

January 9, 2001 SCI 1039.008

Mr. Don Hwang Hazardous Materials Specialist Alameda County Health Care Services Agency 1131 Harbor Bay Parkway Alameda, California 94502-6577 BUNNESSEE OF STREET

Supplemental Site Characterization Investigation and Groundwater Monitoring Activities – March to October 2000 327-34th Street Oakland, California

Dear Mr. Hwang:

This letter records the results of a supplemental investigation and ongoing groundwater monitoring activities performed by Subsurface Consultants, Inc. (SCI) at the above-referenced property. The location of the property, referred to herein as the Site, is shown on the Vicinity Map, Plate 1. The configuration of the Site is shown on the Site Plan, Plate 2.

BACKGROUND

On March 4 and 5, 1993, one 1,000-gallon underground storage tank (UST) containing unleaded gasoline and one 1,000-gallon UST containing waste oil were removed by others under the direction ACHCSA. Results of chemical analyses on soil samples collected beneath the ends of the gasoline UST indicated impacts by total petroleum hydrocarbons (TPH) as gasoline, and toluene, ethylbenzene, and xylenes. Soil samples from the waste oil UST excavation showed only relatively low concentrations of TPH as diesel, ethylbenzene, and xylenes.

GeoPlexus, Inc. (GeoPlexus) conducted a soil and groundwater investigation in 1993 to assess petroleum hydrocarbon impacts to groundwater. GeoPlexus installed three groundwater monitoring wells (MW-1 through MW-3, see Plate 2). Analytical testing of soil and groundwater samples from the wells identified impacts from gasoline-range hydrocarbons at two of the wells (MW-2 and MW-3) located downgradient of the former gasoline UST. Approximately 1/4 inch of free product was observed in well MW-3. The product was reportedly gasoline.

Attachments: Table 1 - Groundwater and Free Product Elevation Data

Table 2 - Summary of Petroleum Hydrocarbon Concentrations in Groundwater

Table 3 - Summary of Bioparameter Data

Plate 1 - Vicinity Map Plate 2 - Site Plan

Plate 3 - Groundwater Elevation Data (March 2000) Plate 4 - Groundwater Elevation Data (July 2000) Plate 5 - Groundwater Elevation Data (October 2000)

Plate 6 - TVHg, Benzene, MTBE Concentrations (July 2000)

Appendix A – Agency Letters

Appendix B - Boring Permits, Well Logs and USCS Classification

Appendix C - Field Forms

Appendix D - Analytical Test Reports/Chain-of-Custody Documents

cc:

Strough Family Trust of 1983

c/o Mr. Don Strough 2 Sea View Avenue

Piedmont, California 94611

Mr. Jonathan Redding, Esq.

Wendel, Rosen, Black & Dean, LLP

1111 Broadway, 24th Floor Oakland, California 94612

SCI was retained in September 1997 to evaluate the presence of free floating and dissolved phase petroleum hydrocarbons in existing wells MW-1 through MW-3. SCI installed two additional wells, MW-4 and MW-5, in June 1998. Results of the June 1998 subsurface investigation were presented in the Report of Groundwater Monitoring Activities and Additional Subsurface Investigation, dated November 17, 1998. Quarterly groundwater monitoring of the five onsite wells was performed by SCI from June 1998 to January 1999. In March 1999, SCI petitioned the ACHCSA to allow a reduction in the testing and sampling program. In May 1999, the ACHCSA verbally approved modifying the monitoring program to include semi-annual sampling of all the wells and quarterly free product removal. SCI has been retained to continue the monitoring program.

The most likely sources of the gasoline impacts (former onsite UST and dispensing systems) have been removed, and investigation and monitoring of the degree and extent of impacts is ongoing. In a letter dated November 8, 1999 (copy presented in Appendix A), the ACHCSA requested that additional work be conducted at the Site to (1) further characterize the downgradient extent of the contaminant plume, and (2) evaluate the likelihood of contaminant plume migration via an existing concrete box culvert transecting the east side of the Site. To address these requests, SCI proposed to research construction details for the concrete box culvert and install two additional down-gradient monitoring wells. The ACHCSA approved the scope of supplemental investigation in their letter dated March 8, 2000 (copy presented in Appendix A).

QUARTERLY FREE PRODUCT REMOVAL EVENT – MARCH 2000

On March 20, 2000, SCI checked Site wells for free floating product. Well MW-2 contained 0.026 feet (5/16") of free product. Approximately 5 gallons of water/product mixture was bailed from well MW-2 with a new disposable bailer until visible free product was no longer observed in the purge water. The water/product mixture was placed in a labeled 55-gallon steel drum and left onsite for later disposal by others. No free product was observed in any other wells. Groundwater elevation and free product measurements are presented in Table 1.

RESEARCH AND FIELD TRACING OF UNDERGROUND CULVERT

Pursuant to ACHCSA's request (letter dated November 8, 1999), SCI conducted research at the City of Oakland Public Works Department (City) to obtain information regarding construction details for an underground culvert known to be aligned with a historic creek bed¹. During

¹ Creek and Watershed Map of Oakland and Berkeley, Compiled by Janet Sowers, Published by the Oakland Museum, 1995.

previous Site reconnaissance, SCI had observed a storm drain manhole in the parking area on the east side of the Site. No drain inlets were observed onsite.

Through our review of city records, SCI reviewed a City map indicating that the culvert was referred to as a 5-foot by 6-foot reinforced concrete box culvert. The culvert is aligned from north to south coming into the Site, and then angles eastward toward Broadway. SCI further learned that a cave-in occurred along the alignment of the culvert below the Site during the winter of 1983. Repair plans prepared by Jordan, Casper, Woodman, Dobson (JCWD) indicate that the cave-in was located in the parking lot area on the east side of the Site structure, about 35 feet south of an existing manhole and along the culvert alignment. City records department personnel indicated that the property owner likely took responsibility for the repairs, since no easement was ever approved for the culvert by the City.

Although the cause of the cave-in was not described on the plans reviewed, it appears that an 11-foot long segment of the culvert was replaced, and a 5-foot diameter pipe liner was placed into the culvert. The pipe liner extends from the newly repaired area northward about 70 feet. It is unclear whether access to the culvert through the existing manhole, was obstructed by the pipe liner. Specifications regarding the material used to backfill the culvert trench were not available.

The JCWD plans indicate that the culvert flow line in the area of the repair is located about 22.5 feet below the pavement. This places the flow line of the culvert at approximately 4 to 6 feet below the groundwater table, as measured in July and October 2000.

Our Site visit conducted in July 2000 revealed that the existing storm drain manhole located on the east side of the Site has been paved over. SCI retained the services of a subsurface utility locator to trace the alignment of the culvert. The traced alignment concurs well with the alignment presented on the plans within City records (Plate 2).

MONITORING WELL INSTALLATION - JULY 2000

On July 7, 2000, SCI installed two groundwater monitoring wells (MW-6 and MW-7) on the east side of the Site. The new wells are approximately 30 feet west (MW-6) and 30 feet east (MW-7) of the culvert alignment. The well locations are presented on Plate 2. SCI completed Alameda County Public Works Agency drilling permit applications for each well. Copies of the permits are presented in Appendix B.

Wells MW-6 and MW-7 were installed to depths of 30 and 35 feet below the existing ground surface (bgs) in borings drilled using a truck-mounted drill rig, equipped with hollow-stem augers. Drilling and sampling equipment were steam cleaned prior to each use. Cleaning water was placed into a labeled 55-gallon steel drum and left onsite for later disposal by others.

SCI's field geologist observed drilling operations and logged the materials encountered in accordance with the Unified Soil Classification System (USCS). Logs of the monitoring well test borings, as well as the USCS key are presented in Appendix B. SCI collected soil samples at 3-to 5-foot intervals and screened soil cuttings in the field using an organic vapor meter (OVM). OVM readings are presented on the respective boring logs. Soil samples were retained in cleaned liners, which were labeled and stored in an ice-filled cooler. Soil cuttings were stored onsite in labeled 55-gallon drums pending later disposal by others.

Wells were constructed of 2-inch-diameter, Schedule 40 PVC pipe having flush threaded joints. The upper 10 feet of well MW-6 and the upper 15 feet of well MW-7 consist of solid PVC casing. The lower 20 feet of the wells consist of machine-slotted well screen having 0.010-inch slots, and capped at the bottom. The annular spaces around the screen sections were backfilled with No. 3 sand to 2 feet above the top of the screens. Bentonite seals, approximately 2 feet in thickness, were placed above the sand packs. The annular space, above the bentonite seals, were backfilled with neat cement grout. The wells were finished below grade in traffic-rated utility boxes and were secured with locking caps. Well completion details are graphically presented on the respective boring logs.

An elevation survey of the new wells was conducted on August 14, 2000. The elevation of the top of casings were referenced to the top of casing for well MW-3, with an assumed elevation of 100.00 feet.

The test borings confirmed that the Site is underlain by interbedded alluvial soils. The soils encountered in the well borings, however, do differ. Well boring MW-7, located on the east side of the culvert alignment, encountered about 20 feet of sandy gravel overlaying sandy lean clays, and no OVM readings were recorded for the soil cuttings. Well boring MW-6 encountered numerous alluvial layers similar to the soils encountered in the other borings drilled on the west side of the culvert. Well boring MW-6 also encountered a well-graded sand layer at a depth of 29 feet. This layer was not observed in well boring MW-7, however, it was previously observed in borings MW-3, MW-4, and B-6. OVM readings were also detected in boring MW-6 within the upper 10 feet of the boring.

Groundwater was encountered during drilling at depths ranging from 20 to 21.5 feet bgs, and stabilized at depths varying between 16 and 18 feet bgs in a permeable unit. The groundwater possessed no noticeable odor or sheen.

GROUNDWATER MONITORING EVENT – JULY 20000

On July 20, 2000 the semi-annual monitoring event was performed. Initially, the depth-to-water and the presence of free product was measured and checked in all wells. Approximately 0.017

feet (1/5") of free product was detected in well MW-2. Groundwater elevation data and free product data are summarized in Table 1.

Wells MW-6 and MW-7 were then developed using new disposable bailers. Approximately 10 well casing volumes of water were removed from each well. The wells were each surged by episodes of immersing/removing the bailer for three to 5 minutes, following the removal of 10, 20, 25 and 30 gallons of water. Wells MW-1, MW-3, MW-4 and MW-5 were purged of approximately 3 well casing volumes of water using new disposable bailers. Well MW-2 was not purged due to the presence of free product. Measurements of pH, temperature, conductivity and dissolved oxygen (DO) were made during development and purging, and are recorded on field forms presented in Appendix C. Well development and purge water was placed into labeled 55-gallon steel drums and left onsite for later disposal by others.

After the wells recharged to within 80 percent of their initial level, the wells were sampled. Groundwater samples were decanted into pre-cleaned containers, placed in ice-filled coolers, and remained chilled until delivery to the analytical laboratory. Chain-of-custody documentation accompanied the samples to the laboratory.

Curtis & Tompkins, Ltd., a state-certified chemical testing laboratory, performed chemical analyses on groundwater samples. The testing program included the following:

- Total extractable hydrocarbons as diesel (TEHd) and motor oil (TEHo), using EPA Method 8015 with silica gel cleanup,
- Total Volatile Hydrocarbons as gasoline (TVHg), using EPA Method 8015m,
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX), using EPA Method 8020,
- Methyl tertiary butyl ether (MTBE), using EPA method 8260,
- Nitrate (NO₃), ferrous iron (Fe[II]), manganese (Mn), and sulfate (SO₄), using standard methods, and
- Ammonia (NH₃), ortho-phosphate (o-PO₄), and carbon dioxide (CO₂), using standard methods.

Groundwater analytical test results are summarized in Table 2. Field and laboratory measurements of various bioparameters are summarized in Table 3. Analytical test reports and chain-of-custody documents are presented in Appendix D.

QUARTERLY FREE PRODUCT REMOVAL – OCTOBER 2000

On October 11, 2000, SCI checked Site wells for free floating product. Although strong gasoline odors were detected in wells MW-2 and MW-3, SCI observed no free product or hydrocarbon sheen in any of the onsite wells. Groundwater elevation data are presented in Table 1.

DISCUSSION OF RESULTS

Groundwater Gradient and Flow Direction

Groundwater elevations appear to fluctuate about 4 to 5 feet during a hydrologic cycle. The depth to groundwater has varied from about 15 feet bgs at well MW-4 (March 2000) to about 23 feet bgs at well MW-5 (October 2000). Based on the groundwater elevation data, the groundwater gradient in the northern portion of the Site is relatively flat (0.002 ft/ft) and toward the south. Well MW-5, located approximately 100 feet southwest of wells MW-1 through MW-4, has a groundwater surface elevation 1 foot lower than in these wells. The calculated gradient in the southern portion of the Site is approximately 0.015 ft/ft toward the south. The groundwater flow directions for the March, July, and October 2000 events are shown on Plates 3 through 5, respectively.

The calculated gradients discussed above do not include the elevation data for well MW-7, as this well appears to be completed in a different aquifer. As discussed previously, well MW-7 did not encounter soil layers similar to those encountered in the borings drilled on the west side of the culvert.

The construction of the culvert may also account for the differences observed between groundwater levels measured between wells MW-6 and MW-7. The groundwater elevation measured in well MW-6, located about 60 feet cross gradient from well MW-7, is almost 2.5 feet lower than the level measured in well MW-7. The depressed groundwater elevation in well MW-6 may suggest that the flow of water in the culvert system, or the potential presence of permeable material in the culvert trench, is affecting the groundwater flow regime in the immediate area of the culvert. The extent of the culvert's influence is unknown.

Free Product

Free phase product removal has been conducted periodically from wells MW-2 and MW-3 since October 1997. The product is reportedly gasoline. The amount of free product/impacted groundwater mixture removed from these wells is summarized in Table 1. To date, 52 gallons of free product/impacted water have been removed from the Site.

July 2000 Groundwater Test Results

Analyses detected TVHg at concentrations of 69,000 and 210 micrograms per liter (ug/L) in wells MW-3 and MW-4, respectively. A TEHd concentration of 2,900 ug/L was also detected in well MW-3, however the laboratory chromatogram for groundwater sample MW-3 indicates that weathered gasoline constituents contributed to the diesel quantification.

BTEX concentrations ranging from 1,600 to 14,000 ug/L were detected in well MW-3, while BTEX concentrations ranging from 4.6 to 91 ug/L were detected in well MW-4.

Analyses detected MTBE at concentrations of 3.4, 3300, 1500, 1.9, and 160 ug/L in wells MW-1 and MW-3 through MW-6, respectively. Besides trace MTBE concentrations in well MW-1 and MW-5, no other tested petroleum hydrocarbons were detected at concentrations at or above analytical reporting limits.

Biodegradation

Field measurements indicate groundwater conditions suitable for both aerobic and anaerobic biodegradation. Measured pH levels ranged from 6.35 to 7.43, which are similar to those measured during previous events. DO levels ranged from 2.05 to 7.37 milligrams per liter (mg/L), high enough to support aerobic biodegradation. Lower DO concentrations appear to correlate with wells where higher hydrocarbon concentrations were detected. Elevated Fe (II) and depressed NO₃ concentrations in downgradient wells MW-4 and MW-6, may also indicate local anaerobic microbial activity via ferric iron reduction and denitrification near these wells, where DO concentrations were lowest.

Conditions conducive to both aerobic and anaerobic biodegradation exist at the Site. This coupled with the analytical data from well MW-4, which has shown reduced TVHg and BTEX concentrations, strongly suggest that the degradation of gasoline constituent hydrocarbons is occurring at the Site.

CONCLUSIONS

Data collected over the past 8 years indicate that the TVHg and BTEX plume is stable and has not migrated outside the limits of the Site building. The only gasoline constituent detected in the furthest downgradient/cross-gradient well (MW-6) was MTBE at a concentration of 160 ug/L. MTBE is a very mobile chemical, which tends to be at the front edge of a gasoline plume. This concentration, however, is well below the interim MTBE risk-based screening level (RBSL) of 8,000 ug/L established the San Francisco Bay Regional Water Quality Control Board (SFBRWQCB) for the protection of surface water aquatic life.

The MTBE detection in well MW-6 may indicate that the culvert and/or culvert trench is potentially acting as a preferential pathway for groundwater migration, altering the local groundwater flow regime near the culvert. It is unknown if the hydraulic influence of the culvert reaches well MW-6, which is located approximately 30 feet west of the culvert. No MTBE concentrations were detected in well MW-7, which is located approximately 30 feet east of the culvert alignment.

A section of the underground culvert beneath the Site has been repaired and lined in the area adjacent to well MW-6. No other information was available regarding the construction of the culvert, i.e. the material used to backfill the culvert trench is unknown. It also appears that the manhole providing access to the culvert has been paved over, and it is possible that the pipe liner installed in the culvert may block access into the culvert at that location.

As such, the research conducted and data collected during this investigation appear to be inconclusive as to whether the culvert intercepts the MTBE plume.

RECOMMENDATIONS

Based on the observed stability of the TVHg and BTEX plume, and because the MTBE concentration in MW-6 is well below the interim surface water RBSL established by the SFBRWQCB, SCI recommends continued groundwater monitoring as the appropriate course of action at the Site. Monitoring should be conducted for 1 additional year, comprising 2 semi-annual sampling events and 4 quarterly free-product removal events. If this is acceptable, the next event will be conducted in January 2001.

If you have any questions, please call either of the undersigned.

Yours very truly,

Subsurface Consultants, Inc.

Gene Ng

Project Engineer

Jeriann N. Alexander, PE, REA

Civil Engineer 40469 (expires 3/31/03)

Registered Environmental Assessor 03130 (expires 7/01)

GYN: JNA: 1039.008\qtrm_7_2000

TABLE 1
GROUNDWATER AND FREE PRODUCT ELEVATION DATA
327 34TH STREET
OAKLAND, CALIFORNIA

Monitoring		El 2 1	Depth to Groundwater	Product Thickness	Elevation	Elevation	Free Product/Purge Water Removed
Well	Date	Elevation ¹	(feet)	(feet)	(feet)	(feet)	(Gallons)
MW-1	7/27/93	100.00	20.79^2	NA	79.21	NA	NA
	10/2/97		21.22		78.78		
	6/30/98		18.21		81.79		
	7/29/98		18.74		81.26		·
	8/26/98		19.28		80.72		
	10/1/98		19.93		80.07		
	10/30/98		20.22		79.78		
	11/30/98		19.99		80.01		
	12/28/98		19.81		80.19		
	1/25/99		19.62		80.38		
	2/26/99		17.18		82.82		
	12/15/99		21.01		78.99		
	3/20/00		16.25		83.75		
	7/20/00		19.63		80.37		
	10/11/00		20.80		79.20		
MW-2	7/27/93	101.27	22.10^{2}	NA	79.17	NA	NA
	10/2/97		22.91	0.43	78.36	78.79	7
	6/30/98		19.69	0.45	81.58	82.03	9
	7/29/98		20.11	0.29	81.16	81.45	
	8/26/98		20.54	0.08	80.73	80.81	,
	10/1/98		21.52	0.42	79.75	80.17	6
	10/30/98		21.54	0.10	79.73	79.83	<.001
	11/30/98		21.21	0.04	80.06	80.10	
	12/28/98		21.10	0.02	80.17	80.19	1

TABLE 1
GROUNDWATER AND FREE PRODUCT ELEVATION DATA
327 34TH STREET
OAKLAND, CALIFORNIA

Monitoring		Floresticu ¹	Depth to Groundwater	Product Thickness	Elevation	Elevation	Free Product/Purge Water Removed	
Well	Date	Elevation ¹	(feet)	(feet)	(feet)	(feet)	(Gallons)	
MW-2	1/25/99		20.80	0.01	80.47	80.48	6	
(continued)	2/26/99		18.00	sheen	83.27		1	
` ,	12/15/99		22.42	0.025	78.85	78.88	3	
	3/20/00		17.09	0.026	84.18	84.21	5	
	7/20/00		20.86	0.017	80.41	80.43	3	
	10/11/00		22.10		79.17		1	
MW-3	7/27/93	101.29	22.28^{2}	0.02	79.01	79.03		
1.2 ,,	10/2/97	191.29	22.71	0.03	78.58	78.61	6	
	6/30/98		19.47		81.82			
	7/29/98		20.01		81.28			
	8/26/98		20.62		80.67			
	10/1/98		21.33		79.96			
	10/30/98		21.62		79.67			
	11/30/98		21.31		79.98			
	12/28/98		21.15	0.06	80.14	80.20	1	
	1/25/99		20.79		80.50			
	2/26/99		18.02		83.27			
	12/15/99		22.43	0.0083	78.86	78.87	3	
	3/20/00		17.14		84.15			
	7/20/00		20.98	0,2	80.31			
	10/11/00		22.24		79.05			
MW-4	6/30/98	98.65	16.93		81.72			

TABLE 1
GROUNDWATER AND FREE PRODUCT ELEVATION DATA
327 34TH STREET
OAKLAND, CALIFORNIA

Monitoring			Depth to Groundwater	Product Thickness	Groundwater Elevation	Product Elevation	Free Product/Purge Water Removed
Well	Date	Elevation ¹	(feet)	(feet)	(feet)	(feet)	(Gallons)
1 437 4	# /00 (OD		17.40		01 17		
MW-4	7/29/98		17.48		81.17		
(continued)	8/26/98		18.65		80.00		
	10/1/98		18.74		79.91		
	10/30/98		19.02		79.63		
	11/30/98		18.74		79.91		
	12/28/98		18.60		80.05		
	1/25/99		18.32		80.33		
	2/26/99		15.81		82.84		
	12/15/99		19.83		78.82		
	3/20/00		14.90		83.75		
•	7/20/00		18.38	· 	80.27		
	10/11/00		19.61		79.04		
MW-5	6/30/98	100.9	20.60		80.30		
	7/29/98		21.52		79.38		
	8/26/98		22.21		78.69		
	10/1/98		22.95		77.95		
	10/30/98		23.23		77.67		
	11/30/98		23.13		77.77		
	12/28/98		23.18		77.72		
	1/25/99	•	22.61		78.29		
	2/26/99		19.78		81.12		
	12/15/99		24.19		76.71		
	3/20/00		19.15		81.75		<u></u>
	7/20/00		21.84		79.06		
	10/11/00		23.40		77.50 77.50		

TABLE 1
GROUNDWATER AND FREE PRODUCT ELEVATION DATA
327 34TH STREET
OAKLAND, CALIFORNIA

Monitoring Well	Date	Elevation ¹	Depth to Groundwater (feet)	Product Thickness (feet)	Groundwater Elevation (feet)	Product Elevation (feet)	Free Product/Purge Water Removed (Gallons)
MW-6	7/20/00	96.60	18.30		78.30		
	10/11/00		18.69		77.91		-4
MW-7	7/20/00	96.75	15.93		80.82		
	10/11/00		16.90		79.85		

¹ Elevations are referenced to monitoring well MW-1, with an assumed datum of 100.00 feet.

^{&#}x27; Measurements by others

⁻⁻ Product not observed

NA = Data not available

TABLE 2 SUMMARY OF PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUNDWATER 327 34TH STREET OAKLAND, CALIFORNIA

		Groundwater	•					Ethyl-	Total		Oil &
		Elevation†	TVHg	TEHd	TEHo	Benzene	Toluene	benzene	Xylenes	MTBE	Grease
Location	Date	(feet)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(μg/L)	(μg/L)	(µg/L)	(µg/L)	(mg/L)
MW-1	07/27/1993	79.21	<50	<50	•	<0.5	<0.5	<0.5	<0.5		<5
JV1 VV - 1	10/02/1993					<0.5	<0.5	<0.5	<0.5 <0.5	- -	
			<50			<0.5	<0.5			<2	
	06/30/1998		84					2.1	0.55	2.1	
	10/01/1998		<50			<1.0	<1.0	<1.0	<1.0	<2.0	
	01/25/1999		<50			<1.0	<1.0	<1.0	<1.0	<2.0	
	12/16/1999		<50			< 0.50	< 0.50	<0.50	<0.50	<0.50	
	07/20/2000	80.37	<50	<50	<300	< 0.50	<0.50	<0.50	<0.50	3.4	
MW-2	07/27/1993	79.17	120,000			10,000	27,000	2,900	20,000		
	10/02/1997	78.36	*			*	*	*	*	*	*
	06/30/1998		72,000			7,300	18,000	2,500	15,600	5,500	
	10/01/1998		84,000			6,400	17,000	2,600	17,000	2,000	₩-#
	01/25/1999		130,000			9,000	26,000	3,800	27,500	5,800	
	12/16/1999		*			*	*	*	*	*	
	07/20/2000				*	*	**************************************	**			*
MW-3	07/27/1993	79.01	330,000			9,100	24,000	5,300	33,000		
141.11 5	10/02/1997		36,000			4,200	11,000	1,800	10,600	3,500	
	06/30/1998		51,000	••		4,800	11,000	1,200	7,100	3,900	
	10/01/1998		38,000			3,900	8,500	1,200	6,000	2,300	
	01/25/1999		51,000		<u></u>	4,000	10,000	1,200	6,700	2,900	
	12/16/1999		*			*	*	*	*	2,700 *	
	07/20/2000		69,000	2,900	 <300	5,700	14,000	1,600	9,300	3,300	

TABLE 2 SUMMARY OF PETROLEUM HYDROCARBON CONCENTRATIONS IN GROUNDWATER **327 34TH STREET** OAKLAND, CALIFORNIA

	(Froundwater						Ethyl-	Total		Oil &
		Elevation †	TVHg	TEHd	TEHo	Benzene	Toluene	benzene	Xylenes	MTBE	Grease
Location	Date	(feet)	(µg/L)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)
MW-4	06/30/1998	81.72	10,000			2,200	930	850	2,100	1,800	
	10/01/1998	79.9 1	1,100			570	46	130	36	1,300	
	01/26/1999	80.33	290			230	<8.3	<8.3	<8.3	1,300	
	12/16/1999	78.82	<50			5.8	< 0.50	< 0.50	< 0.50	1,400	
	07/20/2000	80.27	210	<50	<300	91.0	4.6	19	12.9	1,500	
MW-5	06/30/1998	78.69	<50			<0.5	<0.5	<0.5	<0.5	23	
	10/01/1998	77.95	<50			<1.0	<1.0	<1.0	<1.0	<2.0	
	01/26/1999	78.29	<50			<1.0	<1.0	<1.0	<1.0	< 2.0	
	12/16/1999	76.71	<50			< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
	07/20/2000	79.06	<50	<50	<300	<0.50	0.98	<0.50	<0.50	2	
MW-6	07/20/2000	78.30	< 50	<50	<300	<0.50	<0.50	<0.50	<0.50	160	
MW-7	07/20/2000	80.82	<50	<50	<300	<0.50	<0.50	<0.50	<0.50	<0.50	

NOTES:
TVHg = Total Volatile Hydrocarbons as gasoline
TEHd = Total Extractable Hydrocarbons as diesel TEHo = Total Extractable Hydrocarbons as motor oil MtBE= Methyl Tertiary Butyl Ether

-- = Not analyzed

mg/L = milligrams per liter

μg/L = micrograms per liter

<50 = not detected at or above listed analytical reporting limit

* = This sample contained free-product and was not analyzed.

†= Arbitrary datum (see Table 1)

TABLE 3 SUMMARY OF BIOPARAMETER DATA 327 34TH STREET OAKLAND, CALIFORNIA

			CO ₂	CO ₂	DO	DO	pН	pН					· /	
		TVHg	Field	Lab	Field	Lab	Field	Lab	Fe(II)	Mn	SO_4	N-NH ₃	$N-NO_3$	o-PO ₄
Location	Date	(μg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
														_
MW-1	06/30/1998	84	204		5	5.1	6.16	6.4	0.15	0.046	55	< 0.1	< 0.1	2
	10/01/1998	< 50	192		3.6		6.49							
	01/25/1999	<50	'		3.4		6.72							
	12/15/1999	<50			3.31		6.52							
	07/20/2000	<50		120	7.37		6.66	an law <u>II</u>	0.13	<0.01	5 4	<0.1	3.4	<0.2
MW-2	06/30/1998	72,000	185		2.2		5.98							
	10/01/1998	84,000	230		2.7		6.47							
	01/25/1999	130,000	386		0.3		6.69							
	12/15/1999	*			*		*							
	07/20/2000		*				*	*		*: *	e green 🔸 🕝	*	*	*
				·										
MW-3	06/30/1998	51,000	300		2.2	3.2	6.03	6.6	1.4	9.8	13	1.4	< 0.1	2.4
	10/01/1998	38,000	240		2.1		6.65							
	01/25/1999	51,000	238		1.2		7.0 1	••		. 				
	12/15/1999	*			*		*							
	07/20/2000	69,000	. ·	128	2.05		6.73	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3.9	6.6	20	<0.1	0.55	< 0.2
MW-4	06/30/1998	10,000	222		2.6	3.5	6.18	6.6	0.14	4.3	14	0.8	0.8	1.5
	10/01/1998	1,100	320		3.4		6.71							
	01/26/1999	290	475		6.7		7.00							
	12/15/1999	<50			1.75		7.02							
	07/20/2000	210		126	3,88		6.67		9.5	5.3	and ill es.	<0.1	0.04	<0.2

TABLE 3 SUMMARY OF BIOPARAMETER DATA **327 34TH STREET** OAKLAND, CALIFORNIA

			CO ₂	CO ₂	DO	DO	pН	pН						
		TVHg	Field	Lab	Field	Lab	Field	Lab	Fe(II)	Mn	SO_4	$N-NH_3$	$N-NO_3$	o-PO ₄
Location	Date	(µg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)_
					•			·						
MW-5	06/30/1998	< 50	220		4.3		6.1							
	10/01/1998	<50	256	·	4.8		6.71							
	01/26/1999	< 50	305		9.7		7.04							
	12/15/1999	< 50			2.72		7.19							
	07/20/2000	<50	 ·	134	5.58		6.35		0.11	0.017	49	< 0.1	3.9	<0.2
MW-6	07/20/2000	<50		122	2.72	er Profit	6.66		120	1.9	53	6	0.05	<0.2
MW-7	07/20/2000	<50		32.2	7.15	6 ; *== :			<0.1	0.018	7.5	<0.1	2.6	0.13

TVHg = Total Volatile Hydrocarbons as gasoline

μg/L = micrograms per liter
mg/L = milligrams per liter
-- = test not requested

* = This sample contained free-product and was not analyzed. Fe(II) = ferrous iron

Mn = manganese $SO_4 = sulfate$

N-NH₃ = nitrate nitrogen
N-NO₃ = nitrogen as ammonia
o-PO4 = ortho phosphate

APPROXIMATE SCALE (feet)

VICINITY MAP

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA

 JOB NUMBER
 DATE
 APPROVED

 1039.008
 12/00

PLATE

1

LEGEND

Limits of site structures

Monitoring well location

Boring location

Approximate location of former underground storage tank

34TH STREET

Approximate location of former dispenser pump

APPROXIMATE SCALE (feet)

SITE PLAN

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA

JOB NUMBER 1039.008 DATE 11/00 PLATE

APPROVED

2

LEGEND Limits of site structures Monitoring well location (80.31)Groundwater elevation (March 2000) 0 Boring location Approximate location of former underground storage tank 34TH STREET Approximate location of former dispenser pump

GROUNDWATER ELEVATION DATA (MARCH 2000)

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA JOB NUMBER

1039.008

DATE APPROVED 12/00

PLATE

LEGEND Limits of site structures Monitoring well location (80.31) Groundwater elevation (July 2000) Boring location Approximate location of former underground storage tank

GROUNDWATER ELEVATION DATA (JULY 2000)

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

327 34TH STREET OAKLAND, CALIFORNIA

12/00

JOB NUMBER 1039.008 DATE APPROVED

PLATE

4

LEGEND

Limits of site structures

Monitoring well location

(80.31)

Groundwater elevation (October 2000)

0

Boring location

Approximate location of former underground

storage tank

34TH STREET

Approximate location of former dispenser pump

APPROXIMATE SCALE (feet)

GROUNDWATER ELEVATION DATA (OCTOBER 2000)

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

120

327 34TH STREET OAKLAND, CALIFORNIA

 JOB NUMBER
 DATE
 APPROVED

 1039.008
 12/00

PLATE

5

LEGEND 7777777 Limits of site structures Monitoring well location TVH, Benzene, MtBE Levels in ug/l (210,91,1500) **Boring location** 0 Approximate location of former underground storage tank 34TH STREET Approximate location of former dispenser pump MW-2 MW-1 (<50, <0.5, 3.4) (free product) **PARTS** DEALER LOT MW-3 (69000, 5700, 3300) MW-7 (<50, <0.5, <0.5) ⊚^{B-6} MW-4 (210, 91, 1500) Approximate location TUNE-UP **SERVICE ENGINE** of underground concrete box **ELECTRICAL** REPAIR culvert and former tributary LUBE MM/A (<50, <0.5, 160) Groundwater Flow Direction MW-5 (<50, <0.5, 1.9) (July 2000) APPROXIMATE SCALE (feet) TVH, BENZENE, MtBE CONCENTRATIONS

JULY 2000 PLATE 327 34TH STREET Subsurface Consultants, Inc. Geotechnical & Environmental Engineers OAKLAND, CALIFORNIA JOB NUMBER DATE APPROVED 1039.008 12/00

ALAMEDA COUNTY HEALTH CARE SERVICES

AGENCY

DAVID J. KEARS, Agency Director

November 08, 1999

Don Strough Strough Family Trust of 1983 P.O. Box 489 Orinda, CA 94563

STID: 3035

Re: Investigations at Val Strough Chevrolet, located at 327 34th Street, Oakland, CA 94609

Dear Mr. Strough,

I have recently been designated as the new caseworker to oversee investigations at the above site. According to our case files, one 1,000-gallon gasoline underground storage tank (UST) and one 1,000-gallon waste oil UST were removed from the site in March 1993. Soil samples collected from beneath the former tanks identified Total Petroleum Hydrocarbons as gasoline (TPHg), TPH as diesel (TPHd), and benzene, toluene, ethylbenzene, and total xylenes (BTEX). Consequently, in July 1993, three monitoring wells (MW-1 through MW-3) were installed at the site. Groundwater samples collected from these wells identified elevated levels of TPHg and BTEX. No additional groundwater samples were collected from these wells until October 1997, when free product, along with elevated contaminant concentrations, were identified in these wells. Consequently, two additional monitoring wells (MW-4 and MW-5) were installed at the site in June 1998 to further delineate the extent of the contaminant plume. Since the installation of MW-4 and MW-5, all five on-site monitoring wells have been sampled three times. Per the last groundwater monitoring event in January 1999, free product was observed in both Wells MW-2 and MW-3, and the furthest downgradient (southeasterly) on-site well, MW-4, identified 290ppb TPHg, 230ppb benzene, and 1,300ppb MTBE.

MTBE is known to migrate faster and further than TPHg and BTEX in groundwater due to it's high affinity to groundwater, and is much slower to biodegrade than the other gas constituents. Consequently, this office is concerned with the elevated MTBE concentrations being identified in downgradient Well MW-4, and is requiring that the contaminant plume be further characterized/delineated. Per the "Creek and Watershed Map of Oakland & Berkeley," published by the Oakland Museum of California, there is an underground culvert running below the eastern portion of the site. The required characterization work should provide information to this office on the liklihood of this culvert acting as a conduit for contaminant plume migration.

A workplan addressing the above required work should be submitted to this office within 60 days of the date of this letter (January 03, 2000). Any requests for extensions of the due date, or modifications of the required tasks, should be submitted to this office in writing.

Lastly, per my conversation with Jeriann Alexander, Subsurface Consultants, Inc., on November 08, 1999, the site has received pre-approval from the State UST Cleanup Fund for continued quarterly groundwater monitoring and monthly free product removal. The next quarterly

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION 1131 Harbor Bay Parkway Alameda, CA 94502-6577 (510) 567-6700 (510) 337-9432

Don Strough Re: 327 34th Street November 08, 1999 Page 2 of 2

groundwater monitoring event and free product removal is required to be implemented within 45 days of the date of this letter (i.e., by December 20, 1999). A report documenting the work should be submitted to this office within 45 days after completing field activities.

If you have any questions or comments, please contact me at (510) 567-6763.

Sincerely,

Juliet Shin, R.G.

Hazardous Materials Specialist

Cc: Jeriann Alexander

Subsurface Consultants, Inc. 3736 Mt. Diablo Blvd., Ste 200

Lafayette, CA 94549-3659

Jonathan Redding

Wendel, Rosen, Black & Dean, LLP

P.O. Box 2047

Oakland, CA 94604-2047

ALAMEDA COUNTY

HEALTH CARE SERVICES

DAVID J. KEARS, Agency Director

ENVIRONMENTAL HEALTH SERVICES ENVIRONMENTAL PROTECTION (LOP) 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577 (510) 567-6700 FAX (510) 337-9335

March 8, 2000

Don Strough Strough Family Trust of 1983 PO Box 489 Orinda, CA 94563

Dear Mr. Strough:

Subject:

Val Strough Chevrolet, 327-34th St., Oakland, CA 94609;

StId 3035

"Groundwater Monitoring Report and Scope of Work for Additional Plume Characterization" by Subsurface Consultants, Inc., dated February 7, 2000, was reviewed. The bioparameters used, CO₂, DO, and pH, may not be adequate to demonstrate bioremediation. Provide justification. The "Scope of Additional Site Characterization" is acceptable with the previous agreement that the presence of free product will be checked in all wells on a quarterly basis and if present it will be removed using a bailer and stored for proper and timely disposal. Please submit reports of the free product status including amount found, method used for removal, amount removed, etc.

If you have any questions, you may contact me at (510) 567-6746.

Sincerely,

Don Hwang

Hazardous Materials Specialist

C: Gene Ng, Jeriann Alexander, Subsurface Consultants, Inc., 3736 Mt. Diablo Blvd., Suite 200, Lafayette, CA 94549-3659

File

ALAMEDA COUNTY PUBLIC WORKS AGENCY

WATER RESOURCES SECTION HAYWARD, UA 94544
PHONE (510) 670-5554

	TARRY ICATION
DRILLING FERMI	AFFLICAMO
	FOR OFFICE USE
· · · · · · · · · · · · · · · · · · ·	FOR OFFICE USE
for applicant to complete	PERMIT NUMBER WOO - 412
±. ~! (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	WELL NUMBER
DEATION OF PROJECT 327 34Th SE. Daries	APN
	PERMIT CONDITIONS
Te Accuracy #	
talifornia Chordinates South	Circled Permit Requirements Apply
CN	GENERAL
PN /	
CLIENT Strough Family Trust of 1983	THINK ALL OF WY OTHER PARTY
	proposed starting data. 2. Kubmit to ACFWA within 60 days after completion of
Zip	pormitted work the original Department of Water
City D. P. C.	RESOURCE - WELL COMPUTEDION
APPLICANT Subsurface Consultante 2957 299-7970	OFFORT-
	3 Permit is vald if project not begun within 90 days of
Address 3736 ME, Diablo Glvd. #200 Phone (925) 299-7860 Zip 94549	
City Larayette	B. WATER SUPPLY WELLS 1. Minimum surface soul thickness is two inches of
TYPE OF PROJECT Ocomechnical Investigation	1. Minimum surrace and his manager
Well Controlled	
Carbudia Protection	
Water Supply Commington	
Monitoring	C DROUND WATER MONITORING
PROPOSED WATER SUPPLY WELL USE	INCLUDING PILZOMETERS. 1. Minimum surface seed thickness is two inches of
New Domestic C Replacement Demestic	coment grout placed by activity wells is the
Municipal U Imageon	
Industrial O Other .	meximum screen processing
· · · · · · · · · · · · · · · · · · ·	D GEOTECHNICAL
DRILLING METHOD:	Buckfill bare hale with compacted material. In
Mag Rocky C Other C	bentonite and upper two test with commination, womised afters of known or suspected commination, womised attentions.
Cable Care Facilities	sices of known or suspected communication, withings.
DRILLER'S LICENSE NO. C57-522125	E. CATHODIC Fill hole above anode zone with soneress placed by termin.
	till hole above anade zone will assess
Drill Hole Diameter 8 in. Maximum Drill Hole Diameter 8 in. Donth 35 ft.	P. WELL DESTRUCTION See attached.
Cosing Diameter	G. SPECIAL CONDITIONS
Surface Scal Depth	G. 34 man
TO STAIR CTS	,
stumber of Parings	1 A This
Hole Diameterin. Depthit.	DATE
7/12/00	APPROVED
ESTIMATED STARTING DATE 7/12/00 ESTIMATED COMPLETION DATE 7/12/00	/\/ \
E21 Part (ED Carra	. / \(\
and an exercise of this permit and	
I hereby agree to comply with all requirements of this permit and	
Alameda County Ordinance No. 73-68.	
APPLICANT'S DATE 7/3/00	
SIGNATURE	

PAGE.01

JUL 03 2000 12:17

ALAMEDA COUNTY PUBLIC WORKS AGENCY

DRILLING PERMIT	APPLICATION
FOR APPLICANT TO COMPLETE LOCATION OF PROJECT 327 34th St. Oakland	FOR OFFICE USE PERMIT NUMBER WOO - 417 WELL NUMBER APN
California Chardinates Southeft. sceuracy ±ft.	PERMIT CONDITIONS
CCN R. C.E.	Citaled Permit Requirements Apply
CLIENT Strough Family Trust of 1983 Name Address 2 Sec View Ave. Phone (510) 825-8000 City Diedmont Zip 94611.	DENCE AL 1. A permit application should be submitted to as to arrive at the ACPWA office five days prior to proposed starting date. 2. Submit to ACPWA within 60 days after completion of permitted work the original Department of Water
APPLICANT Subsurface Consultants Neme Fax (725) 299-7970 Address 3736 Mc. Diablo Blud. #200 Fhone (925) 299-7860 Zip 94549	Resources WELL COMPLETION REPORT 3 Permit is void if project not begun within 90 days of approval date.
City Lafenette Zip Gasage TYPE OF PROJECT Well Construction General General Cathodic Protection General General Water Supply General Wall Destruction G	B. WATER SUPPLY WELLS 1. Minimum surface seal thickness is two inches of cement grout placed by memic. 2. Minimum seal depth is 50 feet for municipal and industrial wells of 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. C. GROUNDWATER MONITORING WELLS
PROPOSED WATER SUPPLY WELL USE New Democide G Replacement Domestic G Municipal G Irrigation G Industrial G Other G	INCLUDING PILZOMETERS. 1. Minimum surface seel thickness is two inches of coment grout placed by memic. 2. Minimum seel depth for monitoring wolls is the maximum depth practicable or 20 face.
DRILLING METROD: Mud Rolly Q Air Rolly Q Auger iv Cable Q Other Q DRILLER'S LICENSE NO. C57-522125	D. GEOTECHNICAL Backfill bore hole with compacted curtings or heavy bentonite and upper two feet with compacted material. In areas of known or suspected communication, comicd coment from that be used in place of compacted cuttings.
OFFIL PROJECTS Drill Hole Diameter 8 in Maximum Casing Diameter 2 in Depth 35 ft. Surface Scal Depth	E. CATHODIC Fill hole above anode some with concrete placed by tremic. P. WELL DESTRUCTION See anached, G. SPECIAL CONDITIONS
GEOTECHNICAL PROJECTS Number of Borings	APPROVED DATE - 7-0
I hareby agree to comply with all requirements of this permit and Alameda County Ordinance No. 73-63.	
APPLICANT'S SIGNATURE DATE 7/3/00	

										Sheet 1 d	<u> </u>
Proje	ct Na	me &	Location	on: 32	27 34th	Street		Ground Surface		6.60 feet	
				0	akland,	California		Top of Casing E Elevation Datum	:		
									TOC of M	N-3 = 100 feet	
Drillir	ig Co	ordina	tes:	ot surv	eyed			Start: Date	Time	Finish: Date	Time
Drillin	ng Co	mpany	/ & Dri	ller:	AEi, Jef		,	7/17/00	13:00	7/17/00	15:00
Ria T	vne /	₹ Drilli:	ng Met		AEI, Jei	1		Drilling Fluid:		Hole Diameter	
				(/ Hollow Stem Auger		None		8"	_
Sam _l Type		A) Ca	lifornia	(2.5"	O.D., 2	.0" I.D.)		Logged By: ES		≅ G.W.L. Durin ₹ Before devel	ig Drilling opement on 7/20
	oling		40 lb a	autom	atically	tripped hammer w/30"	drop	Backfill Method:		Dat	e:
wetn	od(s)	:						Well constr	ucted	7/17/	'00
t)	be	hes	ches		erval		SOIL DESCR	RIPTIONS		WELL CONS	TRUCTION
Depth (feet)	Sampler Type	Blows/6 inches or Pressure	ws/12 in	SOIL SOIL SOIL SOIL SOIL GROUP NAME (GROUP color, consistency/density moisture condition, other (Local Name or Material				·			Flush Mounted Well Cover
0 -	San	등 교 교	B	ō	Sar Gra	(Local Name or	on, other descript Material Type)	ions			Locking Well Cap
5	A	12w 12 3611 5711	20 17	0		ASPHALT 4 - INCH CLAYEY SAND WIT Orange-brown, med	TH GRAVEL (SC)	ngular gravel, cobbles a	and chert		-Neat Cemem Seal -Bentonite Pel Seal
20 -	A	37-0	16	o		LEAN CLAY WITH Mottled brown and g	green, soft, moist		Ā		
25 - - - -	A	4 7 11	18	0		SANDY CLAY (CL) Light brown, mediur	n stiff, moist				- Lonestar #3 - pack 2-inch x 0.020-inch slotted screer
30 - - - -	А	4 8 10	18	0		LEAN CLAY (CL) Light brown, mediur	m stiff, moist				
35 - -	Α	9 8 13	21	0		Becomes stiff at 35	feet at 36.5 feet below gro	und surface.			-Bottom Cap a 35 feet
 							330 330 310				
40 -		_					<u> </u>	327 34th			BORING
V	Π	8	Subst	ırfac	e Cor	isultants, Inc.	IOD MUMBER	Oakland, (California_	DATE	d MW-7
						nmental Engineers	JOB NUMBER			DATE	1414421

UNIFIED SOIL CLASSIFICATION SYSTEM (ASTM D2487-93)

	MAJOR DI	VISIONS		GROUP NAMES
		Clean gravels less than	GW CO	
S	GRAVELS More than 50%	5% fines	GP OO	Poorly graded gravel, Poorly graded gravel with sand
ED SOIL etained sieve	of coarse fraction retained on No. 4 sieve	Gravels with more than	GM 600	Silty gravel, Silty gravel with sand
AINEL 0% reta 200 sie		12% fines	GC %%	Clayey gravel, Clayey gravel with sand
COARSE-GRAINED SOILS More than 50% retained on the No. 200 sieve		Clean sand less than	sw	Well-graded sand, Well-graded sand with gravel
OARS Mor	SANDS 50% or more	5% fines	SP	Poorly graded sand, Poorly graded sand with gravel
Ö	of coarse fraction passes No. 4 sieve	Sands with	SM	Silty sand, Silty sand with gravel
		12% fines	sc	Clayey sand, Clayey sand with gravel
			ML	Silt, Silt with sand or gravel, Sandy or gravelly silt, Sandy or gravelly silt with gravel or sand
OILS es		AND CLAYS it Less than 50%	CL	Lean clay, Lean clay with sand or gravel, Sandy or gravelly lean clay, Sandy or gravelly lean clay with gravel or sand
FINE-GRAINED SOILS 50% or more passes the No. 200 sieve			OL	Organic silt or clay, Organic silt or clay with sand or gravel, Sandy or gravelly organic silt or clay, Sandy or gravelly organic silt or clay with gravel or sand
GRAII % or mo ie No. 2			мн	Elastic silt, Elastic silt with sand or gravel, Sandy or gravelly elastic silt, Sandy or gravelly elastic silt with gravel or sand
FINE. 50.	SILTS AND CLAYS Liquid Limit Greater than 50%		сн	Fat clay, Fat clay with sand or gravel, Sandy or gravelly fat clay, Sandy or gravelly fat clay with gravel or sand
		ereact that very	ОН	Organic sitt or clay, Organic sitt or clay with sand or gravel, Sandy or gravelly organic sitt or clay, Sandy or gravelly organic sitt or clay with gravel or sand
	HIGHLY ORGA	ANIC SOILS	Pt SSS	Peat

For definition of dual and borderline symbols, see ASTM D2487-93.

KEY TO TEST DATA AND SYMBOLS

Perm Consol	- Permeability - Consolidation	Shear Confining Strength Pressure
LL PI Gs MA -200 ND	 Liquid Limit Plasticity Index Specific Gravity Particle Size Analysis Percent Passing No. 200 Sieve Not Detected Tube Sample Bag or Bulk Sample 	TxUU 3200 (2600) Unconsolidated-Undrained Triaxial Shear TxCU 3200 (2600) Consolidated-Undrained Triaxial Shear TxCD 3200 (2600) Consolidated-Drained Triaxial Shear SSCU 3200 (2600) Consolidated-Undrained Simple Shear SSCD 3200 (2600) Consolidated-Undrained Simple Shear SSCD 3200 (2600) Consolidated-Drained Simple Shear DSCD 2700 (2000) Consolidated-Drained Direct Shear UC 470 Unconfined Compression LVS 700 Laboratory Vane Shear FV 300 Field Vane Shear
□ <u>▼</u>	Lost SampleFirst GroundwaterStabilized Groundwater	TV 800 Torvane Shear PP 400 Pocket Penetrometer (actual reading divided by 2)

Subsurface Consultants, Inc. Geotechnical & Environmental Engineers

	327 34th Street
	Oakland, California
JOB NUMBER	DATE

APPROVED

1039.008 12/00

GROUNDWATER DEPTHS

Project N	lame:	327	34th St	. (Free Product Removal)	
Job No.:		9.008			•
Measure		Sene	Ng		
		<u></u>	7		•
Well	Date	Time	Groundwater Depth (feet)	Comments	<u>-</u>
Mw-I	3/20/00	0935	16.25	No product no odor	
MW-4	1	0938	14,90	No product, no odor	
MW-5		0945	19.15	No post it is all	
MW-Z		0452	i	Stone He doe 511" and t	5 and land
MW-3		0955	17.14	No product no odor 5trong HC odor, 5/16" product Strong HC odor, no free produc	1 - 9 mi. ban
) (1)	,
		_			_
_				3	
				-	
<u></u>					-

				WELL SAMI	LING KOKM	and Pate In			
PROJECT NAME:	Stry	in							
JOB NO.	1039	0008				-		WELL NO .: ML	1 _ f
SAMPLED BY:	E. S.	verm	an						
DATE:	· ـ رسب	100						DIAMETER: 2" MATERIAL:	
WEATHER:						_		LEVATION:	
					"-	_			
TOTAL DEPTH OF CA	SING (BTOC)	306	4	FEET	CALCIII ATEC	DI IDCE VAI I	n.æ	5.4	gallor
				-		PURGE VOLUME			
DEPTH TO GROUNDW	VATER (BTOC)	19.6	3	_feet (9:05)	(Contract outside una				
		,		FREE PRODUC	CT				
FEET OF WATER IN W	ELL	11.05	11.05 FEET						
ļ					PURGE METH	OD			
								<u>-</u>	
MEASUREMENT MET	HOD			TAPE & PASTE	ELECTRONIC SOUNDER			OTHER	
		garantiya ee			galegy of the control		A STATE OF THE PARTY OF THE PAR		
				.FUELD MEASUR	EMENTS		多基金的值		
		,	•	CONDUCTIVITY		ORP	DO	COMMENTS	
GALLONS REMOVE	D TIME_	pH	TEMP	(µMHQS/CM)	TURBIDITIY	(nV)	(mg/l)	(odor, color,)	
1.15	1,0	1116	10001	0 780	0.30+	127-121	7-37	Clean	<u> </u>
	3.0	150	162 25	0.789	6376	730.0	3,27	cloudy	
	510	(1.1)	18188	10 800	1 770	2000	2,41	No other	
1:40	100	lelela	18.7.	10.855	12/11/5/	1/32:3	15:30	Cloudy	
, , , , ,	10,0	1 2 18 (2)	100		C IGI	0/5/-		- Cround	
		-			1				
						† 	<u> </u>		
			-	·		#D \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u>' </u>		
DEPTH TO GROUNDW	ATER WHEN	80% RECO	VERED			BC3.9	<u> </u>		
,					00 -0				
ACTUAL DEPTH TO G	ROUNDWATE	R BEFORE	SAMPLING	G (BTOC)	22.78		<u>:35</u>		
CALON DIG LOTTION	•					-			
SAMPLING METHOD			. .	···					
CONTAINERS / PRESE	RVATIVE	3	None	0		2	/		1
CONTRACTOR TREBE		40	ML				TER (A	mber)	
ļ				_	•	* . • L I	IIEK C	mber)	
		3,	/ HC	l		1	/ 10m	meserved	
		OT	HER 40	mL		FO	HER.	Doly	
ANALYSES:	.				•	-C 4			0
	TEHA,	TEH	ـــــد			250 r	nr t	DOLY WIHC	<u> </u>
1	TVH-a	BTEX							
	MISE	25		. 2.					
	CO F	<u> , </u>	<u>10, 2</u>	D4 2	_				
}	<u> 10 ~10#</u>	<u>3, N-</u>	1002	0-1043	 -			<u> </u>	
MISC FIELD OBSERVA	TION:								
- HADO CELED ODGERVA	.11011.					_			
1						-			
									
7									

				WELL SAMP	LING FORM			
PROJECT NAME:	Stry	M.						
JOB NO.	1039	0008	 }		WELL NO.: MAS-Z			
SAMPLED BY:	E. S.	verm	án	_ WEL	L CASING	DIAMETER: 2		
DATE:	7/20	100				- -		MATERIAL:
WEATHER:		·				_	TOCE	ELEVATION:
,			_	•				
TOTAL DEPTH OF CASI	NG (BTOC)	<u> 32</u> i	46	FEET	CALCULATED	PURGE VOLU	JME	(C, C) gallons
	·	7m	SI.	(0,11)	(feet of water *	casing dia ² * .04	108 * # of V	olumes)
DEPTH TO GROUNDWA	TER (BTOC)	_0	, \C/	_FEET (9:34)			6	I was weed by
FEET OF WATER IN WE	II.	- 11	100	FEET	FREE PRODUC	T	02	Tape & paste
,			/ (<u>Z</u>	_1001	PURGE METH	OD		Jupe & present
•					TOROD METER	OD		
MEASUREMENT METHO	OD GO			TAPE & PASTE	ELEC	CTRONIC SOU	NDER	OTHER
			Marie Control					
				BOIDEDENTEASUR	EMENTS ==			
GALLONS REMOVED	TIME		TTTO ATO	CONDUCTIVITY		ORP	DO	COMMENTS
GALLONS REMOVED	(UALA	pH /, 27	TEMP	(µMHOS/CM)	TURBIDITIY	(mV)	(mg/l)	(odor, color,)
	10000	(4.77	17,75	Original	0,000	3.80	0.88	V. Strong oder
							 	nemoud
							1	nem ca
	<u> </u>	<u> </u>						
	 			:	 		<u> </u>	
	 						1	
	·				<u> </u>	<u> </u>		
DEPTH TO GROUNDWAT	TER WHEN 8	0% RECOV	/ERED	·				·
ACTUAL DEPOSITION OF	N 70 70 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							-
ACTUAL DEPTH TO GRO	DUNDWATER	BEFORE	SAMPLING	G (BTOC)		······	-	
SAMPLING METHOD								
,								
CONTAINERS / PRESERV	/ATIVE	_3/	Non	٠		2	/-	
		40	ML	j		L	TER (/	fmber)
		3/	141	0 /		1	, ~	-
		OTI	HER 4C	\mu/		1 ~	/ Ur	preserved
ANALYSES;					-			pour
•	TEHA,	TEHO				250 n	nc f	DOLY WIHCL
	TVH-a,	BTEX						
	MISE.	21		ر. ک -				
,	N - 1 14	. <u>, , , , , , , , , , , , , , , , , , ,</u>	V 3V,	D/ 3-		·		
•	<u></u>	, , , , ,	~~3)	0-1043	<u> </u>			
MISC FIELD OBSERVATION	ON:							
,								
-				 				
-					·			
								•

	The state of the s		WEEL SAME	LING FORM			。 第二 個 監理數章的關鍵等		
PROJECT NAME; JOB NO.	Strough			WELL NO.: <u>m.u 2</u>					
SAMPLED BY:	E. Silver	man		WELL CASING DIAMETER: 2"					
DATE:	7/2/5/150	<u> </u>			<u>-</u>		MATERIAL:		
WEATHER:					_	TOCE	LEVATION:		
TOTAL DEPTH OF CASING DEPTH TO GROUNDWATE FEET OF WATER IN WELL	er (btoc) <u>37</u>	1.98 190 1-97	FEET (9:0G) FEET	CALCULATED (feet of water *	casing dia ² * .04		5,83¢	galion	
i				PURGE METH	OD				
MEASUREMENT METHOD)		TAPE & PASTE	ELE	CTRONIC SOU	NDER	OTHER		
			EIELD MEASUR	EMIDNES = F		y y			
GALLONS REMOVED	TIME pl	1 TEMP	CONDUCTIVITY (µMHOS/CM) (); (a f a 2	TURBIDITIY	ORP (mV)	DO (mg/l) 2.05	COMMENTS (odor, color,)	· ·	
2	Cio	12 18 89	0,719	0.549	-414	1,22	,		
10	$\frac{Q_I}{I}$	7(11-11	0.680	PIELL	-13,4	(2.0/a	v strong o	dir.	
10	Le.	731X131	0,731	0154	-71.2	1.84	aney 3		
								 -	
					<u>-</u> -	<u> </u>			
								•	
DEPTH TO GROUNDWATE	ER WHEN 80% RE	COVERED	•				· · · · · · · · · · · · · · · · · · ·		
ACTUAL DEPTH TO GROU	NDWATER BEFO	RE SAMPLING	(BTOC)	35.62			· · · · · · · · · · · · · · · · · · ·		
SAMPLING METHOD							÷		
CONTAINERS / PRESERVA	TIVE	3/ Non 40 ML	٤		2	TER (A	mber)		
· 	_3	HC HC	Q.		1	/ Un	preserved		
ANALYSES:		-	mL	•	07 250 n	HER-	POH	.0	
1	EHA, TEI	<u> </u>			<u> </u>	72 -	Doly w/HC	<u>-L</u>	
n - I	MIRE DI			· · · · · · · · · · · · · · · · · · ·					
Ċ	D. Fezh	ML 50	22-	· · · · · · · · · · · · · · · · · · ·					
, $\overline{oldsymbol{arLambda}}$	U-NH2 1	1-1002	1-P013-	<u> </u>	· <u></u> -				
MISC FIELD OBSERVATION	ار. 							**************************************	
					·		<u> </u>		
									
<u></u>									
							•		

	The second secon	WELLSAM	PLING FORM				şerile geri
PROJECT NAME; JOB NO.	Strough 1039 0008			_			
SAMPLED BY:	E. Silvermax					VELL NO.: <u>MW -</u>	<u>-L/</u>
DATE:			·	_ WELL	L CASING DI		
WEATHER:	_7,6000	<u> </u>	· · · · · · · · · · · · · · · · · · ·	-		ATERIAL:	
,,				-	TOC ELF	EVATION:	
TOTAL DEPTH OF CAS		FEET		PURGE VOLU		mes)	gailon
	Ocr	Creel	FREE PRODUC	CT			
FEET OF WATER IN W	ELL	FEET					
			PURGE METH	OD			
MEASUREMENT MET	HOD	TAPE & PASTE	ELE	CTRONIC SOU	NDER	OTHER	
		tere FIEED MEASUL	រាជាចិត្តកូន ៈ				
1		· CONDUCTIVITY		ORP	DO	COMMENTS	STREET, ST.
GALLONS REMOVED		EMP (μMHOS/CM)	TURBIDITIY	(mV)	(mg/l)	(odor, color,)	
0	3:11 6.72 18	190 0,740	0.546	69.9	3,88	Clour	
1	G.106 P	101 31779	0,567	- 2411	0.41	brun	
1	1 1 2 1/3	109 B1780	GUSTE	Z7-7	0.89	turlaig	
lu5	(10)	10 8 1 15 T	18:36	24.00	0,70	turbia	
	- C-107 P(1)	09 017 78	10. 271	30.08	178 5	twoid.	
•							
DEPTH TO GROUNDW	ATER WHEN 80% RECOVERE	D 29.57					
ACTUAL DEPTH TO GE	ROUNDWATER BEFORE SAMI	PLING (BTOC)	<u> </u>		_		
SAMPLING METHOD			·				
CONTAINERS / PRESE	RVATIVE 3/N	lone		2	TER (A		
	→			. 23	TER (/+v	nber)	
	S//	<u>+C</u> L 40 mL		<u> </u>	/ Ung	neserved	
ANALYSES:		•	•	3C 4	- 1		2
1	TEHA, TEHO			250 n	or be	ory withco	,
*	MIBE						
•	Co. Fezt Mn	Soul		·			
1	N-NH2 N-NO	3 , A-POU3					
MISC FIELD OBSERVAT	TION:						
							
,							

Subsurface Consultants, Inc.

				WELL SAM	PLING FORM		A TANKS	() [[[]] [[]] [[] [[]] [[] [[]] [[] [[] [
PROJECT NAME; JOB NO.	Stron.	19/2 1008			·	- -		WELL NO.: 177/11-44	24
SAMPLED BY:	E 81	verm	án		·	– Wei	L CASING	DIAMETER 2"	
DATE:		100				_		MATERIAL:	 -
WEATHER:						_		LEVATION:	
				•					
TOTAL DEPTH OF CASI				FEET	CALCULATED			33	gallor
DEPTH TO GROUNDWA	TER (BTOC)		_	feet(G! 1G)	FREE PRODUC		100 # UI Y (numes)	
FEET OF WATER IN WE	LL	Les:	72	FEET	TILLE TROOP	01			
					PURGE METH	OD			
MEASUREMENT METHO	Œ			TAPE & PASTE	ELE	CTRONIC SOL	INDER	OTHER	
				EIELD MEASUR	DIMIDNIES PAR				
)				CONDUCTIVITY		ORP	DO	COMMENTS	
GALLONS REMOVED	TIME	, pH	TEMP	(µMHOS/CM)	TURBIDITTY	(mV)	(mg/l)	(odor, color,)	
' 	2330	1017	1 5.16	0,372	0,278	175,2	555	(Dollar	
· 		10.79	15,25	0,38+	12,289	170.Z	4.23	Torra	
基 43	<u> </u>	1000	13.77	102464	10,533	1955	C.20	Α	
78.4.7		6:3	18,19	101379	120281	Filed	2114	brown close	<u> </u>
							ļ	HC Oda	
				200	 		 		
) <u> </u>	ļ		 -				 		•
							L		
DEPTH TO GROUNDWA	TER WHEN 8	0% RECOV	ERED	23,08	<u> </u>			·	
ACTUAL DEPTH TO GRO	OUNDWATER	BEFORE S	SAMPLING	в (втос)			·		
SAMPLING METHOD							· .		
CONTAINERS / PRESERV	/ATIVE	3/	Non	e		2	/-		:
		40 1	ML	•		יו די	TER (A	mber)	
		3/	/ H/	0		1	/ /		
, and the second		<u> </u>	HER 40	X		1	<u>/ Un</u>	preserved	
ANALYSES:		011	1310 - <u>J</u> C		•	09	HER-	1004	
	TEHA,	TEHO		<u>.</u>	·	250 r	nr t	DOLY WIHCR	
	MARCH,	5/2 X							· ·
	16 E.	21.	· S/	12.12-			<u> </u>		
	N-WH2	- \lambda	00.	1-P6.3	-				
		,)				·		
MISC FIELD OBSERVATION	ON:	Dry	(h)	3 salla	n				
	<u>.</u>			J					
				· · · · · · · · · · · · · · · · · · ·					
•									

Subsurface Consultants, Inc.

T. C. SERRER REPRESE				WELL SAMI	LING FORM	graffe. Ve			
PROJECT NAME:	O i	M.							
JOB NO.	1039	10008				-	,	VELL NO 1004	nolo
SAMPLED BY:	E. S. 1	verm	an			 WEI	L CASING D	VELL NO.: 1004 IAMETER: 2"	<u> </u>
DATE:	7/2/1	100			<u> </u>	- -		ATERIAL:	
WEATHER:						<u></u>	TOC ELI	EVATION:	
		<i>«</i>		•	*		1/2 1/	ols 2	
TOTAL DEPTH OF CASIN	IG (BTOC)	28,	55	FEET	CALCULATED		JME .	16.72	gallon:
		18 2	۵		(feet of water *	casing dia ² * .04	08 * # of Volu	ımes)	
DEPTH TO GROUNDWAT	ER (BIOC)	1 2	0	FEET	EDEC PROPE				
FEET OF WATER IN WELL	L	_10.2	25	FEET	FREE PRODUC	JI.		rme	
					PURGE METH	OD ·			
MEASUREMENT METHO	D			TAPE & PASTE	ELE	CTRONIC SOU	NDER	OTHER	
				anged Midasing	EMENTO ==				
		7020		CONDUCTIVITY					
GALLONS REMOVED	TIME	pН	TEMP	(µMHOS/CM)	TURBIDITIY	ORP (mV)	DO (mg/l)	COMMENTS (odor, color,)	
0	11:40	Ce 41	-18.44	0.648	0,484	-629	7.72/	1 1 4	turbid
3 5		11.34	161.82	0. lalo4	0,496	-709	1,47	8. 1.	
10		7 3/	19,00	P. Colet	0.497	-67-5	3.0		
16		6/02	1200	1 1 1 2 C	181507	16.3	787	NO Odw	
20		10.44	1714	07/254	MILICIE	-10(1cl)	1577		
25	1231	Cerlos	18-06	0.696	057/	-/22 8	3,50	Small At	botten.
								of buck	II.
DEPTH TO GROUNDWAT	ER WHEN 8	0% RECOV	ÆRED			3.			
								· · · · · · · · · · · · · · · · · · ·	
ACTUAL DEPTH TO GROU	UNDWATER	BEFORE	SAMPLING	(BTOC)	19.43			* ·	
SAMPLING METHOD							-		
PAMILTING METHOD _			 .						
CONTAINERS / PRESERVA	ATIVE	_3/	Non	Q		2	/		
			ML	•		LI	TER (Ar	nber)	
•		3	. 114	0		. ,	, (- · ·	
			ER 40	<u>L</u>			/ Uni	meserved	
ANALYSES:		971	mere ato	mL		F O	TER-	DOLY	
	EHa,	TE H.	,			250 n	nl p	014 W/HC	'Q
-	TVH-a,	BTEX							
1	MIBE	35.							
<u>C</u>	<u>D. F.</u>	<u> </u>	<u>15, 50</u>	De Ze					
	IN -IOH 3	-, 11- 1	$\frac{OD_2}{2}$	0-1043			· ·		
MISC FIELD OBSERVATIO	N:	SUX	Wed	_a+ 0 =	5.10 51	Samo	2,0	minutes	
	DIW	affer	Pu	nging		- 362 7			
_			j ,	<i>a J</i>					
-					· · · · · · · · · · · · · · · · · · ·				

Subsurface Consultants, Inc.

WEELS	AMPLING FORM
PROJECT NAME: Strough	
SAMPLED BY: E. Silverman	WELL NO.: Mul. 7
DATE: 7/2/5/07	WELL CASING DIAMETER: 2"
WEATHER: SUMU.	WELL MATERIAL:
WEATIER SALVIUS.	TOC ELEVATION:
TOTAL DEPTH OF CASING (BTOC) 34.95 FEET	CALCULATED PURGE VOLUME VOL = 3 GALS - gallons (feet of water * casing dia² * .0408 * # of Volumes)
DEPTH TO GROUNDWATER (BTOC) 15.93 FEET	
FEET OF WATER IN WELL 19,02 FEET	FREE PRODUCT
	PURGE METHOD
MEASUREMENT METHOD TAPE & PAS	STE ELECTRONIC SOUNDER OTHER
BIELD MEA	SURPMINIS - TO SEE STATE OF THE SECOND
CONDUCTIVE GALLONS REMOVED TIME PH TEMP (UMHOS/O	TO THE COMMITTEE
GALLONS REMOVED TIME PH TEMP (µMHOS/C	0. (27, 10)
1.50 11 CH 1.214	0.627 1960 715 Clew
10 7.50 121.2 1.07	0.968 235,7 67.8 Clarely
15 7.78 19 420,868	01794 345.0 6.63 Cloudy
7.4 7.4 17.17 1.726	Old 36 Osal Clorelly
157 17.00	Dittos 321 + 179 Shinkly toinia
30 32 33 120	0.895 737,5 7.97 Firesia
35 11.30 1.43 19.11 1.19.	0.53 Cto, 4 7.21 tu(6) cd
111.50 149 118111 (1194	0.874 771.6 7.89 forbid, No Octor
DEPTH TO GROUNDWATER WHEN 80% RECOVERED	· · · · · · · · · · · · · · · · · · ·
ACTUAL DEPTH TO GROUNDWATER BEFORE SAMPLING (BTOC)	17.24
SAMPLING METHOD baill	
CONTAINERS / PRESERVATIVE 3/ None	2/-
10 1111	LITTER (Amber)
3/ HCl OTHER 40 mL	Unpreserved
ANALYSES:	
TEHA, TEHO	250 ML POH WIHCL
TVH-a, BJEX	•
N-NH2, N-NO2, 0-PG.	,3-
MISC FIELD OBSERVATION: Sunbbed at 0.	10 20, 25 = 30 galling for 3-5 m

GROUNDWATER DEPTHS

Project I		Str	rull		
Job No.:	. 10	39.0	D 8.0		-
Measure		081	NZEWI		-
					- .
Well	Date	Time	Groundwater Depth (feet)	Comments	
	f / -	 	T a		1
MID -1	ioliiloo	<u> </u>	20.8	No odov	
MW-2	toliloo		22.1	Strong hydrocarbon ador, no	indicalin
MW-3	inlulvo		22.2H	hydrocarbon oder no polt:	
MW-H	70/11/00 7		19.61	10 o octor	
MW-8	10/11CD		23·HD	No odov	
Mw - b	i e ful or	JOH5	18.69	No oder	
MW-7	10 hr) 60	1030	16.9	Nordor	
		i			
		•			•
	-				
				·	

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (510) 486-0900

ANALYTICAL REPORT

Prepared for:

Subsurface Consultants 3736 Mt. Diablo Blvd. Suite 200 Lafayette, CA 94549

Date: 22-AUG-00

Lab Job Number: 146643

Project ID: N/A

Location: Strough

This data package has been reviewed for technical correctness and completeness. Release of this data has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signatures. The results contained in this report meet all requirements of NELAC and pertain only to those samples which were submitted for analysis.

Reviewed by:

Project Manager

Reviewed by:

Operations Manager

This package may be reproduced only in its entirety.

CA ELAP # 1459

Page 1 of 🚜

Laboratory Number: 146643

Client: Subsurface Consultants, Inc.

Project Name: Strough

Receipt Date: 07/21/00

CASE NARRATIVE

This hardcopy data package contains sample results and batch QC results for six water samples received from the above referenced project. The samples were received cold and intact.

Total Volatile Hydrocarbons: No analytical problems were encountered.

Total Extractable Hydrocarbons: No analytical problems were encountered.

Gasox: No analytical problems were encountered.

Metals: No analytical problems were encountered.

General Chemistry: The matrix spike recoveries for ferrous iron were outside acceptance limits. The associated laboratory control sample recovery was acceptable.

The matrix spike recoveries for orthophosphate and sulfate were outside acceptance limits. The associated blank spike recoveries were acceptable. No other analytical problems were encountered.

RSK-175: The analysis was performed by Performance Analytical Inc. in Simi Valley, California. Please see the Performance case narrative.

CHAIN OF C	USTODY FO)RM	į			14	166	0 [13	5		•																<u>PA</u>	GE	,		1	(OF	(<u>~</u>	
PROJECT NAME:	STAMIAL	. <i>i</i>																									1			AN/	ALY!	SIS	REC	UES	STED)	
JOB NUMBER:	1039.008		_							[LAB:	$\overline{\mathcal{L}}$	w	rt	<u>7'S</u>	<u> </u>	江	<u>o</u> n	<u>~</u>	<u>ාර</u>	in	<u></u>					-	0	(2/02)								
PROJECT CONTA	.cт: <u>Е.S.:Ш</u>	ern	20	n						_ 7	TURN	NAR	ROL	UND	D: _		S	te	nc	20	11	1					I	1000	$ \mathcal{Q} $	Ž	!	12	13	,	. [
SAMPLED BY:	E. Silver	<u>'mb</u>	<u>12</u>	<u></u>						_ F	₹ EQ Į	UES	3TE	ED I	BY:	: _	2	<u>ء</u> د	κĹ	ve	<u>rn</u>	<u>14</u>	4				_	110 (1		13	7.5	Sulved	Ssolve				
				MA	ATRIX	(T	C	ONT	AIN	ERS				ETHO SER		D_				~414	-1.464						12.H	(7)	Z	R5K-175	14.5	dir			33) ()
LABORATORY I.D. NUMBER	SCI SAMPLE	Œ		Щ			T				\prod							L		- -	AMI	PLING	G DA	(TE		!	ارا		1.0	LJ	d	24 (7	7	E Ĥ)	500	$\mathcal{O}_{\mathcal{U}}$
110000000000000000000000000000000000000	NUMBER	WATER	֓֞֞֓֓֓֓֓֓֓֓֓֓֟֓֓֓֓֓֓֟֟֓֓֓֟֟֓֓֓֟֟	WASTE	AIR		V Ø	TEE	PINT	18E			걸	H2SQ4	HNO3	끨	NONE	MON	нти	DA	Y	YEA	R	7	IME		NOTES	Teti-u	主	MRE	10,	1	m	3	7-17	7-0	0 - F
	mw-1	X	4	I		\Box	X	Z	1 X			T	X		ኧ		_	•	7	2 k	٠ ر	0 0	s <i>O</i>	13	3	1 5	•	X	文	区	X	ऱ	X	মে	X	文	abla
	m10-3	X	-		П		X	\sum	<u> </u>				X.	X		X		_	7	2	9		3 2				1	$\overline{\chi}$	X	X	文	X	X	X	X	X	X
	mu-4	X					ľX	Y	$oxed{D}$	1			N	X		X		\circ	_		1_		3 (*)	7	1/	5		X	X	X	X	X	X	X	٦	X	K
	mw-5	7			$\perp \downarrow$		Ϋ́	K	TX.	1	\coprod		<u>1</u> Z	X		X							00		2	0		K	$\overline{\mathbf{X}}$	X	Σ	X	X	X	X	X	Z
	mw-7	X	_	\bot	$\downarrow \downarrow$	+	K	K	发	_	11		X	싀]	\mathcal{L}	\bigsqcup	0	-			<u>ර</u> ද	<u> ၁ (၄</u>	. 5	2	D	i	\square	X	X	X	\mathbf{X}	X	X	Z	X	Σ
	m200-6	X	+	+	$\vdash \vdash$		K	#	X	+	++	\dashv	$\stackrel{x}{\mapsto}$	4		口	Н	0	7	2	4	0	٥ľ	14	40	口	1	X	×	X	X	X	X	X)		<u>Z</u> '	\overline{V}
			七	上	\prod	1	1	+	十	一	++	1	十	+	 	H	H	H	\dashv	-	十	十	+	+	+	╁╌	\vdash	-	 - -		\vdash	+	H	\vdash	\dashv	+	
		T	F	I	\Box	$\overline{\perp}$	1	I	$oxed{\bot}$	$oxed{\Box}$	\prod	\exists	\prod	\Box		\Box			\exists		工	工	I	Ī	I									口		コ	
	1		+	+	H	+	+	十	+	┝	++	+	+	+	-	H	H	H	\dashv	\dashv	+	+	+	+	╁	┼	H	H	-	\vdash	-	⊢'	\vdash	\vdash	\dashv	4	
		+	\dagger	+	\sqcap		十	+	+	\vdash	†			十	\dashv	\sqcap	\Box	 	十	_	十	+	十	+-	+	+	H	H		-	\vdash	\vdash	$\vdash \vdash$	\dashv	十	+	
· · · · · · · · · · · · · · · · · · ·	<u></u>		سسار		ملحصا		<u> </u>			<u> </u>	-لسب										_				<u> </u>	لسيل	لسل	ليبيا		۳	<u></u>	لبسا				_	
	CHAIN	OF (cu	STC	DY	REC	ORI			_				-		_	T	COV	MME	:NTS	. a N	OTE	ş:						-				—	—	—		
RELEASED BY: (Signa	•	E/TIM			(ECE	IVED E	BY:	Sign	atur	e)	7	, 	D/		7 11		1	0	u	אט	h	NOTE:	ili	CO	- Q	jel	- (L	la	n	رس	D.					
Show	- 7/2 VCO	<u> </u>	14	红	Ī	130	Ľ	<u>.</u> _			1		<u>7 f</u>	21			<u> </u>)				•															:

	CHAIN OF CUSTODY RECORD												
RELEASED BY: (Signature)	DATE/TIME	RECEIVED BY: (Signature)	DATE / TIME										
9/1 7/.	2400 8:45	Blu	7/21/8.5										
RELEASED BY: (Signature)	DATE / TIME	RECEIVED BY: (Signature)	DATE / TIME										
		Musa Dr.	NU 1 200										
RELEASED BY: (Signature)	DATE / TIME	RECEIVED BY: (Signature)	DATE / TIME										
RELEASED BY: (Signature)	DATE / TIME	RECEIVED BY: (Signature)	DATE / TIME										

Subsurface Consultants, Inc.
171 - 12th Street, Suite 202, Oakland, CA 94607
(510) 268-0461 - FAX: (610) 268-0137
3736 Mt. Diablo Bivd., Ste. 200, Lafayette, CA 94649
(925) 298-7960 - (925) 299-7970

	Curtis & Tompkins Lal	poratories Anal	ytical Report
Lab #: Client: Project#:	146643 Subsurface Consultants STANDARD	Location: Prep:	Strough EPA 5030
Matrix: Units: Batch#:	Water ug/L 57169	Sampled: Received:	07/20/00 07/21/00

Field ID:

MW-1

Type: Lab ID: SAMPLE

Diln Fac: Analyzed: 1.000

07/22/00

146643-001

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015M
Benzene	ND	0.50	EPA 8021B
Toluene	0.80	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B
m,p-Xylenes	ND .	0.50	EPA 8021B

Surrogate	*REC	Limits	Analysis
Trifluorotoluene (FID)	112	59-135	EPA 8015M
Bromofluorobenzene (FID)	118	60-140	EPA 8015M
Trifluorotoluene (PID)	116	56-142	EPA 8021B
Bromofluorobenzene (PID)	121	55-149	EPA 8021B

Field ID:

MW-3

Type: Lab ID: Diln Fac:

100.0

SAMPLE

146643-002

Analyzed: 07/22/00

Gasoline C7-C12 Benzene	69,000	5,000	EPA 8015M
Toluene	5,700 14,000	50 50	EPA 8021B EPA 8021B
Ethylbenzene	1,600	50	EPA 8021B
o-Xylene	2,900	50	EPA 8021B
m,p-Xylenes	6,400	50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	107	59-135	EPA 8015M
Bromofluorobenzene (FID)	120	60-140	EPA 8015M
Trifluorotoluene (PID)	111	56-142	EPA 8021B
Bromofluorobenzene (PID)	119	55-149	EPA 8021B

C = Presence confirmed, but confirmation concentration differed by more than a factor of two

ND = Not Detected

RL = Reporting Limit

Page 1 of 4

GC19 TVH 'X' Data File (FID)

Sample Name: 146643-002,57169,+MTBE

: G:\GC19\DATA\203X035.raw FileName

Method : TVHBTXE

Start Time : 0.00 min End Time : 26.80 min

Scale Factor: -1.0

Plot Offset: 6 mV

Sample #: 100X,C1 Date: 7/22/00 02:25 PM Page 1 of 1

Time of Injection: 7/22/00 01:58 PM

Low Point : 5.78 mV High Point: 255.78 mV

Plot Scale: 250.0 mV

	Curtis & Tompkins Lak	ooratories Anal	ytical Report
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD		
Matrix:	Water	Sampled:	07/20/00
Units:	ug/L	Received:	07/21/00
Batch#:	57169		·

Field ID:

MW-4

SAMPLE

Diln Fac:

1.000

Type: Lab ID:

146643-003

Analyzed:

07/22/00

Analyte	Result	RL	Analysis
Gasoline C7-C12	210	50	EPA 8015M
Benzene	91	0.50	EPA 8021B
Toluene	4.6 C	0.50	EPA 8021B
Ethylbenzene	19	0.50	EPA 8021B
o-Xylene	4.1	0.50	EPA 8021B
m,p-Xylenes	8.8	0.50	EPA 8021B

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	112	59-135	EPA 8015M
Bromofluorobenzene (FID)	122	60-140	EPA 8015M
Trifluorotoluene (PID)	115	56-142	EPA 8021B
Bromofluorobenzene (PID)	122	55-149	EPA 8021B

Field ID:

MW-5

SAMPLE

Diln Fac:

1.000

Type:

Analyzed:

07/22/00

Lab ID: 146643-004

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50	EPA 8015M
Benzene	ND	0.50	EPA 8021B
Toluene	0.98	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
o-Xylene m,p-Xylenes	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B

Surrogate	*REC	Limits	Analysis
Trifluorotoluene (FID)	109	59-135	EPA 8015M
Bromofluorobenzene (FID)	111	60-140	EPA 8015M
Trifluorotoluene (PID)	112	56-142	EPA 8021B
Bromofluorobenzene (PID)	117	55-149	EPA 8021B

C = Presence confirmed, but confirmation concentration differed by more than a factor of two

ND = Not Detected

RL = Reporting Limit

Page 2 of 4

GC19 TVH 'X' Data File (FID)

Sample Name: 146643-003,57169,+MTBE

FileName : G:\GC19\DATA\203X027.raw

Method : TVHBTXE

Start Time : 0.00 min

End Time : 26.80 min

Plot Offset: 6 mV

Sample #: B1 Date : 7/22/00 09:21 AM

Time of Injection: 7/22/00 08:54 AM

High Point : 255.84 mV

Page 1 of 1

	Curtis & Tompkins Lab	ocratories Anal	ytical Report
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD		
Matrix:	Water	Sampled:	07/20/00
Units:	ug/L	Received:	07/21/00
Batch#:	57169		

Field ID:

MW-7

Type:

SAMPLE

Diln Fac: Analyzed: 1.000

07/22/00

Lab ID: 146643-005

Analyte	Result	RL	Analysis
Gasoline C7-C12	ND	50-	EPA 8015M
Benzene	ND	0.50	EPA 8021B
Toluene	ND	0.50	EPA 8021B
Ethylbenzene	ND	0.50	EPA 8021B
o-Xylene	ND	0.50	EPA 8021B
m,p-Xylenes	ND	0.50	EPA 8021B

Surrogate	*REC	Limits	Analysis
Trifluorotoluene (FID)	112	59-135	EPA 8015M
Bromofluorobenzene (FID)	114	60-140	EPA 8015M
Trifluorotoluene (PID)	114	56-142	EPA 8021B
Bromofluorobenzene (PID)	118	55-149	EPA 8021B

Field ID:

MW-6

SAMPLE

Diln Fac:

1.000

Type:

Analyzed:

07/22/00

Lab ID: 146643-006

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015M	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
o-Xylene m,p-Xylenes	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	113	59-135	EPA 8015M
Bromofluorobenzene (FID)	114	60-140	EPA 8015M
Trifluorotoluene (PID)	117	56-142	EPA 8021B
Bromofluorobenzene (PID)	121	55-149	EPA 8021B

C = Presence confirmed, but confirmation concentration differed by more than a factor of two ND = Not Detected

RL = Reporting Limit

Page 3 of 4

GC19 TVH 'X' Data File (FID)

Sample Name : CCV/LCS, QC120762, 57169, 00WS9313, 5/5000

FileName : G:\GC19\DATA\203X002.raw

Method : TVHBTXE

Start Time : 0.00 min End Time : 26.80 min Scale Factor: -1.0 Plot Offset: 6 mV Sample #: GAS Page 1 of 1

Date : 7/21/00 05:10 PM

Time of Injection: 7/21/00 01:48 PM

Low Point: 6.18 mV High Point: 256.18 mV

Plot Scale: 250.0 mV

	Curtis & Tompkins Lak		ytical Report
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD		
Matrix:	Water	Sampled:	07/20/00
Units:	ug/L	Received:	07/21/00
Batch#:	57169		

Type: Lab ID: BLANK

QC120761

Diln Fac:

1.000

Analyzed:

07/21/00

Analyte	Result	RL	Analysis	
Gasoline C7-C12	ND	50	EPA 8015M	
Benzene	ND	0.50	EPA 8021B	
Toluene	ND	0.50	EPA 8021B	
Ethylbenzene	ND	0.50	EPA 8021B	
o-Xylene	ND	0.50	EPA 8021B	
m,p-Xylenes	ND	0.50	EPA 8021B	

Surrogate	%REC	Limits	Analysis
Trifluorotoluene (FID)	108	59-135	EPA 8015M
Bromofluorobenzene (FID)	113	60-140	EPA 8015M
Trifluorotoluene (PID)	112	56-142	EPA 8021B
Bromofluorobenzene (PID)	117	55-149	EPA 8021B

C = Presence confirmed, but confirmation concentration differed by more than a factor of two

ND = Not Detected

RL = Reporting Limit

Page 4 of 4

	Curtis & Tompkins Lak	ooratories Anal	ytical Report
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Type:	LCS	Diln Fac:	1.000
Lab ID:	QC120762	Batch#:	57169
Matrix:	Water	Analyzed:	07/21/00
Units:	ug/L	-	

Analyte	Spiked	Result	%REC	Limits	
Gasoline C7-C12	2,000	2,007	1.00	73-121	
Benzene	·	NA			
Toluene		NA			•
Ethylbenzene		NA			
o-Xylene		NA			
Ethylbenzene o-Xylene m,p-Xylenes		NA			

Surrogate	Re	sult %RE	C Limits	
Trifluorotoluene (FID)		124	59-135	
Bromofluorobenzene (FID)		134	60-140	
Trifluorotoluene (PID)	NA			
Bromofluorobenzene (PID)	NA			

	Curtis & Tompkins Lal	ooratories Anal	ytical Report
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8021B
Matrix:	Water	Batch#:	57169
Units:	ug/L	Analyzed:	07/22/00 '
Diln Fac:	1.000		

Type:

BS

Lab ID:

_QC120763

Analyte	Spiked	Result	%REC	Limits	
Gasoline C7-C12	N	Α			
Benzene	20.00	19.08	95	67-117	
Toluene	20.00	18.95	95	69-117	
Ethylbenzene	20.00	19.64	98	68-124	
o-Xylene	20.00	19.53	98	65-129	
m,p-Xylenes	40.00	41.08	103	70-125	

Surrogate	Resu	lt %REG	2 Limits	
Trifluorotoluene (FID)	NA	<u> </u>		
Bromofluorobenzene (FID)	NA			
Trifluorotoluene (PID)	•	101	56-142	
Bromofluorobenzene (PID)		105	55-149	

Type:

BSD

Lab ID:

QC120764

Analyte	Spiked	Result	%REC	Limits	RPL	Lim
Gasoline C7-C12		AV			· · · · · · ·	
Benzene	20.00	19.08	95	67-117	0	20
Toluene	20.00	18.99	95	69-117	0	20
Ethylbenzene	20.00	19.85	99	68-124	1	20
o-Xylene	20.00	19.74	99	65-129	1	20
m,p-Xylenes	40.00	41.75	104	70-125	2	20

Surrogate	Result	: %rec	Limits	
Trifluorotoluene (FID)	NA			
Bromofluorobenzene (FID)	NA			
Trifluorotoluene (PID)		101	56-142	-
Bromofluorobenzene (PID)		104	55-149	

NA= Not Analyzed RPD= Relative Percent Difference Page 1 of 1

	Curtis & Tompkins Lal	ooratories Anal	ytical Report
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8015M
Field ID:	ZZZZZZZZZ	Batch#:	57169
MSS Lab ID:	146556-002	Sampled:	07/14/00
Matrix:	Water	Received:	07/14/00
Units:	ug/L	Analyzed:	07/22/00
Diln Fac:	1.000	-	

Type:

MS

Lab ID:

QC120765

			<u>-</u>		77777777777777777777777777777777777777
Analyte	MSS Result	Spiked	Result	%RE	Limits
Gasoline C7-C12	34.98	2,000	2,015	99	65-131
Benzene	•	·	NA .		
Toluene			NA		
Ethylbenzene			NA		
o-Xylene m,p-Xylenes			NA		
m,p-Xylenes			NA		

Surrogate	Res	ult %RBC	Limits
Trifluorotoluene (FID)		126	59-135
Bromofluorobenzene (FID)		134	60-140
Trifluorotoluene (PID)	NA		
Bromofluorobenzene (PID)	NA		

Type:

MSD

Lab ID:

QC120766

Analyte	Spiked	Result	*REC	Limits	RPD	Lim
Gasoline C7-C12	2,000	2,104	103	65-131	4	20
Benzene		NA				
Toluene		NA				
Ethylbenzene		NA			٠	
o-Xylene		NA				•
m,p-Xylenes		NA				

Surrogate	Re	sult %REC	Limits	
Trifluorotoluene (FID)		128	59-135	
Bromofluorobenzene (FID)		138	60-140	•
Trifluorotoluene (PID)	NA			
Bromofluorobenzene (PID)	NA			

NA= Not Analyzed RPD= Relative Percent Difference Page 1 of 1

Total Extractable Hydrocarbons

Lab #: 146643 Location: Strough Subsurface Consultants Client: EPA 3520 Prep: EPA 8015M 07/20/00 Analysis: Sampled: STANDARD Project#:

Matrix: Water ug/L 07/21/00 Units: Received:

Diln Fac:

'ield ID: Batch#: MW-1 57244 07/25/00 'ype: .ab ID: SAMPLE Prepared:

146643-001 Analyzed: 07/~7/00

Diesel C10-C24 Result RL ND 50 Motor Oil C24-C36 ND 300

Surrogate REC Mainsi Fa 85 44-121 Hexacosane

1.000

'ield ID: E-WM :ype

SAMPLE 146643-002 Batch#: Prepared: Analyzed:

57244 07/25/00 07/27/00

Analyte Result RE Diesel Cl0-C24 2,900 L Y 50 Motor Oil C24-C36 NĎ 300

Surrogate %REC Liamite Hexacosane 44-121

Field ID:

ab ID:

SAMPLE [ype: 146643-003 lab ID:

Batch#: Prepared: Analyzed:

57244 07/25/00 07/27/00

Result RL Analyte 50 Diesel C10-C24 ND

300 Motor Oil C24-C36 ND%REC Limits Surrogate

Hexacosane

Field ID: Type:

Lāb ID:

SAMPLE 146643-004

MW-5

Batch#: Prepared: Analyzed: 57244 07/25/00 07/27/00

Result RL ND Diesel C10-C24 50 Motor Oil C24-C36 ND

Surrogate \$REO Diminis 44-121 82 Hexacosane

= Lighter hydrocarbons contributed to the quantitation

= Sample exhibits fuel pattern which does not resemble standard

ND = Not Detected

RL = Reporting Limit Page 1 of 2

Chromatogram

Sample Name : 146643-002sg,57244 FileName

: G:\GC15\CHB\207B066.RAW

Method : BTEH180.MTH

Start Time : 0.00 min

End Time : 31.90 min

Sample #:

Date: 07/28/2000 12:35 AM

Time of Injection: 07/27/2000 08:55 PM

Low Point : -22.08 mV

High Point: 1024.00 mV

Page 1 of 1

Total Extractable Hydrocarbons Strough Lab #: 146643 Location: Subsurface Consultants Client: Prep: EPA 3520 EPA 8015M 07/20/00 Project#: STANDARD <u>Analysis:</u> Matrix: Water Sampled: 07/21/00 Received: Units: ug/L Diln Fac: 1.000

'ield ID: 'ype:

ab ID:

MW-7

SAMPLE

146643-005

Batch#:

Prepared: Analyzed: 57302 07/27/00

07/31/00

Result Analyte Diesel C10-C24 50 NDMotor Oil C24-C36 300 ND

Surrogate %REC Limits Hexacosane 44-121

rield ID:

.'уре:

ıāb ID:

MW-6

SAMPLE 146643-006 Batch#:

57302

Prepared: Analyzed: 07/27/00 07/31/00

Result Analyte Diesel C10-C24 50 ND 300 Motor Oil C24-C36 ND

Subscoolaises A SANGER BERKER AS Hexacosane 88 44-121

Type: Lab ID: 3atch#: BLANK

QC121037

57244

Prepared:

07/25/00

Analyzed:

07/27/00

Result Analyte RL50 Diesel C10-C24 ND Motor Oil C24-C36 300 ND

%REC Limits

Surrogate Hexacosane

Type: Lāb ID: Batch#: BLANK 57302

QC121281

Prepared: Analyzed:

07/27/00

08/03/00

Analyte Result R. ND Diesel C10-C24

300 Motor Oil C24-C36 ND %REC Limits

Hexacosane

= Lighter hydrocarbons contributed to the quantitation \mathbf{L}

= Sample exhibits fuel pattern which does not resemble standard Y

ND = Not Detected

RL = Reporting Limit Page 2 of 2

Chromatogram

Sample Name : ccv,00ws9461,dsl

: G:\GC13\CHB\207B002.RAW

ileName : BTEH164.MTH iethod

Start Time : 0.01 min

End Time : 31.91 min

Plot Offset: 7 mV

Sample #: 500mg/l

Page 1 of 1

Date: 07/25/2000 11:15 AM

Time of Injection: 07/25/2000 10:41 AM

High Point : 180.32 mV Low Point : 7.11 mV

Plot Scale: 173.2 mV

Chromatogram

Sample #: 500mg/1 Page 1 of 1 nple Name : ccv,00ws9383,mo Date : 07/25/2000 12:07 PM : G:\GC13\CHB\207B003.RAW leName Time of Injection: 07/25/2000 11:23 AM : BTEH164.MTH thod High Point: 135.05 mV Low Point : -11.89 mV : 31.91 min art Time : 0.01 min End Time Plot Offset: -12 mV Plot Scale: 146.9 mV ale Factor: 0.0 Motor Oil Standard Response [mV] C-10 C-12 C-14 B C-16 C-20 C-22 1.96 3.59 +CB 7.78 -9.20C-24 = C-28 C-30 C-32 -21.49 ..21.94 -22.42 -22.76 -23.20 -23.72 **⊒**C-36 24.24 24.80 -25.44 26.20 27.10 --28.18 28.99 29.49

31.11

	Total Extracta	ble Hydrocarbo	ns
Lab #:	146643	Location:	Strough Strough
Client:	Subsurface Consultants	Prep:	EPA 3520
Project#:	STANDARD	Analysis:	EPA 8015M
Matrix:	Water	Batch#:	57244
Units:	ug/L	Prepared:	07/25/00
Diln Fac:	1.000	Analyzed:	07/28/00

Type:

BS

Lab ID:

QC121038

Analyte	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,339	1,656	71	45-110	

Surrogate	%REC	Limits	
Hexacosane	84	44-121	

Type:

BSD

Lab ID:

QC121039

					200000000000000000000000000000000000000
Diesel C10-C24 2,339	1,670	71	45-110	1	22

Surrogate	*REC	2 bimies	
Hexacosane	84	44-121	

	Total Extrac	table Hydrocar	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 3520
Project#:	STANDARD	Analysis:	EPA 8015M
Matrix:	Water	Batch#:	57302
Units:	ug/L	Prepared:	07/27/00
Diln Fac:	1.000	Analyzed:	08/03/00

.'ype:

BS

Lab ID:

QC121282

Analyte	Spiked	Result	%REC	Limits	
Diesel C10-C24	2,339	1,646	70	45-110	

Surrogate	₩RI	C Limita	
Hexacosane	90	44-121	

.'ype:

BSD

Lab ID:

QC121283

**************************************	Spiked	Result	%REC	Limits	RPD	Lim
Diesel C10-C24	2,339	1,731	74	45-110	5	22

Surroga	%REC Limits
Hexacosane	92 44-121

Gasoline Oxygenates by GC/MS Lab #: 146643 Location: Strough EPA 5030 Client: Subsurface Consultants Prep: Project#: STANDARD Analysis: Sampled: EPA 8260A 07/20/00 07/21/00 Matrix: Water ug/L 57280 Units: Received: Batch#:

Field ID:

MW-1 SAMPLE

Type: Lab ID:

146643-001

Diln Fac: Analyzed:

1.000 07/27/00

Reimber. 3.4 Limits 80-122 Single of the same REC Dibromofluoromethane 103

1,2-Dichloroethane-d4 102 78-123 80-110 98 Toluene-d8 Bromofluorobenzene 106 80-115

Field ID:

Type: Lab ID:

MW-3SAMPLE

146643-002

Diln Fac:

Analyzed:

2,500 07/27/00

MTBE ADD VICE		Result 3,300	1,300
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	99 104 99 97	80-122 78-123 80-110 80-115	

Field ID:

Type: Lab ID:

MW-4 SAMPLE

146643-003

Diln Fac:

Analyzed:

50.00

07/28/00

MTBE Applivte		Result 1,500	25
Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	1REC 102 106 97 96	80-122 78-123 80-110 80-115	

ND = Not Detected RL = Reporting Limit Page 1 of 3

Gasoline Oxygenates by GC/MS Lab #: Client: 146643 Location: Strough EPA 5030 Subsurface Consultants Prep: Project#: Matrix: STANDARD Analysis: Sampled: EPA 8260A 07/20/00 07/21/00 Water ug/L 57280 Units: Received: Batch#:

Field ID:

Type: Lab ID:

MW-5

SAMPLE 146643-004

Diln Fac: Analyzed:

1.000 07/27/00

MTBE Ansivte		Result	RL 0.50
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	97 102 99 99	80-122 78-123 80-110 80-115	

Field ID:

MW-7 SAMPLE

Type: Lab ID:

146643-005

Diln Fac: Analyzed:

1.000

07/27/00

Analyte MTBE	N		RL 0.50
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	96 98 98 98 113	80-122 78-123 80-110 80-115	

Field ID:

Type: Lab ID:

SAMPLE

MW-6

146643-006

Diln Fac:

1.000

Analyzed: 07/27/00

MTBE Analyte		Result 160	RT. 0,50
Surrogate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	99 103 97 106	Limits 80-122 78-123 80-110 80-115	

Type: Lab ID:

BLANK QC121194 Diln Fac:

Analyzed:

1.000 07/27/00

Auglyte	N	Result	RL
MTBE		D	0.50
Surroyate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	102 102 102 97 96	80-122 78-123 80-110 80-115	

ND = Not Detected RL = Reporting Limit Page 2 of 3

	Gasoline O	tygenates by GC	:/N8
Lab #: Client: Project#:	146643 Subsurface Consultants STANDARD	Location: Prep: Analysis:	Strough EPA 5030 EPA 8260A
Matrix: Units: Batch#:	Water ug/L 57280	Sampled: Received:	07/20/00 07/21/00

Type: Lab ID: BLANK QC121195

Diln Fac: Analyzed: 1.000 07/27/00

MTBE ADBLYSE	N		0.50
Surroyate Dibromofluoromethane 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	*REC 87 101 100 104	80-122 78-123 80-110 80-115	

	Gasoline O	tygenates by GO	2/ NB
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	EPA 5030
Project#:	STANDARD	Analysis:	EPA 8260A
Matrix:	Water	Batch#:	57280
Units:	ug/L	Analyzed:	07/27/00
Diln Fac:	1.000		

Type:

BS

Lab ID:

QC121192

Analyte	Spiked	Result	%RE/	C Limits	
MTBE	50.00	47.99	96	49-144	
Surrogate			****************		
	TREC LIMITS				

Bromofluorobenzene	88	80-115			
Toluene-d8	97	80-110			
1,2-Dichloroethane-d4	98	78-123			
Dibromofluoromethane	99	80-122			
Surrogate Dibromoflusmomathers	*REC	Limits			

Type:

BSD

Lab ID:

QC121193

Analyte	Spiked	Result	\$RE	e Jjimits	190	Lim
MTBE	50.00	49.33	99	49-144	3	21

Surrogate	EREC	C Limits
Dibromofluoromethane	99	80-122
1,2-Dichloroethane-d4	100	78-123
Toluene-d8	99	80-110
Bromofluorobenzene	88	80-115

	Ma	ınganese	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 6010B
Analyte:	Manganese	Sampled:	07/20/00
Matrix:	Filtrate	Received:	07/21/00
Units:	ug/L	Prepared:	07/24/00
Diln Fac:	1.000	Analyzed:	07/26/00
Batch#:	57218	<u> </u>	

Field ID	Type Lab ID	Result	RL
MW-1	SAMPLE 146643-001	ND	10
MW-3	SAMPLE 146643-002	6,600	10
MW - 4	SAMPLE 146643-003	5,300	10
MW-5	SAMPLE 146643-004	17	10
MW - 7	SAMPLE 146643-005	18	10
MW - 6	SAMPLE 146643-006	1,900	10
	BLANK QC120942	ND	10

		Manganese		
Lab #:	146643	Location:	Strough	_
Client:	Subsurface Consultants	Prep:	METHOD	
Project#:	STANDARD	Analysis:	EPA 6010B	
Analyte:	Manganese	Batch#:	57218	
Field ID:	ZZZZZZZZZZ	Sampled:	07/21/00	
MSS Lab ID:	146651-001	Received:	07/21/00	
Matrix:	Filtrate	Prepared:	07/24/00	
Units:	ug/L	Analyzed:	07/26/00	
Diln Fac:	1.000	-		

Type	Lab ID	MSS Result	Spiked	Result	RL	%REC	Limits	RPD	Lim
BS	QC120943		500.0	484.0		97	80-113	***************************************	
BSD	QC120944		500.0	483.0		97	80-113	0	25
SDUP	QC120945	<10.00		ND	10			NC	20
SSPIKE	QC120946	0.1050	500.0	501.0		100	64-128		

NC = Not Calculated ND = Not Detected

RL = Reporting Limit
RPD= Relative Percent Difference
Page 1 of 1

	Ferrous	s Iron (Fe+2)	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Analysis:	FE+2
Project#:	STANDARD		
Analyte:	Ferrous Iron (Fe+2)	Sampled:	07/20/00
Matrix:	Water	Received:	07/21/00
Units:	mg/L	Analyzed:	07/21/00
Batch#:	57221	_	•

	Type Lab ID	Result	RL	Diln Fac
MW-1	SAMPLE 146643-001	0.13	0.10	1.000
MM-3	SAMPLE 146643-002	3.9	0.20	2.000
MW-4	SAMPLE 146643-003	9.5	0.80	8.000
MW-5	SAMPLE 146643-004	0.11	0.10	1.000
MW - 7	SAMPLE 146643-005	ИD	0.10	1.000
MW-6	SAMPLE 146643-006	120	8.0	80.00
	BLANK QC120952	ND	0.10	1.000

	Ferrou	s Iron (Fe+2)	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Analysis:	FE+2
Project#:	STANDARD		
Analyte:	Ferrous Iron (Fe+2)	Diln Fac:	1.000
Field ID:	MW - 6	Batch#:	57221
MSS Lab ID:	146643-006	Sampled:	07/20/00
Matrix:	Water	Received:	07/21/00
Units:	mg/L	Analyzed:	07/21/00

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPL	Lim
MS	QC120953	121.9	0.8000	123.4	180 *	65-134		
MSD	QC120954		0.8000	129.6	960 *	65-134	5	20
LCS	QC120955	<u> </u>	0.8000	0.8260	103	80-110		

^{* =} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

	Ammor	nia Nitrogen	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 350.3
Analyte:	Ammonia	Batch#:	57177
Matrix:	Water	Sampled:	07/20/00
Units:	mg/L	Received:	07/21/00
Diln Fac:	1.000	Analyzed:	07/21/00

Field ID	Type	Lab ID	Res	ult	RL	
MW-1	SAMPLE 1	46643-001	ND		0.10	
MW-3	SAMPLE 1	46643-002	ND		0.10	
MW - 4	SAMPLE 1	46643-003	ND		0.10	•
MW-5	SAMPLE 1	46643-004	ND		0.10	
MW-7	SAMPLE 1	46643-005	ND		0.10	
MW-6	SAMPLE 1	46643-006		6.0	0.10	
	BLANK Q	C120797	ND		0.10	

***			200	100		000				××	-00	o	œ	90		000	200	***				00		ж.	
	À		0.0		600			1				30	12	70			933					90			
	- 21			•				٠.		М.	100	v	и	c	10.0	٠.		٠.	-	т.				٠.	
	12.7	ν.Т.	н.	ш		L.	2.5		- 22	ь.	100	- 1	м			ш.	- 4	40		и.	4.1	ш	-1	ж.	0.0
			e e		-			~	120	٠.		1	2	e.			Ka.			-	٠.		40	œ.	

Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 350.3
Analyte:	Ammonia	Diln Fac:	1.000
Field ID:	MW-6	Batch#:	57177
MSS Lab ID:	146643-006	Sampled:	07/20/00
Matrix:	Water	Received:	07/21/00
Units:	mg/L	Analyzed:	07/21/00

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD Li	m	
LCS	QC120798		5.000	5.280	106	80-116			
MS	QC120799	6.040	16.00	22.40	102	76-131			
MSD	QC120800		16.00	22.70	104	76-131	_1 20		

RPD= Relative Percent Difference Page 1 of 1

	Nitrate	Nitrogen	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Nitrogen, Nitrate	Batch#:	57162
Matrix:	Water	Sampled:	07/20/00
Units:	mg/L	Received:	07/21/00
Diln Fac:	1.000		

Field II	Type Lab ID	Result	RL	Analyzed
MW-1	SAMPLE 146643-001	3.4	0.05	07/07/00
MW-3	SAMPLE 146643-002	0.55	0.05	07/07/00
MW-4	SAMPLE 146643-003	0.04 J	0.05	07/07/00
MW-5	SAMPLE 146643-004	3.9	0.05	07/07/00
MW-7	SAMPLE 146643-005	2.6	0.05	07/07/00
MW-6	SAMPLE 146643-006	0.05 J	0.05	07/07/00
	BLANK QC120736	ND	0.05	07/21/00

J = Estimated value

ND = Not Detected RL = Reporting Limit Page 1 of 1

	Tri bas	.L. 144 L	
	BILLE	ate Nitrogen	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Nitrogen, Nitrate	Batch#:	57162
Field ID:	ZZZZZZZZZZ	Sampled:	07/18/00
MSS Lab ID:	146609-001	Received:	07/18/00
Matrix:	Water	Analyzed:	07/21/00
Units:	mg/L	4	

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lin	Diln Fac
BS	QC120737		2.000	2.050	103	90-110			1.000
BSD	QC120738		2.000	2.040	102	90-110	1	20	1.000
MS	QC120739	<10.00	200.0	203.1	102	80-120			200.0
MSD	QC120740		200.0	205.8	103	80-120	1	20	200.0

	Orthophosi	phate Phosphoro)US
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 365.2
Analyte:	Orthophosphate (as P)	Batch#:	57162
Matrix:	Water	Sampled:	07/20/00
Units:	mg/L	Received:	07/21/00
Diln Fac:	1.000	Analyzed:	07/07/00

Field ID	Type Lab ID	Result	RL
MW-1	SAMPLE 146643-001	ND	0.20
MW-3	SAMPLE 146643-002	ND	0.20
MW-4	SAMPLE 146643-003	ND	0.20
MW-5	SAMPLE 146643-004	ND	0.20
MW-7	SAMPLE 146643-005	0.13 J	0.20
MW-6	SAMPLE 146643-006	ND	0.20
	BLANK QC120736	ND	0.20

J = Estimated value

ND = Not Detected RL = Reporting Limit Page 1 of 1

	Orthophosi	ohate Phosphoro	លាន
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 365.2
Analyte:	Orthophosphate (as P)	Batch#:	57162
Field ID:	ZZZZZZZZZ	Sampled:	07/18/00
MSS Lab ID:	146609-001	Received:	07/18/00
Matrix:	Water	Analyzed:	07/07/00
Units:	mg/L	•	, .

Туре	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lin	Diln Fac
BS	QC120737		5.000	10.20	102	80-110			1.000
BSD	QC120738		5.000	10.12	101	80-110	1	20	1.000
MS	QC120739	<40.00	500.0	0	0 *	34-133			200.0
MSD	QC120740		500.0	0	0 *	34-133	0	20	200.0

^{* =} Value outside of QC limits; see narrative
RPD= Relative Percent Difference
Page 1 of 1

	1	Sulfate	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Sulfate	Sampled:	07/20/00
Matrix:	Water	Received:	07/21/00
Units:	mg/L	Analyzed:	07/07/00
Batch#:	57162		

Field ID	Type Lab ID	Result	RL	Diln Fac
MW-1	SAMPLE 146643-001	54	5.0	10.00
MW-3	SAMPLE 146643-002	20	0.50	1.000
MW-4	SAMPLE 146643-003	11	0.50	1.000
MW-5	SAMPLE 146643-004	49	0.50	1.000
MW-7	SAMPLE 146643-005	53	5.0	10.00
MW-6	SAMPLE 146643-006	7.5	0.50	1.000
	BLANK QC120736	ND	0.50	1.000

		Sulfate	
Lab #:	146643	Location:	Strough
Client:	Subsurface Consultants	Prep:	METHOD
Project#:	STANDARD	Analysis:	EPA 300.0
Analyte:	Sulfate	Batch#:	57162
Field ID:	ZZZZZZZZZ	Sampled:	07/18/00
MSS Lab ID:	146609-001	Received:	07/18/00
Matrix:	Water	Analyzed:	07/07/00
Units:	mg/L	_	

Type	Lab ID	MSS Result	Spiked	Result	%REC	Limits	RPD	Lim	Diln Fac
BS	QC120737		20.00	20.52	103	90-110			1.000
BSD	QC120738		20.00	20.56	103	90-110	0	20	1.000
MS	QC120739	<100.0	2,000	0	0 *	80-120			200.0
MSD	QC120740		2,000	. 0	0 *	80-120	0	20	200.0

^{* =} Value outside of QC limits; see narrative RPD= Relative Percent Difference Page 1 of 1

Performance Analytical Inc.

Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

LABORATORY REPORT

~1	ıent ·	
1 1	10mi	

CURTIS & TOMPKINS, LTD.

Date of Report:

08/09/00

Address:

2323 Fifth Street

Date Received:

07/24/00

Berkeley, CA 94710

PAI Project No:

P2001824

Contact:

Mr. Steve Stanley

Purchase Order:

Verbal

Client Project ID: #146643

Six (6) Liquid Samples labeled:

"MW-1"

"MW-3"

"MW-4"

"MW-5"

"MW-7"

"MW-6"

The samples were received at the laboratory under chain of custody on July 24, 2000. The samples were received intact. The dates of analyses are indicated on the attached data sheets.

Carbon Dioxide Analysis

The samples were analyzed for Carbon dioxide according to modified RSK Method 175 using a gas chromatograph equipped with a thermal conductivity detector (TCD).

The results of analyses are given in the attached data summary sheet.

Reviewed and Approved:

Jóana Ciurash

Analytical Chemist

Reviewed and Approved:

John Yokoyama Senior Chemist

Performance Analytical Inc.

Air Quality Laboratory A Division of Columbia Analytical Services, Inc. An Employee Owned Company

RESULTS OF CARBON DIOXIDE ANALYSIS

PAGE 1 OF 1

Curtis & Tompkins, Ltd.

Client Project ID: 146643 PAI Project ID: P2001824

Test Code: GC/TCD

Instrument ID: HP5890A/TCD #10

Analyst: Joana Ciurash

Matrix: Liquid

Date Sampled: 7/20/00

Date Received:

7/24/00

Date Analyzed:

7/27/00

Volume(s) Analyzed:

 $0.10 \, \mathrm{ml}$

			Carbo	n Dioxide
Client Sample ID	PAI Sample ID	D.F.		ıg/L
	:		Result	Reporting Limit
MW-1	P2001824-001A	1.00	120,000	100
MW-3	P2001824-002A	1.00	128,000	100
MW-4	P2001824-003A	1.00	126,000	100
MW-5	P2001824-004A	1.00	134,000	100
MW-7	P2001824-005A	1.00	32,200	100
MW-6	P2001824-006A	1.00	122,000	100
MW-6	P2001824-006B	1.00	113,000	100
Method Blank	P000727-MB	1.00	ND	100

TR = Detected Below Indicated Reporting Limit

ND = Not Detected

Verified By:_

2665 Park Center Drive. Suite D, Simi Valley, California 93065 • Phone (805) 526-7161 • Fax (805) 526-7270 01824SVG.RD1 - Sample

Curtis & Tompkins, Ltd.
Analytical Laboratories, Since 1878
2323 Fifth Street
Berkeley, CA 94710
(510)486-0900 ph
(510)486-0532 fx

P2001824

Project Number: 146643

Subcontract Lab:

Performance Analytical 2665 Park Center Drive Suite D Simi Valley, CA 93065

(805) 526-7161

Please send report to: Steve Stanley

Turnaround	Time:	

Report Level: II

Sample ID	Date Sample	d Matrix	Analysis		C&T Lab #	
MW-1	20-JUL-00	Water	RSK-175	CO2	146643-001	
MW-3	20-JUL-00	Water	RSK-175	CO2	146643-002	
MW-4	20-JUL-00	Water	RSK-175	CO2	146643-003	
MW-5	20-JUL-00	Water	RSK-175	Co	146643-004	
MW-7	20-JUL-00	Water	RSK-175	CO2	146643-005	
MW - 6	20-JUL-00	Water	RSK-175	CO2	146643-006	

Please report using Sample ID instead of C&T Lab #.

	RELINQUISHED BY: RECEIVE	JED BY: JOY/97 NS
	Ben Suffly 7.2100 Date/Time Sharoul	1011100
1	Date/Time	Date/Time

gnature on this form constitutes a firm Purchase Order for the services requested above.