Quarterly

Groundwater Monitoring Report

March 1992

PG&E ENCON-GAS Transmission and Distribution Construction Yard 4930 Coliseum Way Oakland, California

Prepared by:

Aqua Resources Inc. (ARI) a wholly owned subsidiary of The Earth Technology Corp. 2030 Addison Street, Suite 500 Berkeley, CA 94704

> Report issued: May 5, 1992

TABLE OF CONTENTS

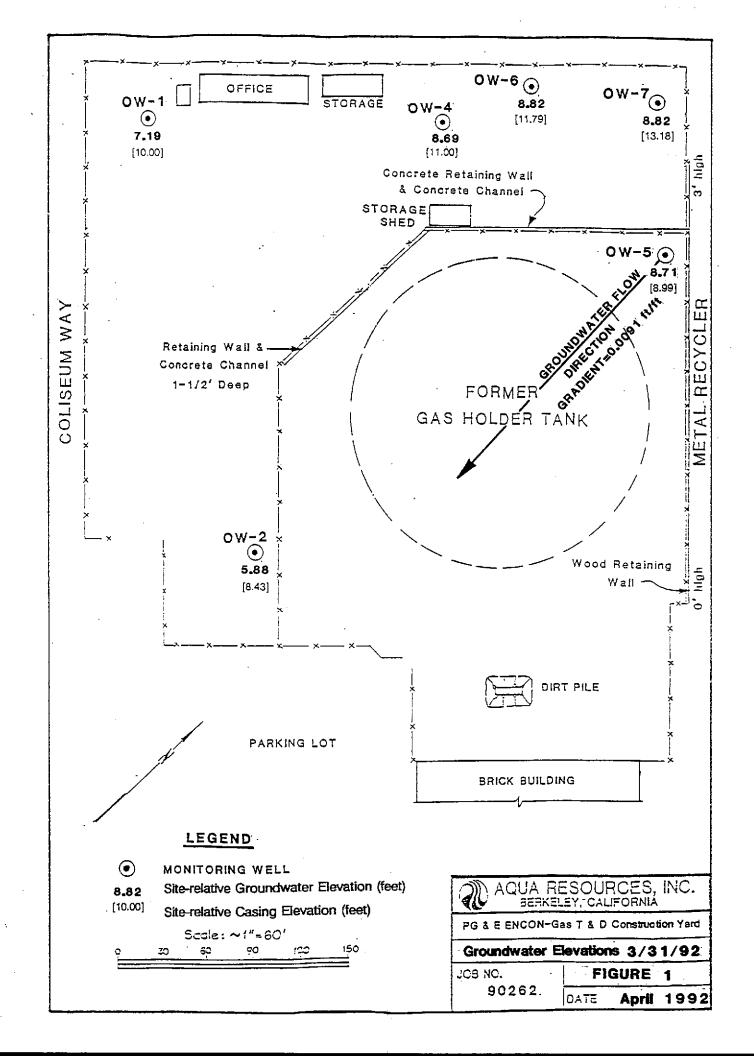
1.0	BACKGROU	ND	1			
2.0	SAMPLING A	ACTIVITIES	2			
3.0	ANALYTICAL RESULTS					
4.0	0 GROUNDWATER FLOW DIRECTION					
5.0	CONCLUSIO	ons	8			
		APPENDICES				
APPE	NDIX A	Certified Laboratory Results				
APPE	NDIX B	Chain-of-Custody Documentation				

1.0 BACKGROUND

This report presents the results of the quarterly groundwater monitoring performed in March 1992 at the PG&E ENCON-Gas Transmission and Distribution Construction Yard in accordance with the directive issued by Alameda County Health Care Agency. The yard is located at 4930 Coliseum Way in Oakland, California. As part of the groundwater monitoring program, samples were collected from shallow wells and analyses were performed to determine the distribution of waste oil, solvents, and fuel compounds in the uppermost aquifer beneath the northern part of the yard. This area includes the former sites of five underground storage tanks.

The underground tanks were removed in January 1988. Analyses of their contents revealed that of the four tanks formerly located in a cluster near the north corner of the yard, two contained mineral spirits and two tanks contained heavy oil. A concrete sump formerly connected to the tank cluster was located approximately 50 feet northeast of the tank cluster. The fifth tank formerly located near the west corner of the yard contained diesel fuel.

An area of approximately 6,600 square feet was excavated in November and December of 1991 as a remedial action for the petroleum hydrocarbon soil contamination believed to originate from one or more of the following: the four-tank cluster, the concrete sump, the former shop location, or a possible offsite release. The removed contaminated soil, which generally extended from the ground surface to the groundwater free surface at about 8 to 8 1/2 feet below grade, was replaced with clean compacted backfill.


The surface area south of the former location of underground tanks is contaminated with lead. The lead probably originates from the sandblasting operations performed on a large gas storage tank which had been removed in May 1990. Soil at this area has been found contaminated with total and soluble lead above California Code of Regulations (CCR) levels for hazardous wastes. CCR Total Threshold Limit Concentration for lead is 1,000 mg/kg and 5 µg/l for soluble lead.

2.0 SAMPLING ACTIVITIES

Four of the originally-installed five monitoring wells remain in existence on the site. One monitoring well, OW-3, was destroyed during remedial excavations performed in the northern corner of the yard. Two new monitoring wells were installed on December 19, 1991. A fifth well, OW-6, was installed in the general vicinity of well OW-3 to act as its replacement. A sixth monitoring well, OW-7, was installed at the northeastern end of the remediation area to gauge the likelihood of upgradient contamination in the shallow groundwater underlying the PG&E site. The locations of these new wells were approved by the Alameda County Health Care Services Agency. Figure 1 presents the site plan including all present monitoring well locations. On March 31 and April 1, 1992, groundwater samples were collected by ARI personnel from monitoring wells OW-1, OW-2, OW-4, OW-5 and wells OW-6 and OW-7 installed in December 1991. Prior to sampling, three to six casing volumes of groundwater were purged with a bailer or pump from each well. Conductivity, pH, and temperature were measured after approximately every two gallons of groundwater was removed to ensure the stability of these parameters prior to sampling.

The groundwater samples collected from each well were analyzed by Curtis & Tompkins, Ltd. Analytical Laboratories, Berkeley, California for extractable petroleum hydrocarbons as diesel (TPH-D; LUFT Manual, October 1989); total oil and grease (SMWW 17:5520BF); and volatile organic compounds (EPA methods 8010); total volatile hydrocarbons as gasoline (LUFT Manual October 1989), benzene, toluene, xylenes, and ethylbenzene (BTXE), (EPA 4030/8020); and for lead (EPA 7421). In addition, field blank, travel blank and method blank analyses were performed for the purposes of quality assurance (QA) on the groundwater sample results.

Certified laboratory results are presented in Appendix A. Chain-of-Custody documentation is provided in Appendix B.

3.0 ANALYTICAL RESULTS

Table 3.1 summarizes the analytical results for petroleum hydrocarbons detected in the groundwater and QA samples collected on March 31 and April 1, 1992. TPH-Diesel was detected in each of the monitoring wells and was found in the highest concentration in wells OW-6 and OW-7. The highest concentration of gasoline was detected in the upgradient well OW-7. All samples were below the method detection limit for hydrocarbon oil and grease (O&G).

Table 3.1 Petroleum Hydrocarbons in Groundwater, in mg/l

Well	Oil & Grease	TPH-Diesel	TVH-gasoline
OW-1	ND	3.10	0,10
OW-2	ND	0.67	ND
OW-4	ND	2.10	ND
OW-5	ND	0.84	0.12
OW-6	ND	4.90	ND
OW-7	ND	4.40	0.70
Travel Blank	NA	NA	ND
Field Blank	NA	NA	ND

Notes:

- 1) ND = Not Detected at or above Method Detection Limit (MDL)
- 2) NA = Not Analyzed
- 3) Oil & Grease = Hydrocarbon Oil & Grease (Gravimetric) Method SMWW 17:5520BF, Reporting Limit = 5 mg/l
- 4) TPH-Diesel = Extractable Petroleum Hydrocarbons, Diesel Range, LUFT Manual October 1989; Reporting Limit = 0.05 mg/l.
- 5) TVH-Gasoline = Total Volatile Hydrocarbons by California DHS Method LUFT Manual October 1989.

Table 3.2 presents the results of groundwater analyses for soluble lead. The EPA and State maximum contaminant level (MCL) for lead is 50 μ g/l. None of the samples contained lead concentrations above the reporting limit of 3 μ g/l.

Table 3.3 presents the analytical results for volatile organic compounds. The State MCL for 1,4-Dichlorobenzene of 5 μ g/I was substantially exceeded in monitoring well OW-7 and was 120 μ g/I. In OW-2 and OW-5, benzene was detected at 1.4 and 1.5 μ g/I, respectively, exceeding the MCL of 1 μ g/I. 1,1,1-Trichloroethane (TCA) was found in upgradient well OW-7 460 μ g/I. This is above the MCL of 200 μ g/I.

Table 3.2 Lead in Groundwater, in µg/l

		
Well	Reporting Limit	Soluble Lead
OW-1	3.0	ND
OW-2	3.0	ND
OW-4	3.0	ND
OW-5	3.0	ND
OW-6	3.0	ND
OW-7	3.0	ND

- 1) Method EPA 7421
- 2) ND = Not Detected or above Method Detection Limit (MDL)

Table 3.3 Volatile Organic Compounds in Groundwater, in ug/l

				Well	Number		
PURGEABLE HALOCARBONS	MCL	OW-1	OW-2	OW-4	OW-5	OW-6	OW-7
Chloromethane		ND	ND	ND	ND	ND	ND
Bromomethane		ND	ND	ND	ND	ND	ND
Vinyl chloride	0.5	ND	ND	ND	ND	ND	ND
Chloroethane		ND	ND	ND	ND	ND	ND
Methylene Chloride	5#	ND	ND	ND	ND	ND	ND
Trichlorofluoromethane	150	ND	ND	ND	ND	ND	ND
1,1-Dichloroethene	6	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5	ND	ND	7	4	1	16
cis-1,2-Dichloroethene	6	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	10	ND	ND	ND	ND	ND	ND
Chloroform	100#*	ND	ND	ND	ND	ND	ND
Freon 113	1200	ND	ND:	ND	ПD	ND	ND
1,2-Dichloroethane	0.5	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200	ND	ND	ND	12	ND	460
Carbon Tetrachloride	0.5	ND	ND	ND	ND	ND	ND
Bromodichloromethane	100#*	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	5***	ND	ND	ND	ND	ND	ND
Trichloroethylene	5	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	32	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene	5***	ND	ND	ND	ND	ND	ND
Dibromochloromethane	100#*	ND	ND	ND	МD	ND	ND
2-Chloroethylvinyl Ether		ND	ND	ND	ND	ND	ND
Bromoform	100#*	ND	ND	ND	ND	ND	ND
Tetrachloroethylene	5	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	1	ND	ND	ND	ND	ND	ND
Chlorobenzene	30	ND	ND	NĐ	ND	ND	ND
1,3-Dichlorobenzene		ND	ND	ND	ND	ND	130
1,2-Dichlorobenzene	600#	ND	ND	ND	ND	ND	22
1,4-Dichlorobenzene	5	ND	ND	ND	ND	ND	120
PURGEABLE AROMATICS							
Benzene	1	ND	1.4	ND	15	ND	0.8
Toluane	1000#	ND	ND	ND	1.1	ND	0.6
Ethylbenzene	680	ND	ND	ND	0.6	ND	ND
Total Xylenes	1750**	3.2	ND	0.7	5.1	ND	2.1

Notes:

¹⁾ MCL = Maximum Contaminant Level in drinking water (State MCL, if not noted otherwise)

^{2) # =} EPA MCL

^{3) * =} MCL for sum of four compounds

^{4) ** =} MCL for sum of all xylene isomers

^{5) *** =} MCL for sum of trans- and cis-1,3-Dichloropropene

⁶⁾ ND = Not Detected at or above MDL

⁷⁾ Purgeable Halocarbons (EPA method 8010)

⁸⁾ Purgeable Aromatics (EPA method 8020)

4.0 GROUNDWATER FLOW DIRECTION

Water level measurements in the monitoring wells were made on March 31, 1992, prior to sampling groundwater in the six onsite wells. Groundwater elevations are shown in relation to a site specific coordinate system reported in previous reports. The top of casing (TOC) elevations for each of these wells is based upon an assumed TOC elevation of 10 feet at well OW-1. The TOC of the two new wells were surveyed by a registered surveyor relative to OW-1 on January 9, 1992. Wells OW-2, OW-4 and OW-5 were resurveyed at this time and found to be within 0.01 feet of their previously measured elevations.

The measured groundwater elevations are presented in Figure 1 along with the relative TOC elevations of each of the wells. The groundwater flow direction calculated from elevations in OW-1, OW-2, and OW-5 indicates the general regional groundwater flow to be to the south at a gradient of approximately 0.0091 ft/ft. This flow direction is different from the one observed last quarter which was to the southwest. The groundwater elevations in all wells were significantly higher, probably due to the winter rainfall. The water level in well OW-5 was only 3.3 inches below surface.

5.0 CONCLUSIONS

Results of analyses performed on groundwater samples collected in March 31 and April 1, 1992 from monitoring wells OW-1, OW-2, OW-4, OW-5, OW-6 and OW-7 show that diesel fuel was detected in each well above the method detection limit (MDL). The highest concentration of diesel was observed in well OW-6 and upgradient well OW-7. Lead and oil and grease were not detected in any of the wells at concentrations above the MDL.

Samples from OW-5, OW-6, and OW-7 exceeded the maximum contaminant level for certain volatile organic compounds for drinking water. High concentrations of benzene, detected in OW-5, might indicate an upgradient (off-site) source of fuel contamination. Dichlorobenzenes were found in the other upgradient well, OW-7. However, these concentrations were lower than those observed in December 1991. TCA was found to be present in upgradient wells OW-5 (12 μ g/l) and OW-7 (460 μ g/l) which might also indicate that offsite source of contamination exists. Water levels in all wells were much higher than those measured during previous sampling events. Groundwater flow across most of the site appears to be to the south.

APPENDIX A

CERTIFIED LABORATORY RESULTS

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 04/01/92 DATE REPORTED: 04/16/92

LABORATORY NUMBER: 107008

CLIENT: AQUA RESOURCES, INC.

PROJECT ID: 690262.3

LOCATION: PG&E

RESULTS: SEE ATTACHED

44164 (1566-666) 400 8402021

APR 3 / 1992

10040. 690262. 3 FILE lab results Rev

Berkeley

Wilmington

Los Angeles

Client: Aqua Resources Laboratory Login Number: 107008

Project Name: PG&E Report Date: 16 April 92
Project Number: 690262.3

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520BF

Lab 10	31.0000	ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
107008-001	W-5		Water	01-APR-92	01-APR-92	07-APR-92	ND	mg/L	5	TR	4874
107008-002	W-6:		Water			07-APR-92		mg/L	5	TR	487
		A STATE OF THE STA	Water				300000000000000000000000000000000000000		J	IK.	401
107008-003	W-7		Water	01-APR-92	01-APR-92	07-APR-92	ND.	mg/L	5	TR	487
		Table Barrier									
	1000 11100 11100 11100 11100 11100 11100					-					
							160 200 2000 161 200 200 200 161 200 200 200				
							Element Transfer				
	er.										
	#** !						00 1001 1001 1 101 100 1 1001 1 101 100 1 1001 101 100 1 1001				
	V										
	N.:						i danna Haliaderia Lau Jahossa III.				
		ina. Paga Mjarin Hadish					**************************************				
							11433310314. 2012010000000 20120000000				

ND = Not Detected at or above Reporting Limit (RL).

QC Batch Report

Client:

Aqua Resources

Laboratory Login Number: 107008

Project Name:

PG&E

Report Date: 16 April 92

Project Number: 690262.3

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch

Number:

4874

Blank Results

Sample ID Result MDL

Units

Method

Date Analyzed

BLANK

ND

5 mg/L

SMWW 17:5520BF

07-APR-92

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

84%

SMWW 17:5520BF

07-APR-92

BSD

89%

SMWW 17:5520BF

07-APR-92

Average Spike Recovery Relative Percent Difference

86% 5.5%

Control Limits 80% - 120%

< 20%

LOCATION: PG&E

DATE SAMPLED: 04/01/92 DATE RECEIVED: 04/01/92 DATE ANALYZED: 04/02,03/92

DATE REPORTED: 04/16/92

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions
TVH by California DOHS Method/LUFT Manual October 1989
BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
		• • • • • • • • • •		• • • • • • • • • •		
107008-1	W- 5	120	15	1.1	0.6	5.1
107008-2	W-6	ND(50)	ND(0.5)		ND(0,5)	ND(0.5)
107008-3	W- 7	700	0.8		ND(0.5)	2,1
107008-4	TRAVEL BLANK	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
107008-7	FIELD BLANK	3 ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

QA/QC SUMMARY

LOCATION: PG&E

DATE SAMPLED: 04/01/92
DATE RECEIVED: 04/01/92
DATE EXTRACTED: 04/06/92
DATE ANALYZED: 04/06,07/9
DATE REPORTED: 04/16/92

Extractable Petroleum Hydrocarbons in Aqueous Solutions
California DOHS Method
LUFT Manual October 1989

LAB ID	CLIENT	ID	KEROSENE RANGE (ug/L)	DIESEL RANGE (ug/L)	REPORTING LIMIT* (ug/L)
107008-1 107008-2 107008-3	W- 6		* * * * * *	840 4,900 4,400	5 0 5 0 5 0

QA/QC SUMMARY

RPD, %	6
RECOVERY, %	90

^{*}Reporting limit applies to all analytes.

^{**}Sample quantitated as diesel.

LOCATION: PG&E

DATE SAMPLED: 04/01/92 DATE RECEIVED: 04/01/92 DATE ANALYZED: 04/09/92 DATE REPORTED: 04/16/92

ANALYSIS: LEAD

ANALYSIS METHOD: EPA 7421

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
107008-1	• • •	ND	ug/L	3.0
107008-2	W-6	ND	ug/L	3.0
107008-3	W-7	ND	ug/L	3.0

ND = Not detected at or above reporting limit.

QA/QC SUMMARY:

RECOVERY, % 101

CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E SAMPLE ID: W-5 DATE SAMPLED: 04/01/92
DATE RECEIVED: 04/01/92
DATE ANALYZED: 04/10/92
DATE REPORTED: 04/16/92

EPA 8010 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit
	-9	ug/L
Chloromethane	ND	,
Bromomethane	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	МD	20
Trichlorofluoromethane	ND	1
l, l-Dichloroethene	ND	1
l, l-Dichloroethane	4	1
cis-1,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	1
l, 2-Dichloroethane	ND	1
l, l, l-Trichloroethane	1 2	1
Carbon tetrachloride	ND	1
Bromodichloromethane	ND	1
l, 2 - Dichloropropane	ND	1
cis-1,3-Dichloropropene	ND	1
Trichloroethylene	ND	I
1,1,2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	1
Tetrachloroethene	ND	1
l, l, 2, 2-Tetrachloroethane	ND	1
Chlorobenzene	ND	1
l, 3-Dichlorobenzene	ND	1
l, 2-Dichlorobenzene	ND	1
l, 4-Dichlorobenzene	ND	1

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E SAMPLE ID: W-6

DATE SAMPLED: 04/01/92
DATE RECEIVED: 04/01/92
DATE ANALYZED: 04/10/92
DATE REPORTED: 04/16/92

EPA 8010 Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		ug/L
Chloromethane	ND	2
Bromomethane	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1
l, l-Dichloroethene	ND	1
l, I-Dichloroethane	1	1
cis-1,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	1
1,2-Dichloroethane	ND	1
I, I, I-Trichloroethane	ND	1
Carbon tetrachloride	ND	1
Bromodichloromethane	ND	1
1,2-Dichloropropane	ND	1
cis-I,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
I, 1, 2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	Ī
Tetrachloroethene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
Chlorobenzene	ND	1
1,3-Dichlorobenzene	ND	i
l, 2-Dichlorobenzene	ND	1
l, 4-Dichlorobenzene	ND	ī

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E SAMPLE ID: W-7

DATE SAMPLED: 04/01/92 DATE RECEIVED: 04/01/92 DATE ANALYZED: 04/13/92 DATE REPORTED: 04/16/92

EPA 8010

Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		ug/L
Chloromethane	ND	10
Bromome than e	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	100
Trichlorofluoromethane	ND	5
l, l-Dichloroethene	ND	5
l, l-Dichloroethane	16	5
cis-1,2-Dichloroethene	ND	5
trans-1,2-Dichloroethene	ND	5
Chloroform	ND	5
Freon 113	ND	5
1,2-Dichloroethane	ND	5
l, l, l-Trichloroethane	460	5 0
Carbon tetrachloride	ND	5
Bromodichloromethane	ND	5
1,2-Dichloropropane	ND	5
cis-1,3-Dichloropropene	ND	5
Trichloroethylene	ND	5
l, l, 2-Trichloroethane	ND	5
trans-1,3-Dichloropropene	ND	5
Dibromochloromethane	ND	5
2-Chloroethylvinyl ether	ND	10
Bromoform	ND	5
Tetrachloroethene	ND	5
l, l, 2, 2-Tetrachloroethane	ND	5
Chlorobenzene	ND	5 5
l,3-Dichlorobenzene	130	5
l, 2-Dichlorobenzene	2 2	5
l, 4-Dichlorobenzene	120	5
		_

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E

SAMPLE ID: FIELD BLANK 1

DATE SAMPLED: 04/01/92

DATE RECEIVED: 04/01/92 DATE ANALYZED: 04/11/92

DATE REPORTED: 04/16/92

EPA 8010

Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		ug/L
Chloromethane	ND	2
Bromomethane	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	1
l, l-Dichloroethene	ND	1
l, I-Dichloroethane	ND	1
cis-l,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	1
l, 2-Dichloroethane	ND	1
l, l, l-Trichloroethane	ND	1
Carbon tetrachloride	ND	1
Bromodichloromethane	ND	1
1,2-Dichloropropane	ND	1
cis-l,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
1,1,2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	1
Tetrachloroethene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
Chlorobenzene	ND	1
1,3-Dichlorobenzene	ND	1
1,2-Dichlorobenzene	ND	1
I, 4-Dichlorobenzene	ND	1
		_

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E

SAMPLE ID: FIELD BLANK 2

DATE SAMPLED: 04/01/92

DATE RECEIVED: 04/01/92 DATE ANALYZED: 04/11/92

DATE REPORTED: 04/16/92

EPA 8010 Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		ug/L
Chloromethane	ND	2
Bromome than e	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	1
l, I-Dichloroethene	ND	1
l, l-Dichloroethane	ND	1
cis-l, 2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	1
l, 2-Dichloroethane	ND	1
l, I, I-Trichloroethane	ND	1
Carbon tetrachioride	ND	1
Bromodichloromethane	ND	1
1,2-Dichloropropane	ND	1
cis-1,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
1,1,2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochioromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	1
Tetrachloroethene	ND	1
I, 1, 2, 2-Tetrachloroethane	ND	î
Chlorobenzene	ND	1
l, 3-Dichlorobenzene	ND	ì
1,2-Dichlorobenzene	ND	ī
I, 4-Dichlorobenzene	ND	1
		•

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

LOCATION: PG&E

SAMPLE ID: METHOD BLANK

DATE ANALYZED: 04/10/92 DATE REPORTED: 04/16/92

EPA 8010

Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit
	u g, 2	ug/L
Chloromethane	ND	2
Bromome than e	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1
I, l-Dichloroethene	ND	1
l, l-Dichloroethane	ND	1
cis-1,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	1
1,2-Dichloroethane	ND	1
l, l, l-Trichloroethane	ND	1
Carbon tetrachloride	NĐ	1
Bromodichloromethane	ND	1
1,2-Dichloropropane	ND	1
cis-1,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
1,1,2-Trichlorocthane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	1
Tetrachloroethene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
Chlorobenzene	ND	1
1,3-Dichlorobenzene	ND	1
1,2-Dichlorobenzene	ND	1
i, 4-Dichlorobenzene	ND	1

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

LABORATORY NUMBER: 107008 CLIENT: AQUA RESOURCES

PROJECT ID: 690262.3

LOCATION: PG&E SAMPLE ID: METHOD BLANK DATE ANALYZED: 04/13/92 DATE REPORTED: 04/16/92

EPA 8010

Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		ug/L
Chloromethane	ND	2
Bromomethane	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	1
l, l-Dichloroethene	ND	1
l, I-Dichloroethane	ND	1
cis-l,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	NĐ	1
Chloroform	ND	1
Freon 113	ND	1
1,2-Dichloroethane	ND	1
l, l, l-Trichloroethane	ND	1
Carbon tetrachloride	ND	1
Bromodichloromethane	ND	1
1,2-Dichloropropane	ND	1
cis-1,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
I, I, 2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	1
Tetrachloroethene	ND	1
I, 1, 2, 2-Tetrachloroethane	ND	1
Chlorobenzene	ND	1
1,3-Dichlorobenzene	ND	i
1,2-Dichlorobenzene	ND	î
l, 4-Dichlorobenzene	ND	1
· · · · · · · · · · · · · · · · · · ·	112	*

ND = Not detected at or above reporting limit.

QA/QC SUMMARY

LABORATORY CONTROL SAMPLE SUMMARY SHEET FOR EPA 8010/8020

Operator:

MBP

Spike file:

101W/X002

Analysis date:

4/10/92

Instrument :

GC12 (QUANT COLUMN)

Sample type: WATER Sequence Name APR10

LCS SPIKE DATA (spiked at 20 ppb)

8010 COMPOUNDS 1,1-Dichloroethene	READING 17.22	RECOVERY 86 %	STATUS OK	LIMITS 60 - 133
Trichloroethene	19.78	99 %	OK	88 - 125
Chlorobenzene	18.92	95 %	OK	90 - 127
SURROGATES				
Bromobenzene	107.80	108 %	OK	98 - 115
8020 COMPOUNDS	READING	RECOVERY	STATUS	LIMITS
Benzene	19.47	97 %	OK	62 - 120
Toluene	19.28	96 %	OK	61 - 121
Chlorobenzene	21.30	107 웅	OK	84 - 115
SURROGATES				
Bromobenzene	100.71	101 %	OK	91 - 107

LIMITS ARE BASED ON CONTROL CHARTS (NOV. 91).

MS/MSD SUMMARY SHEET FOR EPA 8010/8020

INSTRUMENT: HP-5890 COLUMN: RESTEK 502.2 DETECTORS: HALL/PID operator: MBP
Analysis date: 4/11/92
Sample type: WATER
Sample ID: Spike file: 101W/X022 Spike dup file: 101W/X023 Instrument: GC12 Sample ID: 107012-004 1:200 Sequence name: APR10 8010 MS/MSD DATA (spiked at 20 ppb) Ave Rec= 99 % SPIKE COMPOUNDS READING RECOVERY STATUS LIMITS 1,1-Dichloroethene 20.36 102 % OK 19.76 99 % OK 18.91 95 % OK 61 - 145 71 - 120 Trichloroethene Chlorobenzene 75 - 130SPIKE DUP COMPOUNDS 21.36 107 % OK 18.85 94 % OK 19.45 97 % OK 1,1-Dichloroethene 61 - 145Trichloroethene 71 - 120Chlorobenzene 75 - 130SURROGATES

 BROMOBENZENE (MS)
 108.89
 109 % OK

 BROMOBENZENE (MSD)
 105.95
 106 % OK

 75 - 115 75 - 115 8020 MS/MSD DATA (spiked at 20 ppb) Ave Rec= 100 % READING RECOVERY STATUS LIMITS SPIKE COMPOUNDS 18.98 95 % OK 76 - 127 18.55 93 % OK 76 - 125 20.11 101 % OK 75 - 130 Benzene Toluene Chlorobenzene SPIKE DUP COMPOUNDS Benzene 101 % OK 20.27 76 - 127 Toluene 101 % OK 108 % OK 20.23 76 - 125 21.58 Chlorobenzene 75 - 130 SURROGATES 100.42 100 % OK 100.93 101 % OK BROMOBENZENE (MS) BROMOBENZENE (MS)
BROMOBENZENE (MSD) 75 - 120 75 - 120 RPD DATA 8010 RPD= 4.1 % 8020 RPD= 7.4 % 8010 COMPOUNDS SPIKE SPIKE DUP RPD STATUS LIMITS 1,1-Dichloroethene 20.36 21.36 5 % OK < 14 J % OK 19.76 18.85 18.91 19.45 Trichloroethene 5 % < 14 Chlorobenzene 13 8020 COMPOUNDS 7 % OK 9 % OK Benzene 18.98 20.27 < 11 Toluene 18.55 20.23 < 13 Chlorobenzene

SPIKE RECOVERY LIMITS FROM SW-846 METHODS 8010/8020 TABLE 3; SURROGATE RECOVERY LIMITS FROM LCS CONTROL CHARTS (NOV. 91); RPD LIMITS FROM CLP SOW 2/88 VOLATILES.

20.11

21.58

ን %

OK

< 13

LABORATORY CONTROL SAMPLE SUMMARY SHEET FOR EPA 8010/8020

Operator:

MBP

Spike file:

104W/X002

Analysis date: Sample type:

4/13/92 WATER Instrument:

GC12 (QUANT COLUMN)

Sequence name: APR13

LCS SPIKE DATA (spiked at 20 ppb)

	========		=======	
8010 COMPOUNDS 1,1-Dichloroethene Trichloroethene Chlorobenzene	READING 21.87 21.44 19.40	RECOVERY 109 % 107 % 97 %	STATUS OK OK OK	LIMITS 60 - 133 88 - 125 90 - 127
SURROGATES			•	
Bromobenzene	114.12	114 %	ОК	98 - 115
8020 COMPOUNDS	READING	RECOVERY	STATUS	I TMTmc
Benzene	19.51	98 %	OK	LIMITS
Toluene	19.70	99 %	OK	62 - 120
Chlorobenzene	20.45	102 %		61 - 121
	20.45	102 6	OK	84 - 115
SURROGATES				
Bromobenzene	101.60	102 %	OK	91 - 107

SPIKE RECOVERY LIMITS FROM SW-846 METHODS 8010/8020 TABLE 3; SURROGATE RECOVERY LIMITS FROM LCS WATER CONTROL CHARTS (NOV. 91).

MS/MSD SUMMARY SHEET FOR EPA 8010/8020

Operator:

MBP

Spike file:

Analysis date: Sample type:

4/13/92 WATER

Spike file: 104W/X005 Spike dup file: 104W/X006

Instrument: GC12 (QUANT COLUMN)

Sample ID:

107008-003 1:5

Sequence Name: APR13

8010 MS/MSD DATA (spiked at 20 ppb)

SPIKE COMPOUNDS	READING	RECOVERY	STATUS	LIMITS	====
1,1-Dichloroethene	19.88	99 %	OK	28 -	167
Trichloroethene	19.76	99 %	OK	35 -	146
Chlorobenzene	18.90	95 %	OK	38 -	150
SPIKE DUP COMPOUNDS					
1,1-Dichloroethene	19.25	96 %	OK	28 -	167
Trichloroethene	19.06	95 %	OK	35 -	146
Chlorobenzene	18.42	92 %	OK	38 -	150
SURROGATES					
BROMOBENZENE (MS)	104.96	105 %	OK	98	115
BROMOBENZENE (MSD)	109.20	109 %	OK	98 -	115

8020 MS/MSD DATA (spiked at 20 ppb)

		======	========			
SPIKE COMPOUNDS	READING	RECOVERY	STATUS	LIMITS		
Benzene	19.21	96	% OK	39 - 150		
Toluene	19.32	97	% OK	46 - 148		
Chlorobenzene	20.30	102	१ OK	55 - 135		
SPIKE DUP COMPOUNDS						
Benzene	18.93	95	% OK	39 - 150		
Toluene	19.12	96	% OK	46 - 148		
Chlorobenzene	20.46	102	% OK	55 - 135		
SURROGATES						
BROMOBENZENE (MS)	100.19	100	% OK	91 - 107		
BROMOBENZENE (MSD)	99.59	100	% OK	91 - 107		

RPD DATA

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			======			===
8010 COMPOUNDS	SPIKE	SPIKE DUP	RPD	STATUS	LIMITS	
1,1-Dichloroethene	19.88	19.25	3 %	OK	<=	14
Trichloroethene	19.76	19.06	4 %	OK	<=	14
Chlorobenzene	18.90	18.42	3 %	OK	<=	13
8020 COMPOUNDS						
Benzene	19.21	18.93	1 %	OK	<=	11
Toluene	19.32	19.12	1 %	OK	<=	13
Chlorobenzene	20.30	20.46	1 %	OK	<=	13

SPIKE RECOVERY LIMITS FROM SW-846 METHODS 8010/8020 TABLE 3; SURROGATE RECOVERY LIMITS FROM LCS CONTROL CHARTS (NOV. 91); RPD LIMITS FROM CLP SOW 2/88 VOLATILES.



# Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone (415) 486-0900

DATE RECEIVED: 03/31/92 DATE REPORTED: 04/16/92

LABORATORY NUMBER: 107005

CLIENT: AQUA RESOURCES, INC.

PROJECT ID: 690262.3

LOCATION: PG&E

RESULTS: SEE ATTACHED

ANDA PILINGERON NEVO ARTENEO

APR 3 1992

500 NO. 690262.3

Berkeley

<u>____(</u>

Wilmington

Los Angeles



LABORATORY NUMBER: 107005 CLIENT: AQUA RESOURCES

PROJECT ID: 690262.3

LOCATION: PG&E

DATE SAMPLED: 03/31/92

DATE RECEIVED: 03/31/92

DATE ANALYZED: 04/03/92 DATE REPORTED: 04/16/92

ANALYSIS: LEAD

ANALYSIS METHOD: EPA 7421

LAB ID	SAMPLE ID	RESULT	UNITS	REPORTING LIMIT
107005-1	W-1	ND	ug/L	3.0
107005-2		ND	ug/L	3.0
107005-3		ND	ug/L	3.0

ND = Not detected at or above reporting limit.

# QA/QC SUMMARY:

RPD, %	2
RECOVERY, %	106



LOCATION: PG&E

DATE SAMPLED: 03/31/92
DATE RECEIVED: 03/31/92
DATE EXTRACTED: 04/06/92
DATE ANALYZED: 04/07/92
DATE REPORTED: 04/16/92

Extractable Petroleum Hydrocarbons in Aqueous Solutions
California DOHS Method
LUFT Manual October 1989

LAB ID	CLIENT	ID	KEROSENE RANGE (ug/L)	DIESEL RANGE (ug/L)	REPORTING LIMIT* (ug/L)
107005-1 107005-2 107005-3	W- 2 W- 1 W- 4		* *	670 3,100 2,100	5 0 5 0 5 0

*Reporting limit applies to all analytes.

**Sample quuntitated as diesel.

# QA/QC SUMMARY

=======================================	==========
RPD, %	6
RECOVERY, %	90
~~====================================	



Client: Aqua Resources

Laboratory Login Number: 107005

Project Name: P.G.&E. Project Number: 690262.3 Report Date: 16 April 92

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520BF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
107005-001	<b>u.</b> -2	Water	31-MAD-02	71-MAD-07	07-APR-92	ND	ma ()	5	TR	4874
107005 007		. water	31 PMR 72	31-MMK-72	01-AFK-92		mg/ c	,	i K	4014
107005-002	W-1	Water	31-MAR-92	31-MAR-92	07-APR-92	ND	mg/L	5	TR	4874
107005-003	<b>W-4</b>	Water	31-MAR-92	31-MAR-92	07-APR-92	ND.	mg/L	5	TR	4874
						0.0000000000000000000000000000000000000				
						2 August 200 (1900)				
	Balana a eu l'Alina Jenina de la l'Alina									
						. 100 X 600 CO				
	And the second of the second o					011,0154084 0100 04400 0100 04600				

ND = Not Detected at or above Reporting Limit (RL).



## QC Batch Report

Client:

Aqua Resources

Laboratory Login Number: 107005

Project Name: P.G.&E.

Project Number: 690262.3

Report Date: 16 April 92

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch Number:

4874

Blank Results

Sample ID Result MDL Units Method

Date Analyzed

BLANK ND 5

mg/L

SMWW 17:5520BF

07-APR-92

Spike/Duplicate Results

Sample ID Recovery

Method

Date Analyzed

BS

84%

07-APR-92

BSD

89%

SMWW 17:5520BF SMWW 17:5520BF

07-APR-92

Average Spike Recovery Relative Percent Difference 5.5%

86%

Control Limits 80% - 120%

< 20%



LOCATION: PG&E

DATE SAMPLED: 03/31/92 DATE RECEIVED: 03/31/92 DATE ANALYZED: 04/01/92

DATE REPORTED: 04/16/92

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE I	GASOLINE	BENZENE (ug/L)	TOLUENE	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
107005-1 107005-2 107005-3	W- 2 W- 1 W- 4	ND(50) 100 ND(50)	ND(0.5)	ND(0.5) ND(0.5) ND(0.5)	ND(0.5)	ND(0.5) 3.2 0.7

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

## QA/QC SUMMARY

RPD, %	1
RECOVERY	105
=======	



CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E SAMPLE ID: W-2

DATE SAMPLED: 03/31/92
DATE RECEIVED: 03/31/92
DATE ANALYZED: 04/10/92
DATE REPORTED: 04/16/92

EPA 8010 Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		ug/L
Chloromethane	ND	2
Bromome than e	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	1
I, l-Dichloroethene	ND	1
l, l-Dichloroethane	ND	1
cis-l,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	î
l, 2-Dichloroethane	ND	1
l, I, I-Trichloroethane	ND	1
Carbon tetrachloride	ND	î
Bromodichloromethane	ND	î
1,2-Dichloropropane	ND	ī
cis-l,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
l, l, 2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	Ĩ
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	1
Tetrachloroethene	ND	1
l, I, 2, 2-Tetrachloroethane	ND	i
Chlorobenzene	ND	1
1,3-Dichlorobenzene	ND	1
l, 2-Dichlorobenzene	ND	1
l, 4-Dichlorobenzene	ND	
<del></del>	1413	1

ND = Not detected at or above reporting limit.

# QA/QC SUMMARY



CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E SAMPLE ID: W-1

DATE SAMPLED: 03/31/92 DATE RECEIVED: 03/31/92 DATE ANALYZED: 04/10/92

DATE REPORTED: 04/16/92

# EPA 8010 Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
	_	ug/L
Chloromethane	ND	2
Bromome than e	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	1
l, I-Dichloroethene	ND	1
l, l-Dichloroethane	ND	1
cis-1,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freen 113	ND	1
1,2-Dichloroethane	ND	1
l, l, l-Trichloroethane	ND	1
Carbon tetrachloride	ND	1
Bromodichloromethane	ND	1
l, 2 - Dichloropropane	ND	î
cis-l,3-Dichloropropene	ND	1
Trichloroethyiene	ND	1
1,1,2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	Ī
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	$\hat{2}$
Bromoform	ND	1
Tetrachloroethene	ND	1
1,1,2,2-Tetrachloroethane	ND	1
Chlorobenzene	ND	i
l, 3-Dichlorobenzene	ND	1
l, 2-Dichlorobenzene	ND	1
l, 4-Dichlorobenzene	ND	î
	1(2	*

ND = Not detected at or above reporting limit.

## QA/QC SUMMARY



CLIENT: AQUA RESOURCES PROJECT ID: 690262.3

LOCATION: PG&E SAMPLE ID: W-4

DATE SAMPLED: 03/31/92
DATE RECEIVED: 03/31/92
DATE ANALYZED: 04/10/92
DATE REPORTED: 04/16/92

EPA 8010 Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
	-	ug/L
Chloromethane	ND	2
Bromomethane	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1
1,1-Dichloroethene	ND	1
l, l-Dichloroethane	7	1
cis-1,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	1
l, 2-Dichloroethane	ND	1
l, l, l-Trichloroethane	ND	1
Carbon tetrachloride	ND	1
Bromodichloromethane	ND	1
1,2-Dichloropropane	ND	1
cis-1,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
1,1,2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	NĐ	1
Tetrachloroethene	ND	1
I, I, 2, 2-Tetrachloroethane	ND	1
Chlorobenzene	ND	1
l, 3-Dichlorobenzene	ND	1
l, 2-Dichlorobenzene	ND	1
l, 4 - Dichlorobenzene	ND	1

ND = Not detected at or above reporting limit.

## QA/QC SUMMARY



LABORATORY NUMBER: 107005 CLIENT: AQUA RESOURCES

PROJECT ID: 690262.3

LOCATION: PG&E

SAMPLE ID: METHOD BLANK

DATE ANALYZED: 04/10/92 DATE REPORTED: 04/16/92

# EPA 8010 Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		ug/L
Chloromethane	ND	2
Bromomethane	ND	2
Vinyl chloride	ND	2
Chloroethane	ND	2
Methylene chloride	ND	2 0
Trichlorofluoromethane	ND	1
l, l-Dichloroethene	ND	1
l, l-Dichloroethane	ND	1
cis-1,2-Dichloroethene	ND	1
trans-1,2-Dichloroethene	ND	1
Chloroform	ND	1
Freon 113	ND	1
l, 2-Dichloroethane	ND	1
l, l, l-Trichloroethane	ND	1
Carbon tetrachloride	ND	î
Bromodichloromethane	ND	1
1,2-Dichloropropane	ND	Î
cis-l,3-Dichloropropene	ND	1
Trichloroethylene	ND	1
l, l, 2-Trichloroethane	ND	1
trans-1,3-Dichloropropene	ND	1
Dibromochloromethane	ND	1
2-Chloroethylvinyl ether	ND	2
Bromoform	ND	1
Tetrachloroethene	ND	1
l, l, 2, 2. Tetrachloroethane	ND	1
Chlorobenzene	ND	1
1,3-Dichlorobenzene	ND	1
I, 2-Dichlorobenzene	ND	
l, 4-Dichlorobenzene	ND	1
, , , , , , , , , , , , , , , , , , , ,	ND	1

ND = Not detected at or above reporting limit.

## QA/QC SUMMARY



# LABORATORY CONTROL SAMPLE SUMMARY SHEET FOR EPA 8010/8020

Operator:

MBP

Spike file:

101W/X002

Analysis date: Sample type:

4/10/92 Instrument: WATER Sequence Name Sequence Name APR10

GC12 (QUANT COLUMN)

# LCS SPIKE DATA (spiked at 20 ppb)

8010 COMPOUNDS	READING	RECOVERY	STATUS	LIMITS
1,1-Dichloroethene	17.22	86 %	OK	60 - 133
Trichloroethene	19.78	99 %	OK	88 - 125
Chlorobenzene	18.92	95 %	OK	90 - 127
SURROGATES Bromobenzene	107.80	108 %	OK	98 - 115
8020 COMPOUNDS	READING	RECOVERY	STATUS	LIMITS
Benzene	19.47	97 %	OK	62 - 120
Toluene	19.28	96 %	OK	61 - 121
Chlorobenzene	21.30	107 %	OK	84 - 115
SURROGATES Bromobenzene	100.71	101 %	oĸ	91 - 107

LIMITS ARE BASED ON CONTROL CHARTS (NOV. 91).



MS/MSD SUMMARY SHEET FOR EPA 8010/8020

INSTRUMENT: HP-5890 COLUMN: RESTEK 502.2 DETECTORS: HALL/PID

Operator: MBP Spike file: 101W/X022 Analysis date: 4/11/92 Spike dup file: 101W/X023

Sample type:	4/11/92 VATER 107012-004 1:200	Spike dup file: Instrument: Sequence name:	101W/X023 GC12 APR10
8010 MS/MSD DATA (spike	ed at 20 ppb)	Ave Rec=	99 %
SPIKE COMPOUNDS 1,1-Dichloroethene Trichloroethene Chlorobenzene	READING 20.3 19.7 18.9	5 102 % OK 5 99 % OK	61 - 145
SPIKE DUP COMPOUNDS 1,1-Dichloroethene Trichloroethene Chlorobenzene	21.3 18.8 19.4	5 94 % OK	61 - 145 71 - 120 75 - 130
SURROGATES BROMOBENZENE (MS) BROMOBENZENE (MSD)	108.89 105.99		75 - 115 75 - 115
8020 MS/MSD DATA (spike	ed at 20 ppb)	Ave Rec=	100 %
SPIKE COMPOUNDS Benzene Toluene Chlorobenzene	READING 18.99 18.59 20.1	5 93 % OK	LIMITS 76 - 127 76 - 125 75 - 130
SPIKE DUP COMPOUNDS Benzene Toluene Chlorobenzene	20.2° 20.2° 21.5°	3 101 % OK	76 - 127 76 - 125 75 - 130
SURROGATES BROMOBENZENE (MS) BROMOBENZENE (MSD)	100.4		75 - 120 75 - 120
RPD DATA	8010 RPD=	4.1 % 8020	RPD= 7.4 %
8010 COMPOUNDS 1,1-Dichloroethene Trichloroethene Chlorobenzene  8020 COMPOUNDS Benzene Toluene Chlorobenzene	SPIKE SPIKE DUT 20.36 21.36 19.76 18.89 18.91 19.40  18.98 20.20 18.55 20.20 20.11 21.56	5 % OK 5 % OK 5 % OK 7 % OK 9 % OK	LIMITS  < 14 < 14 < 13 < 13 < 13

SPIKE RECOVERY LIMITS FROM SW-846 METHODS 8010/8020 TABLE 3; SURROGATE RECOVERY LIMITS FROM LCS CONTROL CHARTS (NOV. 91); RPD LIMITS FROM CLP SOW 2/88 VOLATILES.

APPENDIX B

CHAIN-OF-CUSTODY DOCUMENTATION

	AQUA	A RES	OURC	ES, INC.			ENT NO.:_	
-	2			CUSTODY RECO	RD		OF	t t
	dre		DCI	- <u>T</u>		. DATE	4111	<u>72  </u>
	PROJEC	T NAME:_	700	12 2				
	PROJEC	T NO.:	6402	<u> </u>			<del></del>	
Sample Number	Location	Type of Material	Sample Method	Type of Container	Temp	of Preservation Chemical	<u> </u>	Required
1.3 5	Weilw-5	Water	Bailer	2×40 ml VOA	<u> </u>	1-1Cl	EPA 8	
<u> </u>	Well w-5	u		14VOA	)1		TYHE	
<u>W-5</u>	11	11	<u> </u>	1 l. Amber	- 11	None	TPHas	ا <u>کار 0</u>
<u>W-5</u>			*1	il	1.1	Hz 504	050	
<u> </u>	1	11		Plastic Bottle	, C	HNO4	Lead	_ · <u>·</u>
W-5								
	Wall Me	1.30 40 %	Bailer	2× VOA	11	HCQ	EPA 8	
W-6	<del></del>	35	.1	IXVOA	0	11 .		+ BIEX
M-6	- '(			1 Amber	( )	None		15 D, K.
W-6	- ! !	<u></u>		12 Amber	11	1+,504	1056	
<u>w-6</u>	31		<del></del>	PlasticBottle	11	HN02	Lead	
W-6	- 11	11 14 6		3 × VOA	11	HCQ		BTEX
TRAVEL BLAN	<u> </u>	Water	7 - 10 /	·	1-17	HCR	EPAS	
W-7	Wilsel	Water	1	1× VOA	41	HCR	TVHG	CBTEX
W-7_	<u> </u>	11	- 11	·   ——— ·	- \-	None		15 D.K
W-7	11	- 11		1 2 Amber		H2504	0 \$ 0	
W-7_	11	11	11	1 Amber		H NO2	lead	
W-7-W	- 1	1 A:		Plastic Bottle	- 1	46-8		8010
STAN EVAN	KI WRITT	93aTer	Bailer	IXVOA	-	1+Cl	<del>- 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 </del>	<del>. 2010</del>
WANT READE	2 11	Dist, Wike		1 × VO A	- 11		TV4G.	RIEX
BLANK	— i	Dist wex	<u> </u>	IXVOA		1+0	111111	<u> </u>
Total Number of	Samples St	iipped: 1 4	Samole	er's Signature:	<u> </u>	7		Date
Relinquished By;		۔ مسبیسے		Received By:	Oran	t-lub-		4/1/9
Signature	- margaret .	7/10	man			Julism		Time
Printed Name	HATON Dos			CompanyC	Unda 5	le Templer	<u> </u>	3:25
Company Ac	Analu	4.5						Date
Relinquished By:				Received 8y:				/ /
Signature				Signature Printed Name _				Time*.
Printed Name_				Company				i ime.
Company								<u></u>
Reason								
REMARKS:						حا ما ما		
11-6	PH =	7 nea	shoed b	y indicator s	trip a	C (100)		
	1	•			:			
1								
	_							
Special Shipme	nt / Handlin	g / Storage	Requiremo	ints:				
1								

AQUA RESOURC	CES, INC.	SHIPN	IENT NO.:				
<del></del>	F CUSTODY RECO						
. WILL	DATE 3/31/92						
PROJECT NAME: PG	(2 3						
PROJECT NO.: 6902		Type of Preservation	Analysis Required				
Sample Number Location Type of Sample  Material Method	Type of Container	Temp Chemical					
W-21-1 well water	40 ul vial	4°C HCL	TVHQ&BTXE EPA 8010				
N-2 well water	40 ml vial	\$°C -	TPH as D				
W-2 / well water	11 bottle	4°C H2504	Oil & Grease				
W-2 / Well vater	plastic bottle	4°C HNO2	Lead				
W-Z well water	west vial	, <u> </u>	FPA 8010				
10-1 well water	40 rul vial	Ф°C	TPH as D				
W-1 sell water	Il bottle	4°C 4-504	O. U. Grease				
W-1 vell water	plastic bottle	4°C HNO3	TUHO & BTYE				
1) -01 -3 well water	140 we	4°C 7CC	EPA 8010				
water	16 bottle	4°C	TPHOSD				
W-4   well water	16 bottle	4°C H, 400	096				
W-4 oell water	Maste will		Lead				
TPal							
19-2			1				
	1						
LINIAL MUMBER OF Samples Supplying	oler's Signature: WO	Theel Day	Date				
Relinquished By: ( ) Dough	Received By Signature	neyburbon	3/3/92				
Printed Name \ \UU / \U	od f Downson Marina	Cuts Tangkin	5 Time				
Company Ask V	Company		Date				
Relinquished By:	Received By:		/_/				
Signature	Printed Name_		Time'.				
Printed NameCompany	Company						
Reason							
REMARKS:							
·		:					
			1				
· ·							
Special Shipment / Handling / Storage Require	ments:						
1							