Remedial Investigation Report

for

PG&E

ENCON-GAS Transmission and Distribution Construction Yard
Former Tank Cluster Area
4930 Coliseum Way, Oakland, California

Submitted to:

Alameda County Health Care Services Agency
Department of Environmental Health
Division of Hazardous Materials

July 23, 1991

Aqua Resources Inc. 2030 Addison Street, Suite 500 Berkeley, CA 94704

TABLE OF CONTENTS

EXI	ECUTIVE SUMMARY	,
1.0	INTRODUCTION	,
2.0	SITE BACKGROUND	3
3.0	O. d. Demissori Constant	77
4.0	4.1 Results of Field Reconnaissance	9
5.0	5.1 Soil Investigations Near the Former Underground Tank Locations 1	13 13
6.0	RESULTS OF REMEDIAL INVESTIGATIONS FOR PERIOD NOVEMBER 1990 TO MAY 1991	
	6.1 Soil Investigations 6.1.1 Petroleum, Oil and Lubricant Storage Shed 6.1.2 Welding Shop 6.1.3 Near Northeastern Property Line 6.1.4 Chemical Analyses 6.1.4.1 Petroleum Hydrocarbons 6.1.4.2 Volatile Organic Compounds 6.1.4.3 Polychlorinated Biphenyls and Metals 6.2 Groundwater Investigations 6.2.1 Monitoring Well Installation and Development	24 24 27 29 30 30 44 48
	6.2.2 Groundwater Sampling	8

	6.2.3.2	Petroleum Hydrocarbons Volatile Organic Compounds Total Dissolved Solids	41
REFERENCES		••••••••••••••	43
LIST OF ACRO	YMS AND	ABBREVIATIONS	44

LIST OF TABLES

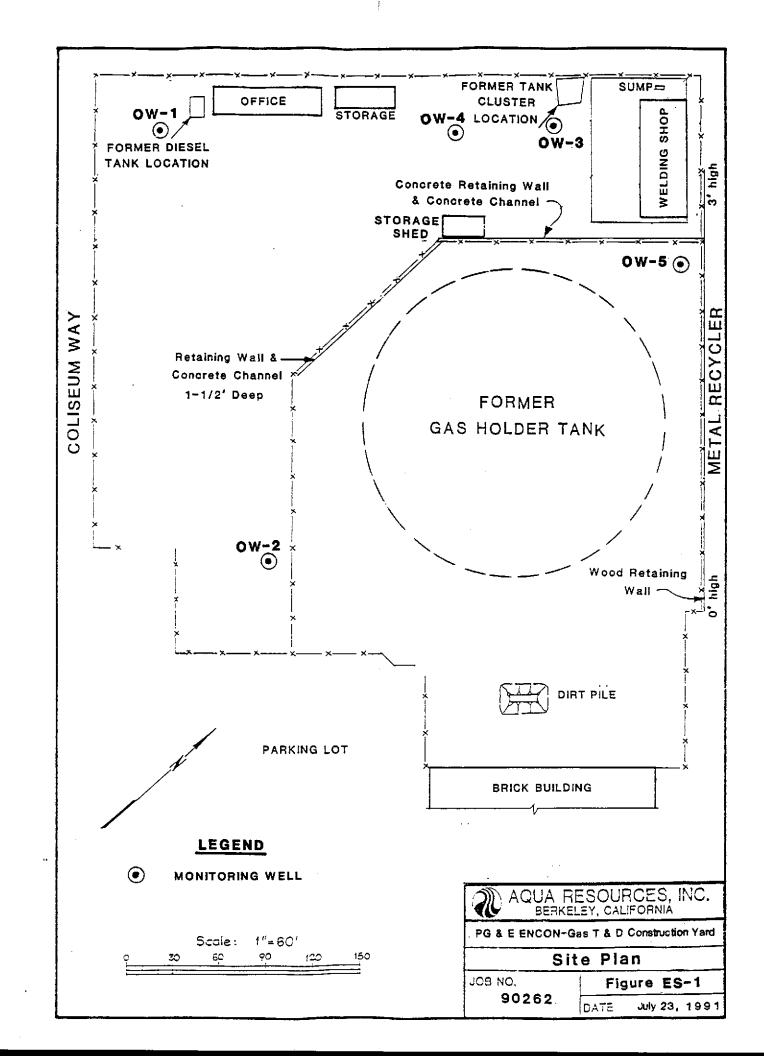
Table 5.1	Petroleum Hydrocarbons, Volatile Aromatics, and PCBs in Soil (February 1987 Investigation)	18
Table 5.2	Petroleum Hydrocarbons and Volatile Aromatics in Soil	
Table 5.3	(January 1988 Investigation)	19
Table 5.4	Petroleum Hydrocarbons and Volatile Organic Compounds in Selected Soil Samples Collected from Borings Near the Former Diesel Tank Location (March 1988 Investigation)	20
Table 5.5	Petroleum Hydrocarbons and Volatile Aromatics in Groundwater (January 1990 to January 1991)	21
Table 5.6	Halogenated Volatile Organics in Groundwater	
Table 6.1	(January 1990 to January 1991)	
Table 6.2	Volatile Organic Compounds in Soil	32
Table 6.3	PCBs in Soil	35 37
Table 6.4	Metals in Soil	37
Table 6.5	Petroleum Hydrocarbons in Groundwater	41
Table 6.6	Volatile Organic Compounds in Groundwater	42
	LIST OF FIGURES	
Figure ES-1	Site Plan	vi
Figure ES-2	Area of Elevated Petroleum Hydrocarbon Concentration in Soil	vi Vii
Figure 1.1	Site Location Map	2
Figure 2.1	Site Plan	4
Figure 2.2	Monitoring Well Locations	6
Figure 4.1	Known Toxic and Fuel Leak Cases	12
Figure 5.1	PG&E Soil Boring Locations Near Former Tank Cluster	16
Figure 5.2	PG&E Soil Boring Locations Near Former Diesel Tank	17
Figure 6.1	Soil Boring Location Map	26
Figure 6.2	GPR Survey	28
Figure 6.3	Potentiometric Groundwater Elevations	39

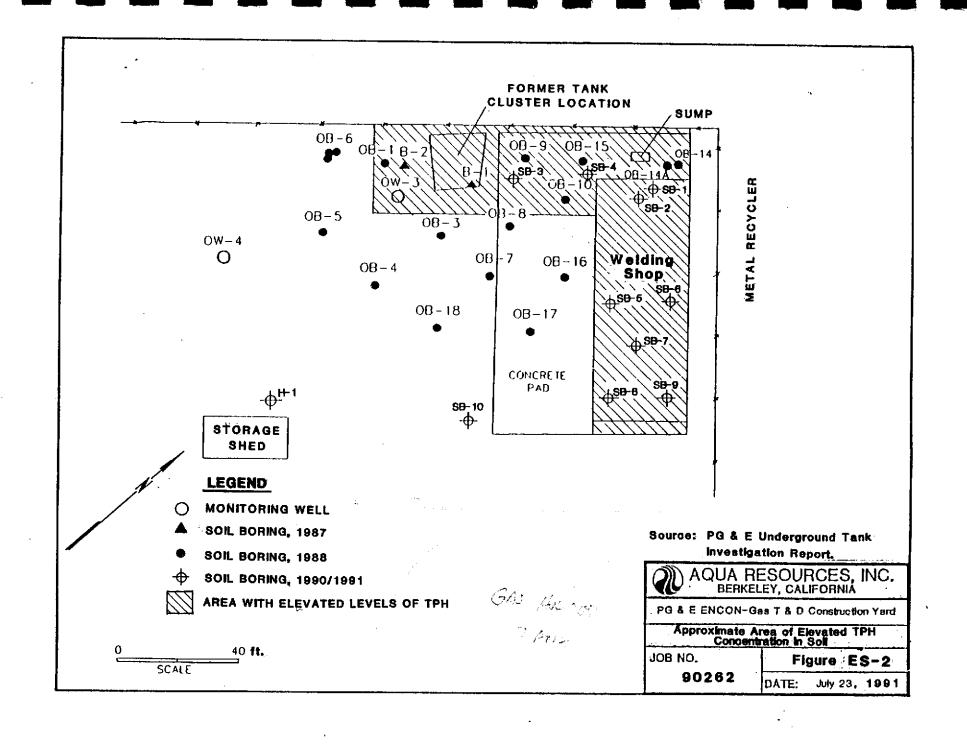
APPENDICES

- APPENDIX A Site Sampling and Analysis Plan and QA/QC Plan
- APPENDIX B Soil Boring Logs
- APPENDIX C Monitoring Well Boring Log and Installation Documentation
- APPENDIX D Certified Laboratory Results and Chain-of-Custody Documentation

EXECUTIVE SUMMARY

Aqua Resources Incorporated (ARI) conducted an investigation of potential soil contamination at the Pacific Gas and Electric Company (PG&E) ENCON-GAS Transmission and Distribution Construction Yard located at 4930 Coliseum Way, Oakland, California, under the supervision of a registered civil engineer from November 1990 to May 1991. The purpose of this investigation was to determine the extent of petroleum hydrocarbon impacted soils in the vicinity of a former underground tank cluster and to determine if any upgradient sources of contamination might exist. This report describes the results of that investigation. Figure ES-1 presents the site plan.


Conclusions


ARI estimates that approximately 2,250 cubic yards of soil in the vicinity of the former tank cluster contain elevated levels of petroleum hydrocarbons, predominantly diesel fuel and oil and grease. The location of this soil is shown on Figure ES-2.

Groundwater samples obtained from monitoring wells located downgradient from the former tank cluster have been found to slightly exceed maximum contaminant levels for 1,1-Dichloroethane, 1,2-Dichloroethane, and 1,4-Dichlorobenzene. Semi-volatile petroleum hydrocarbons have also been found in nearly all groundwater samples.

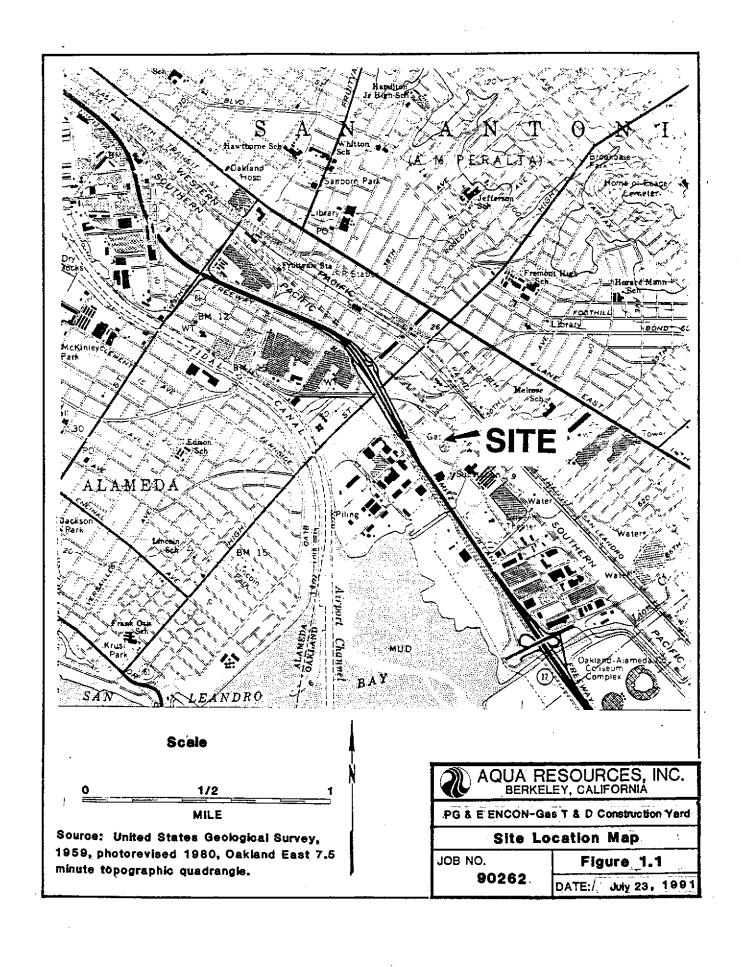
An off-site source of fuel contamination is believed to exist upgradient from well OW-5, near the northeast property boundary of the site (see Figure ES-1). This conclusion was reached because groundwater samples obtained nearest that property line were found to contain higher levels of benzene and other fuel components than samples obtained immediately downgradient from the former tank cluster.

Three locations in the eastern portion of the yard near a former natural gas holder tank contained elevated levels of petroleum hydrocarbons in soil. However, the nature and extent of detected petroleum hydrocarbons in those areas suggest, that they are not related to spills or leaks from the former tank cluster. In fact, two of these areas appear to be impacted by an off-site fuel leak.

1.0 INTRODUCTION

1.1 Statement of Purpose

This report presents the results of the Remedial Investigation (RI) for the PG&E ENCON-GAS Transmission and Distribution Construction Yard, located at 4930 Coliseum Way in the City of Oakland, California. Figure 1.1 presents the site location map.


The purpose of the RI was to identify the horizontal and vertical extent of elevated levels of petroleum hydrocarbons in soil in the vicinity of a former underground tank cluster.

1.2 Report Organization

This Remedial Investigation Report consists of the following elements:

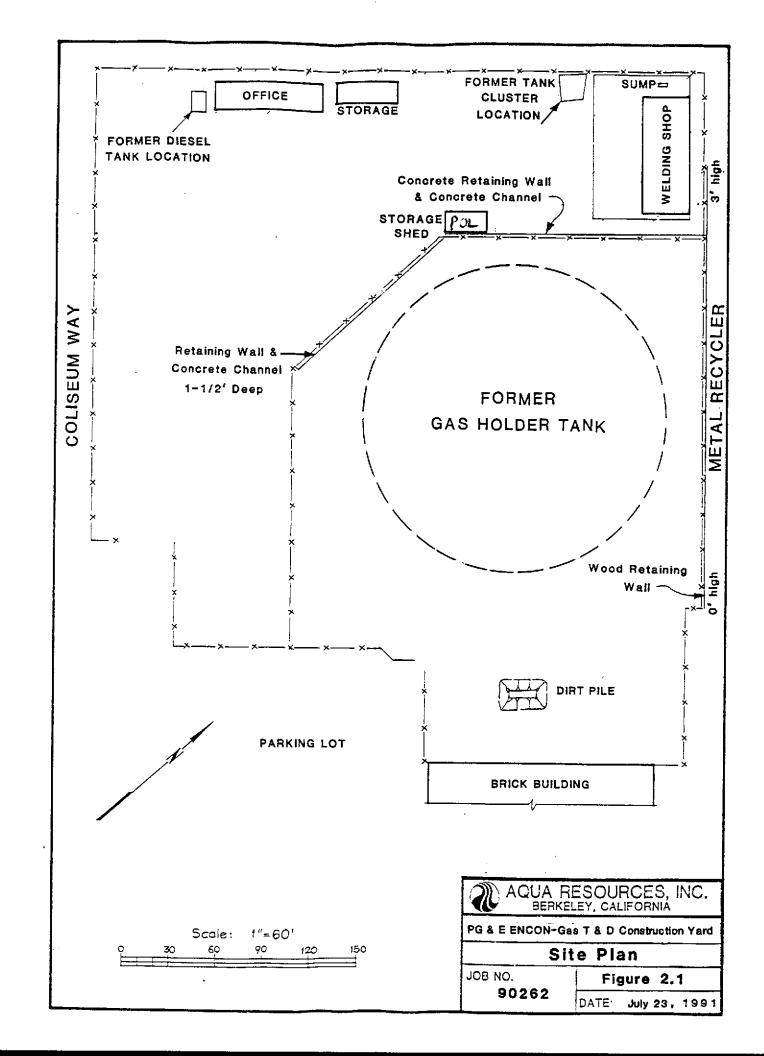
- Site Background
- Potential Sources of Upgradient Contamination
- Results of Remedial Investigations conducted for period February 1987 to July 1988
- Results of Remedial Investigations conducted for period November 1990 to May 1991

The Site Sampling and Analysis Plan and QA/QC Plan, the soil boring and monitoring well logs, chain-of-custody documentation, and certified chemical analyses reports and other pertinent documentation are presented as appendices to the report.

2.0 SITE BACKGROUND

The PG&E ENCON-GAS Transmission and Distribution (T&D) Construction Yard is located at 4930 Coliseum Way in Oakland, California. Soil and groundwater conditions related to the removal of five underground storage tanks at the site were investigated by the Technical and Ecological Services Department of PG&E in 1987 and 1988. The activities performed, along with laboratory results, were presented in the July 1988, Underground Tank Investigation Report # 402.331-88.32 (internal PG&E document), from which the following information on the site background is excerpted.

2.1 Site Description and Previous Activities

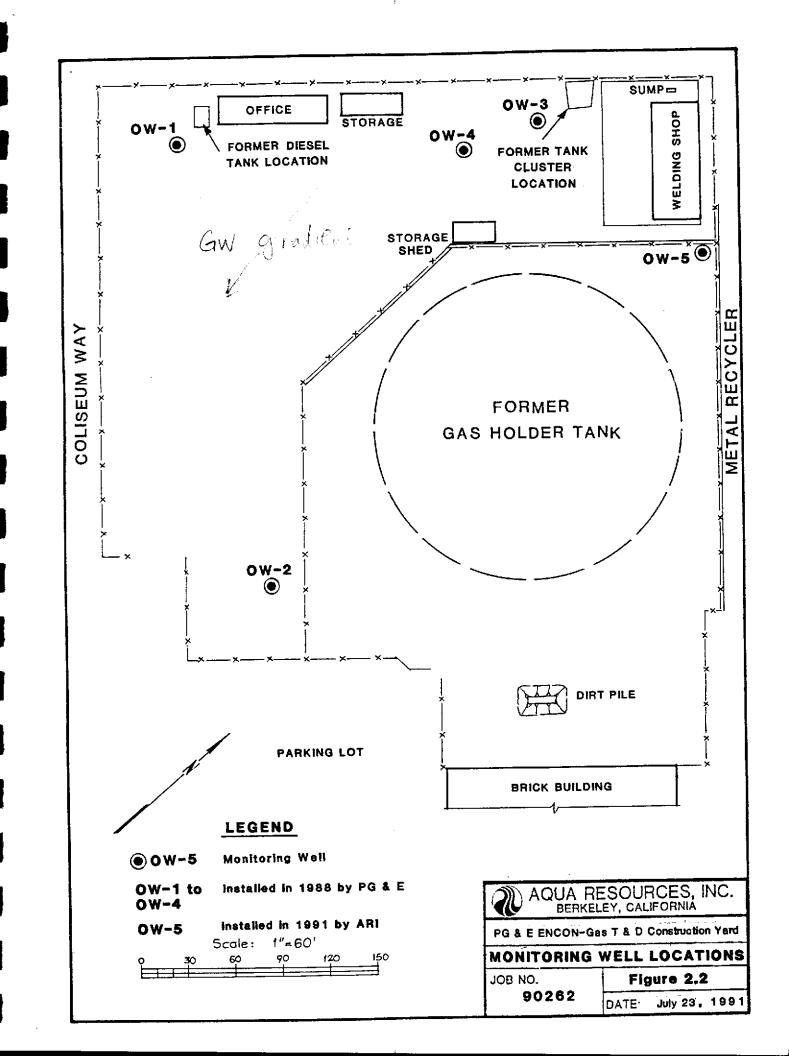

The T&D Construction Gas Yard is wholly owned by PG&E and is used as a vehicle, materials, and equipment storage and distribution facility. Historically, the site was also used as a vehicle service center and aboveground natural gas storage facility.

The site is surrounded by industrial properties. Immediately to the northeast of the site is a metal recycling operation; to the northwest is a plaster casting company, a pattern company and a metal foundry; to the west and southwest (across Coliseum Way) are two motels and a recreational vehicle sales facility; to the southeast (across 50th Street) is a trucking facility.

Figure 2.1 shows the site layout including the former locations of underground storage tanks. An office building, material storage warehouse, welding shop, and a petroleum, oil and lubricant (POL) storage shed are located on-site. The welding shop was previously used as a vehicle repair garage. Except for an asphalt parking lot and concrete pads located in front of the welding shop and under the former aboveground gas tank, the site is graveled.

Five underground tanks were formerly located on-site. Four of the tanks (three 500-gallon tanks and one 350-gallon tank) were located in a cluster near the north corner of the site by the welding shop ("tank cluster"). These tanks were thought to be used to store waste oils. A 1000-gallon tank was located near the west corner of the site near the office building ("diesel tank"). It was used to store diesel fuel. The bottom of each tank was approximately 7 feet below the ground surface.

On the north side of the welding shop, about 50 feet northeast of the former tank cluster location, is a concrete sump. The underground layout of the sump and its associated piping is unknown.


In December 1987, the contents of the five tanks were analyzed by PG&E's Department of Engineering Research chemical laboratory. Two of the tanks in the cluster were found to contain mineral spirits (paint thinner and water) and three tanks contained heavy oil (diesel and/or hydraulic oil). PCBs were not detected in any of the tanks. The five tanks were removed and disposed of on January 13, 1988 by Universal Engineering, Inc.

In March and May 1988 four shallow monitoring wells (OW-1 through OW-4) were installed by PG&E to investigate the groundwater quality and to determine the groundwater flow direction and gradient. The locations of the monitoring wells are shown in Figure 2.2. Well OW-3 is located approximately hydraulically downgradient of the former tank cluster location, and Well OW-1 is located downgradient of the former diesel tank. Since October 1989, quarterly groundwater samples were collected by PG&E's Technical and Ecological Services Department to monitor the distribution of waste oil, solvents, and fuel compounds in the uppermost aquifer beneath the northern part of the yard, near the former site of the five underground storage tanks.

2.2 Site History

The earliest aerial photographs made available to us at the California Division of Mines and Geology (CDMG) photo library that cover the site were taken in August of 1939. These photos showed that the area was already heavily developed. Very large commercial/industrial buildings existed along both sides of San Leandro Street between High Street and 50th Avenue. A large round tank was in place on the PG&E site; however, the shadow of the tank prevented our determining if any structures existed on the site of the present-day scrap metal business. There were large buildings east of the railroad track and west of San Leandro Street. There were no large buildings at 4700-4800 Coliseum Way. Some small buildings were in place around Coliseum Way and 46th Avenue. The East Creek Slough drainage penetrated farther inland to the south and east of the site than it does at present. The only other aerial photograph available for this area was taken in March of 1984. It showed the site in approximately the same condition as it is at present.

Historical topographic maps for the Oakland East Quadrangle were also reviewed at the DMG. These maps were dated 1949, 1959, and 1959 photo revised 1968. Each of these maps used a pink coloration to designate a developed area, rather than showing individual buildings. Only the aboveground gas holder tank was shown on these maps.

3.0 SITE GEOLOGY AND HYDROGEOLOGY

3.1 Regional Geology

Geologic maps of the region prepared by the CDMG (1961) and by Goldman (1969) show the site is underlain by Quaternary marine and marsh deposits. These sediments consist predominantly of highly plastic, blue-grey Bay Mud interbedded with grey, organic-rich silty sands and clayey marsh deposits.

3,2 Site Geology

The welding shop (see Figure 2.1) was constructed over a concrete pad, 4-6 inches thick. Beneath the concrete was 6 to 12 inches of fine sand fill, brown in color. In the borings inside the shop, typically 1 to 2 feet below the concrete slab, the driller could not push the sampler in, indicating that they were hitting hard or densely packed materials. These materials could be part of the fill, rather than natural sediments. In SB-6, a 4-inch long piece of metal came up on the auger with the cuttings from this depth; SB-2 and SB-6 also had pieces of lumber down to approximately 5 feet below the concrete slab (see Figure 6.1 for soil boring locations). The soil units varied among the borings but generally consisted of a silty or sandy clay overlying units containing 30-50% or more sand and gravel.

The two borings in the building which were farthest to the west (SB-5 and SB-6) had approximately two feet of black gravelly sand underlying the find brown sand. The gravelly sand in both borings contained evidence of aged oil. SB-6 and SB-3 contained viscous black oil in a silty clay unit to a depth of approximately 8 feet below the concrete slab. SB-1, SB-2 and SB-4 contained evidence of oil to a depth of approximately 5 feet below the concrete pad.

The welding shop is located about 3 to 4 feet above the ground surface of the former gas holder tank. A concrete and wood retaining wall (see Site Plan, Figure 2.1) mark the difference in height between the welding shop and the former gas holder tank area and between the neighbor metal recycler and the gas holder tank area, respectively.

The area near the removed gas holder tank had a gravel surface. Seven borings and one monitoring well were located in this area. The subsurface materials typically consisted of 2-1/2 to 3-1/2 feet of silty clay with a small percentage of sand and gravel. Underlying this unit was 2 to 3 feet of gravelly sandy clay. The unit at the bottom of the borings was sand or an approximately 50/50 mixture of clay/sand and gravel.

SB-20 differed from the above borings, in that angular rocks up to 3-inch in diameter were found to a depth of 1 foot below the surface, overlying the gravelly sandy clay.

The monitoring well (OW-5) was completed to a depth of 17 feet. The upper soils were similar to the borings, and overlay more units of interbedded silty clay and sandy clay.

3.3 Site Hydrogeology

The topography of the area in the vicinity of the site is relatively flat. Regional surface water flow is to the southwest (toward San Leandro Bay). Surface water bodies nearest the site include San Leandro Bay (located approximately one third of a mile south of the site) and a canal that extends north from San Leandro Bay (located about one half of a mile west of the site). The potentiometric surface of the uppermost water bearing zone beneath the site was found to be approximately 3 to 4-1/2 feet below the ground surface in monitoring wells OW-1 to OW-4. These water levels were found to be relatively high, probably caused by the rainy period in March 1991.

In borings SB-1 to SB-10 saturated soil was encountered at 8 to 10 feet below ground surface. Comparing the stabilized groundwater level and the depth of first encounter indicates some degree of confinement. In soil borings near the northeastern property line, saturated soil was encountered at 5 to 7 feet below ground surface, which is located about 3 feet below the area of the welding shop.

Groundwater surface elevations in OW-1, OW-2, and OW-5 confirm the general regional groundwater flow direction to the southwest. However, groundwater elevations in OW-3 and OW-4 are anomalously high and indicate the presence of an artificial water source, such as a leaking pipe, in this area.

4.0 POTENTIAL SOURCES OF UPGRADIENT CONTAMINATION

ARI conducted a limited Phase I preliminary site assessment of the Coliseum Way facility in November and December 1990. The purpose of this assessment was to attempt to determine if potential sources of groundwater contamination may exist upgradient from the Coliseum facility. The site assessment consisted of the following activities:

- 1) field reconnaissance of the site and surrounding area,
- 2) a file search of selected regulatory agencies,
- 3) a review of available maps and aerial photographs.

The results of the first two activities are described below; the results of the third activity are described in Section 2.2, Site History.

4.1 Results of Field Reconnaissance

The nearby area bounded by Coliseum Way and San Leandro Street, 45th Avenue and 54th Avenue, is presently occupied by industrial and commercial businesses, primarily concerned with metal processing and finishing, scrap metal sales, and auto service and body work.

The yard of the scrap metal dealer immediately adjacent to the site on the northeast contains various types of electrical equipment and machinery, hydraulic equipment, welding equipment, air conditioning equipment, transformers, drums marked battery fluid, paint cans, and oil soaked wood and a trailer. The metal finishing operations appear to include chrome plating, anodizing, and industrial plating. CIM Inc., a construction materials firm, is located at 833 47th Avenue. Chevron has a large facility on San Leandro Street between 45th and 46th Avenues which includes several large aboveground storage tanks.

4.2 Agency Data

A city directory from 1969 at the Oakland Public Library shows that similar industries were in the area at that time. In addition, the Titanium Pigment Corporation, Division of the National Lead Co., a paint manufacturing company, was located at 4825 San Leandro Street in 1969. Superior Products Co., sealing compounds, occupied 833 47th Avenue in 1969.

The East Slough drainage is currently west and south of the PG&E property. The information provided by PG&E (Underground Tank Investigation Report, July 1988: Figure 9 — "Potentiometric Contour Map for July 21, 1988") indicates that the groundwater gradient at that time was toward the southwest. There are several sites which have been

investigated by the Regional Water Quality Control Board (RWQCB) in the vicinity of the subject site, but none of them is located within 1000 feet of the site and upgradient (north to east). Figure 4.1 shows the locations of several sites with reported toxic or fuel spills in the vicinity of the PG&E site.

Learner Company at 768 46th Avenue is approximately 1100 feet from the site to the northwest. The soil under this site is contaminated with petroleum hydrocarbons and PCBs; however, it is unknown at the present time if the groundwater is contaminated. L&M Plating at 920 54th Avenue is approximately 1200 feet east of the property. The report at the RWQCB states that the groundwater under L&M has not been significantly impacted; however, the California Department of Toxic Substances Control is considering reopening the case.

Peterson Properties at 1066 47th Avenue is approximately 1500 feet north of the site. The Chevron Asphalt Terminal at 4525 San Leandro Street is approximately 1700 feet north of the site. The groundwater under both the Peterson site and the Chevron site has been reportedly contaminated with 560 ppb and 590 ppb total petroleum hydrocarbons respectively.

F&K Investment at 1259 48th Avenue is approximately 2000 feet northeast of the site. The groundwater under this site has been tested and had contamination levels of 46,000 ppb total petroleum hydrocarbons. It is unknown whether or not the contamination has migrated off site. AAA Equipment Co. at 765 50th Avenue is southeast of the site, across 50th Avenue; however, this site is so close to the property that if the groundwater has been affected by the diesel contamination on that site, and if there is any variation in the groundwater gradient, it may affect the property. The RWQCB has no information at this time regarding the status of the groundwater at this site.

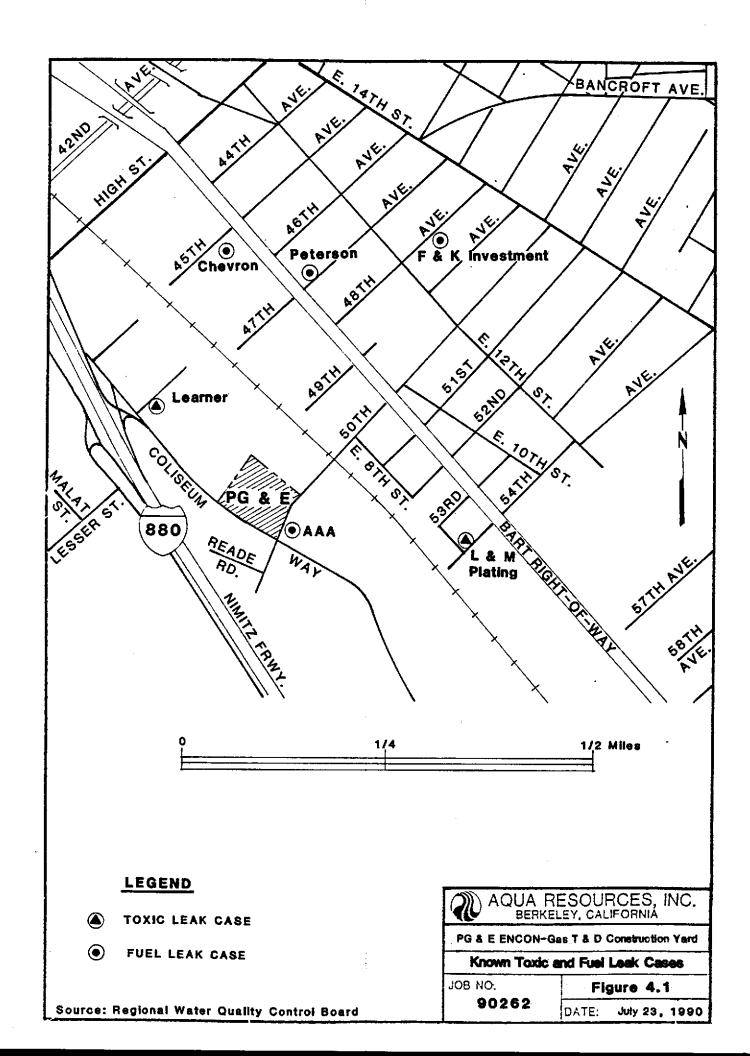
The California Department of Toxic Substances Control makes available various sources of information to assist in site investigations. The following sources were reviewed:

CERCLIS — the Environmental Protection Agency's computerized database

ASPIS — the Abandoned Site Program Information System used to track potential historical and present day hazardous waste sites

Cortese List — data received from the State Water Resources Control Board, the California Integrated Waste Management Board, and the California Department of Toxic Substances Control

Bond Expenditure Plan — list of sites for which State bond funds will be spent for cleanup or oversight. These sites are also knwon as State


"Superfund" sites.

The CERCLIS list included NL Industries Inc., Pigments and Chemical Division, at 4701 San Leandro Street. We have contacted the local office of the U.S. Environmental Protection Agency which has the CERCLIS files. The reply we received stated that the NL Industries Inc. site was put on the CERCLIS list by error and there does not appear to be an uncontrolled hazardous waste problem at the site.

The ASPIS list also included the NL Industries site, noting that the plant is inactive and that no file was found at California Department of Toxic Substances Control.

4.3 Conclusions

The information provided by agencies and agency personnel was used as reported. Although we have not found any agency file documentation that contaminated groundwater has migrated to the PG&E site, results of soil and groundwater samples indicate that an off-site, upgradient fuel leak may have occurred. This evidence is described further in Section 6.

5.0 RESULTS OF REMEDIAL INVESTIGATIONS FOR PERIOD FEBRUARY 1987 TO JULY 1988

5.1 Soil Investigations Near the Former Underground Tank Locations

In February 1987, PG&E's Department of Engineering Research conducted a preliminary underground tank leakage study around the tank cluster and the diesel tank. Detailed information on the investigation activities are presented in PG&E's Underground Tank Investigation Report #402.331-88.32, prepared in July 1988. The results of this study are summarized below.

Three exploratory borings were drilled to approximately 9 feet below ground surface and soil samples were collected at 3 to 5 foot intervals. Two borings (B-1 and B-2) were located adjacent to the tank cluster and boring B-3 was located next to the diesel tank. Figures 5.1 and 5.2 show the boring locations. The soil samples obtained from borings B-1 and B-2 were analyzed for total petroleum hydrocarbons (TPH as gasoline, kerosene, diesel, and oil), polychlorinated biphenyls (PCBs) and purgeable aromatics (BTEX-benzene, toluene, ethylbenzene and xylenes). The soil sample collected from boring B-3 was analyzed for total petroleum hydrocarbons.

Table 5.1 provides a summary of the sample results from the February 1987 investigation. Elevated levels of oil and grease and trace amounts of BTEX and PCBs were found in soil samples collected from both borings drilled near the tank cluster. Soil samples collected from boring B-3, which was drilled near the diesel tank, were nondetectable for petroleum hydrocarbons.

During the tank removal process on January 13, 1988, soil samples were collected from the tank cluster excavation and analyzed for high boiling point petroleum hydrocarbons, oil and grease, and VOCs. Elevated levels of high boiling point petroleum hydrocarbons (up to 1100 mg/kg) and oil and grease (up to 55400 mg/kg) were found, whereas VOCs were not detected. Soil samples from the diesel tank excavation hole were analyzed for high boiling point petroleum hydrocarbons, which were not detected. Results of these analyses are summarized in Table 5.2.

During the installation of four groundwater monitoring wells (OW-1 to OW-4) in March and May 1988, soil samples were collected at 2 to 3 foot intervals. Figure 2.2 shows the monitoring well locations. Soil samples were also collected from fourteen soil borings (OB-1, OB-3 to OB-10, OB-14 to OB-18) drilled in the vicinity of the former tank cluster location and three soil borings (OB-11 to OB-13) drilled near the former diesel tank location. Figures 5.1 and 5.2 show the locations of these soil borings. The soil samples were analyzed for high boiling point petroleum hydrocarbons (as kerosene, mineral spirits, and diesel), VOCs and oil and grease.

Laboratory analyses of soil samples collected from borings drilled near the former tank cluster location detected high boiling point petroleum hydrocarbons and oil and grease. Low levels of BTEX were detected in some of the samples, collected at depths of 5 to 8 feet. In a few of the soil samples, concentrations of petroleum hydrocarbons and/or oil and grease were found to be above 1,000 mg/kg. Table 5.3 summarizes the analytical results.

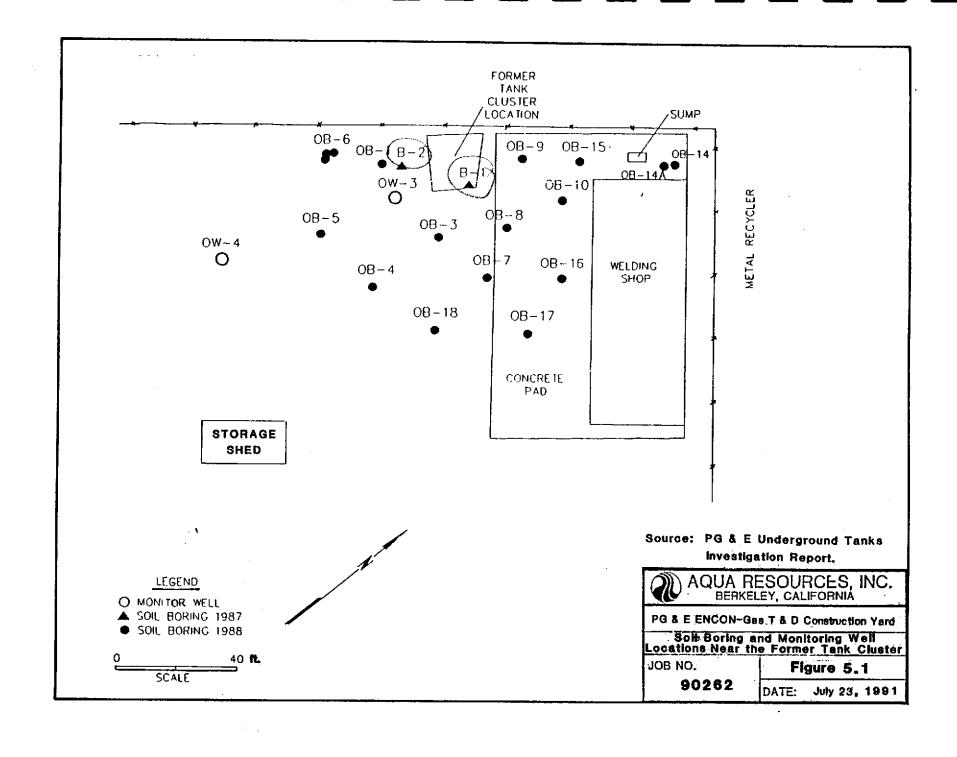
Laboratory analyses of soil samples collected from borings drilled near the former diesel tank location did not detect high boiling point petroleum hydrocarbons, oil and grease, or VOCs in any of the samples. The results of these analyses are presented in Table 5.4.

The results of laboratory analyses of soil samples indicate that the tank cluster leaked mineral spirits, oil and grease and possibly diesel to the surrounding soil; and the sump (and/or piping connecting the sump to the tank cluster) leaked kerosene, oil and grease, and possibly diesel to the surrounding soil.

5.2 Groundwater Investigations

During the 1987 preliminary underground tank leakage study conducted by PG&E's Department of Engineering Research water samples were collected from the three borings (B-1 to B-3) drilled near the tank cluster and the diesel tank. The analyses showed trace amounts of BTEX near the tank cluster.

Water samples collected from the tank cluster excavation hole in January 1988, showed elevated levels of high boiling point petroleum hydrocarbons (30 mg/l) and oil and grease (8000 mg/l). Water samples collected from the diesel tank excavation hole also showed elevated levels of high boiling point petroleum hydrocarbons (up to 150 mg/l).


Since 1989, quarterly groundwater samples were collected from the four monitoring wells by PG&E's Technical and Ecological Services. Figure 2.2 shows the locations of monitoring wells OW-1 to OW-4. Table 5.5 summarizes the analytical results for petroleum hydrocarbons and volatile aromatics and Table 5.6 shows the results for detected halogenated volatile organics in samples collected from January 1990 to January 1991. These results are excerpted from the quarterly groundwater monitoring reports presented by PG&E's Technical and Ecological Services Department.

Semi-volatile petroleum hydrocarbons as diesel and kerosene have been found in almost all of the collected groundwater samples. The detected maximum was 570 μ g/l in a sample from well OW-3 collected in April 1990. TPH as oil was detected in a sample from well OW-3 collected in January 1991 (1200 μ g/l). However, TPH as oil was not detected in the duplicate sample. The detection limit was 500 μ g/l. Total volatile hydrocarbons as gasoline were found in well OW-1 and OW-3 (maximum 120 μ g/l) on one occasion.

The halogeneted volatile organic compounds detected in groundwater samples, including dichlorobenzene, dichloroethane, dichloroethene, fluorobenzene, methylene chloride, chlorobenzene, and a diisopropyl ether, are listed in Table 5.6.

An analysis of water level data collected from March to July 1988 indicated that groundwater flow in the uppermost water bearing zone beneath the site was consistently in a south southwesterly direction. Monitoring well OW-1 is then hydraulically downgradient of the former diesel tank location, and wells OW-3 and OW-4 are hydraulically downgradient of the former tank cluster location.

Although water level measurements in the monitoring wells indicate that the potentiometric water elevation of the uppermost water-bearing zone is 3 to 5 feet below the ground surface, soil borings were drilled 7 to 10 feet deep before saturated samples were obtained. This suggests that the uppermost water-bearing zone is confined below the soil material containing elevated levels of petroleum hydrocarbons.

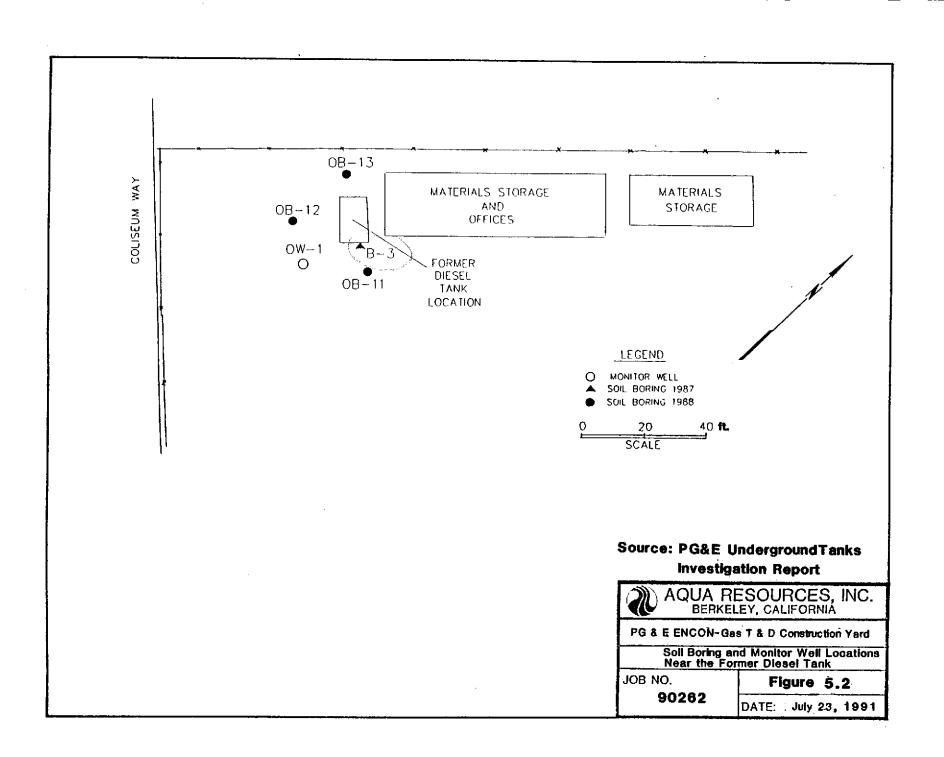


Table 5.1 Petroleum Hydrocarbons, Volatile Aromatics, and PCBs in Soil (February 1987 Investigation), in mg/kg

Sample <u>Ho</u>	Depth (feet)	Gasoline	Kerosene	<u>Diesel</u>	<u>oit</u>	Benzene	Toluene	Ethyl- benzene	<u>Xyl enes</u>	PCBs
B1-1-1	3	ND	ND	ND	2000	ND	ND	ND	ND	0.02
B1-2-1	5.5	ND	ND	ND	180	ND	ND	0.056	0.15	ND
B2-1-1	5	0.73	ND	ND	3500	ND	ND	1.2	1.9	0.06
B2-2-1	8.5	ND	MD	ND	1200	ND	ND	0.12	0.09	0.03
83-1-1	5.5	ND	ND	ND	NO	••	••	••	•-	••
EPA Meth	o d	8015	8100	8100	\$ 100	8020	8020	8020	8020	8080
Method De Limit	etection	0.1	10	20	100	0.04	0.03	0.02	0.04	0.01

Table 5.2 Petroleum Hydrocarbons and Volatile Aromatics in Soil (January 1988 Investigation), in mg/kg

Location	Sample ID	TPH	Oil and Grease	Volatil Organic
Tank Cluster	West Sand			
Tank Cluster	West Mall	320	29,600	ND
Tank Cluster	North Sand	30	2,650	ND
Tank Cluster		63	14,200	ND
Tank Cluster		12	2,300	ND
Tank Cluster	South Sand	ND	26	ND
Tank Cluster	South Soil	88	55,400	ND
Tank Cluster	South Wall	310	7,000	ND
Tank Cluster	East Wall	19	3,850	ND
Tank Cluster	East Liquid (below tank)	1100 30	10,500 8,000	ND ND
Diesel Tank	Soil	ND		
Diesel Tank	Liquid (below tank)	95		
Diesel Tank	Liquid (below tank)	150		••
EPA Method				
	mod on Limit	d 8015	(SM) 503E	8240
Methad Datasti		10	10	0.2

Table 5.3 Petroleum Hydrocarbons and Volatile Organic Compounds in Selected Soil Samples Collected from Borings near the Former Tank Cluster Location (March and May 1988 Investigation), in mg/kg

Soil	Sample		Sample		TPH								
PO11	Depth	TIP	Depth	TPH	(mineral	TPH	Oil and	Volatile					
boring	(feet)	reading	(feet)	(diesel)	spirits)	(kerosene)			D	*******	FALIb	wl	Misc.
2011111	7/2017	Lucins	Tieer	Zaieset	<u>spirits</u> 2	(ker osene)	Grease	Organics	<u>Benzene</u>	Toluene	<u>Ethylbenzene</u>	<u>Xyl enes</u>	<u>c4 - c12</u>
08-1	6-6.5	105	6.5-7	ND	54	ND	630	ND					
00 - 1	8-8.5	115	9-9.5	ND	NO	ND	ND	ND					
08 - 3	3.5-4	33	4-4.5	ND	ND	NO	27	ND					
08-3	5.5-6	99	6.5-7	ND	30	ND	250	ND					
09-3	7.5-B	128	8.5-9	ND	ND	ND	13	ND					
OB - 4	7.5-8	2	8-8.5	ND	ND	ND	29	ND					
08-5	7-7.5	2	7.5-8	ND	ND	ND	ND	ND					
OB-6	9.5-10	3	10-10.5	ND	ND	ND	21	ND					
08-7	7.5-8	10	8-8.5	ND	59	NĐ	34	- ND					
08-8	8.5-9	2	9-9.5	ND	ND	ND	ND	33 (methylene ch	loride)				
OB - 9	4.4,5	92	5-5.5	3900	DK	ND	52000	1.1 (ethylbenzen					
08-9	6-6.5	22	7-7.5	400	ND	ND	1000	ND					
OB - 9	12-12,5	15	12.5-13	ND	ND	ND	ND	ND		٠.			
08-10	11-11.5	2	11.5-12	MD	₩D	NO	ND	ND					
OB-14A	7-7.5	55	7.5-8	MD	ND	260	1200	<u></u>	ND	ND	ND	ND	80
08-14A	10.5-11	0	11-11.5	ND	ND	NO	NO		ND	ND	ND	ND	MD
DB-15	6-6.5	40	6.5-7	ND	ND	340	4800	••	ND	ND	ND	1	130
08 - 15	9.5-10	3	10-10.5	ND	ND	ND	5	••	ND	ND	ND	NO.	ND
OB-16	6.5-7	5	7-7.5	ND	ND	ND	100		ND	ND	ND	NO	NO
08 - 16	8.5-9	4	9-9.5	ND	ND	ND	ND		ND	ND	ND	ND	ND
OB-17	6-6.5	3	6.5-7	ND	NO	ND	9		ND	ND	ND	ND	ND
08-17	8.5.9	3	9-9.5	ND	ND	ND	ND	••	ND	HD	ND	ND	ND
08-18	6.5-7	3	7-7.5	ND	ND	NO	ND		ND	ND	ND	ND	ND
00-18	8.5-9	- 3	9-9.5	ND	ND	ND	ND	••	WD	MD	MD.	ND	ND
OM-3	4-4.5	16	4.5-5	210	ND	ND	220	ND			2014	W.D.	MV
OW-3	6-6.5	96	6.5-7	MD	ND	ND	1100	ND					
OW-3	7.5-8	292	8.5-9	ND	ND	ND	ND	ND					
04-4	7-7.5	2	7.5-8	ND	MD	ND	ND	••	ND	ND	ND	ND	ND
04-4	10.5-11	3	11-11.5	ND	NO	ND	ND		ND	MD	ND	MD	ND
EPA Metho	nd			∢		245							
	etection Li	mi t		10	modified 8	015> 10	413.2 5	8010/8020 Various	0.5	0.5	8015/8020 0.5	0.5	•••••

Table 5.4 Petroleum Hydrocarbons and Volatile Organic Compounds in Selected Soil Samples Collected from Borings Near the Former Diesel Tank Location (March 1988 Investigation), in mg/kg

Soil boring	TIP Sample Depth (feet)	TIP reading	Analytical Sample Depth (feet)	TPII <u>(diesel)</u>	TPH (mineral spirits)	TPH (kerosene)	011 and Grease	Volatile Organics
OB-11 OB-12 OB-13 OB-13 OW-1	10-10.5 10-10.5 10-10.5	1 2 - - 3	10.5-11 10.5-11 4-4.5 8.5-9 10.5-11	ND ND ND ND	ND ND ND ND	ND ND ND ND ND	ND ND ND ND	ND ND ND ND ND
EPA Meth Method [hod Detection Li	im1t		< n	nodified 801	.5>	413.2	8010/8020 various

TPH - total petroleum hydrocarbons

ND - not detected at or above method detection limit.

Table 5.5 Petroleum Hydrocarbons and Volatile Aromatics in Groundwater (January 1990 to January 1991)

<u>Well</u> Date Sampl	TPH ed (mg/l)	TPH-gas (ug/1)	TPH-diesel/oil (ug/1)	В	T	E _ (ug/l)	X
<u>OW-1</u>		٠					
01-26-90	<5	<50	190	3.2	2.3	<.3	2.6*
04-23-90	<5	82	300	<.3	0.4	<.3	2.4*
07-05-90	<5	<50	200	<1	<1	<1	<1** '
10-12-90	<5	<50	200	<1	<1	<1	<1**
01-10-91	<5	<500	90 ¹	<1	<1	<1	<1**
<u>OW-2</u>							
01-26-90	<5	<50	130	0.4	0.4	<.3	0.4*
04-23- 9 0	<5	<50	140	<.3	0.6	<.3	0.8*
07-05-90	<5	<50	88	<1	<1	<1	<1**
10-12-90	<5	<50	90	<1	<1	<1	<1**
01-10-91	<5	<50	<50	<1	<1	<1	<1**
<u>OW-3</u>							
01-26-90	<5	<50	440	0.5	0.4	<.3	0.7*
04-23-90	<5	52	470	<.3	0.8	0.5	2.1*
07-05-90	<5	<50	450	<1	<1	<1	<1**
10-12-90	<5	< 50	130	<1	<1	<1	<1**
01-10-91	<5	<50	110 ¹ /1200 ²	<1	<1	<1	<1**
OW-3 (duplicat	<u>(e)</u>						
01-26-90	<5	<50	550	0.6	0.5	0.4	1.3*
04-23-90	<5	120	570	0.5	0.9	0.8	1.3*
07-05-90	<5	<50	500	<1	<1	<1	<1**
10-12-90	<5	< 50	270	<1	<1	<1	<1**
01-10-91	<5	<50	130	<1	<1	<1	<1**
<u>OW-4</u>							
01-26-90	<5	<50	150	<.3	<.3	<.3	0.6*
04-23-90	<5	<50	210	0.5	0.6	0.3	2.0*
07-05-90	<5	<50	150	<1	<1	<1	<1**
10-12-90	<5	<50	150	< 1	<1	<1	<1**
01-10-91	<5	<50	<50	<1	<1	<1	<1**
TPH-G = tota TPH-dieset/oil = tota BTEX = ber < = not 1 = ide	il petroleum hydrod il petroleum hydrod	carbons as ga carbons as die Abenzene, and we method de	ared method (EPA M soline (EPA Method ! sel or motor oil (EPA d xylenes (EPA Metho tection limit	5030/8015) Method 35	510/8015)	")	

Source:

PG&E — Technical and Ecological Services Department, Quarterly Groundwater Monitoring Report, January 1991.

Table 5.6 Halogenated Volatile Organics in Groundwater (January 1990 to January 1991)

Well Date Sampled	1,1-DCA _(ug/l)	1,2-DCB (ug/l)	1,3-DCB (ug/l)	1,4-DCB (ug/l)	Fluoro- benzene (ug/l)	cis-1,2- DCE (ug/i)	Diisopropyl ether (ug/l)	Methylene chloride (ug/l)	Chloro- benzene (ug/l)
<u>OW-1</u>									
01-26-90 04-23-90 07-05-90 10-12-90 01-10-91	4 4 2 2 1	<1 <1 <1 <1 <1	1 4 4 1 3	5 13 11 6 3	ND ND ND ND	<1 <1 <1 <1	5 7 ND ND ND	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1
<u>OW-2</u>									
01-26-90 04-23-90 07-05-90 10-12-90 01-10-91	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	70 70 70 70 70	<1 <1 <1 <1 <1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<5 <5 <5 <5 <5	<1 <1 <1 <1
<u>OW-3</u>									
01-26-90 04-23-90 07-05-90 10-12-90 01-10-91	29 14 17 17 15	2 <1 1 1	3 <1 2 2 1	2 <1 <1 2 1	70 70 70 70 70	<1 33 <1 1	8 ND ND ND ND	<5 9 <5 <5 <5	<1 <1 <1 <1 1
OW-3 (duplicate)									
01-26-90 04-23-90 07-05-90 10-12-90 01-10-91	30 13 21 16 17	2 <1 2 1	3 4 2 2 2	2 13 <1 2 2	20 20 10 20 20 20	<1 40 <1 1 1	9 ND ND ND	<5 10 <5 <5 <5	<1 <1 <1 <1
<u>OW-4</u>		-							
01-26-90 04-23-50 07-05-90 10-12-90 01-10-91	<1 <1 <1 <1 3	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	<1 <1 <1 <1 <1	ND ND ND ND	<1 <1 <1 <1 <1	02 02 03 04 04	<5 <5 <5 <5 <5	<1 <1 <1 <1 <1
Field Blank									
01-26-90 04-23-90 07-05-90 10-12-90 01-10-91	<1 na <1 <1 <1	<1 na <1 <1 <1	<1 na <1 <1 <1	<1	ND na ND ND ND	<1 na <1 <1 <1	ND na ND ND ND	<5 na <5 <5 <5	<1 <1 <1 <1
Maximum Containment Level	-	-	-	75	-	-	-	-	1000
DCB = dich DCE = dich	detected (deta	ection limit not	stated)						

Source:

PG&E-Technical and Ecological Services Department, Quarterly Groundwater Monitoring Report, January 1991.

6.0 RESULTS OF REMEDIAL INVESTIGATIONS FOR PERIOD NOVEMBER 1990 TO MAY 1991

In November 1990, and April and May 1991, ARI investigated soil and groundwater conditions at the PG&E ENCON-GAS Transmission and Distribution Construction Yard. The main goal of the investigation activities was to determine the extent of elevated levels of petroleum hydrocarbons in soil and possibly in groundwater related to the former tank cluster in the northern part of the yard. The former tank cluster, the concrete sump with connecting piping, the welding shop, and the POL storage shed were considered as possible on-site sources for elevated levels of chemicals in soil and groundwater.

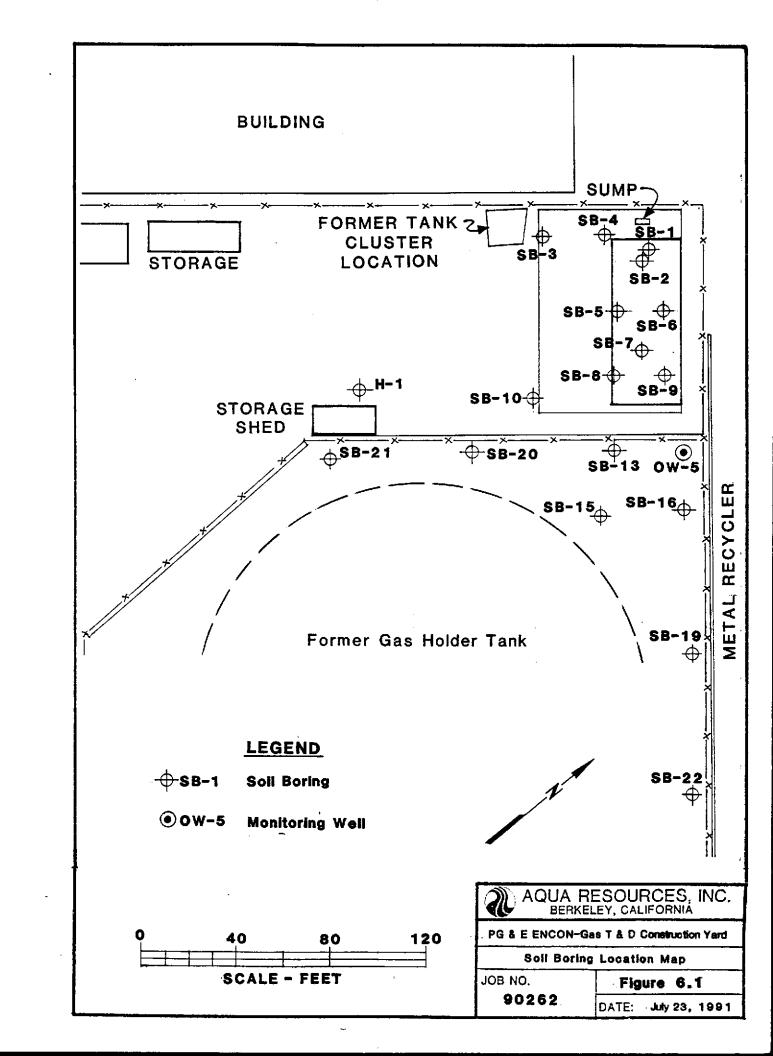
The following investigations were performed:

- Soil sampling near the POL storage shed
- Soil sampling inside and in front of the welding shop
- Soil sampling in the northeastern area of the yard between the welding shop and the concrete pad
- Installation and development of a new groundwater monitoring well
- Quarterly groundwater sampling of five on-site monitoring wells

The objectives, scope, and results of each investigation are described below.

6.1 Soil Investigations

As part of the investigation activities, eighteen soil borings were drilled and several soil samples were collected from each boring. The borings were drilled using hollow stem auger or solid flight auger drilling equipment. Soil sampling procedures, equipment decontamination, handling of drill cuttings, and boring backfilling procedures, are described in the Site Sampling and Analysis Pian and QA/QC Plan attached as Appendix A.


<u>6.1.1 Petroleum, Oil and Lubricant Storage Shed</u>- In November 1990, the soils in the vicinity of the POL storage shed were investigated in an effort to determine the source of the low levels of VOCs found in groundwater at the site.

Materials in the POL storage shed included:

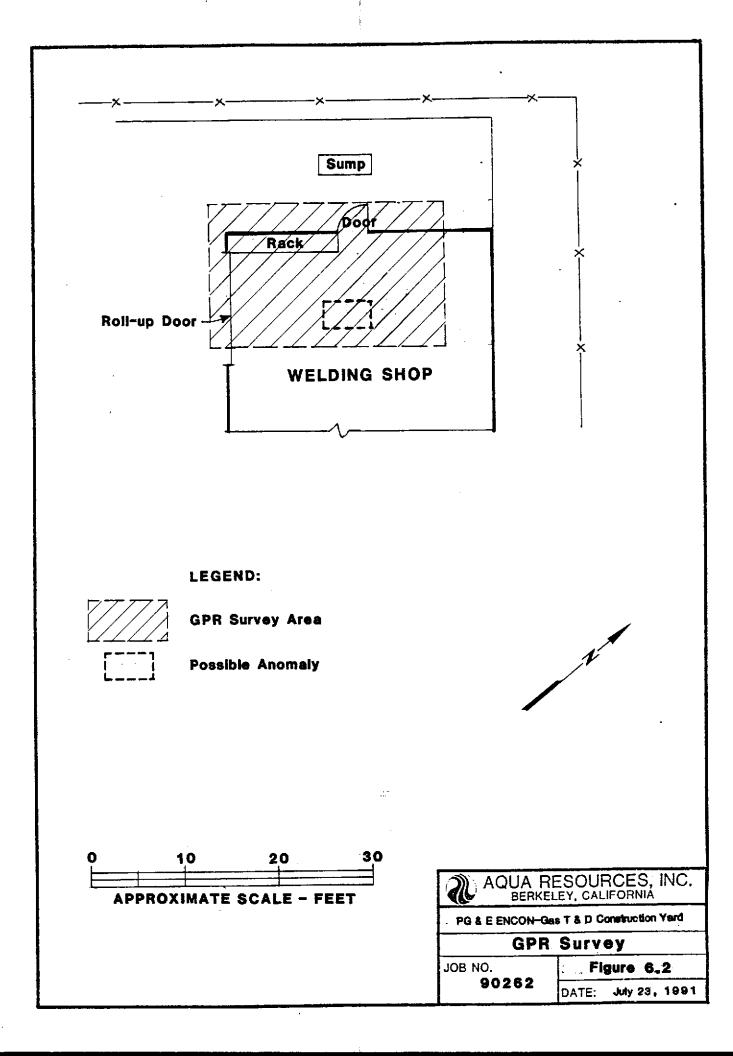
- one 55 gallon drum of brake and wheel cleaner (possibly solvent)
- one 55 gallon drum of hydraulic oil
- four 55 gallon drums of non-flammable biodegradable cleaner
- oily rags
- paint cans
- aerosol cans
- 1 quart oil cans (empty)
- five 5 gallon hydraulic oil cans
- emergency spill equipment
- gas meters

All materials were stored neatly in drums on a concrete pad with concrete stub walls and a berm surrounding the entire area. No soil discoloration or other evidence of spills were observed by ARI during the investigation.

A soil sample was taken from 0 to 6 inches depth immediately outside the door of the storage building, using hand auger sampling equipment. Sampling procedures are the same as for the split barrel sampler and are outlined in the Site Sampling and Analysis Plan (Appendix A). The sample location (H-1) was tape measured and is shown in Figure 6.1.

6.1.2 Welding Shop - In April and May 1991, ARI investigated soils beneath the welding shop. The goal of this effort was to determine the horizontal extent of elevated levels of petroleum hydrocarbons in soil. Previous investigations performed by PG&E found elevated levels of hydrocarbons in the vicinity of the building which were suspected of also being present under the building.

Prior to the soil sampling activities, a Ground Penetrating Radar (GPR) survey was performed in the northwest end of the welding shop. The goal of this effort was to attempt to determine if buried engines or transmissions are present under the concrete floor in this area.


The GPR survey was performed by SPECTRUM E.S.I. from Fremont, California. The surveyed area as shown in Figure 6.2 was approximately 15 feet by 25 feet. No obvious metal objects were detected, but a 3' x 5' anomaly was thought to be found at 8 1/2 feet from the northwestern wall at about 3-foot to 4-foot depth below the concrete surface. The GPR did not give adequate definition to confidently rule out the presence of buried engine blocks.

On April 15, 1991, two soil borings (SB-1 and SB-2) were drilled inside the welding shop and two other soil borings (SB-3 and SB-4) were drilled in front of the building in the concrete apron. Boring locations were tape measured and are presented in Figure 6.1.

Boring SB-2 was located within the 3' x 5' anomaly found by the GPR survey. However, no metal objects were detected during the drilling. Boring SB-3 was located in the area known to be impacted by petroleum hydrocarbons.

Two or three soil samples were collected at various depths (maximum depth was 10 feet) from each boring SB-1, SB-2, and SB-4 and were submitted for chemical analysis to determine the horizontal extent of elevated levels of petroleum hydrocarbons near the northwest end of the welding shop. Soil samples from SB-3 and SB-1 were submitted for a biotreatability study. The borings logs are presented in Appendix B.

Samples from borings SB-1, SB-2 and SB-4 contained evidence of oil to a depth of approximately 5 feet below the concrete pad. Boring SB-3 contained oil to a depth of approximately 8 feet below the concrete slab.

On May 23, 1991, six additional soil borings were drilled in the area of the welding shop in order to determine the extent of elevated levels of petroleum hydrocarbons under the building. Borings SB-5 to SB-9 were drilled inside the building and boring SB-10 was drilled near the southern end of the concrete slab in front of the building. Boring locations are shown on Figure 6.1. The borings were drilled to between 9-foot to 10-foot depth. Three soil samples were collected at various depths from each boring. Boring logs are presented in Appendix B. The sample identified as SB-7-1a was manually scraped from the borehole wall in boring SB-7. A regular sample could not be collected because the sampler hit hard and densely packed materials.

The welding shop is constructed over a concrete pad, 4 to 6 inches thick, overlying 6 to 12 inches of fine sand fill. In the borings, drilled inside the building, typically 1 to 2 feet below the concrete slab, the driller could not push the sampler in, indicating they were hitting hard or densely packed materials. These materials could be part of the fill, rather than natural sediments; in boring SB-6, a 4-inch long piece of metal came up on the auger with the cuttings from this depth and pieces of lumber were found down to approximately 5 feet depth. Samples from borings SB-5 and SB-6 appeared to contain aged oil (dark brown, nonviscous) from 3 to 5 feet depth. SB-6 also contained viscous oil.

6.1.3 Near Northeastern Property Line - On April 16, 1991, the borehole for the installation of a fifth monitoring well (OW-5) was drilled immediately east of the welding shop. The goal of this effort was to determine if upgradient sources of petroleum hydrocarbons may have impacted the site. The boring was drilled to 17 feet depth. Soil samples were collected continuously down to 9.5-foot depth and then in a 3-foot interval down to 17-foot depth. Samples from about 5-foot depth appeared to contain liquid oil.

In order to determine the horizontal extent of elevated levels of hydrocarbons in soils in the vicinity of monitoring well OW-5, seven additional soil borings (SB-13, SB-15, SB-16, SB-19 to SB-22) were drilled on May 20, 1991. Figure 6.1 shows the boring locations. Three soil samples were collected from each boring at a depth of about 2.0, 4.5, and 7 feet. The boring logs are presented in Appendix B. The sample identified as SB-19-1 was manually collected form the drill cuttings because the soil was extremely soft so that the soil could not be forced into the splitspoon sampler but it was rather pushed to the wall of the boring.

A slight oil odor was found in soil samples from SB-13, SB-15, and SB-16. Brown oil spots of 1/16-inch in diameter were found in the sampler shoe immediately below 5 1/2-foot depth in boring SB-13. However, no oil was visible in the sample collected from 5 to 5 1/2-foot depth.

concentrations of petroleum hydrocarbons seem to be limited to a maximum depth of 9 feet. Extractable petroleum hydrocarbons quantified as diesel were detected at a maximum concentration of 8,900 mg/kg in SB-1 at 4-foot depth. Soil samples from SB-1, SB-2, and SB-4 analyzed for total petroleum hydrocarbons (TPH) showed a maximum concentration of 47,000 mg/kg in SB-2 at 4.0 to 4.5-foot depth. 6,900 mg/kg of TPH were detected in SB-4 at 8.0 to 8.5-foot depth.

These results confirm the levels of petroleum hydrocarbon discovered during the previous investigations in the vicinity of the former tank cluster and confirm the suspected contamination beneath the welding shop.

Near the Northeastern Property Line. The highest concentration of oil and grease (2,300 mg/kg) was detected in a sample from boring SB-15, collected at 2.0 to 2.5-foot depth. Samples from all other borings did not exceed concentrations of 120 mg/kg oil and grease. TPH-Diesel was detected in SB-16 at 7.0 to 7.5-foot depth at 510 mg/kg. A sample taken at 4.5 to 5.0-foot depth from the monitoring well boring OW-5 contained a non-specified hydrocarbon fuel of 3,750 mg/kg, which did not match diesel fuel.

Table 6.1. Petroleum Hydrocarbons in Soil, in mg/kg

Sample ID	Depth	Oil and	TPH	TEH	TVH
	[feet]	Grease	j	Diesel	Gasoline
SB-1-1b	4.0		32,000	8,900	
SB-1-2	5.0-5.5		11,000	2,100 (a)	
SB-1 - 3	10.0-10.5		11	< 2.5	
SB-2-1	4.0-4.5		47,000	1,600 (b)	
SB-2-2	8.0-8.5		8	< 2.5	
SB-4-1	5.75-6.25		14,000		
SB-4-2	7.25-7.75		5,800		
SB-4-3	8.0-8.5		6,900	;	
SB-5-1	2.75-3.25	9,200			
SB-5-2	5.0-5.5	3,500]	
SB-5-3	8.0-8.5	<50	1		
SB-6-1	3.0-3.5	13,000		1,700	
SB-6-2	4.5-5.0	3,600			
SB-6-3	7.5-8.0	2,400			
SB-6-4	9.0-9.5	<50			
SB-7-1	0.5-1.0	96			
SB-7-1a	1.0-1.5 (disturbed)	3,900			
SB-7-2	6.0-6.5	<50			
SB-7-3	8.0-8.5	< 50			
SB-8-1	0.0-0.5	<50		,	
SB-8-2	3.0-3.5	2,700		47	
SB-8-3	5.0-5.5	<50			
SB-8-4	8.0-8.5	<50			
SB-9-1	1.0-1.5	2,100		210	
SB-9-2	5.0-5.5	2,400			
SB-9-3	7.0-7.5	<50			
SB-10-1	2.5-3.0	770			
SB-10-2	5.0-5.5	56			
SB-10-3	8.0-8.5	<50			

(Continued ->)

Notes:

- 1) (a) = Sample contains a hydrocarbon fuel of approximately 3700 mg/kg, including 2149 mg/kg of diesel fuel
- 2) (b) = Sample contains a hydrocarbon fuel of approximately 2000 mg/kg, including 1571 mg/kg of diesel fuel
- 3) Blank = Not Analyzed
- 4) < = Not Detected at or above Reporting Limit
- 5) TPH = Total Petroleum Hydrocarbons (EPA method 418.1)
- 6) TEH-Diesel = Total Extractable Petroleum Hydrocarbons as Diesel (EPA method 8015 mod./3550)
- 7) TVH-Gasoline = Volatile Hydrocarbons as Gasoline (EPA method 8015 mod./3550)
- 8) Oil and Grease = Hydrocarbon Oil and Grease (SMWW 17:5520EF)

Table 6.1. Petroleum Hydrocarbons in Soil, in mg/kg (continued)

Sample ID	Depth	Oil and	TPH	TEH-	TVH-
	[feet]	Grease		Diesel	Gasoline
SB-13-1	2.0-2.5	78	İ		
SB-13-2	5.0-5.5	20	.		!
SB-13-3	7.0-7.5	18		:	
SB-15-1	2.0-2.5	2,300			
SB-15-2	4.0-4.5	30			
SB-15-3	7.0-7.5	18			
SB-16-1	2.0-2.5	<5.0			
SB-16-2	4.0-4.5	8			
SB-16-3	7.0-7.5	110		510	
SB-19-1	~ 2.0 (cuttings)	66			
SB-19-2	5.0-5.5	6			
SB-19-3	7.0-7.5	22			
SB-20-1	2.5-3.0	82			
SB-20-2	4.0-4.5	120		66	
SB-20-3	7.0-7.5	34			
SB-21-1	2.0-2.5	24			
SB-21-2	5.0-5.5	< 50		< 1.0	
SB-21-3	7.0-7.5	< 50		< 1.0	
SB-22-1	3.75-4.25	28			
SB-22-2	5.0-5.5	< 50		< 1.0	
SB-22-3	7.0-7.5	< 50		< 1.0	
OW-5-5	2.5-3.0		450		
OW-5-9	4.5-5.0		600	< 50 (c)	2
OW-5-12	6.0-6.5		75		

Notes:

- 1) (c) = Sample contains a hydrocarbon fuel of approximately:3750 mg/kg, which does not match diesel fuel
- 2) Blank = Not Analyzed
- 3) < = Not Detected at or above Reporting Limit
- 4) TPH = Total Petroleum Hydrocarbons (EPA method 418.1)
- 5) TEH-Diesel = Total Extractable Petroleum Hydrocarbons as Diesel (EPA method 8015 mod./3550)
- 6) TVH-Gasoline = Volatile Hydrocarbons as Gasoline (EPA method 8015 mod./3550)
- 7) Oil and Grease = Hydrocarbon Oil and Grease (SMWW 17:5520EF)

Table 6.2. Volatile Organic Compounds in Soil, in ug/kg

	Sample ID ->	H-1	SB-1-1	ND 4 A	OD 4 6	00.04	A 2 2 2	A		
	Depth [feet] ->	0.0-0.5		SB-1-2	SB-1-3			SB-6-1		SB-9-1
PURGEABLE	pepu [teet] ->	0.0-0.5	4.0	5.0-5.5	10.0-10.	4.0-4.5	8.0-8.5	3.0-3.5	3.0-3.5	1.0-1.5
HALOCARBONS	MDL	6.43	/. - \	(=)						
TALEGRADONS	I MIDT	(x1)	(x5)	(x5)	(x1)	(x5)	(x5)	(x2)	(x1)	(x1)
Dichlorodifluoromethane	. 5		ND							
Chloromethane	5	- 10	ND	ND	ND	ND	ND			•
Vinyl chloride	5	<10	_	ND	ND	ND	ND	<20	<10	<10
Bromomethane	5	<10	ND	ND	ND	ND	ND	<20	<10	<10
Chloroethane	5	<10	ND	ND	ND	ND	ND	<50	<10	<10
Trichlorofluoromethane	5	<10	ND	ND	ND	ND	ND	<20	<10	<10
1,1-Dichloroethene	5	ND 	ND	ND	ND	ND	ND	ND	ND	ND
Dichloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichlorothene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	5	ND						ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND	NĎ	ND	ND	ND
Chloroform	5	ND 	ND	ND	ND	ND	ND	230	13	ND
Freon 113	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	5	ND						ND	ND	ND
Carbon Tetrachloride	5	ON -	ND	ND	DM	ND	NΩ	310	9.3	ND
1,2-Dichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5	ND	ND	ND	NO	ND	ND	ND	ND	ND
Bromodichloromethane	5	OΝ	ND	CM	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	41 1	ND	ND	ND	ND	ND	ND	NĎ	ND	ND
cis-1,3-Dichloropropene	5	ND	NO	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
2-Chloroethylvinylether	5	ND	ND	ND	פא	ND	ND	ND	NO	ND
Chlorobenzene	10	OM						ND	ND	ND
Bromoform	5	ND	ND	ND	ND	ND	ND	ND	ND	מא
1	5	ND	NO	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane 1,2,3-Trichloropropane	5	NO	ND	ND	ND	ND	ND	ND	ND	ND
2-Chlorotoluene	44	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,3-Dichlorobenzene	100		ND	ND	ND	ND	ND			
1,4-Dichlorobenzene	5	ND	ND	МĎ	19	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5	ND	ND	ND	20	ND	ND	ND	ND	ND
PURGEABLE	5	ND	ND	ND	ND	ND	ND	ND	ND	ND
AROMATICS	1 45.								•	
AHOMATICS	MDL	(x1)	(x5)	(x5)	(x1)	(x5)	(x1)	(x2)	(x1)	(x1)
Benzene	5									
Toluene	I II	ND	ND	ND	ND	ND	ND	16	ND	ND
Chlorobenzene	5 5	30	ND	ND	ND	ND	ND	120	ND	ND
Ethylbenzene	5	ND	ND 4E	ND	ND	ND OC	ND	ND	ND	ND
P-&m-xylene	10	NO	45	ND	ND	30	ND	220	45	ND
O-xylene	l II		ND OF	ND	ND	ND	ND			
Total Xylenes	5		25	ND	ND	ND	ND			
1,3-Dichlorobenzene	5	ND						730	ND	ND
1,4-Dichlorobenzene	5	ND	ND	ND	13	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	5	ND	ND	ND	14	ND	ND	ND	ND	ND
.,_ Didition of the life	5	ND	ND_	ND	ND	ND	ND	ND	ND	ND

(continued ->)

Table 6.2. Volatile Organic Compounds in Soil, in ug/kg (continued)

	Sample ID ->	SB-16-3	SB-20-2	SB-21-2	SB-22-3	OW-5-9
	Depth [feet] ->	7.0-7.5	4.0-4.5	5.0-5.5	7.0-7.5	4.5-5
PURGEABLE						
HALOCARBONS	MDL	(x10)	(x1)	(x1)	(x1)	(x1)
						
Dichlorodifluoromethane	5					ND
Chloromethane	5	< 100	<10	<10	<10	ND
Vinyl chloride	5	< 100	<10	<10	<10	ND
Bromomethane	5	<100	<10	<10	<10	ND
Chloroethane	5	< 100	<10	<10	<10	ND
Trichlorofluoromethane	5	ND	ND	ND	ND	ND
1,1-Dichloroethene	5	ND.	ND	ND	ND	ND
Dichloromethane	5	ND	ND	ND	ND	ND
cis-1,2-Dichlorothene	5	ND	ND	ND	ND	,,,,
trans-1,2-Dichloroethene	5	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	ND	ND	ND
Chloroform	5	ND	ND	ND	ND	ND
Freon 113	5	ND.	ND	ND	ND	
1,1,1-Trichloroethane	5	ND	ND	ND	ND	ND
Carbon Tetrachloride	5	ND	ND	ND	ND	ND
1,2-Dichloroethane	5	ND	ND	ND	ND	ND
Trichloroethene	5	ND	ND	ND	ND	ND
1,2-Dichloropropane	5	ND	ND	ND	ND	ND
Bromodichloromethane	5	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	5	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5	ND	ND	ND	ND	ND
Tetrachloroethene	5	ND	ND	ND	ND	ND
Dibromochloromethane	5	ND	ND	ND	NO	ND
2-Chloroethylvinylether	10	ND ND	ND	ND	ND	NU
Chlorobenzene	5	ND ND	ND	ND DN	ND	ND
Bromoform	5	ND ND	ND	ND	ND	ND !
1,1,2,2-Tetrachloroethane	5	ND	ND	ND	מא	ND 0N
1,2,3-Trichloropropane	44	5	NO	110	MD	ND .
2-Chlorotoluene	100					ND :
1,3-Dichlorobenzene	5	ND	ND	ND	ND	ND ND
1,4-Dichlorobenzene	5	ND	ND	ND	ND	ND ND
1,2-Dichlorobenzene	5	ND	מא	ND	ND	ND
PURGEABLE				110	110	ND .
AROMATICS	MDL	(x10)	(x1)	(x1)	(x1)	(x1)
					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Benzene	5	110	ND	ND	ND	ND
Toluene	5	79	ND	ND	ND	ND
Chlorobenzene	5	ND	ND	ND	ND	ND
Ethylbenzene	5	ND	ND	ND	ND	ND
P-&m-xylene	10	-			- , -	ND
O-xylene	5					ND
Total Xylenes	5	140	ND	ND	ND	110
1,3-Dichlorobenzene	5	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	5	ND	ND CM	ND		
1,2-Dichlorobenzene	5	ND			ND ND	NO NO
		HU.	ND	ND	ND	ND

Notes

- 1) MDL = Method Detection Limit
- 2) (x5) = Factor to be multiplied with the MDL to determine the individual Reporting Limit
- 3) ND = Not Detected at or above Reporting Limit
- 4) Blank = Not Analyzed
- 5) Purgeable Halocarbons (EPA method 8010)
- 6) Purgeable Aromatics (EPA method 8020)

Table 6.3. PCBs in Soil, in mg/kg

Sample ID	ii	PCB-1016	PCB-1221	PCB-1232	PCB-1242	PCB-1248	PCB-1254	PCB-1260
	[feet]							
SB-1-1b	4.0	< 1.0		. 4.0				
	li		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SB-2-1	4.0-4.5	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
SB-6-1	3.0-3.5	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017
SB-9-1	1.0-1.5	<0.017	<0.017	<0.017	<0.017	<0.017	1.7	<0.017
SB-13-2	5.0-5.5	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017
SB-16-3	7.0-7,5	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017
SB-19-3	7.0-7.5	<0.017	<0.017	< 0.017	<0.017	<0.017	<0.017	<0.017
OW-5-1	0.5-1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Notes:

- 1) < = Not Detected at or above Reporting Limit
- 2) PCBs = Polychlorinated Biphenyls (EPA method 8080)

Table 6.4. Metals in Soil, in mg/kg

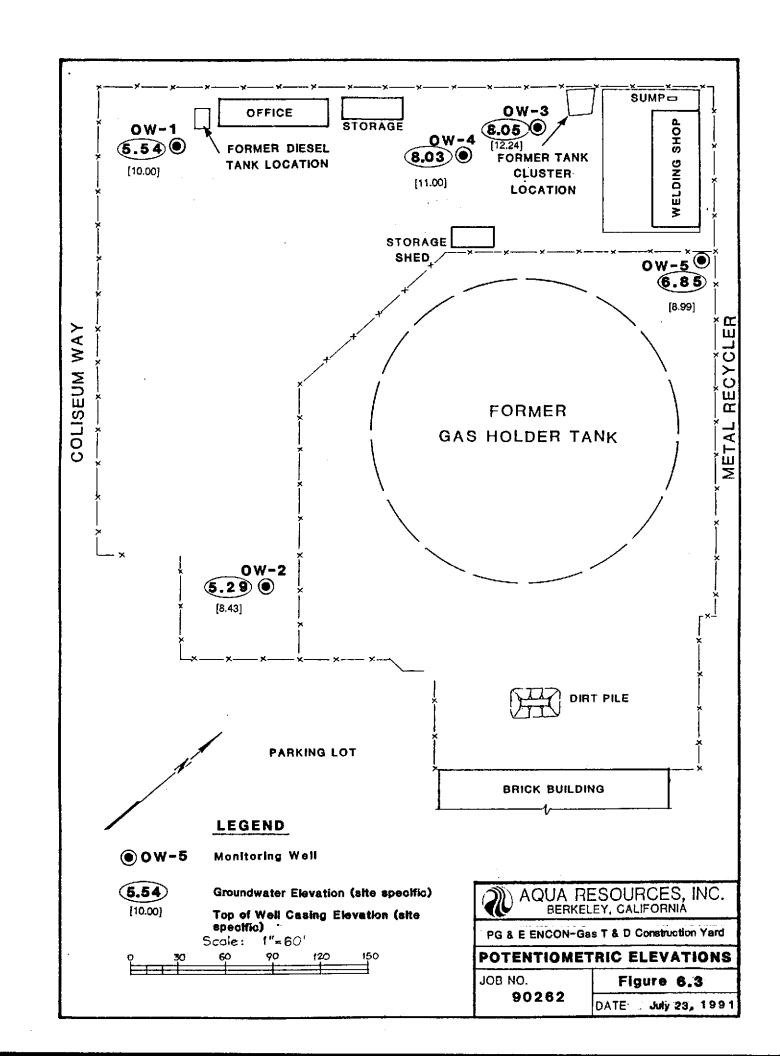
Sample ID ->	SB-1-1b	SB-6-1	SB-9-1	SB-13-2	SB-16-3	SB-19-3	OW-5-9
Depth [feet] ->	4.0	3.0-3.5	1.0-1.5	5.0-5.5	7.0-7.5	7.0-7.5	4.5-5.0
Metals		310 0.0	1.5 1.0	0.0.0.0	7.0-7.5	7.0-7.5	4.5-5.0
Antimony	19	<2.9	6.6	<2.9	<3.0	<3.0	<8
Arsenic	17	3.3	3.9	<2.5	<2.5	<2.5	6
Barium	290	156	571	133	118	108	190
Beryllium	0.22	0.22	0.42	0,36	0.38	0.35	1.2
Cadmium	0.8	2	4.2	1.9	1.8	1.7	0.29
Chromium VI	<0.4						<0.4
Chromium (total)	28	40.1	51.6	40	46.6	36.2	110
Cobalt	6.9	9.1	13.5	11.8	9.7	11.4	14
Copper	28	39.7	63.9	29.8	21.2	19.4	35
Lead (total)	210	26	168	12.2	5.4	5.5	8.6
Lead (soluble)	6.4		2.57				
Mercury	<0.17	0.11	0.22	0.12	<0.1	<0.1	0.7
Molybdenum	0.7	2.6	<0.7	<0.68	< 0.69	<0.7	<0.24
Nickel	60	37.7	66.1	73.5	74.5	70.6	150
Selenium	<1	<2.5	<2.5	<2.5	<2.5	<2.5	<1
Silver	<0.8	< 0.49	<0.5	< 0.49	< 0.49	<0.5	<0.8
Thallium	5.6	<2.5	<2.5	<2.5	<2.5	<2.5	<3
Vanadium	63	27.7	47.4	29.5	29	22.6	59
Zinc	90	50.2	252	43.8	40.2	36.6	80

Notes:

- 1) Blank = Not Analyzed
- 2) < = Not Detected at or above Reporting Limit
- 3) Metal analyses performed according to CCR Title 26

6.2 Groundwater Investigations

As part of the site investigation activities, ARI installed a fifth groundwater monitoring well on-site and performed the quarterly groundwater sampling in April 1991. Monitoring well installation procedures and groundwater sampling procedures are described in the Site Sampling and Analysis Plan and QA/QC Plan attached as Appendix A.


<u>6.2.1 Monitoring Well Installation and Development</u> - On April 16, 1991, one additional groundwater monitoring well (OW-5) was installed to the east of the welding shop and as close as possible to the property line. The purpose was to assess if upgradient sources of petroleum hydrocarbons may have impacted the groundwater underlying the site. The regional groundwater flow direction is to the southwest. The location of the previously installed monitoring wells OW-1 to OW-4 and the newly installed well OW-5 are shown on Figure 6.3.

The boring was drilled to 17 feet depth by HEW Drilling. Soil samples were collected continuously to a depth of 9.5-foot and then in 3-foot intervals down to 17-foot depth. Details on soil sampling procedures are described in the Site Sampling Plan attached as Appendix A.

The monitoring well was installed under the supervision of a registered civil engineer. The monitoring well log, the Observation Well Installation Report, and the Water Well Drillers Report are attached as Appendix C. The elevation of the new monitoring well was surveyed on April 17, 1991, in relation to an assumed elevation of OW-1 (top of the well casing is 10.00 feet).

The monitoring well was developed by surging and swabbing by Garcia Well Pump Co., of Palo Alto, California. A galvanized steel bailer (25 feet long, about 2.5 gallon of volume) that fit tightly in the well casing was used for surging purposes. The bailer created a mild pressure when moved down the well casing and created a vacuum when moved up in order to pull in the particles which needed to be removed. This procedure was used, because the pressure created by a bailer is lower than the pressure created by a regular surge block, which reduces the possibility of disturbing the sand pack. About 55 gallons of groundwater were bailed into a U.S. Department of Transportation approved drum.

<u>6.2.2 Groundwater Sampling</u> - On April 17, 1991, ARI performed the quarterly groundwater sampling on the T&D Construction Gas Yard. Groundwater analyses are performed to monitor the distribution of waste oil, solvents, and fuel compounds in the uppermost aquifer beneath the site. Prior to purging and sampling monitoring wells OW-1 to OW-5 the depth to groundwater was measured using an electric water level indicator.

The groundwater surface elevations are shown on Figure 6.3. The elevation is shown in relation to an assumed elevation of the top of the casing of monitoring well OW-1. Elevations in OW-1, OW-2, and OW-5 confirm a general regional groundwater flow direction to the southwest. However, if horizontal isotropic conditions prevailed on the whole site, elevations in OW-3 and OW-4 would be about 1.5 feet lower than actually measured. This might indicate the presence of an artificial water source, such as a leaking pipe, in the vicinity of OW-3 and OW-4.

A minimum of three casing volumes were purged from each well before groundwater samples were collected. Each well was checked for the presence of free floating product (diesel or oil) but no free floating product was observed.

<u>6.2.3 Chemical Analyses</u> - Groundwater samples were submitted to a California Department of Toxic Substances Control certified laboratory under chain-of-custody control. Chemical analyses were performed by TETC Analytical Laboratories in Huntington Beach, California.

The following analyses were performed for each groundwater sample:

- Total Petroleum Hydrocarbons (EPA Method 418.1)
- Total Extractable Hydrocarbons as Diesel (EPA Method 8015 modified/3550)
- Volatile Organic Compounds (EPA Methods 601 and 602)

In addition, a sample from OW-3 was analyzed for total dissolved solids to assess if groundwater beneath the site would be considered a potential drinking water source by the RWQCB. For quality control purposes, a duplicate sample was collected from well OW-3 and one trip blank was analyzed for purgeable aromatics (EPA Method 602).

The results of the laboratory analyses are presented in the following subsections.

6.2.3.1 Petroleum Hydrocarbons - Six groundwater samples, including one duplicate sample were analyzed for petroleum hydrocarbons. The sample designated OW-3-2 is a duplicate of OW-3-1 collected from monitoring well OW-3. The results are presented in Table 6.5. Extractable petroleum hydrocarbons as diesel were detected only in monitoring well OW-4 at 0.58 mg/l. According to the laboratory analyses, hydrocarbon fuels which did not match diesel fuel were detected in samples from OW-3 and OW-5, at 0.7 mg/l and 0.6 mg/l, respectively. This could be mineral spirits or lubricating oil. All samples were below the reporting limit for TPH.

Table 6.5. Petroleum Hydrocarbons in Groundwater, in mg/l

Sample ID	TPH	TEH-Diesel
OW-1-1	<0.5	<0.2
OW-2-1	<0.5	<0.2
OW-3-1	<0.5	<0.2 (a)
OW-3-2	<0.5	<0.2(a)
OW-4-1	<0.5	0.58
OW-5-1	<0.5	<0.2(b)

Notes:

- 1) (a) sample contains a hydrocarbon fuel of approximately 0.7 mg/l, which does not match diesel fuel
- 2) (b) sample contains a hydrocarbon fuel of approximately 0.6 mg/l, which does not match diesel fuel
- 3) < = Not Detected at or above Reporting Limit
- 4) TPH = Total Petroleum Hydrocarbons (EPA method 418.1)
- 5) TEH-Diesel = Total Extractable Petroleum Hydrocarbons as Diesel (EPA method 8015 mod./EPA 3550)

6.2.3.2 Volatile Organic Compounds - Six groundwater samples, including one duplicate sample from OW-3, were analyzed for VOCs. The results are summarized in Table 5.6 Several VOCs were detected in all groundwater samples. The State maximum contaminant level (MCL) for 1,1-Dichloroethane of 5 $\mu g/l$ was exceeded in monitoring wells OW-3 (16 $\mu g/l$) and OW-4 (6.1 $\mu g/l$). Samples from OW-1 (0.63 $\mu g/l$ 1,1-DCA) and OW-3 (0.55 $\mu g/l$ 1,1-DCA) exceeded the MCL for 1,1-Dichloroethane of 0.5 $\mu g/l$. In OW-1, 1,4-Dichlorobenzene was detected at 6.7 $\mu g/l$, above the MCL of 5 $\mu g/l$. The concentration of benzene in the new monitoring well OW-5 was measured at 15 $\mu g/l$, exceeding the MCL of 1 $\mu g/l$. The detection of benzene in OW-5, located immediately adjacent to the northeastern property line, might indicate an upgradient (off-site) source of fuel contamination. Benzene was also detected in a soil sample from boring SB-16, also located near the property line, at 7.0 to 7.5 feet depth. All other organic compounds are below the MCLs.

One trip blank was analyzed for purgeable aromatics for quality control purposes. No constituents were detected at or above the reporting limit in the blank.

<u>6.2.3.3 Total Dissolved Solids</u> - One groundwater sample from monitoring well OW-3 was analyzed for total dissolved solids (TDS). TDS were measured at 780 mg/l indicating that groundwater beneath the site could be considered a potential drinking water source by the RWQCB.

Sample ID	TDS
OW-3-1	780 mg/l

Table 6.6. Volatile Organic Compounds in Groundwater, in ug/l

DISCEADI E LIAL COADDINE					Sample ID				
PURGEABLE HALOCARBONS	MCL	MDL	OW-1-1	OW-2-1	OW-3-1	OW-3-2	OW-4-1	OW-5-1	
	<u> </u>		(Duplicate of OW-3-1)						
Chloromethane	Ï	2	ND	ND	ND	ND	MD		
Vinyl chloride	0.5	1	ND	ND	ND		ND	ND	
Bromomethane	0.0	1	ND	ND	ND	ND	ND	ND	
Chloroethane	d.		ND	ND	ND	ND	ND	ND	
Trichlorofluoromethane	150	0.5	ND	ND		ND	ND	ND	
1,1-Dichloroethene	6	0.5	ND	ND	0.82 ND	ND	ND	ND	
Dichloromethane	5#	0.5	ND	ND	ND	0.69	ND	ND	
Trans-1,2-Dichloroethene	10	0.5	ND	ND	ND	ND ND	ND	ND	
1,1-Dichloroethane	5	0.4	2.6	ND	16		ND	ND	
Chloroform	100#*	0.2	ND ND	ND	ND	17 ND	6.1	1.8	
1,1,1-Trichloroethane	200	0.2	ND	ND	2.5	ND 1.6	ND	ND	
Carbon Tetrachloride	0.5	0.5	ND	ND	ND	1.6	ND	6	
1,2-Dichloroethane	0.5	0.2	0.63	ND	0.55	ND 0.42	ND	ND	
Trichloroethene	5	0.5	ND	ND	ND	0.43	0.49	ND	
1,2-Dichloropropane	5	0.2	ND	ND	ND	ND ND	ND ND	0.75	
Bromodichloromethane	100#*	0.5	ND	ND	ND	ND	ND	ND	
Irans-1,3-Dichloropropene	5***	0.5	ND	ND	ND	ND	ND ND	ND	
cis-1,3-Dichloropropene	5***	0.5	ND	ND	ND	ND	DN חמ	ND	
1,1,2-Trichloroethane	32	0.1	ND	ND	ND	ND		ND	
Tetrachloroethene	5	0.2	1.1	0.53	1.4	0.68	ND ND	ND	
Dibromochloromethane	100#*	0.5	ND	ND	ND	ND	ND	0.7	
Chlorobenzene	30	0.5	ND	ND	2.3	1	ND	ND	
Bromoform	100#*	0.5	ND	ND	ND	ND	ND	ND	
1,1,2,2-Tetrachloroethane	1	0.2	ND	ND	ND	ND	ND	ND	
1,3-Dichlorobenzene	-	0.5	1.8	ND	3.3	1.8	ND	ND	
1,4-Dichlorobenzene	5	0.5	6.7	ND	3.1	1.8	ND	ND	
1,2-Dichlorobenzene	600#	0.5	0.58	ND	2.3	1.2	ND	ND ND	
PURGEABLE AROMATICS									
Benzene	1	0.5	ND	ND	O F 4	Mo			
Toluene	1000#	0.5	ND	ND	0.54	ND	ND	14	
Chlorobenzene	30	0.5	ND		ND	ND	ND	0.57	
thylbenzene	680	0.5	ND DN	ND ND	2.8	2.9	ND	ND	
	1750**	1	ND	ND	ND	ND	ND	0.58	
	1750**	0.5	ND	ND	ND	ND	ND	4.5	
,3-Dichlorobenzene		0.5	1.6	ND	ND 3.0	ND	ND	1.1	
,4-Dichlorobenzene	5	0.5	7.2		3.2	3.7	ND	ND	
,2-Dichlorobenzene	T.			ND ND	3	3.1	ND	ND	
- Promotoperzene	600#	0.5	ND	ND	2.1	2.7	ND	ND	

Notes:

- 1) MDL = Method Detection Limit
- 2) MCL = Maximum Contaminant Level in drinking water (State MCL, if not noted otherwise)
- 3) # = EPA MCL
- 4) * = MCL for sum of four compounds
- 5) ** = MCL for sum of all xylene isomers
- 6) *** = MCL for sum of trans- and cis-1,3-Dichloropropene
- 7) ND = Not Detected at or above MDL
- 8) Purgeable Halocarbons (EPA method 601)
- 9) Purgeable Aromatics (EPA method 602)

REFERENCES

- California Division of Mines and Geology, 1971. Geologic Map of California San Francisco Sheet. Scale 1:250,000
- Goldman, H.B, 1969. Geologic and Engineering Aspects of San Francisco Bay Fill, California Division of Mines and Geology, Special Report, No. 97.
- PG&E Technical and Ecological Services Department, "Coliseum Way, Oakland, General Construction Gas Yard Underground Tanks Investigation," July 1988, Report # 402.331-88.32.
- PG&E Technical and Ecological Services Department, Quarterly Groundwater Monitoring Reports.
- Aerial photos: BUT-289-49 & 50, taken 8/2/39, black and white, 1:20,000; WAC-84C 2-27, taken 3/18/84, black and white, 1:24,000

LIST OF ACRONYMS AND ABBREVIATIONS

ARI Aqua Resources Incorporated

BTEX Benzene, Toluene, Ethylbenzene, and Xylenes

CCR California Code of Regulations

CDMG California Division of Mines and Geology

EPA Environmental Protection Agency

GPR Ground Penetrating Radar

LC Lethal Concentration

MCL Maximum Contaminant Level

PCB Polychlorinated Biphenyl

PG&E Pacific Gas and Electric Company

POL Petroleum, oil, and lubricant

QA/QC Quality Assurance/Quality Control

RI Remedial Investigation

RWQCB Regional Water Quality Control Board

SMWW Standard Methods for the Evaluation of Water and Wastewater

STLC Soluble Threshold Limit Concentration

TDS Total Dissolved Solids

TEH Total Extractable Petroleum Hydrocarbons

TETC The Earth Technology Corporation

TPH Total Petroleum Hydrocarbons

TTLC Total Threshold Limit Concentration

TVH Total Volatile Hydrocarbons

VOC Volatile Organic Compounds

APPENDIX A

Site Sampling and Analysis Plan and QA/QC Plan

Site Sampling and Analysis Plan and Quality Assurance and Quality Control Plan

PG&E General Construction Gas Yard 4930 Coliseum Way, Oakland, California

Aqua Resources Inc.

April 8, 1991

SAMPLING AND QA/QC PLAN

SITE LOCATION

The site is the PG&E General Construction Gas Yard located at 4930 Coliseum Way in Oakland, California.

OBJECTIVE

The purpose of the field sampling effort is to obtain additional information on the extent of soil and groundwater contamination from releases of petroleum hydrocarbons and volatile organic compounds. The horizontal and lateral extent of soil contamination will be explored through soil samples collected from boreholes drilled using hollow stem auger or solid flight auger drilling equipment. One additional monitoring well will be installed and groundwater samples will be collected with a bailer from the four existing monitoring wells and the newly installed well.

SOIL BORING LOCATIONS AND SAMPLING PROCEDURE

Several soil borings will be located inside the welding shop. The goal of this effort is to attempt to determine if soils under the building are also saturated with hydrocarbons. The borings will be terminated just above the groundwater and two to three samples will be collected from each boring at about 3, 5, and 8 feet depth. The final sample depth will be determined based on actual field observation. Two other soil borings will be drilled in the immediate vicinity of the former tank cluster location and one soil boring will be drilled near the southern end of the concrete pad in front of the welding shop. One sample, with an apparently high concentration of petroleum hydrocarbons will be submitted for a biotreatability study. Several soil borings will be drilled west of the welding shop near the northeastern property line in order to assess if possible upgradient sources of contamination may have impacted the site. All soil borings will be drilled using hollow stem auger or solid flight auger drilling equipment. All augers will be steam cleaned prior to the drilling of each boring.

Borings will be logged by or under the supervision of a Registered Civil Engineer. Standard ARI boring log field forms will be completed using waterproof ink. Figure 2 is a copy of ARI's boring log form. The boring logs generally include the following:

The depth that groundwater is first encountered in the boring;

The date and time at which each sample is taken.

Prior to obtaining each sample, including the initial one, the disassembled sampler will be washed and rinsed. The wash consists of a solution of TSP in water. Each piece will be triple rinsed with the final rinse being distilled water. A standard split barrel sampler with 2-5/8" OD and 2" ID will generally be used. The sampler has the capacity to obtain an 18-inch sample using three 6-inch long liners. The brass liners used for soil sampling are precleaned.

When the sampler is removed from the boring, it will be immediately opened. The lower-most sample liner (next to the shoe) will be used for any required chemical analyses. For continuous sampling all three brass tubes will be submitted for chemical analysis. The soil exposed in the ends of the tube will be quickly noted. The ends will then be sealed with teflon tape and new, snug-fitting plastic caps, and the edges of the caps will be sealed with plastic tape. The cap will be immediately labeled with the sample number, the depth, the project number, and the date. The sample number is the boring number followed by a dash and the consecutive number of the sample from the boring. The caps will be labeled using a fine-tipped waterproof marker. The sample will immediately be placed in a chilled (approximately 4°C) ice chest for storage and transport to the analytical laboratory. Standard chain of custody forms (Figure 3) will be completed and kept with the samples.

If the second sample is not required for a duplicate chemical analysis, it will be retained in its liner and saved for possible later inspection or physical properties testing. The upper sample, from the third liner, will be inspected and used for the soil description. The soil description will follow the guidelines of ASTM D2488, "Description of Soils." The uppermost sample will only be saved if the second sample is not available.

Soil cuttings, spent sampling and safety equipment, and decontamination fluids will be disposed of into DOT approved drums. Used drums will be left on-site, pending determination of appropriate disposal. Soil borings will be grouted with a neat cement-bentonite grout.

MONITORING WELL INSTALLATION PROCEDURE

The well permit from Alameda County Flood Control and Water Conservation District has been coordinated by ARI personnel. A copy of the well permit will be maintained in the project files. The monitoring well will be installed and developed in accordance with the Regional Water Quality Control Board (RWQCB) guidelines.

Prior to installation of the monitoring well, a site reconnaissance will be performed to field locate the monitoring well. The monitoring well will be installed using hollow stem auger drilling equipment. Augers will be steam cleaned prior to drilling. A standard split barrel sampler, with a 2-5/8 inch outer diameter and 2 inch inner diameter, will be used for soil sampling. Soil samples will be collected continuously. A boring log will be prepared for the monitoring well in the field.

The monitoring well will be installed at the conclusion of soil sampling. The monitoring well casing will consist of two-inch diameter Schedule 40 PVC pipe. The bottom of the well casing will be fitted with a closed screw-on cap. The well casing will be slotted (slot opening 0.020 inches) between 9 feet below ground surface to the base of the monitoring well. The annulus between the casing and bore wall will be filled with #3 RMC Lonestar sand to about one foot above the top of slotted casing. A one foot seal of 3/8-inch diameter bentonite pellets will be constructed immediately above the sand pack, and the remainder of the annulus will be filled with cement grout. The top of the well casing will be fitted with a locking cap. The well will be completed to prevent water from ponding around the well head. The monitoring well will be constructed within a christy box for security, and to prevent damage from vehicle impact.

GROUNDWATER SAMPLING

The monitoring well will be developed by surging and swabbing. As part of well development, approximately six casing volumes will be evacuated from the well, using a teflon bailer or centrifugal pump. The water removed from the well will be placed in sealed containers and stored onsite pending results of chemical analyses and determination of appropriate disposal.

After the monitoring well is developed and allowed to recover, a groundwater sample will be collected using a bailer. The existing monitoring wells will also be purged before sampling. The groundwater sampling methods will follow guidelines presented in EPA-600/4-84-076, Section 3.4.3, Method III-9, "Sampling Monitoring Wells with a Bucket Type Bailer." Precleaned teflon bailer will be used to collect the samples. Each sample will be labeled with a boring number, time, date, and placed in a cooled ice chest for transportation to the laboratory. A new length of nylon rope at each well will be used for lowering and raising the bailer. The first sample from the well will be retrieved from the surface of the water, and the contents of the bailer will be observed to assess whether there is any floating product present. The sample vials and jars, provided by the laboratory, will be filled from the bailer. The groundwater sample vials will be transported to the laboratory under chain-of-custody control.

Cleaned sample containers will be provided by the laboratory, and will contain any required preservatives as specified by the requested EPA analytical method.

ANALYSES PLAN

Soil and groundwater samples selected for chemical analysis will be submitted to a State certified laboratory utilizing chain of custody protocols. Chemical analyses will be performed by The Earth Technology Analytical Laboratories in Huntington Beach, California, and Curtis & Tompkins Analytical Laboratories in Berkeley, California. Chemical analyses to be performed are described in the following table.

Sample I.D.	Sample Type	Proposed Analyses
SB-1 through SB-20 OW-5	Soil	Purgeable Halocarbons Purgeable Aromatics TPH as diesel Oil and Grease
SB-1	Soil	Bioassay
SB-3 or SB-4	Soil	Biotreatability Study
OW-1 through OW-5	Water	Purgeable Halocarbons Purgeable Aromatics TPH as diesel Oil and Grease

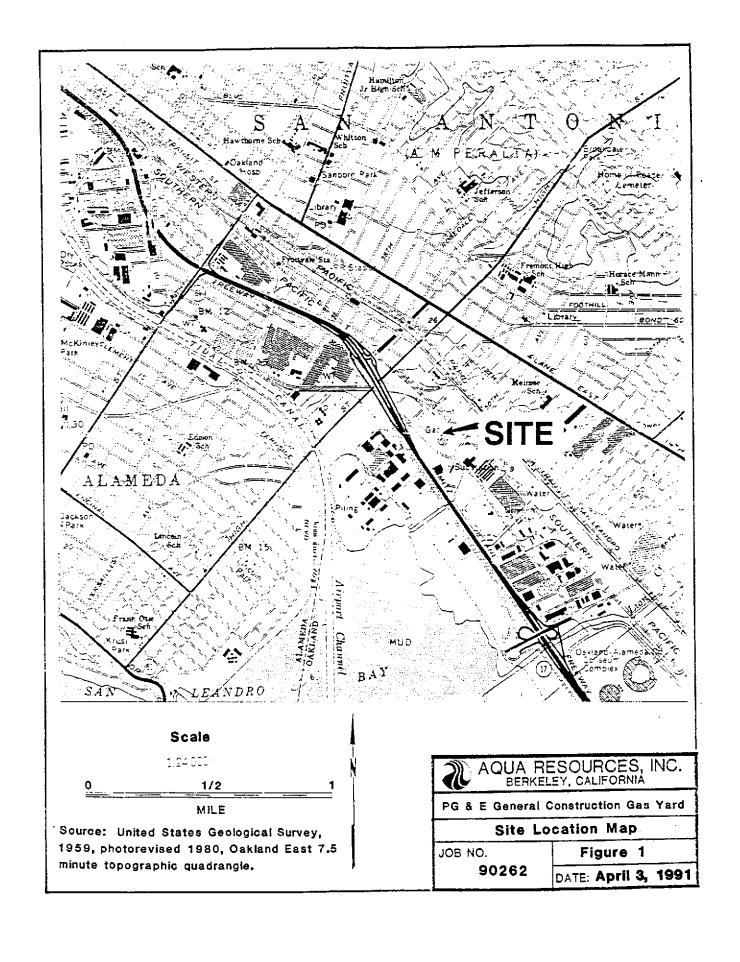
Final determination of the type of chemical analyses performed on individual samples will be based on actual field observation.

EQUIPMENT DECONTAMINATION

All augers will be steam cleaned prior to the drilling of each boring. Prior to obtaining each sample including the initial one, the disassembled sampler will be washed and rinsed. The wash will consist of a solution of TSP in water, followed by a triple rinse with the final rinse being deionized water. The brass liners are precleaned and do not need to be washed.

CHAIN OF CUSTODY

Official custody of samples will be maintained and documented from the time of sample collection through the completion of laboratory analyses. The following custody


documentation procedure was developed by the National Enforcement Investigations Center of the EPA, and was used on this project.

A sample is considered to be in an individual's custody if the following criteria are met: it is in his/her possession or it is in his/her view after being in his/her possession; it was in his/her possession and then locked up or transferred to a designated secure area. Under this definition, the team members actually performing the sampling are personally responsible for the care and custody of the samples collected until they were transferred or dispatched properly. The QA Officer will review all field activities to confirm that proper custody procedures are followed during the field work.

The Chain of Custody Record/Sampling Log is employed as physical evidence of sample custody. The individual performing the sampling will complete a Chain of Custody Record to accompany each sample shipment from the field to the laboratory. Basic information was recorded on the Chain of Custody Record, including the project number and name and samplers' signatures. For each sample number, the sampler will indicate the sample number, depth, date, time, whether the sample was a composite or grab, and number of containers. When relinquishing the samples, the sampler will sign in the space indicated at the bottom of the form. The recipient will sign in the "Received by" section of the form, entering the date and time the samples were received.

The custody record will be completed using waterproof ink. Any corrections shall be made by drawing a line through and initialing the error, then entering the correct information.

The original signature copy of the Chain of Custody Record will be secured to the samples it covered. A copy of the custody record will be retained for the sampler's files. The laboratory representative accepting the incoming sample shipment shall sign and date the Chain of Custody Record to acknowledge receipt of the samples, completing the sample transfer process. It shall be the laboratory's responsibility to maintain internal log books and records that provide a custody record throughout sample preparation and analysis.

AQUA RESOURCES, INC. LOCATION JOB NAME JOB NO BORING LOG BORING NO. DRILLING COMPANY DRILLER'S NAME LOCATION & NOTES SHEET [] Solld Flight Auger סחורר שום [] Rotary Wash SAMPLER TYPE: [] 2.5" | D Spill Berrel [] 2.8" | D Shelby Tube [] SPT
DILIVE WEIGHT LB. FALL IN. START FIN 1 Hotlow Auger START FINISH WATER LEVEL (Feel) TIME DATE . DATE CASING DEPTH (FEET) FIELD ENGINEER FEET [] Other ELEVATION DATUM: [] Maan See Lavel MOISTURE ORY UNIT WEIGHT (ped USCS CLASSIFI-CATION OEPTH IN FEET SURFACE CONDITIONS. BLOWS/ft. 0

	AQUA RESOURCES, INC.								
	AN)	(CHAIN OF	CUSTODY RECO	DRD	PAGE	OF		
	PROJE	CT NAME:		· · · · · · · · · · · · · · · · · · ·		DATE			
	PROJE	CT NO.:							
Sample Number	Location	Type of Material	Sample Method	Type of Container	Type of Preservation Temp Chemical		Analysis Requi		
	1				101112				
	ļ	ļ	-		. -	·			
·		<u> </u>		· · · · · · · · · · · · · · · · · · ·	-		-		
	 	 						·,	
	 	-		·			_		
	 								
							_		
	 						- 		
			!				_		
		-					_		
					.				
	· ·	ļ 	<u> </u>		 	·	-		
otal Number of S	J Samples Shi	l	Sampler	's Signature:	1		<u> </u>		
linquished By:				Received By:	<u> </u>			Date	
Signature				Signature					
rinted Name Company				Printed Name Company	Time				
Reason				_					
linquished By: Signature				Received By: Signature				Date /	
rinted Name				Printed Name	Time				
Company <u> </u>				Company				Time	
16 93 011		 ;		<u>-</u>]					

APPENDIX B

Soil Boring Logs

<i>₹∭</i>	во	вина	rog.			Oakland, CA PG&E	JOB NO 90262.1
146						DRILLING COMPANY HEW Drilling ORDITHS NAME Phil	กับที่เก็ต กับ. SB-1
A MOLLADO.	NOTES					SAMPLED LYPE: KI 2.5" ID Spitt Buriet 1 25" ID Strait Buriet 1 25"	ALIERT
						CPIE 33 [X Hollow Augus [] Rotary Wesh	Tube [61 T
						DRIVE WEIGHT LU. FALL IN	START FILIBIL
			•			WATER LEVEL (Feet)	TINGOM TINE
						TIME DATE	DATE
					•	CASING DUP IN TREE ()	4/15/91
DATUM: []	Moon So	, 	[1000		1	ELEVATION FRET FIELD ENGINEER	
al <i>ch</i> s per Half foot	#	0. 1- 0. 7:	불는	_ ਤੂ	ş	SUBLACE CONOLHOUS	
(i. ξ υ,	BLOWS/ft.	MOISTURS	PRY CALL	DEPTH IN	SAMPLE NO	concrete	ŧ
31.0 %*L		<u> </u>	# F	30	N.	concrete	.*
ii			[.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-			0 ~			
		,			 	Concrete, 4" thick	<u> </u>
	-			F -		Sand, brown, dry (SP) Gravelly sand (SW)	
_ _				2.			
			,	_ ·		Sandy clay, clark grayish brown, moist, contains oil (C	i_)
				3 -		Slity clay, dark grayish brown (CL)	
!!	- · · · ·		i	4 -	<u>la_</u>		701
				5	1ъ	Silty clay, dark grayish brown, some sand and gravel up	10 178 diam. (CL)
				j	-2_	Sandy clay, dark grayish, contains oil (CL)	
_				0 -		Sitty clay, dark gray, moist, medium still, slightly plasti	c, some sand and
]		gravel up to 1/2" diam. (CL)	
				7 -			
_ <u> </u>	- <u> </u>			8 -	:		
				} ;			
11		 -		n -			
_ _	.]			0-		Outside and the state of the st	40 500/
		İ			3_	Sandy gravelly clay, dark gray, saturated, medium still gravel up to 3/4" dlam. (CL)	, 40-50% Sand and
-ii				1			
_			[2			
							• •
- i i		- -		3	ļ		
				4 -			
				"]			
-{				ь -{{	ĺ		
				6 -			
				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ļ		
_	 	.		7 -	1		
	1 1	}	- 1	-			
				v [

0...

ΔΩΨΑ Γ	MESC	UNCE	3, INC.	
COCATION & N	non	ING LOC		DORLING COMPANY HEW DITTING SE-2 DINICING COMPANY HEW DITTING SE-2 DINICING COMPANY HEW DITTING SE-2 DINICING I Sold Digit Augus CHE 55 [X Hollow August] Roday Wash 1 OF 1 SAMPLED LYPE, KI 2.5" ID Split Dayed] ZA" ID Shalby Tube [] 501 UNIVE WEIGHT LB. FALL IN START FRIEND WATER LEVEL FRESH LIME AND L
nt t				ELEVATION PEET FIELD ENGINEER
SLGWS PER HALF FOOT	BL CWS/ft.	MOISTURE CONTENT & CONTENT	N F_55	Sunface coupitions concrete
			0 - - - - - - - - - -	Concrete, 5" thick Sand, brown, dry, appears to contain oil residue (SP) Silty clay, dark gray, moist, some gravel up to 1/2" diam. (CL) Sandy clay, dark grayish brown, moist, some sand & gravel, wood particles and pockets of black viscous oil, pockets are 1/8" diam. More oil at 3-1/2" to 4-1/2" than at 5". (CL) Gravelly clay, grayish green with dark gray and reddish brown mottling from decomposed rock, moist, medium stiff, 40-50% gravel up to 3/4" diam. Small lenses of line sand, grayish green. (CL)

ΛΩυΛ	HESC	<u> </u>	ICES,	, INC.		
AD	воп	ING	LOG			Dakland, CA PG&E JOH NO 90262.1
LOCATION & F	NOTES					DUILLING COMPANY NEW Drilling DOUNTS NO. SB-3
						CME 55 Hollow Augus
						WATER LEVEL (Frest) TIME SANITER TYPE: N. 2.00 LB. BALL IN. START FINISH WATER LEVEL (Frest) TIME
						11ME DATE 13ATE 4/15/91
UATUM: []	Moon Son L	Lovel	[] Othe	nr.	, 	CASING DECILITIEED 4/15/91
SLGWS ZER HALF FOOT	133	FURE BIT R	DRY CNIT WEIGHT (peil	<u> </u>	NO.	SUITACE COHOLHOUS
SLG.W HALF	8. CHS/II.	MOISTURE	08.Y VEIC 50,	NI #1555	SAMPLE NO	concrete
				0 -		
			 	1 -	<u> </u>	Concrete, 7" thick Silty clay, dark gray, moist (CL)
			i	2		Silty clay, dark brown, moist, some gravel up to 1/2" diam. (CL)
_	-			3 -		
	-			4	ŀ	
				5		
				0 -		Silty clay, dark gray with brown mottling, moist, 15-25% gravel up to 1" diam. Centains pockets of viscous black oil, pockets are 1/8" diam. (CL)
				7 -		Gravelly clay, dark gray with brown & white mottling from decomposed rock, 30-40% gravel up to 2" diam. 2" thick lens of fine sand, grayish
<u> </u>				B -		green, at approx. 7-1/4'. Very few pockets of black oil. (CL)
				п -		Gravelly sand, dark gray, saturated, some gravel up to 1-1/2" diam. (SW)
				0		Gravelly Sarray, Sarray Sarray Source graves up to 1-1/2 Oranic (GW)
				,		
				2 -		
				3		
				6 -		
	-			G -		
		- -		7 -		
		- -		U .		
		_		g — -		f
I .	-			v [
	ŀ		I	[1]	1	

V	THES	OURC	JES,	MC.		
DAYUM:	NOTES	RING I	LOG			DULLING COMPANY HEW Drilling 90262.1 DULLING COMPANY HEW Drilling 90262.1 DULLING COMPANY HEW Drilling 5B-4 DULLING TAME PHI SB-4 DULLING TAME PHIL SB-4 DULLING TAME PHIL SB-4 DULLING COMPANY HEW DRILLING SB-4 DULLING TAME PHIL SB-4 DULLING COMPANY PHIL SB-4 DULLING COMPANY HEW TO SB-4 DULLING COMPANY PHIL
SLCWS PER HALF FOOT	BLGWS/ft.	MOISTURE CONTENT %	DRY CNIT WEIGHT facil	0827.4 IN	SAMPLE NO.	SUNFACE CONDITIONS. CONCrete
				3 - 4 - 5 - 0	1	Concrete, 9-1/2" thick Sandy clay, dark brown, slightly moist, some gravel up to 1-1/2" diam. (CL) Clayey sand, dark brown, dry, appears to contain aged oil (SC)
				7 - - - - - - - - - -	3	Silty clay, dark gray, moist, some gravel up to 1/2" diam. (CL) Clayey sand, dark brown, dry (SC) Silty clay, dark gray, moist, some gravel up to 1/2" diam. (CL) Gravelly clay, dark gray, contains lenses of fine sand, grayish green and clayey gravel, saturated. (CL)
				2		·

5 -

0 -

9-

Û..

	JA I	HEG.	OUL	ICE	i, IHC.		
■ (1)		υö	пис	Loc	;		Onkland, CA POSE JOB NO 90262.1 Digition company HEW Drilling Rep. SR-5
NUM	(11 K 11			(10)	iliue		ONLITE OF THE PROPERTY OF THE
10 to 10 to		accham.	MCISTURE ESTIMATION	7 100 VEO	### ##################################	SAMPLE NO.	concrete
					1	3	Concrete, 4" thick Sand, fine, brown, dry, loose (SP) Driller could not push sampler in. Gravelly sand, black, dry, loose, gravel up to 1" diam. Appeared to contain aged oil, not viscous (SW) Gravelly sand, black, molst, medium dense, gravel up to 1" diam., interbedded with Sitty clay, dark gray (SW) Gravelly sandy clay varying to clayey gravelly sand, dark gray, wet to saturated, medium stiff/medium dense, gravel up to 1" diam. (CL)
					β. ñ ~		

QUA HESOURCES, INC. JUNE NAME JOB HO FOCATION υόπιμα Γοα Oakland, CA PGSE
Dutting company HEW DEITLing 90262.1 fortiff no. SB-6 Office Phillipping Phillipping Appen catton a notice តាមេត្ត iini i, hid CME45 [] Hottom Agent [] March Wests 1 cm 1

SAMPLED STATE 13 5.6 10 Spot Berry [] 200 10 Stepley Tube [] for 1

University with the Lit. FALL in 31Ant Finalis TEALT | THATE 10:35 11:05 WATER LEVEL Hand 11ME 5/23/91 ELEVATION PRET THEO ENGINEER [] Cluber VIUM: [] Steam See Love! CAN COURT 10 K 20 P SAMPLE NO. STRICACE COMPLICIONS H C 115/11. 8 L concrete Concrete, 5" thick Sand, fine, brown, dry, loose (SP) Driller could not push sampler in. 2 Piece of metal (4" long, 2" wide) came up on augers Gravelly sand, black, moist, loose to medium dense, gravel up to 1" diam. n 1 Contained viscous black oil and aged oil (SW) 1 Silty clay, dark gray, wet, soft, moderately plastic, 3-7% gravel up to 3/4" 2 5 diam., contains viscous black oil, with brown oil specks on wet surfaces. Also contains pieces of flat wood, 2-3" long, (CL) 0 7 3 n Clayey gravelly sand varying to gravelly clayey sand, dark gray to brown, saturated, medium dense to dense. Contains specks and veins of viscous 17 black oil in sample from approximately 7' to 8-1/2'. No oil seen in sample below 8-1/2', (SC) 00 7 3 ħ -Ģ 7 ij ÍI -ŢĮ.

IQUA	RESOL	JHCES	, IMC.			
170	แกงน	ta Log			Oakland, CA PG&E	Jon 110 90262.1
dA HQH & i	POTES				DRILLING COURTARY HEW DEILLING DINCETER DAME Phili DINCETER DAME Phili DINCETER DAME NI CONTROL AND AND AND AND AND AND AND AND AND AND	SB-7
NUM: [] !	· / · — · — · 1 · · · · · ·		1r	,·····	CME45 I Hollow Auget 1- Albinay Vissla CME45 I Hollow Auget 1- Albinay Vissla EART EN 15 FT 13 5,6 10 5 FM barred 1 3 5,6 10 5 FM IMPLE VICIDIT Lit. TALL HI IMALE ILEVEL Feet LIME CASING DEPTH (FEET) ELEVATION TEET THELD ENGINEER	1:10 62 1 1:10 11 11 12 12 12 12 12 12 12 12 12 12 12
SCOVE PER	accorato.	03Y UNIT	# F. 150 	SAMPLE NO.	concrete	
			0 ·	- 1 -	Concrete, 5" thick Sand, fine, brown, dry, loose (SP) Silty clay, dark gray, moist, medium stiff, slightly plastic, 3 1" diam. Driller could not push sampler in further. (CL) Sandy clay, dark gray (CL)	3-7% gravel up to
			5	2	Slity clay, dark gray, wet, medium stiff, slightly plastic, 1-1/4" dlam. (CL) Gravelly sandy clay, dark gray with reddish brown mottli	
			n	3	slightly plastic, 30% sand & gravel up to 2" diam. (CL) Clayey gravelly sand varying to gravelly sandy clay, b medium dense/medium stiff, gravel up to 3/4" diam. (SC)	rown, saturated,
			1			
		-	3 .			٠
			n -			
			7			
			in —			
<u> </u>		I <u>. </u>	1 .1			

NOUNT	ues.	OUT	CES	, INC.		
	υò	nma	LOG			Oukland, CA PGSE 308.40 90262.1
avinon kin				•		DHILLING CONTACT HEW DELLLING SB-8 DHILLING CONTACT PARTY HEW DELLLING SB-8 DHILLING CONTACT PARTY SB-8 DHILLING CONTACT PARTY HER SB-8 DHILLING CONTACT PARTY HE
110Mt [] 6	lagit Ser		(100	# c	·	CASING DECLIF FEET DELD ENGINEER
34078 PER SALF FOOT	accent.	MOISTURE SCHEENT X	1-10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	## <u>F_68</u> 0	SAMPLE NO.	concrete
				1	1	Concrete, 4-5" thick Sand, fine, brown, dry, loose (SP) Gravel up to 1" diam., driller could not push sampler in farther.
			, ,	5	2	Slity clay, reddish brown grading to dark gray, moist to wet, soft to medium stiff, slightly plastic, 3-5% gravel up to 1" diam. (CL)
				5 ·· 0 · 7 ·	3	
				η - ·	4	Gravelly sandy clay, brown with yellowish brown mottling, moist, stiff, no plastic, 40-50% sand and decomposed rock & gravel up to 1-1/2" diam (CL)
				1		
				J		· · ·
				а -		
				7		
				ęı .		
				ű-		

•

QUA RESOURCES, INC. FIOU NVWE JOH HOL пинаси 90262.1 nouma roc PG&E Onkland, CA noitilia no. DIRECTOR CONTAIN HEW DELLLING SB-10 Office to the Phillippe August Michael Ugen August жири в потва nije e i hini i nid 1 Hottony Augus 1 I Hotory Wesh TIME BATE 5/23/91 UNSING ORDER LITTERS! ELEVATION THE THEO ENGINEER (1 Color CIUMS | | Magai San Lavel SAMPLE NO. SUBTACE CONDITIONS ORY CORY MODEL WAS 1000 12158 11187 1336 \$10.58 F. J. 45. gravel U 18" of gravel pack (fill) 1 Slity clay, blackish brown, moist, stiff, slightly plastic, some sand at 3'. 7 1 Contains pieces of metal slag and concrete up to 2" diam. (CL) J 4 Silty clay, dark brown with reddish brown mottling, moist, soft, slightly 5 plastic, 7-10% sand and gravel up to 1/2" diam., increasing to 15% toward 2 bottom of sample (CL) n 7 Gravelly sandy clay varying to clayey gravelly sand, dark gray with yellowish brown and green mottling, wet, stiff/medium dense, clay slightly n plastic, gravel up to 3/4" diam. (CL) 17 **\$**1 2 3 4 ri -G 7 ţį ţı – Q-

AQUA RESOURCES, INC.

AND .	non'	ING	LOG			Oakland, CA PG&E JUN NO 90262.1 DOULLING COMPANY BEW Drilling BOOMED 10.
LOCATION &	OTES					ORIGINAL Phil SB-13
ļ						[] Hollow Auger : [] Rotary Wesh 1 OF 1 SAMELER INTE: [X 2.6" (D Spitt Barrel] 2.0" (D Shalby Tube (60") University (10 10 10 10 10 10 10
						TIME 9:45 AM 10:20)
DATUM: [] N	desir See L	_nval	[] 0111	187		CASING DEPTH (FEET) 5/20/91 ELEVATION FEET FUILD ENGINEER
SLCWS 75R HALF FOOT	stansin.	MOISTURE CONTENT 3	08Y UNIT WEIGHT Ibal	# 0897.4 in	SAMPLE NO.	gravel
		·		0		
				2 -	1	Silty clay, dark gray, moist, medium stiff, slightly plastic, 1-3% sand and gravel up to 1/8" diam. (CL)
				1		Gravelly sandy clay, medium brown with grayish green mottling, saturated, stiff, not plastic, 40-50% sand and gravel up to 1/16" diam. Brown oil
				5 11	2	spots seen in sample immediately below 5-1/2'. (CL)
				7 -	3	Sand, fine, medium brown, saturated, medium dense (SP)
				8 · ·		
		-		t) -		
				2		· .
		- - - -		3		
		_ -		Б - Б -	!	
	_	_		7		
				ti		
				0.		

AQUA DESOURCES, INC.

	A 4 2 4 5 4 5 4 5 4	I II I I I I I I I I I I I I I I I I I	521,H ********		y 11 '11 / 2			
Ì	$(\mathcal{J})(\mathcal{J})$	BO	пипа	LOG			LUCATION JOB NAME Oakland, CA PG&E	JOR 110 90262.1
ŀ,	4000						UNICHIO COMPANY BEW Drilling	BOITHO NO.
	Loca thur a r	TOTES			-		Dimitrus name Phill	SB-15
							SAMPLED LYPE: [X 2.5" LO SHIP Devel 1.20" LD Stelle Division 1.10	Tube [Br)
_							DRIVE WEHRITT LE. FALL UL	2016
							TIME	11ME AM 3:45 AM
7							DATE	5/20/91
.	DATUM: 11 M	Jane Sen	Lovel	[] Oib	• •		CASING DECIN (CEET)	J/20/31
		1]		TELEVATION PEET THELD ENGINEER	<u> </u>
	PLCINS DER RALF POOT	3L.C'115/11;	MOISTURE CONTENT #	087 12817 VEIGHT Fell	2 m la	J. S.	SURFACE COHOLHOUS	
.	ڗؙڹ	5	12 12		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAMPLE	gravel	
	6(iii	ni l	₹8	t3 ; ,	i5	145		
			,			·		
. }					0.	,		
.								
	i				1 - [Silty clay, dark gray, moist, medium stiff, slightly plastic,	15-20% saud
-					,		and gravel up to 3/4" dlam., % decreasing toward bottom	of sample (CL)
			}			├ _¹_		-
1					3		Gravelly sandy clay dark gray moist year attraction	
					4	_	Gravelly sandy clay, dark gray, moist, very stiff, slightly sand and gravel up to 1" diam. (CL)	plastic, 20-30%
			- 1	}		2	(32)	
<u> </u>	i i				5			
-			_		0 - 1	,		
				1	"]]			
					ŋ .		Gravelly clayey sand, brown, saturated, dense, gravelle (CO)	re up to 174"
		1		Ì		3	dlam. (SC)	
}					n ·			
	_ _				57 -			
					"			
					0	1		
						1		ļ
					1			
}. <u></u>	_ .				2			
	-				3			
		{				1		1
					1			j
		_			ε - -]
					1.1			
	- -				e -			}
			_		,	- 1		
					7			
					0	İ		
					.			
	 - - -				ų - ·	1		
				-	_ [1]	-		
					0			
	<u> </u>						Making a gran (1988) in the communication of the Making of the Communication of the Communica	

AQUA RESOURCES, INC.

CALIBRATION DORING LOG Oakland, CA PG&E 90262.1 DRILLING COMPANY HEW Drilling 500000 00. OBSTATE NAME Phil SPIL Augus 1 00. TAME ALLYT: 1X 2.5" 10 5 pil benet 1 2.0" 10 5 belby 1 obs 1 5 pil unive weight 100. TIME ALL THE DATE 100. TIME ALL THE DATE 100. DATE DATE	27 CA (27)						Long Habit
DOMESTIC LINES (1) 2 and Transform (1) 1 the lines were 1 the lines (1) 1 the lines were 1 the lines (1) 1 the	(d(())	υÖ	пив	LOG			
1	LOCATION	s notes					DRILLING COMPANY HEW Drilling COUNTS NO. SB-16
TATELET CYT. [Fig.1] International Control of Contro					•		Children Americal Design Wash
TATELET CYT. [Fig.1] International Control of Contro							SAMERA LYPE, 1X 2.5" 10 Spite Benef 1 ZO" 10 Shelby Tobe 1 504
UNITED A STATE Level UNITED A STATE Level					•		WATER LEVEL (Feet)
Cases see to the first source of the first sou							THE BUT I THE THE THE THE THE THE THE THE THE THE
Silly clay. blackish brown, moist, medium stilf, slightly plastic, 1-3% sand and gravel up to 1/16" diam. (CL) Sandy clay, pray with reddish brown multiling, moist, medium stilf, slightly plastic, 1-3% sand and gravel up to 1 diam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC)	UATUM: I	l Mago Sø	a Lavel	L I cm	1#r		CASHIN DECIN [FEET] 5/20/91
Sity clay, blackish brown, moist, medium stiff, slightly plastic, 1-3% sand and gravel up to 1/16" diam. (CL) Sandy clay, gray with reddish brown mottling, moist, medium stiff, slightly plastic, 15-20% sand and gravel up to 1" diam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC)		· - 	111.85	1-:	1	_ i	
Sity clay, blackish brown, moist, medium stiff, slightly plastic, 1-3% sand and gravel up to 1/16" diam. (CL) Sandy clay, gray with reddish brown mottling, moist, medium stiff, slightly plastic, 15-20% sand and gravel up to 1" diam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC)	25	1	25	1 5 g g			
Sity clay. blackish brown, moist, medium stiff, slightly plastic, 1-3% sand and gravel up to 1/16" dlam. (CL) Sandy clay. gray with reddish brown motiling, moist, medium stiff, slightly plastic, 15-20% sand and gravel up to 1" dlam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" dlam. (SC) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" dlam. (SC)	ी वि शास	ñ	5.6	E		SAM	
Sity clay. blackish brown, moist, medium stiff, slightly plastic, 1-3% sand and gravel up to 1/16" dlam. (CL) Sandy clay. gray with reddish brown motiling, moist, medium stiff, slightly plastic, 15-20% sand and gravel up to 1" dlam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" dlam. (SC) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" dlam. (SC)			,				
Sandy clay. Diackish brown, molst, medium still, slightly plastic, 1-3% sand and gravel up to 1/16" diam. (CL) Sandy clay. gray with reddish brown mottling, molst, medium still, slightly plastic, 15-20% sand and gravel up to 1" diam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC)	-	-		, *	0		
Sandy clay, gray with reddish brown motiling, moist, medium stiff, slightly plastic, 15-20% sand and gravel up to 1" diam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" diam. (SC) 7 9 1 1 1 1 1 1 1 1 1 1 1 1					, ,		Slity clay, blackish brown, moist, medium edit, ellebbly plackis, a cov.
Sandy clay, gray with reddish brown motiling, moist, medium stiff, slightly plastic, 15-20% sand and gravel up to 1" dlam. (CL) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" dlam. (SC) Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2" dlam. (SC)	<u> </u>				2		and gravel up to 1/16" dlam. (CL)
Gravelly clavey sand, medium brown, saturated, medium dense, gravel up to 1/2 dlam. (SC) Gravelly clavey sand, medium brown, saturated, medium dense, gravel up to 1/2 dlam. (SC)	-	-		·	3	ˈ├ .	
Gravelly clavey sand, medium brown, saturated, medium dense, gravel up to 1/2° dlam. (SC) 3 6 7 7 8 7 8 7 8 7 8 9 9 10 11 11 11 12 13 14 15 16 17 18 19 19 10 10 10 10 10 10 10 10							Sandy clay, gray with reddish brown mottling, moist, medium still, slightly plastic, 15-20% sand and grayel up to 15 days. (CL)
Gravelly clavey sand, medium brown, saturated, medium dense, gravel up to 1/2" dlam. (SC) 1 2 3 4 5 6 7 8 9 10 11 11 12 13 14 15 16 17 18 19 19 10 10 10 10 10 10 10 10						2	graver up to 1 diam. (CE)
Gravelly clayey sand, medium brown, saturated, medium dense, gravel up to 1/2° diam. (SC)					5	.	
3 to 1/2 than. (SC)					n -		Gravelly clavey sand, medium brown activities
		-			7.	1 .	to 1/2" diam. (SC)
		_			n	3_	
1		-			p -		
			-		0		
3 · · · · · · · · · · · · · · · · · · ·		-			1		
3 · · · · · · · · · · · · · · · · · · ·	_ _		}				• .
7 · · · · · · · · · · · · · · · · · · ·					Z " -		
5 - 6 · 7 · 10 · 10 · 10 · 10 · 10 · 10 · 10	-	.	-		3 -		
7	<u> </u>	-	-		1		
7	_ _				5 -		
7					-		
					5 -		
	_			· -	7 -		
					n		
	_ _				<u>,, </u>		
					-		
		-			ŋ · [

$(\widehat{\mathcal{M}})$	пö	กหเ	LOG			Cockland, CA	JOB NAME PG&E	Jun no 90262.1
, 4 1175.						DHILLING COMPANY 1	IEW Drilling	noning ini
1 00A H90 5	DOTES					Enuls, Rig (XI	Yri I Solid I Balit Avger	SB-19
						RANGERT LYPE TAMAR	Augus [] Rotary Wa	sh 1 op
						MATER LEVEL HEAT	Lu. PALL	
					•	TIME		187.50m 197.
			1.1 - 11			CASING DECTH (FEET)		5/20/91
ME MILLAU		1	1 1 Cities		0	SUMFACE CONDITIONS	TEET THEO ENGI	HEEH
210795 253 34 Lif 600T	3. amsnr.	WOISTURE CONTENT %	ORY CONT WEIGHT Sed!	E FEEDO	LE NO.			• •
() d	,	9,5	94. 34.	n. n. IV	SAMPLE	gravel		•
		,	. ———				The second secon	
_				υ ·				
		 -		1 - 1		Silty clay blackleb brown	onint and all the	
_ _				2	1	Silty clay, blackish brown, m up to 1/16" diam. (CL)	ioist, soit, slightly plas	ilic, 1-3% sand and gra
				3				
_					- 			
	.			1		Gravelly sandy clay, dark gr	ay with reddish brow	n mottling, moist, stiff
				5		not plastic, 40-50% sand at	nd gravel up to 1-1/2 _	" diam. (CL)
				n · -		Clavey gravelly pand slady		
				7		Clavey gravelly sand, dark g dlam. (SC)		
				n -	3	<u>Gravelly sandy clay,</u> gray wl not plastic, 40-50% sand and	th green and brown d gravel up to 1" dian	mottling, saturated, sti n. (CL)
1 1								
				7				
<u> </u>	· • • • • • • • • • • • • • • • • • • •			D				
				1				
				2 -	1			-
				3				
					1			
;				1				
·	-		— Ì	в -	1			
				5 -				
				7	ł			
ii				0 -				
				¥ -				
				n.				

AQUA RESOURCES, INC.

1 6 74(, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1120001110121	7, 11 (1), 2.	
(<i>(1)</i>)	вопіна год		Uncation Johnson Johnson Johnson Qukland, CA PG&E 90262.1
1 4/4%			DHILLING COMPANY HEW Drilling noming no.
LOCATION 8-1	OTES	•	ORILLIUS HAME Phil SB-20 ORILLIUS HAME WEST SB-20
			Drill, itta
			MINE WEIGHT LE TALL III. STANT FRIEN
			11:35\tag{12:05\tag{1}}
[.			DATE 5/20/91
ו ואטרטאל (1 א	inan Sea Lovel [] Ot	h Ar	ELEVATION FEET TIELD GRIGHEER
· · · · · · · · · · · · · · · · · · ·			SUITAGE CODOLLIONS.
24.C.195.25.8 33.C. 7.00T	SUCKSILL MOISTURE CONTENT P	SEETH IN SEETH IN	
21 kg		SAMPLE	gravel
;		1 6	
.		. 0	
		'	Large angular rocks (3" diam.)
		2	Gravelly sandy clay, gray with reddish brown mottling, moist, medium stiff, not plastic, 40-50% sand and gravel up to 1" diam. (CL)
]] 1	
†			Sandy clay, gray, wet, soft, slightly plastic, 5-10% gravel up to 1/4" dlam. (CL)
		1 2	(OL)
		5	
].}	Clayey gravelly sand, gray, saturated, medium dense, gravel up to 1" diam.
		7 - 3	(SC) Gravelly sandy clay, brown, saturated, still, not plastic, 40-50% gravel
		0	up to 1" dlam. (CL)
		n -	
		ŋ -	
		\	
		2	
		J -	
		4	
		r	
		_ -	
		5	
		7 -	
		n . .	
		" -] .	
		ķt	
		11-	
		`	
	_, _,_		The state of the s

20	σσ	піне	3 LOG			Oakland, CA PG&E	Jon 110 90262.1
OCALIGIA DO						DRILLING COMPANY HEW Drilling DRILLING COMPANY PILIT DRILLING COMPANY PILIT DRILLING COMPANY PILIT () Hother Augus () Hotely Wash SAMPLER LYPE: 1X 2 5" 10 5plis bases 11 25" 10 5plis DRIVE WORLD COMPANY WATER LEVEL PEOL LILLING WASHING DECIM (FEET)	SB-22 SB-22
7610M: [] *	Mean Ser	Personal Section 1995	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· [·	SAMPLE NO.	suntage conditions gravel	
				0 - 1 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		Silty clay, blackish brown, moist, soft, slightly plastic, 1-3 up to 1/16" diam. (CL)	3% sand and grave
				5	2	Gravelly sandy clay, dark gray, molst, stiff, not plastic, gravel up to 1" dlam. (CL) Gravelly sandy clay, dark gray with brown mottling, moi 40-50% sand and gravel up to 2" dlam. (CL)	
				7	3	Clayey gravelly sand, brown, saturated, dense, gravel (SC)	up to 3/4" diam
				д -			
				g ·			
				7 -			· <u>.</u>
				3 ·			
				и -			
				Б -	Ì		
				7			
				n-			

ŋ.

APPENDIX C

Monitoring Well Boring Log and Installation Documentation

AGUAT			

.

DEATHOR IN	rIQ166	ING L	OG			OAKLAND, CA PG&E 90262.1 DINILING CONTANY HEW Drilling 000000000000000000000000000000000000
SLCWS PER HALF FOOT	31.035/11,	SCHENT &	1 1000		SAMPLE NO.	gravel
				0 1 2 5 6 7 6 7 0 U U U U U U U U U U U U U U U U U U	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	Silty clay, very dark brown to black, molst, soft, slightly plastic, some gravel up to 1/2" dlam. (CL) Silty clay, dark gray, molst, medium stiff, slightly plastic, some decomposed rock & gravel up to 1" dlam. (CL) Sandy gravelly clay varying to gravelly sandy clay, dark gray mottled with brown & white from decomposed rock, molst, medium stiff to stiff, slightly plastic, some gravel up to 1" diam. Liquid brown oil at 5" (CL) Clayey sand, with Interbedded clayey gravel, medium brown, wet, loose, some gravel up to 1" dlam. (SC) Sandy clay, interbedded with silty clay, medium brown with black and reddish brown mottling, saturated, medium stiff to stiff, slightly plastic, small amount of gravel up to 1/4" diam. (CL)

CONFIDENTIAL

STATE OF CALIFORNIA DWR WELL COMPLETION REPORT (WELL LOGS)

REMOVED

APPENDIX D

Certified Laboratory Results and Chain-of-Custody Documentation

THE EARTH TECHNOLOGY CORP.

AWALYTICAL LABORATORIES

5702 BOLSA AVENUE

HUNTINGTON BEACH, CA 92649

Attn: MARLEAH M. MARTIN Phone: (714) 892-2565 AQUA RESOURCES, INC RECEIVED

MAY 1 3 1991

JOB NO.______

Aqua Resources, Inc. 2030 Addison Street Berkeley, CA 94704

Attn: Clancy Tenley Invoice Number:

Order #: 91-04-054

Date: 05/07/91 16:22

Work ID: 90262/PG and E

Date Received: 04/16/91

Date Completed: 05/07/91

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	<u>Description</u>	Number	Description
01	SB-1-1B	02	SB-1-2
03	SB-1-3	04	SB-4-1
05	SB-4-2	06	SB-4-3
07	SB-2-1	08	SB-2-2

MULTIPLY THE DETECTION LIMIT BY THE DILUTION FACTOR.

ND = Not detected.

B = Analyte was present in the blank.

Certified By

Marleah M. Martin

eceived: 04/16/91

Results by Sample

CYPLE ID SB-1-1B	PRACTION DIA	TEST CODE 8010	NAME VOA Halo. BCs in soil
	Date & Time Col	lected 04/15/91	Category

PARAMETER	RESULT	LINIT	D_F	DATE_ANAL CONF_RESULT
Dichlorodifluoromethane	ND	0.0050	5.0	04/19/91
Chloromethane	ND	0.0050	5.0	04/19/91
Vinyl chloride	ND	0.0050	5.0	04/19/91
Bromomethane	ND	0.0050	5.0	04/19/91
Chloroethane	ND	0.0050	5.0	04/19/91
Trichlorofluoromethane	ND	0.0050	5.0	04/19/91
1,1-dichloroethene	ND	0.0050	5.0	04/19/91
Dichloromethane	ND	0.0050	5.0	04/19/31
Trans-1,2-DCE	ND	0.0050	5.0	04/19/91
1,1-dichloroethane		0.0050	5.0	04/19/91
Chloroform	ND	0.0050	5.0	04/19/91
1,1,1-trichloroethane	ND	0.0050	5.0	04/19/91
Carbon Tetrachloride	סא	0.0050	5.0	04/19/91
1,2-dichloroethane	ND	0.0050	5.0	04/19/91
Trichloroethylene	ND	0.0050	5.0	04/19/91
1,2-dichloropropane	ND	0.0050	5.0	04/19/91
Bromodichloromethane	ND.	0.0050	5.0	04/19/91
Trans-1,3-DCP	סא	0.0050	5.0	04/19/91
Cis-1,3-DCP	ND	0.0050	5.0	04/19/91
1,1,2-trichloroethane	MTD.	0.0050	5.0	04/19/91
Tetrachloroethene	ND	0.0050	5.0	04/19/91
Dibromochloromethane	ND	0.0050	5.0	04/19/91
Chlorobenzene	ND	0.0050	5.0	04/19/91
Bromoform	ND	0.0050	5.0	04/19/91
1,1,2,2-TCA	ND	0.0050	5.0	04/19/91
1,2,3-Trichloropropane	ND	0.044	5.0	04/19/91
2-Chlorotaluene	ND	0.10	5.0	04/19/91
1,3-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,4-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,2-dichlorobenzene	ND	0.0050	5.0	04/19/91

Notes and Definitions for this Report:

EXTRACTED			
ANALYST	DL		
FILE ID	5AA-288		
UNITS _	mg/Kq		
BATCH_ID	3V0A-011		
COMMENTS			

RTAL

REPORT

Work Order # 91-04-054

Received: 04/16/91

Results by Sample

BC81V84: 04/18/31		Keaults D	A sembte				
AMPLE ID <u>SB-1-1B</u>			TEST CODE		IAME <u>Vo</u>	A Arom. EC	s in soil
	Da	te & Time C	collected <u>04/</u>	15/91		Category	′
	PARAMETER		RESULT	LIMIT	D_F	date_anal	CONF_RESULT
	Banzene		ND	G.0050	5.0	04/19/91	
	Toluene		ND	0.0050	5.0	04/19/91	
	Chlorobenzene		ND	0.0050	5.0	04/19/91	
	Ethylbenzene		0.045	0.0050	5.0	04/19/91	
	P-4m-xylene		ND	0.010	5.0	04/19/91	
	O-xylene		0.025	0.0050	5.0	04/19/91	
	1,3-dichlorobenzene	•	ND	0.0050	5.0	04/19/91	
	1,4-dichlorobenzene		ND	0.0050	5.0	04/19/91	
	1,2-dichlorobenzene		ND	0.0050	5.0	04/19/91	
	,	Notes and D	efinitions f	or this Re	port:		
		EXTRACTED					
		ANALYST _D	<u>L</u>				
		FILE ID	10AA-2	71			
		UNITS	mq/Ra				
		BATCH_ID _	5V0A-252				
		COMMENTS					

ETAL.	REPORT	Work Order # 91-04-054
Results	by Sample	•
ARAMETER	RESULT LIMIT	D_F DATE_ANAL
patic Toxicity	>500 LC50>50	00 <u>N/A 04/13/91</u>
Notes and	Definitions for this	Report:
ANALYST UNITS BATCH_ID	JB mg/L	
	Results FRACTION 01 Date 4 Time RAMETER RUALIC Toxicity Notes and EXTRACTED ANALYST UNITS	Results by Sample FRACTION DIA TEST CODE ACTOX Date 4 Time Collected 04/15/91 RESULT LIMIT PLANTAGE TOXICITY >500 LC50>50 Notes and Definitions for this EXTRACTED ANALYST JB UNITS

age 4	FI	AI,	REPORT		Work	Order # 91-	04-054
sceived: 04/16/91		Results by	Sample				
AMPLE ID <u>SB-1-1B</u>		FRACTION <u>Ola</u> Date & Time Co					
	PARAMETER		RESULT	LIMIT	D_F	DATE_ANAL	
	ECs Diesel fuel		8,900	2.5	50	04/23/91	
		Notes and De	finitions f	or this Re	port:		
		EXTRACTED	04/	18/91			
		FILE ID		_			
1		BATCE ID	mq/Kq LDS-3				
		COMMENTS					

eceived: 04/16/91

BTAL

REPORT

Work Order # 91-04-054

Results by Sample

AMPLE ID SB-1-1B		ACTION <u>Ola</u> ts & Time Coll	TEST CODE SMSC4	NAME MISC test soil Category	
	ANALYTES Chromium		DF 1,0		
	· E A F U B	XTRACTED NALYST SN ILE ID NITS	05/01/91 N/A mg/Kg SCHR6-2	Report:	

ETAL	REPORT	War	k Order # 91-04-054
1	desults by Sample		
			tal petroleum HCs/soil Catagory
PARAMETER	RESULT	LIMIT D_P	DATE_ANAL
Total Petroleum BCs	32000	5.0 100	04/24/91
Not	es and Definitions fo	or this Report:	
ANA UNI	LYST MG TS mg/Kg	<u>23/91</u>	
	PARAMETER Total Petroleum BCs Not EXT ANA UNI	FRACTION DIA TEST CODE Date & Time Collected 04/ PARAMETER RESULT Total Petroleum ECs 32000 Notes and Definitions f EXTRACTED 04/ ANALYST MG	Results by Sample FRACTION <u>01A</u> TEST CODE <u>STPE</u> NAME <u>TO</u> Date & Time Collected <u>04/15/91</u> PARAMETER RESULT LIMIT D_P Total Petroleum HCs <u>32000</u> 5.0 100 Notes and Definitions for this Report: EXTRACTED <u>04/23/91</u> ANALYST MG UNITS <u>mg/Kq</u>

COMMENTS

eceived: 04/16/91

BTAL

REPORT Work Order # 91-04-054

Results by Sample

APPLE	ID	SB-1-1B	

FRACTION 01A TEST CODE STTLC NAME TILC (CCR) Metals in Soil Date & Time Collected 04/15/91 Category ____

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL	DATE_EXT
Antimony, Sb	19	2.0	4.0	04/17/91	04/17/91
Arsenic, As	17	0.25	10	04/22/91	04/17/91
Barium, Ba	290	0.040	4.0	04/17/91	04/17/91
Beryllium, Be	0.22	0.020	4.0	04/17/91	04/17/91
Cadmium, Cd	0.8	0,060	4.0	04/17/91	04/17/91
Chromium, Cr	28	0.040	4.0	04/17/91	04/17/91
Cobalt, Co	6.9	0.040	4.0	04/17/91	04/17/91
Copper, Cu	28	0,050	4.0	04/17/91	04/17/91
Lead, Pb	210	0.50	4.0	04/17/91	04/17/91
Mercury, Eg	ND	0.17	1.0	04/17/91	04/17/91
Molybdenum, Mo	0.7	0.060	4.0	04/17/91	04/17/91
Nickel, Ni	60	0.20	4.0	04/17/91	04/17/91
Selenium, Se	ND	0.25	4.0	04/17/91	04/17/91
Silver, Ag	ND	0.20	4.0	04/17/91	04/17/91
Thallium, Tl	5.6	3.0	1.0	04/18/91	04/17/91
Vanadium, V	63	0.50	4.0	04/17/91	04/17/91
Zinc, 2n	9.0	0.070	4.0	04/17/91	04/17/91

Notes and Definitions for this Report:

ANALYST AW

UNITS mq/Kq

BATCH_ID GFS-50, GFS-52, IFS-70, HGS-46 COMMENTS ____

ETAL

REPORT

Work Order # 91-04-054

Results by Sample

CRAME W		SB-1-2	
Serve Lie	ΤD	<u> 55-1-2</u>	

Received: 04/16/91

PRACTION <u>02A</u> TEST CODE <u>8010</u> NAME <u>VOA Ealo. BCs in soil</u>

Date & Time Collected <u>04/15/91</u> Category

PARAMETER	RESULT	LIMIT	D_P	DATE_ANAL CONF_RESULT
Dichlorodifluoromethane	ND	0.0050	5.0	04/19/91
Chloromethane	ND	0.0050	5.0	04/19/91
Vinyl chloride	ND	0,0050	5.0	04/19/91
Bromomethane	ND	0.0050	5.0	04/19/91
Chloroethane	ND	0.0050	5.0	04/19/91
Trichlorofluoromethane	ND	0.0050	5.0	04/19/91
1,1-dichloroethene	ND	0.0050	5.0	04/19/91
Dichloromethane	ND	0.0050	5.0	04/19/91
Trans-1,2-DCE	ND	0.0050	5.0	04/19/91
1,1-dichloroethane	ND	0.0050	5.0	04/19/91
Chlereform	ND	0.0050	5.0	04/19/91
1,1,1-trichloroethane	ND	0.0050	5.0	04/19/91
Carbon Tetrachloride	ND	0.0050	5.0	04/19/91
1,2-dichloroethane	ND	0.0050	5.0	04/19/91
Trichloroethylene	ND	0.0050	5.0	04/19/91
1,2-dichloropropane	ND	0.0050	5.0	04/19/91
Bromodichloromethane	ND	0.0050	5.0	04/19/91
Trans-1,3-DCP	אם	0.0050	5.0	04/19/91
Cis-1,3-DCP	ND	0.0050	5.0	04/19/91
1,1,2-trichloroethane	ND	0.0050	5.0	04/19/91
Tetrachloroethene	ND	0.0050	5.0	04/19/91
Dibromochloromethane	ND	0.0050	5.0	04/19/91
Chlorobenzene	ND	0.0050	5.0	04/19/91
Bromoform	ND	0.0050	5.0	04/19/91
1,1,2,2-TCA	ND	0.0050	5.0	04/19/91
1,2,3-Trichloropropane	ND	0.044	5.0	04/19/91
2-Chlorotoluene	סא	0.10	5.0	04/19/91
1,3-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,4-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,2-dichlorobensene	ND	0.0050	5.0	04/19/91

Notes and Definitions for this Report:

EXTRACTED)
Analyst	DL
FILE ID	5AA-289
UNITS	mq/Rq
BATCH_ID	3V0A-011
COMMENTS	

AND AQUA RESOURCES, INC.

OBSERVATION WELL INSTALLATION REPORT

Project Location _ Type of Ni Date Starte Type of Ot	CME 55	· · · · · · · · · · · · · · · · · · ·	ed by HEW	601 Drilling	716791	OW-5
L1	16!s feet			Type of Can Type of See bentonit	ekilli ceme	nt grout

Observed by

1,2-dichlorobenzene

Notes and Definitions for this Report:

ND 0.0050 5.0 04/19/91

EXTRACTED

ANALYST DL

FILE ID 6AA-289

UNITS mg/Kg

BATCE ID 3VOA-011

COMMENTS

.ge 10	ETAL	REPORT	Work Order # 91-04-054
:ceived: 04/16/91		Results by Sample	
SPLE ID <u>68-1-2</u>			NAME ECs Diesel by EXT in soil Category
	PARAMETER	RESULT LIMIT	D_F DATE_ANAL
•	MCs Diesel fuel	*2,100 2.	5 50 04/23/91
		Notes and Definitions for this	Report:
		EXTRACTED 04/18/91 ANALYST MP FILE ID	
l e		UNITS <u>mq/Kq</u> BATCH_ID LDS-3	
		COMMENTS	→ * See appendix

.ge 10

COMMENTS ____

REPORT

Work Order # 91-04-054

scaived: 04/16/91

APPLE ID SB-1-3

Results by Sample

 FRACTION 03A	TEST CODE 8010	NAME VOA Balo, BCs in soil
Date & Time Col	lected 04/15/91	Category

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL CONF_RESULT
Dichlorodifluoromethane	ND	0.0050	1.0	04/19/91
Chloromethane	ND	0.0050	1.0	
Vinyl chloride	ND	0.0050	1.0	04/19/91
Bromomethane	ND	0.0050	1.0	04/19/91
Chloroethane	ND	0.0050	1.0	04/19/91
Trichlorofluoromethane	ND	0.0050	1.0	04/19/91
1,1-dichloroethene	ND	0.0050	1.0	D4/19/91
Dichloromethane	ND	0.0050	1.0	04/19/91
Trans-1,2-DCE	ND	0.0050	1.0	04/19/91
1,1-dichloroethane	NO	0.0050	1.0	04/19/91
Chloroform	ND	0.0050	1.0	04/19/91
1,1,1-trichloroethane	ND	0.0050	1.0	04/19/91
Carbon Tetrachloride	ND	0,0050	1.0	04/19/91
1,2-dichloroethane	ND	0.0050	1.0	04/19/91
Trichloroethylene	ND	0.0050	1.0	04/19/91
1,2-dichloropropane		0.0050	1.0	04/19/91
Bromodichloromethane	ND	0.0050	1.0	04/19/91
Trans-1,3-DCP	ND	0.0050	1.0	04/19/91
Cis-1,3-DCP	ND	0.0050	1.0	04/19/91
1,1,2-trichloroethane	ND	0.0050	1.0	04/19/91
Tetrachloroethene	ND	0.0050	1.0	04/19/91
Dibromochloromethane		0.0050	1.0	04/19/91
Chlorobenzens	ND	0.0050	1.0	04/19/91
Bromoform	NTD	0.0050	1.0	04/19/91
1,1,2,2-TCA	ND	0.0050	1.0	04/19/91
1,2,3-Trichloropropane	ND	0.044		04/19/91
2-Chlorotoluene	ND			04/19/91
1,3-dichlorobenzene	0.019	_		04/19/91
1,4-dichlorobenzene	0.02	0.0050	1.0	04/19/91
1,2-dichlorobenzene	0.008 B	0.0050		04/19/91

Notes and Definitions for this Report:

EXTRACTED	· 	_	
ANALYST	DL	_	
FILE ID	5AA-290		
UNITS _	mg/Ko		
BATCH_ID	3V0A-011		
COMMENTS			

1,2-dichlorobenzene

MPLE ID SB-1-3

PARAMETER	RESULT	LINIT	D_F	DATE_ANAL CONF_RESULT
Benzene		6.0050	1.0	04/19/91
Toluene	<u>ND</u>	0.0050	1.0	04/19/91
Chlorobenzene	ND	0.0050	1.0	04/19/91
Ethylbenzene	_ ND	0.0050	1.0	04/19/91
P-4m-xylene	ND	0.010	1.0	04/19/91
O-xylene	ND	0.0050	1.0	04/19/91
1,3-dichlorobenzene	0.013	0.0050	1.0	04/19/91
1,4-dichlorobenzene	0.014	0.0050	1.0	04/19/91

PRACTION 03A TEST CODE 8020 NAME VOA Arom. ECs in soil
Date & Time Collected 04/15/91 Category

0.013 B 0.0050 1.0 04/19/91

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

FILE ID 6AA-290

UNITS mg/Kq

BATCE ID 3VOA-011

COMMENTS

Page 14 Received: 04/16/91	B	TAL Results by	REPORT Sample		Work	Order # 91-04-054
SAMPLE ID <u>SB-1-3</u>	···-	FRACTION <u>03a</u> Date & Time Co				Diesel by EXT in soil
	Parameter		RESULT	LIMIT	D_F	DATE_ANAL
•	ECs Diesel fuel		ND	2.5	1.0	04/23/91
		Notes and De	finitions f	or this F	eport:	
		EXTRACTED	04/ mq/Rq LDS-3	<u>18/91</u>		

COMMENTS _

	ge 15		ETAL		REPORT	:	Worl	Order # 91-04-054
*	ceived:	04/16/91	•	Results	by Sample			
<u>-</u>	PLE ID	<u>SB-1-3</u>	PR Da	ACTION <u>03A</u> te & Time	TEST COL	PE <u>STPH</u> 1/15/91	NAME <u>Tot</u>	Category
			PARAMETER		result	LIMIT	D_F	DATE_ANAL
			Total Patroleum SCs		11	5.	<u> </u>	04/24/91
			1	Notes and	Definitions	for this	Report:	
) T E	EXTRACTED MALYST MITS BATCE_ID COMMENTS		<u>/23/91</u>		

.ge 15

19e 16	BTAL REPORT			Work Order # 91-04-054			
eceived: 04/16/91		Results by Samp	le				
-MPLE ID SB-4-1		ACTION <u>04A</u> TES te & Time Collect			al petroleum HCs/soil Category		
	PARAMETER	resu.	LT LIMIT	D_F	DATE_ANAL		
	Total Petroleum BCs		140005.0	100	04/24/91		
	A.	otes and Definit:	ons for this R	eport:			
	A U		04/23/91 ng/Rg 78-24				

.

age 17	ETAL	ETAL REPORT	
.ecaived: 04/16/91	Result	s by Sample	
AMPLE ID SB-4-2		5A TEST CODE STPE • Collected 04/15/91	NAME Total petroleum BCs/soil Category
	PARAMETER	RESULT LIMIT	D_F DATE_ANAL
	Total Petroleum ECs	5860	100 04/24/91
	Notes and	d Definitions for this	Report:
	Extracted Analyst		
	UNITS _	mg/Kg	
	BATCH_ID	STPE-24	
	Comments		

790 22	DIAL	KEPUKE	MDIK OFTHER # 91-04-054			
eceived: 04/16/91	Re	sults by Sample				
AMPLE ID SB-4-3			NAME Total petroleum HCs/soil Category			
	PARAMETER	RESULT LIMIT	D_F DATE_ANAL			
<u> </u>	Total Petroleum HCs	6900 5.	<u>100 04/24/91</u>			
	Note	s and Definitions for this	Report:			
		ACTED 04/23/91 YST MG				
		S <u>mq/Kq</u> E_ID <u>STPB-24</u>				
	СОМИ	ENTS				

POLE ID SB-2-1

RTAL

REPORT

Work Order # 91-04-054

≥ceived: 04/16/91

Results by Sample

 FRACTION <u>07A</u>	TEST CODE 8010	NAME VOA Halo. HCs in soil
Date & Time Col	llected 04/15/91	Category

PARAMETER	RESULT	LIXIT	D_F	DATE_ANAL CONF_RESULT
Dichlorodifluoromethane	<u>CN</u>	0.0050	5.0	04/19/91
Chloromethane	ND	0.0050	5.0	04/19/91
Vinyl chloride	ND	0.0050	5.0	04/19/91
Bromomethane	ND	0.0050	5.0	04/19/91
Chloroethane	ND	0.0050	5.0	04/19/91
Trichlorofluoromethane	ND	0.0050	5.0	04/19/91
1,1-dichloroethene	ND	0.0050	5.0	04/19/91
Dichloromethane	ND	0.0050	5.0	04/19/91
Trans-1,2-DCE	ND	0.0050	5.0	04/19/91
1,1-dichloroethane	ND	0.0050	5.0	04/19/91
Chloroform	ND	0.0050	5.0	04/19/91
1,1,1-trichloroethane	ND	0.0050	5.0	04/19/91
Carbon Tetrachloride	ND	0.0050	5.0	04/19/91
1,2-dichloroethane	ND	0.0050	5.0	04/19/91
Trichloroethylene	ND	0.0050	5.0	04/19/91
1,2-dichloropropane	ND	0.0050	5.0	04/19/91
Bromodichloromethane	ND	0.0050	5.0	04/19/91
Trans-1,3-DCP	ND	0.0050	5.0	04/19/91
Cis-1,3-DCP	MD	0.0050	5.0	04/19/91
1,1,2-trichloroethane	ND	0.0050	5.0	04/19/91
Tetrachloroethene	ND	0.0050	5.0	04/19/91
Dibromochloromethane	ND	0.0050	5.0	04/19/91
Chlorobenzene	ND	0.0050	5.0	04/19/91
Bromoform	ND	0.0050	5.0	04/19/91
1,1,2,2-TCA	ND	0.0050	5.0	04/19/91
1,2,3-Trichloropropane	ND	0.044	5.0	04/19/91
2~Chlorotoluene	ND	0.10	5.0	04/19/91
1,3-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,4-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,2-dichlorobenzene	ND	0.0050	5.0	04/19/51

Notes and Definitions for this Report:

EXTRACTED	·
ANALYST	DL
PILE ID	5AA-291
UNITS	mg/Kg
BATCH_ID	3VOA-011
COMMENTS	

REPORT

Work Order # 91-04-054

Results by Sample

MPLE	αı	SB-2-1					NAME VO	Aron. EC	s in soil
			Date & Time Col.	lected	04/	15/91		Categor	у

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL CONF_RESULT
Benzene		0.0050	5.0	04/19/91
Toluene	ND	0,0050	5.0	04/19/91
Chlorobenzene	ND	0.0050	5.0	04/19/91
Ethylbenzene	0.030	0.0050	5.0	04/19/91
P-4m-xylene	ND	0.010	5.0	04/19/91
0-xylene	MD	0.0050	5.0	04/19/91
1,3-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,4-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,2-dichlorobenzene	ND	0.0050	5.0	04/19/91

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

FILE ID 6AA-291

UNITS mg/Kg

BATCE_ID 3YOA-011

COMMENTS

age 21	E	TAL REPORT	Work Order # 91-04-054
eceived: 04/16/91	•	Results by Sample	
AMPLE ID <u>SB-2-1</u>		FRACTION <u>07A</u> TEST CODE <u>SLFTD</u> Date & Time Collected <u>04/15/91</u>	NAME BCs Diesel by EET in soil Category
	PARAMETER		
	FARANEIER	RESULT LIMIT	D_F DATE_ANAL
	HCs Diesel fuel	+1,600	2.550 _01/23/91
		Notes and Definitions for this	Report:
		EXTRACTED 04/18/91	
		ANALYST MP	
		PILE ID	
		UNITS mg/kg	
		אמינים דו אינים א	

* = See appendix

COMMENTS

-,	STATI	REPORT	MOLK OLUSE &	31-04-034
eceived: 04/16/9	1 Result	ts by Sample		
AMPLE ID <u>58-2-1</u>	FRACTION C	TEST CODE STPE	NAME Total petro	leum ECs/soil
	Date & Tim	me Collected 04/15/91	Catego	<i>z</i> y
	PARAMETER	RESULT LIMIT	D_F DATE_AN	AL
	Total Petroleum ECs	.=		
	TOTAL PETIDIENE ECE	47000	5.0 100 04/24/9	<u>1</u>
	Notes an	d Definitions for thi	s Report:	
	71-77			
	EXTRACTE	D 04/23/91		
	ANALYST	MG		
	UNITS _	mq/kq		
	BATCE_ID	STPE-24		
	COMMENTS			
	•			

.

•

Results by Sample

SAMPLE	ID	SB-2-2	FRACTION	<u>08A</u>	TEST	CODE	8010	NAME	VOA	Balo.	ECs.	in	soil	
			Date & T.	ime Col	lecte	1 04/	15/91			Cate	ory			

PARAMETER	RESULT	LINIT	D_F	DATE_ANAL CONF_RESULT
Dichlerodifluoromethane	ND	0.0050	5.0	04/19/91
Chloromethane	ND	0.0050	5.0	04/19/91
Vinyl chloride	ND	0.0050	5.0	04/19/91
Bromomethane	MD	0.0050	5.0	04/19/91
Chloroethane	ND	0.0050	5.0	04/19/91
Trichlorofluoromethane	ND	0.0050	5.0	04/19/91
1,1-dichloroethene		0.0050	5.0	04/19/91
Dichloromethane	ND	0.0050	5.0	04/19/91
Trans-1,2-DCE	ND	0.0050	5.0	04/19/91
1,1-dichloroethane	ND	0.0050	5.0	04/19/91
Chloroform	MD	0.0050	_5.0	04/19/91
1,1,1-trichloroethane		0.0050	5.0	04/19/91
Carbon Tetrachloride	ND	0.0050	5.0	04/19/91
1,2-dichloroethane	מא	0.0050	5.0	04/19/91
Trichloroethylene	ND	0.0050	5.0	04/19/91
1,2-dichloropropane	ND	0.0050	5.0	04/19/91
Bromodichloromethane	MD	0.0050	5.0	04/19/91
Trans-1,3-DCP	ND	0.0050	5.0	04/19/91
Cis-1,3-DCP	ND	0.0050	5.0	04/19/91
1,1,2-trichloroethane	ND	0.0050	5.0	04/19/91
Tetrachloroethene	MD	0.0050	5.0	04/19/91
Dibromochloromethane	ND	0.0050	5.0	04/19/91
Chlorobenzene	ND	0.0050	5.0	04/19/91
Bromoform	ND	0.0050	5.0	04/19/91
1,1,2,2-TCA	MD	0.0050	5.0	04/19/91
1,2,3-Trichloropropane	ND	0.044	5.0	04/19/91
2-Chlorotoluene	ND	0,10	5.0	04/19/91
1,3-dichlorobenzene		0.0050	5.0	04/19/91
1,4-dichlorobenzene	ND	0.0050	5.0	04/19/91
1,2-dichlorobenzene	ND	0.0050	5.0	04/19/91

Notes and Definitions for this Report:

EXTRACTED			
ANALYST	DL		
FILE ID	5AA-292		
UNITS	mq/Rq		
BATCH_ID	3V0A-011		
COMMENTS		 	

ETAL

REPORT

Work Order # 91-04-054

Received: 04/16/91

Results by Sample

MPLE :	ID	SB-2-2	FRACTION OBA	TEST CODE 8020	NAME VOA Arom. BCs in soil	_
			Date & Time Col	lected 04/15/91	Category	

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL CONF_RESULT
Benzene		0.0050	1.0	54/19/91
Toluene	ND	0.0050	1.0	04/19/91
Chlorobenzene	ND	0.0050	1.0	04/19/91
Ethylbenzene	ND	0.0050	1.0	04/19/91
P-4m-xylene	ND	0.010	1.0	04/19/91
0-xylene	ND	0.0050	1.0	04/19/91
1,3-dichlorobenzene	ND	0.0050	1.0	04/19/91
1,4-dichlorobenzene	ND	0.0050	1.0	04/19/91
1,2-dichlorobenzene	ND	0.0050	1.0	04/19/91

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

PILE ID 6AA-292

UNITS mq/Kg

BATCE_ID 3VOA-011

COMMENTS

'age 26	ETAL.	REPORT	Work Order # 91-04-054
received: 04/16/91	Resu	ilts by Sample	
SAMPLE ID <u>5B-2-2</u>			NAME <u>Total petroleum RCs/soil</u> Category
	PARAMETER	RESULT LIMIT	D_F DATE_ANAL
	Total Petroloum ECs	8.0 5	.0 1.0 04/24/91
	Notes	and Definitions for this	Report:
	EXTRAC ANALYS UNITS BATCE_ COHMEN	T MG	

KTAI.

'age 26

age 27

ETAL

REPORT

Work Order # 91-04-054

sceived: 04/16/91

05/07/91 16:22:21

Juz Resources, Inc.

APPENDIX

= Sample #02A contains a Hydrocarbon Fuel approximately 3700 mg/kg, in this amount, there is 2,149 mg/kg of Diesel Fuel.

Sample \$07A contains a Hydrocarbon Fuel approximately 2000 mg/Kg, in this amount, there is 1571 mg/Kg of Diesel Fuel.

THE EARLY TECHNOLOGY CORP.
AMALYTICAL LABORATORIES

5702 BOLSA AVENUE

HUNTINGTON REACH, CA 92649

Attn: MARLEAH M. MARTIN Phone: (714) 892-2565

Aqua Resources, Inc. 2030 Addison Street Berkeley, CA 94704

Attn: Clancy Tenley Invoice Number:

Order #: 91-05-026 Date: 05/16/91 19:48 Work ID: P, G & E/ 90262 Date Received: 05/08/91

Date Completed: 05/14/91

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	Description	Number	Description
0.1	CD_1_1p		

MULTIPLY THE DETECTION LIMIT BY THE DILUTION FACTOR.

ND = Not detected.

E = Analyte was present in the blank.

Certified By Marleah M. Martin Results by Sample

PPLE ID SB-1-1B	· · · · · · · · · · · · · · · · · · ·		Time Colle		NAME MISC test soil Category		
	ANALYTES		RESULT	LIMIT	D_F	DATE_ANAL	
		Lead, Pb	6.4	0.20	1.0	05/13/91	
				0			
				0			
				0			
				0			
				0			
				0			
							
		Note	es and Defin	nitions fo	or this	Report:	
	,	EXTR	ACTED	05/1	3/91		
		ANAI	YST AW				
		FILE	ID		N/A		
		UNIT	's	mc	<u>/L</u>		
		BATO	ES_ID	IFW-71			
		сомн	œnts	STLC ANA	LYSIS E	FOR LEAD WAS PERFORMED BY FA	LA.

age 2

FIAL

REPORT

Work Order # 91-05-026

sceived: 05/08/91

05/16/91 19:48:57

roz Rescurces, Inc.

lease note all results are reported as wet weight.

THE EARTH TECHNOLOGY CORP.

ANALYTICAL LABORATORIES

5702 BOLSA AVENUE

BUNTINGION BEACH, CA

Attn: MARIEAH M. MARTIN Phone: (714) 892-2565

Aqua Resources, Inc. 2030 Addison Street Berkeley, CA 94704

Attn: Clancy Tenley Invoice Number:

Order #: 91-04-064

Date: 05/07/91 11:46 Work ID: 90262/PG & E

Date Received: 04/17/91 Date Completed: 05/07/91

92649

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	<u>Description</u>	Number	Description
01	W5-1	02	W5-2
03	W5-3	04	W5-4
05	W5-5	06	₩5 - 6
07	W5-7	08	W5-8
09	W5-9	10	W5-10
11	W5-11	12	W5-12
13	W5-13	14	W5-14
15	W5-15	16	W5-16
17	W5-17	18	W5-18
19	W5-19	20	W5-21
21	W5-20	22	W5-22
23	W5-23	24	₩5-24

MULTIPLY THE DETECTION LIMIT BY THE DILUTION FACTOR.

ND = Not detected.

B = Analyte was present in the blank.

Certified By

Marleah M. Martin

	eceived: 04/17/91		Resulta by	Sample				
	AMPLE ID W5-5		FRACTION <u>05A</u> Date & Time Co					
,								
		PARAMETER		RESULT	LIMIT	D_F	DATE_ANAL	
		Total Petroleum	BCs	450	5.0	_ 1.0	04/30/91	
,			Notes and De	finitions :	for this R	eporti		
			EXTRACTED	04/	30/91			
L			ANALYST JB	<u>!</u>				
			UNITS	mq/Kq				
			BATCH_ID	STPE-25				
			COMMENTS					
								

KTAL

REPORT

Work Order # 91-04-064

age 6

Results by Sample

AMPLE	ID	W5-9	

sceived: 04/17/91

FRACTION 09A TEST CODE 8010 NAME VOA Halo. HCs in soil

Date 4 Time Collected 04/16/91 Category

PARAMETER	RESULT	LIHIT	D_F	DATE_ANAL CONF_RESULT
Dichlorodifluoromethane	ND	0.0050	1.0	04/25/51
Chloromethane	ND	0.0050	1.0	04/25/91
Vinyl chloride	МД	0.0050	1.0	04/25/91
Bromomethane	ND	0.0050	1.0	04/25/91
Chloroethane	ND	0.0050	1.0	04/25/91
Trichlorofluoromethane	ND	0.0050	1.0	04/25/91
1,1-dichloroethene	ND	0.0050	1.0	04/25/91
Dichloromethane	ND	0.0050	1.0	04/25/91
Trans-1,2-DCE	ND	0.0050	1.0	04/25/91
1,1-dichloroethane	ND	0.0050	1.0	04/25/91
Chloroform	ND	0.0050	1.0	04/25/91
1,1,1-trichloroethane	ND	0.0050	1.0	04/25/91
Carbon Tetrachloride	ND	0.0050	1.0	04/25/91
1,2-dichloroethane	ND	0.0050	1.0	04/25/91
Trichloroethylene	ND	0,0050	1.0	04/25/91
1,2-dichloropropane		0.0050	1.0	04/25/91
Bromodichloromethane	מא	0.0050	1.0	04/25/91
Trans-1,3-DCP	ND	0.0050	1.0	04/25/91
Cis-1,3-DCP		0.0050	1.0	04/25/91
1,1,2-trichloroethane	מא	0.0050	1.0	04/25/91
Tetrachloroethene	ND	0.0050	1.0	04/25/91
Dibromochloromethane	ND	0.0050	1.0	04/25/91
Chlorobenzene	ND	0.0050	1.0	04/25/91
Bromoform	ND	0.0050	1.0	04/25/91
1,1,2,2-TCA	ND	0.0050	1.0	04/25/91
1,2,3-Trichloropropane		0.044	1.0	04/25/91
2-Chlorotoluene	ND	0.10	1.0	04/25/91
1,3-dichlorobenzene	ND	0.0050	1.0	04/25/91
1,4-dichlorobenzene	<u>ND</u>	0.0050	1.0	04/25/91
1,2-dichlorobenzene	ND	0.0050	1.0	04/25/91

EXTRACTED		
ANALYST	J¥	
FILE ID	9AA-315	
UNITS _	mg/Kg	
BATCH_ID	5VOA-254	
COMMENTS		

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

FILE ID 10AA-315

UNITS mq/Kq

BATCE_ID 5VOA-254

COMMENTS

:ge 12 :caived: 04/17/91	E	FEAL REPORT	Work Order # 91-04-064
:calved: 04/1//91		Results by Sample	
PPLE ID WS-9		FRACTION 09A TEST CODE SLFT	NAME HCs Diesel by EXT in soil
		Date & Time Collected 04/16/91	Category
	PARAMETER	RESULT LIMIT	D_P DATE_ANAL
	HCs Diesel fuel	ND*	2.5 20 04/18/91
		Notes and Definitions for thi	s Report:
		EXTRACTED04/18/91	
		ANALYST MP	
		PILE ID	
		UNITS mg/Kg	
		BATCH_ID LDS-3	

* = See appendix

COMMENTS

age 13	ET	NI.	REPORT		Work	Order # 91-04-064	
eceived: 04/17/91		Results by	Sample				
AMPLE ID W5-9						Gas by P & T in soil	
	I	Date & Time Co	llected <u>04/</u>	16/91		Category	_
	PARAMETER		RESULT	LIMIT	D_F	DATE_ANAL	
	•						
	ECa Gasoline fuel		2.0	0.10	1.0	04/29/91	
l		Notes and De	finitions f	or this Re	port:		
		EXTRACTED _					
•		ANALYST MP					
		PILE ID		_			
		UNITS	mg/Kg				

7GAS-006

BATCH_ID _

COMMENTS _

REPORT

Work Order # 91-04-064

sceived:	04/17/91		Re	sults by S	ample				
AMPLE ID	<u>₩5-9</u>							test soil	
		A NALYTES		RESULT	LINIT	D_F	DATE_ANAL		
		Chr	omium VI	NI	0.4	1.0	05/01/91		
					·0				
									
					0				
			Note	s and Defi	nitions fo	r this	Report:		
•		,	EXTR	ACTED	05/0	1/91			
			ANAL	YST SC					
			PILE	ID		N/A			
			UNIT		nq/	Κq			
				H_ID	SCHR6-2				
			COMM	ENTS					

.ge 16	POAL	REPORT	Wor	k Order # 91-04-064
:ceived: 04/17/91	Results by	Sample	•	
MPLE ID W5-9	FRACTION <u>09A</u> Date & Time Co			tal petroleum BCs/soil Category
	Parameter	RESULT	LIMIT D_F	DATE_ANAL
•	Total Potroleum HCs	<u> 605</u>	5.0 1.0	04/30/91
	Notes and De	finitions fo	or this Report:	
	EXTRACTED _	04/3	10/91	
	Analyst <u>j</u> e	1		
	UNITS	mq/Kq		
	BATCH_ID	STPH-25		
}	COMMENTS			· · · · · · · · · · · · · · · · · · ·

Results by Sample

AMPLE	ID	W5-9

FRACTION 09A TEST CODE STTIC NAME THIC (CCR) Metals in Soil
Date & Time Collected 04/16/91 Category

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL	DATE_EXT
Antimony, Sb	NTD	2.0	4.0	04/29/91	04/23/91
Arsenic, As	6.0	0.25	8.0	05/02/91	04/30/91
Barium, Ba	190	0.040	4.0	04/29/91	04/30/91
Beryllium, Be	1.2	0.020	4.0	04/29/91	04/30/91
Cadmium, Cd	0.29	0.060	4.0	04/29/91	04/30/91
Chromium, Cr	110	0.040	4.0	04/29/91	04/30/91
Cobalt, Co	14	0.040	4.0	04/29/91	04/30/91
Copper, Cu	35	0.050	4.0	04/29/91	04/30/91
Lead, Pb	8.6	2.0	1.0	04/26/91	04/23/91
Mercury, Hg	0.7	0.17	1.0	05/01/91	05/01/91
Molybdenum, Mo	ND	0.060	4.0	04/29/91	04/30/91
Nickel, Ni	150	0.20	4.0	04/29/91	04/30/91
Selenium, Se	ND	0.25	4.0	05/01/91	04/30/91
Silver, Ag	ND	0.20	4.0	04/29/91	04/30/91
Thallium, Tl	ND	3.0	1.0	04/29/91	04/30/91
Vanadium, V	59	0.030	4.D	04/29/91	04/30/91
Zinc, Zn	80	0.070	4.0	04/29/91	04/30/91

ANALYST WN	
UNITS mg/Kg	
BATCH_ID	IFS-73, GPS-55, BGS-50
COMMENTS	

age 21	RTAL	REPORT	Work Order # 91-04-064
eceived: 04/17/91	Results	by Sample	
AMPLE ID <u>W5-12</u>			NAME <u>Total petroleum ECs/soil</u> Category
	PARAMETER	RESULT LIMIT	D_F DATE_ANAL
•	Total Petroleum HCs	75 5	.0 <u>1.0 04/30/91</u>
	Notes and	. Definitions for this	Report:
	EXTRACTED	04/30/91	
	ANALYST	JB	
	UNITS	mq/Kq	
	BATCH_ID	STPH-25	
	COMMENTS	<u> </u>	

age 30 aceived: 04/17/91

ETAL

REPORT

Work Order # 91-04-064

THE RESOURCES, Inc.

05/07/91 11:46:22

APPENDIX

= Sample #09A contains a Hydrocarbon fuel approximately 3750 mg/Kg. This Hydrocarbon doesn't match diesel fuel. THE EARTH TECHNOLOGY CORP.

AMALYTICAL LABORATORIES

5702 BOKSA AVENUE

HUNTINGTON BEACH, CA

92649

Attn: MARLEAR M. MARTIN

Phone: (714) .892-2565

AQUA RESOURCES, INC RECEIVED

MAY 1 3 1991

OB NO	
:H =	

Aqua Resources, Inc. 2030 Addison Street Berkeley, CA 94704

Attn: Clancy Tenley Invoice Number:

Order #: 91-04-086 Date: 05/03/91 13:57 Work ID: 90262-P, G & E Date Received: 04/25/91 Date Completed: 05/03/91

SAMPLE IDENTIFICATION

Sample		Sample	Sample
Number	Description	Number	Description
01	SB-1-1B	02	SB-2-1
03	W5-1		

MULTIPLY THE DETECTION LIMIT BY THE DILUTION FACTOR.

ND = Not detected.

B = Analyte was present in the blank.

Val Mallari

REPORT

Work Order # 91-04-086

Results by Sample

MPLE	ID	SB-1-1B	FRACTION <u>01A</u>	TEST CODE SPCB	NAME PCBs only in soil
			Date & Time Col	lected <u>04/15/91</u>	Category

PARAMETER	RESULT	LINIT	D_F	DATE_ANAL
PCB-1016	ND	0.10	_ 10	05/02/91
PCB-1221	ND	0.10	10	05/02/91
PCB-1232	ND	0.10	10	05/02/91
PCB-1242	ND	0.10	10	05/02/91
PCB-1248	מא	0.10	10	05/02/91
PCB-1254	ND	9.10		05/02/91
PCB-1260	ND	0.10	10	05/02/91

EXTRACTED	04/29/
ANALYST	NL
FILE ID	2AA-796
UNITS	mg/Kg
BATCH_ID	PCBS-14
COMMENTS	

REPORT

Work Order # 91-04-086

Results by Sample

	Date & Time Co	ollected <u>04/</u>	/15/91		Category
PARAMETER		RESULT	LIMIT	D_F	DATE_ANAL
PCB-1016		<u>w</u>	_ 0.10	10	05/02/91
PCB-1221	÷		0.10		05/02/91
PCB-1232			0.10		05/02/91
PCB-1242		ND	0,10		05/02/91
PCB-1248		MD	0.10		05/02/91
PCB-1254		ND	0.10	10	05/02/91
PCB-1260		ND	0.10		05/02/91

EXTRACTED 04/29/91

ANALYST NL

FILE ID 2AA-797

UNITS mq/Kq

BATCE_ID PCBS-14

COMMENTS

RTAL

REPORT

Work Order # 91-04-086

aceived: 04/25/91	Results by Sample		
AMPLE ID W5-1	PRACTION 03A TEST CODE Date 1 Time Collected 04/		Rs only in soil Category
PARAMETER	RESULT	LIMIT D_F	DATE_ANAL
PCB-1016 PCB-1221 PCB-1232 PCB-1242 PCB-1248 PCB-1254 PCB-1256	ND ND ND ND ND ND ND ND	0.10 1.0 0.10 1.0 0.10 1.0 0.10 1.0	05/02/91 05/02/91 05/02/91 05/02/91 05/02/91 05/02/91 05/02/91

Notes and Definitions for this Report:

EXTRACTED 04/29/91 ANALYST NL FILE ID 2AA-795
UNITS mg/Kg
BATCH_ID PCBS-14 COMMENTS

THE EARTH TECHNOLOGY CORP.
ANALYTICAL LABORATORIES

5702 BOLSA AVENUE

HURTINGTON BEACH, CA 92649

Attn: MARLEAH M. MARTIN Phone: (714) 892-2565

Aqua Resources, Inc. 2030 Addison Street Berkeley, CA 94704 Order #: 91-04-071
Date: 05/22/91 15:46
Work ID: PG&E/690262
Date Received: 04/19/91
Date Completed: 05/03/91

Attn: Clancy Tenley

Invoice Number: 209

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
Number	<u>Description</u>	Number	Description
01	OW-1-1	02	OW-1-2
03	OW-3-1	04	OW-3-2
05	O₩-4-1	06	OW-4-2
07	OW-5-1	80	0W-5-2
09	0W-1-1	10	OW-1-1
11	OW-4-1	12	0W-4-1
13	OW-3-1	14	OW-3-1
15	OW-3-2	16	OW-3-2
17	OW-1-1	18	OW-1-1
19	0W-5-1	20	OW-5-1
21	OW-5-1	22	0₩-5-1
23	OW-3-1	24	OW-2-1
25	OW-2-1	26	OW-2-1
27	OW-2-1	28	OW-2-1
29	OW-2-2	30	FIELD BLANK
31	FIELD BLANK	32	FIELD BLANK
33	TRIP BLANK	34	TRIP BLANK
35	TRIP BLANK	36	0W-4-1
37	OW-4-1	38	OW-3-1
39	OW-3-1	40	ow−3−2
41	O₩-3-2		

MULTIPLY THE DETECTION LIMIT BY THE DILUTION FACTOR.

ND = Not detected.

B = Analyte was present in the blank.

Certified By Marleah M. Mar

eceived: 0	4/19/91		Results by	Sample				
AMPLE ID <u>O</u>	W-1-1		FRACTION 09A Date & Time Co				al petroleum ECs/wa Category	<u>iter</u>
ļ	:	Parameter		RESULT	LIMIT	D_F	DATE_ANAL	
	,	Total Petroleum P	iCa	סמ	0.50	1.0	05/02/01	
			Notes and De	finitions f	or this R	leport:		
			EXTRACTED ANALYST		02/91			-

REPORT

Work Order # 91-04-071

RTAL.

age 9

ETAL Work Order # 91-04-071 .ge 10 REPORT :ceived: 04/19/91 Results by Sample AGLE ID OW-1-1 FRACTION 10A TEST CODE WIFTD NAME HCs Diesel by KKT in water Date & Time Collected 04/17/91 Category _____ RESULT LIMIT D_F DATE_ANAL PARAMETER HCs Diesel fuel <u>nn</u> <u>0.20</u> <u>1.0</u> <u>04/23/51</u> Notes and Definitions for this Report: EXTRACTED 04/22/91 ANALYST MP FILE ID N/A
UNITS mg/L BATCE_ID _____LDW-8 COMMENTS

eceived: 04/19/91

REPORT

Work Order # 91-04-071

Results by Sample

PARAMETER	result	LINIT	D_F	DATE_ANAI
Dichlorodifluoromethane	NOT REQ.			
Chloromethane	ND	2.0	1.0	04/23/91
Vinyl chloride	ND	1.0	1.0	04/23/91
Bromomethane	ND	1.0	1.0	04/23/91
Chloroethane	ND	1.0	1.0	04/23/91
Trichlorofluoromethane	ND	0.50	1.0	04/23/91
1,1-dichloroethene	ND	0.50	1.0	04/23/91
Dichloromethane	ND	0.50	1.0	04/23/91
Trans-1,2-DCE	ND	0.50	1.0	04/23/91
1,1-dichloroethane	6.1	0.40	1.0	04/23/91
Chloroform	ND	0.20	1.0	04/23/91
1,1,1-trichloroethane	ND	0.20	1.0	04/23/91
Carbon Tetrachloride	ND	0.50	1.0	04/23/91
1,2-dichloroethane	0.49	0.20	1.0	04/23/91
Trichloroethylene	ND	0.50	1.0	04/23/91
1,2-dichloropropane	ND	0.20	1.0	04/23/91
Bromodichloromethane	ND	0.50	1.0	04/23/91
Trans-1,3-DCP	ND ND	0.50	1.0	04/23/91
Cis-1,3-DCP	ND	0.50	1.0	04/23/91
1,1,2-trichloroethane	ND	0.10	1.0	04/23/91
Tetrachloroethene	ND	0.20	1.0	04/23/91
Dibromchloromethane	מא	0.50	1.0	04/23/91
Chlorobenzene	ND	0.50	1.0	04/23/91
Bromoform	ND	0.50	1.0	04/23/91
1,1,2,2-TCA	סוא	0.20	1.0	04/23/91
1,2,3-Trichloropropane	NOT REQ.			
2-Chlorotoluene	NOT REQ.	<u>.</u>		
1,3-dichlorobenzene	ND	0.50	1.0	04/23/91
1,4-dichlorobenzene	ND	0.50	1.0	04/23/91
1,2-dichlorobenzene	ND	0.50	1.0	04/23/91

EXTRACTED						
ANALYST	DL					
PILE ID	9AA-289					
UNITS	uq/L					
BATCH_ID	5V0A-253					
COMMENTS	NOT	REO.	TARGET	ANALYTE	NOT	RECUIRE

ETAL

REPORT

Work Order # 91-04-071

Results by Sample

AMPLE ID OW-4-1	FRACTION 12A	TEST CODE 602	NAME VOA Arom. ECs in water
	Date & Time Co.	Llected 04/17/91	Category

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL
Benzene	<u>nd</u>	0.50	1.0	04/23/91
Toluene	ND	0.50	1.0	04/23/91
Chlorobenzene	ND	0.50	1.0	04/23/91
Ethylbenzene	ND	0.50	1.0	04/23/91
P-4m-xylene	ND	1.0	1.0	04/23/91
0-xylene	ND	0.50	1.0	04/23/91
1,3-dichlorobenzene	ND	0.50	1.0	04/23/91
1,4-dichlorobenzene	ND	0.50	1.0	04/23/91
1,2-dichlorobenzene	ND	0.50	1.0	04/23/91

EXTRACTED						
ANALYST _	DL					
FILE ID	20AA~289					
UNITS	ug/L					
BATCE_ID	5VOA-253					
COMMENTS	•					

ETAL

REPORT

Work Order # 91-04-071

Results by Sample

AMPLE	ID	OW-3-1

eceived: 04/19/91

PRACTION 13A TEST CODE 601 NAME VOA Halo. HCs in water

Date 2 Time Collected 04/17/91 Category

PARAMETER	RESULT	LIMIT	D_F	date_anal
Dichlorodifluoromethane	NOT REQ.	<u>.</u>		
Chloromethane	ND	2.0	1.0	04/23/91
Vinyl chloride	ND	1.0	1.0	04/23/91
Bromomethane	ND	1.0	1.0	04/23/91
Chloroethane	ND	1.0	1.0	04/23/91
Trichlorofluoromethane	0.82	0.50	1.0	04/23/91
1,1-dichloroethene	ND	0.50	1.0	04/23/91
Dichloromethane	1.9 B	0.50	1.0	04/23/91
Trans-1,2-DCE	ND	0.50	1.0	04/23/91
1,1-dichloroethane	16	0.40	1.0	04/23/91
Chloroform	ND	0.20	1.0	04/23/91
1,1,1-trichloroethane	2.5	0.20	1.0	04/23/91
Carbon Tetrachloride	ND	0.50	1.0	04/23/91
1,2-dichloroethane	0.55	0.20	1.0	04/23/91
Trichloroethylene	ND	0.50	1.0	04/23/91
1,2-dichloropropane	ND	0.20	1.0	04/23/91
Bromodichloromethane	ND	0.50	1.0	04/23/91
Trans-1,3-DCP	ND	0.50	1.0	04/23/91
Cis-1,3-DCP		0.50	1.0	04/23/91
1,1,2-trichloroethane	מא	0.10	1.0	04/23/91
Tetrachloroethene	1.4	0.20	1.0	04/23/91
Dibromchloromethane	מא	0.50	1.0	04/23/91
Chlorobenzene	2.3	0.50	1.0	04/23/91
Bronoform	ND	0.50	1.0	04/23/91
1,1,2,2-TCA	מאַ	0.20	1.0	04/23/91
1,2,3-Trichloropropane	NOT REQ.			
2-Chlorotoluene	NOT REQ.			
1,3-dichlorobenzene	3.3	0.50	1.0	04/23/91
1,4-dichlorobenzene	3.1	0.50	1.0	04/23/91
1,2-dichlorobenzene	2.3	0.50	1.0	04/23/91

EXTRACTED					
ANALYST	DL				
FILE ID	9AA-290				
UNITS	uq/L				
BATCH_ID	5VOA-253				
COMMENTS	NOT REQ.	= TARGET	ANALYTE	NOT	REQUIRED

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL
Benzene	0.54	0.50	1.0	04/23/91
Toluene	ND	0.50	1.0	04/23/91
Chlorobenzene	2.8	0.50	1.0	04/23/91
Ethylbenzene	ND	0.50	1.0	04/23/91
P-4m-xylene	ND	1.0	1.0	04/23/91
O-xylene	ND	0.50	1.0	04/23/91
1,3-dichlorobenzene	3.2	0.50	1.0	04/23/91
1,4-dichlorobenzene	3.0	0.50	1.0	04/23/91
1,2-dichlorobenzene	2.1	0.50	1.0	04/23/91

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

FILE ID 10AA-290

UNITS ug/L

BATCE_ID 5VOA-253

COMMENTS

KTAL

REPORT Work Order # 91-04-071

Results by Sample

-eceived: 04/19/91

FRACTION 15A TEST CODE 601 NAME VOA Balo. ECs in water Date & Time Collected 04/17/91 Category

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL
Dichlorodifluoromethane	NOT REQ.			
Chloromethane	ND	2.0	1.0	04/27/91
Vinyl chloride	ND	1.0	1.0	04/27/91
Bromomethane	ND	1.0	1.0	04/27/91
Chloroethane	ND	1.0	1.0	04/27/91
Trichlorofluoromethane	ND	0.50	1.0	04/27/91
1,1-dichlorosthene	0.69	0.50	1.0	04/27/91
Dichloromethane	1.1 B	0.50	1.0	04/27/91
Trans-1,2-DCE	ND	0.50	1.0	04/27/91
1,1-dichloroethane	17	0.40	1.0	04/27/91
Chloroform	ND	0.20	1.0	04/27/91
1,1,1-trichloroethane	1.6	0.20	1.0	04/27/91
Carbon Tetrachloride	ND	0.50	1.0	04/27/91
1,2-dichloroethane	0.43	0.20	1.0	04/27/91
Trichloroethylene	ND	0.50	1.0	04/27/91
1,2-dichloropropane	NTD	0.20	1.0	04/27/91
Bromodichloromethane	СИ	0.50	1.0	04/27/91
Trans-1,3-DCP	ND	0.50	1.0	04/27/91
Cis-1,3-DCP	ND	0.50	1.0	04/27/91
1,1,2-trichloroethane	ND	0.10	1.0	04/27/91
Tetrachloroethene	0.68	0.20	1.0	04/27/91
Dibromchloromethane	MD	0.50	1.0	04/27/91
Chlorobenzene	1.0	Q.50	1.0	04/27/91
Bromoform	ND	0.50	1.0	04/27/91
1,1,2,2-TCA	ND	0.20	1.0	04/27/91
1,2,3-Trichloropropane	NOT REQ.			
2-Chlorotoluene	NOT REQ.			
1,3-dichlorobenzene	1.8	0.50	1.0	04/27/91
1,4-dichlorobenzene	1.8	0.50	1.0	04/27/91
1,2-dichlorobenzene	1.2	0.50	1.0	04/27/91

EXTRACTED	
ANALYST	DL
FILE ID	9AA-291
UNITS	ua/L
BATCH_ID	5V0A-253
COMMENTS	NOT REQ. = TARGET ANALYTE NOT REQUIRED

ETAL

REPORT

Work Order # 91-04-071

sceived: 04/19/91

Results by Sample

MPLE	ID	OW-3-2	FRACTION	16A	TEST	CODE	602	name	VOA Arca	. BCs	in	water
			Date & Ti	me Coli	Lected	04/3	17/91		Cate	VIODE		

PARAMETER	RESULT	LINIT	D_F	DATE_ANAL
Bancone		0.50		04/33/01
·	ND	0.50	1.0	04/23/91
Toluene	ND	0.50	1.0	04/23/91
Chlorobenzene	2.9	0,.50	1.0	04/23/91
Ethylbenzene	ND	0.50	1.0	04/23/91
P-4m-xylene	<u>ND</u>	1.0	1.0	04/23/91
0-xylene	ND	0.50	1.0	04/23/91
1,3-dichlorobenzene	3.7	0.50	1.0	04/23/91
1,4-dichlorobenzens	3.1	0.50	1.0	04/23/91
1,2-dichlorobenzene	2.7	0.50	1.0	04/23/91

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

FILE ID 6AA-390

UNITS uq/L

BATCE_ID 5VOA-253

COMMENTS

sceived: 04/19/91

ETAL.

REPORT Work Order # 91-04-071

Results by Sample

 	 -	_				_	 	 	_	

MPLE ID OW-1-1 FRACTION 17A TEST CODE 601 NAME VOA Halo. HCs in water Date & Time Collected 04/17/91 Category _____

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL
Dichlorodifluoromethane	NOT REQ.			
Chloromethane	ND	2.0	1.0	04/23/91
Vinyl chloride	ND	1.0	1.0	04/23/91
Bromomethane	ND	1.0	1.0	04/23/91
Chloroethane	ND	1.0	1.0	04/23/91
Trichlorofluoromethane	ND	0.50	1.0	04/23/91
1,1-dichloroethene	ND	0.50	1.0	04/23/91
Dichloromethane	0.85 B	0.50	1.0	04/23/91
Trans-1,2-DCE	ND	0.50	<u> 1.D</u>	04/23/91
1,1-dichloroethane	2.6	0.40	1.0	04/23/91
Chloroform	ND	0.20	1.0	04/23/91
1,1,1-trichloroethane	ND	0.20	1.0	04/23/91
Carbon Tetrachloride	בוא	0.50	1.0	04/23/91
1,2-dichloroethane	0.63	0.20	1.0	04/23/91
Trichloroethylene	ND	0.50	1.0	04/23/91
1,2-dichloropropane	ND	0.20	2.0	04/23/91
Bromodichloromethane	ND	3.50	1.0	04/23/91
Trans-1,3-DCP	מא	0.50	1.0	04/23/91
Cis-1,3-DCP	ND	0,50	1.0	04/23/91
1,1,2-trichloroethane	ND	0.10	1.0	04/23/91
Tetrachloroethene	1.1	0.20	1.0	04/23/91
Dibromchloromethane	סא	0.50	1.0	04/23/91
Chlorobenzene	ND	0.50	1.0	04/23/91
Bromoform	ND	0.50	1.0	04/23/91
1,1,2,2-TCA	ND	0.20	1.0	04/23/91
1,2,3-Trichloropropane	NOT REQ.			
2-Chlorotoluene	NOT REQ.			
1,3-dichlorobenzene	1.8	0.50	1.0	04/23/91
1,4-dichlorobenzene	6.7	0.50	1.0	04/23/91
1,2-dichlorobenzene	0.58	0.50	1.0	04/23/91

D1121010122D						
ANALYST	DL					
PILE ID	9AA-292					
UNITS	ug/L					
BATCH_ID	5VOA-253					
COMMENTS	NOT F	REQ. =	TARGET	analyte	NOT	REQUIRED

eceived: 04/19/91

ETAL

REPORT

Work Order # 91-04-071

_

Results by Sample

MPLE ID OW-1-1	PRACTION 18A TEST CODE 602 Date 1 Time Collected 04/17/9:		VOA Aron. ECs in water Category
PARAMETER	RESULT LIKI	IT D_F	DATE_ANAL

Benzene ND 0.30 1.0 04/23/91 Toluene ND 0.50 1.0 04/23/91 Chlorobenzene 0.50 1.0 04/23/91 MD Ethylbenzene ND 0.50 1.0 04/23/91 P-&m-xylene ND 1.0 1.0 04/23/91 O-xylene ND 0.50 1.0 04/23/91 0.50 1.0 04/23/91 1,3-dichlorobenzene 1.6 1,4-dichlorobenzene 7.2 0.50 1.0 04/23/91 1,2-dichlorobenzene ND D.50 1.0 04/23/91

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

PILE ID 10AA-292

UNITS ug/L

BATCE ID 5VOA-253

COMMENTS

REPORT

Work Order # 91-04-071

Results by Sample

MPLE	ID	OW-5-1	

eceived: 04/19/91

FRACTION 19A TEST CODE 601 NAME VOA Balo. BCs in water

Date & Time Collected 04/17/91 Category

PARAMETER	RESULT	LIMIT	D_F	DATE_ANAL
Dichlorodifluoromethane	NOT REO.			
Chloromethane	ND	2.0	1.0	04/23/91
Vinyl chloride	ND	1.0	1.0	04/23/91
Bromomethane	ND	1.0	1.0	04/23/91
Chloroethane	ND	1.0	1.0	04/23/91
Trichlorofluoromethane	מא	0.50	1.0	04/23/91
1,1-dichloroethene	ND	0.50	1.0	04/23/91
Dichloromethane	2.4 B	0.50	1.0	04/23/91
Trans-1,2-DCE	ND	0.50	1.0	04/23/91
1,1-dichloroethane	1.8	0.40	1.0	04/23/91
Chloroform	ND	0.20	1.0	04/23/91
1,1,1-trichloroethane	6.0	0.20	1.0	04/23/91
Carbon Tetrachloride	ND	0.50	1.0	04/23/91
1,2-dichloroethane	ND	0.20	1.0	04/23/91
Trichloroethylene	0.75	0.50	1.0	04/23/91
1,2-dichloropropane	ND	0.20	1.0	D4/23/91
Bromodichloromethane	ND	0.50	1.0	04/23/91
Trans-1,3-DCP	ND	0.50	1.0	04/23/91
Cis-1,3-DCP	ND	0.50	1.0	04/23/91
1,1,2-trichloroethane	ND	0.10	1.0	04/23/91
Tetrachloroethene	0.7	0.20	1.0	04/23/91
Dibromchloromethane	ND	0.50	1.0	04/23/91
Chlorobenzene	ND	0.50	1.0	04/23/91
Bromoform	ND	0.50	1.0	04/23/91
1,1,2,2-TCA	ND	0.20	1.0	04/23/91
1,2,3-Trichloropropane	NOT REQ.			
2-Chlorotoluene	NOT REQ.			
1,3-dichlorobenzene	ND	0.50	1.0	04/23/91
1,4-dichlorobenzene	ND	0.50	1.0	04/23/91
1,2-dichlorobenzene	ND	0.50	1.0	04/23/91

EXTRACTED							
analyst	DL						
FILE ID	9AA-293	3					
UNITS _	ug/L						
BATCE_ID	5V0A-253						
COMMENTS	NOT	REO.	-	TARGET	ANALYTE	NOT	REQUIRE

ETAL

REPORT

Work Order # 91-04-071

Results by Sample

MPLE ID OW-5-1	FRACTION 20A	TEST CODE 602	NAME VOA Arom. ECs in water
	Date & Time Co.	llected 04/17/91	Category

PARAMETER	RESULT	LIMIT	D_P	DATE_ANAL	
Benzene	14	0.50	1.0	04/23/91	
Toluene	0.57	0.50	1.0	04/23/91	
Chlorobenzene	ND	0.50	1.0	04/23/91	
Ethylbenzene	0.58	0.50	1.0	04/23/91	
P-4m-xylene	4.5	1.0	1.0	04/23/91	
O-xylene	1.1	0.50	1.0	04/23/91	
1,3-dichlorobenzene	ND.	0.50	1.0	04/23/91	
1,4-dichlorobenzene	מא	0.50	1.0	04/23/91	
1,2-dichlorobenzene	ND	0.50	1.0	04/23/91	

Notes and Definitions for this Report:

EXTRACTED

ANALYST DL

FILE ID 10AA-293

UNITS UG/L

BATCH_ID 5VOA-253

COMMENTS

REPORT Work Order # 91-04-071 .ge 21 scaived: 04/19/91 Results by Sample -MOLE ID OW-5-1 FRACTION 21A TEST CODE WTPH NAME Total petroleum BCs/water Date & Time Collected 04/17/91 Category ___ Parameter RESULT LIMIT D_F DATE_ANAL ND 0.50 1.0 05/02/91 Total Petroleum BCs Notes and Definitions for this Report: EXTRACTED 05/02/91 ANALYST JB UNITS mq/L
BATCE ID WTPH-13 COMMENTS

BTAL

ETAL REPORT ge 22 Work Order # 91-04-071 ceived: 04/19/91 Results by Sample MPLE ID OW-5-1 FRACTION 22A TEST CODE WLFTD NAME HCs Diesel by EXT in water Date & Time Collected 04/17/91 Category RESULT LIMIT D_F DATE_ANAL PARAMETER ND 0.20 1.0 04/23/91 ECs Diesel fuel Notes and Definitions for this Report: EXTRACTED 04/22/91 ANALYST MP PILE ID N/A UNITS mg/L BATCE ID LDW-8 SEE APPENDIX COMMENTS

REPORT Work Order # 91-04-071 ge 23 ETAL ceived: 04/19/91 Results by Sample PPLE ID OW-3-1 FRACTION 23A TEST CODE WIDS NAME Total DIS. solids in water Date & Time Collected 04/17/91 Category PARAMETER RESULT LIMIT D_F DATE_ANAL 780 10 N/A 05/02/91 Total Dissolved Solids Notes and Definitions for this Report: EXTRACTED 05/02/91 ANALYST WN UNITS <u>mq/L</u>
BATCE_ID <u>TDS-4</u> COMMENTS ____

ceived: 04/19/91

ETAL

REPORT

Work Order # 91-04-071

Results by Sample

PLE ID OW-2-1 FRACTION 24A TEST CODE 601 NAME VOA Balo. ECs in water

Date & Time Collected 04/17/91 Category

PARAMETER	RESULT	LIMIT	D_F	DATE_ANA
Dichlorodifluoromethane	NOT REQ.			
Chloromethane	ND	2,0	1.0	04/23/91
Vinyl chloride	ND	1.0	1.0	04/23/91
Bromomethane	ND	1.0	1.0	04/23/91
Chloroethane	ND	1.0	1.0	04/23/91
Trichlorofluoromethane	ND	0.50	1.0	04/23/91
1,1-dichloroethene	ND	0.50	1.0	04/23/91
Dichloromethane	2.0 B	0.50	1.0	04/23/91
Trans-1,2-DCE	ND	0.50	1.0	04/23/91
1,1-dichloroethane	ND	0.40	1.0	04/23/91
Chloroform	ND	0.20	1.0	04/23/91
1,1,1-trichloroethane	<u> ND</u>	0.20	1.0	04/23/91
Carbon Tetrachloride	ND	0.50	1.0	04/23/91
1,2-dichloroethane	ND	0.20	1.0	04/23/91
Trichloroethylene	ND	0.50	1.0	04/23/91
1,2-dichloropropane	ND	0.20	1.0	04/23/91
Bromodichloromethane		0.50	1.0	04/23/91
Trans-1,3-DCP	D	0.50	1.0	04/23/91
Cis-1,3-DCP	ND	0.50	1.0	04/23/91
1,1,2-trichloroethane	סא	0.10	1.0	04/23/91
Tetrachloroethene	0.53	0.20	1.0	04/23/91
Dibromchloromethane	ND	0.50	1.0	04/23/91
Chlorobenzene	ND	0.50	1.0	04/23/91
Bromoform	ND	0.50	1.0	04/23/91
1,1,2,2-TCA	ND	0.20	1.0	04/23/91
1,2,3-Trichloropropane	NOT REQ.			
2-Chlorotoluene	NOT REQ.	1		
1,3-dichlorobenzene	ND	0.50	1.0	04/23/91
1,4-dichlorobenzene	ND	0.50	1.0	04/23/91
1,2-dichlorobenzene	ND	0.50	1.0	04/23/91

EXTRACTED			
ANALYST	DL		
FILE ID	9AA-294		
UNITS	ug/L		
BATCH_ID	5V0A-253		
COMMENTS	NOT REQ. =	TARGET ANALYTE	NOT REQUIRED

FILE ID ____

COMMENTS ___

BATCE_ID ____5VOA-253

UNITS _

10AA-294

ceived:	04/19/91			Result	ts by	Sample							
SPLE ID	OW-2-1			FRACTION :					NAME	ВСв	Diesel by Category	in wat	
		Parameter				Result		LIMIT	D_F		DATE_ANAL		
]		HCs Diesel	fuel				ND	0.2	0 _1	.0	04/23/91		
ļ				Notes a	nd Def	initio	ns fo	or this	Report				
				EXTRACT ANALYST	_	:	04/	22/91					
,				FILE ID UNITS		m	N, q/L	<u>/a</u>					
				Batce_II	D		W-8					 	

REPORT

ETAL

şe 26

Work Order # 91-04-071

șe 27 ceived: 04/19/91	ETAL Result	REPORT	Work Order # 91-04-	071
PLE ID <u>0#-2-1</u>	<u> </u>	_	NAME <u>Total petroleum BC</u> Category	
1	PARAMETER	RESULT LIMIT	D_F DATE_ANAL	
	Total Petroleum HCs	<u>NTD</u> 0.	50 1.0 05/02/91	
ŧ	Notes as	nd Definitions for this	Report:	
	ANALYST	_		
	UNITS BATCE_II COMMENT:			

ge 30 ceived: 04/19/91		TAL REPORT Results by Sample	Work Order # 91-0)4-071
HPLE ID ON-4-1		FRACTION 36A TEST CODE	WLFTD NAME BCs Diesel by B7 7/91 Category	T in water
	PARAMETER	RESULT	LIMIT D_F DATE_ANAL	
	HCs Diesel fuel	0.58	<u> </u>	
i		Notes and Definitions fo	r this Report:	
		EXTRACTED 04/2 ANALYST MP	2/91	
ì		FILE ID N/	<u>A</u>	

BATCH_ID _____B

COMMENTS _

. ge 31	ETAL	REPORT	Work Order # 91-04-071
ceived: 04/19/91	Result	ts by Sample	
MPLE ID OW-4-1			NAME Total petroleum ECs/water Category
ı	PARAMETER	RESULT LIMIT	D_F DATE_ANAL
	Total Petroleum HCs	. <u>ND</u> 0,	50 1.0 05/02/91
	Notes a	nd Definitions for this	Report:
	EXTRACT: ANALYST	ED05/02/91	
	UNITS .	mg/L D <u>WTPE-13</u>	
	COMMENT	s	

:e 32	-	E	TAL	REPORT		Work	Order # 9	1-04-071
:ei ved:	04/19/91		Results b	y Sample				
STE ID	OW-3-1		FRACTION 38A	TEST CODE	WATE I	NAME <u>ECS</u>	Diesel by	EXT in water
			Date & Time C	ollected <u>04/</u>	17/91		Category	
		PARAMETER		RESULT	LIMIT	D_F	DATE_ANAL	
		ECs Diesel fuel		ND.	0.20	1.0	04/23/91	
			Notes and D	efinitions f	or this R	eport:		
			EXTRACTED	04/	22/91			
			analyst <u>m</u>	<u>P</u>				
			FILE ID		1/ <u>a</u>			
			UNITS	mq/L				
			BATCE_ID _	LDW-8				
		,	COMMENTS _				SEE	APPENDIX

şe 33	EI	al .	REPORT		Work	Order # 91-04-071
:eived: 04/19/91		Results by	Sample			
⊹PLE ID <u>0₩-3-1</u>		FRACTION <u>39A</u> Date & Time Co				al petroleum BCs/water Category
	PARAMETER		RESULT	LIMIT	D_F	DATE_ANAL
	Total Petroleum B	Ce .	ND	0.50	1.0	05/02/91
		Notes and De	finitions f	or this Re	port:	
		extracted _	05/	02/91		
		ANALYST <u>JB</u>				
		UNITS	mg/L			
		BATCH_ID	WTPE-13			
		COMMENTS				

ge 34 ceived: 04/19/91	RESults by	REPORT Sample	Work	Order # 91-04-071
APLE ID OW-3-2				Diesel by RXT in water Category
PARAMETER		RESULT LIMIT	D_F	date_anal
ECs Diesel fu		ND0.2	0 1.0	<u>04/23/91</u>
ì	Notes and Def:	initions for this I	Report:	
,	extracted analyst _mp	04/22/91		
}	FILE ID	N/A mg/L		
	BATCB_ID	LDW-B		SEE AFPENDIX

⊒e 35	ETAL	REPORT	Work Order # 91-04-071
ceived: 04/19/91	Resul	ts by Sample	
MPLE ID <u>OW-3-2</u>			NAME Total petroleum BCs/water Category
)	PARAMETER	RESULT LIMIT	D_F DATE_ANAL
·	Total Petroleum BCs	ND	50 1.0 05/02/91
	Notes a	nd Definitions for this	Report:
	extract analyst	ED 05/02/91	
}	UNITS BATCE_I	mg/L D WTPE-13	
ł	COMMENT	<u> </u>	

. ge 36

KTAL

REPORT

Work Order # 91-04-071

ceived: 04/19/91

05/22/91 15:46:33

na Resources, Inc.

77D:

mple 22A contains a hydrocarbon fuel at approximately 0.6 mg/L.
is fuel does not match diesel fuel.

mple 38A contains a hydrocarbon fuel at approximately 0.7 mg/L. whe fuel does not match diesel fuel.

imple 40A contains a hydrocarbon fuel at approximately 0.7 mg/L.
.ie fuel does not match diesel fuel.

AQUA RESOURCES, INC RECEIVED

THE EARTH TECHNOLOGY CORP. ANALYTICAL LABORATORIES

5702 BOLSA AVENUE

HUNTINGTON BEACH, CA

JUN - 3 1991

92649 JOBNO. 9026Z FILE leb results

Attn: MARLEAH M. MARTIN Phone: (714) 892-2565

Aqua Resources, Inc. 2030 Addison Street Berkeley, CA 94704

Attn: Clancy Tenley Invoice Number:

Order #: 91-05-027 Date: 05/29/91 09:56 Work ID: P, G & E/90262 Date Received: 05/08/91 Date Completed: 05/28/91

SAMPLE IDENTIFICATION

Sample	Sample	Sample	Sample
<u>Number</u>	Description	Number	Description
01	FIELD BLANK	02	FIELD BLANK
03	FIELD BLANK	04	TRIP BLANK
05	TRIP BLANK	06	TRIP BLANK

MULTIPLY THE DETECTION LIMIT BY THE DILUTION FACTOR.

ND = Not detected.

B = Analyte was present in the blank.

Certified By

Marleah M. Martin

Page 1 Received: 05/08/91

ETAL

REPORT Work Order # 91-05-027

Results by Sample

SAMPLE ID TRIP BLANE FRACTION OSA TEST CODE 602 NAME VOA Aron. ECs in water Date & Time Collected 04/17/91 Category

PARAMETER	RESULT	TIKIT	D_F	DATE_ARAL
Benzene	ND	0.50	1.0	05/14/91
Toluene	NE	0.50	1.0	05/14/91
Chlorobenzene	ND	0.50	1.0	05/14/91
Bihylbensene	סא	0.50	1.0	05/14/91
P-&m-xylene	ND	1.0	1.0	05/14/91
0-xylene	ND	5.50	1.0	05/14/91
1.3-dichlorobensene	ND	0.50	1.0	05/14/91
1.4-dichlorabenzene	RD	0.50	i.0	05/14/91
1.2-dichlorobenzene	ND	0.50	1.0	05/14/91

Notes and Definitions for this Report:

EXTRACTED

ARALYST JY

FILE ID N/A

URITS us/L BATCH_ID 3VOA-019
COMMENSS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 05/20/91 DATE REPORTED: 05/31/91

AQUA RESOURCES, INC

1UN - 6 1991

JOB NO._____

LAB NUMBER: 103863

CLIENT: AQUA RESOURCES

PROJECT ID: 90262

LOCATION: PG & E

RESULTS: SEE ATTACHED

QA/QC Approval

CLIENT: AQUA RESOURCES

PROJECT #: 90262 LOCATION: PG & E SAMPLE ID: SB-21-2 DATE RECEIVED: 05/20/91 DATE ANALYZED: 05/29/91

DATE REPORTED: 05/31/91

EPA 8010 Purgeable Halocarbons in Soil

Compound	Result	REPORTING
	ug/Kg	LIMIT
ch l o r ome t han e		ug/Kg
bromomethane	ND	10
	ND	10
vinyl chloride	ND	10
chloroethane	ND	10
methylene chloride	ND	5.0
trichlorofluoromethane	ND	5.0
l, l-dichloroethene	ND	5.0
1,1-dichloroethane	ND	5.0
cis-1,2-dichloroethene	ND	5.0
trans-1,2-dichloroethene	ND	5.0
chloroform	ND	5.0
freen 113	ND	5.0
1,2-dichloroethane	ND	5.0
1,1,1-trichloroethane	ND	5.0
carbon tetrachloride	ND	5.0
bromodichloromethane	ND	5.0
1,2-dichloropropane	ND	5.0
cis-1,3-dichloropropene	ND	5.0
trichloroethylene	ND	5.0
1,1,2-trichloroethane	ND	5.0
trans-1,3-dichloropropene	ND	5.0
d i bromo ch l o rome t han e	ND	5.0
2-chloroethylvinyl ether	ND	10
bromoform	ND	5.0
tetrachloroethene	ND	5.0
1,1,2,2-tetrachloroethane	ND	5.0
chlorobenzene	ND	5.0
l, 3-dichlorobenzene	ND	5.0
1,2-dichlorobenzene	ND	
1,4-dichlorobenzene	ND	5.0
· · · · · · · · · · · · · · · · · · ·	עוא	5.0

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

RPD, %
RECOVERY, %
99

CLIENT: AQUA RESOURCES

PROJECT #: 90262 LOCATION: PG & E SAMPLE ID: SB-21-2 DATE RECEIVED: 05/20/91 DATE ANALYZED: 05/29/91

DATE REPORTED: 05/31/91

EPA 8020: Volatile Aromatic Hydrocarbons in Soil

COMPOUND	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Benzene	ND	5.0
Toluene	ND	5.0
Ethyl Benzene	ND	5.0
Total Xylenes	NÐ	5.0
Chlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

RPD, %	3
RECOVERY, %	0.6
	90

CLIENT: AQUA RESOURCES

PROJECT #: 90262 LOCATION: PG & E SAMPLE ID: SB-22-3 DATE RECEIVED: 05/20/91 DATE ANALYZED: 05/29/91 DATE REPORTED: 05/31/91

EPA 8010 Purgeable Halocarbons in Soil

Compound	Result ug/Kg	REPORTING LIMIT ug/Kg
chloromethane	ND	10
bromome than e	ND	10
vinyl chloride	ND	10
chloroethane	ND	10
methylene chloride	ND	5.0
trichlorofluoromethane	ND	5.0
l, l-dichloroethene	ND	5.0
l, l-dichtoroethane	ND	5.0
cis-i,2-dichloroethene	ND	5.0
trans-1,2-dichloroethene	ND	5.0
chloroform	ND	5.0
freon 113	ND	5.0
1,2-dichtoroethane	ND	5.0
ì,ì,ì-trìchìoroethane	ND	5.0
carbon tetrachloride	ND	5.0
bromodichloromethane	ND	5.0
l, 2-dichloropropane	ND	5.0
cis-1,3-dichloropropene	ND	5.0
trichloroethylene	ND	5.0
1,1,2-trichloroethane	ND	5.0
trans-1,3-dichloropropene	ND	5.0
dibromochloromethane	ND	5.0
2-chloroethylvinyl ether	ND	10
bromoform	ND	5.0
tetrachloroethene	ND	5.0
1,1,2,2-tetrachloroethane	ND	5.0
chlorobenzene	ND	5.0
1,3-dichlorobenzene	ND	5.0
1,2-dichlorobenzene	ND	5.0
l, 4 - dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

RPD, %	9
RECOVERY, %	9 9
======================================	

CLIENT: AQUA RESOURCES

PROJECT #: 90262 LOCATION: PG & E SAMPLE ID: SB-22-3 DATE RECEIVED: 05/20/91
DATE ANALYZED: 05/29/91

DATE REPORTED: 05/31/91

EPA 8020: Volatile Aromatic Hydrocarbons in Soil

COMPOUND	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Benzene	ND	5.0
Toluene	ND	5.0
Ethyl Benzene	ND	5.0
Total Xylenes	ND	5.0
Chlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

QA/QC	SUMMARY	
=====		
RPD, 9		2
DDAATT		

RECOVERY, % 96

LABORATORY NUMBER: 103863 CLIENT: AQUA RESOURCES

PROJECT ID: 90262 LOCATION: PG & E DATE RECEIVED: 05/20/91
DATE EXTRACTED: 05/21/91
DATE ANALYZED: 05/21/91
DATE REPORTED: 05/22/91

Extractable Petroleum Hydrocarbons in Soils & Wastes
California DOHS Method
LUFT Manual October 1989

LAB ID	SAMPLE ID	KEROSENE RANGE (mg/Kg)	DIESEL RANGE (mg/Kg)	REPORTING LIMIT* (mg/Kg)
103863-1 103863-2 103863-3 103863-4	SB-21-2 SB-21-3 SB-22-2 SB-22-3	ND ND ND ND	ND ND ND ND	1.0 1.0 1.0

ND = Not Detected at or above reporting limit.

*Reporting limit applies to all analytes.

RPD, %	<1
RECOVERY, %	113
======================================	

Client: Aqua Resources

Laboratory Login Number: 103863

Project Name: PG & E Project Number: 90262

Report Date: 21 May 91

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

Lab 1D	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	aC Batch
103863-001	\$8-21-2	Soil	20-MAY-91	20-MAY-91	21-MAY-91	ND	mg/Kg	50	TR	1483
103863-002	SB-21-3	Soit	20-MAY-91	20-MAY-91	21-MAY-91	ND	mg/Kg	50	TR	1483
103863-003	SB-22-2	Soil	20-MAY-91	20-MAY-91	21-MAY-91	ND	mg/Kg	50	TR	1483
103863-004	SB-22-3	Soil	20-MAY-91	20-MAY-91	21-MAY-91	ND	mg/Kg	50	TR	1483
	1 1									
									•	
						9 4 <u>.</u>				
						e de la companya de l				

ND = Not Detected at or above Reporting Limit (RL).

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 05/20/91 DATE REPORTED: 06/07/91

LAB NUMBER: 103864

CLIENT: AQUA RESOURCES, INC.

PROJECT ID: 90262

LOCATION: PG&E

RESULTS: SEE ATTACHED

AQUA RESOURCES, INC

JUN 11 1991

JOB NO._____ FILE____

QA/QC Approval

Final Appr

Berkeley

Wilmington

Los Angeles

CLIENT: AQUA RESOURCES

PROJECT ID: 90262 LOCATION: PG&E

SAMPLE ID: SB-16-3

DATE RECEIVED: 05/20/91
DATE ANALYZED: 06/04/91
DATE REPORTED: 06/07/91

EPA 8010: Volatile Halocarbons in Soil & Wastes Extraction Method: EPA 5030 - Purge & Trap

Сошроина	RESULT ug/Kg	REPORTING LIMIT ug/Kg
chloromethane	ND	100
bromomethane	ND	100
vinyl chloride	ND	100
chloroethane	ND	100
methylene chloride	ND	50
trichlorofluoromethane	ND	50
l, l-dichloroethene	ND	5 0
l,l-dichloroethane	ND	5 0
cis-1,2-dichloroethene	ND	5 0
trans-1,2-dichloroethene	ND	5 0
chloroform	ND	50
freon 113	ND	5 0
l, 2-dichloroethane	ND	5 0
l, l, l-trichloroethane	ND	5 0
carbon tetrachloride	ND	5 0
bromodichloromethane	ND	5 0
l, 2 - dichloropropane	ND	5 0
cis-1,3-dichloropropene	ND	50
trichloroethylene	ND	50
l, l, 2-trichloroethane	ND	50
trans-1,3-dichloropropene	ND	. 50
dibromochloromethane	ND	50
2-chloroethylvinyl ether	ND	100
bromoform	ND	50
tetrachloroethylene	ND	50
1,1,2,2-tetrachloroethane	ND	50
chlorobenzene	ND	50
l, 3-dichlorobenzene	ND	50
l, 2-dichlorobenzene	ND	50
l, 4-dichlorobenzene	ND	5 0

ND = Not detected at or above reporting limit.

=======================================	======================================	
Duplicate: Relative	% Difference	2.1
Spike: Average % Re	covery	91

g

LABORATORY NUMBER: 103864-3

CLIENT: AQUA RESOURCES PROJECT 1D: 90262

PROJECT ID: 90262 LOCATION: PG&E SAMPLE ID: SB-16-3 DATE RECEIVED: 05/20/91 DATE ANALYZED: 06/04/91 DATE REPORTED: 06/07/91

EPA 8020: Volatile Aromatic Hydrocarbons in Soils & Wastes Extraction Method: EPA 5030 - Purge & Trap

COMPOUND	Resul ug/Kg	Reporting Limit ug/Kg
Benzene	. 110	5 0
Toluene	. 79	5 0
Ethyl Benzene	. ND	5 0
Total Xylenes	. 140	5 0
Chlorobenzene	. ND	5 0
1,4-Dichlorobenzene	. ND	5 0
1,3-Dichlorobenzene	. ND	5 0
1,2-Dichlorobenzene	. ND	5 0
ND = Not detected at or above reporting limit.		
QA/QC SUMMARY		
RPD, % RECOVERY, %	•	12

CLIENT: AQUA RESOURCES

PROJECT 1D: 90262 LOCATION: PG&E

SAMPLE ID: SB-20-2

DATE RECEIVED: 05/20/91 DATE ANALYZED: 05/30/91 DATE REPORTED: 06/07/91

EPA 8010: Volatile Halocarbons in Soil & Wastes Extraction Method: EPA 5030 - Purge & Trap

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
ch lor ome than e	ND	10
bromome than e	ND	10
vinyl chloride	ND	10
chloroethane	ND	10
methylene chloride	ND	5.0
trichlorofluoromethane	ND	5.0
l, l-dichloroethene	ND	5.0
l, l - dichloroethane	ND	5.0
cis-l,2-dichloroethene	ND	5.0
trans-1,2-dichloroethene	ND	5.0
chloroform	ND	5.0
freon 113	ND	5.0
1,2-dichloroethane	ND	5.0
l, l, l-trichloroethane	ND	5.0
carbon tetrachloride	ND	5.0
bromodichloromethane	ND	5.0
1,2-dichloropropane	ND	5.0
cis-1,3-dichloropropene	ND	5.0
trichloroethylene	ND	5.0
1,1,2-trichloroethane	ND	5.0
trans-1,3-dichloropropene	ND	5.0
dibromochloromethane	ND	5.0
2-chloroethylvinyl ether	ND	10
bromoform	ND	5.0
tetrachloroethylene	ND	5.0
I, 1, 2, 2-tetrachloroethane	ND	5.0
chlorobenzene	ND	5.0
l,3-dichlorobenzene	ND	5.0
1,2-dichlorobenzene	ND	5.0
l, 4-dichlorobenzene	· ND	5.0

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

Duplicate: Relative % Difference 13
Spike: Average % Recovery 98

CLIENT: AQUA RESOURCES

PROJECT ID: 90262 LOCATION: PG&E SAMPLE ID: SB-20-2 DATE RECEIVED: 05/20/91
DATE ANALYZED: 05/30/91
DATE REPORTED: 06/07/91

EPA 8020: Volatile Aromatic Hydrocarbons in Soils & Wastes Extraction Method: EPA 5030 - Purge & Trap

COMPOUND	Resul ug/Kg	Reporting Limit ug/Kg
Benzene	. ND	5.0
Toluene	. ND	5.0
Ethyl Benzene	. ND	5.0
Total Xylenes	. ND	5.0
Chlorobenzene	. ND	5.0
1,4-Dichlorobenzene	. ND	5.0
1,3-Dichlerobenzene	. ND .	5.0
1,2-Dichlorobenzene	. ND	5.0
ND = Not detected at or above reporting limit.		
QA/QC SUMMARY		
RPD, % RECOVERY, % ===================================		
	=======	=====

Client: Aqua Resources

Laboratory Login Number: 103864

Project Name: PG & E Project Number: 90262

Report Date: 04 June 91

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
103864-001	SB-16-1	Soil	20-MAY-91	20-MAY-91	30-MAY-91	ND	mg/Kg	5	TR	1554
103864-002	\$B-16-2	and: Soil	20-MAY-91	20-MAY-91	30-MAY-91	8.0	mg/Kg	5	TR	1554
103864-003	\$8-16-3	Soil	20-MAY-91	20-MAY-91	30-MAY-91	110	mg/Kg	5	TR	1554
103864-004	SB-13-1	Soil	20-MAY-91	20-MAY-91	30-MAY-91	78.	mg/Kg	5	TR	1554
103864-005	\$8-13-2	Soil	20-MAY-91	20-MAY-91	30-MAY-91	20.	mg/Kg	5	TR	1554
103864-006	se-13-3	Soil	20-MAY-91	20-MAY-91	30-MAY-91	18.	mg/Kg	5	TR	1554
103864-007	SB-19-1	Soil	20-MAY-91	20-MAY-91	30-MAY-91	66.	mg/Kg	5	TR	1554
103864-008	\$8-19-2	Soil	20-MAY-91	20-MAY-91	30-MAY-91	6.0	mg/Kg	5	TR	1554
103864-009	sa-19-3	Soil	20-MAY-91	20-MAY-91	30-MAY-91	22.	mg/Kg	5	TR	1554
103864-010	SB-20-1	Soil	20-MAY-91	20-MAY-91	30-MAY-91	82.	mg/Kg	5	TR	1554
103864-011	SB-20-2	Soil	20-MAY-91	20-MAY-91	30-MAY-91	120	mg/Kg	5	TR	1554
103864-012	SB-20-3	\$oil	20-MAY-91	20-MAY-91	30-MAY-91	34.	mg/Kg	5	TR	1554
103864-013	SB-21-1	Soil	20-MAY-91	20-MAY-91	30-MAY-91	24.	mg/Kg	5	TR	1554
103864-014	SB-22-1	Soil	20-MAY-91	20-MAY-91	30-MAY-91	28.	mg/Kg	5	TR	1554
103864-015	SB-15-1	Soil	20-MAY-91	20-MAY-91	30-MAY-91	2300	mg/Kg	5	TR	1554
103864-016	SB-15-2	Soil	20-MAY-91	20-MAY-91	30-MAY-91	30.	mg/Kg	5	TR	1554

ND = Not Detected at or above Reporting Limit (RL).

Client: Aqua Resources

Laboratory Login Number: 103864

Project Name: PG & E Project Number: 90262

Report Date: 04 June 91

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

ab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batc
	SB-15-3									
03864-017	SB-15-3	Soil	20-MAY-91	20-MAY-91	30-MAY-91	18.	mg/Kg	5	TR	155
		ky Sy								
						n Production				
		:								
		•								
						995				
		e e								
						4 24, 32, 33				
		ł,				51.33 (1977) 1880s 1893 (1				
		•								
		fi f								
		i.								
		X								
		9								
-						- 2000 (1000) - 1000 (1000)				
		·								
:						20000000000000000000000000000000000000				

ND = Not Detected at or above Reporting Limit (RL).

LABORATORY NUMBER: 103864

CLIENT: AQUA RESOURCES PROJECT ID: 90262 LOCATION: PG & E DATE RECEIVED: 05/20/91
DATE EXTRACTED: 05/24/91
DATE ANALYZED: 05/24/91
DATE REPORTED: 06/04/91

Extractable Petroleum Hydrocarbons in Soils & Wastes
California DOHS Method
LUFT Manual October 1989

LAB ID	SAMPLE ID	KEROSENE RANGE (mg/Kg)	DIESEL RANGE (mg/Kg)	REPORTING LIMIT* (mg/Kg)
103864-3	SB-16-3	ND	510	10
103864-11	SB-20-2	ND	66	10

ND = Not Detected at or above reporting limit.

*Reporting limit applies to all analytes.

QA/QC SUMMARY

RPD, %
RECOVERY, %
101

CLIENT: AQUA RESOURCES

PROJECT ID: 90262 SAMPLE ID: SB-16-3 DATE RECEIVED: 05/20/91
DATE EXTRACTED: 05/28/91
DATE ANALYZED: 06/03/91
DATE REPORTED: 06/04/91

POLYCHLORINATED BIPHENYLS (PCBs)

ANALYSIS METHOD: EPA 8080 EXTRACTION METHOD: EPA 3550

AROCLOR TYPE	RESULT (ug/Kg)	REPORTING LIMIT (ug/Kg)
AROCLOR 1221	ND	17
AROCLOR 1232	ND	17
AROCLOR 1016	ND	17
AROCLOR 1242	ND	17
AROCLOR 1248	ND	1 7
AROCLOR 1254	ND	17
AROCLOR 1260	ND	17

ND = Not detected at or above reporting limit.

QA/QC SUMMARY	
RPD, %	2 7
RECOVERY, %	9 5

CLIENT: AQUA RESOURCES

PROJECT ID: 90262 SAMPLE ID: SB-13-2 DATE RECEIVED: 05/20/91 DATE EXTRACTED: 05/28/91 DATE ANALYZED: 06/03/91 DATE REPORTED: 06/04/91

POLYCHLORINATED BIPHENYLS (PCBs)

AROCLOR TYPE	RESULT (ug/Kg)	REPORTING LIMIT (ug/Kg)
AROCLOR 1221	ND	17
AROCLOR 1232	ND	17
AROCLOR 1016	ND	17
AROCLOR 1242	ND	17
AROCLOR 1248	ND	1 7
AROCLOR 1254	ND	1 7
AROCLOR 1260	ND	1 7

ND = Not detected at or above reporting limit.

RPD, %	2 7
RECOVERY, %	9.5
22=	

CLIENT: AQUA RESOURCES

PROJECT ID: 90262 SAMPLE ID: SB-19-3 DATE RECEIVED: 05/20/91
DATE EXTRACTED: 05/28/91
DATE ANALYZED: 06/03/91
DATE REPORTED: 06/04/91

POLYCHLORINATED BIPHENYLS (PCBs)

AROCLOR TYPE	RESULT (ug/Kg)	REPORTING LIMIT (ug/Kg)
AROCLOR 1221	ND	17
AROCLOR 1232	ND	17
AROCLOR 1016	ND	17
AROCLOR 1242	ND	17
AROCLOR 1248	ND	17
AROCLOR 1254	ND	17
AROCLOR 1260	ND	17

ND = Not detected at or above reporting limit.

RPD, %	17
DECOMEDS: or	27
RECOVERY, %	. 95

CLIENT: AQUA RESOURCES

LOCATION: PG & E SAMPLE ID: SB-16-3

DATE RECEIVED: 05/20/91

DATE ANALYZED: 05/21,28-29/91

DATE REPORTED: 06/05/91

Title 26 Metals in Soils & Wastes Digestion Method: EPA 3050

METAL	RESULT	REPORTING LIMIT	METHOD
	mg/Kg	mg/Kg	
Antimony	ND	3.0	EPA 6010
Arsenic	ND	2.5	EPA 7060
Barium	118	0.25	EPA 6010
Beryllium	0.38	0.10	EPA 6010
Cadmium	1.8	0.25	EPA 6010
Chromium (total)	46.6	0.49	EPA 6010
Cobalt	9.7	0.90	EPA 6010
Copper	21.2	0.49	EPA 6010
Lead	5.4	3.0	EPA 7420
Mercury	ND	0.10	EPA 7471
Molybdenum	ND	0.69	EPA 6010
Nickel	74.5	1.6	EPA 6010
Selenium	ND	2.5	EPA 7740
Silver	ND	0.49	EPA 6010
Thallium	ND	2.5	EPA 7841
Vanad i um	29.0	0.49	EPA 6010
Zinc	40.2	0.49	EPA 6010

ND = Not detected at or above reporting limit.

	RPD,%	RECOVERY, %		RPD,%	RECOVERY, %
Antimony	2	102	Mercury	2	97
Arsenic	3	108	Molybdenum	1	8 8
Barium	3	93	Nickel	1	87
Beryllium	<1	9 4	Selenium	3	93
Cadmi um	3	9 2	Silver	1	82
Chromium	2	88	Thallium	2	110
Còbalt	2	8 9	Vanadium	<1	90
Copper	4	91	Zinc	2	90
Lead	6	90		-	7 0

CLIENT: AQUA RESOURCES

LOCATION: PG & E SAMPLE ID: SB-13-2 DATE RECEIVED: 05/20/91

DATE ANALYZED: 05/21,28-29/91

DATE REPORTED: 06/05/91

Title 26 Metals in Soils & Wastes Digestion Method: EPA 3050

METAL	RESULT	REPORTING LIMIT	METHOD
	mg/Kg	mg/Kg	
Antimony	ND	2.9	EPA 6010
Arsenic	ND	2.5	EPA 7060
Barium	133	0.24	EPA 6010
Beryllium	0.36	0.10	EPA 6010
Cadmium	1.9	0.24	EPA 6010
Chromium (total)	40.0	0.49	EPA 6010
Cobalt	11.8	0.88	EPA 6010
Copper	29.8	0.49	EPA 6010
Lead	12,2	3.0	EPA 7420
Mercury	0.12	0.10	EPA 7471
Molybdenum	ND	0.68	EPA 6010
Nickel	73.5	1.5	EPA 6010
Selenium	ND	2.5	EPA 7740
Silver	ND	0.49	EPA 6010
Thallium	ND	2.5	EPA 7841
Vanad i um	29.5	0.49	EPA 6010
Zinc	43.8	0.49	EPA 6010

ND = Not detected at or above reporting limit.

	RPD,%	RECOVERY, %		RPD.%	RECOVERY, %
Antimony	2	102	Mercury	2	9 7
Arsenic	3	108	Molybdenum	1	88
Barium	3	93	Nickel	1	87
Beryllium	<1	9 4	Selenium	3	93
Cadmium	3	9 2	Silver	1	8 2
Chromium	2	8 8	Thallium	2	110
Cobalt	2	89	Vanadium	<1	90
Copper	4	91	Zinc	2	90
Lead	6	90		-	, ,

CLIENT: AQUA RESOURCES

LOCATION: PG & E SAMPLE ID: SB-19-3

DATE RECEIVED: 05/20/91

DATE ANALYZED: 05/21,28-29/91

DATE REPORTED: 06/05/91

Title 26 Metals in Soils & Wastes Digestion Method: EPA 3050

METAL	RESULT	REPORTING LIMIT	METHOD
	mg/Kg	mg/Kg	
Antimony	ND	3.0	EPA 6010
Arsenic	ND	2.5	EPA 7060
Barium	108	0.25	EPA 6010
Beryllium	0.35	0.10	EPA 6010
Cadmi um	1.7	0.25	EPA 6010
Chromium (total)	36.2	0.50	EPA 6010
Cobalt	11.4	0.90	EPA 6010
Copper	19.4	0.50	EPA 6010
Lead	5.5	3.0	EPA 7420
Mercury	ND	0.10	EPA 7471
Molybdenum	ND	0.70	EPA 6010
Nickel	70.6	1.6	EPA 6010
Selenium	ND	2.5	EPA 7740
Silver	ND	0.50	EPA 6010
Thallium	ND	2.5	EPA 7841
Vanad i um	22.6	0.50	EPA 6010
Zinc	36.6	0.50	EPA 6010

ND = Not detected at or above reporting limit.

	RPD,%	RECOVERY,%		RPD,%	RECOVERY, %
Antimony	2	102	Mercury	2	97
Arsenic	3	108	Molybdenum	1	8 8
Barium	3	9 3	Nickel	1	8 7
Beryllium	<1	9 4	Selenium	3	93
Cadmium	3	9 2	Silver	1	8 2
Chromium	2	8 8	Thallium	2	110
Cobalt	2	8 9	Vanadium	<1	90
Copper	4	91	Zinc	2	90
Lead	6	90		-	, ,

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 9471O, Phone (415) 486-0900

DATE RECEIVED: 05/23/91 DATE REPORTED: 06/07/91

LAB NUMBER: 103913

CLIENT: AQUA RESOURCES

PROJECT ID: 90262.1

LOCATION: PG & E

RESULTS: SEE ATTACHED

QA/QC Approva

Final Approva

Berkeley

Wilmington

Los Angeles

Client: Aqua Resources

Laboratory Login Number: 103913

Project Name: P.G. & E. Project Number: 90262.1

Report Date: 07 June 91

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	OC Batch
103913-001	SB-9-1	Soil	23-MAY-91	23-MAY-91	05-JUN-91	2100	mg/Kg	50	TR	1600
103913-002	SB-9-2	Soil	23-HAY-91	23-MAY-91	31-MAY-91	2400	mg/Kg	50	TR	1571
103913-003	\$8-9-3	Soil	23-MAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	TR	1571
103913-004	SB-8-1	Soil	23-MAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	TR	1571
103913-005	SB-8-2	Soil	23-MAY-91	23-MAY-91	31-MAY-91	2700	mg/Kg	50	TR	1571
103913-006	\$8-8-3	\$oil	23-MAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	TR	1571
103913-007	SB-8-4	Soil	23-KAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	TR	1571
103913-008	SB-10-1	Soil	23-MAY-91	23-MAY-91	31-MAY-91	770	mg/Kg	50	TR	1571
103913-009	SB-10-2	Soil	23-MAY-91	23-MAY-91	31-MAY-91	56.	mg/Kg	50	TR	1571
103913-010	\$B-10-3	Soil	23-MAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	TR	1571
103913-011	SB-6-1	Soil	23-MAY-91	23-MAY-91	05-มนท-91	13000	mg/Kg	250	TR	1600
103913-012	SB-6-2	Soil	23-HAY-91	23-MAY-91	31-MAY-91	3600	mg/Kg	50	TR	1571
103913-013	SB-6-3	Soil	23-MAY-91	23-MAY-91	31-MAY-91	2400	mg/Kg	50	TR	1571
103913-014	SB-6-4	Soil	23-MAY-91	23-MAY-91	31-MAY-91	ND.	mg/Kg	50	TR	1571
103913-015	SB-5-1	Soil	23-MAY-91	23-MAY-91	31-MAY-91	9200	mg/Kg	50	TR	1571
'103913-016	SB-5-2	Soil	23-HAY-91	23-MAY-91	31-MAY-91	3500	mg/Kg	50 .	TR	1571

 $\mbox{ND} = \mbox{Not}$ Detected at or above Reporting Limit (RL).

Client: Aqua Resources Laboratory Login Number: 103913

Project Name: P.G. & E. Report Date: 07 June 91

Project Number: 90262.1

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
						00000000000000000000000000000000000000				
103913-017	\$8-5-3	Soil	23-MAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	TR	1571
103913-018	\$8-7-1	Soil	23-MAY-91	23-MAY-91	31-MAY-91	%.	mg/Kg	50	TR	157
03913-019	SB-7-2	Soil	23-MAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	TR	157
03913-020	SB-7-3	Soil	23-MAY-91	23-MAY-91	31-MAY-91	ND	mg/Kg	50	îR	157
03913-021	S8-7-1A	Soil	23-HAY-91	23-MAY-91	31-HAY-91	3900	mg/Kg	50	TR	157
		a Mari								
		1800 (d.) 2003 - Santa				11 64 4 (948) 3 7 8 8 7 8 9 8 1			,	
		00000000000000000000000000000000000000								
						1 40 600 mmoo. 1 40 600 mmoo.				
						-032000				
						1000 000 000 0000 000 000 0000 000 000				
						i de la compania del compania del compania de la compania del la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania de la compania del la compania d				
		900 (100) 601 201 (100) 30 (100) 501								
						000 / 100 00 2000 000 00 2000 000 00				
						000000000000000000000000000000000000000				
		900 - 1200 ft 60 500 - 1200 ft 100 500 - 1200 ft 100				1783 300 68 383 233 48				
	1918. No 1818 St. A. C. R. A. C.					123021 0000000 0000 100001100				

ND = Not Detected at cr above Reporting Limit (RL).

LABORATORY NUMBER: 103913 CLIENT: AQUA RESOURCES PROJECT ID: 90262.1 LOCATION: PG & E

DATE RECEIVED: 05/23/91
DATE EXTRACTED: 05/29/91
DATE ANALYZED: 06/04/91
DATE REPORTED: 06/07/91

Extractable Petroleum Hydrocarbons in Soils & Wastes California DOHS Method LUFT Manual October 1989

LAB ID	SAMPLE ID	KEROSENE RANGE (mg/Kg)	DIESEL RANGE (mg/Kg)	REPORTING LIMIT* (mg/Kg)	
103913-1	SB-9-1	ND	210	10	
103913-5	SB-8-2	ND	47	10	
103913-11	SB-6-1	ND	1,700	100	

ND = Not Detected at or above reporting limit.

QA/QC SUMMARY

RPD, %
RECOVERY, %
115

^{*}Reporting limit applies to all analytes.

CLIENT: AQUA RESOURCES

LOCATION: PG & E SAMPLE ID: SB-9-1

DATE RECEIVED: 05/23/91

DATE ANALYZED: 05/28-30/91

DATE REPORTED: 06/07/91

Title 26 Metals in Soils & Wastes Digestion Method: EPA 3050

METAL	RESULT	REPORTING LIMIT	METHOD
	mg/Kg	mg/Kg	
Antimony Arsenic Barium Beryllium Cadmium Chromium (total) Cobalt Copper Lead Mercury Molybdenum Nickel	6.6 3.9 571 0.42 4.2 51.6 13.5 63.9 168 0.22	3.0 2.5 0.25 0.10 0.25 0.50 0.90 0.50 3.0 0.10	EPA 6010 EPA 7060 EPA 6010 EPA 6010 EPA 6010 EPA 6010 EPA 6010 EPA 7420 EPA 7471 EPA 6010
Selenium Silver Thallium Vanadium Zinc	66.1 ND ND ND 47.4 252	1.6 2.5 0.50 2.5 0.50 0.50	EPA 6010 EPA 7740 EPA 6010 EPA 7841 EPA 6010 EPA 6010

ND = Not detected at or above reporting limit.

	RPD,%	RECOVERY, %		RPD.%	RECOVERY, %
kntimony	2	8 7	Mercury	2	97
rsenic	<1	116	Molybdenum	<1	88
Barium	<1	9 2	Nickel	2	86
Beryllium	1	9 4	Selenium	10	95
Cadmium	1	8 6	Silver	2	100
Chromium	3	83	Thallium	2	116
Cobalt	2	8.5	Vanadium	1	86
Copper	<1	93	Zinc	2	- ·
Le a d	2	96	2111	2	90

CLIENT: AQUA RESOURCES

LOCATION: PG & E SAMPLE ID: SB-6-1 DATE RECEIVED: 05/23/91

DATE ANALYZED: 05/28-30/91

DATE REPORTED: 06/07/91

Title 26 Metals in Soils & Wastes Digestion Method: EPA 3050

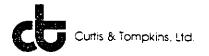
METAL	RESULT	REPORTING LIMIT	METHOD
	mg/Kg	mg/Kg	
Antimony	ND	2.9	EPA 6010
Arsenic	3.3	2.5	EPA 7060
Barium	156	0.25	EPA 6010
Beryllium	0.22	0.10	EPA 6010
Cadmium	2.0	0.25	EPA 6010
Chromium (total)	40.1	0.49	EPA 6010
Cobalt	9.1	0.88	EPA 6010
Copper	39.7	0.49	EPA 6010
Lead	26	3.0	EPA 7420
Mercury	0.11	0.10	EPA 7471
Molybdenum	2.6	0.68	EPA 6010
Nickel	37.7	1.6	EPA 6010
Selenium	ND	2.5	EPA 7740
Silver	ND	0.49	EPA 6010
Thallium	ND	2.5	EPA 7841
Vanadium	27.7	0.49	
Zinc	50.2	0.49	EPA 6010 EPA 6010

ND = Not detected at or above reporting limit.

	RPD,%	RECOVERY,%		RPD.%	RECOVERY, %
Antimony	2	8 7	Mercury	2	97
Arsenic	<1	116	Molybdenum	<1	88
Barium	<1	9 2	Nickel	2	86
Beryllium	1	9 4	Selenium	10	95
Cadmi um	1	86	Silver	2	100
Chromium	3	83	Thallium	2	116
Cobalt	2	8 5	Vanadium	1	86
Copper	<1	93	Zinc	2	90
Lead	2	96		4	70

CLIENT: AQUA RESOURCES

PROJECT ID: 90262.1


LOCATION: PG&E SAMPLE !D: SB-9-1 DATE RECEIVED: 05/23/91 DATE ANALYZED: 05/30/91 DATE REPORTED: 06/07/91

EPA 8010: Volatile Halocarbons in Soil & Wastes Extraction Method: EPA 5030 - Purge & Trap

Compound RESULT ug/Kg LIMIT ug/Kg chloromethane ND 10 bromomethane ND 10 vinyl chloride ND 10 chloroethane ND 10 methylene chloride ND 5.0 trichlorofluoromethane ND 5.0 l,l-dichloroethene ND 5.0 l,l-dichloroethane ND 5.0 cis-l,2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l,2-dichloroethane ND 5.0 carbon tetrachloride ND 5.0 trichloroethane ND 5.0 carbon tetrachloride ND 5.0 trichloropropane ND 5.0 carbon tetrachloride ND 5.0 trichloropropane ND 5.0 cls-l,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 trinhoroethylene			REPORTING
chloromethane ND 10 bromomethane ND 10 vinyl chloride ND 10 chloroethane ND 5.0 methylene chloride ND 5.0 trichlorofluoromethane ND 5.0 1,1-dichloroethene ND 5.0 1,1-dichloroethane ND 5.0 cis-1,2-dichloroethene ND 5.0 trans-1,2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 1,2-dichloroethane ND 5.0 1,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 1,2-dichloropropane ND 5.0 cis-1,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 1,1,2-trichloroethane ND 5.0 trans-1,3-dichloropropene ND 5.0 trichloroeth	Compound	RESULT	LIMIT
bromomethane ND 10 vinyl chloride ND 10 chloroethane ND 10 methylene chloride ND 5.0 trichlorofluoromethane ND 5.0 l,l-dichloroethene ND 5.0 l,l-dichloroethene ND 5.0 cis-l,2-dichloroethene ND 5.0 trans-l,2-dichloroethene ND 5.0 chloroform ND 5.0 freen 113 ND 5.0 l,2-dichloroethane ND 5.0 l,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l,2-dichloropropane ND 5.0 cis-l,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l,1,2-trichloroethane ND 5.0 trans-l,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 trans		ug/Kg	ug/Kg
vinyl chloride ND 10 chloroethane ND 10 methylene chloride ND 5.0 trichlorofluoromethane ND 5.0 l,l-dichloroethene ND 5.0 l,l-dichloroethane ND 5.0 cis-l,2-dichloroethene ND 5.0 trans-l,2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l,2-dichloroethane ND 5.0 l,l,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 cis-l,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 trans-l,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 trans-l,3-dichloropropene ND 5.0 trans-l,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 <tr< td=""><td></td><td>ND</td><td>10</td></tr<>		ND	10
chloroethane ND 10 methylene chloride ND 5.0 trichlorofluoromethane ND 5.0 t,l-dichloroethene ND 5.0 l,l-dichloroethane ND 5.0 cis-l,2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l,2-dichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l,2-dichloropropane ND 5.0 cis-l,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l,1,2-trichloroethane ND 5.0 trans-l,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 l,1,2,2-tetrachloroethane ND 5.0 <		ND	10
methylene chloride ND 5.0 trichlorofluoromethane ND 5.0 l, l-dichloroethene ND 5.0 l, l-dichloroethane ND 5.0 cis-l, 2-dichloroethene ND 5.0 trans-l, 2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l, 2-dichloroethane ND 5.0 l, 1, 1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 trichloroepropane ND 5.0 cis-l, 3-dichloropropene ND 5.0 trichloroethylene ND 5.0 trans-l, 3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 tetrachloroethylene ND 5.0 tetrachloroethylene ND 5.0 tetrachloroethylene ND 5.0 tetrachlorobenzene ND 5.0		ND	10
trichlorofluoromethane ND 5.0 1,1-dichloroethene ND 5.0 1,1-dichloroethane ND 5.0 cis-1,2-dichloroethene ND 5.0 trans-1,2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 1,2-dichloroethane ND 5.0 1,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 t,2-dichloropropane ND 5.0 cis-1,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 1,1,2-trichloroethane ND 5.0 trans-1,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 dibromochloromethane ND 5.0 c-chloroethylene ND 5.0 1,1,2,2-tetrachloroethane ND 5.0 tetrachloroethoetene ND 5.0 tothorobenzene ND 5.0 1,2-dichl		ND	10
1, 1 - dichloroethene		ND	5.0
1, 1-dichloroethene ND 5.0 1, 1-dichloroethane ND 5.0 cis-1, 2-dichloroethene ND 5.0 trans-1, 2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l, 2-dichloroethane ND 5.0 l, 1, 1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l, 2-dichloropropane ND 5.0 cis-1, 3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l, 1, 2-trichloroethane ND 5.0 trans-1, 3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 l, 1, 2, 2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 l, 3-dichlorobenzene ND 5.0		ND	5.0
cis-1,2-dichloroethene ND 5.0 trans-1,2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l,2-dichloroethane ND 5.0 l,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l,2-dichloropropane ND 5.0 cis-1,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l,1,2-trichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 1,1,2,2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 l,3-dichlorobenzene ND 5.0 l,2-dichlorobenzene ND 5.0		ND	
trans-1,2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l,2-dichloroethane ND 5.0 l,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l,2-dichloropropane ND 5.0 cis-1,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l,1,2-trichloroethane ND 5.0 trans-1,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 l,1,2,2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 l,3-dichlorobenzene ND 5.0 l,2-dichlorobenzene ND 5.0		ND	5.0
trans-1, 2-dichloroethene ND 5.0 chloroform ND 5.0 freon 113 ND 5.0 l, 2-dichloroethane ND 5.0 l, 1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l, 2-dichloropropane ND 5.0 cis-1,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l, 1, 2-trichloroethane ND 5.0 trans-1,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 tetrachloroethylene ND 5.0 1, 1, 2, 2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 l, 3-dichlorobenzene ND 5.0 l, 2-dichlorobenzene ND 5.0		ND	5.0
freon 113 ND 5.0 l,2-dichloroethane ND 5.0 l,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l,2-dichloropropane ND 5.0 cis-1,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l,1,2-trichloroethane ND 5.0 trans-1,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 l,1,2,2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 l,3-dichlorobenzene ND 5.0 l,2-dichlorobenzene ND 5.0		ND	
1,2-dichloroethane ND 5.0 1,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 l,2-dichloropropane ND 5.0 cis-l,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l,1,2-trichloroethane ND 5.0 trans-l,3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 l,1,2,2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 l,3-dichlorobenzene ND 5.0 l,2-dichlorobenzene ND 5.0 l,2-dichlorobenzene ND 5.0		ND	5.0
1, 2-dichloroethane ND 5.0 1, 1, 1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 1, 2-dichloropropane ND 5.0 cis-1, 3-dichloropropene ND 5.0 trichloroethylene ND 5.0 1, 1, 2-trichloroethane ND 5.0 trans-1, 3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 1, 1, 2, 2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 1, 3-dichlorobenzene ND 5.0 1, 2-dichlorobenzene ND 5.0	· · · · · · · ·	ND	5.0
1,1,1-trichloroethane ND 5.0 carbon tetrachloride ND 5.0 bromodichloromethane ND 5.0 1,2-dichloropropane ND 5.0 cis-l,3-dichloropropene ND 5.0 trichloroethylene ND 5.0 1,1,2-trichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 1,1,2,2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 1,3-dichlorobenzene ND 5.0 1,2-dichlorobenzene ND 5.0		ND	
bromodichloromethane ND 5.0 1, 2-dichloropropane ND 5.0 cis-l, 3-dichloropropene ND 5.0 trichloroethylene ND 5.0 1, 1, 2-trichloroethane ND 5.0 trans-l, 3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 5.0 bromoform ND 5.0 tetrachloroethylene ND 5.0 1, 1, 2, 2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 1, 3-dichlorobenzene ND 5.0 1, 2-dichlorobenzene ND 5.0		ND	
1, 2-dichloropropane ND 5.0 cis-1, 3-dichloropropene ND 5.0 trichloroethylene ND 5.0 1, 1, 2-trichloroethane ND 5.0 trans-1, 3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 10 bromoform ND 5.0 tetrachloroethylene ND 5.0 1, 1, 2, 2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 1, 3-dichlorobenzene ND 5.0 1, 2-dichlorobenzene ND 5.0		ND	5.0
1, 2-dichloropropane ND 5.0 cis-l, 3-dichloropropene ND 5.0 trichloroethylene ND 5.0 l, l, 2-trichloroethane ND 5.0 trans-l, 3-dichloropropene ND 5.0 dibromochloromethane ND 5.0 2-chloroethylvinyl ether ND 10 bromoform ND 5.0 tetrachloroethylene ND 5.0 l, l, 2, 2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 l, 3-dichlorobenzene ND 5.0 l, 2-dichlorobenzene ND 5.0		ND	5.0
trichloroethylene 1,1,2-trichloroethane trans-1,3-dichloropropene dibromochloromethane 2-chloroethylvinyl ether bromoform tetrachloroethylene 1,1,2,2-tetrachloroethane chlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,5-0 1,6-1,6-1,6-1,6-1,6-1,6-1,6-1,6-1,6-1,6-		ND	
1,1,2-trichloroethaneND5.0trans-1,3-dichloropropeneND5.0dibromochloromethaneND5.02-chloroethylvinyl etherND10bromoformND5.0tetrachloroethyleneND5.01,1,2,2-tetrachloroethaneND5.0chlorobenzeneND5.01,3-dichlorobenzeneND5.01,2-dichlorobenzeneND5.01,2-dichlorobenzeneND5.0		ND	5.0
trans-1,3-dichloropropene dibromochloromethane 2-chloroethylvinyl ether bromoform tetrachloroethylene 1,1,2,2-tetrachloroethane chlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene ND 5.0 ND 5.0 ND 5.0 ND 5.0		ND	5.0
dibromochloromethane 2-chloroethylvinyl ether bromoform tetrachloroethylene 1,1,2,2-tetrachloroethane chlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene ND 5.0 ND 5.0 ND 5.0 ND 5.0	l, l, 2-trichloroethane	ND	5.0
2-chloroethylvinyl ether ND 10 bromoform ND 5.0 tetrachloroethylene ND 5.0 1,1,2,2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 1,3-dichlorobenzene ND 5.0 1,2-dichlorobenzene ND 5.0 1,4-dichlorobenzene ND 5.0	trans-1,3-dichloropropene	ND	5.0
2-chloroethylvinyl ether ND 10 bromoform ND 5.0 tetrachloroethylene ND 5.0 1,1,2,2-tetrachloroethane ND 5.0 chlorobenzene ND 5.0 1,3-dichlorobenzene ND 5.0 1,2-dichlorobenzene ND 5.0		ND	5.0
tetrachloroethylene 1,1,2,2-tetrachloroethane chlorobenzene 1,3-dichlorobenzene 1,2-dichlorobenzene ND 5.0 ND 5.0 ND 5.0 ND 5.0	2-chloroethylvinyl ether	ND	
1,1,2,2-tetrachloroethaneND5.0chlorobenzeneND5.01,3-dichlorobenzeneND5.01,2-dichlorobenzeneND5.0		ND	5.0
chlorobenzene ND 5.0 1,3-dichlorobenzene ND 5.0 1,2-dichlorobenzene ND 5.0		ND	5.0
1,3-dichlorobenzene ND 5.0 1,2-dichlorobenzene ND 5.0		ND	
1,2-dichlorobenzene ND 5.0		ND	5.0
1,2-dichlorobenzene ND 5.0		ND	5.0
1 4 32 11 1		ND	
	l, 4-dichlorobenzene	, ND	

ND = Not detected at or above reporting limit.

=======================================	
Duplicate: Relative % Difference	13
Spike: Average % Recovery	98

CLIENT: AQUA RESOURCES PROJECT ID: 90262.1

LOCATION: PG&E SAMPLE ID: SB-9-1 DATE RECEIVED: 05/23/91 DATE ANALYZED: 05/30/91 DATE REPORTED: 06/07/91

EPA 8020: Volatile Aromatic Hydrocarbons in Soils & Wastes Extraction Method: EPA 5030 - Purge & Trap

COMPOUND	Resul ug/Kg	Reporting Limit ug/Kg
Benzene	. ND	5.0
Toluene	. ND	5.0
Ethyl Benzene	. ND	5.0
Total Xylenes	. ND	5.0
Chlorobenzene	. ND	5.0
1,4-Dichlorobenzene	. ND	5.0
1,3-Dichlorobenzene	. ND	5.0
1,2-Dichlorobenzene	. ND	5.0
ND = Not detected at or above reporting limit.		
QA/QC SUMMARY		
RPD, % RECOVERY, %	•	2 9 4
QA/QC SUMMARY ====================================	•	2 9 4

DATE RECEIVED: 05/23/91

LABORATORY NUMBER: 103913-5

CLIENT: AQUA RESOURCES

PROJECT ID: 90262.1

LOCATION: PG&E SAMPLE ID: SB-8-2

DURCES

DATE ANALYZED: 05/30/91
DATE REPORTED: 06/07/91

EPA 8010: Volatile Halocarbons in Soil & Wastes Extraction Method: EPA 5030 - Purge & Trap

		REPORTING
Compound	RESULT	LIMIT
	ug/Kg	ug/Kg
chloromethane	ND	10
bromome than e	ND	10
vinyl chloride	ND	10
chloroethane	ND	10
methylene chloride	ND	5.0
trichlorofluoromethane	ND	5.0
l, i-dichloroethene	ND	5.0
l, I-dichloroethane	13	5.0
cis-1,2-dichloroethene	ND	5.0
trans-1,2-dichloroethene	ND	5.0
chloroform	ND ND	5.0
freon 113	ND	5.0
l, 2-dichloroethane	ND	5.0
l, l, l-trichloroethane	9.3	5.0
carbon tetrachloride	ND	5.0
bromodich lorome than e	ND	5.0
l, 2-dichloropropane	ND	5.0
cis-1,3-dichloropropene	ND	5.0
trichloroethylene	ND	5.0
1,1,2-trichloroethane	NÐ	5.0
trans-1,3-dichloropropene	NĐ	5.0
dibromochloromethane	ND	5.0
2-chloroethylvinyl ether	ND	10
bromoform	ND	5.0
tetrachloroethylene	ND	5.0
1,1,2,2-tetrachloroethane	ND	5.0
chlorobenzene	ND	5.0
1,3-dichlorobenzene	ND	5.0
1,2-dichlorobenzene	ND	5.0
l,4-dichlorobenzene	, ND	5.0

ND = Not detected at or above reporting limit.

	=======================================
Duplicate: Relative % Difference	13
Spike: Average % Recovery	9.8

CLIENT: AQUA RESOURCES

PROJECT ID: 90262.1

LOCATION: PG&E SAMPLE 1D: SB-8-2 DATE RECEIVED: 05/23/91
DATE ANALYZED: 05/30/91
DATE REPORTED: 06/07/91

EPA 8020: Volatile Aromatic Hydrocarbons in Soils & Wastes Extraction Method: EPA 5030 - Purge & Trap

COMPOUND	Resulug/Kg	Reporting Limit ug/Kg
Benzene	ND	5.0
Toluene	ND	5.0
Ethyl Benzene	45	5.0
Total Xylenes	. , ND	5.0
Chlorobenzene	. ND	5.0
1,4-Dichlorobenzene	. ND	5.0
1,3-Dichlorobenzene	. ND	5.0
1,2-Dichlorobenzene	. ND	5.0
ND = Not detected at or above reporting limit. QA/QC SUMMARY		
	:======	:=====
RPD, % RECOVERY, % ====================================	•	2

DATE RECEIVED: 05/23/91

LABORATORY NUMBER: 103913-11

CLIENT: AQUA RESOURCES

PROJECT ID: 90262.1

LOCATION: PG&E SAMPLE ID: SB-6-1

OURCES

DATE ANALYZED: 05/30/91
2.1

DATE REPORTED: 06/07/91

EPA 8010: Volatile Halocarbons in Soil & Wastes Extraction Method: EPA 5030 - Purge & Trap

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
chloromethane	ND	2 0
bromome than e	ND	20
vinyl chloride	ND	20
chloroethane	ND	2 0
methylene chloride	ND	10
trichlorofluoromethane	ND	10
l, l-dichloroethene	ND	10
l, l-dichloroethane	230	10
cis-l,2-dichloroethene	ND	10
trans-1,2-dichloroethene	ND	10
chloroform	ND	10
freon 113	ND	10
l, 2-dichloroethane	ND	10
l, l, l-trichloroethane	310	10
carbon tetrachloride	ND	10
bromodichloromethane	ND	10
l,2-dichloropropane	ND	10
cis-1,3-dichloropropene	ND	10
trichloroethylene	ND	10
1,1,2-trichloroethane	ND	10
trans-1,3-dichloropropene	ND	10
dibromochloromethane	ND	10
2-chloroethylvinyl ether	ND	20
bromoform	ND	10
tetrachloroethylene	ND	10
1,1,2,2-tetrachloroethane	ND	10
chlorobenzene	ND	10
1,3-dichlorobenzene	ND	10
1,2-dichlorobenzene	ND	10
l, 4-dichlorobenzene	ND	10

ND = Not detected at or above reporting limit.

	======
Duplicate: Relative % Difference	13
Spike: Average % Recovery	98

CLIENT: AQUA RESOURCES

PROJECT ID: 90262.1

LOCATION: PG&E SAMPLE ID: SB-6-1 DATE RECEIVED: 05/23/91
DATE ANALYZED: 05/30/91
DATE REPORTED: 06/07/91

EPA 8020: Volatile Aromatic Hydrocarbons in Soils & Wastes Extraction Method: EPA 5030 - Purge & Trap

COMPOUND	Resul ug/Kg	Reporting Limit ug/Kg
Benzene	. 16	10
Toluene	. 120	10
Ethyl Benzene	. 220	10
Total Xylenes	. 730	10
Chlorobenzene	. ND	10
I, 4-Dichlorobenzene	. ND	10
1,3-Dichlorobenzene	. ND	10
1,2-Dichlorobenzene	. ND	10
ND = Not detected at or above reporting limit.		
QA/QC SUMMARY		
RPD, % RECOVERY, %		2 9 <i>4</i>

CLIENT: AQUA RESOURCES PROJECT ID: 90262.1

SAMPLE ID: SB-9-1

DATE RECEIVED: 05/23/91 DATE EXTRACTED: 05/28/91 DATE ANALYZED: 06/03/91 DATE REPORTED: 06/07/91

POLYCHLORINATED BIPHENYLS (PCBs)

ANALYSIS METHOD: EPA 8080 EXTRACTION METHOD: EPA 3550

AROCLOR TYPE	RESULT (ug/Kg)	REPORTING LIMIT (ug/Kg)
AROCLOR 1221	ND	17
AROCLOR 1232	ND	17
AROCLOR 1016	ND	17
AROCLOR 1242	ND	17
AROCLOR 1248	ND	17
AROCLOR 1254	1,700	17
AROCLOR 1260	ND	17

ND = Not detected at or above reporting limit.

RPD, %	2 7
RECOVERY, %	9 5

CLIENT: AQUA RESOURCES PROJECT ID: 90262.1 SAMPLE ID: SB-6-1 DATE RECEIVED: 05/23/91
DATE EXTRACTED: 05/28/91
DATE ANALYZED: 06/03/91
DATE REPORTED: 06/07/91

POLYCHLORINATED BIPHENYLS (PCBs)

ANALYSIS METHOD: EPA 8080 EXTRACTION METHOD: EPA 3550

AROCLOR TYPE	RESULT (ug/Kg)	REPORTING LIMIT (ug/Kg)
AROCLOR 1221	ND	17
AROCLOR 1232	ND	1 7
AROCLOR 1016	ND	1 7
AROCLOR 1242	ND	17
AROCLOR 1248	ДК	17
AROCLOR 1254	ND	17
AROCLOR 1260	ND	17

ND = Not detected at or above reporting limit.

RPD, %	27
RÉCOVERY, %	95

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 05/20/91 DATE REQUESTED: 05/29/91 DATE REPORTED: 06/10/91

LAB NUMBER: 103943

CLIENT: AQUA RESOURCES, INC.

PROJECT ID: 90262

LOCATION: PG&E

AQUA RESCURCED, INC

JUN 1 7 1991

JOB NO._____ FILE____

RESULTS: SEE ATTACHED

QA/QC Approval

Final Applo

LABORATORY NUMBER: 103943

CLIENT: AQUA RESOURCES

PROJECT ID: 90262 LOCATION: PG&E

DATE RECEIVED: 05/20/91 DATE REQUESTED: 05/29/91 DATE ANALYZED: 06/03/91 DATE REPORTED: 06/10/91

0.06

ANALYSIS: SOLUBLE LEAD

EXTRACTION BY WASTE EXTRACTION TEST: CCR TITLE 26 SECTION 22-66700

ANALYSIS METHOD: EPA 7420

LAB ID CLIENT ID RESULT UNITS REPORTING LIMIT 103943-1 SB-19-1 27.5 mg/L0.3 103943-2 SB-20-1 27.4 mg/L 0.3 103943-3 SB-20-2 32.0 mg/L 0.3 103943-4 SB-20-3 3.05 mg/L 0.06 103943-5 SB-22-1 3.18 mg/L0.06 103943-6 SB-9-1 2.57 mg/L 0.06 103943-7 SB-10-1 18.2 mg/L 0.06 103943-8 SB-7-1 0.52 mg/L

QA/QC SUMMARY	
RPD %	_
RPD, %	
RECOVERY, %	<1
<u></u>	9 <i>7</i>
	=======================================

The Earth Technolog	7)				+	Chain of	f Cus	sto	dy Record								Lab je	ib na.:	
•	hnology Ana	alviical i	l abora	alorios											,	. ,	Date		
Address 5702 Bols	a Ave.			2101100	N	lethod of Ship	ment:	Fæ	d Ex								Рифи	o ¹	
	Beach, CA										/	7	./.		Lnaiyela	Regulm		/	
	565 Fax 7					hipment No					/		_	7 7	و بر	7	7 7	-/	,
Client PS Comple	<u> </u>	<u>- 12 c</u>	~ <u> (C. 1</u>	1	—— Р	roject Manage	.r <u></u>	la n	cy Tenley		/ =:	[]	: :/	- /-	\dot{z}/\dot{z}	9	/ w/	/	
Address					т	elephone No.	415	[40-695	-4 /		or and		1			3	/ Dema	reka .
Project Name / Number	9026	2/	PG1	حسط		вх. No. <u>40</u>					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		/ n/	1757 17	1/2/25/25/25/25/25/25/25/25/25/25/25/25/2	1		7-11-	· _
Contract / Purchase Order	/ Quote				s	amplers: (Sign	nsture)	Œ,	in Truly	11		0/	ÿį		/ 7	3/2	<i>}</i> /		
Field Semple Humber	Location/ Depth	Date	Timé	Sample Type	Type	Size of Container		Temp.	Preservation Chemical	/ /		6/ a	17	/ ō/	ريخ ا	#R			
SE-1-16	4-	4/15		Sil	Brake	& Tube		ئ			V	1 1		VI	1 2	1	!	00 01	
SB-1-2	5-54	4/15						1			V	V	レ	レ		1	1	0 - 514	
58-1-3	10-10%	4/15					}				V	V	レリ	-		1		5 0000	
SB-4-1	534.68	4/15					į				Ì		i	v	İ	 		ار انه ار انه	Į.
5B-4-2	7474	4/15										 1		v				000	1314) 1/24
SB-4-3	8-81/2	4/16											İ	V	i			000	
SB-2-1	4-41/2					-					1	レ	レ	~ 					
53-2-2	3 - 5 %	1		4	₹		4	7	4		V	it		v	İ			oi!	<u> </u>
									j							İ	NE	01 [
			······································				<u></u>							-;		i			
				<u> </u>									\top						
Retinquished by:		De'	le Re	ceived by	<u>. </u>		Date	Ref	lequished by:	\		!L	Da	B.	eceived	by;		·	Date
Signature County		-		Signature				'	Signature				"		Signat	n140 —			- -
Printed Clarence	1-Enley	Tim		Printed _	 -		Time	⊣ '	Printed					\dashv	Printec	ı ——			-
Company ARI Resson to lab		-		Compeny			- 1111700	'	Сотрияу				Tim	*	Compa	ny			Time
ļ	7.7	_[_		Resson .		<u> </u>	1	-ļ	Reason					-	Reason				-
Commenia: TTLC Ma								1	Signature				Del	e H	Signati	•		•	Date
metals u	1.7h	-nro	<u>ئىسەت</u>	<u>+ </u>	epan.	<u></u>		,	Printed					_	Printed			· ·	·
1								(Согпрепу				Tim	•	Сопра	ny			Time
Blosesy is	<u></u>	. 17 1-6	<u></u>	_ P?	7935 H			,	Reason						Reasor	·	• •		

The Earth Technology Corporation	y			Chain o	f Cus	to	dy Record								L	ab job no.:	
Laboratory Earth Tech	nology Ana	lvticat La	boratories												D	ete	
Address 5702 Bolsa		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				7	41.								F	- 10° ab	of
Fluntington		. 92649		Mathod of Ship	pment: _	70	3.1 E. X		,	,	,					<u> </u>	
714.892.25			032	Shipment No.	·· ·- ·				/	/ L		Ane	lyele i	l equir	ed (Z	₹ / /	/ /
Client_PRI - Be	rkeleg	/		Project Manag	er <i>Al</i>	2/	rcy Tanlay	,	/ /	- /-	1	/	/	/	/ 3	1.74	
Address							540-6954		://	' /\.	/ 7	/ /	/ /		()	43	/
	-7/7/	24 /						1	18/	/*\/.	\mathbb{Y}	/	/,	9	\" \	154 1	marks
Project Name / Number 90	7262/	165	<u> </u>	Fax. No. <u>4/</u>			,	11	A 0.00	\\\),.	/		/ Ŋ	/(0)	1/2/	
Contract / Purchase Order /	Quote			Samplera: (Sig	nature) 🤅	<u>r. </u>	examply,	/ /	100	161			\$7	()	٧,	40%	
Field Bemple Number	Location/ Depth	Dete	Time Sample	Type/Size of Comains	, T	ėmp.	Preservation	//	/ \/	9/	1	N	I_{\circ}	\Z	11	17	
105-1	6"-1"	4/16	SOIL	BrassTube		·7			기.							M	
W5-2	1-15"	(1	1			1	1-1-	才、	才				<u> </u>			
ws-3	15-2					1		1	7	1		1		<u> </u>			
W5-4	2'-2.5'									才	1	 			ļ		
W5-5	25'-3'									1	1	·					
W5-6	3'- 3.5'					1				\top							
W5-7:	35'-4"							1	7.	才							
W5-8	4-45					1			7.	1	1						
W5-9	4.5'-5"								1,	1	1	1	/	7		01.0	
W5-10	5'-5.5					1			7 ,	7							
W5-11	55-6								1/								
W5-12	6.0-6.5	'∀	4	nel y		4			//	1			/				
Relinquished by: Signature <u>Karle Vare</u>	2 testos	Date	Received by:		Dele	Ref	Inquished by:			7	Date	Rece	ived by	y:		<u></u>	Date
Printed REATE NE		- 57 D	Signature	***************************************	-		Signature			-		91	gnatur	·		,	- 5,1,5
i .		II Time	Printed _		Time	ĺ '	Printed			- -		Pr	inted	—			-
Company <u>DRI-Reiki</u>	(100		Company		- ''''	'	Сопрепу			-	Time	Ce	mpan	y		· · · · · · · · · · · · · · · · · · ·	— Time
Resson	2/ /7		Resson _	2 01		├	Ressan					<u>-</u> -	•••ол				=
1 = 1 / 6	Pb-51	<i>L</i> (.	1217 1	l results		1	Signature				Date	1	ived by gnatur				Date
JILC GIC	4/16 GIC 111						Printed Printed										_
TILC Metals in Colifornia ittle 22 meta					Tome Company									Time			
- ille Chrone		baral			7	<u></u>	Reason					Re	eson		-		_

DISTRIBUTION: White to Laboratory, Canary to Earth Technology Project File, Pink to Courier, Golden to Field File

The Ea	erth Technology ration				C	hain of	Cus	sto	dy Record						s (suoque	`			
Laboratory _	Earth Techno	ology Anal	lytical La	boratories										`	\mathcal{Z}_{o}				
Address	5702 Bolsa /				Ме	lhod of Shipr	nent:	70	ed Ex					S)			— " -	
	Huntington B											<u> </u>	% / ∴6	- 0	elyels R			7	Niji kalen
	714.892.256					pment No			amer: I				-	'75		7	7 7 7	/	
Cllent	IRI- Berk	etG_			Pro	ject Manager	110	12C	y Tenley		/.	/_,	/ / \	A.	/	/ /	/ / /		
Address						enhone No.	415	<u> </u>	40-6959	7	13/	\$	\\ .	1 1	' 1	1	11		
		or I				· ·					1 2 / The	1/	// \$ ³ /	/	1	/	11	Remer	ka i
Project Name	/Number $\underline{P6}$	SE 1.	61048	06					<u>- 7476</u>	0/	13	/'3/	/\\	/	/ /	/ /	/ /		
Contract / Pu	rchase Order / Q	uote		···	San	nplers: <i>(Sign</i>	eture)	<u> Bo</u>	loxkall	c / /	/ /.	₹/,	7	/ /	//	1	1		
Field Be	mple Number	Lecetion/	Date 1	Time Sample	Type/8	ire at Contelher		emp.	Preservation Chemical	/ /	/-	/ /o	//	1	1	1	/		
DW-4-	<u> </u>		04/17	Wolar	Jor	10+		<u>۲</u> ۲									/		
ow-4-			1			<u> </u>		<u> </u>	112504		Ť	~		_					
ow- 3-			1-1-		· <u> </u>			1	112 - 4						\Box				
υω - 3-			1					†-	112504		\ <u>\</u>								
ow-3-			1					1	1/2/04		1,			_					
OW. 3			4	4	Ą		<u> </u> _	 ,	112504	·—··		/			\Box				
																			
																T			
- 											† 					 			
														1					
	Bak Na			Received by: Signature			Date	1	Inquished by: Signature	i			Date		lignatur				Date
	MENEUE		P 1/8	Printed				4	Printed				.	_ ⊦	rinted .				
	IRL Bikel	<u>ocy</u>	_ ''	Company			Time		Company				Time	C	ompanj	y			Time
Resson Lo	ob avolgs	<u> </u>	_ 4 pm	Певвоп _			<u> </u>		Reason					R	esson				
Commente:									linquished by:				Date	1	elved by Ignature				Date
							·	1	Printed					ŀ	rinted -				
					 ;		 -		Company				Time		ompany				Time
								1	Da					_			•		1 1

The Earth Technology Corporation Analytical Laboratories 5702 Bolsa Ave. Huntington Beach, Ca. 92649	Chain of Custody Record
Cilen ARI Ber Reley Address Project Name / Number Contract / Purchase Order / Quote	Project Manager CLoncy Tenley Telephone No. 415-540-6954 Fax. No. 415-540-7496 Samplers: (Signature) Back November Preservation
$0\omega - 2 - 1$ 4/17 $0\omega - 2 - 1$ 0 $\omega - 2 - 1$	Water VOH vial 1 HCC 1 V
0ω-2-1 0ω-2-1 0ω+2-2	Jor 19t. 1 H2504 1 V Plastic bottle 19t. 1 V Plastic bottle 19t. 1 V
Field blank Field blank Field blank Trip blank	Jos 9t.
Trip black Trip black Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by: Relinguished by:	
Signature DEST NEWENNOFER 04/18 Printed BEATE NEWENNOFER Time Company ARI - Rockelry 4p.n. Resear Lab Analysis 4p.n.	Signature Signature Signature Signature Signature Signature Signature Signature Printed Printed Printed Company Time Company Reason Reason Reason Reason
Method of Shipment: Ted EX Shipment No.: Special Instructions:	After analysis, samples are to be: before onalysis Stored over 90 days (additional fee) Returned to customer Fit

714) 892-2565	e. ach, Ca. 92649 FAX (71	4) 890-40							<i></i>	· 元	<i>.</i>		,		ree.	nalyay.	60,60		,Paga	ol
Client	RI -Ber	pele	' 4			Pi	roject Ma	inager _	Cear	rcy Tent 40-69	Jey				7		7	* / / /	///	
Address	MERCHALLER CONTRACTOR	er frieder in der				: To	elephone	No. <u>4</u>	15-5	40-695	54			/ //	W	D.	1/1			
Project Name	/ Number <u>P</u> 6	58E 1	690	2262	·					7-7496		11		1/6	y,	y .,			/////	témarke,
Contract / Pur	chase Order / Q	uole —		<u></u>		Sa	mplers:	(Signatu	o) <u>R</u>	ste Nava	s los		/*				1/2			
							····	ı	· ,		/		38	》	$\langle \! / \! \rangle$	>	/ /	相為		
Laboratory Sample Number	Sample Number	Location	y back	Time	Sample Type	Type/	Size of Con	telner ()	Jemp.	Preservation Chemical	-V	1/1	7	9	9	/	//	1/4		
- 1 1 1 1 <u>-</u>	Tripbla.	k)	4/1	/		Plas			32	<u></u>		ب- احا	4					4100	ld unh.	recultsan
	0W-1-1			ji .	Wate	- Plashe	bolle	19+				<u> </u>	/							
	OW-1-2					*	1	· •	· 4		*	<u> </u>	/			İ			,	
	ow-3-1				<u> </u>			6				<u> </u>	/							
A 2 36 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ow-3-2			1		· · · · · · · · · · · · · · · · · · ·		19 ² s		/		1 0	/							
	ow94-1	-										1 4	1_							
1.2	OW-4-2							·				1 V	1							
	OW-5-1							·· - , ·		1		1 6								
i i jar	OW-5-2		<u> </u>				<u></u>					i ,	1							
	OW-1-1	() 				Jor	/ 9t.			H250	24 1			V	•					
.8. 51	OW-1-1					Jor	/91.			/	1		V	•				İ		
	ow-4-1		♦		🕂	VOA	viaL		1	/		i			V				,	
Relinquiched by:	ab Nama	z los	ı	.	ceived by:			,,		inquished by:				<u> </u>	Da	te F	ecelve	•		
Printed BE	ATE NEW	ENHOT	ER	1/18	Signature Printed -					Signature Printed					-		Signs			
Company(9RI - Bork	cley	Ti	me	Company					Сотралу				···	Tin	*	Printe			
,	ob aucly	_	_ 🗗	PM.	Reseon _		,			Resson					- -		Reas	•		
Method of Ship	mint Fed	Eχ	· · · · · · · · ·		Comments	* P	6 50	mol		eard to	100	Di	Cle	red	All	erana			s are to be:	
	7.094			_	1.	12-12		1	_ /							Ĺ			of (additiona	

F1000

 The Earth	Techn	ology
Corporati	оп ,	

Chain of Custody Record

Corporation	-
Analytical Laboratories	

5702 Boisa Ave.

Huntington Beach, Ca. 92649 (714) 892-2565

FAX (714) 890-4032

Client	ARI	- Borhelu	1

Project Name / Number P6 LE / 690262

Project Manager <u>Clancy Tonley</u>

Telephone No. <u>415-540-6954</u>

Fax. No. <u>415-540-7496</u>

1	Lab Job no.:	1 1/2 1
2,	Date	1. 各种新疆。
z Z	Pege	of 100 1 1 1 1
y		

Project Name /	Number	, 4 - 1		020.	_			·· 110				~ <i>[]</i>	13	/ 治	*/ ***	/3	' Y v'	W	图//	1613			
Contract / Pure	chase Order / Q	uote				<u> </u>	Sam	nplers:(S	ignatur	e) <u>En</u>	LeDucylog			0	3	W)		*	///				
Laboratory ** Sample Number	Samble Number	Location	AlP a	Time	Sample 33Type		vpe/Siz	of Contai	ner (1)	Temp.	Fraservetion (**)	V	1	7	91	Y				謂	陇江		
,	060-4-1									300	4HUCL		1.00	/	4./.	/	/	2 /	معين	مستر	<u> </u>		
	au-3-1			1							/	1	V		, .		:			$\hat{A}_{Z^{\prime}}$	1. 1		4
,	ow-3-1					1		4	4		He	. 1		V	7%								
4 6	0W-3-2	;		(¥ 3				V						2 2	100	<u> </u>	5,7	3640
	ow-3-2										HCC	1		V		,							2011
	0W-1-1	:				;						t	V	7 :	,	.:	14	ls.	1.5	Will.	特別為		問題
	ow-1-1										11 ce	1		V				3.0					(增加) 第17章 2
	ow-5-1										/	1	~	1			1	·			- 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1	
	ow-5-1	4 1					4	7			HCC	1		~			Air C						樣數
	vw-5-1	· ·				70	v /	91.			H2504	(:,	1	4			1 20	脚件			重雜
	0W-5-1	: .				1.7a	r/9	26.			/	I		jh.	\				()			TIDE	制制物
	010-3-1	1 1	4		4	Jo	19	/ .	:	4	/	1	·		· :			11				4.56	排练
Refinquished by	ak Waa	lole		Dete, R	ecolved t	y:				Re	linquished by:				. !	Ou	te i	Receive Sign				排贈	定规件
Signature ==	ATE NE	UENK		1 1 2 2 2 1	Signatu Printed				-		Printed							Print	1.5	1 1417	州 。初	1	
	IRI - Berk			Time	Compa		•				Company					T)r	1 40		репу		常块	नी अन	N. Pari
Respon 4	ob onaly	15/3	1	וווקל	Ressor	:		, and		_	Reseon					<u>-</u>		Ress	on L	12.53			# W. W.
	pment: Fed		: I yay		Comme	nte:	٠.	. :							<u>; i</u> ,	Af					e to be		
la.	***	7 1 1 1		:	·	:						٠;	. :	\$ jai					* i /	ali t.	ddillon	al fee)	11.00
Special Instru	ctione:	9 9 9 9 1 T	:		<u> </u>			· ·					• 4	12.1				.,		- a 10 May 1		71	onal fee
		1 :		.			;			• • •		•		3111	<u> </u>			□В	eturne	d lo cu	stome	. 1	#M

	SHIP	SHIPMENT NO.:_/						
		<u> </u>						
	AFF		PG&E			DAT	e <u>05 20</u>	/91
	PROJEC PROJEC	CT NAME:. CT NO.:	90262			·		
Sample Number	Location	Type of	Sample Method	Type of Container	Type	of Preservation	Analysis	Required '
CP-14-1	2-21/2	Material Sol		Brass Tube	3°		3	Q
SB-16-1 SB-16-2	4-41/2	30/2	1	1	,	,		D (G)
58-16-3	7-7/2	 					0.0.3	1.6.7
5B-13-1	2-21/2						্ৰ) <i>(</i>
58-13-2	5-51/2				1			TOA
53-13-3	7-7/2), @
SB-19-1	1-21/2?		cuttings				(3	D(D)
SB-19-2	5-51/2		enfings Drive					<i>9 (9</i>
53-19-3	7-71/2		1.9,100					B (G.(7)
53-20-1		28-3		i				3, <i>G</i>
58-20-2	4-4/2						0,2	D. \$, \$
57-20-3	7-7/2	 			1		(3),6)
SB-21-1	2-21/2	 		_		i		3, O
50-21-2	5-51/2			:			0,286	
58-21-3	7-71/2						2:22	2.0 Q, B, E)
57-22-1		33/4-41/4				i		3 <u>@</u>
SB-22-2		3 - S	1/2		-		az 261	(as 2019)
53-22-2	7-71/2	1	// L	i		i	and o	(D)(Q)(G)(G)
58-15-1	2-21/2	 	 	,	- -			(3,C)
53-15-2	2-012	 	7		1	, y		(3/4)
Total Number of		ipport: 2 /	Sampler	's Signature: 50-16		lok		
Relinquished By:	Samples C.	, A	100	Received By:	- h-	/		Date
Signatura Roca	la pione	Lefo		_ Signature	THE THE	5713 7 37655		5/20/4/
Printed Name	EATE N'E	VEN110	FER	Printed Name	لسخرز	dan enec	12	Time
Company ARI Reason Arona				Company				13:51
	<u> </u>	/ 4 2 /		Received By:				Date
Relinquished By: Signature				Signature				_/_/
Printed Name				Printed Name				Time.
Company				_ Company				
Reason					 		1	
REMARKS:				•				1
1 8010/8020	2							
(2) TPH - Diese	L (801)	5 mod./3.	550)			, \		
10 3 / A	Hudson	1000	010 26	eoso (SMWW)	55207	= /3550)		0/5
10) PS-TTLO	C'; san	nples M	ay regu	ire silc analy	515, DU	t hold unti	LTILCK	escults one
3 Pb-SILC	. (hold	until	resulvs.	of TTLC are in	ソノ			
Special Shipment CCR Tit	/-Handling	/-Storage_1	Requirement	<u>*</u> € 2	and (3) for 53-2	1-2,53 .	21-3,50-22
		Metals		cu	.d 58-	22-3 > _	24 hour	- turna
7 PCBs 1	0000			11 -110-0-	m/1:-	- charb	1.44h	1/2mcu
			tord	all other an	acyse	S CHECK O	201711 C	7/1
			Leno	ley prior to	o 45:	ting: (54	0-675	シ

AQUA RESOURCES, INC. SHIPMENT NO.:__/__ PAGE 2 OF 2 CHAIN OF CUSTODY RECORD PROJECT NAME:___ PROJECT NO .: _ Type of Preservation Type of Sample Analysis Required Type of Container Location Sample Number Chemical Temp Method Material (3) (4) Bross Tube 30 7-7/2 Soil Drive 58-15-3 Sampler's Signature: 200 Total Number of Samples Shipped: Date Received By: Relinquished By: Signature Leake Noce 05/20 191 Signature_ ETTE GUYETTE Printed Name <u>BEATE</u> Company <u>A&I</u> Printed Name Time Company_ 5.25 24 Reason Acada ces Date Beceived By: Relinquished By: Signature_ Signature_ Printed Name. Printed Name_ Time: Company_ Reason REMARKS: see Page 1 Special Shipment / Handling / Storage Requirements:

	AQU.	A RES	OURC	ES, INC.			SENT NO.:		
				CUSTODY RECO	RD		1_of_2_		
	ALC		2125			DATE	05/23/91		
	PROJEC	T NAME:	768E			•			
	PROJEC	T NO.:	<u>90262. i</u>	·				add	
Sample Number	Location	Type of		Type of Container		Of Preservation Chemical	Analysis Required	- aau	
		Material	Method	P - 7/-	Temp	CHETHICE:	0239(5)6	7	
58-9-1	1-11/21	Soil	Drue	Bross Tube	13,0	1	(3)		
58-5-2	5-51/2				 		3		
58-9-3	7-7/2				1-1-1		39		
53-8-1	0-1/2'				†		(1/2)(3)(4)	_	
SB-8-2	3-31/21	 	 				(3)		
58-8-3	5-51/2' 8-81/2'						(3)	_	
53-8-4	2'2-3'						(3(4)	add	
53-10-2	5-51/2						(3)	1000	
53-10-2	8-81/2						(3)	_	
58-6-1	3-31/21						0/2/2/4/5/6)	_	
53-6-2	41/2-51						3)		
58-6-3	71/2-81				_		3		
58-6-4	9-91/2						(3)		
58-5-1	23/4-3/4						(3)(4)	$\dashv_{\mathscr{R}}$	
58-5-2	5-512						$\frac{3}{3}$	💆	
53-5-3	8-31/2						(3(4)		
5.3-7-1	1/2-1'	<u> </u>					$\frac{3(7)}{3}$		
53-7-2	6-6'12'	∇	4	₩			3/		
		<u> </u>			11.				
Total Number of	Samples Sh	ipped: Z	Sample	r's Signature: 2004	e Naca	A	Date		
Relinquished By: Signature	- 1. 110	cald)	Received By Signature	mails	1h-	5/23 6	<u>1 </u>	
Signature AS Printed Name	REATE N	EUENH	OFER	Printed Name_			Time		
I a	<i>D</i> 1			Company					
Reason_oucl	ycos at	C+7					Date		
Relinquished By:	:			Received By: Signature					
Signature Printed Name_				Printed Name_			Time*		
Company				Company				_	
Reason									
REMARKS:							tube 15 not full	_	
1 (1) 80	10/802	0		\			1		
D TPH-	-DioseL	(8015	mod. /3	(550)	اک العلامال	520 F/355	(co.		
(3) Patrol	leum Hyo	trocarb	on Oil	2550) 2 Grease (SM	<i>50 pt</i> •	_ ,			
4 Lead	776		_						
(5) Metal	15/CLR	TITE	26)						
(3) //e/	(000	2)					ļ		
Special Shipment / Handling / Storage Requirements: Hold @ and S for further Pb-STLC analysis; ARI will notify C+T									
Special Shipmer	it / Handling	y / Storage	Requiremen	DE CTICO	nalysi	's; ARI wil	L notify C+T		
Hold (9)	and(S)	for f	arther	ro-3100		•	V	1	
when Pb	-TTLC	بور مدا ر	sare 11	7. / /	Cla	- 4954		1	
Ques	tions?-	-10 cal	L Cland	cy Tenley at	270	-0107			

	AQU	A RES	OURC	ES, INC.		SHIPM	ENT NO.	:		
		PAGE 2 OF								
	460		سر ٥ سرد			DATE	05/23	79/		
			PGZE		<u></u> .					
	PROJE	CT NO.:	90262	./		of Preservation				
Sample Number	Location	<u> </u>	s Required							
58-7-3	3-81/2	Material Sor Q	1	Pross Tube	300		3			
5B-7-1a	1-1/2	4		- Bross Tube	11		3			
							-			
			ļ				-			
							 			
	ļ	-			-					
	 	 			-					
	 	 	-		-					
	-				_					
		 								
										
							 -			
					_		_			
				<u> </u>	_					
	<u> </u>				_			 :		
	_l,		<u> </u>	(Si	2 1 00	- 1-2				
Total Number of				r's Signature: 2004	<u> </u>	- N.		Date		
Relinquished By: Signature 2	fe He	وكمماجه		Received By Signature	mon h	<u> </u>		5/23/9		
Printed Name 3	<u>EATE</u> 人	JEUEN	HOFER	Printed Name	Printed Name					
Company Al	<i>21</i>			Company			,			
		<u> </u>	<u> </u>	Received By:				Date		
Relinquished By: Signature				Signature				· _ /		
Printed Name				Printed Name_	Time:					
Company				Company				<u></u>		
Reason					 :					
REMARKS:										
					•					
Special Shipment	/ Handling	/ Storage	Requiremen	18:						