

99 MAR | | PM 2: 42

March 8, 1999 Project 20805-123.005

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Re: Quarterly Groundwater Monitoring Results and Remediation System Performance Evaluation Report, Fourth Quarter 1998, for ARCO Service Station No. 2035, located at 1001 San Pablo Avenue, Albany, California

Dear Mr. Supple:

Pinnacle Environmental Solutions, a division of EMCON (Pinnacle), is submitting the attached report which presents the results of the fourth quarter 1998 groundwater monitoring program at ARCO Products Company (ARCO) Service Station No. 2035, located at 1001 San Pablo Avenue, Albany, California. Operation and performance data for the site's soil-vapor extraction system (SVE) and groundwater extraction remediation systems are also presented. The monitoring program complies with the Alameda County Health Care Services Agency regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, results should not be construed as a guarantee of the absence of such conditions at the site, but rather as the product of the scope and limitations of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

Pinnacle

Glen VanderVeen Project Manager Valli Voruganti, P.E.

Project Engineer

Attachment: Quarterly Groundwater Monitoring Report, Fourth Quarter 1998

cc: Barney Chan, ACHCSA

Date: March 8, 1999

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.:	2035	Address:	1001 San Pablo Avenue, Albany, California	
	Pinnacl	e Project No.:		
ARCO En	vironmental Engine	er/Phone No.:	Paul Supple /(925) 299-8891	
	acle Project Manage	er/Phone No.:		140-5800
Pi	rimary Agency/Regu	ulatory ID No.:	ACHCSA /Barney Chan	

WORK PERFORMED THIS QUARTER (FOURTH - 1998):

- 1. Prepared and submitted quarterly groundwater monitoring report for third quarter 1998.
- 2. Performed quarterly groundwater monitoring and sampling for fourth quarter 1998.
- Continued bubbling air into well RW-1 to introduce dissolved oxygen into the groundwater, thereby enhancing biodegradation of petroleum hydrocarbon in groundwater in the vicinity of the well.

4. Operated soil vapor extraction system (SVE) through November 10, 1998, when it was shut down due to low influent concentrations.

Lettis Correct? I though Sue was sand down in 1996

WORK PROPOSED FOR NEXT QUARTER (FIRST - 1999):

9/- 10/98 33days, 75#5

- 1. Prepare and submit quarterly groundwater monitoring report for fourth quarter 1998.
- 2. Perform quarterly groundwater monitoring and sampling for first quarter 1999.
- 3. Operate SVE system if hydrocarbon concentrations in extracted vapor warrant.
- 4. Continue bubbling air into well RW-1.

QUARTERLY MONITORING:

Current Phase of Project:	Maintenance of Remediation Systems
	SVE and Enhanced Bioremediation
Frequency of Sampling:	Annual (First Quarter): MW-5
	Quarterly: MW-1 through MW-4, MW-6, RW-1
Frequency of Monitoring:	Quarterly (groundwater), Monthly (SVE)
Is Floating Product (FP) Present On-site:	☐ Yes ☒ No
Cumulative FP Recovered to Date	27.9 gallons, Wells AS-1, AS-2, RW-1, VW-1, VW-2, and VW-7
FP Recovered This Quarter:	None
Bulk Soil Removed to Date :	605 cubic yards of TPH impacted soil
Bulk Soil Removed This Quarter:	None
Water Wells or Surface Waters,	
within 2000 ft., impacted by site:	None
Current Remediation Techniques:	SVE, and Bubbling air in RW-1
Average Depth to Groundwater:	11.2 feet
Groundwater Flow Direction and Gradient (Average):	0.02 ft/ft toward west

SVE QUARTERLY OPERATION AND PERFORMANCE:

Equipment Inventory:	Therm Tech Model VAC-10 Thermal/Catalytic Oxidizer
Operating Mode:	Catalytic Oxidation
BAAQMD Permit #:	10931
TPH Conc. End of Period (lab):	32 mg/m³ on 11/10/98
Benzene Conc. End of Period (lab):	<0.4 mg/m ³
SVE Flowrate End of Period:	99.6 cfm
Total HC Recovered This Period:	82.39 pounds
Total HC Recovered to Date:	3099.1 pounds
Utility Usage	· ·
Electric (KWH):	2529 KWH
Gas (Therms):	451 Therm
Operating Hours This Period (SVE):	1324.67 hours
Operating Hours to Date (SVE):	8536.00 hours
Percent Operational (SVE):	66% until 11/10/98
Operating Hours This Period (GWE):	0.0 hours
Percent Operational (GWE):	0.0%
Unit Maintenance:	Routine monthly maintenance
Number of Auto Shut Downs:	0
Destruction Efficiency Permit	
Requirement:	90% - 97%
Percent TPH Conversion:	92.3% in Oct. 1998 and 37.5% in Nov. 1998, respectively
Average Stack Temperature:	724 F
Average SVE Source Flow:	99.4 scfm
Average SVE Process Flow:	99.4 scfm
Average Source Vacuum:	20" wc

DISCUSSION:

Table 4 presents the extraction rate from the wellfield, the emission rate to the atmosphere, the destruction efficiency, and the cumulative TPHG mass removal. In calculating the emission rate to the atmosphere, the effluent concentration is assumed to be the method reporting limit if the analytical result was reported as non-detect (ND). Due to this assumption and the low influent concentrations, the destruction efficiency for November 1998 was calculated to be less than the permit requirement of 90%, and is not considered accurate. The emission rate to the atmosphere remains below the permit requirement of 0.05 lbs of Benzene per day.

ATTACHMENTS:

- Table 1 Historical Groundwater Elevation and Analytical Data,
 Petroleum Hydrocarbons and Their Constituents
- Table 2 Operational Uptime Information for the SVE System
- Table 3 Flow Rates and Analytical Results of Air Sample Analyses
- Table 4 Extraction and Emission Rates
- Figure 1 Groundwater Analytical Summary Map
- Figure 2 Groundwater Elevation Contour Map
- Appendix A Sampling and Analysis Procedures
- Appendix B Certified Analytical Reports and Chain-of-Custody Documentation
- Appendix C Field Data Sheets
- Appendix D Certified Analytical Reports and Chain-of-Custody Documentation for Soil-Vapor Extraction System

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluepe EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE · EPA 8020	MTBE EPA 8240	Oil and Grease SM 5520B&F	Oil and Grease	Oil and Grease SM 5520F	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	· ft/ft		μ ε/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	μg/L	µg/L
			(2)	35.20	ND	NW	0.037	03-24-95	8800	3600	<50	62	99				•••			
MW-1	03-24-95	41.41	6.21			WNW	0.013	05-24-95	4800	2000	<20	52	<20						• •	
MW-1	05-24-95	41.41	9,37	32.04	ND	SW	0.013	08-22-95	780	310	2.5	12	<2.5	14						
MW-I	08-22-95	41.41	10.30	31.11	ND		0.012	11-09-95	58	14	<0.5	<0.5	<0.5							
MW-1	11-09-95	41,41	12.25	29.16	ND	wsw	0.009	02-27-96	2700	930	12	18	32	51						
MW-1	02-27-96	41.41	9.08	32.33	ND	SW			2700	1000	<10	22	<10	<60						
MW-I	04-22-96	41.41	9.11	32,30	ND	wsw	0.014	04-22-96		52	<0.5	0.9	<0.5	22						
MW-1	08-15- 96	41.41	10.37	31.04	ND	SW	0.011	08-15-96	300				1	25						
MW-1	12-10-96	41.41	8.79	32.62	ND	wsw	0.023	12-10-96	270	63	0.7	<0.5	7	25 56						
MW-I	03-27-97	41.41	9.80	31.61	ND	wsw	0.026	03-27-97	1500	610	45	15								
MW-L	05-22-97	41.41	9.65	31.76	ND	wsw	0.024	05-22-97	110	5.5	<0.5	<0.5	0.7	10			• •			
MW-1	09-04-97	41.41	10.22	31.19	ND	W	0.019	09-04-97	180	40	<0.5	1.2	0.5	26			• •		• •	
MW-1	11-03-97	41,41	10.68	30.73	ND	sw	0.038	11-03-97	83	8	<0.5	<0.5	<0.5	13	• -			• •		••
MW-1	02-20-98	41.41	6.92	34.49	ND	w	0.031	02-20-98	1800	540	7	27	31	46		••	• •		• •	
MW-1	05-18-98	41.41	9.28	32.13	ND	w	0.02	05-18-98	4500	1300	20	57	20	<60						
		41.41	10.05	31.36	ND	w	0.02	08-21-98	530	110	ರ	<5	చ	400						
MW-1	08-20-98			30.99	ND	W	0.02	10-20-98	66	9.1	<0.5	<0.5	<0.5	8		• -				
: MW-I	10-20-98	41.41	10.42	30.39	14ID	"	0.02	10-10-70												
i				22.47	b.TTS	NW	0.037	03-24-95	<50	<0.5	<0.5	<0.5	<0.5							• •
MW-2	03-24-95	40.38	6.96	33.42	ND	WNW	0.037	05-24-95	Not sample					st and third	quarters					
MW-2	05-24-95	40.38	10.02	30.36	ND			08-22-95	.10t samptor	<0.5	-0.5 -0.5	<0.5	<0.5	3						
MW-2	08-22-95	40.38	10.87	29.51	ND	SW	0.012	11-09-95	Not sumpled					_	onarters					
MW-2	11-09-95	40.38	13.12	27.26	ND	WSW	0.01	02-27-96	<20	.: wen sann <0.5	γιου seιωι-« <0.5	<0.5	<0.5	্র						
MW-2	02-27-96	40.38	10.25	30.13	ND	SW	0.009		Not sample:						miatrers					
MW-2	04-22-96	40.38	9.98	30.40	ND	wsw	0.014	04-22-96	Not sample: <50	(0.5	vieu senn- <0.5	<0.5	<0.5	.ac and mad	domesso					
MW-2	08-15-96	40.38	11.10	29,28	ND	sw	0.011	08-15-96						or and third	au ortere					
MW-2	12 10-96	40.38	10.00	30.38	ND	wsw	0.023	12-10-96	Not sample:			umnuaniy, o. <0.5	urung unciu <0.5	12	damers					
MW-2	03-27-97	40.38	10.38	30.00	ND	wsw	0.026	03-27-97	<00	<0.5						• •				
MW-2	05-22-97	40.38	10.65	29.73	ND	wsw	0.024	05-22-97	Not sample						quarters					
MW-2	09-04-97	40.38	10.87	29.51	ND	W	0.019	09-04-97	<50	<0.5	<0.5	<0.5	<0.5	19						_
MW-2	11-03-97	40.38	11.25	29.13	ND	SW	0.038	11-03-97	<50	<0.5	<0.5	<0.5	<0.5	18			• •	•-		
MW-2	02-20-98	40.38	7.69	32.69	ND	w	0.031	02-20-98	<50	0.5	<0.5	<0.5	<0.5	12	• •	•••		• •		••
MW-2	05-18-98	40.38	9.88	30.50	ND	W	0.02	05-18-98	<50	<0.5	<0.5	<0.5	<0.5	10	• •	••		- 4	•-	
MW-2	08-20-98	40.38	10.62	29.76	ND	w	0.02	08-21-98	<50	<0.5	<0.5	<0.5	<0.5	3		- •			• •	
MW-2	10-20-98	40.38	11.00	29.38	ND	w	0.02	10-20-98	<50	<0.5	<0.5	<0.5	<0.5	31		••	*-			
	10 20 /0																			

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydrautic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes . EPA 8020	MTBE . EPA 8020	MTBE PA 8240	Oil and Grease SM 5520B&F	Oil and Grease SM 5520C	Oil and Grease SM 5520F	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L.	μ g/ L	μg/L	μg/L	μ g/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	μ g/L
											-0.6	2.4	<0.5						<500	
MW-3	03-24-95	41.44	7.29	34.15	ND	NW	0.037	03-24-95	51	0.8	<0.5								<500	
MW-3	05-24-95	41.44	9.53	31.91	ND	WNW	0.013	05-24-95	ර0	<0.5	<0.5	<0.5	<0.5	70					<500	
MW-3	08-22-95	41.44	11.19	30.25	ND	sw	0.012	08-22-95	<50	<0.5	<0.5	<0.5	c0.5	79					600	
MW-3	11-09-95	41,44	12.77	28.67	ND	WSW	0.01	11-09-95	୍ <50	<0.5	<0.5	<0.5	<0.5						<0.5	
MW-3	02-27-96	41.44	9,41	32.03	ND	SW	0.009	02-27-96	120	3.6	<0.5	2.2	3.7	90	• •					••
MW-3	04-22-96	41.44	9.63	31.81	ND	wsw	0.014	04-22-96	<50	<0.5	<0.5	<0.5	<0.5	90						
MW-3	08-15-96	41.44	11.12	30.32	ND	sw	0.011	08-15-96	<50	<0.5	<0.5	<0.5	<0.5	54					• •	
MW-3	12-10-96	41.44	10.34	31.10	ND	wsw	0.023	12-10-96	71	<0.5	<0.5	<0.5	<0.5	130				••		
MW-3	Q3-27-97	41.44	10.28	31.16	ND	wsw	0.026	03-27-97	<100	∢l	<1	<1	<1	170		• •		• -		
MW-3	05-22-97	41.44	10.40	31.04	ND	wsw	0.024	05-22-97	<100	<1	<1	<l< td=""><td><1</td><td>95</td><td></td><td></td><td></td><td>• •</td><td>• •</td><td></td></l<>	<1	95				• •	• •	
MW-3	09-04-97	41.44	10.75	30.69	ND	w	0.019	09-04-97	<50	< 0.5	<0.5	<0.5	<0.5	37		• •				
MW-3	11-03-97	41.44	11.44	30.00	ND	sw	0.038	11-03-97	<200	<2	-2	<2	<2	130					- +	• •
MW-3	02-20-98	41.44	7.48	33.96	ND	w	0.031	02-20-98	<200	<2	5	<2	8	140					< 0.5	
MW-3	05-18-98	41,44	9.87	31.57	ND	w	0.02	05-18-98	<100	<1	<1	<1	<1	150				• •	<0.5	
	i		10.72	30.72	ND	w	0.02	08-21-98	<200	<2	. 2	<2	<2	210			• -		<0.5	
MW-3	08-20-98	41.44	11.30	30.72	ND	w	0.02	10-20-98	<200	•	<2	<2	<2	270					<0.5	
MW-3	10-20-98	41.44	11.30	30,14	ND	**	0.02	10-20-30	-200	_	_		_							
	1 (.	LDE/	0.037	03-24-95	<50	<0.5	√0. 5	<0.5	<0.5							
MW-4	03-24-95	40.33	5.92	34.41	ND	NW		05-24-95	රා ර0	<0.5 <0.5	<0.5	<0.5	<0.5		• •					
MW-4	05-24-95	40.33	9.23	31.10	ND	WNW	0.013		- 50 - 50	<0.5	<0.5	<0.5	<0.5	99						
MW-4	08-22-95	40.33	10.61	29.72	ND	SW	0.012	08-22-95	<50	<0.5	<0.5	<0.5	<0.5		89					
MW-4	11-09-95	40.33	11.97	28.36	ND	WSW	0.01	11-09-95			<0.5	<0.5	<0.5	٠.						
MW-4	02-27-96	40.33	8.84	31,49	ND	SW	0.009	02-27-96	<50	0.8					• •	• •				
MW-4	04-22-96	40.33	9.15	31.18	ND	wsw	0.014	04-22-96	Not sample:											
MW-4	D8-15-96	40.33	10.35	29.98	ND	SW	0.011	08-15-96	Not sample											
MW-4	12-10-96	40.33	8.70	31.63	ND	wsw	0.023	12-10-96	Not sample:		•	-								
MW-4	03-27-97	40.33	9.75	30.58	ND	wsw	0.026	03-27-97	<5000	<50	⋖0	<50	<50	4200				••		
MW-4	05-22-97	40.33	9.91	30.42	ND	wsw	0.024	05-22-97	Not sample											
MW-4	09-04-97	40.33	10.25		ND	. w	0.019	09-04-97	Not sample	i: well sam	pled annua	lly, during	the first qua	LTCT						
MW-4	11-03-97	40.33	10.79		ND	SW	0.038	11-03-97	<00	<0.5	<0.5	<0.5	<0.5	હ		••			••	• •
MW-4	02-20-98	40.33	6.78		ND	w	0.031	02-20-98	<2000	<20	<20	<20	<20	3300			• •			••
MW-4	05-18-98	40.33	9.26		ND	w	0.02	05-18-98	<50	<0.5	<0.5	<0.3	<0.5	હ		• •	• •	• • •	• •	• • •
MW-4	08-20-98	40.33	10.10		ND	w	0.02	08-21-98	<50	<0.5	<0.5	<0.5	<0.5	9		• •	• •		• •	• •
	1	40.33	10.10		ND	w	0.02		4 0	<0.5	<0.5	<0.5	<0.5	17		- 4				
MW-4	10-20-98	40.33	10.43	29.90	ND	**	0.04	10-20-70	-50	7010										

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

#												****	****			******					
	Well Designation	Waier Level Field Date	of Casing ation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	<u> </u>	: Sample Date	TPHG LUFT Method	# 020 # 020	920	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oil and Grease SM 5520B&F	and Grease 5520C	and Grease 5520F	TRPH EPA 418.1	TPHD LUFT Method
!	Ě	Water Lev Field Date	Top of Ca Elevation	Ę	Groundwa Elevation	Ploating Pr Thickness	ğ ≱ D Q	Hydraulic Gradient	Water ! Field D	TPHG LUFT)	Benzene EPA 8020	Toluene EPA 8020	Ethylbenz EPA 8020	Total Xyk EPA 8020	TBF	MTBE EPA 82	E 55	il and A 552(11 Bund 14 552/	TRPH EPA 41	분토
	≥	¥ ₹	Top Elev	呂	5 m	₽ ₽	5 2	£β	莱克	日司	2 1	£ 55	귤ద	ដូដ	Σä	医菌	õõ	SM	S S		= =
:			fi-M\$L	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	μ g/L	μg/L	μ g/ 1.	μg/L	μ g/L	μg/L	μ g/L	μ g /L
*	MW-5	03-24-95	41.84	6.23	35.61	ND	NW	0.037	03-24-95	ර0	<0.5	<0.5	<0.5	<0.5							• •
-040	MW-5	05-24-95	41.84	9.61	32.23	ND	WNW	0.013	05-24-95	Not sampled	e well samp	led annuall	y, during t	he first quari	er						
3	MW-5	08-22-95	41.84	11.12	30.72	ND	SW	0.012	08-22-95	Not sampled	i: well samp	led annuall	y, during t	he first quart	er						
-	MW-5	11-09-95	41.84	12.52	29.32	ND	WSW	0.01	11-09-95	Not sampled	i; well samp	led annuall	y, during d	he first quart	ier .						
ĺ	MW-5	02-27-96	41.84	9.52	32.32	ND	sw	0.009	02-27-96	ර0	<0.5	<0.5	<0.5	<0.5	<3	• •	•• •		• •	••	
	MW-5	04-22-96	41.84	9.44	32.40	ND	wsw	0.014	04-22-96	Not sampled											
į	MW-5	08-15-96	41.84	10.83	31.01	ND	sw	0.011	08-15-96	Not sampled	l: well samp	led annuall	y, during t	he first quar	ter						
1	MW-5	12-10-96	41.84	9.20	32.64	ND	WSW	0.023	12-10-96	Not sampled	l: well samp	iled annuall	y, during t	he first quan	ier						
-	MW-5	03-27-97	41.84	10,10	31,74	ND	wsw	0.026	03-27-97	<50	<0.5	<0.5	<0.5	<0.5	હ			••		• •	• •
- }	MW-5	05-22-97	41.84	10.28	31.56	ND	wsw	0.024	05-22-97	Not sample:	-		-								
1	MW-5	09-04-97	41.84	10.73	31.11	ND	W	0.019	09-04-97		•			he first quar							
	MW-5	11-03-97	41,84	11.23	30.61	ND	SW	0.038	11-03-97	Not sample:	-			_							
Í	MW-5	02-20-98	41.84	6.67	35.17	ND	w	0.031	02-20-98	⊲ 0	<0.5	<0.5	<0.5	<0.5	ব	••					
	MW-5	05-18-98	41.84	9.61	32.23	ND	w	0.02	05-18-98	Not sample:			-	-							
	MW-5	08-20-98	41,84	10.58	31.26	ND	w	0.02	08-21-98	Not sampled			-	-							
	MW-5	10-20-98	41.84	10.66	31.18	ND	W	0.02	10-20-98	Not sample:	l; well sum	oled annuall	ly, during t	the first quar	ter						
!	MW-6	03-24-95	40.13	9.03	31.10	ND	NW	0.037	03-24-95	<50	<0.5	<0.5	<0.5	<0.5	. ••			• •	••		• •
	MW-6	05-24-95	40.13	12.45	27.68	ND	WNW	0.013	05-24-95	Not sample	_										
	MW-6	08-22-95	40.13	13.32	26.81	ND	SW	0.012	08-22-95			•		the first quar							
j	MW-6	11-09-95	40.13	14.13	26.00	ND	wsw	0.01	11-09-95	•			iy, awang (<0.5	the first quad	ver <3						
	MW-6	02-27-96	40.13	11.86	28.27	ND	SW	0.009	02-27-96	<50	<0.5	<0.5		<0.5 the first quar				••			
-	MW-6	04-22-96	40.13	12,35	27.78	ND	WSW	0.014	04-22-96 08-15-96	•		•	-	use rust quar the first quar							
H	MW-6	08-15-96	40.13	13.18	26.95	ND	\$W	0.011	12-10-96				•	the first quar							
	MW-6	12-10-96	40.13	11.94	28.19	ND	WSW	0.023	03-27-97	≥ (20)	u: wen sam; <0.5	< 0.5	.y, uuruig <0.5	unc mist quan <0.5	<3						
ıÌ	MW-6	03-27-97	40.13	13.10	27.03	ND	wsw	0.026						the first quar	-						
	MW-6	05-22-97	40.13	13.00	27.13	ND	wsw	0.024	05-22-97			•		the first quar							
1	MW-6	09-04-97	40.13	13.30	26.83	ND	W	0.019	09-04-97 11-03-97	Not sample	u: wen sam 20.5	opieca autriuau <0.5	ıy, uuring ` <0,5	une ruisiqua. <0.5	19						
1	MW-6	11-03-97	40.13	13.42	26.71	ND	S₩	0.038	02-20-98	<100	جربه ا>	<0.5 <1	<0.5 <1	<0.5 <1	95						
	MW-6	02-20-98	40.13	10.57	29.56	ND	W W	0.031	02-20-98	<100	</td <td><1 <1</td> <td><1</td> <td><l< td=""><td>180</td><td></td><td></td><td></td><td></td><td></td><td></td></l<></td>	<1 <1	<1	<l< td=""><td>180</td><td></td><td></td><td></td><td></td><td></td><td></td></l<>	180						
1	MW-6	05-18-98	40.13	12.64	27.49	ND	w	0.02	08-21-98	<100	</th <th><1</th> <th><1</th> <th><l< th=""><th>180</th><th></th><th></th><th></th><th></th><th></th><th></th></l<></th>	<1	<1	<l< th=""><th>180</th><th></th><th></th><th></th><th></th><th></th><th></th></l<>	180						
	MW-6	08-20-98	40.13	13.13	27.00	ND	w	0.02	10-20-98	<100	<i< td=""><td>. <l< td=""><td><1 <1</td><td><i< td=""><td>180</td><td></td><td></td><td></td><td></td><td></td><td></td></i<></td></l<></td></i<>	. <l< td=""><td><1 <1</td><td><i< td=""><td>180</td><td></td><td></td><td></td><td></td><td></td><td></td></i<></td></l<>	<1 <1	<i< td=""><td>180</td><td></td><td></td><td></td><td></td><td></td><td></td></i<>	180						
	MW-6	10-20-98	40.13	13,48	26.65	ND	W	0.02	10-20-98	<100	<1	. «1	<1	S1	100			٠.			

Table 1
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

															-					
Well Designation	Water Level Field Date	Top of Casing	pag. Depth to Water	Groundwater GEvation	Floating Product	Groundwater Plow Direction	Hydraulic 33 Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene S EPA 8020	Toluene	Ethylbenzene EPA 8020	Total Xylenes	자 MTBE 주 EPA 8020	MTBE EPA 8240	Oil and Grease SM 5520B&F	Oil and Grease SM 5520C	Oil and Grease SM 5520F	TRPH	TPHD
RW-1	03-24-95	40.33	9.32	31.02**	0.01	NW	0.037	03-24-95	11000	560	660	150	1700							••
RW-1	05-24-95	40.33	9.75		0.03	WNW	0.013	05-24-95	Not sampled	: well contr	sined floatis	ng product								
RW-1	08-22-95	40.33	10.86	29.48**	0.02	SW	0.012	08-22-95	Not sampled											
RW-I	11-09-95	40.33	20.61	19.72	ND	wsw	0.01	11-09-95	1600	79	46	13	240						• •	
4	1 7		16.56	23.77	ND	SW	0.009	02-27-96	210	44	7.5	2.5	24	29						
RW-I	02-27-96	40.33	9.65		ND	wsw	0.014	04-22-96	36000	7400	3700	580	3400	<300						
RW-1	04-22-96	40.33		30.68	ND	SW	0.014	08-15-96	1800	31	38	15	150	<30		+ -				
RW-I	08-15-96	40.33	10.60	29.73		-		12-10-96	25000	1900	1000	330	3200	<100						
RW-1	12-10-96	40.33	8.72	31.61	ND	WSW	0.023			1900	59	95	240	480						
RW-1	03-27-97	40.33	10.33	30.00	ND	wsw	0.026	03-27-97	7200			45	340	<60						
RW-1	05-22-97	40.33	10.10	30.23	ND	wsw	0.024	05-22-97	3000	630	84									
RW-L	09-04-97	40.33	10.42	29.91	ND	W	0.019	09-04-97	7100	120	55	14	160	<60						
RW-I	11-03-97	40.33	9.10	31.23	ND	SW	0.038	11-03-97	<200	14	19	3	19	140		••				
RW-1	02-20-98	40.33	7.49	32.84	ND	W	0.031	02-20-98	3800	1000	85	64	220	950	• •			* -		
RW-1	05-18-98	40.33	8.90	31.43	ND	w	0.02	05-18-98	<200	45	<2	2	4	220			• •			• •
RW-1	08-20-98	40.33	11.06	29.27	ND	w	0.02	08-21-98	480	200	- 2	<2	30	180	• •	• •			*-	• •
RW-1	10-20-98	40.33	11.12		ND	W	0.02	10-20-98	110	36	2.9	<0.5	4.1	5	••					

Table 1 Historical Groundwater Elevation and Analytical Data Petroleum Hydrocarbons and Their Constituents 1995 - Present*

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Melbod	Benzenc EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE . EPA 8240	Oil and Grease SM 5520B&F	Oil and Grease SM 5520C	Oil and Grease SM 5520F	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μ g/ L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μ g/L	μ g/L	μg/L	µg/L

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

EPA: United States Environmental Protection Agency

TRPH: total recoverable petroleum hydrocarbons

MTBE: Methyl tert-butyl ether

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

SM: standard method

ft/ft: foot per foot

ug/L: micrograms per liter

mg/L: milligrams per liter

ND: none detected

NR: not reported; data not available

W: west

--: not analyzed or not applicable

*: For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 2035, Albany, California, (EMCON, March 25, 1996).

**: [corrected elevation (Z)] = Z + (h * 0.73); where Z = measured elevation, h = floating product thickness, 0.73 = density ratio of oil to water

Table 2
Operational Uptime Information for the Soil Vapor Extraction System (1997 - 1998)

11/61/97 - 11/10/97

Date	Hr-Meter	Operating Hours	No. of Day	s Between S	Sampling Dates	Percent	Cumulative D	ays (begin 12/93)	
End	Arrival	To Date	Total Days	Uptime	Days Down	Uptime	Total Days	Total Uptime	-
11/01/97		6873.20					1425	335	L
12/01/97	11484.46	7211.10	30	14	16	47%	1455	349	7
01/27/98	11484.46	7211.10	57	0	57	0%	1512	349	P
08/12/98	11484.46	7211.10	197	0	197	0%	1709	349	
09/02/98	11484.69	7211.33	21	0	21	0%	1730	349	
10/19/98	12279.71	8006.35	47	33	14	70%	1777	382	H
11/10/98	12809.36	8536.00	22	22	0	100%	1799	404	

69

18%

WC\S:\ARCO\2035\QTRLY\2035Q498.XLS\uh:1 (2035OM.XLS)

Table 3 Flow Rates and Analytical Results of Air Sample Analyses (1997 - 1998)

ARCO Service Station No. 2035 1001 San Pablo Avenue, Albany, California

Date	Vacuum	Velocity	Flowrate	Sample		А	nalyses (m	g/m³)	
End	("WC)	(fpm)	(cfm)	Location	TPHG	Benzene	Toluene	Ethylbenzene	Xylene
12/01/97		, , , , ,	221.4	Influent	640	2			
				Effluent	34	<0.4			
01/27/98	NA	NA	NA	Influent	NA	NA			
				Effluent	NA	NA			
08/12/98	NA	NA	NA	Influent	NA	NA			
				Effluent	NA	NA			
09/02/98	20	1050	87.1	Influent	2500	<4	<4	7	11
				Effluent	37	<0.4	<0.4	0.5	<0.9
10/19/98	20	1200	99.6	Influent	260	<0.4	2.7	<0.5	<0.9
		1		Effluent	<20	<0.4	<0.4	<0.5	<0.9
11/10/98	20	1200	99.6	Influent	32	<0.4	0.5	<0.4	<0.9
				Effluent	<20	<0.4	<0.4	<0.5	<0.9
			[·

WC = inches of water column.

Analytical results in milligrams per cubic meter

Table 4 Extraction and Emission Rates (1997 - 1998)

ARCO Service Station No. 2035 1001 San Pablo Avenue, Albany, California

	Date		Rate from lbs/day)		s Rate to re (lbs/day)		n Removal	Cumulati Remov		
l	End	TPHG	Benzene	ТРНС	Benzene	TPHG	Benzene	Period	Total	
	12/01/97	12.58	0.04	<0.6685	<0.0079	94.7	80.0	177.15	3016 <i>.</i> 5	
	01/27/98	NA	NA	NA	NA	NA	NA	0.00	3016.5	
۱	08/12/98	NA	NA	NA	NA	NA	NA	0.00	3016.5	L
	09/02/98	19.34	0.03	<0.2863	<0.0031	98.5	90.0	0.19	3016.7	
	10/19/98	2.30	0.0035	<0.1768	<0.0035	92.3	0.0	76.15	3092.8	
	11/10/98	0.28	0.0035	<0.1768	<0.0035	37.5	0.0	6.24	3099.1	

Air Permit Limits

DRE shall be at least 98.5% when: influent ≥ 2000 ppmV (measured as C6)

DRE shall be at least 97% when: 2000 ppmV > influent ≥ 200 ppmV (measured as C6)

DRE shall be at least 90% for influent < 200 ppmV (measured as C6)

Daily benzene emissions shall not exceed 0.05 lbs.

Sample Calculations

Ext. Rate from =

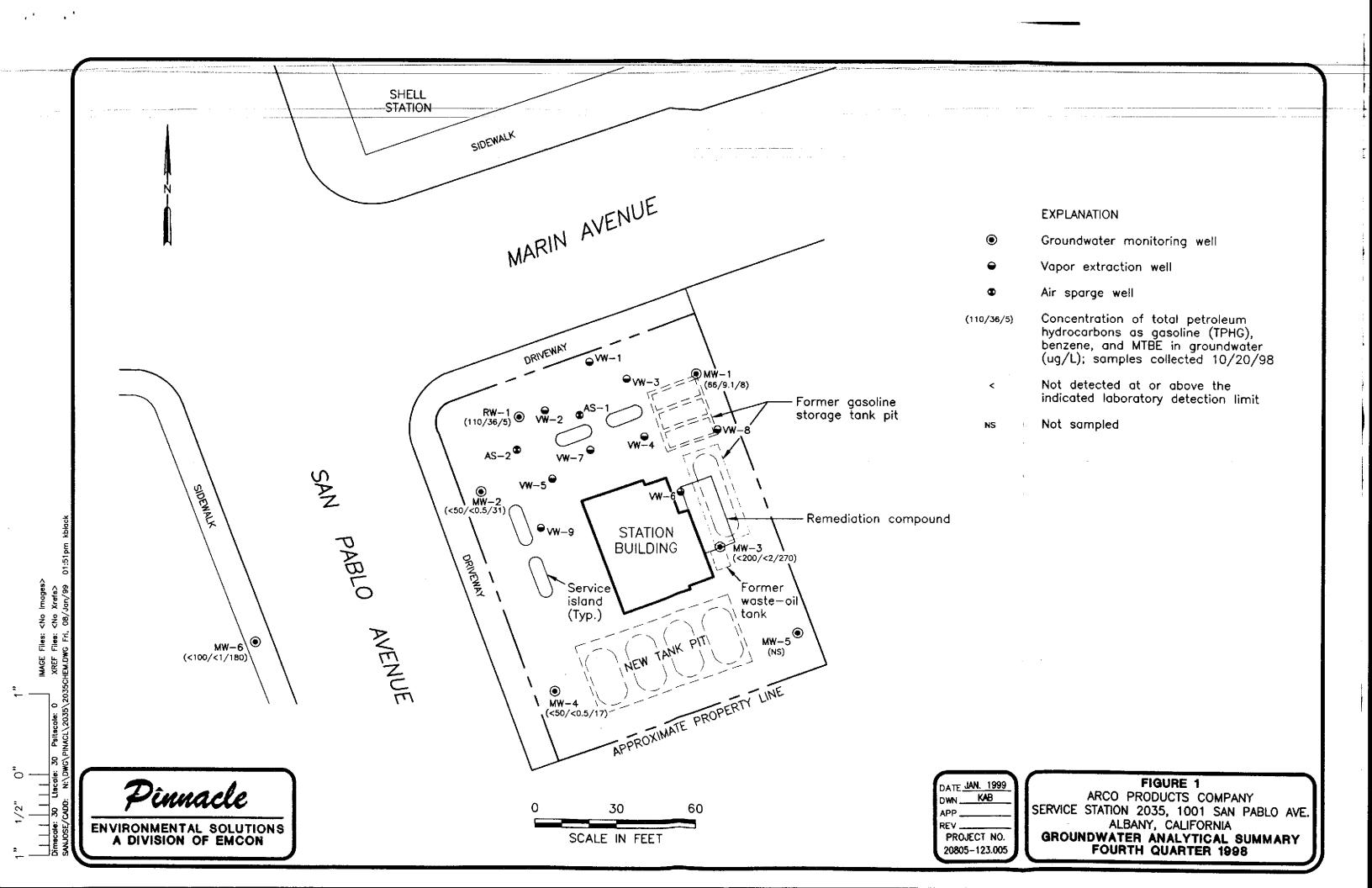
70 <u>cuft x</u> 3100 <u>mg</u> min cumeter

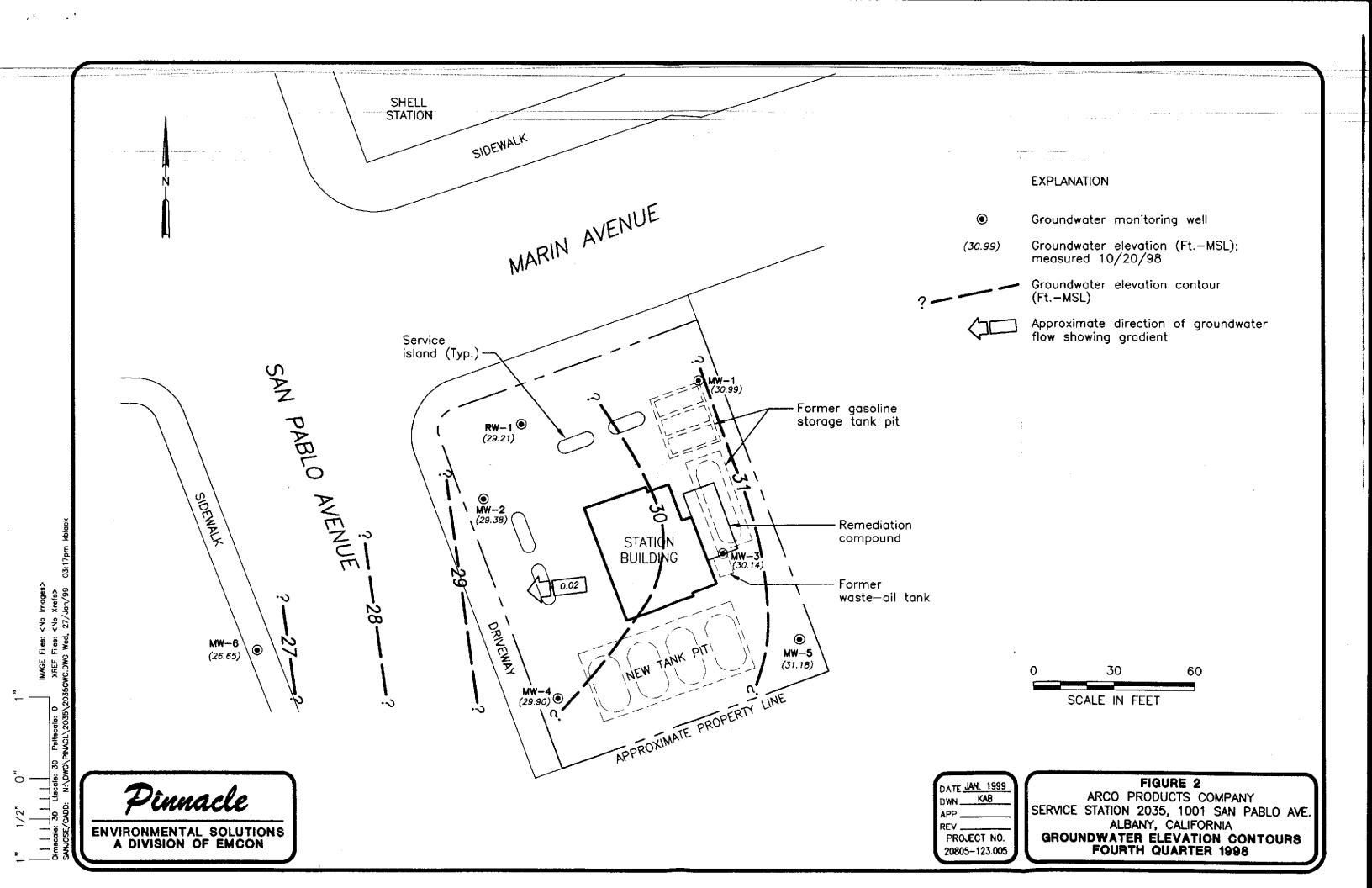
3100 mg x 0.028 <u>cumeter</u> x

<u>lb</u> x 1,440 <u>min</u>

454000 mg

Wells (lbs/day)


≠ 19.27 <u>lbs/day</u>


Dest. Removal =

 $19.27 - (<0.12) \times 100 = 99.35\%$

Efficiency, %

19.2

APPENDIX A SAMPLING AND ANALYSIS PROCEDURES

APPENDIX A

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved.

The following documents have been used as guidelines for developing these procedures:

- Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977
- Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, 3rd edition, November 1986
- Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982
- Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983
- Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989

Sample Collection

Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling.

Equipment Cleaning

Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with deionized water. During field sampling, equipment surfaces that were placed in the well or came into contact with groundwater during field sampling were steam cleaned with deionized water before the next well was purged or sampled.

Water Level, Floating Hydrocarbon, and Total Well Depth Measurements

Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness, and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline, and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated by being rinsed with deionized water or steam cleaned after each use. A bottom-filling, clear Teflon® bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water.

The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated by being rinsed with deionized water after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon.

Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form.

Well Purging

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol presented in Figure A-1. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

Groundwater purged from the monitoring wells was transported in a 500-gallon water trailer, 55-gallon drum, or a 325-gallon truck-mounted tank to EMCON's San Jose or Sacramento office location for temporary storage. EMCON arranged for transport and disposal of the purged groundwater through Integrated Waste Stream Management, Inc.

Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Figure A-2 shows an example of the water sample field data sheet on which field data are recorded. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed.

The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet.

Well Sampling

A Teflon bailer was the only equipment acceptable for well sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped.

When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the Teflon bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded.

Sample Preservation and Handling

The following section specifies sample containers, preservation methods, and sample handling procedures.

Sample Containers and Preservation

Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested.

Sample Handling

Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs until received by the laboratory. At the time of sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory.

Samples that required overnight storage prior to shipping to the laboratory were kept cool (4° C) in a refrigerator. The refrigerator was kept in a warehouse, which was locked when not occupied by an EMCON employee. A sample/refrigerator log was kept to record the date and time that samples were placed into and removed from the refrigerator.

Samples were transferred from EMCON to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from EMCON to laboratories performing the selected analyses routinely occurred within 24 hours of sample collection.

Sample Documentation

The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following:

- Water sample field data sheets to document sampling activities in the field
- Labels to identify individual samples
- Chain-of-custody record sheets for documenting possession and transfer of samples
- Laboratory analysis request sheets for documenting analyses to be performed

Field Logbook

In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected:

- Project number
- · Client's name
- Location
- Name of sampler
- Date and time
- Well accessibility and integrity
- Pertinent well data (e.g., casing diameter, depth to water, well depth)

- Calculated and actual purge volumes
- Purging equipment used
- Sampling equipment used
- Appearance of each sample (e.g., color, turbidity, sediment)
- Results of field analyses (temperature, pH, specific conductance)
- · General comments

The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator.

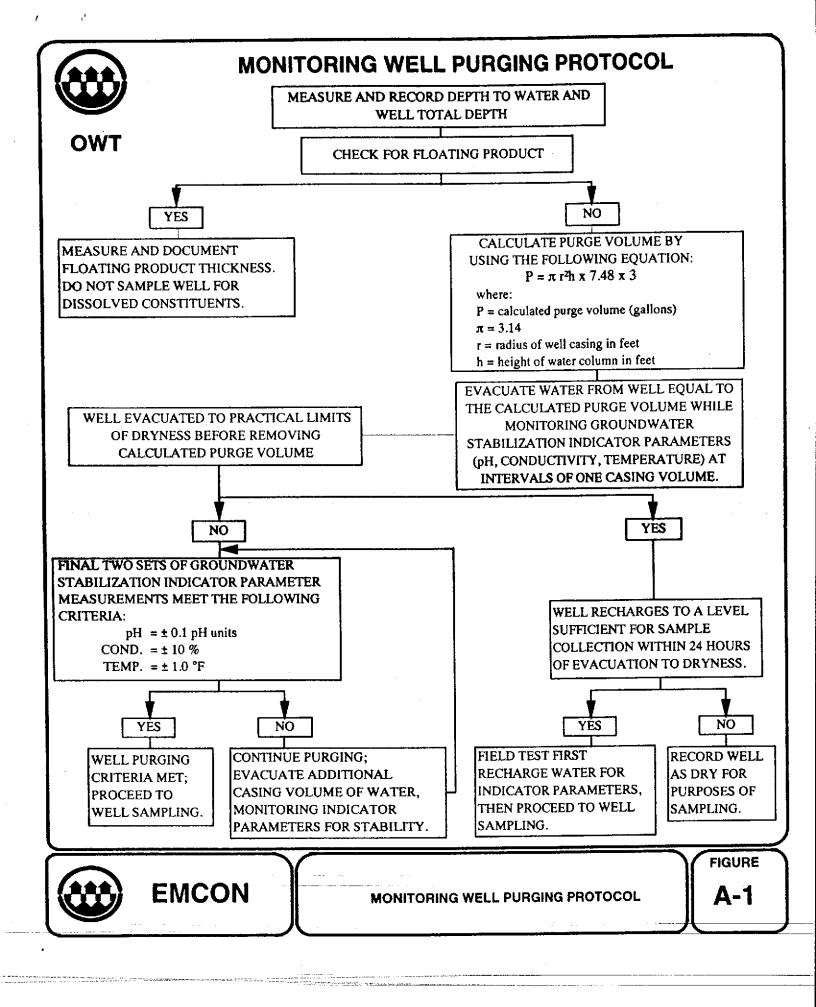
Labels

Sample labels contained the following information:

- Project number
- Sample number (i.e., well designation)
- Sample depth

- Sampler's initials
- Date and time of collection
- Type of preservation used (if any)

Sampling and Analysis Chain-of-Custody Record


The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to EMCON with the analytical results.

Groundwater Sampling and Analysis Request Form

A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information:

- Date scheduled
- Site-specific instructions
- Specific analytical parameters

- Well number
- Well specifications (expected total depth, depth of water, and product thickness)

WATER SAMPLE FIELD DATA SHEET SAMPLE ID: PROJECT NO : CLIENT NAME: PURGED BY : LOCATION: SAMPLED BY : Other____ Groundwater Surface Water ____ Leachate _____ TYPE: 4_____ 4.5_____ 6____ Other_____ CASING DIAMETER (inches): 2_____ 3____ VOLUME IN CASING (gal.): CASING ELEVATION (feet/MSL): CALCULATED PURGE (gal.): DEPTH OF WELL (feet): ACTUAL PURGE VOL. (gal.): DEPTH OF WATER (feet) : ___ END PURGE: DATE PURGED : SAMPLING TIME: DATE SAMPLED: E.C. TEMPERATURE TURBIDITY TIME рΗ TIME VOLUME (visuai/NTU) (2400 HR) (**°F**) (µmhos/cm@25°c) (2400 HR) (units) (gal.) ODOR:____ OTHER: (COBALT 0-100) (NTU 0-200) FIELD OC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): SAMPLING EOUIPMENT **PURGING EQUIPMENT** 2" Bladder Pump Bailer (Teflon) 2" Bladder Pump Bailer (Teflon) Bailer (Stainless Steel) Bailer (PVC) Bomb Sampler Centrifugal Pump _____Submersible Pump Dipper Submersible Pump Bailer (Stainless Steel) Well Wizard™ _____ Dedicated Dedicated Well Wizard Other: Other: WELL INTEGRITY: LOCK: _____ REMARKS: pH, E.C., Temp. Meter Calibration: Date: Time: Meter Serial No.: E.C. 1000 / pH 7 / pH 10 / pH 4 / Temperature °F SIGNATURE: _____ PAGE ____ OF ____

WATER SAMPLE FIELD DATA SHEET

FIGURE

Rev. 5/96

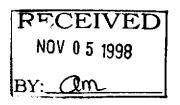
EMCON - SACRAMENTO GROUNDWATER SAMPLING AND ANALYSIS REQUEST FORM

PROJECT NAME:

SCHEDU	ILED.	DATE	:

						Project	
ECIAL INSTRUCTIONS / CONSIDERATIONS :						Authorization	:
		·			1	EMCON Project No.	:
					1	OWT Project No.	
						Task Code	
				•		Originals To	
						cc	**
						•	
							Well Loc
•					1		Number (s
							Number (s
					.]	•	
					1		
							L
lanar sa	VTO AUTHOR	ነማር ከልሞል ሮዶ	rT'DV	Site (Contact:		
CHECK BO	X TO AUTHOR	GZE DATA EN	IKI	She		Name	Phone #
Well	Casing	Casing	Depth to				
Well Number of	Casing Diameter	Casing Length	Depth to Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
			Depth to Water (feet)		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	YSES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or	Diameter	Length	Water		ANAY	SES REQUESTED	
Number or Source	Diameter (inches)	Length (feet)	Water		ANAY	SES REQUESTED	
Number or Source	Diameter	Length (feet)	Water		ANAY	SES REQUESTED	

EMCON


SAMPLING AND ANALYSIS REQUEST FORM

FIGURE

A-3

APPENDIX B

CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY DOCUMENTATION

November 3, 1998

Service Request No.: <u>\$9802801</u>

Glen Vanderveen
PINNACLE
144 A Mayhew Wy.
Walnut Creek, CA 94596

RE: 20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Dear Mr. Vanderveen:

The following pages contain analytical results for sample(s) received by the laboratory on October 20, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 14, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely

Steven L. Green

Project Chemist

Greg Anderson

Regional QA Coordinator

Acronyms

A2LA American Association for Laboratory Accreditation
ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Sample Matrix:

Water

Service Request: \$9802801 Date Collected: 10/20/98

Date Received: 10/20/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-4(11)

Lab Code:

S9802801-001

Test Notes:

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	- 1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	I	NA	10/22/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	17	

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Service Request: \$9802801

Sample Matrix:

Date Collected: 10/20/98 Date Received: 10/20/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-1(29)

S9802801-002

Units: ug/L (ppb)

Basis: NA

Lab Code:

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	66	D1
Benzene	EPA 5030	8020	0.5	i	NA	10/22/98	9.1	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	i	NA	10/22/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	. NA	10/22/98	8	

DI

Quantitated as gasoline. The sample contained components that eluted in the gasoline range, but the chromatogram did not match the typical gasoline fingerprint.

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Service Request: \$9802801 Date Collected: 10/20/98

Sample Matrix:

Water

Date Received: 10/20/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-2(28)

Units: ug/L (ppb)

Lab Code:

S9802801-003

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/31/98	ND	
Benzene	EPA 5030	8020	0,5	1	NA	10/31/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/31/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/31/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/31/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/31/98	31	

Analytical Report

Client:

ARCO Products Company

Project:

Sample Matrix:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Water

Service Request: S9802801

Date Collected: 10/20/98

Date Received: 10/20/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-6(14)

Units: ug/L (ppb)

Lab Code: Test Notes: S9802801-004 Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	2	NA	10/31/98	<100	C1
Benzene	EPA 5030	8020	0.5	2	NA	10/31/98	<1	C1
Toluene	EPA 5030	8020	0.5	2	NA	10/31/98	<1	C1
Ethylbenzene	EPA 5030	8020	0.5	. 2	NA	10/31/98	<1	C1
Xylenes, Total	EPA 5030	8020	0.5	2	NA	10/31/98	<1	C1
Methyl tert-Butyl Ether	EPA 5030	8020	3	2	NA	10/31/98	180	

The MRL was elevated due to high analyte concentration requiring sample dilution.

1S22/020597p

C1

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Sample Matrix:

Water

Service Request: S9802801

Date Collected: 10/20/98

Date Received: 10/20/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-3(33)

Lab Code:

S9802801-005

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	4	NA	10/31/98	<200	Cl
Benzene	EPA 5030	8020	0.5	4	NA	10/31/98	<2	Cl
Toluene	EPA 5030	8020	0.5	4	NA	10/31/98	√ <2	Cl
Ethylbenzene	EPA 5030	8020	0.5	4	NA	10/31/98	<2	Cl
Xylenes, Total	EPA 5030	8020	0.5	4	NA	10/31/98	<2	CI
Methyl tert -Butyl Ether	EPA 5030	8020	3	4	NA	10/31/98	270	

The MRL was elevated due to high analyte concentration requiring sample dilution.

1822/020597p

C1

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Date Collected: 10/20/98

Sample Matrix:

Water

Date Received: 10/20/98

Service Request: S9802801

BTEX, MTBE and TPH as Gasoline

Sample Name:

RW-1(12)

Units: ug/L (ppb)

Lab Code:

S9802801-006

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilut ion Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/31/98	110	D1
Benzene	EPA 5030	8020	0.5	1	NA	10/31/98	36	
Toluene	EPA 5030	8020	0.5	1	NA	10/31/98	2.9	
Ethylbenzene	EPA 5030	8020	0.5	. 1	NA	10/31/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/31/98	4.1	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	10/31/98	5	

D1

Quantitated as gasoline. The sample contained components that eluted in the gasoline range, but the chromatogram did not match the typical gasoline fingerprint.

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Date Collected: NA

Sample Matrix:

Water

Date Received: NA

Service Request: \$9802801

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Units: ug/L (ppb) Basis: NA

Lab Code:

S981022-WB1

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/22/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND -	
Toluene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/22/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	i	NA	10/22/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	10/22/98	ND	

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Sample Matrix:

Water

Service Request: \$9802801

Date Collected: NA

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Metho

Lab Code: Test Notes: S981030-WB1

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	10/30/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	10/30/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	10/30/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	10/30/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	10/30/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	10/30/98	ND	

1522/020597p---

APPENDIX A

QA/QC Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Service Request: S9802801 Date Collected: NA

Sample Matrix:

Water

Date Received: NA

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Units: PERCENT

Analysis Method:

8020

CA/LUFT

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromofluorobenzene	Recovery a,a,a-Trifluorotoluene
MW-4(11)	S9802801-001		106	95
MW-1(29)	S9802801-002		108	95
MW-2(28)	S9802801-003		99	90
MW-6(14)	S9802801-004		93	90
MW-3(33)	S9802801-005		106	80
RW-1(12)	S9802801-006		86	87
BATCH QC	S9802915-005MS		99	97
BATCH QC	S9802915-005DMS		90	104
Method Blank	S981022-WB1		92	96
Method Blank	S981030-WB1		99	80

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Sample Matrix Water

Service Request: S9802801

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 10/31/98

Matrix Spike/Duplicate Matrix Spike Summary

TPH as Gasoline

Sample Name: BATCH QC

Units: ug/L (ppb)

Lab Code:

S9802915-005MS,

S9802915-005DMS

Basis: NA

Test Notes:

Percent Recovery

											CAS	Relative	
	Prep	Analysis		Spike	e Level	Sample	Spike	Result			Acceptance	Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Gasoline	EPA 5030	CA/LUFT	50	250	250	ND	250	270	100	108	75-135	8	

QA/QC Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22312.00/RAT8/2035 ALBANY

Service Request: \$9802801

Date Analyzed: 10/31/98

Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline

Sample Name:

ICV

ICV1

Units: ug/L (ppb)

Basis: NA

Test Notes:

Lab Code:

ICV Source

IC v Source:					CAS		
					Percent Recovery		
•	Prep	Analysis	True		Acceptance	Percent	Result
Analyte	Method	Method	Value	Result	Limits	Recovery	Notes
TPH as Gasoline	EPA 5030	CA/LUFT	250	260	90-110	104	
Benzene	EPA 5030	8020	25	26	85-115	104	
Toluene	EPA 5030	8020	25	26	85-115	104	
Ethylbenzene	EPA 5030	8020	25	27	85-115	108	
Xylenes, Total	EPA 5030	8020	75	80	85-115	107	
Methyl tert-Butyl Ether	EPA 5030	8020	25	25	85-115	100	

ARC	O PI Divisio	OGU on of At	ICTS lantic/Ri	Com	pan Compan	59	8028	201	Task Order	No. Ź	231	2.C	20					· 			(Chai	n of Custody
ARCO F	ngineer	<u>"20:</u>	35		(Facility	0/416	GAY	phone no.	·	Pro (Co	oject m onsulta	anage nt)	G_{i}	en	Var	nde	<u>۲۲</u>	/ee	<u>?n</u>				Laboratory Name
ARCO s	int name	FAC	CON	(PP1) (<u>e</u> _		(AR	(CO)	dress onsultant)	(č. [44]-)	4 M		403 hev)45 vW	3-Z	300 Wa	aln	utC	10	ek	437-	9576	CAS Contract Number
		ė		Matrix		Pres	ervation				<u>2</u>			ŀ	'			- DAO	9007000	074210		_7737	Method of shipment Sampler
Sample 1.D	Lab no.	Container	Soil	Water	Other	ice	Acid	Samping date	Sampling time	BTEX 602/EPA 8020	BTEXTPH in EPA M602862	TPH Modified 8015 Gas □ Diesel □	Oil and Grease	TPH EPA 418.1/SM 54	EPA 601/8010	EPA 624/8240	EPA 625/8270	CCLP Se	MAN Metals EPA	Lead Org/DHS/D Lead EPA 7420/7421/D			will deliver
MW-41	(11)	2	0	X		×	HCL	192998	1110		x				 	-							Special Detection Limit/reporting
MW-1	i	2	②	×		X	1+CL		1055		X												Lowest
MW-ZO MW-GI	il	2	9	×		×	HCL HCL		1135	-	×						ļ	1					Special QA/QC
4W-3	1	2	(3)	×		×	HCL		1250	-	×							-					As
RW-10	1	2	6	×		×	IKL	1/	1215		×												Normal
																							Remarks RAT 8
												-											2-40MIHCL VOAS
						,															\dashv		
																							#20805 · 123 009 Lab Number
																							Turnaround Time:
						····		<u>.</u>								_							Priority Rush 1 Business Day
																							Rush 2 Business Days 🗆
Condition Belinguis		<u> </u>					Date /	1	Time	Tempo Recei		recel	_	· · ·	<u> </u>					- ,			Expedited 5 Business Days
	11112	T. VE	all				1900/ Date	cr/ \	430 Time	Recei		<u> </u>	7).	7.	Bu	<u> 75</u>	. (<u> </u>	5	0/25	95	1430	Standard 10 Business Days
Relinguis	ned by						Date		Time	Recei	ved by	labora	itory			<u></u>	ale			Time			To Dullettees Days
Distribution	: White	Сору –	Labora	lory: Ca	nary Co	oy – ARC	O Environ	mental Engi	neering: Pl	nk Cop	y - Co	nsulta	nt		7	Du	٠,	11 3	148	?	R	II DE	

APPENDIX C FIELD DATA SHEETS

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT # : 21775-217.003 STATION ADDRESS : 101 San Pablo Avenue, Albany DATE : 10/20/98

ARCO STATION # : 2035 FIELD TECHNICIAN : Manuel Gallegos DAY : Tuesday

			Well	Туре	Well		Туре	FIRST	SECOND	DEPTH TO	FLOATING	WELL	
רם	N	WELL	Box	Of Well	Вох	Lock	Of Well	DEPTH TO	DEPTH TO	FLOATING	PRODUCT	TOTAL	
Ord	er	ΙD	- Seal	Вох	Secure	Number	Cap	WATER	WATER	PRODUCT	THICKNESS	DEPTH	COMMENTS
				a				(feet)	(feet)	(feet)	(feet)	(feet)	
1		MW-5	OK_	15/6	ok	ARCO	LWC	10.44	1044	MS	MR	25.1	
2		MW-4	oi<	15/16	oK	ARCO	LWC	10:43	10:43	1		25.1	
3		MW-1	OK	15/14	οl<	ARCO	LWC	10.42	10.42			29.7	
4		MW-2	01<	15 la		ARCO	LWC	11.00	11.00			28,8	
5		MW-6	OK	15/14	OK	ARCO	LWC	13.48	1348	1/1		242	
6	_	MW-3	91	15/10	οK	ARCO	LWC	11,30	11.30		d /	330	
7		RW-1	ok.	Jac +	οK	None	LWC	11.12	11.12			25.5	
	\downarrow										, v		
		:											

SURVEY POINTS ARE TOP OF WELL CASINGS

WATER SAMPLE FIELD DATA SHEET Rev 1/97 SAMPLE 10 MW-1 (29' PROJECT NO 21775-217.003 CLIENT NAME AR (0 # 2035 PURGED BY M. Ballesos LOCATION Albanyica SAMPLED BY Leachate ____ TYPE Groundwater Y Surface Water ____ CASING DIAMETER (inches) 2 _____3 ____ VOLUME IN CASING (gal.) _____12,59 NR __ CASING ELEVATION (feet/MSL) CALCULATED PURGE (gal.) :_ DEPTH OF WELL (feet) ACTUAL PURGE VOL. (gal.) DEPTH OF WATER (feet) 10,42 1047 END PURGE DATE PURGED: 10-20-98 SAMPLING TIME DATE SAMPLED TURBIDITY COLOR TEMPERATURE E.C. VOLUME TIME (visual) (visual) (µmhos/cm@25°c) (units) (2400 HR) (gal) 68.4 chor 684 5,58 69.1 1044 NR NR ODOR: 1101C OTHER: D0 = 1(NTU 0-200) (COBALT 0-100) FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): SAMPLING EQUIPMENT PURGING EQUIPMENT X Bailer (Teflon) 2" Bladder Pump Bailer (Teflon) 2" Bladder Pump Bailer (Stainless Steel) Bomb Sampler Bailer (PVC) Centrifugal Pump Submersible Pump Dipper Bailer (Stainless Steel) Submersible Pump Well Wizard™ Dedicated Dedicated Well Wizard™ Other: LOCK: ARCO-WELL INTEGRITY: OK REMARKS: all samples taken Meter Serial No. 87m pH. E.C., Temp. Meter Calibration:Date: 10/20/98 DH7 0698 1700 E.C. 1000 1020, 1000 SIGNATURE When I would be REVIEWED BY M PAGE / OF 6

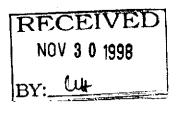
WATER SAMPLE FIE	LD DATA SHEET Rev 1/97
PROJECT NO 21775-217, 603 PURGED BY M. Ag I/e 503 TYPE Groundwater Y Surface Water CASING DIAMETER (inches) 2 3 4	SAMPLE ID MW-2 (28') CLIENT NAME AR (0 # 2035 LOCATION Albany, CA Leachale Other 4.5 6 Other
CASING ELEVATION (feet/MSL) DEPTH OF WELL (feet) DEPTH OF WATER (feet) 11.00	VOLUME IN CASING (gal.) CALCULATED PURGE (gal.) ACTUAL PURGE VOL (gal.) 35.0
DATE SAMPLED	END PURGE 1127 SAMPLING TIME 1135 TEMPERATURE COLOR TURBIDITY
(2400 HR) (oal) (units) (µmhos/cm@	25°c) (°F) (visual) (visual) (69.1 Clear Clear (69.3
OTHER: DO = 1.0 ODO FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-	OR: <u>NONE</u> <u>A/R</u> (COBALT 0-100) (NTU 0-200) 1, XDUP-1): <u>A/R</u>
PURGING EQUIPMENT	SAMPLING EQUIPMENT
2" Bladder Pump Bailer (Teffon) Centrifugal Pump Bailer (PVC) Submersible Pump Bailer (Stainless Steel) Well Wizard M Dedicated	2" Bladder Pump X Bailer (Teflon) Bornb Sampler Bailer (Stainless Steel) Dipper Submersible Pump Well Wizard ^{1™} Dedicated Other:
WELL INTEGRITY: OK	LOCK: ARCO-
REMARKS: all Samples taken	
pH, E.C., Temp. Meter Calibration: Date 10/20/98 Time: E.C. 1000 1/000 pH 7 1700	pH 10 1/000 pH 4 15/00
	EVIEWED BY 14 PAGE 2 OF 6

PROJECT NO 21775-217.003 SAMPLE ID MW-3 (33'
PURGED BY M. Agilegos CLIENT NAME AR(0 # 2035 OWT SAMPLED BY LOCATION Albanyi CA TYPE Groundwater Y Surface Water Leachate Other
CASING DIAMETER (inches) 2 3 4 5 6 Other
CASING ELEVATION (feet/MSL) DEPTH OF WELL (feet) DEPTH OF WATER (feet) L/R VOLUME IN CASING (gal.) CALCULATED PURGE (gal.) 42,53 ACTUAL PURGE VOL. (gal.)
DATE PURGED: 10-20-98 END PURGE: 1245 DATE SAMPLED: 17 SAMPLING TIME: 1250
TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDITY (2400 HR) (gal) (units) (µmhos/cm@25°c) (°F) (visual) (visual)
1241 29.0 6.77 626 69.5 11 11
1250 heharge 6.70 589 6813 Blan Heart
OTHER: DO = ODOR: NONE AIR AIR (COBALT 0-100) (NTU 0-200) FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): AIR AIR (COBALT 0-100) (NTU 0-200)
PURGING EQUIPMENT
2" Bladder Pump Bailer (Teffon) 2" Bladder Pump Bailer (Teffon) A Contributed Pump Bailer (PVC) Bomb Sampler Bailer (Stainless Steel)
Centrifugal Pump Bailer (PVC) Bomo Salitiper Submersible Pump Bailer (Stainless Steel) Dipper Submersible Pump
Well Wizard™DedicatedWell Wizard™Dedicated
WELL INTEGRITY: OK LOCK: ARCO-
REMARKS: all Samples takes
pH. E.C., Temp. Meter Calibration:Date. 10/20/98 Time Meter Serial No. 87M
EC 1000 1/000 pH7 1700 pH10 1/000 pH4 1900
SIGNATURE MAR DR. Wall REVIEWED BY MAP PAGE 3 OF 6

WATER SAMPLE FIELD DATA SHEET SAMPLE ID MW-4 (11' PROJECT NO 21775-217,003 CLIENT NAME AR(0 # 2035 PURGED BY M. Ballegos LOCATION Albany, CA SAMPLED BY Leachale Other 4 5 6 Other TYPE Groundwater Y Surface Water ____ CASING DIAMETER (inches) 2 _____ 3 ____ 4 __ VOLUME IN CASING (gal.) CALCULATED PURGE (gal.) 251 DEPTH OF WELL (feet) ACTUAL PURGE VOL (gal.) 10.43 DEPTH OF WATER (feet) END PURGE DATE PURGED 10-20-98 SAMPLING TIME DATE SAMPLED TURBIDITY TEMPERATURE E.C. COLOR VOLUME TIME (µmhos/cm@25°c) (°F) (visual) (gal) (unds) (2400 HR) GRAB 6.38 427 70,2 Clear OTHER: DO = . 5 ODOR: NORE AIR NR (NTU 0-200) FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): SAMPLING EQUIPMENT PURGING EQUIPMENT X Bailer (Teflon) 2" Bladder Pump Bailer (Teffon) 2" Bladder Pump Bailer (Stainless Steel) Bomb Sampler Bailer (PVC) Centrifugal Pump Submersible Pump Dipper Bailer (Stainless Steel) Submersible Pump Dedicated Well WizardTM Dedicated Well Wizard™ LOCK: ARCO-WELL INTEGRITY: OK REMARKS: all Scapples taken Meter Senal No. 87m pH. E.C., Temp. Meter Calibration Date 10/20/98 Time Meter Senal No. 0 1/1/1 EC 1000 1/000 pH7 1700 SIGNATURE WALL PAGE 4 OF 6 Temperature *F

WATI	R SAMPLE	FIELD	DATA SH	EET	Rev 1/97
	Surface Water	Lea	chate	AR(Ot	± 2035
CASING ELEVATION (feevMSL) DEPTH OF WELL (feet) DEPTH OF WATER (feet)	24,2	CALCU	IME IN CASING LATED PURGE IL PURGE VOL	(90)	MR J/
DATE PURGED 10 DATE SAMPLED TIME VOLUME (2400 HR) (921) 1703 G2AB	1/	SAMP E.C. TE	ND PURGE PLING TIME EMPERATURE (*F) 70./	L 203 COLOR	TURBIDITY (visual)
OTHER: DO =	TED: AT THIS WELL (ODOR:			//R (NTU 0-200)
PURGING EQUIPMEI 2 Bladder Pump Centrifugal Pump Submersible Pump Well Wizard**		Othe	2" Bladder Pur Bomb Sampler Dipper Well Wizard**	Baile	r (Teflon) r (Stainless Steel) nersible Pump cated
		iken			8 <u>ARCO-</u>
H. E.C., Temp. Meter Calibration:Dai C. 1000 / /000 emperature "F	pH7 170		Mete , /00	O pH 4	1400 0F 6

WAT	ER SAMPLE	FIELD DATA SH	IEET Rev 1/97
OWT SAMPLED BY	Surface Water	CLIENT NAME LOCATION Leachate	RW-1 (12') AR(0 # 2035 Albany, CA Other 6 y Other
CASING ELEVATION (feevMS DEPTH OF WELL (fee DEPTH OF WATER (fee		VOLUME IN CASING CALCULATED PURGE ACTUAL PURGE VOL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
DATE SAMPLED TIME VOLUME	pH	END PURGE	COLOR TURBIDITY
OTHER: DO = 1	CTED AT THIS WELL (ODOR:	
2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard** Other:		2" Bladder Pui Bomb Sample	Submersible Pump
WELL INTEGRITY: OK REMARKS: G.IS		Kon	LOCK: <u>ARCO-</u>
pH, E.C., Temp. Meter Calibration:D E.C. 1000 1 000 Temperature *F	ate 10/20/98 pH 7 1703	///	er Senal No. 8777 00 pH 4 1900


EMCON A	ssociates - f	Field Service	s	· · · · · · · · · · · · · · · · · · ·		Hist	Historical Monitoring Well Data						
1921 Ring	wood Avenu	e		1998				ARCO 2035					
San Jose,								21775-217.003					
Well ID	Quarter	Date	Purge Volume (gallons)	Did well dry	Well Contained Product	First Second Third Fourth	Gallons 201.00 197.50 119.00 73.00						
MW-1	First	02/20/98	45.00	NO	NO								
	Second	05/12/98	40.00	NO	NO								
	Third	08/20/98	39.00	NO	NO	,							
	Fourth	10/20/98	38.00	NO	NO								
MW-2	First	02/20/98	42.00	NO	NO								
	Second	05/12/98	37.50	NO	NO								
	Third	08/20/98	36.00	NO	NO								
	Fourth	10/20/98	35.00	NO	NO								
MW-3	First	02/20/98	30.00	NO	NO		·						
	Second	05/12/98	46.00	NO	NO								
	Third	08/20/98	44.00	NO	NO								
	Fourth	10/20/98	30.00	NO	NO								
MW-4	First	02/20/98	28.00	YES	NO								
	Second	05/12/98	0.00	GRAB	NO								
	Third	08/20/98	0.00	GRAB	NO	-							
	Fourth	10/20/98	0.00	GRAB	NO								
MW-5	First	02/20/98	28.00	YES	NO								
	Second	05/12/98	0.00	NA	NO								
	Third	08/20/98	0.00	NA	NO								
	Fourth	10/20/98	0.00	NA	NO								
MW-6	First	02/20/98	0.00	GRAB	NO								
	Second	05/12/98	0.00	GRAB	NO								
	Third	08/20/98	0.00	GRAB	NO								
	Fourth	10/20/98	0.00	GRAB	NO								
RW-1	First	02/20/98	28.00	NO	NO	•							
	Second	05/12/98	74.00	NO	NO								
	Third	08/20/98	0.00	GRAB	NO								
	Fourth	10/20/98	0.00	GRAB	NO		· · · · · · · · · · · · · · · · · · ·						
		1			s	team water (gal)							

ABOO E	Division	of Atla	ntio/Ric	hfleid C	pany ompany		1 1 6					. 1410 <u>.</u>	-		j.	(gen)	10.10	VI.	all	of Ci
ARCO F	cality no	202	<u>'5</u>	45	(Facility	Alt	any			211	/ar	de	ζV	ee	n	4-7-6- 		A.S.		Laboratory
2,5 6		Kav	150	pple		2	(AR	phone no.: CO)											26_	Gontract 14
Consulta	***	<i>H/(</i>	CA		14. 4			<u> </u> (ô	drees on suitem	W	QY.	Wo	ואַן			1		19	4596	Method of a
				Matrix		Pres	ervation			Ч	ı			20	25 _	HSO 7424/14210				5am
Sample I.D.	Lab 73.	Container n	Soil	Water	Other	lce .	Acid	Sempley date		PHT EPA 418 USN 503E	EPA 601/5010	EPA 6248240	EPA 625/8270	TCLP Ser	CAN Metals EPA 6010/700 TTLCC STLCC	Lead OrgOHSCO Lead EPA 7420				ZZ.
W-4	1")	7	37	Y	337	×	HCL	Poss				ì						Á.S.		Tellar messi
111-1	(1)	2		X		X	HCL	27.5				1. V.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			10.7	文章			
W-7(4	7	10 miles 20 miles 20 miles	X	1. 1.	3	HCL		37 <u>2</u> 5		1						1.47	4.4	115	
W-C	40	2		×	2.5	>	Pri	š.,		2	* <u>.</u>) /a		10 H. 11 A.						
W-3	3)	2		×		×	HCL	14.						12		4	2	**		7/1
W-1/	2)	2		X	w Mar. W	×	HI	X	227						¥.				7.54	7
				X . 1	A						1					7)		100	1.12	Genetic
			· þr	Š	-									;	44	3/10/2		or on		3.8
							1 1/2								**				intro.	
	*			- A 3.														33	1.0	
				No. Test A				1			X.				人公司		**			
				(54) 							/									
*				1 13 1	20				Market :		, , , , ,							7		
									1. 41° ; 41°					a Maria Maria			4			
			4, (4)	1 3 H. J.	5			16.6			1	owi Mirry	-0 Te-12*	in e	-	9 2 C	100			
				7 () 2 ()	**	2	4 . 3 . 4 . 5 %										2.0	9	1 13	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
							727	1 1 30			提到	9			1887	344	1	i i i		
	M				102					56					<i>1</i> 000					4
	of samp	M (A)		100	4**		Date 3	/ · ·				A STATE OF THE STA					(3.7)			1.44
1131	ned by	10	h/	7-		Mar all I	Date Date	// B			Bı	N3	> 4	CA :		7/2	9/3			- 100 00
Relingui		HY				TO GA	Date	7 7 7			\$45		Date		(7.8)	Time	10			

APPENDIX D

CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY DOCUMENTATION FOR SOIL-VAPOR EXTRACTION SYSTEM

November 25, 1998

Service Request No.: S9803065

Glen Vanderveen
PINNACLE
144 A Mayhew Wy.
Walnut Creek, CA 94596

RE: 20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Dear Mr. Vanderveen:

The following pages contain analytical results for sample(s) received by the laboratory on November 10, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 14, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green

rnadeth I. Cox

Project Chemist

Greg Anderson

Regional QA Coordinator

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Teeting and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection firmit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Baion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

"trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Sample Matrix:

Air

Service Request: 89803065

Date Collected: 11/10/98
Date Received: 11/10/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

I-1

Lab Code:

S9803065-001

Units: mg/m3 Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.4	1	NA	11/10/98	ND	
Toluene	5030	8020	0.4	1	NA	11/10/98	0.5	
Ethylbenzene	5030	8020	0.5	1	NA	11/10/98	ND	
Xylenes, Total	5030	8020	0.9	1	NA	11/10/98	ND	
Total Volatile Hydrocarbons:					•			
C1 - C5	5030	8015M	12	1	NA	11/10/98	31	
C6 - C12	5030	8015M	20	1	NA	11/10/98	32	
TPH as Gasoline*	5030	8015M	20	1	NA:	11/10/98	32	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Sample Matrix:

Air

Service Request: 89803065

Date Collected: 11/10/98

Date Received: 11/10/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

[-1

Lab Code:

S9803065-001

Units: ppmV

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.1	1	NA	11/10/98	ND	
Toluene	5030	8020	0.1	1	NA	11/10/98	0.1	
Ethylbenzene	5030	8020	0.1	1	NA	11/10/98	ND	
Xylenes, Total	5030	8020	0.2	1	NA	11/10/98	ND	
Total Volatile Hydrocarbons:								
C1 - C5	5030	8015M	5	1	NA	11/10/98	·· 13 ·	
C6-C12	5030	8015M	5	1	NA	11/10/98	8	
TPH as Gasoline*	5030	8 015 M	5	i	NA	11/10/98	8	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Service Request: 89803065 Date Collected: 11/10/98

Sample Matrix:

Air

Date Received: 11/10/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

E-1

Lab Code:

S9803065-002

Units: mg/m3

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.4	1	NA	11/10/98	ND	
Toluene	5030	8020	0.4	1	NA	11/10/98	ND	
Ethylbenzene	5030	8020	0.5	1	NA	11/10/98	ND	
Xylenes, Total	5030	8020	0.9	. 1	NA	11/10/98	ND	
Total Volatile Hydrocarbons:				÷	-			
C1 - C5	5030	8015M	12	1	NA	11/10/98	18	
C6 - C12	5030	8015M	20	1	NA	11/10/98	ND	
TPH as Gasoline*	5030	8015M	20	1	NA	11/10/98	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Sample Matrix:

Air

Service Request: \$9803065

Date Collected: 11/10/98

Date Received: 11/10/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

TPH as Gasoline*

E-1

Lab Code:

S9803065-002

5030

Units: ppmV Basis: NA

Test Notes:

Dilution Analysis Date Date Result Prep Method Method MRL Factor Extracted Analyzed Result Notes Analyte 5030 8020 0.1 1 NA 11/10/98 ND Benzene ND Toluene 5030 8020 0.1 1 NA 11/10/98 ND Ethylbenzene 5030 8020 0.1 1 NA 11/10/98 1 11/10/98 ND 5030 8020 0.2 NA Xylenes, Total Total Volatile Hydrocarbons: C1 - C5 5030 8015M 5 -1 NA - 11/10/98 8 C6-C12 NA 11/10/98 ND 5030 8015M 5

5

8015M

1

NA

11/10/98

ND

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Sample Matrix:

Air

Service Request: 89803065

Date Collected: NA

Date Received: NA

BTEX and Total Volatile Hydrocarbons

Sample Name:

Method Blank

Units: mg/m3

Lab Code:

S981110-VB1

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.4	1	NA	11/10/98	ND	
Toluene	5030	8020	0.4	1	NA	11/10/98	ND	
Ethylbenzene	5030	8020	0.5	1	NA	11/10/98	ND	
Xylenes, Total	5030	8020	0.9	1	NA	11/10/98	ND	
Total Volatile Hydrocarbons:						•		
C1 - C5	5030	8015M	-12	- 1	. NA	11/10/98	ND	
C6 - C12	5030	8015M	20	1	NA	11/10/98	ND	
TPH as Gasoline*	5030	8015M	20	1	NA	11/10/98	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Sample Matrix:

Air

Service Request: \$9803065

Date Collected: NA

Date Received: NA

BTEX and Total Volatile Hydrocarbons

Sample Name:

TPH as Gasoline*

Method Blank

Lab Code:

S981110-VB1

5030

8015M

Units: ppmV Basis: NA

Test Notes:

Prep Analysis Dilution Date Date Result Notes Analyte Method Method MRL Factor Extracted Analyzed Result ND Benzene 5030 8020 0.1 NA 11/10/98 ND Toluene 5030 8020 0.1 1 NA 11/10/98 ND Ethylbenzene 5030 8020 0.1 1 NA 11/10/98 NA ND Xylenes, Total 5030 8020 0.2 1 11/10/98 Total Volatile Hydrocarbons: ND C1 - C5 5030 8015M NA 11/10/98 1 ND C6-C12 5030 8015M NA. 11/10/98

1

NA

11/10/98

ND

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1\$22/020597p

APPENDIX A

- 0

QA/QC Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Sample Matrix: Air

Service Request: \$9803065 Date Collected: NA

Date Received: NA
Date Extracted: NA

Date Analyzed: 11/10/98

Duplicate Summary
BTEX and Total Volatile Hydrocarbons

Sample Name:

BATCH QC

Lab Code:

S9803038-001DUP

Test Notes:

Units: mg/m3 Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Benzene	5030	8020	0.4	2.1	2.3	2.2	4	
Toluene	5030	8020	0.4	12	13	13.0	8	
Ethylbenzene	5030	8020	0.5	1.7	1.7	1.7	<1	
Xylenes, Total	5030	8020	0.9	7.1	7.5	7.3	5	
Total Volatile Hydrocarbons								1
C1 - C5	5030	8015M	12	320	570	450	55	C1
C6-C12	5030	8015M	20	290	320	310	10	
TPH as Gasoline*	5030	8015M	20	290	320	310	10	

C1

A huge peak is dected in duplicate sample. The result is different in gasoline range.

DUP/020597p

QA/QC Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Sample Matrix: Air

Service Request: S9803065
Date Collected: NA

Date Received: NA
Date Extracted: NA

Date Analyzed: 11/10/98

Duplicate Summary
BTEX and Total Volatile Hydrocarbons

Sample Name:

BATCH QC

Lab Code:

S9803038-001DUP

Test Notes:

Units: ppmV Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Benzene	5030	8020	0.1	0.7	0.7	0.7	<1	
Toluene	5030	8020	0.1	3.2	3.4	3.3	3	
Ethylbenzene	5030	8020	0.1	0.4	0.4	0.4	<1	
Xylenes, Total	5030	8020	0.2	1.6	1.7	1.7	6	
Total Volatile Hydrocarbons					-			
C1 - C5	5030	8015M	5	130	240	190	58	•
C6-C12	5030	8015M	5	71	78	75	9	
TPH as Gasoline*	5030	8015M	5	71	78	75	9	

QA/QC Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Date Collected: NA

Service Request: \$9803065

LCS Matrix:

Date Received: NA

Date Extracted: NA Date Analyzed: 11/10/98

Laboratory Control Sample Summary

TPH as Gasoline

Sample Name:

Lab Control Sample

Units: mg/m3

Lab Code:

S981110-LCS

Basis: NA

Test Notes:

CAS

Percent Recovery

Analyte

Prep Method Analysis Method

Value 200

True

Result 210

Percent Acceptance Limits Recovery

Result Notes

Gasoline

5030

8015M

105

60-140

QA/QC Report

Client:

ARCO Products Company

Project:

20805-123.005/TO#22631.00/RAT8/2035 OAKLAND

Date Collected: NA

LCS Matrix:

Air

Date Received: NA

Date Extracted: NA

Date Analyzed: 11/10/98

Service Request: S9803065

Laboratory Control Sample Summary

TPH as Gasoline

Sample Name:

Lab Control Sample

Units: ppmV

Lab Code:

S981110-LCS

Basis: NA

Test Notes:

CAS Percent Recovery Acceptance Result Prep Analysis True Percent Limits Notes Analyte Method Method Value Result Recovery 5030 8015M 49 51 104 60-140 Gasoline

QA/QC Report

Client:

ARCO Products Company

Project: 20805-123.005/TO#22631.00/RAT8/2035 OAKLAND Service Request: S9803065

Date Analyzed: 11/10/98

Initial Calibration Verification (ICV) Summary BTEX and Total Volatile Hydrocarbons

Sample Name:

ICV

Lab Code:

ICV1

Units: mg/m3 Basis: NA

Test Notes:

ICV Source:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Acceptance Limits
Benzene	5030	8020	25	25	100	80-120
Toluene	5030	8020	25	25	100	80-120
Ethylbenzene	5030	8020	25	25	100	80-120
Xylenes, Total	5030	8020	75	75	100	80-120
Gasoline	5030	8015M	250	230	92	80-120

ICV/032196

AR	CC) Pro Division	odu of Atla	cts (Com chlield C	pany Company	1598	?D.3D(65.	Task Order			<u></u>	-6	3(.0	Ø			•		(Cha	ain	of Custody
ARCC	Fac	ility no	20	3:	5	City (Facility	0	alc	and			ject m insulta	anage nt)	۲ (ماد	cn		rcer	nda	NL	eel	ス			Laboratory Name
	1	jineer I name	Per	<u>ار</u> مرن	<u>S.</u> M	PPLE		Tele (AR		dress ensultant)	Tele (Co	phoni nsulte	a HO.	 				(Con	-ax no, [Contract Number	
					Matrix		Prese	ervation				S	20		я				Vow	9010/7000	<i>17</i> 421€			*** •	Method of shipment
Sample I.D.		Lab no.	Container no	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH SPA M602/8020/8	PH Modified 801	Oil and Grease 413,1 ① 413,2 ①	TPH EPA 418.1/SM 503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	CLP Ser	AM Metals EPA TT.CC ST.CC	Lead Org/DHS⊡ Lead EPA 7420/7421⊡				rech
工)		1			AR	(D)		12/10/98	1250	_	1			, _				-						Special Detection Limit/reporting
E-	١		1			ALL	2		1	1240	,	X													PPMU
									-	*****															Special QA/QC
							 .																_		Remarks
										Y															20805 123
																									20805 123 005 PATS
													:										\downarrow		RAT8
																							+	[Lab Number
	1. Z. 17mm		:																						Tumaround Time:
										· · · · · · · · · · · · · · · · · · ·								·					-		Priority Rush 1 Business Day
				. :																					Rush 2 Business Days
Condit	*:					·····						eratum	recei	ved:		D	ue	; щ	24/ 245	98					Expedited 5 Business Days
Reling	JISh.	ed by sa	ampler	Pe	u	<u> </u>		Date 11-10 Date	-98	14105	Recei			sh	Ma	cha	جلم	C	AS		11/10	48	140.	5	Standard ,
Reling	ishe	ed by						Date			Recei		•	atory			E	ate			Time				10 Business Days
Distribut	lon:	White (Сору –	Labora	tory: Ca	nary Co	py – ARC	O Environ	mental Engi	ineering: Pi	nk Coj	ру – С	onsulta	ent			-								