SOIL VAPOR CONTAMINANT ASSESSMENT REPORT OF INVESTIGATION FORMER CHEVRON SS 9-0020 17TH AND HARRISON OAKLAND, CALIFORNIA

1-27-88

Prepared for

Chevron U.S.A. Inc. San Ramon, California

Prepared by

EA Engineering, Science, and Technology, Inc. Lafayette, California

Anita Yan

Anita Yan

Date

Douglas A. Selby, Ph. D. E.

Civil Engineer

No. C030903

January 1988

CIVIL

9/2/88
LM - Do you want
This to be
assigned to
anyone?
UZ

RECEIVED

HAZARDOUS MATERIALS/ WASTE PROGRAM

RWQCB Bay Area Region 1111 Jackson St., Rm. 6048 Oakland, CA 94607

Re: Former Chevron SS #90020 - 17th & Marrison, Oakland, GA

Centlemen:

Enclosed is the soil vapor survey conducted at the above site. As indicated minor amounts of hydrocarbon vapors were observed over the entire site. These vapors have tentatively been identified as methanol. Only one sample point yielded any BTX isomers.

To further investigate the site, Chevron plans to install (3) soil borings that will be converted to monitor wells if groundwater is encountered.

If you have any questions, please contract Gordon Davitt at (415) 838-5225, or Steve Camello at (415) 838-5219.

Sincerely,

D. MOLLER

GJD/jas:MW1-39 Enclosure

cc: Alameda County
Dept. of Environmental
47 - 27th St., Rm. 322
Oakland, CA 94612

Returned to Storm until

Returned to Storm until

Monres received - Then

well lozy in

Lis Neeks letter to seem w/

My repeat for A for revens

* Statement what it would be

revoiced w/o & & &

A COMPANY

			Page
1.	INTRO	DDUCTION	1
	1.2	Scope Site Setting Hydrogeology and Water Use	1 1 1
2.	SOIL	VAPOR CONTAMINANT ASSESSMENT	3
		FIELD INVESTIGATION DISCUSSION	3 7
3.	CONCI	LUSIONS	8
4.	REFE	RENCES	9
APPE	ENDIX	A: Principles of Soil Vapor Contaminant Assessment	
APPE	ENDIX	B: SVCA Field Notes and Chromatograms	
APPE	ENDIX	C: Use of Low-Molecular-Weight Standards To Identify Early-Eluting Compounds	

1. INTRODUCTION

1.1 SCOPE

At the request of Chevron U.S.A. Inc., EA Engineering, Science, and Technology, Inc. (EA) conducted a Soil Vapor Contaminant Assessment (SVCA) at the site of former Chevron Service Station (SS) 9-0020 in Oakland, California. This report describes the SVCA technique, the site investigation, and its results.

1.2 SITE SETTING

Chevron SS 9-0020 is located in Oakland, California (Figure 1), on the southwest corner of the intersection of 17th and Harrison streets (Figure 2). At present the site is a parking lot. Land use nearby is mainly commercial and residential. A dry cleaning facility is located on 17th Street, one building to the west of the site.

The site is located on the edge of Oakland City Center. Broadway Street, where major department stores and large office buildings are located, lies within one-quarter mile to the west of the site. A residential area, consisting mostly of large apartment buildings, is located to the northeast of the site, near Lake Merritt.

1.3 HYDROGEOLOGY

The downtown portion of the City of Oakland lies over Quaternary marine and non-marine alluvial deposits consisting of layers of sand and gravel interspersed with thick sections of sandy clay and clay. The uppermost of these strata is the Merritt Sand, which underlies the site (Helley et al. 1972). These deposits are unconsolidated, and the aquifers in the area tend to be unconfined.

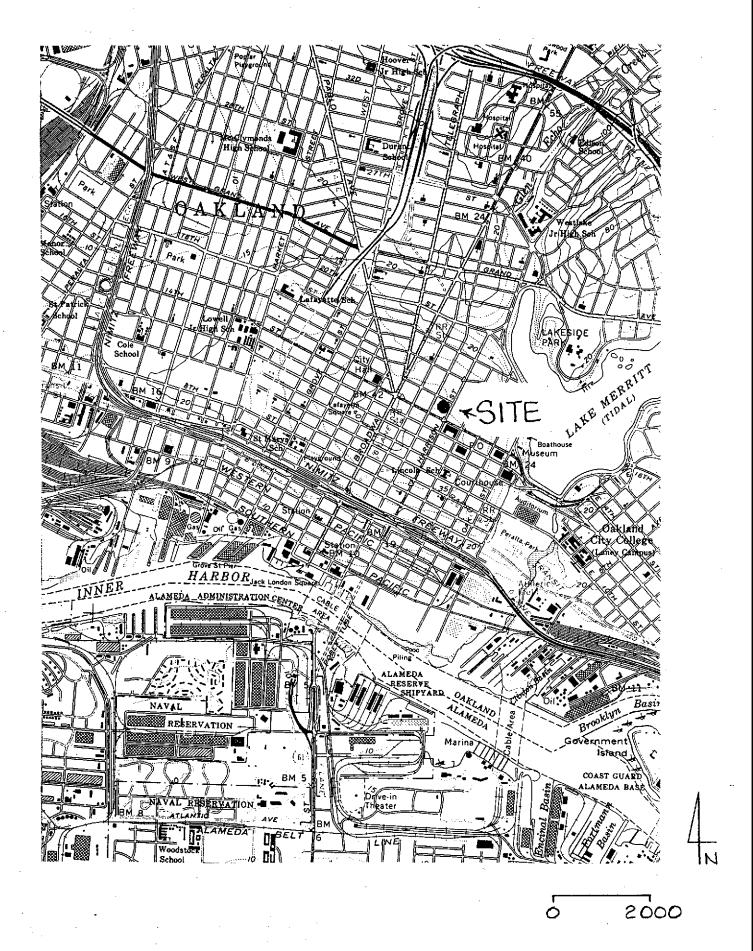


Figure 1. Location of Chevron Service Station 9-0020, Oakland California.

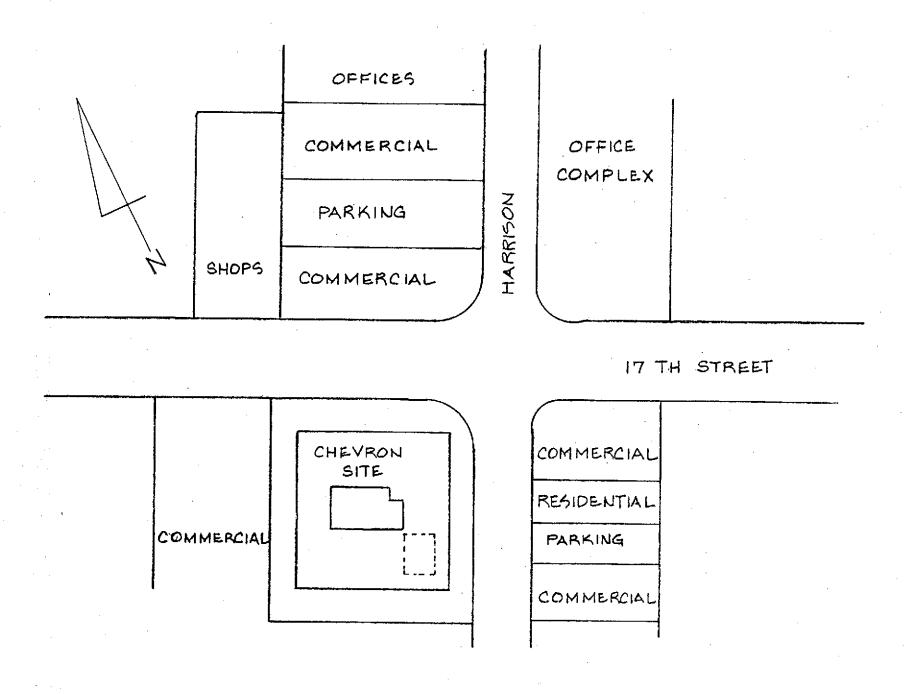


Figure 2. Land use in the vicinity of Chevron Service Station 9-0020, Oakland, California.

No soil borings are available for the site, so the site-specific subsurface geology and water table depth are unknown. There are a number of wells within several blocks, and a cathodic protection well in the area indicates a ground water depth of 20 feet (Alameda County Flood Control and Water Conservation District 1987). The site is at an elevation of approximately 35 feet, about 30 feet above the surface of Lake Merritt, located about 2,000 feet to the east (see Figure 1). The immediate topographical gradient is approximately 65 feet per mile, a little over one percent, sloping down to the east, toward Lake Merritt. The ground-water gradient is presumed to follow topography, i.e., about a one percent slope down to the east.

2. SOIL VAPOR CONTAMINANT ASSESSMENT

Following a subsurface gasoline release, as free product migrates downward towards the ground water some of the gasoline will be adsorbed to the soils and some will vaporize. In the case of a spill of sufficient volume to exceed the soil binding capacity, free liquid will reach ground water, at which point it will float and may begin to vaporize and solubilize.

On the basis of these and other physicochemical properties and behaviors of hydrocarbon mixtures, described in Appendix A, it can be seen that associated with any ground-water, soil, or free-product contamination there is vapor phase contamination. The SVCA technique takes advantage of this, and through the collection and analysis of soil vapor permits rapid delineation of the extent of contamination.

2.1 FIELD INVESTIGATION

2.2.1 Sample Collection Methods

Before each sample was collected, a vacuum pump was used to purge previously collected vapor from the probe to ensure that the sample was not contaminated. The vacuum pressure reading on the purging apparatus was recorded. This vacuum pressure is related to the soil's gas permeability: a high reading suggests that there is a resistance to soil gas movement and a vacuum is being created between the tip of the probe and the pump. If this vacuum is maintained through the pumping period, a representative

sample of the soil gas may not be obtained, and anomalously low hydrocarbon readings may result. In most situations, initial vacuums are released and the vacuum pressure readings drop. A low reading indicates that there is a free flow of soil gas from the vadose zone through the probe, and after purging the sample is assumed to be representative.

The samples were collected through a septum with a microsyringe and injected into an HNu 421 chromatograph for analysis. 421 is a laboratory-size, temperature-programmable gas chromatograph equipped with a flame ionization detector (FID). The hydrogen-air flame ionizes compounds, generating an energy increase in the detector, which appears as an electrical signal. Vapor samples are injected into the gas chromatograph, separated on an analytical column, sensed by the detector, integrated, and reported as individual compounds on chromatograms. The instrument is operated isothermally at 60°C and the capillary column flow rate is 10 ml/min. These conditions ensure peak retention time stability and prevent contaminant build-up within the column. Blanks are run to verify that the system is free of contamination; as necessary, the instrument is re-calibrated by injecting standards and by running ambient air blanks. data, along with multiple standard runs, ensure system reproducibility.

The chromatograph yields a response in the form of an electrical signal, measured in volts; this is recorded and integrated across time by a Shimadzu C-R3A integrator. The peak area is expressed as volt-seconds (V-sec). The instrument is calibrated with a multicomponent standard consisting of known concentrations of benzene, toluene, xylene, and ethylbenzene. The integrator calculates and stores the response ratio, V-sec:ppm. The ratio for each component of the standard is used to quantify the concentrations of identifiable vapors in field samples according to their V-sec values.

The concentrations of unidentified compounds are calculated in a similar manner. Although petroleum hydrocarbons produce variable instrumental responses, the assumption may be made that all of the hydrocarbon constituents have response-to-concentration ratios approximately equivalent to that of benzene and that all quantifications may be based on the ratio for benzene. In the table describing the results of the assessment, the column entitled "Peaks Prior to Benzene" represents the sum of the responses in V-sec for all peaks eluting prior to benzene, proportioned to the calibrated V-sec response for benzene. Similarly, the column entitled "Total Detected Petroleum Hydrocarbons" or "Total Volatile Hydrocarbons" represents the sum of all V-sec responses, proportioned to that for benzene.

2.1.2 Results of SVCA

Table 1 presents the results of the SVCA. No discernible pattern of soil vapor hydrocarbon concentrations was found. Although TDH was at significant levels throughout the site, benzene was below detection everywhere, and toluene was below detection at all points except V1.

The SVCA results can be used with Henry's Law to estimate a ground-water concentration. A Henry's Law constant (H) is the ratio of a chemical's concentration in air to its concentration in water at equilibrium. It can be estimated by:

 $H = C_{SV}/C_{W}$

where

H = Henry's Law constant, atm-L/mole

C_{SV} = vapor concentration, atm

 $C_{\mathbf{w}}$ = water concentration, mole/L.

For estimating ground-water concentrations, the equation can be rearranged as:

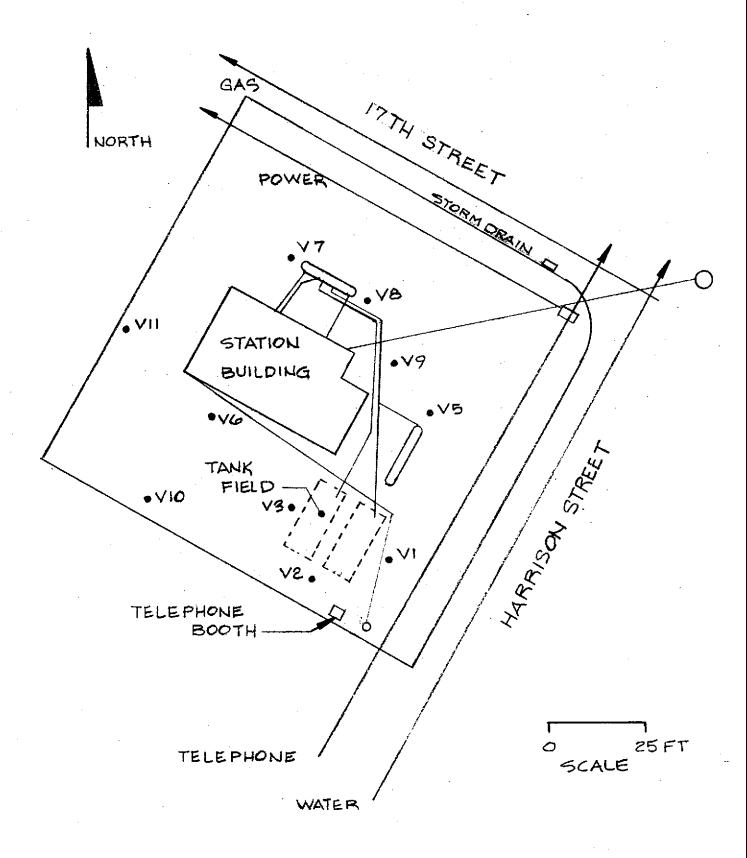


Figure 3. Locations of station facilities, and SVCA sample points at Chevron Service Station 9-0020, Oakland California.

CONCENTRATIONS OF HYDROCARBON CONSTITUENTS IN SOIL VAPOR AT CHEVRON SS 9-0020, 17TH AND HARRISON, OAKLAND, CALIFORNIA, 17 DECEMBER 1987

Sample	Depth	Peaks Prior to Benzene ^a	Benzene	Toluene	o-Xylene	m,p-Xylene	Ethyl- benzene	Peaks Not Otherwise Identified	Total Volatile Hydro— carbons
Location	(ft)	(ppm)b	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)b	d(mpm)b
V1/A	3.0	1-5	.<1	<1	<1	<1	<1	<1	1-5
V1/B	5.5	5	<u><1</u>	₹1	<1	<1	<1	<1	5
V1/C	8.0	5	<1	1-5	<1	1-5	<1	1-5	10
V1/D	10.5	1-5	<1	<1	<1	 <1	< 1	<1	1-5
V1/E	13.0	5	< 1	<1	<1	<1	< 1	<1	5
V2/A	3.0	1-5	<1	<1	<1	<1	<1	< 1	1-5
V2/H V2/B	8.0	1-5	ζ1	<1	<1	< 1	< 1	<1	1-5
V2/D V3/A	3.0	10	<1	<1	<1	<1	<1	<1	10
V3/B	5.5	10	<1	<1	< 1	<1	<1	₹1	10
V3/C	8.0	5	<u>< 1</u>	<1	<1	<1	< 1	< 1	5
V3/D	10.5	1-5	<1	< 1	< 1	<1	< 1	< 1	1-5
V4	3.0	15	<1	<1	·<1	<1	< 1	<1	15
V5	3.0	10	<1	<1	₹1	<1	<1	<1	10
V6/A	3.0	20	<1	<1	<1	<1	< 1	<1	20
V6/B	8.0	140	< 1	<1	₹1	<1	< 1	<1	140
V6/C	13.0	1-5	<1	<1	<1	<1	<1	<1	1-5
V7	3.0	1-5	<1	<1	<1	<1	<1	1	- 5
V8	3.0	1-5	<1	<1	<1	<1	<1	<1	1-5
V9/A	3.0	1-5	<1	< 1	<1	< 1	<1	<1	1-5
V9/B	8.0	1-5	<1	<1	< 1	<1	<1	1	5
V10	8.0	1-5	<1	<1	<1	<1	<1	<1	1-5
V11	8.0	5	<1	<1	<1	<1	<1	<1	5 ,

a. Early peaks from blank data subtracted from total peaks prior to benzene. b. Quantified on the basis of the V-sec:ppm response ratio for benzene (see text).

TABLE 1 (continued)

BLANK DATA

Test Time	Peaks Prior to Benzene ^a (ppm) ^b	Benzene (ppm)	Toluene (ppm)	o-Xylene (ppm)	m,p-Xylene (ppm)	Ethyl- benzene (ppm)	Peaks Not Otherwise Identified (ppm)b	Total Volatile Hydro- carbons (ppm)b
1000	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	0.1
1349	1.0	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	1.0

PERCENTAGE OF STANDARD RECOVERED

Test Time	Benzene (ppm)	Toluene (ppm)	o-Xylene (ppm)	m,p-Xylene (ppm)	Ethyl- benzene (ppm)
1035	100	100	100	100	100
1339	97	99	105	104	102

GASOLINE STANDARD

Sample	Peaks Prior to Benzene ^a (ppm) ^b	Benzene (ppm)	Toluene (ppm)	o-Xylene (ppm)	m,p-Xylene (ppm)	Ethyl- benzene (ppm)	Peaks Not Otherwise Identified (ppm)b	Total Volatile Hydro- carbons (ppm) ^b
Chevron Super Unleaded	12,000	25,000	77,000	44,000	76,000	24,000	180,000	540,000

 $C_W = C_{SV}/H$.

To make the units compatible, the following conversions are used:

1 ppm soil vapor = 1×10^{-6} atmosphere 1 mole = mole weight expressed in milligrams.

The molecular weights of benzene and toluene are 78,000 mg/mole and 92,000 mg/mole, respectively (EPA 1986b); their Henry's Law constants are 5.6 atm-L/mole and 6.4 atm-L/mole (EPA 1986b). Using these data, the expected ground-water concentration of benzene can be estimated as:

 $C_{w-benzene} = 0.014 C_{sv-benzene}$.

For toluene, the ground-water concentration can be estimated as

Cw-toluene = 0.014 Csv-toluene.

Throughout the site, the detected concentration of benzene was below detection: less than 1 ppm. This theoretically corresponds to a ground-water benzene concentration less than 0.014 mg/L. The highest detected concentration of toluene, in the vicinity of the waste oil tank, was 5 ppm, theoretically corresponding to a ground-water toluene concentration of 0.07 mg/L. The San Francisco Bay Regional Water Quality Control Board (1985) found that gasoline-saturated water at equilibrium will contain as high as 40 mg/L of benzene and from 9 to 76 mg/L of toluene. Thus, the order-of-magnitude estimates of ground-water hydrocarbon constituents at the Oakland site suggest that ground-water contact with free product has not occurred.

TDH levels were higher than would be expected from the toluene and benzene levels if the source was a petroleum product: the concentrations of total detected hydrocarbons at the respective locations are shown in Figure 4. The chromatograms showed that

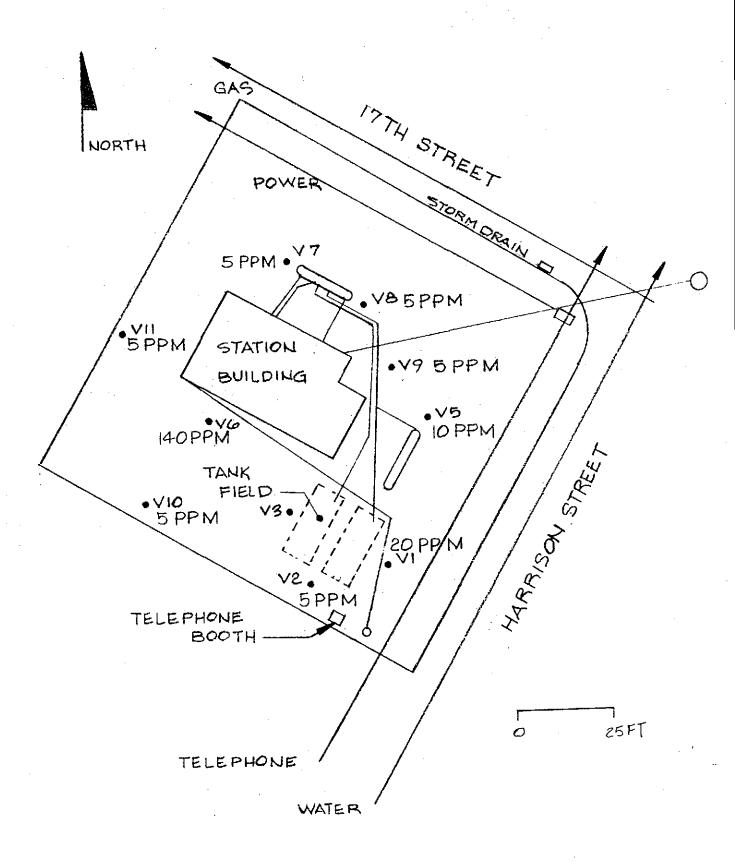


Figure 4. Concentrations of total detected hydrocarbons at each sample point at Chevron Service Station 9-0020, Oakland, California.

peaks prior to benzene, corresponding to low-boiling-point constituents, contributed almost all of the hydrocarbon concentrations found. Some of the detected early-eluting peaks are asymmetrical. An asymmetric peak indicates that the compound is polar (one in which there is a partial charge in the molecule).

2.2 DISCUSSION

Because of the anomalous presence a chromatographic peak that appears to represent a single low-boiling polar compound in no predictable UST-related pattern, a set of standards made up of low-boiling constituents was used to calibrate the gas chromatograph, and the resulting chromatograms used to examine the unidentified constituents (Appendix C). The highest detected concentration of this compound was located in the vicinity of the waste oil tank. It is suspected that this compound may be methanol or another small alcohol. Methanol is the metabolic end product of bacteria of the genus Pseudomonas. Pseudomonas spp., bacteria commonly found in soil and water, aerobically metabolizes methane (Bailey 1986). Methane may be produced by methanogenic microorganisms that exist naturally in soil. This consumption of hydrocarbons by Pseudomonas and similar microorganisms is a possible source of the small alcohol detected in the soil vapor.

In summary, there appears to be a natural biodegradation product but no significant petroleum-based hydrocarbon concentration in soil gas at the site.

3. CONCLUSIONS

Very minor amounts (averaging 1-5 ppm) of hydrocarbon vapor were observed in soil gas over the entire site of Chevron SS 9-0020, in Oakland. These vapors are low-boiling compounds (peaks eluting prior to benzene) which appear to be composed predominantly of a single polar compound: this may be methanol, whose presence is believed to be the product of bacterial metabolism. The highest concentration of this low-boiling compound was found near the waste oil tank.

Except at one point (V1, near the tank field), none of the usual aromatics (BTXE) associated with gasoline was detected. At V1, the concentration of toluene reached 1-5 ppm at a depth of 8 feet. On this basis, it is concluded that no significant fuel contamination of soil is present at this site.

4. REFERENCES

- Alameda County FC&WCD (Flood Control and Water Conservation District. 1987. Bay Plain Well Base Map, Oakland West Street.
- API (American Petroleum Institute). 1985a. Laboratory Study on Solubilities of Petroleum Hydrocarbons in Ground Water. Publ. 4395. API, Washington D.C.
- API (American Petroleum Institute). 1985b. Literature Survey: Unassisted Natural Mechanism to Reduce Concentrations of Soluble Gasoline Components. Publ. 4415. API, Washington, D.C.
- Bailey, J.E. 1986. Biochemical Engineering Fundamentals. McGraw-Hill, New York.
- Bruell, G.J. and G.E. Hoag. 1986. The diffusion of gasoline range hydrocarbon vapors in porous media—experimental methodologies, in Proceedings of the Joint NWWA/API Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, Houston, Texas.
- Heeley, E.J., K.R. Lajoie and D.B. Burke. 1972. Geologic map of late Cenozoic deposits, Alameda County, California. San Francisco Bay Region Environment and Resources Study. Basic Data Contribution 48. U.S. Dept. Interior and U.S. Dept. of Housing and Urban Devel.
- Hinchee, R.E. and H.J. Reisinger. 1987. A Practical Application of Multiphase Transport Theory to Ground-water Contamination Problems. Ground Water Monitoring Rev. [Winter 1987]:84-92.
- Lyman, W.J., W.F. Reehl, and D.H. Rosenblatt. 1982. Handbook of Chemical Property Estimation Methods—Environmental Behavior of Organic Compounds. McGraw-Hill Book Co., New York, New York.
- Odum, E.P. 1971. Fundamentals of Ecology (3rd ed.). Saunders, Philadelphia.

APPENDIX A

Principles of Soil Vapor Contaminant Assessment

APPENDIX A: PRINCIPLES AND APPLICATION OF SOIL VAPOR CONTAMINANT ASSESSMENT

The soil vapor survey, or SVCA, technique takes advantage of the behavior of hydrocarbon mixtures and the physicochemical properties of the individual components in the subsurface. Following a subsurface gasoline release, free product will migrate downwards towards the ground water, some of the gasoline will volatilize, and some will adsorb to the soils. In the case of a spill of sufficient volume to exceed the soil binding capacity, free liquid will reach ground water, at which point it will float and may begin to vaporize and solubilize.

Like most hydrocarbon liquids, gasoline is a complex mixture of many compounds, each with its own physicochemical properties. The contaminants found in ground water located beneath a layer of floating hydrocarbon are generally less hydrophobic and are generally found in concentrations proportional to the hydrocarbon/water partition coefficient (i.e., the relative solubility of a given compound in the bulk hydrocarbon to its solubility in water) and to their percent composition in the gasoline. It may be noted that concentration of total benzene, toluene, and xylenes in product-saturated water may exceed 10-20 mg/L (API 1985a).

Hydrocarbons will also volatilize into the air- or gas-filled soil interstices. Volatilization is largely a function of vapor pressure. The natures of the contaminant mixtures, in terms of specific component mixtures, in either the aqueous or vapor phase, are distinctly different from each other and from the gasoline. That is, the more hydrophilic hydrocarbons will be more likely to move into ground water, while the more volatile compounds are more likely to move into the vapor phase, and the compounds that are both less volatile and more hydrophobic are more likely to remain in the free product or be adsorbed to soils (Hinchee and Reisinger 1987).

Hydrocarbons not remaining in the free product will partition into either ground water or soil vapor and migrate as the result of a variety of interacting forces. In ground water, contaminants will migrate with the ground-water flow, interacting with the rock or soil geological medium. As the contaminants pass through a medium, organic constituents in the medium interact with the contaminants, and some are adsorbed or bound to particle surfaces (Bruell and Hoag 1986). The result is a net retardation in the velocity of movement of those compounds relative to that of the ground water in which they are dissolved. The process is analogous to laboratory chromatography. The compound with the least affinity for the porous medium is least retarded and therefore moves most rapidly. This compound, then, is present at the leading edge of a contaminant plume.

The affinity of a compound for the soil porous medium is partly a function of the compound's hydrophobicity—that is, the more hydrophobic a compound the more likely it is to adsorb to the solid medium. Aqueous solubility is a good indicator of hydrophobicity: the more soluble a compound is, the less hydrophobic and more hydrophilic it is, and vice versa. Vapor pressure is a good indicator of volatility; compounds with higher vapor pressures are more volatile.

In determining the environmental fate of various hydrocarbon compounds in a hydrocarbon mixture such as gasoline, those which have a high vapor pressure are more likely to move into the vapor phase, or evaporate. Compounds with high solubility are more likely to move into ground water from the free product and, once in ground water, tend to move more rapidly. Compounds of low vapor pressure and low solubility tend to remain in the free product or be adsorbed to the solid matrix and remain relatively immobile.

Dissolved compounds will tend to volatilize from the aqueous phase. The Henry's Law constant is the equilibrium ratio of a

compound's concentration in the vapor phase to its concentration in the aqueous phase. The higher a compound's Henry's Law constant, the greater its tendency to volatilize from water into air.

Figure A-1 graphically illustrates the vapor pressure, aqueous solubility, and Henry's Law constants, and their relationships, for selected hydrocarbons typically found in gasoline. The Henry's Law constant is approximated here as the ratio of vapor pressure to solubility.

The Henry's Law constant is directly related to the tendency of compounds to volatilize, as opposed to solubilizing. Compounds with Henry's Law constants greater than 0.001 (atm m³/mole) volatilize from water into air very rapidly (Lyman et al. 1982); those with Henry's Law constants greater than 0.01 (atm m³/mole) are generally volatilized so rapidly that they are seldom found in gasoline-contaminated ground water. It may be observed (Figure A-1) that tetraethyl lead (TEL) has an extremely low solubility and a relatively low vapor pressure. As a result, this constituent would not be expected to solubilize and migrate in ground water, and although its low vapor pressure would indicate slow volatilization, its Henry's Law constant indicates that it may be more rapidly volatilized than solubilized. The fate of TEL would be expected to be long-term binding to the soil.

On the basis of these properties it can be seen that associated with any ground water, soil, or free-product contamination is vapor phase contamination. The SVCA technique takes advantage of this, and through the collection and analysis of soil vapor permits a rapid, cost-effective delineation of the extent of contamination.

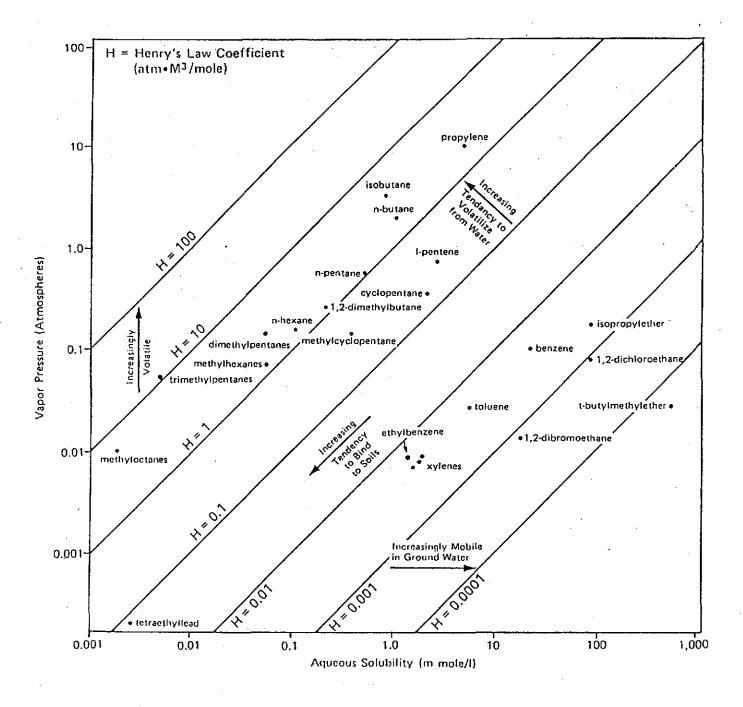


Figure A-1. Vapor pressures, solubilities, and corresponding Henry's Law constants for major constituents of gasoline.

SVCA DATA SHEET

Project Number: 41 82 X	Date: 17 Dec 1997
Project Manager:	Analysts: AWA ME MG
Site Location: 17th & Harrison, Oakland, OA	Pump Number: 4-0020

	Grid Location	Time	Depth (ft)	OVA (ppm)	Purge Time	Vacuum Reading	Soil Type	Comments
1	BLANK .	9:33	_				- .	RESET INTEGRATOR
2	STANDARD	00:0				_		DID NOT CALIBRATE
3	BLANK	10:00				1		
4/	V1/A	10:25	3		10	22		TANK PIELD
5	STANDARD	10:35		-	-			CALIBRATED HERE
6	V3/A	10:49	3		10	4		
7	· V1/B	1100	5.5	-	10	27		
8	- V1/C	11:11	8		10	28		
9.	- V3/B	1121	5.5		10	20		HIT TOP OF TANKS at ~ 4.5 ft. WOVED 3ft away from tanks.
10	V1/D	1 35	10.5		10	26	*	TOOK 1-2 min for vacuum to subside
ll o	- V3/C	1146	8		10	26		
12	V1/E	1156	据13		10	24		
13	- V3/D	1207	10.5		10	20		
14	V4A	1217	3		10	2		Hit concrete / hard layer At 4.
15	V5	1228	3		10	20		
16	V2/A	1258	3		10	13		

SVCA DATA SHEET

Project Number: LHU 87X	<u>.</u>	Date: 12/17/87
Project Manager: RH	-	Analysts: WAE / AMY/MS
Site Location: 17th and Hurvison, out	CA	Pump Number: 55 9-0020

Grid Location	Time	Depth (ft)	OVA- (ppm).	Purge Time	Vacuum Reading	Soil Type	Comments
V6/A	1307	- 3		10'	0.5	-	No alon.
V2/B	1319	8		10	25		
V6/B	1327	8		ID	24		
STD	1339	-		-			soon
BLANK	1349						
V6/C	1359	13		w	25		
V7	1409	3		10	13		
V8	1422	3		10	27		·
V1D	1446	8		10	25		
V9/A	1520	3		10	21		
V11	1533	8	-	W	27		
V9/B	1559	8		Ю	15		found mud sucked into probes after pulling out,
UN Super Unleaded	1618				_		+m 1 M head space

HNU 421 Chromatogram report sheet

P	roject Nu	mber: (H.V <u>.8</u>	2X		Date:	<u></u>
s	ample:	V1/A		 .		Analysts:	MA
v	ol. Inj:	1001	<u>ul </u>			Std. Vol.	Inj:
c	omments:		-				
A.SA. START	·.						
3271778	7	19:25:2	4				
	>	,,,,,0.81 82	B 272				
=-, ==		7 7 7					
-	A. Aka			•			
=	\$:935 a = a =						
=	E 3. 965			÷			
	2101						
_[
·\	4.69						
=	9 3 7 3	•					
₫.							
				•			
Chromati	OGRAM 1	mEmOR12	EΒ				
CHROMATI	0940 0-8	3A ·	•		FILE	0	
SAMPLE :					METHOD	2.4	
REPORT	NO 1767			,	BAMPLE W	T 196	
24NO	TIME	AREA	nk î	DNO	CONC	NAME	
		11.54215	10.5	27 - 172	00110	:10:11	•
₹014 000 00#		and the second					•
7 100	INJECTED (UL)					
DFLUTIO	ħ				•		
? i PBB		Ye C' wi			× 0.		
TDD M,P-XYL		BEN Et ben			TOC Phol		0-XYL - TVH
1.9176		0	•		0		9 .
9.18899		0			9.37221	2	2.47889
朱尼尼尼印度米	16:UNDEF1	D STATEM	ENT IN	416	9		•

HNU 421 Chromatogram

1231 11 10 20 31, 11 10.	report sheet				
Project Number: CHV82X Sample: V1/B Vol. Inj: 100µL Comments:	Date:				
7 7/87 11:00:44					
2 0.398 0 .35%, 285 3 11.582€					

```
1.26
2.205
2.532
3.017
$.$$3
<del>66. 44</del>943
```

CHROMATOGRAM MEMORIZED

STAR 12/1

CHROMATOPAC	C-RSA	FILE	6
SAMPLE NO	9	 METHOI	24
REPORT NO	1272	SAMPLE	WT 100

ekno	TIME	AREA	МK	IDNO	0 M O	NAME
1	0.202	8540				
2	0.285	58692	٧			
3	0.358	81554	V		•	
7 100 DILUTIO		102/1000				
7 1 PAB M,P-XYL 3.46666 0.31046		0 0 El ren Beu			TOL PNOI 0.128388 0.442899	0-XYL TVH 0.0334013 4.43005

0.442099

4.43095

ERROR 16: UNDEF'D STATEMENT IN 419

0.0873108

0.0660792

ERROR 16:UNDEF'D STATEMENT IN

3.96744

1.32259

HNU 421 Chromatogram report sheet

0.591614

9.55879

Project Nu	umber: CHV82X		Date:		B7
Sample:	V1/C		Analysts:	mut/	DP/
Vol. Inj:	Looph		Std. Vol.	Inj:	50u
Comments:					
				-	
START 12/17/87	11:13				-
₹ 0 tt. 895	12. 0.225	0,332	•		
7. 17. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	28				
₹ 2.53 \$.686	2.218				
\$.766 4.13 4.13					
5.53				•	
-					
CHROMATOGRAM 5	nEMORIZED				
CHROMATÓPAC C-	R3A	FILE	()		
SAMPLE NO 0 REPORT NO 1773	*	METHOD SAMPLE	24 NT 100		
RJN VOLUME INJECTED ? 100 DILUTION ? 1					
**************************************	BEM FT REN	ïūt enat		Ü-XYL TUS	

1.62061

1.90314

HNU 421 Chromatogram report sheet

Vol. Inj:

Project Number: CHV82X	Date
Sample: V1D	Anal
vol. Inj: 100 pl	Std.
Comments:	•
12/17/87 11:35:	•
8.65 9.965 1.388 1.753 2.263 2.563 2.563 2.563 3.588 3.588 4.6988 5.783	
CHROMATOGRAM 2 MEMORIZED	
CHROMATOPAC C-R3A SAMPLE NO 8 REPORT NO 1775	FILE METHOD SAMPLE WT
5.7.15	

 Θ 24 100

PKNO	TIME	AREA	МΚ	IDMO	CONC	MAME
		• .		,		
€ 2	0.217	9611				
2	0.262	20123	٧			
3	0.327	39167	٧			
4	0.437	17959	٧			
5	0.592	10497	٧			
6	0.67	16051	٧			
7	and the second	A				
RUN						
VOLUME	INJECTED	(UL)				
? 100						
PildTle	N	•				
'/ <u>1</u>						
· 233	•	BEN			TOL	0-875
M.P-XYL		ET BEN	-		PMOI	TVH
2.2586	6	0			0.201989	9
0.1931	59	0			9.756889	3.32069
		and the second				

410.

ERROR 16:UNDEF'D STATEMENT IN

HNU 421 Chromatogram report sheet

Project Nu	mber: (HV82X
Sample:	V1/E
Vol. Inj:	100µL
Comments:	
2/17/87	11:56:32
0.95 0.95	6. 6 .8 2 33

Date:	12/17/87
Analysts:	_MAT/DP/AAY
Std. Vol.	Inj: 50ul

CHROMATOGRAM 9 MEMORIZED

CHROMATOPAC C-R3A FILE 0
SAMPLE NO 0 METHOD 24
REPORT NO 1777 SAMPLE NT 100

PKMO	TIME	AREA	МK	0 M Q 1	CONC	Brah
1 2 2 RUM VOLUME ? 198 D:LUTI		7277 57106 73055 (UL)	V V			
7 1 PBB n.P-XY 3.768 8.348	'L :24	BEN ET BEN 0 G F'B STATE		In	TOL PNOI 0.139885 0.376586 410	0-XYL TVH 0 4.62741

 \mathfrak{S}

		TECHNOLO	GY, IN	1C.		l Chromatort sheet	ogram
Sa	oject Numl	ber: CHV_ V2/A 100M	82X		Date: Analysts: Std. Vol.		7 /87 1 0P/
	omments: _			·			
TART. 2/17/87	7 ⇒ 0.185	12:58:56					
	9:545	y.453					
	3:593						
	5.987					·	
CHROMAT	rogram 13	MENORIZED					
CHROMAT SAMPLE REPORT	9 OM	:3A		FILE METHOD SAMPLE	0 24 ыт 100		
PKNO	TIME	AŖEA MK	IDNO	CON	C MAM	E	
1 2	0.185 0.27	1168 109882 52505 SV					

PKNO	TIME	AŖEA	пK	IDNO	CONC	HANE
1	0.185	1168				
2	0.27	109882				
3	0.453	56505	s٧		•	
4	1.17	19986			•	
	-					-
	TOTAL	178541			<u> </u>	
RUM						
VOLUME	INJECTED	(UL)	٠			

ERROR 16:UNDEF'D STATEMENT IN

? 100 NOITUJIG $0 = X \, Y \, L$ TOL MBE. PBB TVH PNOT ET BEN M, P-XYL 0 . Ũ 0 3,71369 4.02619 0.3124 Ð Θ

41.0

HNU 421 Chromatogram report sheet

		.,	report	. sneet	
Project Num	ber: CHV82	X	Date:		87
Sample:	V2/B	·	Analysts: _	MAE/D	P/ HAY
Vol. Inj: _	100pl	_	Std. Vol. I	nj:1	Del
Comments:		***	· · · · · · · · · · · · · · · · · · ·	7	
SMART 12/17/87	13:19:03				
8 : \$ 6 8 4 1 : \$ 4 6 8 1		32			-
1.782					
2.573					
3.728			· .		
5.208	•				
5.98					
CHROMATOGRAM 15	MEMORIZED		•		
CHROMATOPAC C-R SAMPLE NO 0 . REPORT NO 1783	3 A	FILE HETHOD SAMPLE	0 . 24 µT 100		
PKNO TIME	AREA MK ID	0402 08	MAME		
1 0.207 8 0.332 3 0.44	65569` 58954 SV 1292 T				
4 1.188 5 3.728	12201 2971				

Ð

RUM

VOLUME INJECTED (UL)

TOTAL 140987

2 100 Bilution

? 1

	EEN	TOL	0-XYL
m, P-XYL	ET BEN	PNOI	1 V H
2.52637	0	9	Θ
êi .	9 '	0.431564	2.95793

HNU 421 Chromatogram report sheet

Project Nu	mber:	CHV82X
Sample:)A
Vol. Inj:	10	DIL-
Comments:	<u>-</u>	-

9.36489

CHROMATOPAC C-R3A FILE 0
SAMPLE NO 0 METHOD 24
REPORT NO 1771 SAMPLE NT 100

CHROMATOGRAM 3 MEMORIZED

TOTAL 366224 8

RUN

VOLUME INJECTED (UL)

? 100

DILUTION

? 1

PSB BEN TOL

1.P-XYL ET BEN PNOI

9.25977 0 0
0.10512

060

? 100 DILUTION

M, P-XYL

9.60287

BEN ET BEN

Ü

 Θ

ERROR 16: UNDEF'D STATEMENT IN

PBB

HNU 421 Chromatogram report sheet

	Project Nu	umber: 6	HV	82X	Date:			/17/87 =/ OP/n	
	Vol. Inj:	100) WL			td. Vol.		7-VI/ 17 50ul	
· ·	Comments:		/						
				-					
START (2/17/)	87	11:21.0	_	•					
		·						0.287	
	1.173			0.355					
. <u>-</u>									
					•				
=	4.PFF								
4			-						
_	5.962				,		·	-	
I CHROMA	TOGRAM 6	MEMORIZ	€D						
CHROMA BAMPLE KEPORT		(3 A			FILE METHOD SAMPLE WT	0 24 100	·		
								4	
2K M O		AREA	пK	IDNO	0010	NAME			
ì	0.2	10568							
2	0.28/	218467					•		
3 4	0.365 1.1/3	1535 5 5 3887	٧						
•	TOTAL	378478				-			
RUN TOLUME	in itati	Cara N							

TOL

1085

0.110577

 $0 \pm XY \in$

9.71345

TVH

e Drimadzi

221-25412

HNU 421 Chromatogram report sheet

Pr	oject Num	ber: CHV	82X	Dat	12/17/87 MAE/ DP/1		
Sa	mple:	V3/C		Ana			
Vo	ol. Inj: _	SOOM	·	Ste	d. Vol. Inj	:	50u
Co	omments:	/			:		
START	_						
12/17/8	7	11:46:					
_ <u>5</u> _	0.213-	- 0.4 15	 · ().298			_
	F. 3938						
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.795 1 482						
3	1.∂ีเอ็						
\exists	2.225 8.785					-	
ᆿ	年 『ちの母						-
7	9:96						
\exists	4 836						
	1.23			•			
#	5:555					•	
7						-	
╡	6.698	•					
CAROMAT	OGRAM 8	MEMORIZED					
.е. калым А.Х.	OPAC C-R	2 0		FILE	0		
SAMPLE				истнов	24		
REPORT				SAMPLE WT	100		
PKNÖ	TIME	AREA MK	OMGI	0080	NAME		
F. K. (10)	11375	PIVED HA		531.5			
1	0.298	121653 V					
2	0.415	67687 V					
3	0.688	10135 V					
4 5	1.195 2.225	5070 (2321	2	0.11	35 TOL		
					- -		
	TOTAL	206865		0.11	35		
RUN							
.70LUME .7 100	INJECTED	.UL)					
DILUTIO) N						
? 1							
P 8 B		BEN		TQL .	0-) TVI		• . •
M.P-XYI		M34 73 0		PNOI 0.059246			
4.6216	0.6			0.037240		83188	

a i fi

 $0 = X \ Y \ \Box$

1.19702

TVH

Project Number: CHV8:	2 X	Date		!
Sample: $\sqrt{3/D}$		Anal	ysts:	M.
vol. Inj: 100 pl		Std.	Vol. Inj	: <u> </u>
Comments:		•	· _ <u>· · · _ · </u>	
		· · · · · · · · · · · · · · · · · · ·		
				
IING* LEVEL OUT 0:		,		-
7/87 12:6//18	•			
<u>⊁</u>				
6.65 1, 2437				
		-		
	٠			
MATOGRAM 10 MEMORIZED				
MATOPAC C-RSA	FI		8 . 24	
LE NO - 0 IRT NO - 1278		THOD MPLE WT		
1				
TIME AREA MK	OMCI	COMC	RAME	
0.238 10440		•		
IME INJECTED (UL)				
100 JTION				

TOL

PNOI

0.0474395

ERROR 16:UNDEF'D STATEMENT IN 410

BEN

Ū

ET BEN

? 1

PHB

M.P-XYL

Project N	umber: CHV	}2X	Date:		12	117 187
Sample: _	VA	:		ysts:	mal	DP/AA
Vol. Inj:	100 pl	······································		Vol.	Inj:	50cl
Comments: QARMING* LEVEL 2/17/87	00T OF 12:17		· · · · · · · · · · · · · · · · · · ·		·	0.295
9.197						- 0.673
1.185						
2.182						•
3.188						
5.725						
I SHROMATOGRAM 1	1 MEMORIZED			•		•
CHROMATOPAC Č SAMPLE NO - 0 REPORT NO - 177	-R3A	ļ	ILE ETHOD AMPLE WT	0 24 100		
	,					
PKNO TIME	AREA MK	IDNO	0000	nane	-	
1 0.197 2 0.295					•	·
3 - 1.185 4 2.182	1266	2	0.0646	TOL		
TOTAL	543105		0.0646			
RUN 100 *ERROR* 9:UNDE RUN VOLUME INJECTEI		n 103				
? 188 DILUTION				٠.		•
7 1 PBB M,P-XYL	BEN ET BEN a		TOL PNOI - 0 - M323121		0-XYL TVH 0	

0.101954

410

Pı	roject Nu	mber: (H,V_	82X		Date	:	
Sa	ample:	V5				Anal	ysts: [MAT
Ve	ol. Inj:	100 m			•	Std.	Vol.	Inj:
C	omments:	1				4		-
				,	-			
START			→					
1271778) 	∕ ——52— ດ ເວ	12:28:0						
	<u> </u>	0.435					Ō.	3 2 ∲.288
	→ 1.15	7 '						
	1.483				•			-
	2.975							
	,	•						
	= 3.948							
. :	4.752							•
					•			
				•				
CHROMATI	i. OGRAM 12	MEMORIZ	ΕD					
0115040#								•
CHRUMHII Sample I	OPAC C-R NO 9	ЗН			FILE METHOD		0 '24	
	NO 1780				SAMPLE	йΤ	100	
							*	
PKNO	Emir	ARE'A	пK	IDNO	CONC		NAME	
1	0.19	1319					•	
5	0.288	120302						
3	0.327	134084	٧					
4	0.435	43956	٧					
	TOTAL	299660		_				
RUN								
YOLUME ? 100	INJECTED (UL)						
. 100 Dieutio	H							
? i			-					
PBB		BEN EF FFD	٠.	*	TOL)-XYL YVH
ი, P-XYL 2.4714		ET BEN 0			PNOI 0			:vH 0
.	U	. . ,			<u>-</u> ,			

Ģ

-9.536745-7

HNU 421 Chromatogram

EA ENGINEERING,
EA ENGINEERING, SCIENCE, AND TECHNOLOGY, INC.
TECHNOLOGY, INC.

report sheet Project Number: CHV82X Sample: V_{ℓ} Analysts: Vol. Inj: Std. Vol. Inj: Comments: START 13:07:22 12/17/87 0.277 ড়, উউট 1.185 6.928 CHROMATOGRAM MEMORIZED C-RBA FILE CHROMATOPAC SAMPLE NO METHOD **(**) SAMPLE WY 100 REPORT NO 1782 MAME

PKNU	IIME	AKEH	MΚ	LDMU	CONC	MHME	
		•					
1	0.277	444396					
2	0.382	231897	٧				
3	1.185	2842					
			-			_	
	TOTAL	679135			<u> </u>		
អប់អ							
VULUME	INJECTED	(BL)				•	
, 2 100							
DILUTIO	ИÚ						
? 1		•					
PBB.		BEM			TOL	0 - X	ΥL

PNOI

. (4)

TVH

18.2657

ET BEN

ERROR 16:UNDEF'D ST -

n,P−XYU

CRROR 16:UNDEF'D STATEMENT IN

HNU 421 Chromatogram report sheet

Project Number: CHV82X	Dat	:e:		7.87
Sample: V6B	λna	alysts:	MAE	DP/1
vol. Inj:	Sto	d. Vol.	Inj:	50 w
Comments:				
START				
12/17/87 13:27:54				0.267
3 1.00 955 1.00 955	9. 45			3.2,0
± 4.853		•		
⊋.202 ₹ 2.55				
		•		
		·		
CHROMATOGRAM 16 MEMORIZED				
CHROMATOPAC C-R3A	FILE METHOD	0 24		
SAMPLE NO 0 REPORT NO 1784	SAMPLE WY			
PKNO TIME AREA MK IDMO	CONC	наме		
RUN				
VOLUME INJECTED (UL) ? 100				
PILOTION				
PBB BEN M/P-XYL ET BEN	TÚL		0-XYL	
138.882 0 -	PMOI 0.0373118	2	TVH 0	

0.0566067

	Proje	ect Num	ber:	CHV8	2 X
	Samp	le:	16	10	
START	Vol.	Inj: _	10	Dul	
12/17			13:5	9:10	
	N THINK THE	0.212 0.243 1.39 1.795	,	-0.35 8	-

Date: Analysts: Std. Vol. Inj:

2.23 4.72 6.825

CHROMATOGRAM 19 MEMORIZED

CHROMATOPAC C-R3A FILE SAMPLE NO <u>(i)</u> METHOD REPORT NO 1787 SAMPLE WT 100.

PKNO	TIME	AREA	·MK ·	IBNO	COME	NAME
1	0.023	1094				,
2	0.212	4842			•	•
3	0.297	65843	٧			
4	0.358	61941	٧			•
5	0.695	1708	٧			
6	1.23	3900				
7	2.23	1167		2	0.0596	TOL
8	4.72	4693		4	0.2104	M.P-XY
	<u>-</u>			_		•
	TOTAL	144259			0.27	

RUN VOLUME INJECTED (UL) ? 100 DILUTION

0-276 FBB EEM TOL MAPHXYL ET BEN PNOI TVH Ð 0.0297859 Ð 2.7734 Θ 0.142626 3.05102 0.10521

Analysts:

Std. Vol. Inj:

•	Proj	ect Nu	mber:	CHN 8	XX
	Samp	le:	M		
5 i HK i	Vol.	Inj:	10		
12/17	787		14:09	9:34	
	<u> </u>	<u> </u>	23	.	
	4	1:132	t O r		
		- 1.ε	13		
	쿠	1:88			÷
			•		
	₹	3.237			
	-7	3.753			
	╡	4,47			
		•			

CHROMATOGRAM 20 MEMORIZEB

CHROMATOPAC C-R3A SAMPLE NO O REPORT NO 1788 FILE 0
METHOD 24
SAMPLE WT 100

PKNO	TIME	AREA	МK	IDHO	COMC	NAME
1	0.23	8553				
2	0.318	56530	٧			
3	0.358	59597	٧		•	
4	9.467	14326	٧			
5	0.658	3215	٧			
6	0.723	2499	٧			
7		21718				
8	3.753	14040				
					<u>-</u>	
	TOTAL	180478			0	

RUN
VOLUME INJECTED (UL)
? 100
DILUTION
? 1
PBB BE1

PBB BEN M,P-XYL ET : 3.06412 0

ACROMBA LATUNDERID STATEMENT IN

BEN ET BEN 0 0

TOL PMOI 0 1.01715

410

0-XYL TVH 0 4.08128

: E	roj	ect Num		CH.V.	32X
5	qms	le:	<u>√છ</u>		
7	Vol.	Inj:	1	Moul	·
START 12/17/8	37 - -	a ao7	14:		
		0.448 0.85 0.85 1.1.25		•= <u> </u>	 0.02337
) ====================================	2,235 2,578			• .
		3.395			
្រែបាក់កាក់ក	។ ប្រភព	96M 21	អតី៧០	RIZED	

Date: Analysts: Std. Vol. Inj:

C-RBA CHROMATOPAC Ũ SAMPLE NO REPORT NO. 1789

FILE 24 METHOD SAMPLE WT 100

5 K M O	TIME	AREA	МK	IDMO	CONC	BMANE
1	0.205	1897				
2	0.282	60217	٧			
3	0.337	87054	SV			
4	0.448	1893	T			
5	0.685	1936				
6	1.228	3447				
7	2.235	1235		2	0.063	TQL
	-					
	TOTAL	156778			0.063	

RUN VOLUME INJECTED (UL) 9. 199 DILUTION

BEN PBB ET BEN M, P-XYL 3.27396

0.0315207 0.101657

: 0-XYL TVH 0 3.40714

	LOJECC NU	mer: C	H.V.	044	Da	ate:	<u> </u>
	Sample:	V9/A			A	nalysts: _	N
1	Vol. Inj: .	100 µ		·	S	td. Vol. I	nj:
. 1	~~~~~+~·	15:20:5	6		•		•
	· <u> </u>	១៨៤	ი.ზა	3 75		÷	
	0.677	· ·	~.~	•			
		L					
	2.145	•				• .	
	-						
	3.783						
	→						•
	4:322			٠.			
	4.963						
	4						
	·						
	ł				*		
CHROMA	TOGRAM 23	memoria	ED	-			
CHROMA	TOPAC C-R	3A			FILE	8	
SAMPLE					METHOD	24	
REPORT	80 1791				SAMPLE WT	100	
	•						
PKMO	TIME	AREA	МK	IDNO	CONC	MAME	
. 1	0.203	9499					
2	0.275	35677	Ų				
3	0.337	44584	V				
4	0.447	10917	٧				
5	0.677	4476	V.				
6	1.192	.12774					
7	3.703	13664					
				-			
en i i ki	TOTAL	131592			0		
RUN Hallmar	The small man and						
	INJECTED (QL /					
? 199 50 UTT	n.k.:	•					
DILUTIO	Jil						
? 1		ክ ም su			7	-	1111
FBB		BEH			TOL	, U-	-XYL

FNOI

0.752052

9

410

TVH

2.6907

M.P-XYL

1.93865

ET BEN

Θ

Ũ

ERROR.16:UNDEF'D STATEMENT IN

		report sneet	report sneet				
Project Nu Sample: Vol. Inj: Comments:	wher: CHV82X V9/B 160 pl	Date:	17/87 /DP/114Y 50ch				
/87 1 8:88€	15:59:20 - 0.288 .337 0.20	7	- · ·				

CHROMATOGRAM 25 MEMORIZED

CHROMATOPAC C-R3A FILE 0
SAMPLE NO 0 METHOD 24
REPORT NO 1793 SAMPLE WT 100

						•	
PKMO	TIME	AREA	пK	IDNO	COMC	NAME	
	4						
i	0.207	54440					
ĉ	0.283	39034	٧				
3	0.337	73726	٧				
4	9,638	4499	٧	•			
5	0.768	1161	٧				
•			,				
유민점	•						
VOLUME	INJECTED	(UL)					
? 100							
PILUTIO	3 M	•			•	•	
- 1	•						
8 B B		BEN			TOL	0-XYL	
d,2-XYS		ET BEN.			PMOI	TVH	
3.8645		0			· 9	0.9394	209
0.0257 0.0257		0.0575	416		0.825644	4.8039	
	* 16:UNDEF			IM 4	10 .		
多世代代现代	# 10 OUREL	D OTHER		• • • • • • • • • • • • • • • • • • • •		•	

Project	Number:	CHV82X
Sample:	. V1	D

Vol. Inj: 100ml

START 12/17/87

14:46:50

8,888 11,02862

CHROMATOGRAM 22 MEMORIZED

CHROMATOPAC C-R3A SAMPLE NO 0

REPORT NO -1790

FILE 0
METHOD 24
SAMPLE WT 100

NAME

TIME IDNO CONC 9KN0 -AREA MK 0.208 39306 2 0.278 53906 0.343 3 -27338 0.4556657 V 5 0.697 1724 1.202

TOTAL 133382 0

ROM

VOLUME INJECTED (UL)

? 100

DILUTION

? 1

 PBB
 BEN
 TOL
 0-XYL

 M,P-XYL
 ET BEN
 PNOI
 TVH

 2.61501
 0
 0
 0

 0
 0.126596
 2.74161

Project Number: CHV 82 X						Date: 17 Dec 1987				
É	Sample:	V11				λnalysts		MAEDIN		
	ol. Inj: .	100µ				Std. Vol		Foul		
	Comments:		-							
_				· · · · · · · · · · · · · · · · · · ·						
START 12/17/8	:	15:33:8	22					_		
	- 0.22 - 0.482	· 			0.302					
	# 0.455 1.195	٠.		٠.						
	3.625									
•			•							
	6.127							-		
CHROMA?	10GRAM 24	MEMORIA	4EU							
	IOPAC C-R	3A .			Rile.					
SAMPLE REPORT					METHOD SAMPLE !					
2 K M D	TIME	AREA	пK	ONGI	оиво	MAI	1E			
i	0.22 0.302	2764								
2 3	0.30c 1.195	3404	34					•		
	TOTAL			_	0					
RUM Unitema	INJECTED (101 N								
? 100 DILUTI										
? 1 PBB		BEN et den		· .	TOL PNOI		+ 0-XYL			
M, P-XYI	<u>.</u>	ET BEN			. 6701	•	1 Y E1			

0.0968294

3,5539

HNU 421 Chromatogram

EA ENGINEERING, SCIENCE, AND TECHNOLOGY, INC.

Project Number: CHV82X Date: Sample: BLANK Analysts: vol. Inj: __100ul Std. Vol. Inj: used: reset integrator Comments: La remukizeD KHK LOPERK -3 - AaT 12/1//87 89:29:17 8:≩₹8 1.232 -=d₃₇₀≱.988 pakomaioukam s memokizeb ÇEROMATORAS UHRSA BETHOD 5An0LE MO 0 SAMPLE AT K PORT NO 1763 MANE DACO CONCL TIME SEEA DX $\sim < 0.0$ 42837 0.∠26 24464 V 0.418 1.232 3201 76522 107AL _190 JIUTH(0) UNALYSIS PARAMETER FILE .0 . SLOPE 4000 ATHIA MIN.AREA 1000 10000 5 R I F T STOP.TH 7 3.8 f. DBL 10 SPEED 自己集計 FORMATS mainhobs 24 SPL.RT 190

SL0PE(0)=2000

START 12/17/87 -

09:33:23

CONTRACTOR OF THE LANGE OF THE

Project	Number:	CHV82X
Sample	RIA	NK

Vol. Inj:

Comments:

HNU 421 Chromatogram report sheet

Date:

Analysts:

Std. Vol. Inj:

12/1//00

10:00:23

- 8-81335 8.272 **8:8**88 1.205

CHROMATOPAC C-R3A SAMPLE NO 18 1 REPORT NO 1766

FILE METHOD SAMPLE WY 188

MAME

2 K M Ü	TIME	AREA	ńΚ	1140	00%0	
i	0.212	2965				
2	0.272	15134	V			
3	6.335	8246	٧			
4	0.447	4173	V			
5	0.63	1373	٧			
6	0.723	1949	V			
7	1.205	3567				
						'
					-	

TOTAL 37287

VOLUME INDECTED (UL)

9 199

DILUTION

PBB

BEN 8,8-XXL Θ -0.482257

ET BEN

280I 0.104271

T () L

0 - XYLHVT Θ

-0.327986

1.12239

0.106853

ERROR 16:UNDEF'D STATEMENT IN

	oject Num		H.V_	82X		Date:			2/
Sa	imple: 🔼	ANK				Analy	sts:	M	1£
Vo	ol. Inj: _	100	<u>uL</u>			Std.	Vol.	Inj:	
	omments:	/							
START 127177 8 7	>	13:49:0	1						
. =	<u> </u>	∳.£72							
_		9.3/ <i>C</i>							
=======================================	1.212	•							
· =	1.885								
	connection of the connection o				i e				
,	2:353								
			•	•					
					•				
	· 					-		•	
		•							
	9.40							•	
									-
<u>горамата</u>	i Gram 18	MEMORIZI							
ÇOKÛNB EÇ	JUNAN TO	HENORIZI	_ 1)			•			
CHROMATO		3A		·	FILE	0			
SAMPLE : REPORT !		,			METHOD SAMPLE	uT 1	24 90		
wer end i	10 1,00								
PKN0	TIME	AREA	ńк	IDMO	CONC		MAME		
		1						•	
1	0,198 0 070	2097	11						
2 3	0.273 0.372	28645 41959	٧						
4	1.212	2636	•						
5	2.853	1120							
	TOTAL	76458		_					
RUN									
	INJECTED (UL)							
? 100 Dilution	ą.	,							
9:001101 ? 1	1								
PBB		BEN	٠		TOL			0-XYL	
M,P-XYL	* -	ET BEN			PNOI			TVH	
1.01553		9			0			ß	

	Project No	umber: CHV8	Date:				
	Sample:	STANDARD		Analysts:	DP/ HAY		
	Vol. Inj:	_500pl		Std. Vol. Inj:	50 cl		
	Comments:	TOW ORD	CAUBRATE	·			
START SƏZÐÐZ	10 B)0:00:06	: •		= = = = = = = = = = = = = = = = = = = =		
	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	.0.262 €2		1.988			
	11999			1.000			
			2.2:	·			
	4.06			•			
	_	4,403	4.707	,			
	-	5.535					
	= 6.6				-		

i-RomeTO	2AC C+R3A	FILE	9
SAMPLE M	o e	nethoù	59
REPORT 6	0 1765	SAMPLE WI	100

r <m0< th=""><th>TIME</th><th>AREA</th><th>МK</th><th>junū</th><th>CONC</th><th>MAME</th></m0<>	TIME	AREA	МK	junū	CONC	MAME
· <u>1</u>	0.262	31064.				
ĉ	0.42	7847	¥			
3	0.52	23635	ίγ		•	
ب	9.642	16547	٧			
5	0.715	9841	٧.			
6	1.088	180433		1	16.7291	BEM
2	2.21	198629		ž,	10.5639	TOL
8	4.493	203031		3	9.5366	ET BEM
9	4.202	442257	٧	4	18.149	M.P-XY
1.0	5.535	197266		5	8.8796	$0 - X \lambda \in$
	-	. _	•	-	 	
	701AL	1304551			58.8582	
.4TE\$=	912/17/87	·				
	START BRID					

TiMEs="10/T.BBL(0)"

SRROR 2: ILLEGAL QUASTITY

7]hE\$="10/00/00/00"

2

Project Number:	CHV827	<
-----------------	--------	---

Sample: STANDARD

Vol. Inj: 50 pl

Commente.

Std. Vol. Inj: _______50cl

9.412 9.412 9.412 9.71 9.532 9.6025

1.105

CAROMATOPAC .C-R3A FILE 0
SAMPLE NO 0 METHOD 24
REPORT NO 1769 SAMPLE WT 100

CALIBRATION MADE IN IDENTIFICATION FILE & MODE* : WINDOW 5

IBNO	MAME	TIME	FACTOR	Ondo
1	BEN	1.08	5.689070-5	10
ċ	TOL	2.19	5.10622E-5	10
3	ET BEN	4.36	4.88282E-5	16
eļ.	MARHXY	4.66	0.000044839	20
<u>=</u>	0-876.	5.5	4.87788E-5	1្រៀ

 \oplus

Project Number: CHV82X	Date:			
Sample: SVD	Analysts:	_MAE/DP/A		
vol. Inj: 100pl	Std. Vol.	Inj: 501		
Comments:		:		
		_		
START 12/17/87 13:39:05	•			
<u>0.028</u> 		-		
₹ \$\.398		1.118		
1.77				
1.00		2.238		
3.142				
4 - ***				
4.4	128	4.725		
5.56		· · · · · · · · · · · · · · · · · · ·		
6.205				
書 電像医5 CHROMATOGRAM 12 MEMORIZED	_			
CHROMATOPAC C-R3A FILE SAMPLE NO 0 METHO	0 (1) 24	4		
REPORT NO 1785 SAMPL	E WT 100			
PKNO TIME AREA MK IDNO CO	nan oni	E		
1 0.227 7437				
101AL 2547539 12 RUN	22.4169			
VOLUME INJECTED (UL) ? 100				
PILUTION				
? 1				
PBB BEN TOL		O-XYE		
M.P-XYL ET BEN PNOI 0.0275047 9.7171 9.88	1129	TVH 10.5189		
20.8955 10.1956 10.1		71.4129		

Sample: OHV Super Unleaded

Vol. Inj: 1 LL headspace

CHROMATOGRAM 26 MEMORIZED

CHROMATOPAC C-RSA FILE 0
SAMPLE NO 0 METHOD 2
REPORT NO 1794 SAMPLE WT 100

PKNO	TIME	AREA	МK	ONGI	COMC	NAME.
i	0.39	3080965	VΕ			
2	0.473	12260967	٧٤			
3	0.7	11243367	Vε			
÷	0.802	7808135	VΕ			•
3)	0.975	6260802	٧E			
6	1.095	8785352	VΕ	1	499,8049	BEN

RUN VOLUME IMJECTEB (UL) ? 1 Dilution ? 3

e B B	BEN	"QL	0-XYL
MAR-XYL	ET BEN	PMOI	* TVH
115641	24990.2	77333.9	44246.2
26202	23509.9	177472	539396
ERROR	16:UNDEF'D STATEMENT IN	410	

APPENDIX C

Use of Low-Molecular-Weight Standards To Identify Early-Eluting Compounds APPENDIX C: USE OF LOW-MOLECULAR-WEIGHT STANDARDS TO IDENTIFY EARLY-ELUTING COMPOUNDS

As noted in the text, an unidentified peak was found in the chromatograms for soil gas samples from site SS 9-0020. characteristics of the peak, a strong response, very short retention time, and longer tailing, suggests that the peak is the response to a low-molecular-weight, polar hydrocarbon. identify the unknown constituents, a number of standards were made up (Table C-1 and following chromatograms) and run in the HNu 241 gas chromatograph. On the basis of the retention times and peak shapes of these standards, it is believed that the unidentified peaks (see site chromatograms, Appendix B) are responses to a small alcohol, a small alkane, or a combination of alcohols and alkanes coeluting. Small alkanes and alcohols were suspected because they can be formed from natural soil organics or petroleum hydrocarbons by microbial biodegradation. of microbial decomposition show that alcohols, organic acids, and other small hydrocarbons can be formed from natural soil materials by aerobic or anaerobic processes (Odum 1971). decomposition of petroleum-related aromatics (such as benzene, toluene, xylenes, and ethylbenzene) can also form small alkanes (API 1985). At the subject site, it is believed that natural soil organics are the precursors, because no detectable levels of the petroleum aromatics were found.

TABLE C-1 RESPONSE CHARACTERISTICS OF LOW-MOLECULAR-WEIGHT STANDARDS IN THE HNU421 GAS CHROMATOGRAPH

Compound	Retention Time (min.)	FID Sensitivity		
Methanol	0.31 (with tailing)	Excellent		
Ethanol	0.38 (with tailing)	Excellent		
Methane	0.25	Excellent		
Ethane	0.25	Excellent		
Propane	0.25	Excellent		
Butane	0.35	Excellent		
Pentane	0.49	Excellent		
Hexane	0.78	Excellent		
Heptane	1.5	Excellent		
Acetone	0.42	Excellent		
Benzene	1.1	Excellent		
Toluene	2.2	Excellent		
Ethylbenzene	4.4	Excellent		
m,p-Xylenes	4.8	Excellent		
o-Xylene	5.6	Excellent		
Ammonia	0.26	Poor		
Hydrogen sulfide	0.26	Poor		

· P	roject Nu	mber: ((4 <u>u</u>	87L	Date	e:	11/30	187
S	ample:	H_2			,	lysts:	1	me
٧	ol. Inj:	100	مدر	<u>.</u>	 Std	. Vol.	Ini:	90 xe
	omments:	27-1	PM.	<u> </u>				
					an year Britan Marie			
START 11/30/	87	15:05:5	. 7		* •			
	م فري الم		,					
	子 0:363	•						
	1.26							
	à:085							
	STOP							
CHROMAT	TOGRAM 2	MEMORIZ	EĐ	,				
CHROMAI	OPAC CHR	RSA			FILE	_		
SAMPLE	NO G				METHOD	9 24		
REPORT.	400 5000				Andreas and the second	24 100		:
ANAL .	·			411	410	100		
	or that	15:53:5						,
			, ,					
SAMPLE		R3A			FILE	9		
REPORT					METHOD:	14		
	1031				SAMPLE HT	100		
PKNO	TIME	AREA	ĦК	ONGI	сонс	NAM	ξ	
1	0.175	1334						
2	0.265	12368	٧					
3 4	0.405	3441	٧					
4	0.565	5311	٧					
_	TOTAL	22454		_	9			
RUN Võlume	INJECTED	/ 414 S			v			
? 100	THUSCHEB	(00)						
DILUTIO) M							
? 1					-			
PRB		BEN			TOL		.	
M.P-XYL		ET BEN			PNOI		0-XYL	
-1.0151		0			0		TVH	
9		9			1.192096-7		9 -1 0151	
♦ ₽₽₽₽₽							-1.0151	

•	Project N	umber:	ĻИ	483	ر د) ^ا	ite:	121	21	82
	Sample: _	Pursons	14	minas	· (5-10% by	ut)	1	الماريخ الماريخ. الماريخ الماريخ	-
	Vol. Inj:) ne	Al	alysts			
	Comments:		7,1			td. Vol		<u> </u>	<u></u>
	comments:		41	=	200 ml.	40	red_		
START			_			·			=
12/21/3	37.	12:00:2	9				4 (070,7	٠ <i>٠٠</i>	
4		0.42891(48				P	=	18 000
= =	を 10、995						V#3		1.5 psiu
7	1:18"						$p = p_{\mu}$	142	
_							N		.10
=	<u>ڪ ۽ 2.23</u>						17	/	00,000 ppm
7	2:078							= 1	v-, ppm
ļ									
-4	STOP								
									43
CHECMA	TOPAC C-R	2.4							
SAMPLE		эн			FILE	9			7
REPORT					METHOD SAMPLE UT	24			ž.
					SHIFTE MI	100	•		ì
PKNO	TIME	AREA	МK	1 DHO	CONC	NAME			
_	0.040						•	•	
1	0.248	42423							÷
2 3	0.315 0.428		. У 6 и						- :
4	0.468 0.685	38990 2724							
5	0.995	2503							
5	1.18	3284	•						
7	2.23	32402		2	1.6766	Tail			
						100			
	TOTAL	151998		•	1.6766				
PUN No. VIII									~~
	INJECTED (UE)							103
? 100 Dicuti	n roi								
? 1	711				•				
PEE		EEN			TOL		O-XYŁ		
M.P-XY	L	ET BEN			PNOI		TVH		
2.323:		9			0.838313		8		
ė.		0			0.207035		3.36865		
*ERROR	* 16:UNDEF′	B STATEM	ENT	IN 4	10		0.0000		
୧୯ଖ									
	INJECTED (OE)					_		
2 (99 2007)							-		
10 ILUTE 12 200	דוע								
7 200 Pkg		BEH			7 01				
### M#P-XYI	1	ET BEN			TOL 10L		O-XYL .		
464.6		0			167.663		HVT		
o	•	0			197.003		G		

		Number: _		Date://4/88			
	Sample:		E Sta	[Analysts:	ME	
	Vol. Inj	:	50 rd	-	Std. Vol. Inj:	50 mg	
er næri	-+×88	11:96	:00		***		
•	1 9.7	%.4283		-		BTXE S 50,0	
				· · · · · ·	1.1	50,0	
	<u> 1.8€</u>	2		2.227			
				C. 26.7			
•	; = 3.39 3.39	15 18 13.5					
	-2 3	775					
		_ _	4.442		4.753		
			5.588	•			
						•	
	를 6.52 루STOP6.90	i3					
					•		
1	0,273	34786					
2 3	0.428	11411	٧			:	
4	0.5 1.1	35764	SV				
5	2.227	179326	1	10	BEN	-	
. 6	3.775	216293	ź	1 9	TOL	,	
7	4.442	27494			, - -		
8	4.753	262785	3	10	ET BEN		
9	5.588	590511	V 4	20	H. P-XY) 	
	2,200	281721	5	10	0-XYL	1 7 8	
	TOTAL	1640078	•			,	
gn Monac	2			69			
20 20046	INJECTED	(BE)			•	r .	
100TI	ńн						
1	,					10	
816		.					
	Programme and the state of	BEN		TOL	0-XYL		
ð(The Water	≈.5.1 REN 10		PHOI	TVU		
٠	رمي و العام و	J STATEME	NT TN _	26.877 5	The second secon		

	Project	Number:	1	40		ate:	1/4/9	?R
	Sample:	- Metho	mol		601	malysts:	h	NE
	Vol. In		100	ul:	,			11-
	Comment					Std. Vol.	Inj:	Tal.
	4.		00	: [\mathcal{V}_{i}]. (7)	DO me/	40 mg	2005
	- Rep	ort 10	128	119	19. <i>9</i> 0	000 pm	luca:	1196
	•			,		, oso ppa	140	
						ип	1	
U1/04/	∕ इह 	11:34:	43			131 =	64.76	Acces Or
•	<u> </u>	. 0.45	- 18.			<u> </u>		MeOH AL
	3 乾霧	3						9.312 Del
	TSTOP							
								10rd
BROMA	TOPAC : C-	-R3a			E L E		n 25°C	
3ศกลเ <u>ย</u>	NO 0	-N			FILE METHOD	9	Truc.	~ 70 BATEL
KEPORT	NO (1988	₃)			SAMPLE WT	24 199	C state M	7-2-174
						100	p = P	464
e (no	TIME	AREA	ńк	LTIME				PT = 29
		HILLH	UN	I II M Ü	CONC	NAHE	_	Ac can
1	0,248	29723					· ~	90,000 pm
2	0.312	484072	¥			-		• •
3	0.45	73723	٧					
4 5	0.568	8929	٧					•.
्य 6	9.777	4750	٧					
7	9.972 1.148	2149	A					•
•	1.140	6102		1	0.3403	BEn		
	TOTAL	609447		-				4.
ए प्र					0.3403			
OLUME	INJECTED	(UL)						- Comment
196								<u>.</u>
ILUTI) N							}
1								
f: E		FEN						4
. P-XYL	_	ET BEH			YOL	0 - X	YŁ	٠.
15.038		0.1701	2.1		PHOI	нут		•
ġŧ.		9			0 -2.6226£-6	0_		· .
LERBOR* TART	: 16:UNBEF:	'D STATEME	Tri	[N 4]		15	.2087	
1/84/8	18	11:37:03	3					
								,

MRCHIHA

	Project N	umber:/	HV.	Da	ate:	1/4	120
	Sample:	Ethan	اه	(0)	nalysts	- 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14E
	Vol. Inj:						
	Comments:				td. Vol	. Inj:	50me
	comments:	400:1		Lutron (100 ns	1 40mg) 2 305 10m
		gort N	0,	930/19	31	80,000/11	(C) 1.
518KT 01/04/	88	11:42:23	-	•	138 :	78.490	ELGK.
	حـــــــــــــــــــــــــــــــــــــ	@ >%					1 West / Marie
	₹ 80.5565				٠.		. يركزة 165م م
	→ N.685					p 1	5°2 (0.
	∄ 1.683					Exo	H- 60 mm
	3 6.595	213				. 6	0 = 08
	∃ ∃ _{0.70} β.045					P = 70	(A)
	3106					•	= 80 000
	ř						= 80,000 ppm
- C⊣ROMA - SAMPLE		t3A		FILE	0 .		
REPORT)		METHOD SAMPLE AT	24 100		• ** *
				21111 CE 111			
PKNO	TIME	area mK	IDNO	CONC	hant		÷
	0.050	40004					
1 2	0.252 0.3 <i>77</i>	48201 473132 SV					•
3	0.665	1093 T					
4	0.93	1653 T					*
5	1.155	1765	1	0.0984	BEN		
6	2.213	39835	2	1.8417	TOU		
	TOTAL	565678	-	1.9401			
89N							
	: INJECTED ((00)					
2 100 0:4011	•						
7 1	. 013						011
PBB		BEN		70L		0-XYL	
Mar Prix Y		ET BEN		PNO1		₹¥H	
12.82 9	:84	0.0492011 0		0.920857		0	
-	≀* 16:9MD€F′	U 'D STATEMENT	IH 4	0.189863 10		13.9883	
START							
01/04/	188	11:46:32					EtOH Hors

541 G

	rroject	Number:	<u> 24</u>	<u>U</u>		Date:	- 1/4	188
	Sample:	- MK	me	Std	. (2)	λnalysts	: h	ME
	Vol. In	j:	100	pl.	C /	Std. Vol		
	Comment	s: L	port		1926/		· inj:	- Due
			POLI		11/6/	1927.		
-			-	A 11	₹1	-		
91/94/	/88 _.	11:19:	:38					Alternei
								0.000
	₹ 1.17							= #: \$68 - 0,797
	_							= 1.502
	THE 25 S)						
	3:33	2						
	3.74		•		•			
	4.452							
	1			•				
	1							•
	4370P							
						•		
CHROMAT	FORAC C	-R3A				•		
SAMPLE	ការ ខ				FILE	Ø		
KEPORT	NO 1921	٤,)	~		METHOD SAMPLE HT	24		•-
					The second second	100		
PKNO	BMIT	AREA	пк	1 DNO	0040			-
1	0.000		****	10110	CONC	NAME	Comp PP	m
2	0.253 0.348	539993.			_			
3	0.435	375132 46 580 3	· V		` \ '	(Hollans 1 Ethane (Projutue (CH4 13.1	5
4	0.663		3V		1 3	Jerune C	246 13 C	9
5	0.797	5258 <i>37</i>	1,,	· /	. \ .	Chronine C	3H8 14	1
6	1.173	3326	V	_	$\overline{}$	Buttine (uH_{A} vG	q
7	1.502	572404 .		_ `	\ <u> </u>	Portune (-11 15	•
Ŷ	2,22	1310			1	Hause C	5 Hz 15.	O
9	3.747	9786		2 \	0.080	eHerran C.	6 Hiy 15.	4
						Hertune 6	7 H16 15.	.0
.ถห	TOTAL	2494725			0.069			
Ծենտը դ	NUECTED	(UL)						
199								
ILUTION	Į.							
1								
EB		BEN			TQL			
, PHXYL		ET BEN			· ·	0-	XYL	
51.4136		Θ			PMOI	ΤV	'H	
0		θ			0.0302853	9		
FPPnpw	16 - 1144				16.3322		7 774.	

rro	Ject Numbe	r:	4V_	1	Date:	1/4/	· ·
Sam	ple:	thonol	(2,	}	Analysts:		AE
Vol	. Inj:	4 ml	2. 145				
Com	ments:	Hein			Std. vol. $\frac{2}{3} = 1$	Tul:	- Dul
FERRURA 16 START	COURFLIN 21				// .		soc ppm
01/04/88	11:	55:47					
-L	<u> </u>	26					610H 0.368 Yul
							0.368 Yul
<i></i>							G
*PLOT]	2.592						1
Carlo	. Int	gruter	Off.				Š
	ಲಕ್ಷಣ ್ ಪ ್ರಾಗಿ ಗ	TENERO .	10 m 10 m 10 m			· · · · · · · · · · · · · · · · · · ·	
- 00/00	00:0	7:35					EtoH
_[- 0.268 -	_ ***					0.368 7xt
				<u> </u>	·		214
							4 se
7							
₫,	s e 9.7						-
7 510P	કે.≶કે ઉ						
CHROMATOPAC				LE	Θ		
SAMPLE NO REPORT NO	0 1935			THOD MPLE UT	24 199		
<u> РКНО</u> Т	IME AR	EA NK	1 ២៧០	ĊONE	NAME		(j)
	262 231						<u>ដ</u> ូ
	368 1 04529 703 26						ليا م
	 AL 104787						ř
RUN		00		U			
YOLUME INJE ? 2	CTED (UL)						221 25412
RILUTION ? 1							5412
PRR	BEN	-	70	ıL.	0-1	KYL	
M, P-XYL	ET B	EN		01	TVI		
14603.5	9		9		9		
G	Ð		<u> </u>	.69531	1 4	1607.2	

compound's concentration in the vapor phase to its concentration in the aqueous phase. The higher a compound's Henry's Law constant, the greater its tendency to volatilize from water into air.

Figure A-1 graphically illustrates the vapor pressure, aqueous solubility, and Henry's Law constants, and their relationships, for selected hydrocarbons typically found in gasoline. The Henry's Law constant is approximated here as the ratio of vapor pressure to solubility.

The Henry's Law constant is directly related to the tendency of compounds to volatilize, as opposed to solubilizing. Compounds with Henry's Law constants greater than 0.001 (atm m³/mole) volatilize from water into air very rapidly (Lyman et al. 1982); those with Henry's Law constants greater than 0.01 (atm m³/mole) are generally volatilized so rapidly that they are seldom found in gasoline-contaminated ground water. It may be observed (Figure A-1) that tetraethyl lead (TEL) has an extremely low solubility and a relatively low vapor pressure. As a result, this constituent would not be expected to solubilize and migrate in ground water, and although its low vapor pressure would indicate slow volatilization, its Henry's Law constant indicates that it may be more rapidly volatilized than solubilized. The fate of TEL would be expected to be long-term binding to the soil.

On the basis of these properties it can be seen that associated with any ground water, soil, or free-product contamination is vapor phase contamination. The SVCA technique takes advantage of this, and through the collection and analysis of soil vapor permits a rapid, cost-effective delineation of the extent of contamination.

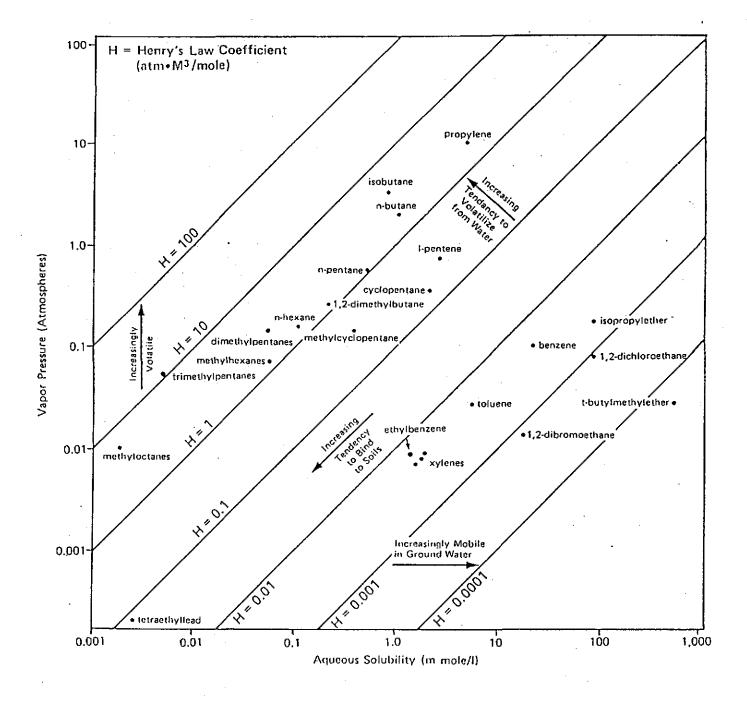


Figure A-1. Vapor pressures, solubilities, and corresponding Henry's Law constants for major constituents of gasoline.

APPENDIX B

SVCA Field Notes and Chromatograms

SVCA DATA SHEET

Project Number: 41 82 X	Date: 17 Dec 1997
Project Manager:	Analysts: MAY ME MG
Site Location: 17th & Harrison, Oakbard, AA	Pump Number: 9-0020

	Grid Location	Time	Depth- (ft)	OVA (ppm).	Purge Time	Vacuum Reading	Soil Type	Comments
	BLANK .	9:33	_	_			 .	RESET INTEGRATOR
24	STANDARD	00:50			_	_		DID NOT CALIBRATE
3	BLANK	10:00			1	·		
4	V1/A	10:25	3		10	22		TANK PIELD
5/	STANDARD	10:35	į	_	æ		. —	CALIBRATED HERE
6	V3/A	10:49	3		10	4		
7	· V1/B	1100	5.5	·	10	27		
. 8	- V1/C	11:11	8	•	10	28		
9-	- V3/B	1121	5.5		10	20		HIT TOP OF TANKS at ~ 4.5 ft. MOVED 3ft away from tanks.
10	V1/D	1 35	10.5		10	26	*	TOOK 1-2 min for vacuum to subside
u ·	- V3/C	1146	8		10	24		
12	11/E	1156	据13		100	24	•	
13	- V3/D	1207	10.5		10	20		
14	V4A	1217	3		10	2		Hit concrete / hard layer At 4.
15	V5	1228	3		10	20		
16	V2/A	1258	3		10	13		

SVCA DATA SHEET

Project Number: LHU87X	Date: 12/17/87
Project Manager: RH	Analysts: WAE / AMY /MS
Site Location: 17th and Hurrison, ONK, CA	Pump Number: 55 9-0020

Grid Location	Time	Depth- (ft)	OVA- (ppm).	Purge Time	Vacuum Reading	Soil Type	Comments
V6/A	1307	- 3	-	10"	0.5		No alon.
V2/B	1319	8		10	25		
V6/B	1327	8		ID	24		
STD	1339	-					soon
BLANK	1349	_		_			
V6/C	1359	13		W	25		
V7	1409	3		10	13		
V8	1422	3		10	27		·
V1D	1446	8		10	25		
V9/A	1520	3		W	21		
V11	1533	8		10)	27		
V9/B	1559	8		Ю	i5		found mud sucked into probes after pulling out,
UN Super Unleaded	1618				_		to 1 pl read space
				·			- 1