 E U.UUS            |        |

| 12              | 13             | 14      | 15         | 16      | 17      | 18      | 19      | 20         | 21             | 22      | 23      | 24        | 25      | 26      | 27                                    |
|-----------------|----------------|---------|------------|---------|---------|---------|---------|------------|----------------|---------|---------|-----------|---------|---------|---------------------------------------|
|                 |                |         |            |         |         |         |         |            |                |         |         |           |         |         |                                       |
| (mg/kg)         | (mg/kg)        | (mg/kg) | (mg/kg)    | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg) | (mg/kg)    | (mg/kg)        | (mg/kg) | (mg/kg) | (mg/kg)   | (mg/kg) | (mg/kg) | (mg/kg)                               |
| SB-15           | SB-1G          | VSB 1H  | SB-2A      | SB 20   | SB-2D   | MW76    | MW-70   | MŴ7.Fa     | WMaC.          | MW8D    | MW8E:   | i EWi     | EWIL    | TEWN    | EWill                                 |
|                 |                |         |            |         |         |         | 37.5    | 5 63       |                |         |         |           |         |         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 384 ST 74 ST 75 | Page Water son | in the  | less a see |         |         |         |         |            | and the second | 0.7     |         |           | VI 2015 |         |                                       |
| 0.0             | 0              | 0       | 0          | 0       | 0       | 2400    | 9       | (0)<br>(0) | 0              | , U     | 0       | U<br>#2.0 | 6.6     | 0.017   | 0                                     |
| 0.00            | 0"             | FL 5    | 0.         |         | 0 3     | 0       | 0.      | 0.         | 0              | 19-0-2  | a 1870. | 0.        | - 16 A  | 0 05    | 0                                     |
| n e             | in.            | in Dec  | i a        |         | n .     | n e     | e?      | 100        | 0.00           | n e     |         | 0.00      | 51      | สกละเ   |                                       |
| 0.70            | 0.2            | P#16 F  | 0          | 0       | =1.0°;  | 0       | 48000   | 0.         | - 0            | 10      | 2, 0 j  | 0.        | F 50.   | 0.21%   | 0.0                                   |

÷

/ 1

...

| (mg/kg) | (mg/kg)     | (mg/kg) |
|---------|-------------|---------|
| 2 WW1   | . IVE1      | u Ven   |
| 7.5     |             |         |
|         |             | K. Av.  |
| 207.1   | 29<br>29 14 | 0.007   |
| 18      | vi 14 °     | 74,000  |
| 755     | 46          | +0.029= |
| 56      | 53 -        | 0.7     |

|                |                                                               | RBCA SITE                       | ASSESSN                   | ENT                           |                               |                       |                                                                      |                          |                           | 7                        | ler 2 Workshi      | eet 9.2               |                    |
|----------------|---------------------------------------------------------------|---------------------------------|---------------------------|-------------------------------|-------------------------------|-----------------------|----------------------------------------------------------------------|--------------------------|---------------------------|--------------------------|--------------------|-----------------------|--------------------|
| Site Name: For | rmer Texaco SS                                                |                                 | Completed B               | y: PEG                        |                               |                       |                                                                      |                          |                           | <u> </u>                 |                    |                       |                    |
| Site Location; | 930 Springtown Blvd., Livermore, CA                           |                                 | Date Comple               | ted: 11/1/1998                | 3                             |                       |                                                                      |                          |                           |                          |                    |                       | 1 OF 1             |
|                |                                                               |                                 | Target Risk               | (Class A & B)                 | 1.0E-6                        | ☐ MCL exposure limit? |                                                                      |                          |                           | Cal                      | culation Option    | : 1                   |                    |
| SU             | <b>BSURFACE SOIL SSTL V</b>                                   | ALUES                           | Target                    | Risk (Class C)                | 1.0E-5                        |                       | PEL expos                                                            | sure limit?              |                           |                          |                    |                       |                    |
|                | (> 3.3 FT BGS)                                                |                                 | Target H                  | Target Hazard Quotient 1.0E+0 |                               |                       |                                                                      |                          |                           |                          |                    |                       |                    |
| •              | SSTL Results For Complete Exposure Pathways ("x" if Complete) |                                 |                           |                               |                               |                       |                                                                      |                          |                           |                          |                    |                       |                    |
| CONSTITUEN     | ITS OF CONCERN                                                | Representative<br>Concentration | Soi                       | Leaching to                   | Groundwater                   | х                     | Soil Volatilization to Soil Volatilization to Undoor Air Outdoor Air |                          |                           |                          | Applicable<br>SSTL | SSTL<br>Exceeded<br>? | Required CRF       |
| CAS No.        | Name                                                          | (mg/kg)                         | Residential:<br>(on-site) | Commercial:<br>(on-site)      | Regulatory(MCL):<br>(on-site) |                       | esidential:<br>on-site)                                              | Commercial:<br>(on-site) | Residential:<br>(on-site) | Commercial:<br>(on-site) | (mg/kg)            | "■" If yes            | Only if "yes" left |
| 71-43-2        | Benzene                                                       | 5.9E-1                          | NA                        | NA                            | NA                            | ,                     | 3.0E-2                                                               | NA                       | NA                        | NA                       | 3.0E-2             |                       | 1.9E+01            |
| 0-00-0         | Benzene-CA                                                    | 5.9E-1                          | NA                        | NA                            | NA                            | ÷                     | 3.8E-3                                                               | NA                       | NA                        | NA                       | 8.8E-3             |                       | 6.7E+01            |
| 100-41-4       | Ethylbenzene                                                  | 1.8E+0                          | NA                        | NA                            | NA                            | 1                     | .1E+2                                                                | NA                       | NA                        | NA                       | 1.1E+2             |                       | <1                 |
| 1634-04-4      | Methyl t-Butyl Ether                                          | #DIV/0!                         | NΑ                        | NA                            | NA                            | 3                     | .2E+2                                                                | NA                       | NA                        | NA I                     | 3.2E+2             | 22                    | #DIV/0!            |
| 108-88-3       | Toluene                                                       | 1.6E+0                          | AN                        | NA                            | NA                            | 4                     | .3E+1                                                                | NA                       | NA                        | NA                       | 4.3E+1             |                       | <1                 |
| 1330-20-7      | Xylene (mixed isomers)                                        | 8.9E+0                          | NA.                       | NA                            | NA                            |                       | >Res                                                                 | NA                       | NA                        | NA                       | >Res               |                       | <1                 |
| _              |                                                               |                                 | >Res                      | indicates rísk                | -based target con             | centr                 | ation great                                                          | er than constitu         | ent residual sa           | turation value           |                    |                       |                    |

Software: GSI RBCA Spreadsheet Version: 1.0.1

Serial: g-309-oex-828