

1921 Ringwood Avenue • San Jose, California 95131-1721 • **(408) 453-7300 •** Fax (408) 437-9526

Date <u>June 27, 1997</u>
Project <u>20805-123.004</u>

To:

Mr. Barney Chan

Alameda County Health Care Services Agency Department of Environmental Health 1131 Harborbay Parkway, Suite 250 Alameda, California 94502-6577

We are enclosing:

Copies		Description			
1		First quarter	1997 groundwate	r monitori	ng results and
		remediation s	ystem performan	ce evaluat	ion report,
		ARCO service	e station 2035, A	lbany, Cal	ifornia
For your:	X	Use	Sent by:	X	Regular Mail
	-	Approval			Standard Air
		Review			Courier
		Information			Other:

Comments:

The enclosed groundwater monitoring report is being sent to you per the request of ARCO Products Company. Plaese call if you have questions or comments.

Valli Voruganti Project Manager

cc: Kevin Graves, RWQCB - SFBR Paul Supple, ARCO Products Company File

Date:

June 25, 1997

Re: ARCO Station #

2035 • 1001 San Pablo Avenue • Albany, CA First Quarter 1997 Groundwater Monitoring Results and Remediation System Performance Evaluation Report

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached proposal or report are true and correct."

Submitted by:

Paul Supple

Environmental Engineer

June 27, 1997 Project 20805-123.004

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Re: First quarter 1997 groundwater monitoring program results and remediation system performance evaluation report, ARCO service station 2035, Albany, California

Dear Mr. Supple:

This letter presents the results of the first quarter 1997 groundwater monitoring program at ARCO Products Company (ARCO) service station 2035, 1001 San Pablo Avenue, Albany, California (Figure 1). Operation and performance data for the site's soil-vapor extraction (SVE) and groundwater extraction remediation systems are also presented. The quarterly monitoring program complies with Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the scope, limitations, and cost of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

EMCON

Gowri Kowtha

Staff Engineer

Lypn Gallagher, R.G. 6090

Project Geologist

EMCON

RG6090

ARCO QUARTERLY REPORT

Station No.:	2035	Address:	1001 San Pablo Avenue, San Pablo, California
EMCON Project	ct No.:		20805-123.004
ARCO Environ	mental Engine	er/Phone No.:	Paul Supple /(510) 299-8891
EMCON Project	et Manager/Pho	one No.:	Valli Voruganti /(408) 453-7300
Primary Agency	y/Regulatory II	O No.:	ACHCSA /Barney Chan
Reporting Perio	od:		January 1, 1997 to April 1, 1997

WORK PERFORMED THIS QUARTER (First-1997):

- 1. Conducted quarterly groundwater monitoring and sampling for first quarter 1997.
- 2. Prepared and submitted quarterly report for fourth quarter 1996.

WORK PROPOSED FOR NEXT QUARTER (Second- 1997):

- 1. Perform quarterly groundwater monitoring and sampling for second quarter 1997.
- 2. Restart SVE system and continue operation if influent hydrocarbon concentrations warrant.
- 3. Prepare and submit quarterly report for first quarter 1997.

QUARTERLY MONITORING:

Current Phase of Project:	Quarterly Groundwater Monitoring and Operation and Maintenance of Remediation Systems
	The SVE system was shut down on August 12, 1996, because of low TVHg and benzene concentrations in extracted soil vapor.
_	The groundwater treatment system was shut down on August 8, 1996, because of low influent TPHg concentrations.
Frequency of Sampling:	Quarterly (groundwater), Monthly (SVE)
Frequency of Monitoring:	Quarterly (groundwater), Monthly (SVE)
Is Floating Product (FP) Present On-site: _	☐ Yes ☑ No
Cumulative FP Recovered to Date :	27.9 gallons, Wells AS-1, AS-2, RW-1, VW-1, VW-2, and VW-7
FP Recovered This Quarter:	None
Bulk Soil Removed to Date :	605 cubic yards of TPH impacted soil
Bulk Soil Removed This Quarter :	None
Water Wells or Surface Waters,	
within 2000 ft., impacted by site:	None
Current Remediation Techniques:	Air-Bubbling in RW-1
Average Depth to Groundwater:	10.33 feet
Groundwater Gradient (Average):	0.026 ft/ft toward west-southwest (consistent with past events)

SVE QUARTERLY OPERATION AND PERFORMANCE:

Equipment Inventory: Therm Tech Model VAC-10 Thermal/Catalytic Oxidizer

The SVE system was shut down on August 12, 1996, because of low

TVHg and benzene concentrations in extracted soil vapor.

The groundwater treatment system was shut down on August 8, 1996,

because of low influent TPHg concentrations.

EMCON

Operating Mode:	Catalytic Oxidation
BAAQMD Permit #:	10931
TPH Conc. End of Period (lab):	NA (Not Available)
Benzene Conc. End of Period (lab):	NA
SVE Flowrate End of Period:	NA
Total HC Recovered This Period:	0.0 pounds
Total HC Recovered to Date:	3007.5 pounds
Utility Usage	
Electric (KWH):	451 KWH
Gas (Therms):	0 Therms
Operating Hours This Period (SVE):	0.0 hours
Operating Hours to Date (SVE):	6873.2 hours
Percent Operational (SVE):	0.0%
Operating Hours This Period (GWE):	0.0 hours
Percent Operational (GWE):	0.0%
Unit Maintenance:	Routine monthly maintenance
Number of Auto Shut Downs:	0
Destruction Efficiency Permit	
Requirement:	90%
Percent TPH Conversion:	NA ·
Average Stack Temperature:	NA
Average SVE Source Flow:	0.0 scfm
Average SVE Process Flow:	0.0 scfm
Average Source Vacuum:	0.0 inches of water

DISCUSSION:

The SVE system has been shut down since August 12, 1996, because of relatively low gasoline concentrations in the influent vapor stream. During fourth quarter 1996 and first quarter 1997, rising water levels resulted in the submergence of the hydrocarbon-impacted zone of soil and screen in the SVE wells. The SVE system may be restarted during the second or third quarter, if hydrocarbons concentrations and groundwater levels warrant.

ATTACHED:

Table 1 -Groundwater Monitoring Data, First Quarter 1997 Table 2 -Historical Groundwater Elevation and Analytical Data, Petroleum Hydrocarbons and Their Constituents Table 3 -Historical Groundwater Elevation Data, Shell Station Table 4 -Approximate Cumulative Floating Product Recovered, Wells AS-1, AS-2, RW-1, VW-1, VW-2, and VW-7 Table 5 -Soil-Vapor Extraction System Operation and Performance Data Table 6-Soil-Vapor Extraction Well Data Table 7 -Influent and Effluent Groundwater Analyses Summary Report Table 8 -Estimated Total Dissolved TPHG and Benzene Removed, Summary Report Figure 1 -Site Location Figure 2 -Site Plan Figure 3 -Groundwater Data, First Quarter 1997 Figure 4 -Soil-Vapor Extraction and Treatment System, Historical System Influent TVHG and Benzene Concentrations

Soil-Vapor Extraction and Treatment System, Historical Hydrocarbon Removal Rates

Figure 5 -

EMCON

- Figure 6 Groundwater Treatment System, Historical System Influent TPHG and Benzene Concentrations
- Figure 7 Groundwater Treatment System, Historical Hydrocarbon Removal Rates
- Appendix A Analytical Results and Chain of Custody Documentation, First Quarter 1997
 Groundwater Monitoring Event
- Appendix B SVE System Monitoring Data Log Sheets

cc: Barney Chan, ACHCSA Kevin Graves, RWQCB-SFBR

Table 1 Groundwater Monitoring Data First Quarter 1997

ARCO Service Station 2035 1001 San Pablo Avenue, Albany, California

Date: 06-06-97

Well Designation	Water Level Field Date	th Top of Casing Flevation	ab Depth to Water	Groundwater Groundwater Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic By Gradient	Water Sample Field Date	TPHG	Benzene B EPA 8020	Toluene BPA 8020	Ethylbenzene	Total Xylenes	MTBE	MTBE S240	Oil and Grease May SM 5520B&F	Oil and Grease S SM 5520C	Oil and Grease SM 5520F	7 TRPH P EPA 418.1	TPHD
MW-1	03-27-97	41.41	9.80	31.61	ND	wsw	0.026	03-27-97	1500	610	<5^	15	7	56						
MW-2	03-27-97	40.38	10.38	30.00	ND	WSW	0.026	03-27-97	<50	<0.5	< 0.5	<0.5	<0.5	12			• •			
MW-3	03-27-97	41.44	10.28	31.16	ND	WSW	0.026	03-27-97	<100^	<1^	<1^	<1^	<1^	170						
MW-4	03-27-97	40.33	9.75	30.58	ND	WSW	0.026	03-27-97	<5000^	<50^	<50^	<50^	<50^	4200						
MW-5	03-27-97	41.84	10.10	31.74	ND	WSW	0.026	03-27-97	<50	<0.5	<0.5	<0.5	<0.5	<3						
MW-6	03-27-97	40.13	13.10	27.03	ND	WSW	0.026	03-27-97	<50	< 0.5	< 0.5	<0.5	< 0.5	<3						
	05 27 27																			

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

μg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl tert-butyl ether

SM: standard method

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND: none detected WSW: west-southwest

^: method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference

- -: not analyzed or not applicable

 $esj/h:\2035\2035 mdb.xls\Table\ 1:imi$

20805-123.004

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

Well Designation	Water Level Field Date	Top of Casing	ab Depth to Water	Groundwater Sevation	Floating Product	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene P EPA 8020	Toluene T EPA 8020	Ethylbenzene	Total Xylenes	MTBE	MTBE T EPA 8240	Oil and Grease SM 5520B&F	তাl and Grease ল SM 5520C	Oll and Grease SM 5520F	் TRPH ந் EPA 418.1	TPHD LUFT Method
NAW 1	02 24 05	43.41	6.01	25.20) ID	2021	0.027	03.04.05	2000	2400	•••									
MW-1 MW-1	03-24-95	41.41	6.21	35.20	ND	NW	0.037	03-24-95	8800	3600	<50	62	99							
MW-I	05-24-95 08-22-95	41.41 41.41	9.37 10.30	32.04 31.11	ND ND	WNW SW	0.013 0.012	05-24-95 08-22-95	4800	2000	<20	52	<20			• •				
MW-I	11-09-95	41.41	12.25	29.16	ND ND	WSW	0.012	11-09-95	780 58	310	<2.5	12	<2.5	14						
MW-I	02-27-96	41.41	9.08	32.33	ND ND	SW	0.009	02-27-96	2700	14 930	<0.5 12	<0.5 18	<0.5 32	51						
MW-1	04-22-96	41.41	9.11	32.30	ND	WSW	0.014	04-22-96	2700	1000	<10	22	<10	<60	••					
MW-I	08-15-96	41.41	10.37	31.04	ND	sw	0.011	08-15-96	300	52	<0.5	0.9	<0.5	22						
MW-t	12-10-96	41.41	8.79	32.62	ND	wsw	0.023	12-10-96	270	63	0.7	<0.5	1	25				**	**	**
MW-I	03-27-97	41.41	9.80	31.61	ND	wsw	0.026	03-27-97	1500	610	<5^	15	7	56						
MW-2	03-24-95	40.38	6.96	33.42	ND	NW	0.037	03-24-95	<50	<0.5	<0.5	<0.5	<0.5							
MW-2	05-24-95	40.38	10.02	30.36	ND	WNW	0.013	05-24-95	Not sampled	: well samp	led semi-a			t and third	quarters					
MW-2	08-22-95	40.38	10.87	29.51	ND	SW	0.012	08-22-95	<50	<0.5	<0.5	<0.5	<0.5	<3						
MW-2	11-09-95	40.38	13.12	27.26	ND	WSW	0.01	11-09-95	Not sampled						quarters					
MW-2	02-27-96	40.38	10.25	30.13	ND	sw	0.009	02-27-96	<50	<0.5	<0.5	<0.5	<0.5	<3						
MW-2	04-22-96	40.38	9.98	30.40	ND	wsw	0.014	04-22-96	Not sampled	: well samp	led semi-a	nnually, du	ing the firs	t and third	quarters					
MW-2	08-15-96	40.38	11.10	29.28	ND	sw	0.011	08-15-96	<50	<0.5	<0.5	<0.5	<0.5	4		• •				
MW-2	12-10-96	40.38	10.00	30.38	ND	wsw	0.023	12-10-96	Not sampled	: well samp	led semi-a	nnually, du	ing the firs	t and third	quarters					
MW-2	03-27-97	40.38	10.38	30.00	ND	wsw	0.026	03-27-97	<50	<0.5	< 0.5	<0.5	<0.5	12	· ••					

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

Well Designation	Water Level Field Date	Top of Casing	as Depth to Water	Groundwater	Floating Product	Groundwater Row Direction	Hydraulic G Gradient	Water Sample Field Date	TPHG LUFT Method	н Веп zепе На ВРА 8020	Toluene	Ethylbenzene T EPA 8020	Total Xylenes	MTBE	MTBE F EPA 8240	Oil and Grease	Oil and Grease	Oll and Grease SM 5520F	전 TRPH 한 EPA 418.1	다 TPHD 라 LUFT Method
 MW-3	03-24-95	41.44	7.29	34.15	ND	NW	0.037	03-24-95		0.0	-0.5	2.4	0.5							
MW-3	05-24-95	41.44	9,53	34.13	ND ND	WNW	0.037	05-24-95	51 <50	0.8 <0.5	<0.5 <0.5	2.4 <0.5	<0.5 <0.5						<500	
MW-3	08-22-95	41.44	11,19	30.25	ND	SW	0.013	03-24-93	<50 <50	<0.5	<0.5	<0.5	<0.5 <0.5	79					<500	
MW-3	11-09-95	41.44	12,77	28.67	ND	wsw	0.012	11-09-95	<50	<0.5	<0.5	<0.5	<0.5						<500 600	
MW-3	02-27-96	41.44	9.41	32.03	ND	SW	0.009	02-27-96	120	3.6	<0.5	2.2	3.7	90					<0.5	
MW-3	04-22-96	41.44	9.63	31.81	ND	wsw	0.014	04-22-96	<50	<0.5	<0.5	<0.5	<0.5	90					40.3	
MW-3	08-15-96	41.44	11.12	30.32	ND	sw	0.011	08-15-96	<50	<0.5	<0.5	<0.5	<0.5	54						
MW-3	12-10-96	41.44	10.34	31,10	ND	WSW	0.023	12-10-96	71	<0.5	<0.5	<0.5	<0.5	130						
MW-3	03-27-97	41.44	10.28	31.16	ND	wsw	0.026	03-27-97	<100^	<1^	<1^	<1^	<1^	170						
MW-4	03-24-95	40.33	5.92	34,41	ND	NW	0.037	03-24-95	<50	<0.5	< 0.5	<0.5	<0.5							
MW-4	05-24-95	40.33	9.23	31.10	ND	WNW	0.013	05-24-95	<50	<0.5	< 0.5	< 0.5	<0.5							
MW-4	08-22-95	40.33	10.61	29.72	ND	sw	0.012	08-22-95	<50	< 0.5	< 0.5	<0.5	<0.5	99						
MW-4	11-09-95	40.33	11.97	28.36	ND	WSW	0.01	11-09-95	<50	< 0.5	< 0.5	<0.5	<0.5		89					
MW-4	02-27-96	40.33	8.84	31.49	ND	SW	0.009	02-27-96	<50	0.8	< 0.5	<0.5	<0.5	<3						
MW-4	04-22-96	40.33	9.15	31.18	ND	wsw	0.014	04-22-96	Not sampled	l: well samp	led annual	ly, during ti	he first quar	ter						
MW-4	08-15-96	40.33	10.35	29.98	ND	sw	0.011	08-15-96	Not sampled	l: well samp	iled annuali	ly, during tl	he first quar	ter						
MW-4	12-10-96	40.33	8.70	31.63	ND	wsw	0.023	12-10-96	Not sampled	l: well samp	led annual	ly, during ti	ne first quar	ter						
MW-4	03-27-97	40.33	9.75	30.58	ND	wsw	0.026	03-27-97	<5000^	<50^	<50^	<50^	<50^	4200						• •

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

Well Designation	Water Level Field Date	Top of Casing S Elevation	Depth to Water	Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic	Water Sample Field Date	TPHG	Benzene Se EPA 8020	Toluene	Ethylbenzene	Total Xyknes	MTBE	TE MTBE	Oil and Grease SM 5520B&F	Oil and Grease SM 5520C	Oil and Grease SM 5520F	√ka TRPH √ka EPA 418.1	TPHD
																		:::	·	
MW-5	03-24-95	41.84	6.23	35.61	ND	NW	0.037	03-24-95	<50	<0.5	<0.5	<0.5	<0.5	• •					••	* *
MW-5	05-24-95	41.84	9.61	32.23	ND	WNW	0.013	05-24-95	Not sampled											
MW-5	08-22-95	41.84	11.12	30.72	ND	SW	0.012	08-22-95	Not sampled				-							
MW-5	11-09-95	41.84	12.52	29.32	ND	wsw	0.01	11-09-95	Not sampled	: well samp	oled annuall	y, during t	he first quar	ter						
MW-5	02-27-96	41.84	9.52	32.32	ND	sw	0.009	02-27-96	<50	<0.5	<0.5	<0.5	< 0.5	<3						
MW-5	04-22-96	41.84	9.44	32.40	ND	wsw	0.014	04-22-96	Not sampled	: well samp	oled annuali	ly, during t	he first quar	ter						
MW-5	08-15-96	41.84	10.83	31.01	ND	SW	0.011	08-15-96	Not sampled	: well samp	oled annuall	ly, during t	he first quar	ter						
MW-5	12-10-96	41.84	9.20	32.64	ND	WSW	0.023	12-10-96	Not sampled	: well samp	oled annuall	ly, during t	he first quar	ter						
MW-5	03-27-97	41.84	10.10	31.74	ND	WSW	0.026	03-27-97	<50	<0.5	<0.5	<0.5	<0.5	<3						
MW-6	03-24-95	40.13	9.03	31.10	ND	NW	0.037	03-24-95	<50	<0.5	<0.5	<0.5	< 0.5					* +		
MW-6	05-24-95	40.13	12.45	27.68	ND	WNW	0.013	05-24-95	Not sampled	•			-							
MW-6	08-22-95	40.13	13.32	26.81	ND	SW	0.012	08-22-95	Not sampled	-										
MW-6	11-09-95	40.13	14.13	26.00	ND	wsw	0.01	11-09-95	Not sampled					ter						
MW-6	02-27-96	40.13	11.86	28.27	ND	SW	0.009	02-27-96	<50	<0.5	<0.5	<0.5	<0.5	<3						
MW-6	04-22-96	40.13	12.35	27.78	ND	wsw	0.014	04-22-96	Not sampled	: weil samp	oled annuall	y, during t	he first quar	ter						
MW-6	08-15-96	40.13	13.18	26.95	ND	SW	0.011	08-15-96	Not sampled	: well samp	oled annuall	y, during t	be first quar	ter						
MW-6	12-10-96	40.13	11.94	28.19	ND	wsw	0.023	12-10-96	Not sampled	: well samp	oled annuall	y, during t	he first quar	ter						
MW-6	03-27-97	40.13	13.10	27.03	ND	wsw.	0.026	03-27-97	<50	<0.5	< 0.5	<0.5	<0.5	<3						

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present*

Well Designation	Water Level Field Date	Top of Casing To Elevation	as Depth to Water	Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic	Water Sample Field Date	TPHG	Benzene Pa Benzene	Toluene P EPA 8020	Ethylbenzene	Total Xylenes	MTBE FPA 8020	표 MTBE ၣ EPA 8240	Dil and Grease SM 5520B&F	oil and Grease SM 5520C	oil and Grease SM 5520F	т кРн 7 ЕРА 418.1	TPHD TPHD T LUFT Method
RW-1	03-24-95	40.33	9.32	** 31.02	0.01	NW	0.037	03-24-95	11000	560	660	150	1700							
RW-1	05-24-95	40.33	9.75	** 30,60	0.03	WNW	0.013	05-24-95	Not sampled	: well conta	ained floati	ng product								
RW-1	08-22-95	40.33	10.86	** 29.48	0.02	SW	0.012	08-22-95	Not sampled	: well cont	ained floati	ng product								
RW-1	11-09-95	40.33	20.61	19.72	ND	wsw	0.01	11-09-95	1600	79	46	13	240							
RW-1	02-27-96	40,33	16.56	23.77	ND	sw	0.009	02-27-96	210	44	7.5	2.5	24	29						
RW-1	04-22-96	40.33	9.65	30.68	ND	wsw	0.014	04-22-96	36000	7400	3700	580	3400	<300						
RW-1	08-15-96	40.33	10.60	29.73	ND	SW	0.011	08-15-96	1800	31	38	15	150	<30^						
RW-1	12-10-96	40.33	8.72	31.61	ND	wsw	0.023	12-10-96	25000	1900	1000	330	3200	<100^						
RW-1	03-27-97	40.33	10.33	30.00	ND	wsw	0.026	03-27-97	7200	1900	59	95	240	480						

Table 2 Historical Groundwater Elevation and Analytical Data Petroleum Hydrocarbons and Their Constituents 1995 - Present*

ARCO Service Station 2035
1001 San Pablo Avenue, Albany, California

Date: 06-06-97

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oil and Grease SM 5520B&F	Oli and Grease SM 5520C	Oil and Grease SM 5520F	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl tert-butyl ether

SM: standard method

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND: none detected NW: northwest WNW: west-northwest

WNW: west-northwes SW: southwest

WSW: west-southwest

^: method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference

- -: not analyzed or not applicable

^{*:} For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 2035, Albany, California, (BMCON, March 25, 1996).

^{**: [}corrected elevation (Z')] = Z + (h * 0.73); where Z = measured elevation, h = floating product thickness, 0.73 = density ratio of oil to water

Table 3 Historical Groundwater Elevation Data

Shell Station, 999 San Pablo Avenue

Date: 06-06-97

Well Designation	Water Level Field Date	TOC Elevation	Depth to Water	Groundwater Elevation	
		ft-MSL	feet	ft-MSL	Comments
Shell Station					
S-1	12-10-96	42.73	7.56	35.17	
S-1	02-20-97	42.73	7.95	34.78	
S-2	12-10-96	40.73	8.57	32.16	
\$-2	02-20-97	40.73	8.15	32.58	
\$-3	12-10-96	41.46	7.96	33.50	
S-3	02-20-97	41.46	7. 44	34.02	
S-4	12-10-96	41.10	7.04	34.0 6	
S-4	02-20-97	41.10	7.07	34.03	
S-5	12-10-96	39.99	9.10	30.89	
S-5	02-20-97	39.99	8.93	31.06	
S-6	12-10-96	40.12	6.68	33,44	
S-6	02-20-97	40.12	5.70	34.42	
S-7	12-10-96	40.10	9.04	31.06	
S-7	02-20-97	40.10	9.60	30.50	

TOC: top of casing

ft-MSL: elevation in feet, relative to mean sea level

Table 4
Approximate Cumulative Floating Product Recovered

Well Designations	Date	F	Floating Product Recovered gallons	
RW-1	1992		22.3	
RW -1	1993		1.0	
RW-1	1994		0.0	
AS-1, AS-2, RW-1, VW-1, VW-2, and VW-7	1995		4.6	
VW-7	1996		0.003	
VW-7	1997		0.0	
		1992 to 1997 Total:	27.9	

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Location: 1001 San Pablo Avenue

Albany, California

Vapor Treatment Unit: Therm Tech Model

VAC-10 thermal/catalytic

oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 12-07-93

Operation and Performance Data From: 12-07-93 To: 04-01-97

	San Jose, California		S	ystem shut dov		4-01-97
Date Begin:		12-07-93	12-08-93	12-09-93	12-10-93	12-15-93
Date End:		12-08-93	12-09-93	12-10-93	12-15-93	12-16-93
Mode of Oxidation:		Therm-Ox (17)	Therm-Ox	Therm-Ox	Therm-Ox	Therm-Ox
Days of Operation:		1	0	1	5	1
Days of Downtime:		0	1	0	0	0
Average Vapor Concer						
Well Field Influent	t: ppmv (2) as gasoline (3)	2800	NA (18)	NA	NA	NA
	mg/m3 (4) as gasoline	10000	NA	NA	NA	NA
	ppmv as benzene (5)	170	NA	NA	NA	NA
	mg/m3 as benzene	540	NA	NA	NA	NA
System Influent	t: ppmv as gasoline	390	NA	390	410	500
	mg/m3 as gasoline	1400	NA	1400	1500	1800
	ppmv as benzene	12	NA	19	31	24
	mg/m3 as benzene	38	NA	60	100	79
System Effluent	t: ppmv as gasoline	21	NA	36	6	NA
	mg/m3 as gasoline	76	NA	130	21	NA
	ppmv as benzene	0.7	NA	1	< 0.01	NA
	mg/m3 as benzene	2.3	NA	3.1	< 0.05	NA
Average Well Field Flow	w Rate (6), scfm (7):	10.0	0.0	10.0	5.0	45.0
Average System Influent	t Flow Rate (6), scfm:	100.0	0.0	100.0	87.0	100.0
Average Destruction Ef	ficiency (8), percent (9):	94.6	NA	90.7	98.6	NA
Average Emission Rate	s (10), pounds per day (11)					
Gasoline:		86.0	0.00	1.17	0.16	NA
Benzene:		0.02	0.00	0.03	< 0.00	NA
Operating Hours This Pe	eriod:	21.00	0.00	23.00	121.00	18.00
Operating Hours To Date	e:	21.0	21.0	44.0	165.0	183.0
SVE Pounds/ Hour Rem	oval Rate, as gasoline (12):	0.52	0.00	0.52	0.49	0.67
SVE Pounds Removed 7	This Period, as gasoline (13):	11.00	0.00	12.05	59.10	12.13
GWE Pounds Removed	This Period, as gasoline (14):	0.00	0.00	0.00	0.00	0.00
Total Pounds Removed	This Period, as gasoline (15):	11.00	0.00	12.05	59.10	12.13
Total Pounds Removed	To Date, as gasoline:	11.0	11.0	23.1	82.2	94.3
Total Gallons Removed	This Period, as gasoline (16):	<u>1.77</u>	0.00	<u>1.94</u>	<u>9.53</u>	<u>1.96</u>
Total Gallons Removed	To Data as assolinas	1.8	1.8	3.7	13.3	15.2

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Location: 1001 San Pablo Avenue

Albany, California

Vapor Treatment Unit: Therm Tech Model

VAC-10 thermal/catalytic

oxidizer

Consultant:	EMCON 1921 Ringwood Avenue San Jose, California			Sta I Performance ystem shut dov	To: 0	2-07-93 4-01-97
Date Begin:		12-16-93	12-21-93	12-25-93	12-29-93	12-31-93
Date End:		12-21-93	12-25-93	12-29-93	12-31-93	01-07-94
Mode of Oxidation:		Therm-Ox	Therm-Ox	Therm-Ox	Therm-Ox	Therm-Ox
Days of Operation:		0	4	0	2	0
Days of Downtime:		5	0	4	0	7
Average Vapor Concent	trations (1)					
Well Field Influent:	ppmv (2) as gasoline (3)	NA	NA	NA	NA	NA
	mg/m3 (4) as gasoline	NA	NA	NA	NA	NA
	ppmv as benzene (5)	NA	NA	NA	NA	NA
	mg/m3 as benzene	NA	NA	NA	NA	NA
System Influent:	ppmv as gasoline	NA	NA	NA	. NA	NA
•	mg/m3 as gasoline	NA	NA	NA	NA.	NA
	ppmv as benzene	NA	NA	NA	NA	NA
	mg/m3 as benzene	NA	NA	NA	NA	NA
System Effluent:	ppmv as gasoline	NA	NA	NA	NA	NA
•	mg/m3 as gasoline	NA	NA	NA	NA NA	NA.
	ppmv as benzene	NA	NA	NA.	NA	NA.
	mg/m3 as benzene	NA	NA	NA	NA	NA
Average Well Field Flow	Rate (6), scfm (7):	0.0	20.0	0.0	54.0	0.0
Average System Influent		0.0	100.0	0.0	78.0	0.0
Average Destruction Effi	ciency (8), percent (9);	NA	NA	NA	NA	NA
Average Emission Rates	(10), pounds per day (11)					
Gasoline:		0.00	0.00	0.00	0.00	0.00
Benzene:		0.00	0.00	0.00	0.00	0.00
Operating Hours This Per	iod:	0.00	104.00	0.00	42.00	0.00
Operating Hours To Date:		183.0	287.0	287.0	<u>43.00</u> 330.0	<u>0.00</u> 330.0
· •						
SVE Pounds/ Hour Remo	vai Rate, as gasoline (12):	0.00	0.00	0.00	0.00	0.00
	is Period, as gasoline (13):	0.00	0.00	0.00	0.00	0.00
	his Period, as gasoline (14):	0.00	0.00	0.00	00.0	0.00
Total Pounds Removed Tl	nis Period, as gasoline (15):	0.00	0.00	0.00	0.00	0.00
Total Pounds Removed To	Date, as gasoline:	94.3	94.3	94.3	94.3	94.3
Total Gallons Removed T	his Period, as gasoline (16):	0.00	0.00	0.00	0.00	0.00
Total Gallons Removed T	o Date, as gasoline:	15.2	15.2	15,2	15.2	15.2

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Location: 1001 San Pablo Avenue

Albany, California

Vapor Treatment Unit: Therm Tech Model

VAC-10 thermal/catalytic

oxidizer

Consultant: EMCON

1921 Ringwood Avenue

Start-Up Date: 12-07-93

Operation and Performance Data From: 12-07-93

	San Jose, California		9	vetem shut dos	To: 0- vn on 8-12-96.	4-01-97
				ystem shut do	WII OII 0 12-90.	
Date Begin:		01-07-94	01-12-94	01-24-94	03-31-94	12-31-94
Date End:		01-12-94	01-24-94	03-31-94	12-31-94	02-06-95
Mode of Oxidation:		Therm-Ox	Therm-Ox	Therm-Ox	Therm-Ox	Therm-Ox
Days of Operation:		5	12	0	0	0
Days of Downtime:		0	0	66	275	37
Average Vapor Concent						
Well Field Influent:	ppmv (2) as gasoline (3)	NA	NA	NA	NA	NA
	mg/m3 (4) as gasoline	NA	NA	NA	NA	NA
	ppmv as benzene (5)	NA	NA	NA	, NA	NA
	mg/m3 as benzene	NA	NA	NA	NA	NA
System Influent:	ppmv as gasoline	NA	690	NA	NA	NA
	mg/m3 as gasoline	NA	2500	NA	NA	NA
	ppmv as benzene	NA	11	NA	NA	NA
	mg/m3 as benzene	NA	37	NA	NA	NA
System Effluent:	ppmv as gasoline	NA	14	NA	NA	NA
	mg/m3 as gasoline	NA	52	NA	NA	NA
	ppmv as benzene	NA	0.29	NA	NA	NA
	mg/m3 as benzene	NA	0.93	NA	NA .	NA
Average Well Field Flow	Rate (6), scfm (7):	37.0	41.0	0.0	0.0	0.0
Average System Influent	Flow Rate (6), scfm:	60.0	64.0	0.0	0.0	0.0
Average Destruction Effi	ciency (8), percent (9):	97.9	97.9	NA	NA	NA
Average Emission Rates	(10), pounds per day (11)					
Gasoline:		0.30	0.30	0.00	0.00	0.00
Benzene:		0.01	0.01	0.00	0.00	0.00
Operating Hours This Per	riod:	123.00	285.00	0.00	0.00	<u>8.90</u>
Operating Hours To Date		453.0	738.0	738.0	738.0	746.9
SVE Pounds/ Hour Remo	val Rate, as gasoline (12):	0.48	0.60	0.00	0.00	0.00
SVE Pounds Removed Ti	nis Period, as gasoline (13):	59.40	170.67	0.00	0.00	0.00
GWE Pounds Removed T	his Period, as gasoline (14):	0.00	<u>0.00</u>	0.00	<u>0.00</u>	0.00
Total Pounds Removed T	his Period, as gasoline (15):	59.40	170.67	0.00	0.00	0.00
Total Pounds Removed T	o Date, as gasoline:	153.7	324.3	324.3	324.3	324.3
	his Period, as gasoline (16):	9.58	<u>27.53</u>	0.00	0.00	0.00
Total Gallons Removed T	o Date, as gasoline:	24.8	52.3	52.3	52.3	52.3

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Location: 1001 San Pablo Avenue Albany, California

Vapor Treatment Unit: Therm Tech Model

VAC-10 thermal/catalytic oxidizer

	Albany, California		oxidizer						
	EMCON 1921 Ringwood Avenue San Jose, California		Start-Up Date: 12-07-93 Operation and Performance Data From: 12-07-93 To: 04-01-97 System shut down on 8-12-96.						
Date Begin:		02-06-95	03-01-95	04-01-95	06-01-95	07-01-95			
Date End:		03-01-95	04-01-95	06-01-95	07-01-95	08-01-95			
Mode of Oxidation:		Therm-Ox	Therm-Ox	Therm-Ox	Cat-Ox (19)	Cat-Ox			
Days of Operation:		21	7	0	Ś	26			
Days of Downtime:		2	24	61	25	5			
Average Vapor Concentr	rations (1)								
	ppmv (2) as gasoline (3)	1800	2500	NA	3300	130			
	mg/m3 (4) as gasoline	6650	8900	NA	12000	480			
1	ppmv as benzene (5)	17	31	NA	50	4			
1	mg/m3 as benzene	62	99	NA	170	14			
System Influent:	ppmv as gasoline	240	<15	NA	600	130			
1	mg/m3 as gasoline	880	<60	NA	2200	480			
1	ppmv as benzene	6	< 0.1	NA	10	4			
1	mg/m3 as benzene	21	<0.5	NA	34	14			
System Effluent: p	ppmv as gasoline	<15	<15	NA	<15	<15			
ı	mg/m3 as gasoline	<60	<60	NA	<60	<60			
Ī	ppmv as benzene	<0.1	< 0.1	NA	0.5	< 0.1			
I	mg/m3 as benzene	<0.5	<0.5	NA	1.5	<0.5			
Average Well Field Flow R	Rate (6), scfm (7):	4.7	4.1	1.2	20.9	25.2			
Average System Influent F	low Rate (6), scfm:	35.6	32.7	25.3	33.8	33.6			
Average Destruction Effici	iency (8), percent (9):	93.2	NA	NA	97.3	87.5			
Average Emission Rates (10), pounds per day (11)								
Gasoline:		0.19	0.18	NA	0.18	0.18			
Benzene:		0.00	0.00	NA	0.00	0.00			
Operating Hours This Perio	od:	501.95	162.83	3.02	112.33	614.38			
Operating Hours To Date:		1248.9	1411.7	1414.7	1527.0	2141.4			
SVE Pounds/ Hour Remova	al Rate, as gasoline (12):	0.12	0.14	0.00	0.94	0.05			
SVE Pounds Removed This		58.72	22.24	0.00	105.44	27.81			
GWE Pounds Removed Th		4.28	0.31	0.00	1.42	0.00			
Total Pounds Removed Thi	is Period, as gasoline (15):	63.00	22.55	0.00	106.86	27.81			
Total Pounds Removed To	Date, as gasoline:	387.3	409.9	409.9	516.8	544.6			
Total Gallons Removed Th	is Period, as gasoline (16):	10.16	<u>3.64</u>	0.00	<u>17.24</u>	4.49			
Total Gallons Removed To	Date, as gasoline:	62.5	66.1	66.1	83.4	87.8			

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Location: 1001 San Pablo Avenue

Albany, California

Vapor Treatment Unit: Therm Tech Model

VAC-10 thermal/catalytic

oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 12-07-93 Operation and Performance Data From: 12-07-93 To: 04-01-97

Sa	n Jose, California		Sy	stem shut dow		I-01-97
Date Begin:		08-01-95	09-01-95	10-01-95	11-01-95	12-01-95
Date End:		09-01-95	10-01-95	11-01-95	12-01-95	01-01-96
Mode of Oxidation:		Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox
Days of Operation:		23	30	26	30	21
Days of Downtime:		. 8	0	5	1	10
Average Vapor Concentrati						
Well Field Influent: ppr	🕶	1850	617	425	850	940
	/m3 (4) as gasoline	7800	2233	1535	3100	3385
	my as benzene (5)	17.5	5.9	4.7	11	7.4
mg	z/m3 as benzene	56	19	15	36	23
System Influent: pps		1950	457	320	570	310
	y/m3 as gasoline	8300	1667	1165	2100	1300
• •	mv as benzene	20	4.6	3.9	7	4.1
mg	z/m3 as benzene	63	15	12	23	13
System Effluent: ppi	mv as gasoline	54	<15	<15	<15	17
mş	r/m3 as gasoline	155	<60	<60	<60	63
1.4	mv as benzene	1	0.2	0.2	0.4	0.3
mg	z/m3 as benzene	3.2	0.6	0.5	1.2	0.9
Average Well Field Flow Rat	e (6), scfm (7):	27.7	139.7	91.2	68.0	39.5
Average System Influent Flor		76.5	114.7	88.4	73.4	57.8
Average Destruction Efficier	ncy (8), percent (9):	98.1	96.4	94.8	97.1	95.2
Average Emission Rates (10), pounds per day (11)					
Gasoline:		1.07	0.62	0.48	0.40	0.33
Benzene:		0.02	0.01	0.00	0.01	0.00
Operating Hours This Period:		562.61	<u>717.42</u>	624.47	708.09	493.54
Operating Hours To Date:		2704.0	3421.4	4045.9	4754.0	5247.5
SVE Pounds/ Hour Removal	Rate, as gasoline (12):	0.81	1.17	0.52	0.79	0.50
SVE Pounds Removed This F	Period, as gasoline (13):	454.96	837.62	327.19	558.66	246.98
GWE Pounds Removed This	Period, as gasoline (14):	<u>0.49</u>	0.24	0.07	11.02	<u>5.51</u>
Total Pounds Removed This	Period, as gasoline (15):	455.45	837.86	327.26	569.68	252.49
Total Pounds Removed To D	ate, as gasoline:	1000.0	1837.9	2165.1	2734.8	2987.3
Total Gallons Removed This	Period, as gasoline (16):	<u>73.46</u>	135.15	<u>52.79</u>	91.89	40.73
Total Gallons Removed To D	ate, as gasoline:	161.3	296.5	349.2	441.1	481.9

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Location: 1001 San Pablo Avenue

Albany, California

Vapor Treatment Unit: Therm Tech Model

VAC-10 thermal/catalytic

oxidizer

Consultant: EMCON

1921 Ringwood Avenue

San Jose, California

Start-Up Date: 12-07-93

Operation and Performance Data From: 12-07-93

To: 04-01-97

		System shut down on 8-12-96.					
Date Begin:	01-01-96	02-01-96 (20)	03-01-96	04-01-96	05-01-96		
Date End:	02-01-96	03-01-96	04-01-96	05-01-96	06-01-96		
Mode of Oxidation:	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox		
Days of Operation:	31	29	24	0	5		
Days of Downtime:	0	0	7	30	26		
Average Vapor Concentrations (1)							
Well Field Influent: ppmv (2) as gasoline (3)	<15	<15	NA	NA	NA		
mg/m3 (4) as gasoline	<60	<60	NA	NA	NA		
ppmv as benzene (5)	<0.1	<0.1	NA	NA	NA		
mg/m3 as benzene	<0.5	<0.5	NA	NA	NA		
System Influent: ppmv as gasoline	<15	<15	NA	NA	NA		
mg/m3 as gasoline	<60	<60	NA	NA	NA		
ppmv as benzene	0.3	0.3	NA	NA	NA		
mg/m3 as benzene	0.9	0.9	NA	NA	NA		
System Effluent: ppmv as gasoline	<15	<15	NA	NA	NA		
mg/m3 as gasoline	<60	<60	NA	NA	NA		
ppmv as benzene	<0.1	< 0.1	, NA	NA	NA		
mg/m3 as benzene	<0.5	<0.5	NA	NA	NA		
Average Well Field Flow Rate (6), scfm (7):	24.8	28.6	0.0	0.0	32.5		
Average System Influent Flow Rate (6), scfm;	51.2	53.1	0.0	0.0	41.3		
Average Destruction Efficiency (8), percent (9):	NA	NA	NA	NA	NA		
Average Emission Rates (10), pounds per day (11)							
Gasoline:	0.28	0.29	NA	NA	NA		
Benzene:	0.00	0.00	NA	NA	NA		
Operating Hours This Period:	744.00	158.00	0.00	2.38	120.25		
Operating Hours To Date:	5991.5	6149.5	6149.5	6151.9	6272.2		
SVE Pounds/ Hour Removal Rate, as gasoline (12):	0.01	0.01	0.00	0.00	0.01		
SVE Pounds Removed This Period, as gasoline (13):	4.14	1.01	0.00	0.00	0.88		
GWE Pounds Removed This Period, as gasoline (14):	<u>3.99</u>	0.00	0.01	0.00	0.00		
Total Pounds Removed This Period, as gasoline (15):	8.13	1.01	0.01	0.00	0.88		
Total Pounds Removed To Date, as gasoline:	2995.5	2996.5	2996.5	2996.5	2997.4		
Total Gallons Removed This Period, as gasoline (16):	<u>1.31</u>	<u>0.16</u>	0.00	0.00	<u>0.14</u>		
Total Gallons Removed To Date, as gasoline:	483.2	483.3	483.3	483.3	483.5		

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Location: 1001 San Pablo Avenue

Albany, California

Vapor Treatment Unit: Therm Tech Model VAC-10 thermal/catalytic

oxidizer

	EMCON 921 Ringwood Avenue San Jose, California		Start-Up Date: 12-07-93 Operation and Performance Data From: 12-07-93 To: 04-01-97 System shut down on 8-12-96.					
Date Begin:		06-01-96	07-01-96	08-01-96	09-01-96	10-01-96		
Date End:		07-01-96	08-01-96	09-01-96	10-01-96	01-01-97		
Mode of Oxidation:		Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox	Cat-Ox		
Days of Operation:		0	16	10	0	0		
Days of Downtime:		30	15	21	30	92		
Average Vapor Concentra	ntions (1)							
Well Field Influent: p	pmv (2) as gasoline (3)	NA	160	16	NA	NA		
π	ng/m3 (4) as gasoline	NA	660	67	NA	NA		
p	pmv as benzene (5)	NA	0.8	< 0.2	NA	NA		
п	ng/m3 as benzene	NA	2.5	<0.5	NA	NA		
System Influent: p	omy as gasoline	NA	160	16	NA	NA		
	ng/m3 as gasoline	NA	660	67	NA	NA		
	pmv as benzene	NA	0.8	< 0.2	NA	NA		
n	ng/m3 as benzene	NA	2.5	<0.5	NA	NA		
System Effluent: p	pmy as gasoline	NA	<5	<5	NΑ	NA		
· ·	ng/m3 as gasoline	NA	<20	<20	NA	NA		
	pmv as benzene	NA	< 0.2	< 0.2	NA	NA		
	ng/m3 as benzene	NA	<0.5	<0.5	NA	NA		
Average Well Field Flow R	ate (6), scfm (7):	0.0	52.4	52.6	0.0	0.0		
Average System Influent Flo	ow Rate (6), scfm:	0.0	95.1	95.4	0.0	0.0		
Average Destruction Efficient	ency (8), percent (9):	NA	97.0	70.1 (22)	NA	NA		
Average Emission Rates (1	10), pounds per day (11)							
Gasoline:		NA	0.17	0.17	NA	NA		
Benzene:		NA	0.00	0.00	NA	NA		
Operating Hours This Perio	d:	0.00	372.17	228.86	0.00	0.00		
Operating Hours To Date:		6272.2	6644.3	6873.2	6873.2	6873.2		
SVE Pounds/ Hour Remova	d Rate, as gasoline (12):	0.00	0.01	0.01	0.00	0.00		
SVE Pounds Removed This	Period, as gasoline (13):	0.00	4.38	2.70	0.00	0.00		
GWE Pounds Removed Thi	s Period, as gasoline (14):	0.00	3.07	0.00	0.00	0.00		
Total Pounds Removed This	s Period, as gasoline (15):	0.00	7.45	2.70	0.00	0.00		
Total Pounds Removed To	Date, as gasoline:	2997.4	3004.8	3007.5	3007.5	3007.5		
Total Gallons Removed Thi	is Period, as gasoline (16):	0.00	1.20	0.44	0.00	0.00		
Total Gallons Removed To	Date, as gasoline:	483.5	484.7	485. ī	485.1	485.1		

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2035 Location: 1001 San Pal Albany, Calif		Vapor Treatment Unit: Therm Tech Model VAC-10 thermal/catalytic oxidizer
Consultant: EMCON 1921 Ringwo San Jose, Cal		Start-Up Date: 12-07-93 Operation and Performance Data From: 12-07-93 To: 04-01-97 System shut down on 8-12-96.
Date Begin:	01-01-97	
Date End:	04-01-97	
Mode of Oxidation:	Cat-Ox	
Days of Operation:	0	
Days of Downtime:	90	
Average Vapor Concentrations (1)		
Well Field Influent: ppmv (2) as gar	soline (3) NA	
mg/m3 (4) as g		
ppmv as benze	ne (5) NA	
mg/m3 as benz	ene NA	
System Influent: ppmv as gasoli	ne NA	
mg/m3 as gasoi		
ppmv as benze		
mg/m3 as benz		
System Effluent: ppmv as gasoli	ne NA	·
mg/m3 as gasoi		
ppmv as benze		
mg/m3 as benz		
A Well Field Firm Day (6) f- (7).	
Average Well Field Flow Rate (6), scfm (Average System Influent Flow Rate (6), s	•	
Average Destruction Efficiency (8), percentage Destruction		
Average Emission Rates (10), pounds p	_	
Gasoline:	NA NA	•
Benzene:	NA	
Operating Hours This Period:	0.00	
Operating Hours To Date:	6873.2	
SVE Pounds/ Hour Removal Rate, as gase	oline (12): 0.00	
SVE Pounds Removed This Period, as gas	soline (13): 0.00	
GWE Pounds Removed This Period, as ga		
Total Pounds Removed This Period, as ga		
Total Pounds Removed To Date, as gasoli	ine: 3007.5	
Total Gallons Removed This Period, as ga	soline (16): 0.00	
Total Gallons Removed To Date, as gasol		

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 2035

Vapor Treatment Unit: Therm Tech Model

Location: 1001 San Pablo Avenue

VAC-10 thermal/catalytic

Albany, California

oxidizer

Consultant: EMCON

Start-Up Date: 12-07-93

1921 Ringwood Avenue San Jose, California Operation and Performance Data From: 12-07-93

To: 04-01-97

System shut down on 8-12-96.

URRENT REPORTING PERIOD:	01-01-97	to 04	1 -01-97
DAYS / HOURS IN PERIOD:	90	2160.0	
DAYS / HOURS OF OPERATION:	0	0.0	
DAYS / HOURS OF DOWN TIME:	90	2160.0	
PERCENT OPERATIONAL:		0.0 %	
PERIOD POUNDS REMOVED:	0.0		
PERIOD GALLONS REMOVED:	0.0		
AVERAGE WELL FIELD FLOW RATE (scfm):		0.0	
AVERAGE SYSTEM INFLUENT FLOW RATE (scfm):		0.0	

2. ppmv: parts per million by volume

3. Between December 7, 1993, and February 6, 1995:

Concentration (as gasoline in ppmv) = [concentration (as gasoline in mg/m3) x 24.05 (lb/m3/lb-mole of air)/mg] / 87 lb/lb-mole

- 4. mg/m3: milligrams per cubic meter
- 5. Between December 7, 1993, and February 6, 1995:

Concentration (as benzene in ppmv) = [concentration (as benzene in mg/m3) x 24.05 (lb/m3/lb-mole of air)/mg] / 78 lb/lb-mole

- 6. Average flow rates (time weighted average) are based on instantaneous flow rates recorded during the month; refer to Appendix B for instantaneous flow data.
- 7. scfm: flow in standard cubic feet per minute at one atmosphere and 70 degrees Fahrenheit
- 8. Average destruction efficiencies are calculated using monthly average concentrations; refer to Appendix B for instantaneous destruction efficiency data.
- destruction efficiency, percent = ([system influent concentration (as gasoline in mg/m3)) system effluent concentration (as gasoline in mg/m3)) x 100 percent
- 10. Average emission rates are calculated using monthly average concentrations and flow rates; refer to Appendix B for instantaneous emission rate data.
- 11. emission rates (pounds per day) = system effluent concentration (as gasoline or benzene in mg/m3) x system influent flow rate (scfm) x 0.02832 m3/ft3 x 1440 minutes/day x 1 pound/454,000 mg
- 12. pounds/ hour removal rate (as gasoline) = well field influent concentration (as gasoline in mg/m3) x well field influent flow rate (scfm) x 0.02832 m3/ft3 x 60 minutes/hour x 1 pound/454,000 mg
- 13. Soil-vapor extraction (SVE) pounds removed this period (as gasoline) = pounds/ hour removal rate (SVE) x hours of operation (SVE)
- 14. Groundwater extraction (GWE); refer to Table 8 for GWE system performance data
- 15. Represents the total mass recovered by the SVE and GWE systems, and the total mass abated by the thermal/catalytic oxidizer
- 16. gallons removed this period (as gasoline) = pounds removed this period (as gasoline) x 0.1613 gallons/pound of gasoline
- 17. Therm-Ox: thermal oxidation
- 18. NA: not analyzed, not applicable, or not available
- 19. Cat-Ox: catalytic oxidation; the SVE system's abatement unit was converted to the Cat-Ox mode of operation on June 20, 1995
- 20. On February 7, 1996 the SVE wells were taken off-line; however, the therm tech unit remained on for the groundwater extraction system.
- 21. The utility costs for February and March were \$694.00 and \$649.00, respectively. The SVE system was shut down on February 7, 1996, therefore cost per pound was not calculated for these periods. The utility costs incurred during February and March are associated with the off gas abatement for the aeration tank.
- 22. Although the destruction efficiency appeared to be less than 90 percent, laboratory analytical results collected during this period indicate the effluent TVHG and benzene concentrations in off-gas discharged to the atmosphere were below laboratory detection limits, indicating compliance with BAAQMD discharge requirements.

Average vapor monitoring concentrations were calculated for all periods after February 6, 1995. Average concentrations are based on discrete sample results reported during the month; refer to Appendix B for discrete sample results.

Table 6
Soil-Vapor Extraction Well Data

Date: 05-27-97

						Well Ide	ntification					
		VW-1			VW-2			VW-3			VW-4	
	Valve		Vacuum	Valve		Vacuum	Valve	-	Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respons
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O
or SVE well m	nonitoring data prior	r to July 1, 1995, p	lease refer to the t	l hird quarter 1995	groundwater monit	oring report for th	is site.					
07-10-95	open	NA	NA	open	NA	NA	closed	NA	NA	closed	NA	NA
08-08-95	open	NA	47.0	open	NA	46.0	open	NA	47.0	орея	NA	47.0
09-12-95	open	3390 PID	26.7	open	2332 PID	26.5	open	263 PID	25.0	орел	1736 PID	26.3
09-28-95	open	1498 PID	30.0	open	1075 PID	29.0	open	235 PID	26.0	орел	911 PID	30.0
09-28-95	open	1800 LAB	NA	open	1500 LAB	NA	open	180 LAB	NA	open	990 LAB	NA
09-28-95	open	NA	NA	орел	NA	NA	closed	NA	NA	орел	NA	NA
09-29-95	open	NA	NA	open	NA	NA	closed	NA	NA	орел	NA	NA
10-26-95	open	NA	25.5	open	NA	25.5	closed	NA	0.0	open	NA	25.3
12-05-95	open	NA	54.0	орел	NA	54.0	closed	NA	NA	closed	NA	NA
02-07-96	open	698 PID	NA	open	390 PID	NA	open	501 PID	NA	open	610 PID	NA
03-25-96	System was manu	ually shut down.		ĺ								
05-17-96	open	1945 PID	30.0	closed	101 PID	18.0	closed	50.1 PID	18.0	open	197 PID	25.0
05-22-96	System was manu	ually shut down.										
07-16-96	open	7600 PID	NA	орел	3100 PID	NA	open	1450 PID	NA	open	3310 PID	NA
08-08-96	open	NA	NA	орел	NA	NA	ор е л	NA	NA	open	NA	NA
02-04-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
02-18-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O; inches of water open; open to the system

open(b): open to the system and bubbling air

passive: open to the atmosphere

closed: closed to the system and atmosphere

closed (b): closed to the system and atmosphere, but bubbling air

NA: not analyzed or not measured

PID: TVHG concentration was measured with a portable photo-ionization detector

LAB: TVHG concentration was analyzed in the laboratory

Table 6
Soil-Vapor Extraction Well Data

Date: 05-27-97

				Υ					1			
		VW-5			VW-6			VW-7			VW-8	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuun
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respons
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in- H2 O		ppmv	in-H2O
or SVE well m	I conitoring data prior	to July 1, 1995, p	lease refer to the t	l hird quarter 1995 (groundwater monit	oring report for th	s site.					
07-10-95	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
08-08-95	open	NA	46.0	open	NA	36.0	open	NA	47.0	open	ÑΑ	43.0
09-12-95	open	243 PID	26.2	open	587 PID	27.7	open	1297 PID	25.5	open	830 PID	26.2
09-28-95	open	301 PID	30.0	open	230 PID	32.0	open	941 PID	30.0	open	956 PID	29.0
09-28-95	open	280 LAB	NA	open	250 LAB	NA	open	1400 LAB	NA	open	2000 LAB	NA
09-28-95	open	NA	NA	open	NA	NA	open	NA	NA	open	NA	NA
09-29-95	орел	NA	NA	closed	NA	NA	open	NA	NA	open	NA	NA
10-26-95	ореп	NA	25.3	closed	NA	0.0	open	NA	19.0	open	NA	21.9
12-05-95	closed	NA	NA	closed	NA	NA	open	NA	54.0	closed	NA	NA
02-07-96	open	47.2 PID	NA	open	840 PID	NA	open	102 PID	NA	open	780 PID	NA
03-25-96	System was many	ially shut down.										
05-17-96	closed	80.6 PID	20.0	open	195 PID	22.0	open	419 PID	28.0	closed	116 PID	18.0
05-22-96	System was manu	ially shut down.		İ								
07-16-96	open	300 PID	NA	open	NA	NA	open	590 PID	NA	open	1400 PID	NA
08-08- 96	open	NA	NA	open	NA	NA :	орел	NA	NA	open	NA	NA
02-04-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
02-18-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water

open: open to the system

open(b); open to the system and bubbling air

passive: open to the atmosphere

closed: closed to the system and atmosphere

closed (b): closed to the system and atmosphere, but bubbling air

NA: not analyzed or not measured

PID: TVHG concentration was measured with a portable photo-ionization detector

LAB: TVHG concentration was analyzed in the laboratory

Table 6
Soil-Vapor Extraction Well Data

Date: 05-27-97

						Well Ide	ntification					
		VW-9			RW-I			AS-1V			AS-2V	
	Valve	•	Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vасииг
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respon
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		ррти	in- H 20
or SVE well m	nonitoring data prio	r to July 1, 1995, p	lease refer to the t	l hird quarter 1995 g	groundwater monit	oring report for th	is site.					
07-10-95	closed	NA	NA	open(b)	NA	NA	ореп	NA	NA	open	NA	NA
08-08-95	open	NA	44.5	open	NA	49.0	open	NA	44.5	open	NA	44.5
09-12-95	open	566 PID	25.3	open	1072 PID	26.3	open	2522 PID	26.6	open	2522 PID	26.6
09-28-95	open	393 PID	25.0	open	921 PID	31.0	open	1213 PID	26.5	open	1183 PID	26.0
09-28-95	open	500 LAB	NA	open	1100 LAB	NA	open	1400 LAB	NA	open	1500 LAB	ΝA
09-28-95	open	NA	NA	open	NA	NA	open	NA	NA	closed	NA	NA
09-29-95	open	ΝA	NA	open	NA	NA	open	NA	NA -	open	NA	NA
10-26-95	open	NA	22.4	open	NA	23.9	open	NA	25.7	open	NA	25.7
12-05-95	closed	NA	NA	closed	NA	NA	open	NA	54.0	closed	NA	NA
02-07-96	open	1110 PID	NA	open	57 PID	NA	open	465 PID	NA	open	465 PID	NA
03-25-96	System was man	ually shut down.		1								
05-17-96	open	384 PID	28.0	closed	118 PID	25.0	open	146 PID	30.0	open	208 PID	30.0
05-22-96	System was man	ually shut down.										
07-16-96	open	425 PID	NA	open	1140 PID	NA	open	4600 PID	NA	open	4600 PID	NA
08-08-96	open	NA	NA	орея	NA	NA	open	NA	NA	open	NA	NA
02-04-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
02-18-97	closed	NA	NA	closed (b)	NA	NA	closed	NA	NA	closed	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NΑ	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water open: open to the system

open(b): open to the system and bubbling air

passive: open to the atmosphere

closed: closed to the system and atmosphere

closed (b): closed to the system and atmosphere, but bubbling air

NA: not analyzed or not measured

PID: TVHG concentration was measured with a portable photo-ionization detector

LAB: TVHG concentration was analyzed in the laboratory

Table 7
Influent and Effluent Groundwater Analyses

Veli	Facility Nur Location:	nber: 2035 1001 San Pablo A Albany, Californ Water		Groundwater Treatment Unit: Aeration Tank with Two 200 Pound Liquid-Phase Carbon Polish Unit								
1-1	Well Desig- nation	Sample Field				benzene	Xylenes					
1-1		02-08-95	NA	NA	NA	NA	NA					
1-1	I-1			4300		1000	5200					
1-1	1-1	02-14-95	33000	4300	5800	970	5600					
1-1 06-20-95 20000 1500 1200 220 2300 1-1 08-08-95 11000 970 1100 210 1800 1-1 09-12-95 2700 200 150 29 290 1-1 10-11-95 1000 97 38 7 69 1-1 11-08-95 2500 38 27 8 240 1-1 11-30-95 29000 190 530 300 3100 1-1 01-30-96 70 4.5 1.8 <0.5 8.3 1-1 07-16-96 4300 530 210 110 550 1-2 02-08-95 1500 59 70 14 86 1-2 02-14-95 1500 59 70 14 86 1-2 02-14-95 340 7.2 8.8 1.9 37 1-2 02-28-95 390 3.9 2.5 0.9 16 1-2 06-20-95 2200 30 27 11 77 1-2 08-08-95 330 17 18 3.5 36 1-2 09-12-95 78 4.1 3 <0.5 8.9 1-2 10-11-95 <50 0.9 <0.5 <0.5 1 1-2 11-30-95 1800 2.5 2.7 3.8 35 1-2 11-30-95 1800 2.5 2.7 3.8 35 1-2 11-30-95 1800 2.5 2.7 3.8 35 1-2 11-30-95 1800 2.5 2.7 3.8 35 1-2 11-30-95 220 5 7.4 1.7 22	I-i	02-21-95	21000	940	1500	360	4000					
1-1	I-1	02-28-95	15000	430	290	54	2000					
1-1	I-1	06-20-95	20000	1500	1200	220	2300					
1-1	I- 1	08-08-95	11000	970	1100	210	1800					
1-1	I- 1			200	150	29	290					
I-1 11-30-95 29000 190 530 300 3100 I-1 01-30-96 70 4.5 1.8 <0.5	I -1	10-11-95	1000	97	38	7	69					
I-1 01-30-96 70 4.5 1.8 <0.5 8.3 I-1 07-16-96 4300 530 210 110 550 I-2 02-08-95 NA NA NA NA NA NA NA I-2 02-08-95 1500 59 70 14 86 I-2 02-14-95 1500 59 70 14 86 I-2 02-21-95 340 7.2 8.8 1.9 37 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5 8.9 I-2 10-11-95 <50 0.9 <0.5 <0.5 1 I-2 11-08-95 1800 2.5 2.7 3.8 35 I-2 11-30-95 220 5 7.4 1.7 22		11-08-95	2500	38	27	8	240					
I-1 07-16-96 4300 530 210 110 550 I-2 02-08-95 NA NA NA NA NA NA NA I-2 02-08-95 1500 59 70 14 86 I-2 02-14-95 1500 59 70 14 86 I-2 02-14-95 340 7.2 8.8 1.9 37 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 02-29-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5 8.9 I-2 10-11-95 <50 0.9 <0.5 <0.5 1 I-2 11-08-95 1800 2.5 2.7 3.8 35 I-2 11-30-95 220 5 7.4 1.7 22	I- 1	11-30-95	29000	190	530		3100					
I-2 02-08-95 NA NA NA NA NA NA I-2 02-08-95 1500 59 70 14 86 I-2 02-14-95 1500 59 70 14 86 I-2 02-21-95 340 7.2 8.8 1.9 37 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5				4.5	1.8	<0.5	8.3					
I-2 02-08-95 1500 59 70 14 86 I-2 02-14-95 1500 59 70 14 86 I-2 02-21-95 340 7.2 8.8 1.9 37 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5	I-1	07-16-96	4300	530	210	110	550					
I-2 02-08-95 1500 59 70 14 86 I-2 02-14-95 1500 59 70 14 86 I-2 02-21-95 340 7.2 8.8 1.9 37 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5 8.9 I-2 10-11-95 <50 0.9 <0.5 <0.5 1 I-2 11-08-95 1800 2.5 2.7 3.8 35 I-2 11-30-95 220 5 7.4 1.7 22												
I-2 02-14-95 1500 59 70 14 86 I-2 02-21-95 340 7.2 8.8 1.9 37 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5												
I-2 02-21-95 340 7.2 8.8 1.9 37 I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5												
I-2 02-28-95 390 3.9 2.5 0.9 16 I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5												
I-2 06-20-95 2200 30 27 11 77 I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5												
I-2 08-08-95 330 17 18 3.5 36 I-2 09-12-95 78 4.1 3 <0.5												
I-2 09-12-95 78 4.1 3 <0.5												
I-2 10-11-95 <50												
I-2 11-08-95 1800 2.5 2.7 3.8 35 I-2 11-30-95 220 5 7.4 1.7 22												
I-2 11-30-95 220 5 7.4 1.7 22												
1.7 D ALDE JED JOE JOE JOE JOE JOE	I-2 I-2		<50	5 <0.5								
I-2 07-16-96 230 23 7.6 4.5 21	I-2	07-16-96	230	23	7.6	4.5	21					

Table 7
Influent and Effluent Groundwater Analyses

Facility Nur Location:	nber: 2035 1001 San Pablo A Albany, Californ Water		Groundwater Treatment Unit: Aeration Tank with Two 200 Pound Liquid-Phase Carbon Polish Units								
Well Desig- nation	Sample Field Date	TPHG µg/L	Benzene µg/L	Toluene µg/L	Ethyl- benzene µg/L	Total Xylenes µg/L					
I-3	02-08-95 02-14-95 02-21-95 02-28-95 06-20-95 08-08-95 09-12-95 10-11-95 11-08-95 11-30-95 07-16-96	ぐり	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5					
B-1 E-1 E-1 E-1 E-1 E-1 E-1 E-1 E-1	02-08-95 02-14-95 02-21-95 02-28-95 06-20-95 08-08-95 09-12-95 10-11-95 11-08-95 11-30-95 01-30-96 07-16-96	ぐ50	0.7 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5					

TPHG: total petroleum hydrocarbons as gasoline

μg/L: micrograms per liter NA: not analyzed

Table 8
Estimated Total Dissolved TPHG Removed

Groundwater Treatment Unit: Aeration Tank with Two 200 Pound Liquid-Phase Carbon Polish Units

		Groun	dwater Extr	action			Benzene Removal Data							
Sample Desig- nation	Sample Date	Total Volume Extracted	Period Volume Extracted	Period Flow Rate	Period Influent Concentration	Period Removal Rate	Period Pounds Removed '	Total Pounds Removed	Total Gallons Removed '	Period Influent Concentration	Period Removal Rate	Period Pounds Removed ³	Total Pounds Removed	Total Gallons Removed '
		gallons	gallons	gpd	μg/L	lbs/day	pounds	pounds	gallons	μg/L	lbs/day	pounds	pounds	gallons
I-1 I-1	02-08-95 02-08-95	628 880	0 252	0 2,520	NA 49,000	0.000 1.031	0.000 0.103	0.000 0.103	0.000	NA	0.0000	0.0000	0.0000	0.0000
I-1	02-08-95	1,329	449	76	33,000	0.021	0.103	0.103	0.017 0.037	4,300 4,300	0.0904 0.0027	0.0090	0.0090	0.0012
I-1	02-14-95	15,499	14,170	2,051	21,000	0.360	2.484	2.710	0.037	940	0.0027	0.0161 0.1112	0.0251 0.1363	0.0035 0.0188
I-1	02-28-95	28,788	13,289	1,894	15,000	0.237	1.664	4.374	0.706	430	0.0068	0.1112	0.1363	0.0188
I-I	03-08-95	31,358	2,570	316	15,000	0.040	0.322	4.696	0.757	430	0.0011	0.0092	0.1932	0.0254
I-1	06-20-95	31,695	337	3	20,000	0.001	0.056	4.752	0.767	1,500	0.0001	0.0092	0.1932	0.0200
I-1	06-30-95	40,933	9,238	924	20,000	0.154	1.542	6.294	1.015	1,500	0.0116	0.1157	0.3131	0.0432
I-1	08-08-95	46,416	5,483	141	11,000	0.013	0.503	6.798	1.097	970	0.0011	0.0444	0.3575	0.0493
I-1	09-12-95	57,434	11,018	315	2,700	0.007	0.248	7.046	1.137	200	0.0005	0.0184	0.3759	0.0518
I-1	10-11-95	66,534	9,100	314	1,000	0.003	0.076	7.122	1.149	97	0.0003	0.0074	0.3833	0.0529
I-1	11-08-95	106,654	40,120	1,433	2,500	0.030	0.837	7.959	1.284	38	0.0005	0.0127	0.3960	0.0546
I-1	11-30-95	151,566	44,912	2,041	29,000	0.494	10.871	18.831	3.037	190	0.0032	0.0712	0.4672	0.0644
I-1 (6)	12-22-95	174,511	22,945	1,043	29,000	0.252	5.554	24.385	3.933	190	0.0017	0.0364	0.5036	0.0695
I-1 (6)	01-01-96	191,063	16,552	1,655	29,000	0.401	4.007	28.391	4.580	190	0.0026	0.0262	0.5299	0.0731
I-1	01-30-96	251,187	60,124	2,073	70	0.001	0.035	28.426	4.585	4.5	0.0001	0.0023	0.5321	0.0734
	04-01-96		45,639	736	70	0.000	0.027	28.453	4.589	4.5	0.0000	0.0017	0.5339	0.0736
I-1	07-16-96	331,575	34,749	328	4,300	0.012	1.247	29.700	4.791	530	0.0015	0.1537	0.6876	0.0948
I-1 (6)	08-08-96	382,464	50,889	2,213	4,300	0.079	1.826	31.527	5.085	530	0.0098	0.2251	0.9127	0.1259
Groundy	vater treatn	nent systen	ı was shut d	own on 8-	8-96.									

Table 8
Estimated Total Dissolved TPHG Removed

Groundwater Treatment Unit: Aeration Tank with Two 200 Pound Liquid-Phase Carbon Polish Units

		Groun	dwater Extr	action		Removal D		Benzene Removal Data						
Sample Desig- nation	Sample Date	Total Volume Extracted	Period Volume Extracted	Period Flow Rate	Period Influent Concentration	Period Removal Rate	Period Pounds Removed ¹	Total Pounds Removed	Total Gallons Removed ²	Period Influent Concentration	Period Removal Rate	Period Pounds Removed '	Total Pounds Removed	Total Gallons Removed '
	44	gallons	gallons	gpd	μg/L	lbs/day	pounds	pounds	gallons	μg/L	lbs/day	pounds	pounds	gallons
I-2 I-2	02-08-95 02-08-95	628 880	0 252	0 2,520	NA 1,500	0.000 0.032	0.000 0.003	0.000 0.003	0.000 0.001	NA 59	0.0000 0.0012	0.0000 0.0001	0.0000 0.0001	0.0000
1-2	02-14-95	1,329	449	85	1,500	0.001	0.006	0.009	0.001	59	0.0000	0.0002	0.0003	0.0000
I-2	02-21-95	15,499	14,170	2,024	340	0.006	0.040	0.049	0.008	7	0.0001	0.0002	0.0003	0.0002
I-2	02-28-95	28,788	13,289	1,898	390	0.006	0.043	0.092	0.015	4	0.0001	0.0003	0.0012	0.0002
I-2	03-08-95	31,358	2,570	321	390	0.001	0.008	0.101	0.016	4	0.0000	0.0001	0.0017	0.0002
I-2	06-20-95	31,695	337	3	2,200	0.000	0.006	0.107	0.017	30	0.0000	0.0001	0.0018	0.0002
1-2	06-30-95	40,933	9,238	924	2,200	0.017	0.170	0.276	0.045	30	0.0002	0.0023	0.0041	0.0006
1-2	08-08-95	46,416	5,483	141	330	0.000	0.015	0.292	0.047	17	0.0000	0.0008	0.0049	0.0007
I-2	09-12-95	57,434	11,018	315	78	0.000	0.007	0.299	0.048	4	0.0000	0.0004	0.0053	0.0007
I-2	10-11-95	66,534	9,100	314	<50	0.000	0.004	0.303	0.049	1	0.0000	0.0001	0.0053	0.0007
I-2	11-08-95	106,654	40,120	1,433	1,800	0.022	0.603	0.905	0.146	3	0.0000	0.0008	0.0062	0.0009
I-2	11-30-95	151,566	44,912	2,041	220	0.004	0.082	0.988	0.159	5	0.0001	0.0019	0.0080	0.0011
I-2 (6)		174,511	22,945	1,043	220	0.002	0.042	1.030	0.166	5	0.0000	0.0010	0.0090	0.0012
I-2 (6)	01-01-96	191,063	16,552	1,655	220	0.003	0.030	1.060	0.171	5	0.0001	0.0007	0.0097	0.0013
I-2		251,187	60,124	2,073	<50	0.001	0.025	1.085	0.175	< 0.5	0.0000	0.0003	0.0099	0.0014
	04-01-96		45,639	736	<50	0.000	0.019	1.104	0.178	<0.5	0.0000	0.0002	0.0101	0.0014
I-2	07-16-96	331,575	34,749	328	230	0.000	0.015	1.119	0.180	23	0.0000	0.0001	0.0103	0.0014
	08-08-96		50,889	2,213	230	0.001	0.021	1.140	0.184	23	0.0000	0.0002	0.0105	0.0014
			ı was shut d									5. 444		3

Table 8 Estimated Total Dissolved TPHG Removed

ARCO Service Station 2035 1001 San Pablo Avenue, Albany, California Groundwater Treatment Unit: Aeration Tank with Two 200 Pound Liquid-Phase Carbon Polish Units

Groundwater Extraction							G Removal D	ata		Benzene Removal Data					
Sample Desig- nation	Sample Date	Total Volume Extracted gallons	Period Volume Extracted gallons	Period Flow Rate gpd	Period Influent Concentration μg/L	Period Removal Rate Ibs/day	Period Pounds Removed '	Total Pounds Removed pounds	Total Gallons Removed ² gallons	Period Influent Concentration μg/L	Period Removal Rate	Period Pounds Removed'	Total Pounds Removed pounds	Total Gallons Removed '	
		gunons	ganons	gpu	нв/С	103/049	pounds	poultus	ganons	руг.	105/049	pounds	poulius	gallons	
DAYS / DAYS / DAYS / PERCEN PERIOD PERIOD HYDRO	HOURS I HOURS O HOURS O TOPER. GROUNI HYDROO CARBON	RTING PE IN PERIOD OF OPERA OF DOWN ATIONAL: OWATER I CARBON I S REMOVI	D: TION: TIME: EXTRACTI REMOVAL ED BY AE	. (TOTAL): RATION T	•	04-01-97 0 0 0 0	pounds pounds pounds	0.000	gallons gallons gallons		0.0000 0.0000 0.0000	1	0.0000 0.0000 0.0000	gallons gallons gallons	
		ARY CARE				0%									
PERIOD AVERAGE FLOW RATE (gpd): PERIOD AVERAGE FLOW RATE (gpd):							(includes do	,							
		GE FLOW GE FLOW		*			(excludes do (excludes do	•							

TPHG: total petroleum hydrocarbons as gasoline

gpd: gallons per day

μg/L: micrograms per liter

lbs/day: pounds per day

NA: not analyzed

gpm: gallons per minute

- *: The totalizer reading of the groundwater system was estimated from two consecutive monitoring events.
- **: The TPHG and benzene concentrations were assumed to be equal to the previous sampling event.
- 1. Period TPHG removed (pounds) = period influent TPHG concentration (µg/L) x period volume of groundwater extracted (gallons) x 3.7854 (liters/gallon) x 0.00000002205 (pounds/µg)
- 2. Total TPHG removed (gallons) = total TPHG removed (pounds) x 0.1613 (gallons/pound)
- 3. Period benzene removed (pounds) = period influent benzene concentration (µg/L) x period volume of groundwater extracted (gallons) x 3.7854 (liters/gallon) x 0.000000002205 (pounds/µg)
- 4. Total benzene removed (gallons) = total benzene removed (pounds) x 0.1379 (gallons/pound)
- 5. Percent carbon loading = (total TPHG removed by carbon / 10 pounds of TPH-G) x 100

The percent carbon loading calculation assumes a 5% by weight carbon adsorption efficiency. The treatment system uses two 200 pound carbon canisters.

Carbon Loading (10 lbs TPHG) = 1 canister x 200 lbs carbon/canister x 1 lb TPHG/20 lb carbon

i. Assumption that the BTEX and TPHG concentrations in the groundwater treatment system samples are the same as the previous sampling event on 11-30-95. System sampling schedule was reduced from monthly to quarterly by EBMUD during the third quarter 1995, therefore samples were not collected in December 1995.

Base map from USGS 7.5' Quad. Maps: Oakland West and Richmond, California. Photorevised 1980.

2000 4000

DATE APR. 1997 KAJ APP REV. PROJECT NO. 805-123.004

FIGURE 1 ARCO PRODUCTS COMPANY SERVICE STATION 2035, 1001 SAN PABLO AVE. ALBANY, CALIFORNIA QUARTERLY GROUNDWATER MONITORING SITE LOCATION

ARCO Service Station 2035
Soil-Vapor Extraction and Treatment System
Historical Well Field Influent TVHG and Benzene Concentrations

Figure 4

TVHG: total volatile hydrocarbons as gasoline ppniv: parts per million by volume

ARCO Service Station 2035
Soil-Vapor Extraction and Treatment System
Historical Hydrocarbon Removal Rates

Figure 5

Figure 6

ARCO Service Station 2035

Historical Groundwater Treatment System Influent TPHG and Benzene Concentrations

TPHG: total petroleum hydrocarbons as gasoline

µg/L: micrograms per liter

Figure 7

ARCO Service Station 2035

Historical Groundwater Treatment System Hydrocarbon Recovery Rates

APPENDIX A

ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATION, FIRST QUARTER 1997 GROUNDWATER MONITORING EVENT

April 9, 1997

Service Request No.: <u>S9700561</u>

Mr. John Young **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 2035 ALBANY/20805-123.004/To#19350.00

Dear Mr. Young:

The following pages contain analytical results for sample(s) received by the laboratory on March 27, 1997. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 10, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green **Project Chemist**

Acronyms

AZLA American Association for Laboratory Accreditation
ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

2035 ALBANY/20805-123.004/TO#19350.00

Sample Matrix: Water

Service Request: S9700561 Date Collected: 3/27/97

Date Received: 3/27/97 Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-2 (28) \$9700561-001 4/7/97	MW-4 (11) S9700561-002 4/8/97	MW-5 (11) \$9700561-003 4/8/97
Analyte	MRL			
TPH as Gasoline	50	ND	<5000 C1	ND
Benzene	0.5	ND	<50 C1	ND
Toluene	0.5	ND	<50 C1	ND
Ethylbenzene	0,5	ND	<50 C1	ND
Total Xylenes	0.5	ND	<50 C1	ND
Methyl tert -Butyl Ether	3	12	4200	ND

The MRL was elevated due to high analyte concentration requiring sample dilution.

C1

Analytical Report

Client:

ARCO Products Company

Project:

2035 ALBANY/20805-123.004/TO#19350.00

Sample Matrix: Water

Service Request: S9700561

Date Collected: 3/27/97 Date Received: 3/27/97

Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-6 (14) S9700561-004 4/7/97	MW-3 (32) S9700561-005 4/5/97	MW-1 (29) \$9700561-006 4/7/97
Analyte	MRL			
TPH as Gasoline	50	ND	<100 C1	1500
Benzene	0.5	ND	<1 C1	610
Toluene	0.5	ND	<1 C1	<5 C1
Ethylbenzene	0.5	ND	<1 C1	15
Total Xylenes	0.5	ND	<1 C1	7
Methyl tert -Butyl Ether	3	ND	170	56

C1

The MRL was elevated due to high analyte concentration requiring sample dilution.

Analytical Report

Client:

ARCO Products Company

Project:

2035 ALBANY/20805-123.004/TO#19350.00

Sample Matrix: Water

Service Request: S9700561 Date Collected: 3/27/97

Date Received: 3/27/97

Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	RW-1 (25) S9700561-007 4/6/97	Method Blank S970405-WB2 4/5/97	Method Blank S970407-WB1 4/7/97
Analyte	MRL			
TPH as Gasoline	50	7200	ND	ND
Benzene	0.5	1900	ND	ND
Toluene	0.5	59	ND	ND
Ethylbenzene	0.5	95	ND	ND
Total Xylenes	0.5	240	ND	ND
Methyl tert -Butyl Ether	3	480	ND	ND

Analytical Report

Client:

ARCO Products Company

Project:

2035 ALBANY/20805-123.004/TO#19350.00

Sample Matrix: Water

Service Request: S9700561

Date Collected: 3/27/97

Date Received: 3/27/97

Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

		Sample Name: Lab Code: Date Analyzed:	Method Blank S970408-WB1 4/8/97	Method Blank S970408-WB2 4/8/97
Analyte	MRL			
TPH as Gasoline	50		ND	ND
Benzene	0.5		ND	ND
Toluene	0.5		ND	ND
Ethylbenzene	0.5		ND	ND
Total Xylenes	0.5		ND	ND
Methyl tert -Butyl Ether	3		ND	ND

APPENDIX A

QA/QC Report

Client:

ARCO Products Company

Project:

2035 ALBANY/20805-123.004/TO#19350.00

Sample Matrix: Water

Service Request: S9700561

Date Collected: 3/27/97 Date Received: 3/27/97

Date Extracted: NA Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method

Sample Name	Lab Code	PID Detector Percent Recovery 4-Bromofluorobenzene	FID Detector Percent Recovery α,α,α —Trifluorotoluene
MW-2 (28)	S9700561-001	96	90
MW-4 (11)	S9700561-002	102	96
MW-5 (11)	\$9700561-003	99	91
MW-6 (14)	\$9700561-004	96	91
MW-3 (32)	S9700561-005	101	92
MW-1 (29)	S9700561-006	116	70
RW-1 (25)	S9700561-007	81	94
MW-2 (28) (MS)	S9700561-001MS	96	105
MW-2 (28) (DMS)	S9700561-001DMS	105	83
Method Blank	S970405-WB2	90	101
Method Blank	S970507-WB1	96	90
Method Blank	S970408-WB1	97	88
Method Blank	S970408-WB2	100	96

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client:

ARCO Products Company

Project:

2035 ALBANY/20805-123.004/TO#19350.00

Sample Matrix:

Water

Service Request: S9700561

Date Collected: 3/27/97 Date Received: 3/27/97

Date Extracted: NA

Date Analyzed: 4/7/97

Matrix Spike/Duplicate Matrix Spike Summary

TPH as Gasoline

EPA Methods 5030/California DHS LUFT Method

Units: ug/L (ppb)

Sample Name:

MW-2 (25)

Lab Code:

S9700561-001MS, DMS

Percent Recovery

	Spike	Level	Sample	Spike	Result	1010	CHI K	CAS Acceptance	Relative Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Gasoline	250	250	ND	250	260	100	104	67-121	4

QA/QC Report

Client:

ARCO Products Company

Project:

2035 ALBANY/20805-123.004/TO#19350.00

Service Request: \$9700561

Date Analyzed: 4/5/97

Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ppb

				CAS
				Percent
				Recovery
	True		Percent	Acceptance
Analyte	Value	Result	Recovery	Limits
Benzene	25	25	100	85-115
Toluene	25	25	100	85-115
Ethylbenzene	25	24	96	85-115
Xylenes, Total	75	73	97	85-115
Gasoline	250	270	108	90-110
Methyl tert -Butyl Ether	25	23	92	85-115

ARCO Facili				Pany Company				rusk U	rder No.	D14		C										Chain of Custody
ARCO Facili	35			(Fi	acility)	715a	٧,			(Consu	tant)	$\tau \circ$	hn	Ve	W/C							
ARCO engin	eer 4	Pau	ے /	OD	ole.	716a	Telepho (ARCO)	ne no.		Telepho (Coppe	one no. Kanado	JS.3	こつで	00)	Fax	no. nsultar	nt)				C A S
Consultant n	ame								int) 197			15W			Ve	1,00		<u>'Y</u>				Contract number
				Matrix		Prese	rvation				_							 } }	0007/0			Method of shipment
Sample I.D.	Lab no.	Container no.	Soll	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH (MT)SE	TPH Modified 8015 Gas C Diesel	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA □	CAM Metals EPA 60'	Lead Org./DHS Lead EPA		
Nu-269	e) /	ス		X				3-2757	1002		X											Special detection Limit/reporting
165-4 (U	12								0905													Limit/reporting
w-5(1	n) 3								0915													
zw-6 (14) 4.								1010													Special QA/QC
1W-3(S)) 5								1086				<u>.</u>						-			
nw-169									1124													
w-165		1/		V				1/	1212		1											
																						20805-123,001
									-													20805-123.004 Lab number 5970056
							-			ig												Turnaround time
						· · · · · · · · · · · · · · · · · · ·																Priority Rush 1 Business Day
ondition of elinquished	by same	nelo V	0 Q	K)		·	Date	7-97/	Time /335 Time	Receiv	ed by	receive	d: 		oo	<u> </u>						Rush 2 Business Days
elinquished					.		Date		Time	Receiv	ed by I	aborato	ny /	Brow	1000		ate 3 -2	7-9:		Time ノろ、	<u> </u>	5 Business Days Standard 10 Business Days

APPENDIX B SVE SYSTEM MONITORING DATA LOG SHEETS

	nitoring Dat or PID Re		Efficiency	Time	Well Fiel	d Influent		Laboratory Monito		Effluent									
ate		sults	ency		Well Fiel	d influent	System	Influent	System	Effluent									
ent Flow Rate	ŧ		ency																
System Influ	System Influen	System Effluen	Destruction Effici	Laboratory Sample	Gasoline	Benzene	Gasoline	Benzene	Gasoline	Benzene	Destruction Efficiency	assoline Emission Rate	Benzene Emission Aate	Period Hours	Aeter Hours	dours of Operation	bays of Operation	own Hours	Down Days
scfm ppm	ppm	ррт	%		ppmv mg/m3	ppmv mg/m3	ррту тд/т3	ppmv mg/m3	ррти тд/т3	ppmv mg/m3	%				<u>=</u>				
0.0												<u>-</u>		744.00	11146.50 11146.50	0.00	0.00	744.00	31.
														744.00		0.00	0.00	744.00	31
S	well Fiel	as a section of the s	and the second s	O.0	O.0	O.0	age Fee Fee	The state of the	The second of t	□ 日本	型	Services of the point of the po	Segment of the control of the contro	The state of the s					

Reporting Period: 02/01/97 00:00 03/01/97 00:00					n Period: n Period:			•		n Hours: 67 wn Days: 2														
				itoring Da]						Laboratory Monito	ring Data					1					
	Flow	Rates	FID	or PID R	esults		-		Well Fie	id Influent !	_	System	Influent	System	Effluent				1					
Reading Date & Time	Well Field Flow Rate	System Influent Flow Rate	Well Field	System influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gas	oline	Benzene	•	Gasolin e	Benzene	Gasoline	Benzene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Jown Hours	Down Days
2010100000	scim	scim	ppm	ppm	ppm	%	-	ppmv	mg/m3	ppmv mg	/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	%	lb/day	lb/day						
02/01/97 00:00 02/04/97 14:35	0.0	0.0									1				l					11146.50				
02/18/97 10:32	0.0	0.0												1					86.58	11146.50	0.00	0.00	86.58	3,6
03/01/97 00:00	0.0	0.0																	331.95 253.47	11146.50 11146.50	0.00		331.95 253.47	13.8 10.5
Period Totals:																			672.00		0.00	0.00	672.00	28.
Period Averages:	0.0	0.0																						

ARCO 2035 SVE SYSTEM MONITORING DATA

eporting Period: 03/01/97 00:00 04/01/97 00:00					n Period: n Period:	744.00 31.00		Operation + Dow Operation + Dow	m Hours: 744,00 wn Days: 31.00					-								-
		F		itoring Da]				Laboratory Monito	ring Data					1					
	Flow	Rates	FID	or PID Ro	esults		4	Well Fiel	ld influent	System	Influent	System	n Effluent				1					
Reading Date & Time	Well Field Flow Rate	System Influent Flow Rate	Well Field	System Influent	3 System Effluent	% Destruction Efficiency	Laboratory Sample Time	Gasoline ppmv mg/m3	Benzene	Gasoline	Benzene	Gasoline	Benzene	% Destruction Efficiency	ব্ৰ Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
03/01/97 00:00								7,	pp		pp.iii iiigiiii	ppine ingrito	ррину підчиз	79	itirday	ibroay		11146.50		-		
03/07/97 13:47	0.0	0.0				ŀ											157,78	11146.50	0.00	0.00	157,78	6
03/11/97 12:40	0.0	0.0							1								94.88	11146.50	0.00	0.00	94.88	3
04/01/97 00:00	0.0	0.0															491.33	11146.50	0.00		491.33	20
Period Totals:															-		744.00	••	0.00	0.00	744.00	31