RECEIVED

3:31 pm, Oct 22, 2007

Alameda County Environmental Health

October 22, 2007

Mr. Barney Chan Alameda County Health Care Services Agency **Environmental Health Services** 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502-6577

RE: **Groundwater Monitoring Report**

SITE: 1532 Peralta Street, Oakland, California

ACHCSA Fuel Leak Case Site No. RO0000177

GGTR Project 8757

Dear Mr. Chan:

On behalf of Mr. James Tracy, Golden Gate Tank Removal, Inc. (GGTR) is pleased to submit the enclosed Groundwater Monitoring Report, which presents the findings and conclusions of the September 25, 2007, quarterly groundwater monitoring and sampling activities performed at 1532 Peralta Street in Oakland, California. GGTR uploaded an electronic copy of the report to the State Water Resources Control Board's GeoTracker Database System.

Should you have any questions, please contact us at your earliest convenience. In my absence from the office, I may be reached by cellular service at (415) 686-8846.

Sincerely,

Golden Gate Tank Removal, Inc.

5 S. lehn

Brent A. Wheeler

Project Manager

Enclosure/1

cc: Mr. James Tracy, 878 Hayden Court, Alpine, UT 84004

QUARTERLY GROUNDWATER MONITORING REPORT

Automobile Repair Garage 1532 Peralta Street Oakland, California

ACHCSA Fuel Leak Case No. RO0000177

Prepared For:

Mr. James Tracy 878 Hayden Court Alpine, UT 84004

GGTR Project No. 8757 Sampling Date: September 25, 2007 Report Date: October 22, 2007

Brent Wheeler Project Manager

> Golden Gate Tank Removal, Inc. 3730 Mission Street, San Francisco, California Ph (415) 512-1555 Fx (415) 512-0964

ologist

GROUNDWATER MONITORING REPORT

1532 Peralta Street, Oakland, California

TABLE OF CONTENTS

INTRODUCTION	1
SITE DESCRIPTION	1
PROJECT HISTORY	2
GROUNDWATER MONITORING & SAMPLING: September 2007.	
RESULTS	6
RECOMMENDATIONS	7
REPORT DISTRIBUTION	
LIMITATIONS	8

FIGURES

- 1 Site Location Map
- 2 Site Map
- 3 Groundwater Potentiometric Map
- 4 Groundwater Analytical data Diagram
- 5 Groundwater TPH-G Isoconcentration Map
- 6 Groundwater MTBE Isoconcentration Map

TABLE

Historical Groundwater Monitoring & Analytical Results

ATTACHMENT

- A Fluid-Level Monitoring Data Form Well Purging/Sampling Data Sheets
- B Laboratory certificate of Analysis Chain of Custody Form GeoTracker Upload Confirmation Forms

GROUNDWATER MONITORING REPORT

Automobile Repair Garage 1532 Peralta Street, Oakland, California

INTRODUCTION

This report presents the results and findings of the September 25, 2007 quarterly groundwater monitoring and sampling activities conducted by Golden Gate Tank Removal, Inc. (GGTR) at the commercial property located at 1532 Peralta Street in Oakland, California (the Site). The Alameda County Health Care Services Agency (ACHCSA) designated the Site as Fuel Leak Case No RO000117.

This monitoring event represents the seventh consecutive quarterly monitoring event for the six on Site monitoring wells, MW-1 through MW-6, since the well installation and initial sampling event in February/March 2004. Figure 1 "Site Location Map" depicts the location of the Site. Figure 2 "Site Map" depicts the approximate location of the former underground fuel storage tanks (USTs), the approximate limits of UST over excavation, historical soil borings, and existing groundwater monitoring wells. Figure 3 "Groundwater Potentiometric Map" shows the approximate groundwater flow direction and hydraulic gradient across the Site. Figure 4 "Groundwater Analytical Data Diagram" presents a summary of the groundwater samples analytical results. Figure 5 "Groundwater TPH-G Isoconcentration Map" and Figure 6 "Groundwater MTBE Isoconcentration Map" depict the concentration and approximate horizontal extent of the total petroleum hydrocarbon as gasoline (TPH-G) and methyl tertiary-butyl ether (MTBE) plumes, respectively. The attached Table presents a summary of the historical groundwater fluid level monitoring data and laboratory analytical results.

SITE DESCRIPTION

The Site is located at the southeast corner of Peralta Street and 16th Street in Oakland, California (Alameda County). The Site lies approximately one mile south of the San Francisco Bay. The elevation of the Site is approximately 13 feet above Mean Sea Level (MSL, Figure 1) occupying 6,356 square feet (0.15 acre) in area. Mr. Orobo Osagie previously owned the Site from May 1998 to early 2006, at which time Mr. James Tracy of Alpine Rentals took claim as the new responsible party for the Site (Alameda County Assessor Parcel 5-370-1). The Site is currently leased to LBJ's Automotive Repair for the service of automobiles. The Site previously operated as a gasoline service station prior to 1998. The nearby property, located to the northeast, across 16th Street (1600 Peralta Street), was a former gasoline service station and car repair garage (Figure 2).

The Site is relatively flat with the topographic relief generally directed towards the northwest in the general direction of the San Francisco Bay (Figure 1). A single-story

divided structure, approximately 1,175 square feet in area, lies on the southeast side of the Site and is currently used as an automobile service garage. The flooring in the service garage and office space is paved with concrete. The majority of the Site is paved throughout with asphalt.

Soil beneath the Site described during the February 2004 soil boring/well installation, was predominately clayey, silty, fine-grained sand to a total depth of 16 feet below ground surface (bgs). Granulometric analysis of the soil collected during the soil boring activities was not performed. The geologic map also indicates that the Site is situated approximately 4 miles southwest and 14 miles northeast of the Hayward and San Andreas Fault Zones, respectively. The Site is located within the East Bay Plain Groundwater Basin that contains a significant drinking water resource. However, groundwater at the Site is apparently designated as "other groundwater" considered not used for drinking water.

The regional groundwater flow direction in the vicinity of the Site is approximately toward the north-northwest, in the general direction of the San Francisco Bay and decreasing topographic relief. The nearest surface water body is the Oakland Outer Harbor of the San Francisco Bay, located approximately 1.03 miles northwest of the subject property (Figure 1). The groundwater flow direction calculated from groundwater elevations in the onsite monitoring wells has been consistent and is directed northward.

PROJECT HISTORY

Underground Tank Removal - December 1999: In December 1999, GGTR removed five USTs from the Site at the locations shown in Figure 2. The following table presents a summary of the tank designations, size, type of construction, and contents:

Designation	Construction	Diameter	Length	Volume	Contents
		(Feet)	(Feet)	(Gallons)	
UST #1	Steel	6	10	2,000	diesel
UST #2	Steel	4	7	675	gasoline
UST #3	Steel	4	7	675	gasoline
UST #4	Steel	5	7	1,000	gasoline
UST #5	Steel	5	7	1,000	diesel

GGTR subsequently collected soil samples from each excavation between 7 and 12.5 feet bgs. These samples contained maximum concentrations of TPH-G (TPH-G 2,600 milligrams per kilogram [mg/kg; parts per million]), TPH as diesel (TPH-D 8,100 mg/kg), and benzene (9.1 mg/kg). UST removal and sampling activities were conducted under the supervision of Mr. Hernan Gomez of the City of Oakland Fire Prevention Bureau (OFPB). Laboratory results of the soil samples collected after the tank removal are presented in the report entitled *Tank Closure Report*, *GGTR December 15*, 1999 and Site Characterization and Groundwater Monitoring Report, GGTR September 14, 2006. Following sampling, the excavations were backfilled with the excavated soil stockpiles.

The volume of the USTs was replaced with imported soil. Based on analytical results of the excavation soil sample analysis, Mr. Gomez requested a work plan of over-excavation activities to assess the extent of hydrocarbon-affected soil and potential impact to groundwater in the vicinity of the former USTs.

Over-Excavation & Disposal - January and February 2000: On January 3, 2000, GGTR submitted the requested work plan, which was approved by the OFPB in a letter dated January 25, 2000. In January and February 2000, in accordance with the proposed work plan activities, GGTR over-excavated the former UST cavities up to approximately 11 ft bgs, and to the approximate lateral limits shown in Figure 2. GGTR collected soil samples from the sidewalls (7.5 ft bgs.) and from the bottom (12 ft bgs.) of the over-excavated cavities. Groundwater accumulated within the excavations and was subsequently purged prior to sampling.

After groundwater stabilized within each excavation at approximately 8 ft bgs, GGTR collected a groundwater sample from each excavation. GGTR performed the sampling activities under the direction of Mr. Gomez of the OFPB. Approximately 194 tons of petroleum hydrocarbon impacted soil were excavated from the Site and disposed of at Forward, Inc. in Manteca, California. The excavation was subsequently backfilled and the pavement was replaced with concrete and asphalt, respectively. Significant concentrations of TPH-G, TPH-D, benzene, and MTBE (in groundwater only) were reported for each sample. Sampling activities and soil and groundwater laboratory results are presented in the document entitled *Remedial Activity Report*, GGTR March 8, 2000.

Remedial Activity Plan - October 2000 to May 2002: Following review of the Remedial Activity Report, the ACHCSA, in letters dated May 19 and May 25, 2000, identified elevated levels of residual gasoline and diesel-range hydrocarbons in the soil and groundwater in the vicinity of the former USTs and requested a work plan to evaluate the lateral and vertical extent of contamination at the Site.

On October 6, 2000, DECON Environmental Services, Inc. (DECON) of Hayward, California prepared the requested work plan (Remedial Activity Plan, October 2000), which was subsequently approved by Mr. Larry Seto of the ACHCSA. After further review of DECON's work plan, representatives of both the ACHCSA and State Water Resources Control Board UST Cleanup Fund concurred that the work plan required additional content and requested that it be revised and resubmitted to the ACHCSA for review and approval. In February 2002, GGTR prepared the revised work plan for soil and groundwater investigation activities at the subject property.

Preliminary Soil Sampling / Monitoring Well Installation (MW-1 through MW-6): February 2004 - In February 2004 and in collaboration with Gregg Drilling, Inc., GGTR advanced eleven direct-push soil borings (B1 through B11) to a depth of 12 to 16 feet bgs. Six of the borings, B2, B4, B6, B9, B10, and B11, were converted to pre-packed ³/₄"-diameter monitoring wells MW-1 through MW-6, respectively. Groundwater was encountered between 2 and 4 feet bgs and stabilized in the wells at approximately 2 to 3

feet bgs. The investigation objective was to define the extent of petroleum hydrocarbon impact to soil and groundwater. On April 13, 2006, Virgil Chavez Land Surveying of Vallejo California, surveyed the top of casings of all six monitoring wells at the Site. Permits, boring logs, well sampling field sheets, and the laboratory analytical reports for soil and groundwater are presented in the report entitled *Site Characterization and Groundwater Monitoring Report, GGTR September 14, 2006.*

Work Plan / Site Conceptual Model – January to March 2007: Based upon review of the September 2006 Site Characterization and Groundwater Monitoring Report, the ACHCSA in their letter dated November 29, 2006, concurred that a work plan including a conduit survey, historical research and initial Site conceptual model be prepared for the fuel leak investigation at the subject property. On January 31, 2007, GGTR prepared its Soil and Water Delineation Work Plan. The ACHCSA, in their letter dated February 15, 2007, requested an addendum to address additional investigation of suspect conduits and other issues. On March 20, 2007, GGTR submitted the Addendum to the Soil and Water Delineation Work Plan; the purpose of this addendum is to modify procedures in the submitted work plan and propose additional investigation activities for delineating the lateral extent of soil and water contamination in the vicinity of the Site. To date, the addendum has not been approved by the ACHCSA.

Groundwater Monitoring (MW-1 to MW-6) - March 2006 to Present: GGTR has conducted quarterly groundwater monitoring and sampling at the Site on a consecutive basis since March 2004. Sample analytical results and associated fluid level monitoring data for each event are summarized in the attached Table. Details of each event are provided in respective Groundwater Monitoring Reports prepared by GGTR.

GROUNDWATER MONITORING & SAMPLING: September 2007

The scope of work covered in this report includes the following:

- Monitoring, purging and sampling six monitoring wells (MW-1 to MW-6)
- Laboratory analysis of groundwater samples
- Waste Management
- Data interpretation and report preparation
- GeoTracker Upload

Groundwater Sampling Field Procedures: GGTR conducted the most recent quarterly groundwater monitoring and sampling activities at the Site on September 25, 2007. Prior to purging and sampling each of the six monitoring wells, GGTR measured and recorded the depth to groundwater using an electronic water level meter. Groundwater levels were measured to the nearest 0.01 foot. Attachment A includes a copy of the *Fluid-Level Monitoring Data Form*.

GGTR then purged groundwater from each well using a low-flow peristaltic pump and disposable polyethylene tubing. Purge rates varied in each well between 350 to 400

milliliters per minute. The wells were purged until three consecutive parameter readings of pH, specific conductivity and temperature were measured within a range of +/- 0.1, 10%, and 3%, respectively, in general accordance with ASTM Designation D6771-02 (Standard Practice for Low-Flow Purging and Sampling for Wells and Devices Used for Groundwater Quality Investigations). The purge water was transferred directly to a 55-gallon D.O.T.- approved steel drum. After recharge of approximately 80% of the groundwater column in each well, GGTR collected a groundwater sample from each well using a peristaltic pump and clean polyethylene tubing. Each sample was collected at a significantly lower pumping rate, with the sample intake just below the water level in each well casing. Each sample was transferred directly into the appropriate laboratory sample containers. All volatile organic analysis (VOA) vials were sealed with a threaded cap, inverted, and checked to ensure that no entrapped air was present. Attachment A includes a copy of the Well Purging/Sampling Data Sheets.

Following sampling activities, the groundwater samples were labeled and immediately stored in a cooler chilled to 4° centigrade. GGTR submitted the samples to a California-Certified analytical laboratory under formal chain-of-custody protocol. Between each well location, all downhole monitoring and purging equipment was decontaminated using an Alconox wash solution and doubled rinse with clean, potable water. GGTR transferred the wash and rinse water to a 55-gallon D.O.T. approved steel drum, which was labeled and temporarily stored onsite in a secure area.

Groundwater Sample Analysis: On September 27, 2007, GGTR submitted the groundwater samples under formal chain of custody command to Entech Analytical Labs, Inc. (CA ELAP #2346) in Santa Clara, California for laboratory analysis of the following constituents:

- TPH- D by EPA Method 3510C / 8015B(M)
- TPH- G by EPA Method 5030B/ GC/MS
- VOC (Fuel Oxygenates) by EPA Method 5030B / 8260B

Entech performed all volatile analyses by October 2, 2007, which is in conformance with the maximum 14-day holding time for these analyses. Attachment C includes a copy of the Laboratory Certificate of Analysis and associated Chain of Custody form.

GeoTracker Electronic Submittal: GGTR directed Entech to submit all analytical data in electronic deliverable format (EDF) via the Internet. GGTR uploaded the analytical data as well as the Fluid-Level Monitoring Data (GEO_WELL) to the State Water Resources Control Board's GeoTracker Database System. GGTR also uploaded a copy of this report in Portable Data Format (PDF) to the GeoTracker Database. Attachment B includes a copy of each associated GeoTracker Upload Confirmation Form.

Groundwater Waste Management: The well purge water and equipment wash and rinse water generated during the September 25, 2007 monitoring event (approximately 12 gallons), was transferred to a 55-gallon D.O.T.-approved steel drum, appropriately

labeled and temporarily stored onsite in a secure area for use with future monitoring event(s).

RESULTS

Results of Groundwater Measurements: The groundwater levels measured in wells MW-1, MW-2 and MW-3 during the September 25, 2007 monitoring event were used to calculate the groundwater elevation relative to the MSL. Then, GGTR used the groundwater elevation to determine the groundwater flow direction and hydraulic gradient for the Site. Figure 3 depicts the groundwater equipotential contour lines, flow direction and hydraulic gradient. The attached Table presents the historical data on groundwater elevations for the Site since installation of the six existing groundwater monitoring wells. Documentation of the monitoring, purging and sampling activities performed during this event is presented in Attachment A.

The groundwater elevation, flow direction and hydraulic gradient calculated during the September 2007 monitoring event are generally similar to that from the June 2007 monitoring event. The September 25, 2007 measurements indicate that the general groundwater flow direction beneath the Site is 13 degrees east of north (N13E) under an hydraulic gradient of 0.0045 ft/ft. The groundwater elevations calculated during this monitoring event ranged from 4.42 feet above MSL in well MW-2, to 4.74 feet above MSL in MW-4. The September 2007 measurements represent early autumn weather conditions with the mean groundwater elevation at 0.65 feet lower than that measured in June 2007 during early summer weather conditions.

Results of Groundwater Sampling and Laboratory Analysis: The attached Table presents a summary of the groundwater fluid levels monitoring data and laboratory analytical results of monitoring wells MW-1 to MW-6. Attachment A includes copies of the field documentation of the monitoring, purging and sampling activities performed during this event. Attachment B includes a copy of the Laboratory Certificates of Analysis and the associated Chain-of-Custody Form.

The maximum TPH-G and benzene concentrations were detected in groundwater samples collected from monitoring well MW-6, at 2,200 ug/l and 430 ug/l, respectively. Both of these values were above their respective Environmental Screening Level (ESL). TPH-G concentrations have fluctuated in this well since March 2004, between 2,200 ug/l in September 2007 and 8,400 ug/l in December 2006, and benzene has fluctuated in this well between 240 ug/l in June 2007 and 2,600 ug/l in December 2006. TPH-G was also detected above its ESL in monitoring wells MW-1, MW-4, and MW-5 at concentrations of 190, 850, and 1,200 ug/l, respectively. TPH-G was again not detected in the groundwater sample collected from MW-2 and MW-3, which is consistent with a general decreasing trend in concentration for these wells. Benzene continues to significantly exceed its ESL in wells MW-5 (90 ug/l) and MW-6 (430 ug/l), both located in the direct proximity of the former gasoline UST #'s 2-4 (Figure 2). Concentrations of benzene were not detected in monitoring wells MW-1 to MW-4 during this event.

MTBE concentrations exceeding its applicable ESL were detected in the groundwater samples collected from MW-1, MW-4, MW-5 and MW-6 at levels of 29 ug/l, 11 ug/l, 840 ug/l and 580 ug/l, respectively. Concentrations of MTBE were not detected or insignificant in monitoring wells MW-2 and MW-3. Tert-butanol (TBA) was again detected in the groundwater samples collected MW-4 at 45 ug/l, exceeding its ESL of 12 ug/l. TBA was not detected in groundwater collected from monitoring wells MW-5 and MW-6, but the laboratory reporting limits for this constituent was greater than its ESL. This has been the case since June 2006.

In accordance with the letter submitted by ACHCSA on November 29, 2006, all groundwater samples were analyzed for TPH-D. Concentrations of TPH-D were below the laboratory reporting limit in groundwater samples collected from each monitoring wells (MW-1 to MW-6).

The results of historical groundwater monitoring and laboratory analyses performed to date are summarized on the attached Table. Figure 4 presents the TPH-G, TPH-D, BTEX, and MTBE concentrations measured in each well during this sampling event. Figures 5 and 6 depict *Groundwater TPH-G and MTBE Isoconcentration Maps*, respectively, estimating the residual extent of gasoline-range hydrocarbons in groundwater at the Site. Attachment B includes copies of the Laboratory Certificates of Analysis and the associated Chain-of-Custody Form.

RECOMMENDATIONS

Based on the results of the Third Quarterly Groundwater Monitoring and Sampling Event of 2007, GGTR recommends continued groundwater monitoring and sampling at the Site. Onsite monitoring wells MW-1 through MW-6 should continue to be analyzed for TPH-G by EPA Method 5030B/GC/MS, TPH-D by EPA Method 3510C/8015B(M), and VOC by EPA Method 5030B/8260B. Fourth Quarter 2007 groundwater sampling activities are tentatively scheduled at the Site in December 2007.

GGTR requests that the ACHCSA expedite review of the aforementioned March 20, 2007 Work Plan Addendum, which was prepared to modify procedures in the January 2007 Soil and Water Delineation Work Plan, and propose additional investigation activities for delineating the lateral extent of soil and water contamination in the vicinity of the Site. Upon regulatory approval, GGTR recommends implementation of the additional work plan activities.

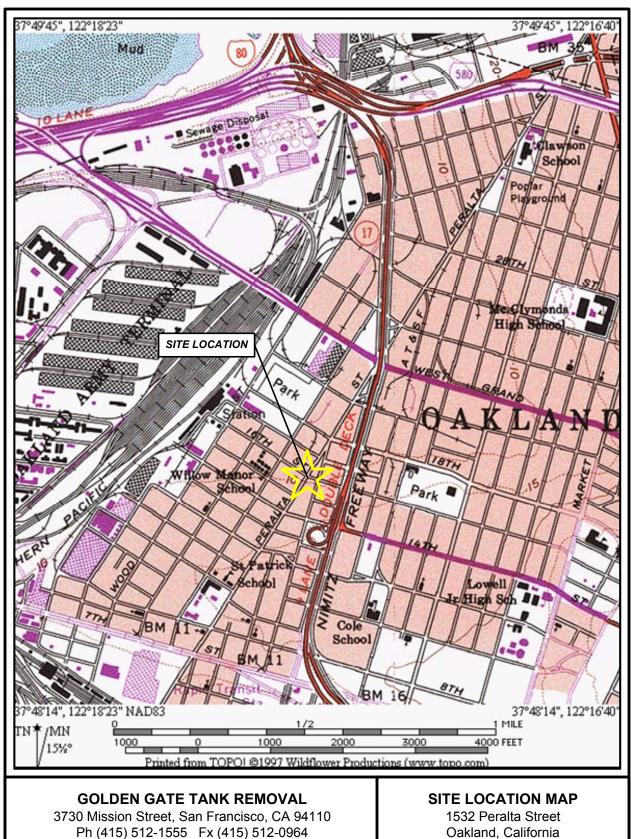
REPORT DISTRIBUTION

A copy of this quarterly groundwater monitoring report is submitted to the following Site representatives:

Alameda County Health Care Services Agency Environmental Health Services 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577 Attn: Mr. Barney Chan

(1Electronic Copy via ACGOV FTP) (1Electronic Copy via GeoTracker)

Mr. James Tracy 878 W. Hayden Court Alpine, Utah 84004

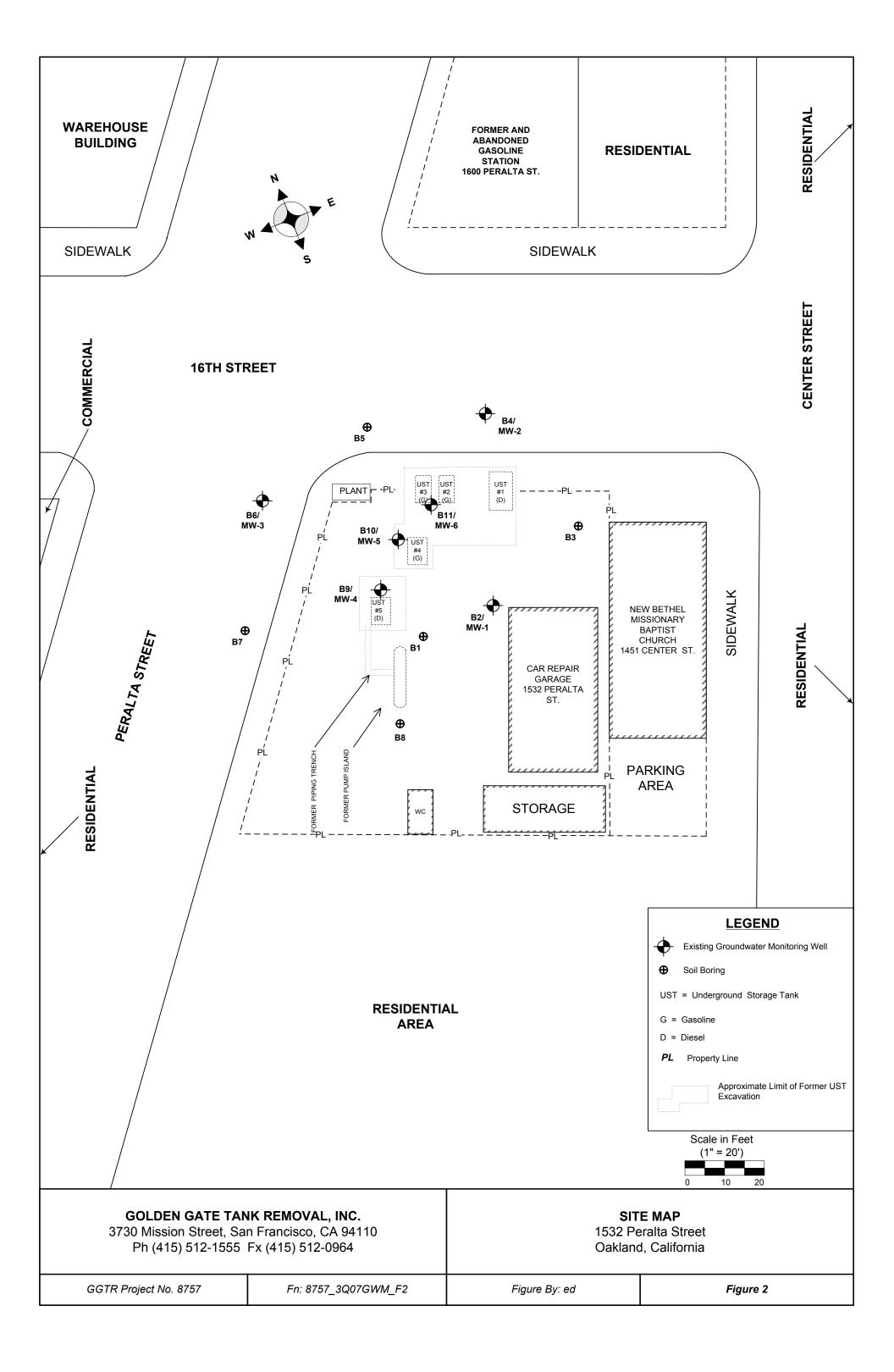

(1 Copy; Bound)

LIMITATIONS

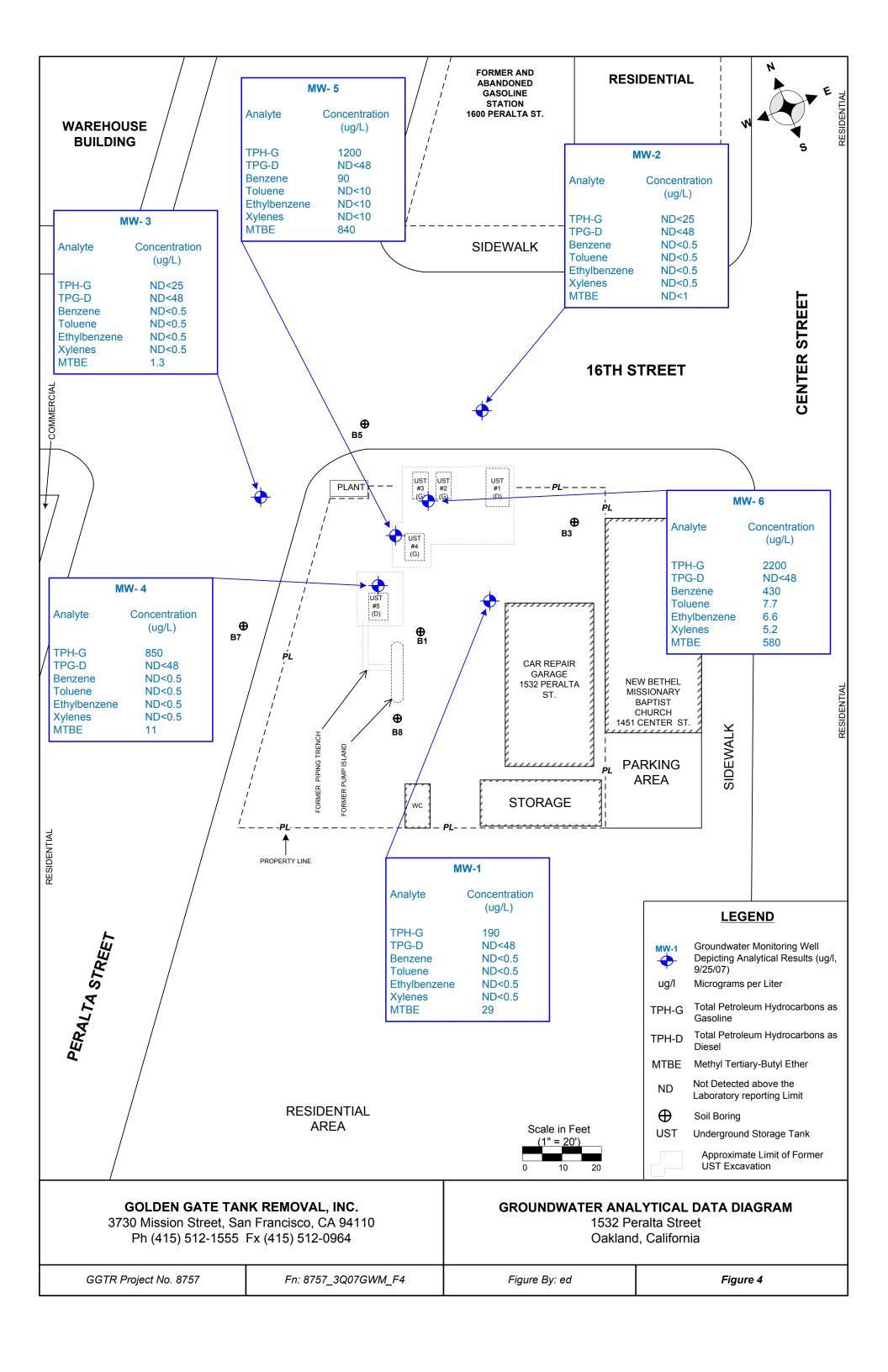
This report has been prepared in accordance with generally accepted environmental practices exercised by professional geologists, scientists, and engineers. No warranty, either expressed or implied, is made as to the professional advice presented herein. The findings contained in this report are based upon information contained in previous reports of corrective action activities performed at the subject property and based upon Site conditions as they existed at the time of the investigation, and are subject to change.

The scope of services conducted in execution of this phase of investigation may not be appropriate to satisfy the needs of other users and any use or reuse of this document and any of its information presented herein is at the sole risk of said user.

Golden Gate Tank Removal, Inc.


GGTR Project No. 8757

Fn: 8757_Fig 1.vsd


Oakland, California

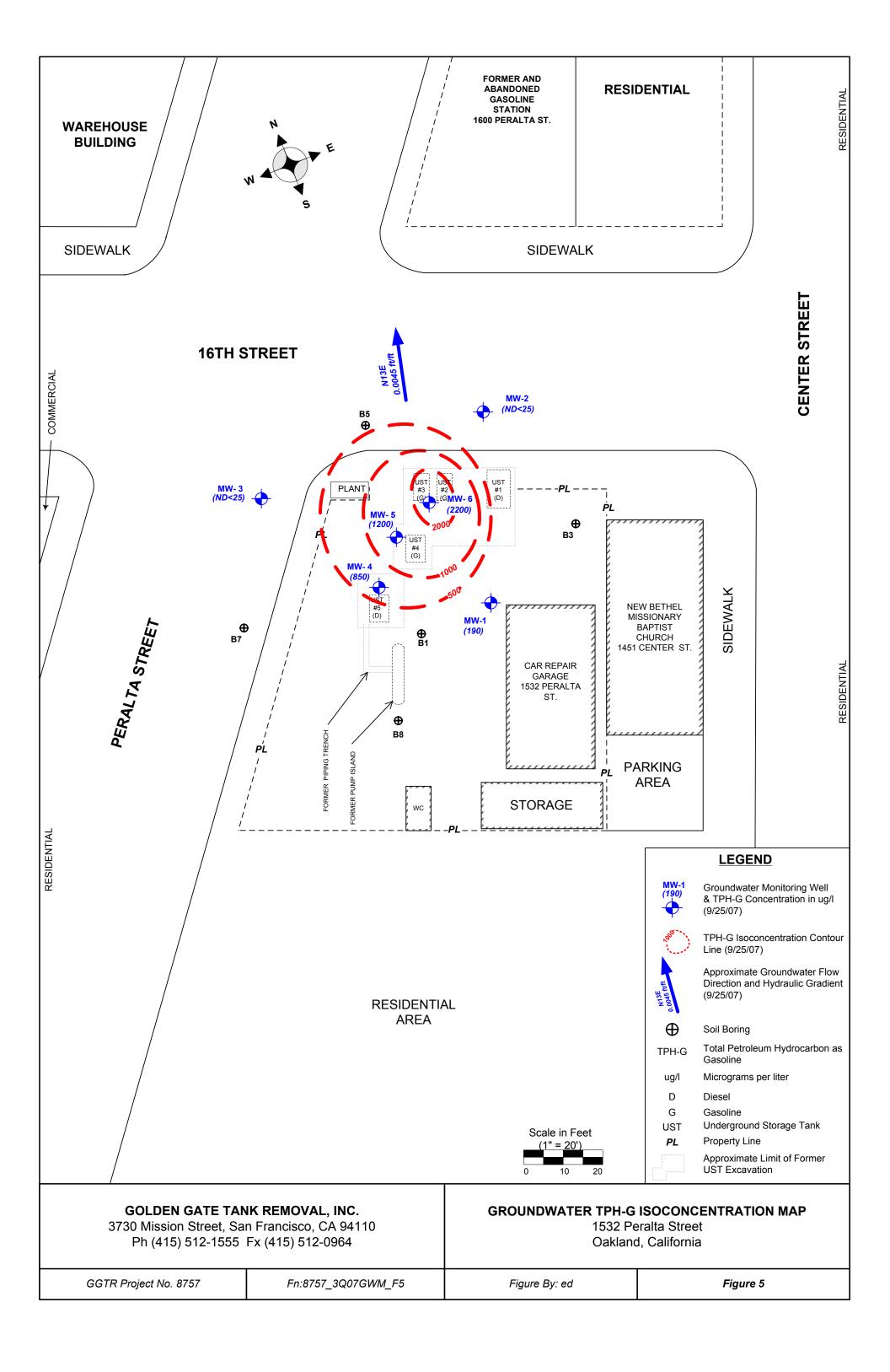

Figure By: ed/10.07

Figure 1

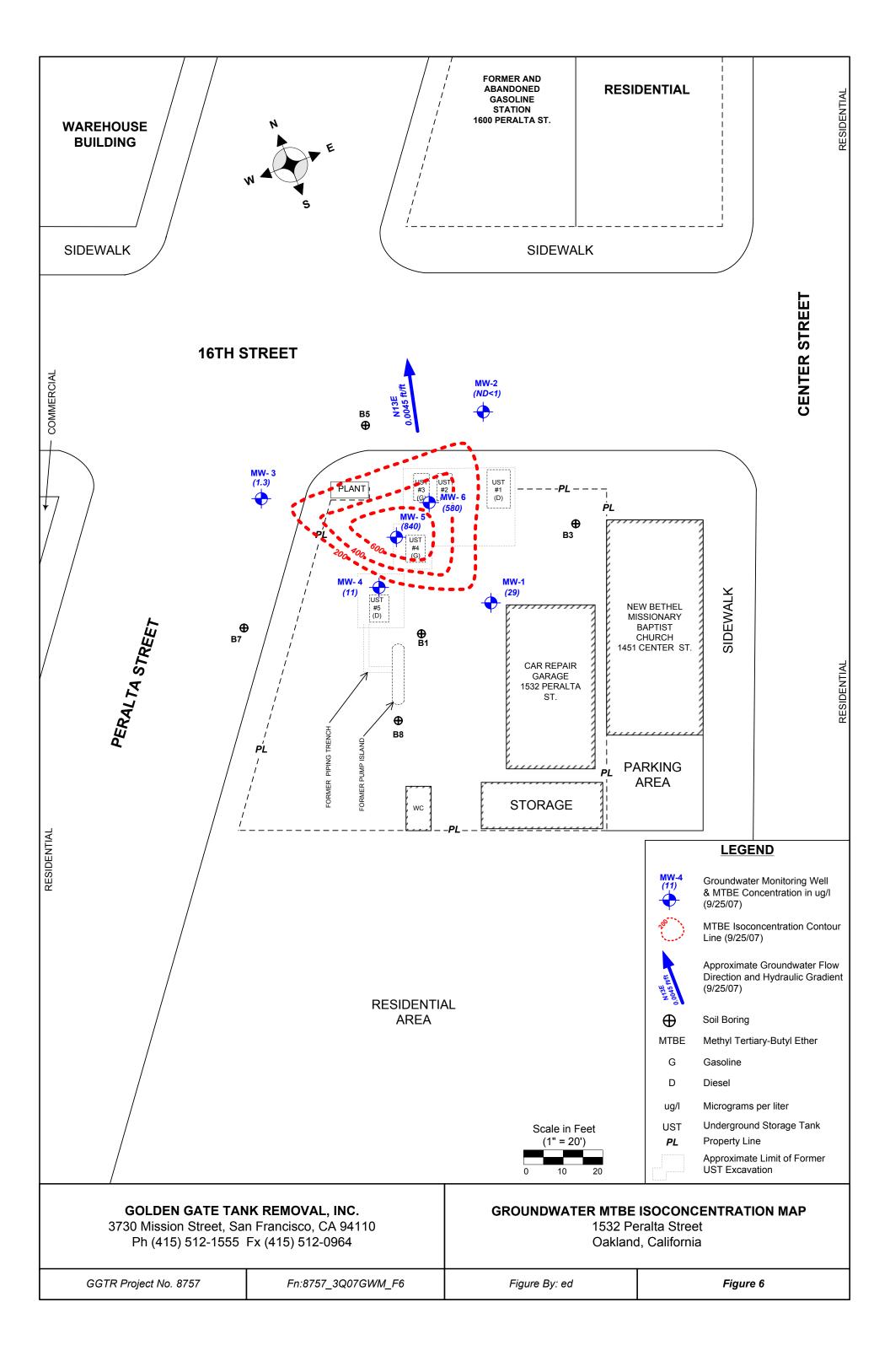


TABLE HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

1532 Peralta Street, Oakland, CA

Well ID	Sample	TOC	Depth to	GW Elevation	TPH-G	TPH-D	В	T	Е	X	MTBE	Other Fuel
	Date		GW									Oxygenates
		(ft MSL)	(ft BTOC)	(ft MSL)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)
	03/05/04		3.18	6.69	571	220	4.1	1.6	0.6	5.8	53.2	NA
	03/27/06		2.72	7.15	520	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	61	11(TBA)
	06/22/06		3.53	6.34	790	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	27	11(TBA)
2007.4	09/25/06	9.87	4.54	5.33	500	ND<50	2.4	ND<0.5	ND<0.5	ND<0.5	31	17(TBA)
MW-1	12/21/06	(4/13/06)	4.05	5.82	90	ND<46	1.6	ND<0.5	ND<0.5	ND<0.5	28	15(TBA)
	03/12/07		3.51	6.36	350	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	47	19(TBA)
	06/28/07		4.37	5.50	420	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	43	ND<10(TBA)
	09/25/07		5.23	4.64	190	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	29	ND<10(TBA)
	03/05/04		2.73	5.93	109	ND<50	3.9	ND<0.5	ND<0.5	ND<1.0	6.9	NA
	03/27/06		2.11	6.55	30	ND<62	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.2	ND
	06/22/06		2.73	5.93	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
2000	09/25/06	8.66	3.6	5.06	ND<25	ND<50	0.9	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
MW-2	12/21/06	(4/13/06)	3.16	5.50	ND<25	ND<46	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	03/12/07		2.76	5.90	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	06/28/07		3.46	5.20	ND<25	ND<50	ND<0.5	0.76	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	09/25/07		4.24	4.42	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
	03/05/04		2.1	6.19	185	200	1	1	ND<0.5	1.3	2.5	NA
	03/27/06		1.74	6.55	ND<25	ND<72	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
	06/22/06		2.38	5.91	ND<25	NA	ND<0.5	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND
MW-3	09/25/06	8.29	3.12	5.17	44	ND<50	1.4	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<10 (TBA)
IVI VV -3	12/21/06	(4/13/06)	2.71	5.58	ND>25	ND<46	3.2	ND<0.5	ND<0.5	ND<0.5	1.2	ND<10 (TBA)
	03/12/07		2.51	5.78	ND<25	ND<50	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1	ND<10 (TBA)
	06/28/07		2.95	5.34	ND<25	ND<50	ND<0.5	0.64	ND<0.5	ND<0.5	1.8	ND<10 (TBA)
	09/25/07		3.80	4.49	ND<25	ND<48	ND<0.5	ND<0.5	ND<0.5	ND<0.5	1.3	ND<10 (TBA)
	03/05/04		2.85	6.89	1110	370	3.2	3.9	1	3.3	8.5	NA
	03/27/06		2.64	7.10	2000	ND<50	ND<1.0	1	ND<1.0	1.1	9.3	33(TBA)
	06/22/06		3.43	6.31	430	NA	ND<1.0	1	ND<0.5	1.3	11	28(TBA)
MW-4	09/25/06	9.74	4.38	5.36	700	ND<50	ND<1.0	ND<0.5	ND<0.5	ND<0.5	12	34(TBA)
171 77 -4	12/21/06	(4/13/06)	4.09	5.65	1300	ND<47	1.7	ND<1.0	ND<1.0	ND<1.0	9.8	33(TBA)
	03/12/07		3.47	6.27	1200	ND<50	1.2	ND<1.0	ND<1.0	ND<1.0	9.8	27(TBA)
	06/28/07		4.2	5.54	900	570(1)	ND<1.0	ND<1.0	ND<1.0	ND<1.0	14	28(TBA)
	09/25/07		5.00	4.74	850	ND<48(2)	ND<0.5	ND<0.5	ND<0.5	ND<0.5	11	45(TBA)
	03/05/04		2.83	6.57	1660	NA	650	7.6	1.6	7.1	2250	NA
	03/27/06		2.41	6.99	1600	ND<50	89	5.6	ND<5.0	8.7	1200	170(TBA)
	06/22/06		3.17	6.23	2000	NA	240	11	ND<10	ND<10	1100	ND<200 (TBA)
MW-5	09/25/06	9.4 (4/13/06)	4.14	5.26	2,200	ND<50	160	ND<10	ND<10	ND<10	1200	ND<200 (TBA)
	12/21/06	(,	3.79	5.61	1700	ND<47	120	ND<10	ND<10	ND<10	1000	ND<200 (TBA)
	03/12/07		3.22	6.18	1300	ND<48	99	5.3	ND<5.0	ND<5.0	770	ND<100 (TBA)
	06/28/07		4.96	4.44	1,900	470(1)	230	11	ND<10	ND<10	1,400	ND<200 (TBA)
	09/25/07		4.74	4.66	1,200	ND<48(3)	90	ND<10	ND<10	ND<10	840	ND<200 (TBA)
	03/05/04		2.5	6.52	6450	800	1,950	29.6	52.7	54.6	1440	NA 100/FD A
	03/27/06		2.08	6.94	4800	ND<50	820	14	12	22	1100	180(TBA)
	06/22/06	0.02	2.85	6.17	5200	NA ND 450	630	12	14	13	1100	ND<200 (TBA)
MW-6	09/25/06	9.02	3.79	5.23	3,700	ND<50	430	ND<10	ND<10	ND<10	920	ND<200 (TBA)
	12/21/06	(4/13/06)	3.41	5.61	8,400	ND<250	2600	ND<25	32	ND<25	550	ND<500 (TBA)
	03/12/07		2.82	6.20	7,400	ND<49	1200	17	23	13	680	ND<200 (TBA)
	06/28/07		3.59	5.43	3,600	1300(1)	240	8.6	ND<5.0	10	890	ND<100 (TBA)
	09/25/07	<u> </u>	4.40	4.62	2,200	ND<48(4)	430	7.7	6.6	5.2	580	ND<100 (TBA)
	Cl	RWQCB Tier	1 ESL		100	100	1	40	30	20	5	12 (TBA)

Notes in following page:

TABLE (continued)

HISTORICAL GROUNDWATER MONITORING & ANALYTICAL RESULTS

1532 Peralta Street, Oakland, CA

NOTES

TOC = Top of Casing

ft MSL = Feet Above Mean Sea Level

ft BTOC = Feet Below Top Of Casing

GW = Groundwater

TPH-G = Total Petroleum Hydrocarbons as Gasoline

TPH-D = Total Petroleum Hydrocarbons as Diesel

B, T, E, X = Benzene, Toluene, Ethylbenzene, and Total Xylenes

MTBE = Methyl Tertiary-Butyl Ether

ug/l = micrograms per Liter or parts per billion (ppb)

TBA = tert-Butanol

ND = Not Detected or less than the laboratory reporting limit

NA = Not analyzed

(1) = Atypical Diesel pattern

(2) = 160 ug/l Higher boiling gasoline compound (C9-C16)

(3) = 110 ug/l Higher boiling gasoline compound (C9-C16)

(4) = 610 ug/l Higher boiling gasoline compound (C9-C16)

CRWQCB ESL = February 2005 Interim Final CRWQCB Tier 1 Environmental Screening Levels where groundwater IS a current or potential source of drinking water

APPENDIX A

FLUID - LEVEL MONITORING DATA FORM WELL PURGING / SAMPLING DATA SHEETS

FLUID-LEVEL MONITORING DATA

Project No	: 875	7		Date	:9/25/07 , Oak
Project/Site	e Location:	532 F	Peralta	St.	, Oak
Technician) \ 		Instrume	nt: WLI
Boring/ Well	Depth to Water (feet)	Depth to Product (feet)	Product Thickness (feet)	Total Well Depth (feet)	Comments
Mw-1	5.73	NM	NM	14,47	@4:21
MW-2	4.24	NM	NM	13,46	@4:06
MW-3		NM	NM	13,43	@9:15
MW-4	5.00	NM	NW	10.44	@4',25
mw-S	4,74	NM	NW	5.23	@9:32
MW-6	4.40	NM	NW	14,30	@9:39
	:				
		1			
Measureme	ents referenc	ed to:	TOC(Grade.	Page of

Page ___ of

WELL PURGING/SAMPLING DATA

 Project Number: 8757
 Date: 9 25/07

 Project / Site Location: 1532
 Project / S

Casing/Borehole Volumes (gallons/foot) 0.02/0.13	0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1
	1.07.5.1
Well No. Mw-	Well No. MW-Z
1-1	Wen No. 11/10 2
A. Total Well Depth 14,47 Ft.(toc)	A Total Wall Daniel
1 ~	A. Total Well Depth 3.96 Ft.(toc)
	B. Depth To Water 4.74 Ft.
1 D W 11 C 1 D 1	C. Water Height (A-B) 4.72 Ft.
E. Casing Volume Constant	D. Well Casing Diameter In.
	E. Casing Volume Constant
(from above table) F. Three (3) Casing or	(from above table) <u>.05</u>
Borehole Volumes (CxEx3) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	F. Three (3) Casing or
Borehole Volumes (CxEx3) Socials.	Borehole Volumes (CxEx3) 1, 458 Gals.
G. 80% Recharge Level	G. 80% Recharge Level
$[B+(ExC)] \qquad \qquad 5 GZ_{ft}.$	[B+(ExC)] 4,726 Ft.
Purge Event #1 * * Whited /zhr	
	Purge Event #1 Start Time: (1:02 Forsecharge)
Start Time: 1:0 Z for Recharge,	Start Time: 11:02 for recharge?
Finish Time: \ . 25 then took	Finish Time: \\\.755 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Finish Time: 1:25 then took Purge Volume: 1:00 Sample	Purge Volume: 1,50 Somple
Recharge #1	Recharge #1
Depth to Water: (4.) 7-> 13.44 Time Measured: 10.78 -> 10.79	Depth to Water: 13.67 -> 13.63
Time Measured: 1:28 -> 1:25	Time Measured: 11:30 -> 11:3
1	
Purge Event #2	Purge Event #2
Start Time:	Start Time:
Finish Time:	Finish Time:
Purge Volume:	Purge Volume:
Recharge #2	Recharge #2
Depth to Water:	Depth to Water:
Time Measured:	Time Measured:
Well Fluid Parameters:	Well Fluid Parameters:
(Casing or Borehole Volumes)	(Casing or Borehole Volumes)
0,5 1 1.5 2 2.5 3	0.511.15.12.125.3
Time 1: 07 NEXC 1: 10 1:17 1:1961 /	Time (1:02 11:06 11:10 11:14 11:22 11:23]
pH 7.68 7.16 7.01 7.60 7.01 T (°F) 22.5 72.5 72.4 72.4 72.4	pH 8.06 767 762 7.62 7.61 7.61 T(°F)22.7 22.1 219 219 219 219
T(°F) 225 725 7214 7214 2214	T(°F)22,7 22,1 21 9 219 219 219
Condutz 4 11.5 06.7 60.1 60.1	T (°F)22.7 22.11 219 219 219 219 219 Cond. 138. 5(09. 348 6 919 91.8 91.8
DO NW	DO
ORP NM	ORP
Summary Data:	Summary Data:
Total Gallons Purged: 100	Total Gallons Purged: 1,50
Purge Rate (Gal./Min.): 350ml/min	Purge Rate (Gal./Min.):
ruige device: letis a true Intake Denth: Lit-	Purge Rate (Gal./Min.): HoomL/min Purge device: Periotin C Intake Depth: 134+
Sampling Device: Peristotic	Sampling Device: Peristoltic
Sample Collection Time: 1:38 -> 1:46	Sample Collection Time 21512.20
Sample Collection Time: 1:35 - 1:46 Sample Appearance: Lea No Shein, No Odo	Sample Appearance: Clear, No Shein, No Odor
Drums Remaining Onsite: \ Total Volume:\	7.5 Gals. (Show Location on Site Plan)
	- 15 Said Conon Document on Dite I tury

WELL PURGING/SAMPLING DATA

 Project Number: \$\frac{8757}{25}\$
 Date: \$\frac{9}{25}/07\$

 Project / Site Location: \$\frac{1537}{25}\$
 Percoltor St., Ook

 Sampler/Technician:

 Casing/Borehole Diameter (inches)
 0.75/1.75
 2/8
 4/8
 4/10
 6/10
 6/12

 Casing/Borehole Volumes (gallons/foot)
 0.02/0.13
 0.2/0.9
 0.7/1.2
 0.7/1.6
 1.5/2.2
 1.5/3.1

Cashig/Borenole Diameter (inches)	0.75/1.75	2/8	4/8	4/10	6/10	6/12		
Casing/Borehole Volumes (gallons/foot)	0.02/0.13							
					·L,			
Well No. MW-3		Well No.	MW-4		·			
——————————————————————————————————————	İ	,, 011 1 (01	11/00 -					
A. Total Well Depth (3,43	Ft.(toc)	A. Total Well Depth 10.99 Ft.(toc)						
B. Depth To Water 3.50								
37120		-		`	200	Ft.		
C. Water Height (A-B) D. Well Casing Diameter			leight (A-B		2,79	Ft.		
E. Casing Volume Constant	In.		ising Diame			In.		
			Volume Cor	nstant				
			ove table)		<u>.05</u>	1		
F. Three (3) Casing or	- .		 Casing or 		~/d r			
Borehole Volumes (CxEx3) 15145	Gals.	Borehole	e Volumes	(CxEx3)	. <u>8485</u>	Gals.		
G. 80% Recharge Level	_		charge Lev	el		_		
[B+(ExC)] 4 <u>.306</u>	>Ft.	[B+(Ex)]	C)]		5,249	Ft.		
- Was 1 120	15-							
Purge Event #1	y (0 v	Purge Ever						
Purge Event #1 Start Time: 11:34 rechor	we	St	art Time: (:55				
Finish Time: \7.00	~	Fi	nish Time:	2:14				
Purge Volume: \. 5 \	,	Pι	ırge Vo l um	e; \a\				
Recharge #1	<i>~</i>	n 1	! • l	,		a .		
Depth to Water: \3, 72 \3.6 Time Measured: \7:05 \7 12.6	9	D	epth to Wat	ter: 4. 70	→ 7.7			
Time Measured: \7:05 7 12 \)6	Depth to Water: 9.79 +9.48 Time Measured: 2:16 + 2:17						
Purge Event #2		Purge Ever	nt #2	4 * *				
Start Time:			art Time:					
Finish Time:		Finish Time:						
Purge Volume:		Purge Volume:						
Recharge #2		Recharge #2						
Depth to Water:	-	Depth to Water:						
Time Measured:			ime Measur		•			
Well Fluid Parameters:		Well Fluid	Paramete	rs:				
(Casing or Borehole Volun	nes)		(Casin	g or Boreh	ole Volum	es)		
0.51 1.5 2 2	.5 3	✓ <u>c</u>	1-511	(1.5)	2 1 2.			
Time 11:34 11:48 11:54 12:00		Time 25	1:54 2:0	6210 7	314			
pH 7.29 7.37 7.49 7.48 7.48		pH 7.78	171016.9	9/7,001	6.94	\mathcal{X}		
T(°F) 23.8 23.1 23.7 23.6 23.6		T (°F) 72 H	22,4 22.	3 22.5	72. ストラ			
Cond. 84, 6 89, 1 86, 0 85. 7 85. 6 /		Cond. Ol. 3	80269	5 14.5	63.71			
DO NM		DO NIN			1			
ORP NM		ORP M Summary						
Summary Data:		Summary	Data:	1				
Total Gallons Purged: \.Sc		Total Gallo	ons Purged:	19.				
Purge Rate (Gal./Min.): 300 mL/min —	100	Purge Rate	(Gal./Min.):300mL	/mm	1 mg		
Purge device: Pristaltic Intake Depth:	544	Purge devi	ce: Perish	Intakلي کم ا	fe Depth: \	0++		
Sampling Device: Perista 14	27	Purge device: Richard Intake Depth: 0-+ Sampling Device: Richard Control Contr						
Sample Collection Time: 17:25 -> 12:	.) (Sample Co	llection Tir	ne: 7,720	→2°2°	[]		
Sample Appearance: Clear, No Shein	70680C	Sample Ap	pearance:(-	sey/Cleo	Sell, 2	no No Odo		
Drums Remaining Onsite: Total	Volume: \	75 Gals.	(Show Loc	ation on Si	te Plan)			
,				*.*	. ,			

WELL PURGING/SAMPLING DATA

Project Number: <u>8757</u> Date: <u>9175/07</u>

Project / Site Location: 1532 Peralta St., Oak

Sampler/Technician:

Casing/Borehole Diameter (inches)	0.75/1.75	2/8	4/8	4/10	6/10	6/12
Casing/Borehole Volumes (gallons/foot)	0.02/0.13	0.2/0.9	0.7/1.2	0.7/1.6	1.5/2.2	1.5/3.1

Casing/Borehole Volumes (gallons/foot) 0.02/0.13	0.2/0.9 0.7/1.2 0.7/1.6 1.5/2.2 1.5/3.1
Well No. Mw-5	Well No. MW-6
A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Three (3) Casing or Borehole Volumes (CxEx3) G. 80% Recharge Level [B+(ExC)] F. Total Well Depth F. Tet. 1 In. 5 23 Ft.(toc) 4 7 Ft. 1 In. 5 5 Gals. 7 7 5 Gals.	A. Total Well Depth B. Depth To Water C. Water Height (A-B) D. Well Casing Diameter E. Casing Volume Constant (from above table) F. Three (3) Casing or Borehole Volumes (CxEx3) G. 80% Recharge Level [B+(ExC)] 4.30 Ft.(toc) 4.70 Ft. In. In. 5.645 Gals. 6.80% Recharge Level 1.765 Gals. 6.80% Ft.
Purge Event #1 Start Time: 7:36 Finish Time: 7:50 Purge Volume: 4 Recharge #1 Depth to Water: Time Measured:	Purge Event #1 Start Time: 3:15 Finish Time: 3:31 Purge Volume: 1.50 Recharge #1 Depth to Water: \3.44 \rightarrow 13.78 Time Measured: 3:34 \rightarrow 3:35
Purge Event #2 Start Time: Finish Time: Purge Volume: Recharge #2 Depth to Water: Time Measured:	Purge Event #2 Start Time: Finish Time: Purge Volume: Recharge #2 Depth to Water: Time Measured:
Well Fluid Parameters: (Casing or Borehole Volumes) Time 7:387:42 2:46 2:50 2 2.5 3 Total 7:42 2:46 2:50 2 2.5 3 Total Gallons Purged: 12 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	Well Fluid Parameters: (Casing or Borehole Volumes) O 5 1 1.5 2.3 2.5 3 Time 3:15 2:19 3:23 3:27 3:31 pH 7.61 7.42 7.28 7.26 7.25 T (°F) 25.5 23.9 25.7 23.5 23.5 Cond. 1336 10.1 96.5 07.5 87.4 DO ORP Summary Data: Total Gallons Purged: Purge Rate (Gal./Min.): 400 m/min Purge device: Resistant Clutake Depth: (4ft Sampling Device Peristant Clutake Depth: (4ft Sample Collection Time: 3:38 3:45 Sample Appearance: Clear 10 Sheim 2 Odor 7.5 Gals. (Show Location on Site Plan)

APPENDIX B

LABORATORY CERTIFICATES OF ANALYSIS CHAIN OF CUSTODY RECORD GEOTRACKER UPLOAD CONFIRMATION FORMS

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Brent Wheeler Lab Certificate Number: 57359

Golden Gate Tank Removal Issued: 10/03/2007

3730 Mission Street

San Francisco, CA 94110

P.O. Number: 8757

Project Number: 8757 Global ID: T0600191668

Project Name: Peralta Auto Care

Project Location: 1532 Peralta St., Oakland

Certificate of Analysis - Final Report

On September 27, 2007, samples were received under chain of custody for analysis. Entech analyzes samples "as received" unless otherwise noted. The following results are included:

Matrix Test / Comments

Liquid VOCs: EPA 5030B / EPA 8260B

Electronic Deliverables for Geotracker

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS TPH-Extractable: EPA 3510C / EPA 8015B(M)

Entech Analytical Labs, Inc. is certified for environmental analyses by the State of California (#2346). If you have any questions regarding this report, please call us at 408-588-0200 ext. 225.

Sincerely,

C. L. Thom

Laboratory Director

C. L. Thom

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757

Project Name: Peralta Auto Care

Project Location: 1532 Peralta St., Oakland

GlobalID: T0600191668 P.O. Number: 8757

Samples Received: 09/27/2007 Sample Collected by: client

Certificate of Analysis - Data Report

 Lab #: 57359-001
 Sample ID: MW-1
 Matrix: Liquid
 Sample Date: 9/25/2007
 1:38 PM

 VOCs: EPA 5030B / EPA 8260B

VOCs: EPA 5030B / EPA 8260)B								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	0.50	μg/L	N/A	N/A	10/1/2007	WM7I071001I
Toluene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Ethyl Benzene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Xylenes, Total	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Methyl-t-butyl Ether	29		1.0	1.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butyl Ethyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butanol (TBA)	ND		1.0	10	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Diisopropyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Amyl Methyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1,2-Dichloroethane	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1,2-Dibromoethane (EDB)	ND		1.0	0.50	μg/L	N/A	N/A	10/1/2007	WM7I071001I

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)
4-Bromofluorobenzene	113	60	-	130
Dibromofluoromethane	107	60	-	130
Toluene-d8	104	60	-	130

Analyzed by: Bela Reviewed by: MaiChiTu

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result Q	ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	190	1.0	25	\mug/L	N/A	N/A	10/1/2007	WM7I071001I
Surrogate	Surrogate Recovery	Contro	Limits (%)			Analyzed by: Bela		
4-Bromofluorobenzene	99.2	60	- 130				Reviewed by: Mai	ChiTu
Dibromofluoromethane	94.0	60	- 130					
Toluene-d8	95.7	60	- 130					

TPH-Extractable: EPA 3510C / EPA 8015B(M)

	()								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		0.96	48	$\mu g/L$	9/28/2007	WD070928B	10/2/2007	WD070928B
Surrogate	Surrogate Recovery	y	Control 1	Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	81.2		50	- 150				Reviewed by: mtrar	1

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 **Attn: Brent Wheeler**

Lab #: 57359-002

Project Number: 8757

Project Name: Peralta Auto Care

Project Location: 1532 Peralta St., Oakland

Matrix: Liquid Sample Date: 9/25/2007

GlobalID: T0600191668 P.O. Number: 8757

Samples Received: 09/27/2007 Sample Collected by: client

Certificate of Analysis - Data Report

Sample ID: MW-2

						-			
VOCs: EPA 5030B / EPA 8260B									
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Toluene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Ethyl Benzene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Xylenes, Total	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Methyl-t-butyl Ether	ND		1.0	1.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butyl Ethyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butanol (TBA)	ND		1.0	10	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Diisopropyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Amyl Methyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1,2-Dichloroethane	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1,2-Dibromoethane (EDB)	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I

Surrogate	Surrogate Recovery	Contro	l Li	mits (%)	
4-Bromofluorobenzene	110	60	-	130	
Dibromofluoromethane	105	60	-	130	
Toluene-d8	104	60	-	130	

Analyzed by: Bela

Reviewed by: MaiChiTu

12:15 PM

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result (Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	25	μg/L	N/A	N/A	10/1/2007	WM7I071001I
Surrogate	Surrogate Recovery		Control 1	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	99.7		60 -	130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	92.2		60 -	130					
Toluene-d8	95.7		60 -	130					

TPH-Extractable: EPA 3510C / EPA 8015B(M)

	DE 10 C / E2 12 001E2 (1.12)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		0.96	48	μg/L	9/28/2007	WD070928B	10/1/2007	WD070928B
Surrogate	Surrogate Recovery	7	Control 1	Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	79.0		50 -	- 150				Reviewed by: mtrar	l

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Lab #: 57359-003

Project Number: 8757

Project Name: Peralta Auto Care

Project Location: 1532 Peralta St., Oakland

Matrix: Liquid Sample Date: 9/25/2007

GlobalID: T0600191668 P.O. Number: 8757

Samples Received: 09/27/2007 Sample Collected by: client

Certificate of Analysis - Data Report

Sample ID: MW-3

VOCs; EPA 5030B / EPA 8260B									
Parameter Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND		1.0	0.50	μg/L	N/A	N/A	10/1/2007	WM7I071001I
Toluene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Ethyl Benzene	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Xylenes, Total	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Methyl-t-butyl Ether	1.3		1.0	1.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butyl Ethyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butanol (TBA)	ND		1.0	10	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Diisopropyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Amyl Methyl Ether	ND		1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1,2-Dichloroethane	ND		1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1.2-Dibromoethane (EDB)	ND		1.0	0.50	ug/L	N/A	N/A	10/1/2007	WM7I071001I

Surrogate	Surrogate Recovery	Control Limits (%)
4-Bromofluorobenzene	110	60 - 130
Dibromofluoromethane	105	60 - 130
Toluene-d8	103	60 - 130

Analyzed by: Bela

Reviewed by: MaiChiTu

12:25 PM

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result (Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	ND		1.0	25	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Surrogate	Surrogate Recovery		Control	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	99.9		60	- 130				Reviewed by: Mai	ChiTu
Dibromofluoromethane	92.7		60	- 130					
Toluene-d8	95.2		60	- 130					

TPH-Extractable: EPA 3510C / EPA 8015B(M)

	(1.12)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		0.96	48	μg/L	9/28/2007	WD070928B	10/1/2007	WD070928B
Surrogate	Surrogate Recovery	7	Control 1	Limits (%)				Analyzed by: JHsia	ng
n-Hexacosane	79.8		50 -	- 150				Reviewed by: mtrar	1

D/P-F = Dilution and/or Prep Factor includes sample volume adjustments.

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Project Number: 8757

Project Name: Peralta Auto Care

Project Location: 1532 Peralta St., Oakland

GlobalID: T0600191668 P.O. Number: 8757

Samples Received: 09/27/2007 Sample Collected by: client

Certificate of Analysis - Data Report

Lab #: 5/359-004	Sample ID: MW-4	Matrix: Liquid	Sample Date: 9/25/2007	2:20 PM

VOCs: EPA 5030B / EPA 82	60B							
Parameter	Result Q	ual D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	ND	1.0	0.50	\mug/L	N/A	N/A	10/1/2007	WM7I071001I
Toluene	ND	1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Ethyl Benzene	ND	1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Xylenes, Total	ND	1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Methyl-t-butyl Ether	11	1.0	1.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butyl Ethyl Ether	ND	1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Butanol (TBA)	45	1.0	10	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
Diisopropyl Ether	ND	1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
tert-Amyl Methyl Ether	ND	1.0	5.0	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1,2-Dichloroethane	ND	1.0	0.50	$\mu g/L$	N/A	N/A	10/1/2007	WM7I071001I
1,2-Dibromoethane (EDB)	ND	1.0	0.50	\mug/L	N/A	N/A	10/1/2007	WM7I071001I
Surrogate	Surrogate Recovery	Control	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	112	60	- 130				Reviewed by: Mai	ChiTu

Surrogate	Surrogate Recovery	Control Limits (%)	Analyzed by: E
4-Bromofluorobenzene	112	60 - 130	Reviewed by: 1
Dibromofluoromethane	105	60 - 130	
Toluene-d8	105	60 - 130	

- 150

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result (Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	850		2.0	50	μg/L	N/A	N/A	10/2/2007	WM7I071002I
Surrogate	Surrogate Recovery		Control 1	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	96.2		60 -	130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	90.4		60 -	130					
Toluene-d8	100		60 -	130					

TDU Extractable, EDA 2510C / EDA 9015D(M)

n-Hexacosane

TPH-Extractable: EPA 3510C / EPA 8015B(M)									
Parameter	Result	Qual D/P-I	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch	
TPH as Diesel	ND	0.96	48	μg/L	9/28/2007	WD070928B	10/2/2007	WD070928B	
160 μg/L Higher boiling gasoline compound (C9-C16). No Diesel pattern present.									
Surrogate Surrogate Recovery Control Limits (%)							Analyzed by: JHsia	ng	

76.8

Reviewed by: mtran

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Lab #: 57359-005

Project Number: 8757

Project Name: Peralta Auto Care

Project Location: 1532 Peralta St., Oakland

Matrix: Liquid Sample Date: 9/25/2007

GlobalID: T0600191668 P.O. Number: 8757

Samples Received: 09/27/2007 Sample Collected by: client

Certificate of Analysis - Data Report

Sample ID: MW-5

	-					•	-		
VOCs: EPA 5030B / EPA 8260B Parameter	Result	Oual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	OC Batch
		Q		10		-	•	•	
Benzene	90		20	10	μg/L	N/A	N/A	10/2/2007	WM7I071001I
Toluene	ND		20	10	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
Ethyl Benzene	ND		20	10	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
Xylenes, Total	ND		20	10	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
Methyl-t-butyl Ether	840		20	20	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
tert-Butyl Ethyl Ether	ND		20	100	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
tert-Butanol (TBA)	ND		20	200	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
Diisopropyl Ether	ND		20	100	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
tert-Amyl Methyl Ether	ND		20	100	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
1,2-Dichloroethane	ND		20	10	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
1,2-Dibromoethane (EDB)	ND		20	10	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I

Surrogate	Surrogate Recovery	Contro	mits (%)	
4-Bromofluorobenzene	109	60	-	130
Dibromofluoromethane	106	60	-	130
Toluene-d8	104	60	-	130

78.1

Analyzed by: Bela

Reviewed by: MaiChiTu

Reviewed by: mtran

2:55 PM

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result Qu	ıal D/P-	·F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	1200	20	ı	500	$\mu g \! / \! L$	N/A	N/A	10/2/2007	WM7I071001I
Surrogate	Surrogate Recovery	Conti	ol I	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	99.1	60	-	130				Reviewed by: MaiC	ChiTu
Dibromofluoromethane	93.0	60	-	130					
Toluene-d8	95.5	60	-	130					

TPH-Extractable: EPA 3510C / EPA 8015B(M)

n-Hexacosane

IFH-Extractable: E	ra 3510C / Era 6015B(M)								
Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		0.96	48	$\mu g/L$	9/28/2007	WD070928B	10/2/2007	WD070928B
110 μg/L Higher boiling gasoline compound (C9-C16). No Diesel pattern present.									
Surrogate	Surrogate Recover	Control	Limits (%)				Analyzed by: JHsian	ng	

50 - 150

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Golden Gate Tank Removal 3730 Mission Street San Francisco, CA 94110 Attn: Brent Wheeler

Lab #: 57359-006

1,2-Dichloroethane

1,2-Dibromoethane (EDB)

Project Name: Peralta Auto Care

Project Location: 1532 Peralta St., Oakland

Matrix: Liquid Sample Date: 9/25/2007

N/A

N/A

GlobalID: T0600191668 P.O. Number: 8757

Project Number: 8757

Samples Received: 09/27/2007 Sample Collected by: client

N/A

N/A

 $\mu g/L \\ \mu g/L$

Certificate of Analysis - Data Report

Sample ID: MW-6

VOCs: EPA 5030B / EPA 8260B									
Parameter Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
Benzene	430		10	5.0	μg/L	N/A	N/A	10/2/2007	WM7I071001I
Toluene	7.7		10	5.0	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
Ethyl Benzene	6.6		10	5.0	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
Xylenes, Total	5.2		10	5.0	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
Methyl-t-butyl Ether	580		10	10	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
tert-Butyl Ethyl Ether	ND		10	50	$\mu g/L$	N/A	N/A	10/2/2007	WM7I071001I
tert-Butanol (TBA)	ND		10	100	μg/L	N/A	N/A	10/2/2007	WM7I071001I
Diisopropyl Ether	ND		10	50	μg/L	N/A	N/A	10/2/2007	WM7I071001I
tert-Amyl Methyl Ether	ND		10	50	μg/L	N/A	N/A	10/2/2007	WM7I071001I

5.0

5.0

Surrogate	Surrogate Recovery	Control	LLI	Limits (%)		
4-Bromofluorobenzene	110	60	-	130		
Dibromofluoromethane	105	60	-	130		
Toluene-d8	105	60	-	130		

ND

ND

10

10

10/2/2007 Analyzed by: Bela

10/2/2007

Reviewed by: MaiChiTu

3:38 PM

WM7I071001I

WM7I071001I

TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

Parameter	Result Q	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Gasoline	2200		10	250	μg/L	N/A	N/A	10/2/2007	WM7I071001I
Surrogate	Surrogate Recovery		Control 1	Limits (%)				Analyzed by: Bela	
4-Bromofluorobenzene	98.0		60 -	- 130				Reviewed by: Mai	ChiTu
Dibromofluoromethane	91.2		60 -	- 130					
Toluene-d8	96.4		60 -	- 130					

TPH-Extractable: EPA 3510C / EPA 8015B(M)

Parameter	Result	Qual	D/P-F	Detection Limit	Units	Prep Date	Prep Batch	Analysis Date	QC Batch
TPH as Diesel	ND		0.96	48	μg/L	9/28/2007	WD070928B	10/2/2007	WD070928B
610 μg/L Higher boiling gasoline compound (C9-C16). No Diesel pattern present.									
Surrogate	Surrogate Recover	y	Control 1	Limits (%)				Analyzed by: JHsia	ng

Reviewed by: mtran

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - VOCs: EPA 5030B / EPA 8260B

QC Batch ID: WM7I071001I Validated by: MaiChiTu - 10/02/07

QC Batch Analysis Date: 10/1/2007

Parameter	Result	DF	PQLR	Units
1,2-Dibromoethane (EDB)	ND	1	0.50	μg/L
1,2-Dichloroethane	ND	1	0.50	μg/L
Benzene	ND	1	0.50	μg/L
Diisopropyl Ether	ND	1	5.0	μg/L
Ethyl Benzene	ND	1	0.50	μg/L
Methyl-t-butyl Ether	ND	1	1.0	μg/L
tert-Amyl Methyl Ether	ND	1	5.0	μg/L
tert-Butanol (TBA)	ND	1	10	μg/L
tert-Butyl Ethyl Ether	ND	1	5.0	μg/L
Toluene	ND	1	0.50	μg/L
Xylenes, Total	ND	1	0.50	μg/L

Surrogate for Blank	% Recovery	Conti	ol	Limits	
4-Bromofluorobenzene	110	60	-	130	
Dibromofluoromethane	105	60	-	130	
Toluene-d8	105	60	-	130	

Method Blank - Liquid - TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

QC Batch ID: WM7I071001I Validated by: MaiChiTu - 10/02/07

QC Batch Analysis Date: 10/1/2007

Parameter			Result	DF	PQLR	Units	
TPH as Gasoline			ND	1	25	μg/L	
Surrogate for Blank	% Recovery	Control Limits					
4-Bromofluorobenzene	99.3	60 - 130					
Dibromofluoromethane	92.8	60 - 130					
Toluene-d8	97.0	60 - 130					

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

LCS / LCSD - Liquid - VOCs: EPA 5030B / EPA 8260B

QC Batch ID: WM7I071001I Reviewed by: MaiChiTu - 10/02/07

QC Batch ID Analysis Date: 10/1/2007

LCS

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	Recovery Limits
1,1-Dichloroethene	0.0	20	21.4	μg/L	107	70 - 130
Benzene	< 0.50	20	19.4	μg/L	97.1	70 - 130
Chlorobenzene	0.0	20	17.5	μg/L	87.3	70 - 130
Methyl-t-butyl Ether	<1.0	20	21.0	μg/L	105	70 - 130
Toluene	< 0.50	20	18.8	μg/L	94.0	70 - 130
Trichloroethene	0.0	20	18.1	μg/L	90.5	70 - 130
Surrogate	% Recovery Co	ontrol Limits				
4-Bromofluorobenzene	108.0	50 - 130				
Dibromofluoromethane	108.0	50 - 130				
Toluene-d8	106.0	50 - 130				

LCSD

Parameter	Method Blank	Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
1,1-Dichloroethene	0.0	20	20.4	μg/L	102	4.9	25.0	70 - 130
Benzene	< 0.50	20	18.7	μg/L	93.6	3.6	25.0	70 - 130
Chlorobenzene	0.0	20	17.0	μg/L	85.0	2.6	25.0	70 - 130
Methyl-t-butyl Ether	<1.0	20	20.6	μg/L	103	1.7	25.0	70 - 130
Toluene	< 0.50	20	18.2	μg/L	90.9	3.4	25.0	70 - 130
Trichloroethene	0.0	20	17.5	μg/L	87.4	3.5	25.0	70 - 130

Surrogate	% Recovery	Control Limi	ts
4-Bromofluorobenzene	106.0	60 - 130	
Dibromofluoromethane	108.0	60 - 130	
Toluene-d8	105.0	60 - 130	

LCS / LCSD - Liquid - TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

QC Batch ID: WM7I071001I Reviewed by: MaiChiTu - 10/02/07

QC Batch ID Analysis Date: 10/1/2007

LCS

Parameter	Method B	lank	Sp	ke Amt	SpikeResult	Units	% Recovery	Recovery Limits
TPH as Gasoline	<25			120	121	μg/L	96.4	65 - 135
Surrogate	% Recovery	Co	ntro	Limits				
4-Bromofluorobenzene	98.8	6	0 -	130				
Dibromofluoromethane	91.9	6	0 -	130				
Toluene-d8	98.1	6	0 -	130				

LCSD

Parameter	Method B	lank Spike Amt	SpikeResult	Units	% Recovery	RPD	RPD Limits	Recovery Limits
TPH as Gasoline	<25	120	127	μg/L	101	4.9	25.0	65 - 135
Surrogate	% Recovery	Control Limits						
4-Bromofluorobenzene	98.8	60 - 130						
Dibromofluoromethane	91.9	60 - 130						
Toluene-d8	97.6	60 - 130						

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

MS / MSD - Liquid - VOCs: EPA 5030B / EPA 8260B

QC Batch ID: WM7I071001IReviewed by: MaiChiTu - 10/02/07

QC Batch ID Analysis Date: 10/1/2007 MS Sample Spiked: 57359-002

	Sample	Spike	Spike		Analysis		Recovery
Parameter	Result	Amount	Result	Units	Date	% Recovery	Limits
Benzene	ND	20	21.0	μg/L	10/1/2007	105	70 - 130
Methyl-t-butyl Ether	ND	20	21.5	μg/L	10/1/2007	108	70 - 130
Toluene	ND	20	20.0	μg/L	10/1/2007	99.9	70 - 130

Surrogate	% Recovery	Control L	imits
4-Bromofluorobenzene	108.0	60 - 1	130
Dibromofluoromethane	107.0	60 - 1	130
Toluene-d8	101.0	60 - 1	130

MSD Sample Spiked: 57359-002

	Sample	Spike	Spike		Analysis				Recovery
Parameter	Result	Amount	Result	Units	Date	% Recovery	RPD	RPD Limits	Limits
Benzene	ND	20	21.5	μg/L	10/1/2007	107	2.3	25.0	70 - 130
Methyl-t-butyl Ether	ND	20	22.0	μg/L	10/1/2007	110	2.2	25.0	70 - 130
Toluene	ND	20	20.5	μg/L	10/1/2007	103	2.8	25.0	70 - 130

Surrogate	% Recovery	Cont	rol	Limits	
4-Bromofluorobenzene	107.0	60	-	130	
Dibromofluoromethane	107.0	60	-	130	
Toluene-d8	102.0	60	_	130	

3334 Victor Court , Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

QC Batch ID: WM7I071002I Validated by: MaiChiTu - 10/02/07

QC Batch Analysis Date: 10/2/2007

Parameter				Result	DF	PQLR	Units
TPH as Gasoline				ND	1	25	μg/L
Surrogate for Blank	% Recovery	Contro	ol Limits				
4-Bromofluorobenzene	98.1	60	- 130				
Dibromofluoromethane	90.4	60	- 130				
Toluene-d8	97.7	60	- 130				

LCS / LCSD - Liquid - TPH-Purgeable - GC/MS: EPA 5030B / GC/MS

QC Batch ID: WM7I071002I Reviewed by: MaiChiTu - 10/02/07

QC Batch ID Analysis Date: 10/2/2007

LCS

<25	120	150	/1	100	
		100	μg/L	120	65 - 135
ery Co	ontrol Limits				
6	60 - 130				
6	60 - 130				
6	60 - 130				
2) 6 2 6	60 - 130 2 60 - 130			

LCSD Parameter

		•	•			,		•	
TPH as Gasoline	<25	120	145	μg/L	116	3.1	25.0	65 - 135	
Surrogate	% Recovery	Control Limits							
4-Bromofluorobenzene	101.0	60 - 130							
Dibromofluoromethane	92.3	60 - 130							
Toluene-d8	96.3	60 - 130							

Method Blank Spike Amt SpikeResult Units % Recovery RPD RPD Limits Recovery Limits

3334 Victor Court, Santa Clara, CA 95054 Phone: (408) 588-0200 Fax: (408) 588-0201

Method Blank - Liquid - TPH-Extractable: EPA 3510C / EPA 8015B(M)

QC/Prep Batch ID: WD070928B Validated by: mtran - 10/02/07

QC/Prep Date: 9/28/2007

ParameterResultDFPQLRUnitsTPH as DieselND150 $\mu g/L$

Surrogate for Blank % Recovery Control Limits n-Hexacosane 81.2 50 - 150

LCS / LCSD - Liquid - TPH-Extractable: EPA 3510C / EPA 8015B(M)

QC Batch ID: WD070928B Reviewed by: mtran - 10/02/07

QC/Prep Date: 9/28/2007

LCS

Parameter Method Blank Spike Amt SpikeResult Units % Recovery **Recovery Limits** 1040 45 - 140 TPH as Diesel < 50 1000 μg/L 104 TPH as Motor Oil <100 1000 852 μg/L 85.2 45 - 140

Surrogate% RecoveryControl Limitsn-Hexacosane88.850 - 150

LCSD

Parameter Method Blank Spike Amt SpikeResult % Recovery **RPD** RPD Limits Recovery Limits Units TPH as Diesel <50 1000 878 87.8 17 25.0 45 - 140 μg/L <100 45 - 140 TPH as Motor Oil 1000 914 7.1 25.0 μg/L 91.4

Surrogate % Recovery Control Limits n-Hexacosane 91.6 50 - 150

Entech Analytical Labs, Inc. Chain of Custody / Analysis Request 3334 Victor Court (408) 588-0200 Santa Clara, CA 95054 (408) 588-0201 - Fax **ELAP No. 2346** Invoice to: (If Different) Purchase Order No.: 46)512-1555 8757 Cairon Project No. / Name: 8757/Peralton Billing Address: (If Different) Mailing Address: 3730 Wissian St. Entech Order ID: **Turn Around Time** Circle Applicable ☐ Same Day D 1 Day Global ID: O 3 Dav **FDF** 4 Day O 5 Day Sample Information Remarks Entech Instructions Lab. Time No. Field Point Date Client ID -(11M COI MW-7 no2 mw-3 003 mw-4 3:38 006 NV06 Received by Relinguished by: Lab Use: 1 Lit Ambers each NP 3 vone each Cultch Relinquished by Relinguished by: Al, As, Sb, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, K, Si, Ag, Na, Se, Tl, Sn, Ti, Zn, V ☐ LUFT-5 RCRA-8 □ PPM-13 ☐ CAM-17 ☐ Plating If any N's. Explain: Lab Use: Shipment Method: Entech couner Samples: Iced (Ŷ/N Temperature: __ Appropriate Containers/Preservatives: (7/N Custody Seals? Y/N Seperate Receipt Log Y/N N A Labels match CoC? (Ŷ/N Headspace? Y/N)

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO_WELL FILE

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Title:

Groundwater -Level Monitoring Data,

9/25/07

Facility Global ID:

T0600191668

Facility Name:

DR OROBO OSAGIE

Submittal Date/Time: 10/4/2007 1:14:39 PM

Confirmation

7226015985

Number:

Back to Main Menu

Logged in as GGTR (AUTH RP)

CONTACT SITE ADMINISTRATOR.

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

Your EDF file has been successfully uploaded!

Confirmation Number: 6132786750

Date/Time of Submittal: 10/4/2007 1:12:36 PM

Facility Global ID: T0600191668

Facility Name: DR OROBO OSAGIE

Submittal Title: 57359:3Q07 Groundwater Analytical Data (9/25/07)

Submittal Type: Additional Information Report

Click here to view the detections report for this upload.

DR OROBO OSAGIE 1532 PERALTA		CO BAY RWQCB (REGION 2	
OAKLAND, CA 94607		ead agency) - Case #: RO0000 UNTY LOP - (BC)	<u>)117</u>
CONF# TITLE			QUARTER
6132786750 57359:30	207 Groundwater Ar	nalytical Data (9/25/07)	Q3 2007
SUBMITTED BY Brent Wheeler	<u>SUBMIT DATE</u> 10/4/2007	<u>STATUS</u> PENDING REVIEW	
SAMPLE DETECTIONS	REPORT		
# FIELD POINTS SAMPLE	D		6
# FIELD POINTS WITH D			5
# FIELD POINTS WITH W	ATER SAMPLE DETE	CTIONS ABOVE MCL	4
SAMPLE MATRIX TYPES			WATER
METHOD QA/QC RE	PORT		
METHODS USED		8260TPH,CATPH	-D,SW8260B
TESTED FOR REQUIRED A	ANALYTES?		N
MISSING PARAMETERS	S NOT TESTED:		
- CATPH-D REQUIRES			
- CATPH-D REQUIRES			
- SW8260B REQUIRES			5.1
LAB NOTE DATA QUALIF	ERS		N
the state of the s			
QA/QC FOR 8021/		MPLES	
TECHNICAL HOLDING TI			0
METHOD HOLDING TIME			0
LAB BLANK DETECTIONS		DETECTION LIMIT	0
LAB BLANK DETECTIONS			0
	THE 8021/8260 SER	IES INCLUDE THE FOLLOWING	
- LAB METHOD BLANK			Y
- MATRIX SPIKE			N

- MATRIX SPIKE DUPLICAT	T C		N		
- BLANK SPIKE					
- SURROGATE SPIKE			Y		
WATER SAMPLES FOR 8	3021/8260 SERIES				
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%					
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%					
SURROGATE SPIKES % RECOVERY BETWEEN 85-115%					
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%					
SOIL SAMPLES FOR 802	1/8260 SERIES				
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) % RECOVERY BETWEEN 65-135%					
MATRIX SPIKE / MATRIX SPIKE DUPLICATE(S) RPD LESS THAN 30%					
SURROGATE SPIKES % RECOVERY BETWEEN 70-125%					
BLANK SPIKE / BLANK SPIKE DUPLICATES % RECOVERY BETWEEN 70-130%					
	and the second second				
FIELD QC SAMPLES					
<u>SAMPLE</u>	COLLECTED	<u>DETECTIONS ></u>	DETECTIONS > REPDL		
QCTB SAMPLES	N	0	0		
QCEB SAMPLES	N	0	0		
QCAB SAMPLES	N	O			

Logged in as GGTR (AUTH_RP)

CONTACT SITE ADMINISTRATOR.

Electronic Submittal Information

Main Menu | View/Add Facilities | Upload EDD | Check EDD

UPLOADING A GEO REPORT FILE

YOUR DOCUMENT UPLOAD WAS SUCCESSFUL!

Facility Name:

DR OROBO OSAGIE

Global ID:

T0600191668

Title:

Groundwater Monitoring Report

-3Q07

Document Type:

Monitoring Report - Quarterly

Submittal Type:

GEO_REPORT

Submittal Date/Time: 10/22/2007 8:52:16 AM

Confirmation

6442828118

Number:

Click here to view the document.

Back to Main Menu

Logged in as GGTR (AUTH_RP)

CONTACT SITE ADMINISTRATOR.