RECEIVED

2:23 pm, Oct 27, 2008

Alameda County
Environmental Health

June 13, 2008

Ms. Donna Drogos Alameda County Environmental Health 1131 Harbor Parkway, Suite 250 Oakland, CA 94502-6577

Subject:

First Quarter 2008 Groundwater Monitoring Report

Stop 'N' Save

20570 Stanton Avenue, Castro Valley, Alameda County, California

Apex Project No. STS08.001

RO0000179

Ms. Drogos:

Enclosed please find a copy of the June 3, 2008, First Quarter 2008 Monitoring Report for the above referenced site, prepared by our consultant, Apex Envirotech, Inc.

I declare, under penalty and perjury, that the information and/or recommendations contained in this report are true and correct to the best of my knowledge.

Sincerely,

Sean I

·i

First Quarter 2008 Groundwater Monitoring Report

Stop 'N' Save, 20570 Stanton Avenue, Castro Valley, Alameda County, California

Page 2

are detailed in ESTC's Interim Corrective Action, dated August 17, 2000. Results of the sampling and disposal activities are detailed in ESTC's Soil Sampling, Treatment and Disposal of Contaminated Stockpiled Soil, dated August 21, 2000.

September 2000 – ESTC performed a preliminary soil and groundwater assessment of the subject property. Results are detailed in their Preliminary Soil and Groundwater Assessment report, dated October 13, 2000.

October 2000 – ESTC installed three groundwater monitoring wells at the subject site (STMW-1 through STMW-3).

September 2007 – Apex was contracted by SNS to bring the site into compliance with all regulatory agencies.

GENERAL SITE INFORMATION

Site name

Stop 'N' Save Site address 20570 Stanton Avenue, Castro Valley, California

Current property owner Stop 'N' Save, Inc.

Active gasoline station Current site use Current phase of project Groundwater monitoring

3 USTs Tanks at site

3 groundwater monitoring wells Number of wells

GROUNDWATER MONITORING SUMMARY

Gauging and sampling date March 27, 2008

Wells gauged and sampled STMW-1, STMW-2, and STMW-3

Wells gauged only None

Groundwater flow direction East-northeast Groundwater gradient 0.053 ft/ft

Floating liquid hydrocarbon None

Laboratory Analytical Sciences, Petaluma, California

Analyses Performed

Analysis	Abbreviation	Designation	USEPA Method No.
Total Petroleum Hydrocarbons as Gasoline	TPHg	Gas Range Hydrocarbons	8015
Benzene		Aromatic	
Toluene	BTEX	Volatile	
Ethylbenzene	DIEX	Organics	
Xylenes (Total)		Organics	
Tertiary Butyl Alcohol	TBA		
Methyl Tertiary Butyl Ether	MTBE	Five Fuel	8260B
Di-isopropyl Ether	DIPE	Oxygenates	
Ethyl Tertiary Butyl Ether	ETBE	Oxygenates	
Tertiary Amyl Methyl Ether	TAME		
1,2-Dichloroethane	1,2-DCA	Lead	
Ethylene dibromide	EDB	Scavengers	

Analytical data for water samples are summarized in Table 3. Copies of the laboratory analytical report and chain-of-custody (COC) form are included in Appendix C.

Modifications from Standard Monitoring Program

None.

CONCLUSIONS

According to analytical lab data, TPHg, benzene, and MTBE concentrations are centered around STMW-1. The presence of TBA and the declining trends of contaminant concentrations suggest natural attenuation is occurring in the shallow-zone aquifer at the site.

Groundwater levels have increased an average of 0.69 ft since the last sampling event.

RECOMMENDATIONS

Apex will continue quarterly groundwater monitoring. The next quarterly sampling event is scheduled for June 2008.

First Quarter 2008 Groundwater Monitoring Report
Stop 'N' Save, 20570 Stanton Avenue, Castro Valley, Alameda County, California
Page 4

ATTACHMENTS

Figure 1: Site Vicinity Map Figure 2: Site Plan Map

Figure 3: Groundwater Contour Map: March 27, 2008

Figure 4: TPHg in Groundwater Isoconcentration Map: March 27, 2008 Figure 5: Benzene in Groundwater Isoconcentration Map: March 27, 2008 Figure 6: MTBE in Groundwater Isoconcentration Map: March 27, 2008

Table 1: Well Construction DetailsTable 2: Groundwater Elevation DataTable 3: Groundwater Analytical Data

Appendix A: Apex Standard Operating Procedures

Appendix B: Field Data Sheets

Appendix C: Laboratory Analytical Reports and COC Form

REPORT DISTRIBUTION

Apex submitted a copy of this Report to:

Regulatory Oversight:

Ms. Donna Drogos

Alameda County Health Care Services Agency

1131 Harbor Parkway, Suite 250 Oakland, California 94502-6577

Mr. Chuck Headless

San Francisco Bay RWQCB-Geotracker only

1515 Clay Street, Suite 1400

Oakland, CA 94612

Responsible Party:

Mr. Sean Kapoor

June 3, 2008

Ms. Donna Drogos Alameda County Health Care Services Agency 1131 Harbor Parkway, Suite 250 Oakland, California 94502-6577

Subject:

First Quarter 2008 Groundwater Monitoring Report

Stop 'N' Save

20570 Stanton Avenue, Castro Valley, Alameda County, California

Apex Project No. STS08.001

Dear Ms. Drogos:

Apex Envirotech, Inc. (Apex) has been authorized by Stop 'N' Save (SNS) to provide this report documenting the first quarter groundwater monitoring event conducted March 27, 2008. Groundwater monitoring results are provided in the attached figures and tables. Apex standard operating procedures, field data, and analytical results are provided as appendices.

This report is based, in part, on information obtained by Apex from SNS and Enviro Soil Tech Consultants (ESTC), and is subject to modification as newly acquired information may warrant.

SITE DESCRIPTION

The site is located at 20570 Stanton Avenue, Castro Valley, Alameda County, California (Figure 1). The site is situated in a commercial and residential area and is currently being used as a convenience store.

BACKGROUND

February 24, 2000 – Two 10,000-gallon gasoline underground storage tanks (USTs) were removed by Johnson Tank Testing and Maintenance. Results are detailed in the ESTC report *Soil Sampling Beneath Removed USTs*, dated March 8, 2000.

May 18, 2000 - ESTC submitted their Proposed Work Plan for Preliminary Site Assessment.

July 25 and 26, 2000 – ESTC over-excavated and treated by bioremediation 150 cubic yards of contaminated soil in the vicinity of former UST areas. Results of the bioremediation activities

REMARKS AND SIGNATURES

The information contained within this report reflects our professional opinions and was developed in accordance with currently available information, and accepted hydrogeologic and engineering practices.

The work described above was performed under the direct supervision of the professional geologists, registered with the State of California, whose signatures appear below.

We appreciate the opportunity to provide SNS geologic, engineering and environmental consulting services, and trust this report meets your needs. If you have any questions or comments, please call us at (209) 667-6874.

Sincerely,

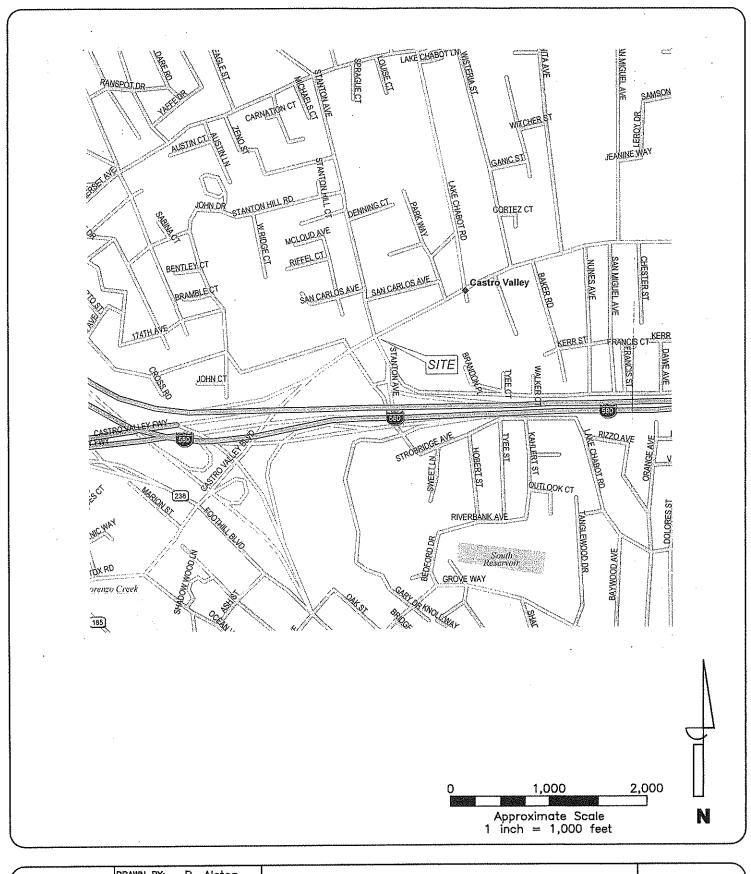
APEX ENVIROTECH, INC.

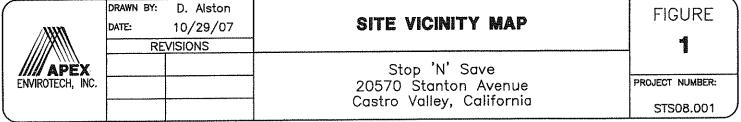
∕Christy Black Project Manager

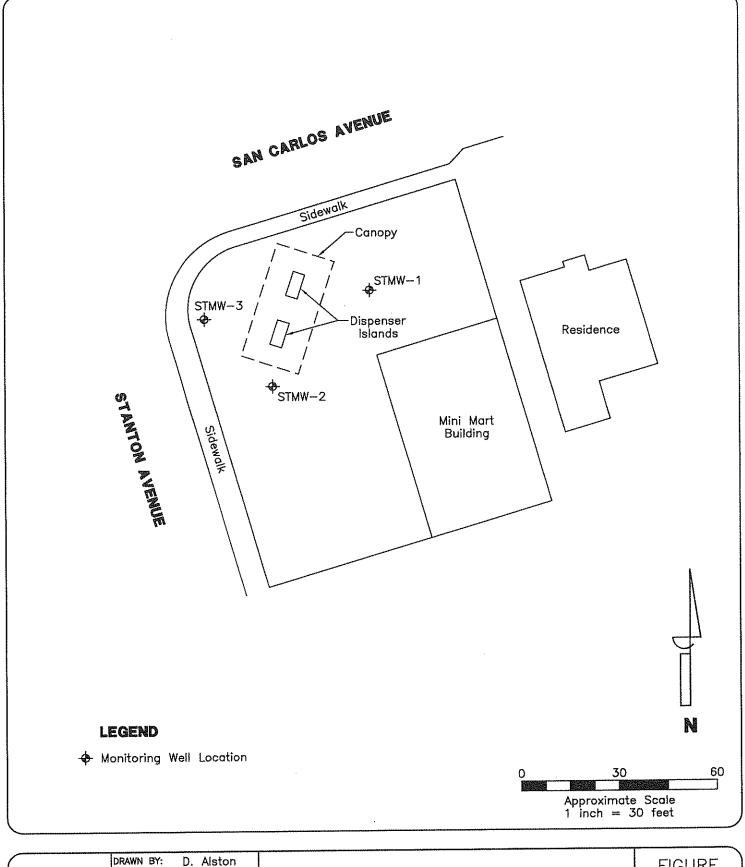
√Drew Van Allen

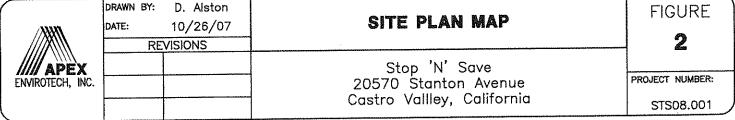
Senior Project Manager

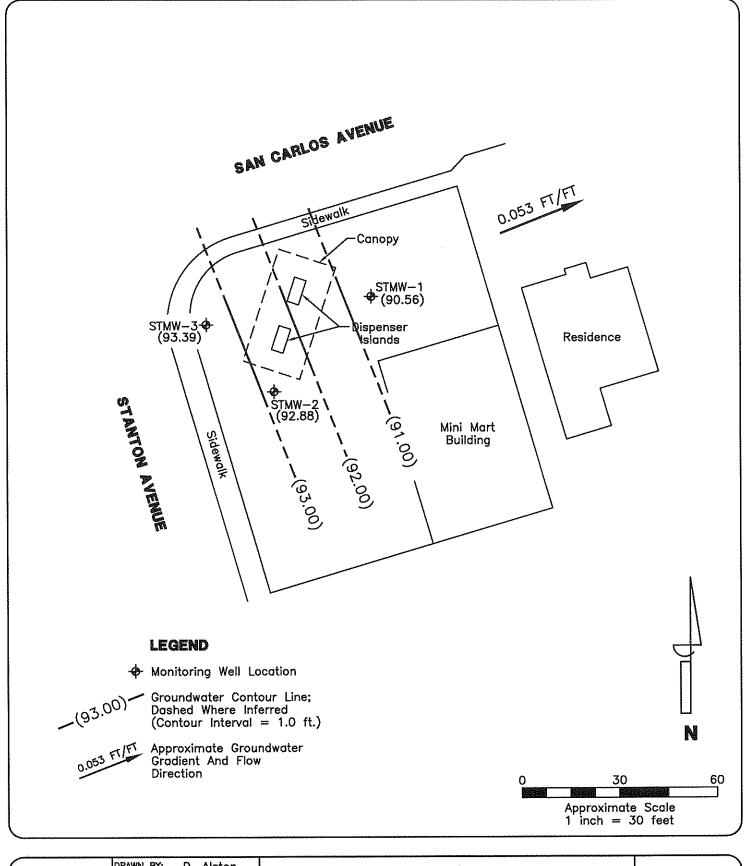
Michael S. Sgourakis, P.G.

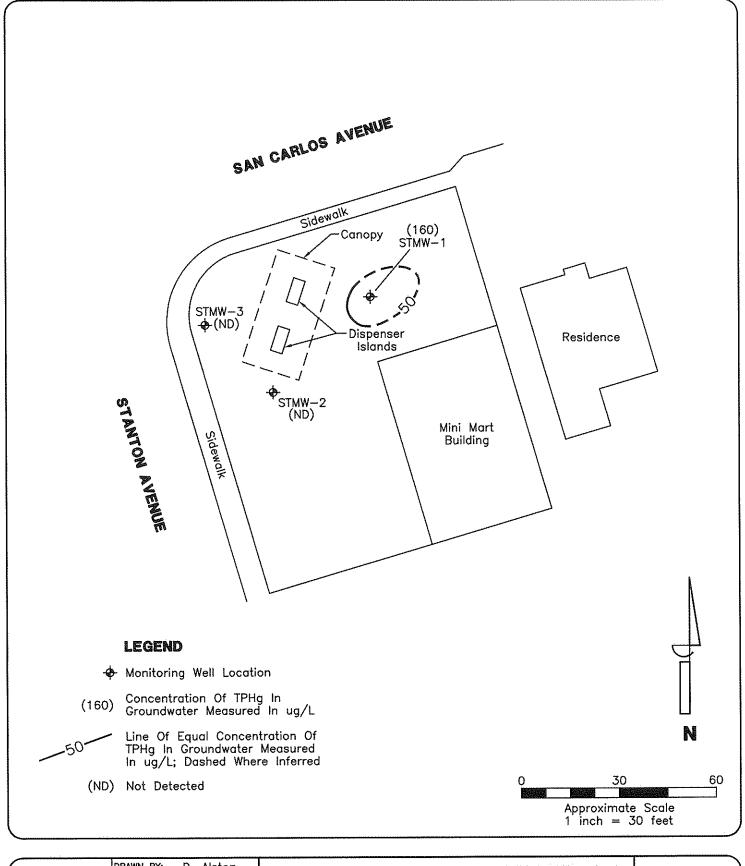

Senior Geologist

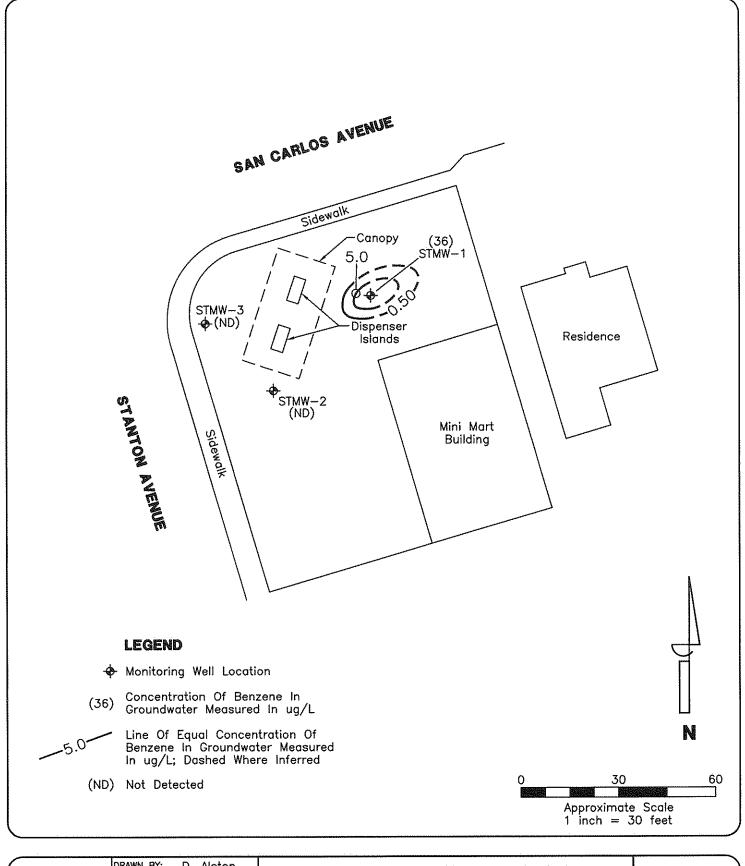

PG No. 7194

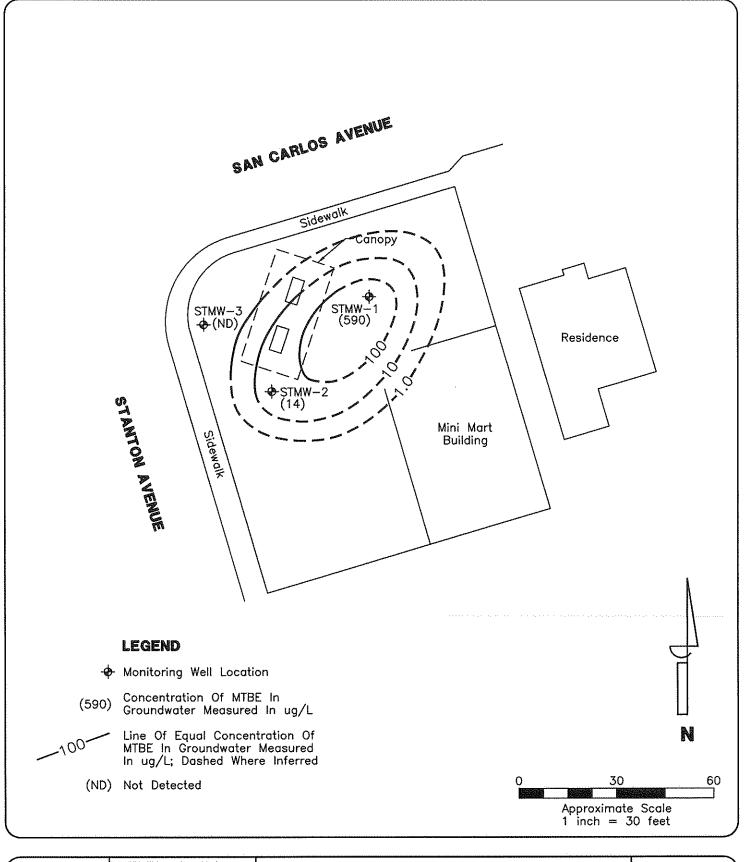

MICHAEL
S.
SGOURAKIS
No. 7194


P.
C. CALIFORT


FIGURES






	DRAWN BY: D. Al. DATE: 6/2, REVISIONS	MAP: MARCH 27, 2008	FIGURE 3
APEX ENVIROTECH, INC.		Stop 'N' Save 20570 Stanton Avenue Castro Vallley, California	PROJECT NUMBER: STS08.001

	DRAWN BY: DATE: RE	D. Alston 6/2/08 VISIONS	TPHg IN GROUNDWATER ISOCONCENTRATION MAP: MARCH 27, 2008	FIGURE 4
APEX ENVIROTECH, INC.			Stop 'N' Save 20570 Stanton Avenue Castro Vallley, California	PROJECT NUMBER: STS08.001

	DRAWN BY: DATE: RE	D. Alston 6/2/08 VISIONS	BENZENE IN GROUNDWATER ISOCONCENTRATION MAP: MARCH 27, 2008	FIGURE 5
APEX ENVIROTECH, INC.			Stop 'N' Save 20570 Stanton Avenue Castro Vallley, California	PROJECT NUMBER: STS08.001

	DRAWN BY: DATE: RE	D. Alston 6/2/08 VISIONS	MTBE IN GROUNDWATER ISOCONCENTRATION MAP: MARCH 27, 2008	FIGURE 6
APEX ENVIROTECH, INC.			Stop 'N' Save 20570 Stanton Avenue Castro Vallley, California	PROJECT NUMBER: STS08.001

TABLES

TABLE 1 WELL CONSTRUCTION DETAILS

Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

Well Number	Well Installation Date	Elevation TOC (feet)	Casing Material	Total Depth (feet)	Well Depth (feet)	Casing Diameter (inches)	Screened Interval (feet)	Filter Pack Interval (feet)
STMW-1	10/2000	97.93	PVC	23	23	2	9-23	8-23
STMW-2	10/2000	99.04	PVC	23	22	2	9-22	8-22
STMW-3	10/2000	99.60	PVC	23	22	2	9-22	8-22

Notes:

TOC = Top of Casing

TABLE 2 GROUNDWATER ELEVATION DATA Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

Monitoring	Date	Reference	Depth to	Groundwater	Groundwater
Well		Elevation*	Groundwater	Elevation	Flow
					Direction
STMW-1	10/4/00	97.93	8.34	89.59	MP-12
OTIVIVY"1	1/4/01	07.00	7.86	90.07	
	3/16/04		5.70	92.23	
	7/5/04		4.82	93.11	
	12/28/04		6.82	91.11	
	3/24/05		5.63	92.30	
	7/20/05		5.75	92.18	
	9/15/05		7.44	90.49	
	12/12/05		5.32	92.61	
	3/16/06		3.90	94.03	
	6/22/06		7.12	90.81	
	9/21/06		7.78	90.15	
	12/18/06		9.12	88.81	~~~
	3/22/07		6.82	91.11	
	6/29/07		9.86	88.07	E
	9/28/07		6.88	91.05	NE
	12/20/07		7.81	90.12	E
	3/27/08		7.37	90.56	ENE
STMW-2	10/4/00	99.04	8.22	90.82	
	1/4/01		6.70	92.34	
	3/16/04		6.08	92.96	
	7/5/04		6.86	92.18	
	12/28/04		6.22	92.82	
	3/24/05		5.12	93.92	
	7/20/05		5.66	93.38	
	9/15/05		6.14	92.90	
	12/12/05		6.68	92.36	***
	3/16/06	-	5.54	93.50	
	6/22/06		6.02	93.02	~~~
	9/21/06		6.94	92.10	404
	12/18/06]	6.46	92.58	
	3/22/07		6.16	92.88	
	6/29/07		9.06	89.98	E
	9/28/07		7.63	91.41	NE F
	12/20/07		7.43	91.61	E
	3/27/08		6.16	92.88	ENE
STMW-3	10/4/00	99.60	8.42	91.18	
	1/4/01		6.16	93.44	
	3/16/04		7.18	92,42	
	7/5/04		6.27	93.33	
	12/28/04		5.64	93.96	
	3/24/05		5.12	94.48	
	7/20/05		5.50	94.10	
	9/15/05		5.56	94.04	
	12/12/05		6.26	93.34	
	3/16/06		5.14	94.46 93.68	
	6/22/06		5.92 6.14	93.46	
	9/21/06 12/18/06		5.50	93.40	
	3/22/07		5.88	93.72	
	6/29/07		8.82	90.78	E
	9/28/07		8.14	91.46	NE NE
	12/20/07		6.56	93.04	E
	3/27/08		6.21	93.39	ENE
		<u> </u>	_ /		

NOTES

^{* -}Wells surveyed to mean sea level

TABLE 3 GROUNDWATER ANALYTICAL DATA Stop 'N' Save 20570 Stanton Avenue Castro Valley, California

Sample	Date	TPH as	Benzene	Toluene	Ethyl	Total	Fiv	e Oxygena	tes by EPA	A Method 8	260	Lead Sc	avengers
ID		Gasoline			benzene	Xylenes	DIPE	ETBE	MTBE	TAME	TBA	1,2-DCA	EDB
		(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
STMW-1	10/4/00	60,000	<2,500	<2,500	<2,500	<2,500	~==		69,000		<10,000		
	1/4/01	71,000	<5,000	<5,000	<5,000	<5,000	,		89,000		<20,000	7	***
	3/16/04	260	52	64	7.9	27	~=~		39		<10		
	7/5/04	2,100	17	240	2.6	12			520		<50		
	12/28/04	310	89	90	11	43			32		<20		***
	3/24/05	630	43	140	16	110	wnn		20		<20		
	7/20/05	330 ^b	12	22	<2.5	9.3			310		<50		****
	9/15/05	15,000	<100	<100	<100	<100			13,000		2,500		
	12/12/05	130	4.4	7.5	<1.0	3			170		100		
	3/16/06	<50	0.9	3.3	<0.5	<0.5			21		<10		
	6/22/06	130	4.4	54	<1.0	7.1			70		<20		
	9/21/06	880	110	32	18	110		**-	1,600		2,300		
	12/18/06	240	7.5	130	1.4	7.6			130		180		
	3/22/07	190	17	13	2.9	14			360		170		
	6/29/07	2,700	340	45	52	310			3,100		2,200		
	9/28/07	1,000	85	2.5	11	72	<2.5	<2.5	1,000	<2.5	5,300	<2.5	<2.5
	12/20/07	690	92	<5.0	<5.0	36	<5.0	<5.0	1,200	<5.0	15,000	<5.0	<5.0
	3/27/08	160	36	0.92	<0.50	5.1	<1.0	<1.0	590	<1.0	4,900	<1.0	<1.0
	0/2//00	100		0.02	10.00	"	11.0	11.0		1,,0	1,000	11.0	11.0
STMW-2	10/4/00	69	<5.0	<5.0	<5.0	<5.0			66		<20		
	1/4/01	110	<5.0	<5.0	<5.0	<5.0			120		<20		
	3/16/04	1,100 ^a	<10	<10	<10	<20			1,700		<200		
	7/5/04	1,800 ^b	<10	<10	<10	<20			1,800		<200		
						1		į	1		1		
	12/28/04	1,000 ^b	<13	<13	<13	<13			1,400		<250		
	3/24/05	760	<5.0	<5.0	<5.0	<5.0			930		180		
	7/20/05	64	<1.0	<1.0	<1.0	<1.0			43		920		
	9/15/05	53	<1.0	<1.0	<1.0	<1.0		***	88		130		***
	12/12/05	<50	2.2	<0.5 <0.5	0.6 <0.5	<0.5 <0.5			23 34		22 150		
	3/16/06 6/22/06	<50 <50	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5			12		200		
	9/21/06	<50	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5			16		41		
	12/18/06	<50 <50	<0.5 <0.5	<0.5	<0.5	<0.5			15		71		
	3/22/07	<50	<0.5 <0.5	<0.5	<0.5	<0.5			15		71		
	6/29/07	<50 <50	<0.5	<0.5	<0.5	<0.5		***	14		<10	***	
	9/28/07	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	14	<0.5	<5.0	<0.5	<0.5
	12/20/07	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	6.2	<0.5	54	<0.5	<0.5
	3/27/08	<50 <50	<0.50	<0.50	<0.50	<1.50	<1.0	<1.0	14	<1.0	<12	<1.0	<1.0
	0,2,700	100	10.00	.0.00	10.00	11.00	-1.0		'*		',**		
STMW-3	10/4/00	<50	<5.0	<5.0	<5.0	<5.0		***	<5.0		<20		
	1/4/01	<50	<5.0	<5.0	<5.0	<5.0			<5.0		<20		
	3/16/04	<50	<0.5	< 0.5	<.5	<1.0			2.8		<10		
	7/5/04	<25	<0.5	< 0.5	<0.5	<1.0			2.5		<10		
	12/28/04	<25	<0.5	<0.5	<0.5	<0.5			2.0		<10		
	3/24/05	<25	<0.5	<0.5	<0.5	<0.5			1.4		<10		
	7/20/05	<50	<0.5	<0.5	<0.5	<0.5			1.5		<10		
	9/15/05	<50	<0.5	<0.5	<0.5	<0.5			1.2		<10		
	12/12/05	<50	<0.5	<0.5	<0.5	<0.5			<1.0		<0.5		
	3/16/06	<50	<0.5	<0.5	<0.5	<0.5			<1.0		<10		
	6/22/06	<50	<0.5	<0.5	<0.5	<0.5			<1.0	*	<10		
	9/21/06	<50	<0.5	<0.5	<0.5	<0.5			<1.0		<10		
	12/18/06	<50	<0.5	<0.5	<0.5	<0.5			<1.0		<10		
	3/22/07	<50	<0.5	<0.5	<0.5	<0.5			<1.0		<10		
	6/29/07	<50	<0.5	<0.5	<0.5	<0.5			<1.0		<10		
	9/28/07	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	12/20/07	<50	<0.5	<0.5	<0.5	<1.0	<0.5	<0.5	<0.5	<0.5	<5.0	<0.5	<0.5
	3/27/08	<50	<0.50	<0.50	<0.50	<1.50	<1.0	<1.0	<1.0	<1.0	<12	<1.0	<1.0
						1	1				1		

NOTES:

TPH - Total Petroleum Hydrocarbons

MTBE - Methyl Tertiary Bulyl Ether

TBA - Tertiary Butyl Alcohol

DIPE - Di-isopropyl Ether EDB - Ethylene Dibromide ETBE - Ethyl Tertiary Butyl Ether

TAME - Tertiary Amyl Methyl Ether

1,2-DCA - 1,2-Dichloroethane

a - No other indication of gasoline besides MTBE

μg/L - Micrograms per Liter

b - TPH as gasoline reported value due to high concentration of MTBE present in the TPHg quantitation range

APPENDIX A APEX STANDARD OPERATING PROCEDURES

APEX ENVIROTECH, INC.

STANDARD OPERATING PROCEDURES Quarterly Monitoring Reports

SOP – 4 SAMPLE IDENTIFICTION AND CHAIN-OF CUSTODY PROCUDURES

Sample identification and chain-of-custody procedures ensure sample integrity as well as document sample possession from the time of collection to ultimate disposal. Each sample container submitted for analysis is labeled to identify the job number, date, time of sample collection, a sample number unique to the sample, any in-field measurements made, other pertinent field observations also recorded on the field excavation or boring logs.

Chain-of-custody forms are used to record possession of the sample from time of collection to arrival at the laboratory. During shipment, the person with custody of the samples will relinquish them to the next person by signing the chain-of-custody form(s) and noting the date and time. The sample control officer at the laboratory will verify sample integrity, correct preservation, confirm collection in the proper container(s), and ensure adequate volume for analysis.

If these conditions are met, the samples will be assigned unique laboratory log numbers for identification throughout analysis and reporting. The log numbers will be recorded on the chain-of-custody forms and in the legally-required log book maintained in the laboratory. The sample description, date received, client's name, and any other relevant information will also be recorded.

SOP – 5 LABORATORY ANALYTICAL QUALITY ASSURANCE AND CONTROL

In addition to routine instrument calibration, replicates, spikes, blanks, spiked blanks, and certified reference materials are routinely analyzed at method-specific frequencies to monitor precision and bias. Additional components of the laboratory Quality Assurance/Quality Control program include:

- Participation in state and federal laboratory accreditation/certification programs;
- Participation in both U.S. EPA Performance
 Evaluation studies (WS and WP studies) and
 inter-laboratory performance evaluation
 programs:
- Standard operating procedures describing routine and periodic instrument maintenance;
- 4. "out-of-Control"/Corrective Action documentation procedures; and,
- 5. Multi-level review of raw data and client reports.

SOP – 7 GROUNDWATER PURGING AND SAMPLING

Prior to water sampling, each well is purged by evacuating a minimum of three wetted well-casing volumes of groundwater. When required, purging will continue until either the discharge water temperature, conductivity, or pH stabilize, a maximum of ten wetted-casing volumes of groundwater have been recovered, or the well is bailed dry.

When practical, the groundwater sample should be collected when the water level in the well recovers to at least 80 percent of its static level.

The sampling equipment consists of either a "Teflon" bailer, PVC bailer, or stainless steel bladder pump with a "Teflon" bladder. If the sampling system is dedicated to the well, then the bailer is usually "Teflon," but the bladder pump is PVC with a polypropylene bladder. In general and depending on the intended laboratory analysis, 40-milliliter glass, volatile organic analysis (VOA) vials, with "Teflon" septa, are used as sample containers.

SOP – 12 MEASURING LIQUID LEVELS USING WATER LEVEL METER OR INTERFACE PROBE

Field equipment used for liquid-level gauging typically includes the measuring instrument (water-level meter or interface probe and product bailer(s)). The field kit also includes cleaning supplies (buckets, solution, spray bottles, and deionized water) to be used in cleaning the equipment between wells.

Prior to measurements, the instrument tip is lowered into the well until it touches bottom. Using the previously established top-of-casing or top-of-box (i.e., wellhead vault) point, the probe cord (or halyard) is marked and a measuring tape (graduated in hundredths of a foot) is used to determine the distance between the probe end and the marking on the cord. This measurement is then recorded on the liquid-level data sheet as the "Measured Total Depth" of the well.

When necessary in using the interface probe to measure liquid levels, the probe is first electrically grounded to either the metal stove pipe or another metal object nearby. When no ground is available, reproducible measurements can be obtained by clipping the ground lead to the handle of the interface probe case.

The probe tip is then lowered into the well and submerged in the groundwater. An oscillating (beeping) tone indicates the probe is in water. The probe is slowly raised until either the oscillating tone ceases or becomes a steady tone. In either case, this is the depth-to-water (DTW) indication of the DTW measurement is made accordingly. The steady tone indicates floating liquid hydrocarbons (FLH). In this case, the depth-to-product (DTP) indication and the DTP measurement is made accordingly.

The process of lowering and raising the probe must be repeated several times to ensure accurate measurements. The DTW and DTP measurements are recorded on the liquid-level data sheet. When FLH are indicated by the probe's response, a product bailer is lowered partially through the FLH water interface to confirm the FLH thickness, particularly in cases where the FLH layer is quite thin. This measurement is recorded on the data sheet as "FLH thickness."

In order to avoid cross-contamination of wells during the liquidlevel measurement process, wells are measured in the order of "clean" to "dirty" (where such information is available). In addition, all measurement equipment is cleaned with solution and thoroughly rinsed with deionized water before use, between measurements in respective wells, and at the completion of the day's use.

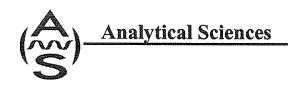
APPENDIX B FIELD DATA SHEETS

Groundwater Level Data Sheet

Project STSOSAUI
Location (ASTRO WANT)
Date 3-17-08
Recorded By WW

					I IAZA TED	WELL	PURGE	COMMENTS /
WELL		DEPTH TO	DEPTH TO WATER	BOTTOM	COLUMN	VOLUME		OBSERVATIONS
NAME		PRODUCT		21.6	15:39	2.46	7:38	
STMW-3	1257		6.21				731	
STMWZ	1302		6-16	21.4	15.24	2.43		
STMW-1.	1308		7.37	21.0	13.63	2.18	654	
	. / - 3_							
				,				
4								,
								. 1
•								
			7					
							,	,
								,
_								
			-		•			
				,				
				1			,	,
					,			
					•			
								•
		<u> </u>						
					<u> </u>	<u></u>		

Monitoring Data


Project: STOP & SAVE # 103	
Project Number: STSOS-001	
Date: 3-27-08	
Pacordad Hu: MAR	

WELL	TIME.	TEMP (dcg F)	pH 	COND. (uS/cm)	DISSOLVED ,OXYGEN	TOTAL VOLUME REMOVED	COMMENTS/OBSERVATIONS
STMW-3	1319	16-9	6-9	182		2.4	
	1321	18-0	6-7	109	,	4,9	
	1324	(8,8	6.6	>2000.		7.3	Sange EQ (200
STMW-Z	1332	18,8	67	202		2,4	
•	1334	192	6.6	302		4.9	
	1337	i9,5	6-6	(30	-,	7.3	SAMPLED @ 1410
STMW-1	1345	18.2	63	163	a, y	22	
	1347	18.4	6.3	161		4.4	
	1349.	18-5	6-3	101	<i>a</i> .	6.5	Samaeo 1420
•							

TEMPPH.XLS

APPENDIX C

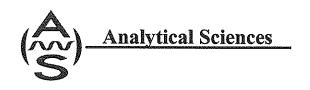
LABORATORY ANALYTICAL REPORT AND CHAIN-OF-CUSTODY FORM

April 04, 2008

Jennifer Worsley APEX Envirotech Inc. 11244 Pyrites Way Gold River, CA 95670

Dear Jennifer,

Enclosed you will find Analytical Sciences' final report 8032819 for your Stop-N-Save #108 project. An invoice for this work is enclosed.


Should you or your client have any questions regarding this report please contact me at your convenience. We appreciate you selecting Analytical Sciences for this work and look forward to serving your analytical chemistry needs on projects in the future.

Sincerely,

Analytical Sciences

Mark A. Valentini, Ph.D.

Laboratory Director

Report Date: April 04, 2008

Laboratory Report

Jennifer Worsley APEX Envirotech Inc. 11244 Pyrites Way Gold River, CA 95670

Project Name:

Stop-N-Save #108

STS08.001

Lab Project:

8032819

This 8 page report of analytical data has been reviewed and approved for release.

Mark A. Valentini, Ph.D.

Laboratory Director

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (μg/L)	RDL (µg/L)
8032819-01	STMW-1	Gasoline (C6-C12)		160	50
Date Sampled:	03/27/08	Date Analyzed:	04/02/08	Q	C Batch: B003940
Date Received:	03/28/08	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (µg/L)	RDL (µg/L)
8032819-02	STMW-2	Gasoline (C6-C12)	h	ND	50
Date Sampled:	03/27/08	Date Analyzed:	04/02/08	QC	Batch: B003940
Date Received:	03/28/08	Method:	EPA 8015		

TPH Gasoline in Water

Lab#	Sample ID	Compound Name		Result (µg/L)	RDL (μg/L)
8032819-03	STMW-3	Gasoline (C6-C12)		ND	50
Date Sampled:	03/27/08	Date Analyzed:	04/02/08	QC	Batch: B003940
Date Received:	03/28/08	Method:	EPA 8015		

Lab#	Sample ID	Compo	und Name		Result (µg/L)	RDL (µg/L)				
8032819-01	STMW-1	Benzen	e		36	0.50				
		Toluene	2		0.92	0.50				
		Ethylbe	nzene		ND	0.50				
		m,p-Xy	lene		4.0	1.0				
		o-Xylei	1.1	0.50						
		1,2-Dic	hloroethane (EDO	C)	ND	1.0				
		1,2-Dib	romoethane (EDI	B)	ND	1.0				
		Tertiary	Butyl Alcohol (TBA)	4900	240				
		Methyl	tert-Butyl Ether (590	20					
		Di-isop	ropyl Ether (DIPI	E)	ND	1.0				
		Ethyl te	ert-Butyl Ether (E	TBE)	ND	1.0				
		Tert-Ar	nyl Methyl Ether	(TAME)	ND	1.0				
Su	rrogates	Result (µg/L)	% Recove	ery	Acceptance Range (%)					
Dibromofluorom	ethane	20.8	104		70-130					
Toluene-d8		19.8	99		70-130					
4-Bromofluorobo	enzene	20.0	100		70-130					
Date Sampled:	03/27/08		Date Analyzed:	04/03/08	QC I	Batch: B003963				
Date Received:	03/28/08		Method:	EPA 8260B						

Lab#	Sample ID	Compor	ind Name		Result (µg/L)	RDL (μg/L)				
8032819-02	STMW-2	Benzene	2		ND	0.50				
		Toluene	;		ND	0.50				
		Ethylbe	nzene		ND	0.50				
		m,p-Xy	lene		ND	1.0				
		o-Xylen	ie		ND	0.50				
		1,2-Dicl	hloroethane (EDC	C)	ND	1.0				
		1,2-Dib	romoethane (EDI	3)	ND	1.0				
		Tertiary	Butyl Alcohol (7	ГВА)	ND	12				
		Methyl	tert-Butyl Ether (MTBE)	14	1.0				
		Di-isopi	ropyl Ether (DIPI	3)	ND	1.0				
		Ethyl te	rt-Butyl Ether (E'	TBE)	ND	1.0				
		Tert-An	nyl Methyl Ether	(TAME)	ND	1.0				
Su	rrogates	Result (µg/L)	% Recove	ery	Acceptance Range (%)				
Dibromofluorom	ethane	22.2	111		70-130					
Toluene-d8		19.0	95		70-130					
4-Bromofluorobo	enzene	19.8	99		70-130					
Date Sampled:	03/27/08		Date Analyzed:	04/04/08	QC B	atch: B003963				
Date Received:	03/28/08		Method:	EPA 8260B						

Lab#	Sample ID	Compou	nd Name		Result (µg/L)	RDL (μg/L)			
8032819-03	STMW-3	Benzene			ND	0.50			
		Toluene			ND	0.50			
		Ethylben	zene		ND	0.50 1.0 0.50			
		m,p-Xyle	ene		ND				
		o-Xylene	;		ND				
		1,2-Dich	loroethane (ED0	C)	ND	1.0			
		1,2-Dibr	1.0						
		Tertiary	Butyl Alcohol (1	ГВА)	ND	12			
		•	ert-Butyl Ether (ND	1.0			
		•	opyl Ether (DIPI	,	ND	1.0			
		•	t-Butyl Ether (E	,	ND	1.0			
		Tert-Am	yl Methyl Ether	(TAME)	ND	1.0			
Su	rrogates	Result (µg/L)	% Recove	ery	Acceptance Range (%	6)			
Dibromofluorom	ethane	22.6	113		70-130				
Toluene-d8		19.1	96		70-130				
4-Bromofluorobo	enzene	18.8	94		70-130				
Date Sampled:	03/27/08		Date Analyzed:	04/04/08	QC Ba	atch: B003963			
Date Received:	03/28/08		Method:	EPA 8260B					

Quality Assurance Report

TPH Gasoline in Water

									·····	
Analyte	Result	Reporting Limit	Units	Spike Level			%REC Limits	RPD	RPD Limit	Notes
Batch B003940 - EPA 5030 GC										
Blank (B003940-BLK1)				Prepared	: 03/13/08	Analyze	ed: 03/17/0)8		
Gasoline (C6-C12)	ND	50	μg/L							
Matrix Spike (B003940-MS1)	Source: 8031303-01			Prepared	: 03/13/08	Analyze	ed: 03/14/0)8		
Benzene	9.04	0.50	μg/L	10.0	ND	90	70-130			
Toluene	10.1	0.50	μg/L	10.0	ND	101	70-130			
Ethylbenzene	11.0	0.50	μg/L	10.0	ND	110	70-130			
Xylenes	33.7	1.5	μg/L	30.0	ND	112	70-130			
Matrix Spike Dup (B003940-MSD1)	Si	ource: 8031303	-01	Prepared	: 03/13/08	Analyze	d: 03/17/0)8		
Benzene	9.06	0.50	μg/L	10.0	ND	91	70-130	0.3	20	
Toluene	9.41	0.50	μg/L	10.0	ND	94	70-130	7	20	
Ethylbenzene	9.55	0.50	μg/L	10.0	ND	95	70-130	14	20	
Xylenes	28.8	1.5	μg/L	30.0	ND	96	70-130	15	20	

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch B003963 - EPA 5030 GC/MS										
Blank (B003963-BLK1)				Prepared	& Analyz	ed: 03/18	3/08			
Benzene	ND	0.50	μg/L		······································			***************************************		***************************************
Toluene	ND	0.50	μg/L							
Ethylbenzene	ND	0.50	μg/L							
m,p-Xylene	ND	1.0	μg/L							
o-Xylene	ND	0.50	μg/L							
1,2-Dichloroethane (EDC)	ND	1.0	μg/L							
1,2-Dibromoethane (EDB)	ND	1.0	μg/L							
Tertiary Butyl Alcohol (TBA)	ND	12	μg/L							
Methyl tert-Butyl Ether (MTBE)	ND	1.0	μg/L							
Di-isopropyl Ether (DIPE)	ND	1.0	μg/L							
Ethyl tert-Butyl Ether (ETBE)	ND	1.0	μg/L							
Tert-Amyl Methyl Ether (TAME)	ND	1.0	μg/L							
Surrogate: Dibromofluoromethane	17.3		μg/L	20.0		86	70-130			
Surrogate: Toluene-d8	21.9		μg/L	20.0		110	70-130			
Surrogate: 4-Bromofluorobenzene	20.1		μg/L	20.0		100	70-130			
Matrix Spike (B003963-MS1)	Sc	ource: 8031412			& Analyz					
1,1-Dichloroethene (1,1-DCE)	25.3	1.0	μg/L	25.0	ND	101	70-130			
Benzene	26.6	0.50	μg/L	25.0	ND	106	70-130			
Trichloroethene (TCE)	24.8	1.0	μg/L	25.0	ND	99	70-130			
Toluene	26.8	0.50	μg/L	25.0	ND	107	70-130			
Chlorobenzene	24.8	1.0	μg/L	25.0	ND	99	70-130			
Surrogate: Dibromofluoromethane	17.2		μg/L	20.0		86	70-130			
Surrogate: Toluene-d8	21.7		μg/L	20.0		109	70-130			
Surrogate: 4-Bromofluorobenzene	19.2		μg/L	20.0		96	70-130			
Matrix Spike Dup (B003963-MSD1)	Se	ource: 8031412	-01	Prepared	& Analyz	ed: 03/18	3/08			
1,1-Dichloroethene (1,1-DCE)	27.1	1.0	μg/L	25.0	ND	109	70-130	7	20	
Benzene	26.7	0.50	μg/L	25.0	ND	107	70-130	0.6	20	
Trichloroethene (TCE)	25.0	1.0	μg/L	25.0	ND	100	70-130	1	20	
Toluene	28.4	0.50	μg/L	25.0	ND	114	70-130	6	20	
Chlorobenzene	24.2	1.0	μg/L	25.0	ND	97	70-130	2	20	***************************************
	20.6		μg/L	20.0		103	70-130			
Surrogate: Dibromofluoromethane	20.0									
Surrogate: Dibromofluoromethane Surrogate: Toluene-d8	22.9		μg/L	20.0		114	70-130			

Notes and Definitions

RDL Reporting Detection Limit

ND Analyte NOT DETECTED at or above the reporting detection limit (RDL)

RPD Relative Percent Difference

NR Not Reported

Analytical Sciences
P.O. Box 750336, Petaluma, CA 94975-0336
110 Liberty Street, Petaluma, CA 94952
(707) 769-3128 Fax (707) 769-8093

CHAIN OF CUSTODY Lab Project Number: 8032819 Client's Project Name: Stop-N-Save #108

44.3253			2004 G 1.49		変ごでを始ま			7						(Client	's Proj	ect l	Numb	er:	STS	08.001			
		CLIENT IN		HON	i i s y i i	164.14											ſ		-	- 			~~~	
Con	npany Name: Apex E Address: 11244		nc.					┨										GeoT Globa				X 183405	Yes	No
	*****	River, CA 95	670					1	20. T	IDM	AROL	ר מעו	ive	/ehe		ing.	Ľ	JiOU2	טונו	•	10000	103400) 	
	Contact: Jennife		0,0					1	Sam	No.			11/14	imia	UN UI	<i>(6/2)</i>								
	Phone #: 916-85							1		Hours	`		24	Hours										
	Fax #: 916-85		***************************************					•	5		x	—		omai					D.	age	1		of	
	e-mail: jennife		irotech.c	om					Ĭ	vajs			•	C/11111621	'					aye		- `	, 1	
					1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0				A. 2604200	deast ex								MANAGEMENT AND ADDRESS OF THE PARTY OF THE P	***************************************					
_	1	***************************************		1						و ۱			AA	ALY	SIS: T									
Item	Client Sample ID	ALT ID	Date Sampled	Time	Matrix	# Cont.	Presv. Y/N	TPHg 8015 C6-C1	BTEX 8260	5 oxygenates 8260	lead scavengers											Comment 281		Lab Sample#
1	STMW-1	STMW-1	3-270	1420	water	3	Υ	х	Х	Х	х						T			ľ		ob DL fe		0/
2	STMW-2	STMW-2		1410	water	3	Υ	х	х	Х	х											Xylene		102
3	STMW-3 '	STMW-3	V	(400	water	3	Υ	х	х	Х	x											1.0ppb		03
4																							*****	1
5																	7							
6												7					\top		\top	7				1
7												1					十		T	_			··	1
8				*****													1	_	7	$\neg \dagger$.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
9																	-	\top	十	1	•			1
10									1			_					+	十	1	7		·····		
50.45 (6.70)			TINE WITH SER		er ference de muni	no sports a februarie de							1				Vic. 151 .							
	Relinquished By:	ud		Sample	ed By:	V;.∪. <i>3-27-0</i> Date	Œ BI	ACU 1:	O	I UR		Reco	M	********	Ų.	(7	אן_	Assert	22.0			3 2 g	2/5	+/ ti