Groundwater Monitoring Well Installation Report South Airport Self-Fueling Facility, Taxiway U Oakland International Airport Oakland, California

Nisla # 6009

Prepared for

Port of Oakland 530 Water Street, 2nd Floor Oakland, California 94607

HLA Project No. 49667.1

Stephen J. Øsborne P.E. Geotechnical Engineer

GE 656

Box 3-31-03

THE OF CALIFORNIA

December 15, 2000

Harding Lawson Associates

Engineering and Environmental Services 383 Fourth Street, Third Floor Oakland, CA 94607 — (510) 451-1001

Groundwater Monitoring Well Installation Report South Airport Self-Fueling Facility, Taxiway U Oakland International Airport Oakland, California

HLA Project No: 49667.1

Harding Lawson Associates (HLA) prepared this document at the direction of the Port of Oakland for the sole use of Port of Oakland and the Alameda County Health Agency, the only intended beneficiaries of this work. No other party should rely on the information contained herein without the prior written consent of the Port of Oakland and HLA. This report and the interpretations, conclusions, and recommendations contained within are based in part on information presented in other documents that are cited in the text and listed in the references. Therefore, this report is subject to the limitations and qualifications presented in the referenced documents.

CONTENTS

1.0 IN	NTRODUCTION
	1.1 Background
2.0 FI	ELD ACTIVITIES
	2.1 Monitoring Well Installation
3.0 A	NALYTICAL RESULTS AND DISCUSSION
	3.1 Well Installation Soil Sample Results 3.2 Quarterly Groundwater Monitoring Results 3.3 Soil Investigative Derived Waste
3.0 R	EFERENCES
TABL	LES
1 2 3 4	Soil Analytical Data Groundwater Elevations Groundwater Monitoring Well Petroleum Hydrocarbon Analytical Results Groundwater Monitoring Well Natural Attenuation Analytical Results
PLAT	'ES
1 2 3 4 5	Site Location Map Site Plan Soil Chemical Results Groundwater Elevations (5/30/00) Groundwater Chemical Results
APPE	ENDIXES
A B C D E F	Boring Logs and Well Completion Logs Well Development Forms Groundwater Sampling Forms Monitoring Well Survey Data Soil Laboratory Reports and Chain-of-Custody Form Groundwater Laboratory Reports and Chain-of-Custody Form
DIST	RIBUTION

1.0 INTRODUCTION

This report describes the installation, development and first quarterly round of sampling for four wells located at Taxiway U of the South Airport Self-Fueling Facility at the Oakland International Airport in Oakland, California (Plate 1). This report summarized the results of the activities as described in Work Plan Groundwater Monitoring, Oakland International Airport, Oakland, California dated March 16, 2000. The objectives of the site activities were to evaluate the variations in the groundwater levels and the concentrations of petroleum hydrocarbons beneath the site in the vicinity of the former underground storage tanks (USTs) MF-08, MW-09 and MF-10. These USTs which were removed in April 1999.

Initially, HLA's teaming partner MSE Group, was scheduled to do this work, but due to staff availability, MSE Group requested HLA complete all aspects of the project (telephone conversation between Mr. Carl Hackney of MSE Group and Mr. Stephen Osborne of HLA on April 18, 2000). Prior to any sight activity, MSE Group prepared the Work Plan and the Health and Safety Plan, dated March 2000.

1.1 Background

1.1.1 UST Removal

On April 26, 1999, the Port of Oakland' contractor, Enviroclean, removed three underground storage tanks (USTs), MF-08, MF-09, and MF-10 from an area adjacent to Taxiway U, see Plate 2. MF-08 was a 5,000-gallon gasoline UST and MF-08 and MF-09 were 1,000-gallon diesel tanks. Removal of the three USTs involved two separate excavations, one for the diesel tanks and one for the gasoline tank. Soil and groundwater samples collected from the excavations indicated that there had been a release of petroleum hydrocarbons at both sites. Total petroleum hydrocarbons as diesel (TPH-

diesel), total petroleum hydrocarbons as gasoline (TPH-gas), benzene, toluene, ethylbenzene, and total xylenes (BTEX) and methyl tertiary butyl-ether (MTBE) were detected in both soil and groundwater samples collected from the excavations.

Analytical results of soil samples collected from excavation of the two diesel USTs indicated TPH-diesel and TPH-gas concentrations as high as 39,000 and 3,000 milligrams per kilogram (mg/kg) respectively. Benzene constituents were less than 1.5 mg/kg. Grab groundwater samples collected within the excavation detected TPH-diesel and TPH-gas at concentrations of up to 51 and 120 milligrams per liter (mg/l), respectively.

Analytical results of soil samples collected from the excavation of the gasoline UST detected TPH-gas at 4,300 mg/kg, TPH-diesel concentrations at 6,200 mg/kg, benzene at 1.4 mg/kg, toluene at 87 mg/kg, ethylbenezene at 65 mg/kg, xylenes at 540 mg/kg, and MTBE at 5.5 mg/kg. Groundwater samples collected within the excavation detected TPH-gas at 42 mg/l and TPH-diesel concentrations at 1.7 mg/l, respectively. Dissolved BTEX ranged from 0.27 to 8.9 mg/l and MTBE was detected at 15 mg/l.

Groundwater was measured at a depth of 3.5 to 4.0 feet. Both excavations were reportedly backfilled with pea gravel to a depth of 3 feet and capped with aggregate base rock.

1.1.2 August 1999 Site Investigation

On August 31, 1999, HLA performed a subsurface investigation at the site. Eight geoprobe borings were advanced in locations surrounding the former USTs. Soil and groundwater samples were collected from the borings. The boring locations are shown on Plate 2. TPH-diesel was detected in soil at

concentrations of 8.7 micrograms per kilogram (μ g/kg) to 680 μ g/kg. The highest TPH-gasoline concentration was found in a boring SB-4 (see Plate 2), and the highest TPH-diesel concentration was found at SB-8.

The soil sample with the highest diesel concentration was also analyzed for polynuclear aromatic hydrocarbons (PAHs). Naphthalene was detected at 8,800 µg/kg and benzo(a)pyrene was detected at 620 µg/kg, as well as minimal concentrations of several other PAHs.

TPH-diesel was detected in the groundwater at concentrations ranging from 71 micrograms per liter (μg/L) to 380 μg/L. The highest TPH-diesel concentration was found in SB-4. TPH-gas was detected in the groundwater at concentrations ranging from 33 μg/L to 300 μg/L. MTBE was encountered at concentrations ranging from 3.5 μg/L to 4,500 μg/L. Benzene was detected above the MCL for drinking water at a concentration of 63 μg/L. PAHs were analyzed in the groundwater sample with the highest diesel concentration and no PAHs were detected at or above their reporting limits. The highest concentrations of TPH-gasoline, benzene, and MTBE were found at SB-2.

During the August 31, 1999 investigation, The groundwater samples were subjected to a variety of chemical analyses to evaluate the potential for natural attenuation. HLA also measured certain groundwater parameters in the field to supplement the chemical data. The recorded groundwater temperature and pH measurements were all within ranges acceptable to support the presence of microorganisms. The presence of ferrous iron in the groundwater may be evidence of natural bio-degradation of the petroleum hydrocarbons. The absence of organophosphate in the groundwater may indicate micobial growth because phosphate is utilized by the microbes to break down the petroleum hydrocarbons.

2.0 FIELD ACTIVITIES

The following sections describe the field activities associated with the installation and quarterly sampling of the four groundwater monitoring wells, designated MW-1, MW-2, MW-3 and MW-4, located adjacent to Taxiway U. Section 2.1 describes the well installation on April 27, 2000, Section 2.2 describes the well development on May 18, 2000, Section 2.3 describes the first quarterly groundwater monitoring on May 30, 2000 and Section 2.4 describes the location surveying of the monitoring wells on July 21, 2000.

2.1 Monitoring Well Installation

Prior to initiating field activities, MSE Group marked the well locations and notified Underground Service Alert. Also prior to initiating drilling activities, HLA obtained a drilling permit from Alameda County Department of Public Works. On April 27, 2000 prior to drilling, HLA contracted Cruz Brothers to locate any existing utilities in the vicinity of the work area.

On April 27, 2000, Greg Drilling and Testing, Inc. (Gregg), under the direction of HLA, drilled four boreholes to a total depth of 10 feet and installed four monitoring wells, MW-1, MW-2, MW-3 and MW-4, as shown on Plate 2. Gregg continuously cored the boreholes using an 8-inch outside diameter hollow-stem auger, . The samples were continuously contained in 18-inch intervals by 6-inch stainless steel tubes.

HLA's field engineer directed the work, logged the borings in accordance with ASTM D2487-85 Unified Soil Classification, and screened the samples with a photo-ionization detector (PID). HLA selected and preserved the soil sample from each boring that was most likely to have an impact of petroleum hydrocarbon contamination. The soil samples selected for chemical testing were immediately sealed, labeled, placed in a chilled cooler and delivered under chain-of-

custody to Sequoia Analytical, a California statecertified laboratory under direct contract to the Port, for chemical analysis. Soil samples were analyzed for the following constituents:

- TPH-gas in accordance with EPA Test Method 8015 modified
- BTEX and MTBE in accordance with EPA Test Method 8020, MTBE confirmation samples of detections by EPA Test Method 8260.
- TPH-diesel in accordance with EPA Test Method 8015 modified
- Total Lead in accordance with EPA Test Method 6000/7000.

Gregg installed a monitoring well in each of the four boring at a total depth 10 feet. The wells were constructed of 2-inch diameter schedule 40 polyvinyl chloride (PCV). Under the direction of HLA, Gregg installed the screened interval consisting of 0.02-inch slotted casing between the depths of 3 and 10 feet. 3 feet of flush-threaded, 2-inch diameter PVC solid casing was installed between the ground surface and 3 feet. The top of the well casing was fitted with an expandable locking well plug.

The hollow stem augers were slowly removed from the borehole as the sand pack was added between the depths of 2 and 10 feet. Gregg added a nine inch bentonite seal above the sand pack. Above the bentonite seal, Gregg added a bentonite cement mixture to just below the top of the well casing. Gregg installed 12.5-inch diameter watertight, traffic rated, christy boxes, setting MW-1 flush with the existing grade and MW-2, MW-3, and MW-4 approximately 2-inches above existing grade. The boring logs and well completion logs are found in Appendix A.

Soil and drilling mud generated during the field activities was placed in 55-gallon drums and

located in a nearby area which was designated by the Port, pending disposal by the Port's contractor. HLA sampled the two drums to be analyzed by Sequoia for the same constituents as the soil boring samples.

2.2 Well Development Monitoring

MW-1, MW-2, MW-3 and MW-4 were developed to remove fine particles from the well near the well screen on May 18, 2000. The well development forms can be found in Appendix B.

To develop the monitoring wells, HLA first surged the wells for approximately ten minutes. The surge block was used in order to move the water back and forth across the well screen, which aids in producing a well that will improve hydraulic communication with the surrounding formation. After ten minutes, HLA pumped the wells using a centrifugal pump until the water cleared up, taking field measurements of pH, temperature, conductivity and turbidity.

Purge water generated during the field activities was placed in 55-gallon drums and located in a nearby area which was designated by the Port, pending disposal by the Port's contractor.

2.3 Quarterly Groundwater Monitoring

Following development of the wells, HLA conducted groundwater monitoring for the quarter of April 1 through June 30, 2000. On May 30, HLA measured groundwater elevations and collected groundwater samples for chemical analyses. Prior to purging or sampling the monitoring wells, HLA measured dissolved oxygen (DO) concentrations, reduction oxidation potential (Redox), water levels. HLA monitored the pH, conductivity, and temperature of the groundwater during purging. HLA sampled the monitoring wells after purging at least four well volumes of groundwater and after parameters had stabilized to within 10 percent; the groundwater sampling forms with the field data are included in Appendix C.

HLA collected groundwater samples from the four monitoring wells using pre-cleaned disposable Teflon bailers and then transferred the groundwater into laboratory-provided containers. Sample containers were labeled with the sample number, date and time of collection, and sampler's initials, then placed in an insulated cooler with blue ice. The samples were delivered for chemical testing under chain-of-custody to Sequoia Analytical of Walnut Creek, California. The samples were analyzed for the following analytes:

- TPH- gas in accordance with EPA Test Method 8015 modified
- BTEX and MTBE in accordance with EPA Test Method 8020, MTBE confirmation samples of detections by EPA Test Method 8260.
- TPH-diesel and total petroleum hydrocarbons as motor oil (TPH-mo) in accordance with EPA Test Method 8015 modified
- Total iron and ferrous iron by EPA Test Method 6000/7000
- Nitrate as NO3, Orthophosphate as PO4, and sulfate as SO4 by EPA Test Method 300
- Total Organic Carbon by EPA Test Method 415.1.

HLA contained the purge water in a 55-gallon drum for subsequent disposal by the Port's contractor.

2.4 Monitoring Well Location Surveying

On July 21, 2000 HLA contracted PLS Surveys, Inc. to locate and provide elevations to the nearest 0.01 foot, relative to the Port's datum for the four monitoring wells. The wells were also surveyed in horizontally using NAD '83. The survey data can be found in Appendix D.

3.0 ANALYTICAL RESULTS AND DISCUSSION

The following discusses the results of the well installation and the quarterly groundwater monitoring.

3.1 Well Installation Soil Sample Results

Analytical results for the soil samples taken during the monitoring well installation are summarized in Table 1. These samples were collected in the upper five feet. The results of the TPH analysis are displayed on Plate 3. The laboratory report and chain-of-custody forms are presented in Appendix E. TPH-diesel was detected in the soil at MW-1 at a concentration of 1.2 milligrams per kilogram (mg/kg). Total lead was detected in MW-1 at a concentration of 1.9 mg/kg, in MW-2 at a concentration of 1.0 mg/kg, and in MW-4 at a concentration of 3.2 mg/kg. No other analytes were detected above the reporting limits.

3.2 Quarterly Groundwater Monitoring Results

Groundwater elevations are presented in Table 2 and shown on Plate 4 with an apparent gradient towards the southwest. Table 3 and Plate 5 presents the petroleum hydrocarbon analytical data. Table 4 presents the natural attenuation parameter analytical results. The laboratory report and chain-of-custody forms are presented in Appendix F.

TPH-diesel was reported in all four of the monitoring wells at concentrations ranging from 210 micrograms per liter (μ g/L) in MW-4 to 51 μ g/L in MW-2. MTBE was detected in MW-3 and MW-4 as concentrations of 7.5 μ g/L and 19 μ g/L respectively. The MTBE detections were confirmed by EPA 8260 with results of 2.6 μ g/L in MW-3 and 17 μ g/L in MW-4. No other petroleum hydrocarbons were detected above the reporting limits.

The groundwater samples were subjected to a variety of chemical analyses to evaluate the potential for natural attenuation. HLA also measured certain groundwater parameters in the field to supplement the chemical data. This data is summarized in Table 4.

The presence of ferrous iron and the absence of phosphorous at the site may be indications that natural bio-degradation of the petroleum hydrocarbons are occurring. Ferrous iron is produced when ferric iron is used in the bio-degradation process. Phosphate is utilized by the microbes to break down the petroleum hydrocarbons. The REDOX measurements are also consistent with the above indications of reduction of petroleum hydrocarbons; measurements of less than 300 millivolts can be considered evidence of a reducing environment.

3.3 Soil Investigative Derived Waste

Analytical results for the soil drums containing the soil cuttings from the monitoring well installation are also summarized in Table 1.

TPH-diesel was detected in the soil at both drums at concentrations of 13 mg/kg and 1.2 mg/kg.

Total lead was detected at both drums at concentrations of 3.0 mg/kg and 2.5 mg/kg. No other analytes were detected above the reporting limits.

49667/037779R 12/15/2000

4.0 REFERENCES

Harding Lawson Associates (HLA), 1999.

Underground Storage Tank Closure Report - Port

Tanks MF08, MF-09 and MF-10, South Airport

Self-Fueling Facility, Taxiway 4, Oakland,

California. June 29.

HLA, 1999. Subsurface Investigation - Former

USTs: MF-08, MF-09, MF-10, South Airport Self-

Fueling Facility, Taxiway U, Oakland, California.

October 7.

MSE Group and HLA, 2000. Work Plan -

Groundwater Monitoring, Oakland International

Airport, Oakland, California. March

TABLES

Table 1. Soil Analytical Data Groundwater Monitoring Well Installation Report South Airport Self-Fueling Facility, Taxiway U Oakland, California

Sample Identification Depth			MW-1 4.5	MW-2 4.0	MW-3 3.5	MW-4 3.0	Drum 4223	Drum 4230
Sample Date	EPA		4/27/2000	4/27/2000	4/27/2000	4/27/2000	4/27/2000	4/27/2000
Analyte	Method	Units						
TPH gas	8015 M	mg/kg	ND<1	ND<1	ND<1	ND<1	ND<1	ND<1
TPH diesel	8015 M	mg/kg	1.2 ¹	ND<1	ND<1	ND<1	13 ¹	1.2 ¹
MTBE	8020	mg/kg	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05	ND<0.05
Benzene	8020	mg/kg	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
Toluene	8020	mg/kg	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
Ethylbeneze	8020	mg/kg	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
Total Xylenes	8020	mg/kg	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005
Total Lead	6000/7000	mg/kg	1.9	1.0	ND<1	3.2	2.5	3.0

Notes:

^{1 =} Chromatogram Pattern: Unidentified Hydrocarbons > C16 mg/kg = milligrams per kilogram

Table 2. Groundwater Elevations Groundwater Monitoring Well Installation Report South Airport Self-Fueling Facility, Taxiway U Oakland, California

Well ID	Elevation Top of Casing (feet)	Date Of Monitoring	Depth to Water (feet)	Groundwater Elevation (feet)
MW-1	8.28	04/27/00	4.91 ¹	3.37
		05/18/00	4.96 ¹	3.32
		05/30/00	5.11	3.17
MW-2	6.41	04/27/00	4.34 ¹	2.07
		05/18/00	3,21 ¹	3.20
		05/30/00	3.49	2.92
MW-3	5.24	04/24/00	2.38 1	2.11
		05/18/00	2,33 1	2.16
		05/30/00	2.70	2.54
MW-4	4,49	04/24/00	2.48 1	2.01
		05/18/00	2.47 1	2.02
		05/30/00	2.93	1.56

Elevation data relative to Port of Oakland datum; well surveys performed on July 21, 2000

Water level taken prior to well development

Table 3. Groundwater Monitoring Well Petroleum Hydrocarbon Analytical Results Groundwater Monitoring Well Installation Report South Airport Self-Fueling Facility, Taxiway U Oakland, California

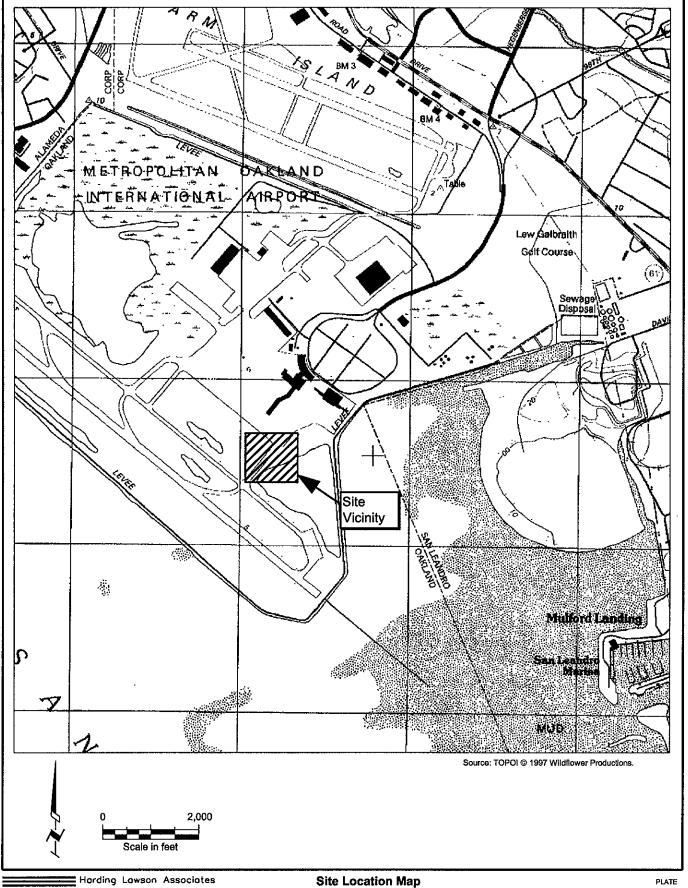
Well	Date	Analyte EPA Method Units	TPH gas 8015 M μg/L	TPH diesel 8015 M μg/L	TPH motor oil 8015 M μg/L	MTBE 8020 μg/L	Confirmation MTBE 8260 μg/L	Benzene 8020 μg/L	Toluene 8020 μg/L	Ethylbeneze 8020 μg/L	Total Xylenes 8020 μg/L
MW-1	5/30/2000		ND<50	60 ²	ND <250	ND-0 E	ND 40 F	ND -0.5	ND -0.5	ND 40 5	ND -0.5
					ND<250	ND<2.5	ND<2.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-2	5/30/2000		ND<50	51 ²	ND<250	ND<2.5	ND<2.5	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-3	5/30/2000		ND<50	60 ²	ND<250	7.5	2.6	ND<0.5	ND<0.5	ND<0.5	ND<0.5
MW-4	5/30/2000		ND<50	210 ¹	ND<250	19	17	ND<0.5	ND<0.5	ND<0.5	ND<0.5

μg/L = micrograms per liter mg/L = milligrams per liter mV = millivolts

1 Chromatograph Pattern: Unidentified Hydrocarbons >C16

1 Chromagraph Pattern: Diesel C9-C24

49667/03779R December 15, 2000

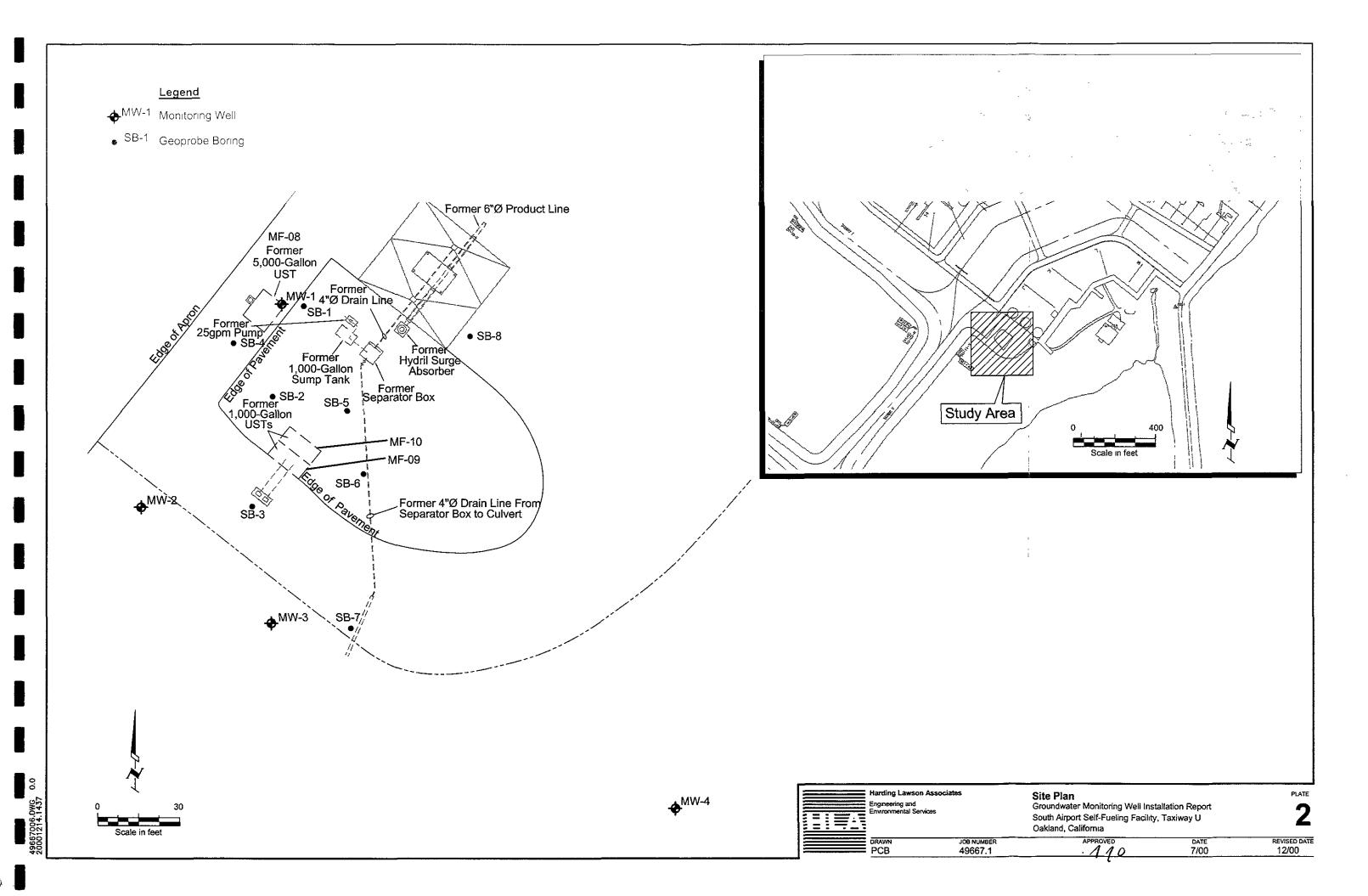

Table 4. Groundwater Monitoring Well Natural Attenuation Analytical Results
Groundwater Monitoring Well Installation Report
South Airport Self-Fueling Facility, Taxiway U
Oakland, California

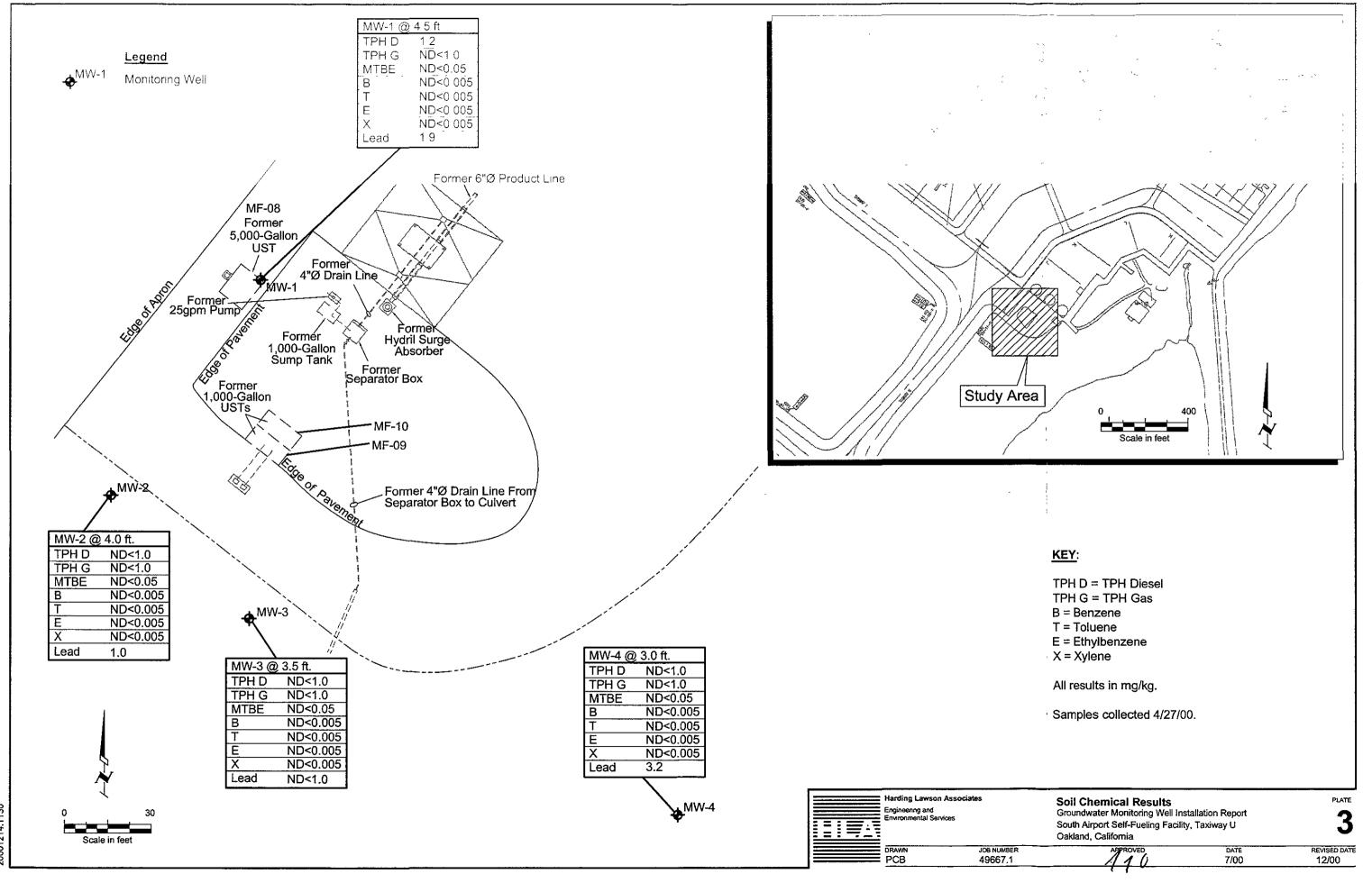
		Analyte	Ferrous Iron	Iron	Nitrate	Orthophosphate	Sulfate	Total Organic Carbon	Dissolved Oxygen	Redox
Weli	Date	EPA Method Units	6000/7000 mg/L	6000/7000 mg/L	300 mg/L	300 mg/L	300 mg/L	415.1 mg/L	Field mg/L	Field mV
MW-1	5/30/2000		1.0	0.75	5.5	ND<0.5	76	47.2	2.8	208
MW-2	5/30/2000		0.1	2.9	1.3	ND<0.5	14	9.39	2.2	228
MW-3	5/30/2000		0.7	3.9	ND<0.1	ND<0.5	51	22.5	1.2	164
MW-4	5/30/2000		0.4	4.6	ND<0.1	0.94	38	21.4	1.0	184

 μ g/L = micrograms per liter mg/L = milligrams per liter

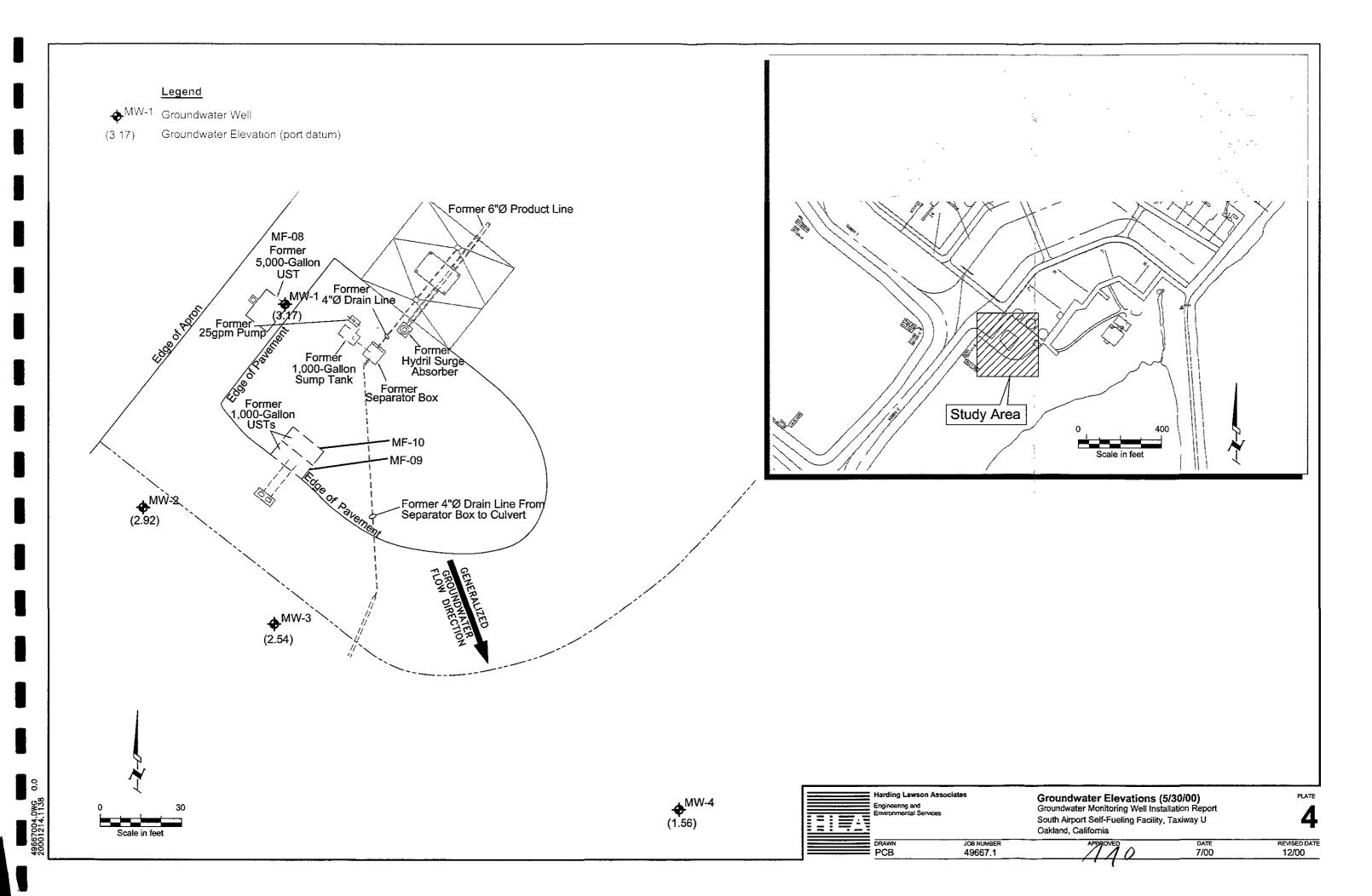
mV = millivolts

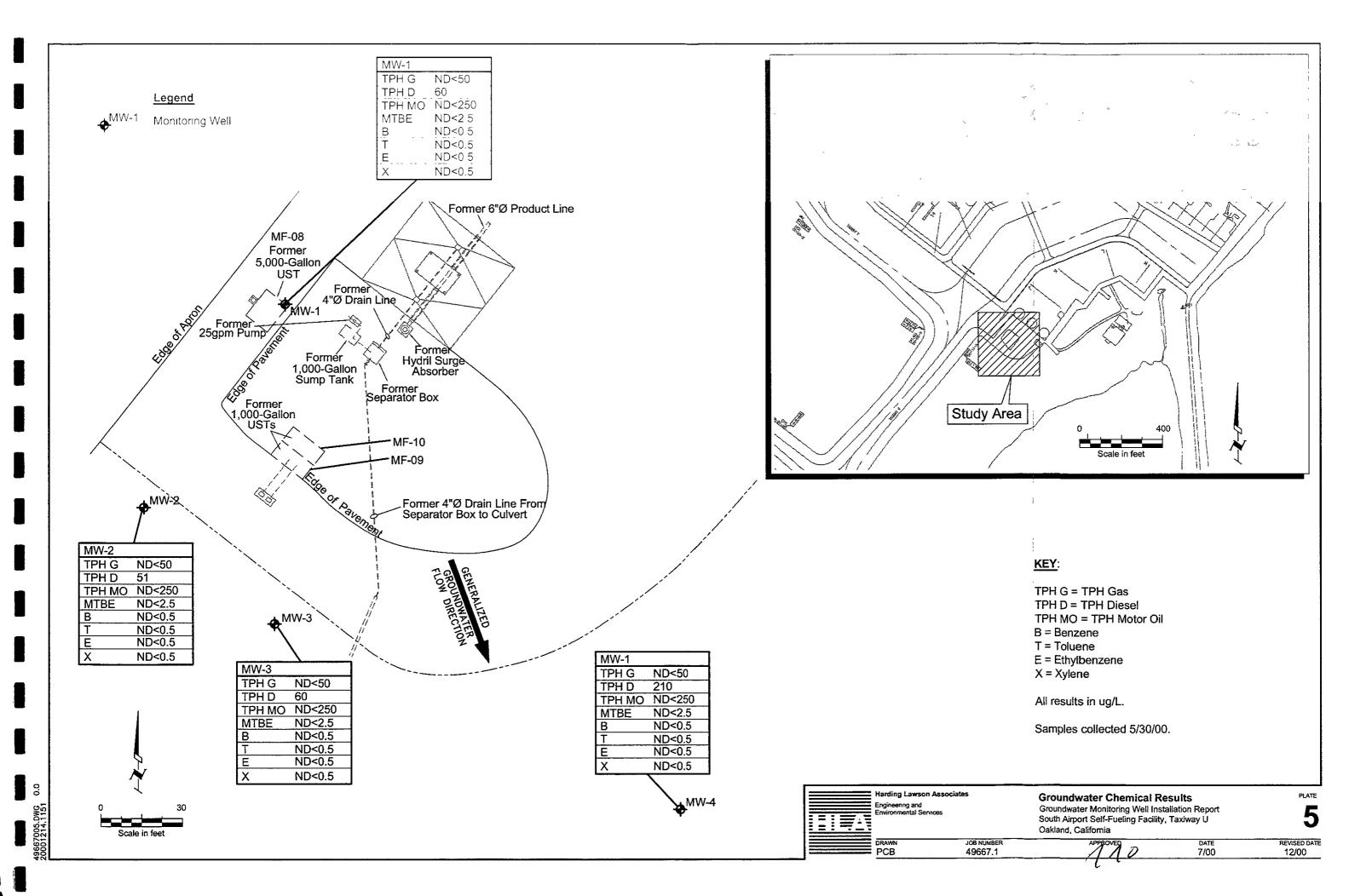
PLATES


49667001.DWG 20001213.1448


Engineering and Environmental Services

Groundwater Monitoring Well Installation Report South Airport Self-Fueling Facility, Taxiway U Oakland, California


DRAWN JOB NUMBER APPROVED DATE REVISED DATE AJW 49667.1


AJW 49667.1

49667003.DWG 0.0 20001214.1130

APPENDIX A BORING LOGS AND WELL COMPLETION LOGS

	MAJOR D	IVISIONS	SYME	BOLS		TYPICAL NAMES
NE VE	GRAVELS	CLEAN GRAVELS WITH	GW	30,C	Well-graded fines	d gravels or gravel-sand mixtures, little or no
COARSE-GRAINED SOILS 50% RETAINED ON NO.200 SIEVE SIZE		LESS THAN 5% FINES	GP		Poorly grad no fines	ed gravels or gravel-sand mixtures, little or
SOIL No.20	MORE THAN 1/2 OF COARSE FRACTION	GRAVELS WITH OVER 15%	GM		Silty gravels	s, gravel-sand-silt mixtures
AINEC SD ON	RETAINED ON No.4 SIEVE SIZE	FINES	GC		1	rels, gravel-sand-clay mixtures
TAINE SI	SANDS	CLEAN SANDS WITH LESS	SW		vvell-graded	d sand or gravelly sands, little or no fines
ARSI % RE		THAN 5% FINES	SP		Poorly grad	ed sands or gravelly sands, little or no fines
50°C	MORE THAN 1/2 OF COARSE	SANDS WITH	SM		Silty sand, s	sand-silt mixtures
OVER	FRACTION PASSING No.4 SIEVE SIZE	OVER 15% FINES	SC		Clayey sand	ds, sand-clay mixtures
500	SIL	TS &	ML		Inorganic si	Its and sandy or gravelly silts, rock flour
SOILS G No.:	CL.	AYS 50% OR LESS	CL		Inorganic cl clays, sand	ays of low to medium plasticity, gravelly y clays, silty clays, lean clays
NED (LIGOID LIMIT		OL		Organic silt	s and organic silty clays of low plasticity
FINE-GRAINED SOILS OVER 50% PASSING No.200 SIEVE SIZE	SIL	TS &	МН		Inorganic si soils, elastic	lts, micaceous or diatomaceous fine sandy c silts
FINE /ER 5	CL.	AYS EATER THAN 50%	СН		Inorganic cl	ays of high plasticity, fat clays
б	LIGOID LIIVIT OIN	EATER THAT 0070	ОН		Organic clar plasticity, or	ys and silty clays of medium to high ganic silts
	HIGHLY ORG	GANIC SOILS	PT	7777 7777	Peat and ot	her highly organic soils
	SPT Sample	er She	ar Strength	n (psf) —		−Confining Pressure
	Modified Ca	lifornia Sampler			3200 (2600) or (S)	-Unconsolidated Undrained Triaxial Shear (field moisture or saturated)
	= '	sterberg Sampler		TxCU (P)	3200 (2600)	-Consolidated Undrained Triaxial Shear (with or without pore pressure measurement.)
		or Pitcher Barrel			3200 (2600)	-Consolidated Drained Triaxial Shear
		Sample ired after water level		SSCU (P)	3200 (2600)	-Simple Shear Consolidated Undrained (with or without pore pressure measurement.)
		ured during or soon after	r		3200 (2600)	-Simple Shear Consolidated Drained
	drilling Perm Permeability	,		DSCD	2700 (2000)	-Consolidated Drained Direct Shear
	onsol Consolidatio	n		UC	470	-Unconfined Compression
	LL Liquid Limit PI Plasticity Inc Gs Specific Gra MA Particle Size	łex (%) vity Analysis		l.VS	700	-Laboratory Vane Shear
		sing Ńo. 200 Sieve				

KEY TO TEST DATA

Source: ASTM D 2488-93, based on Unified Soil Classification system

Harding Lawson Associates

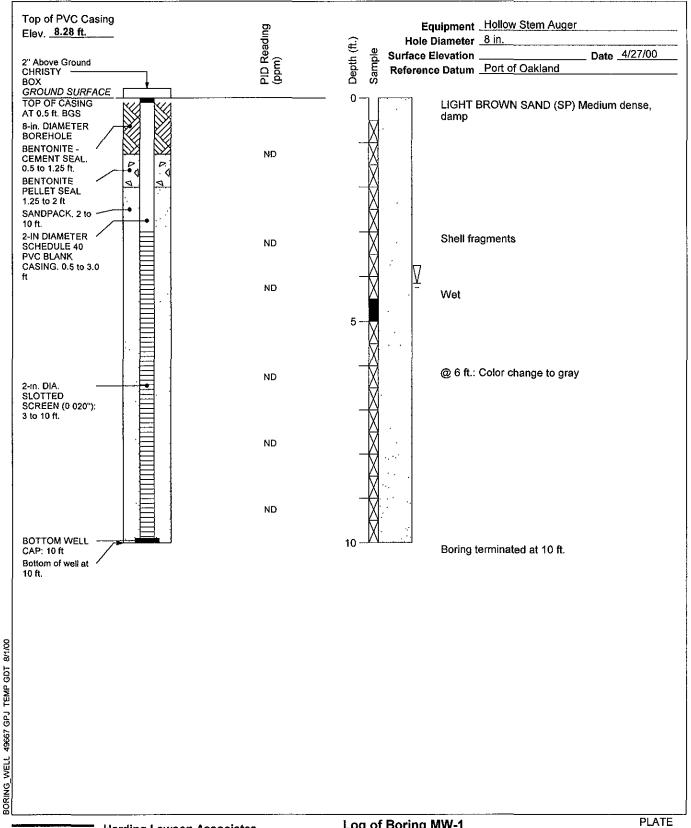
Engineering and **Environmental Services**

AMA

Soil Classification Chart and Key to Test Data

Groundwater Monitoring Well Installation South Airport Self-Fueling Facility, Taxiway U

Oakland, California


JOB NUMBER APPROVED

REVISED DATE

DATE 8/00

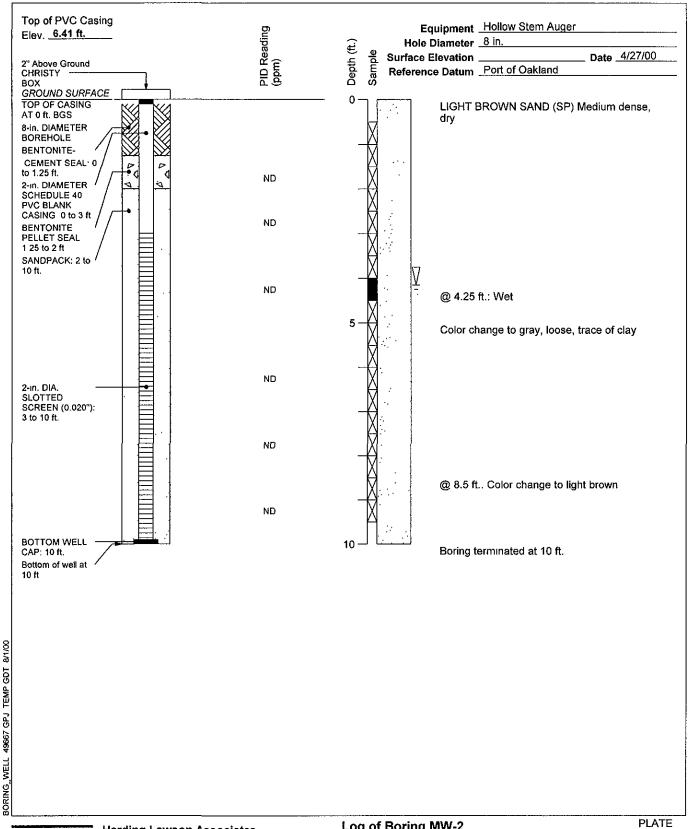
PLATE

DRAWN 49667 1

Harding Lawson Associates

Engineering and **Environmental Services** Log of Boring MW-1

Groundwater Monitoring Well Installation South Airport Self-Fueling Facility, Taxiway U


Oakland, California

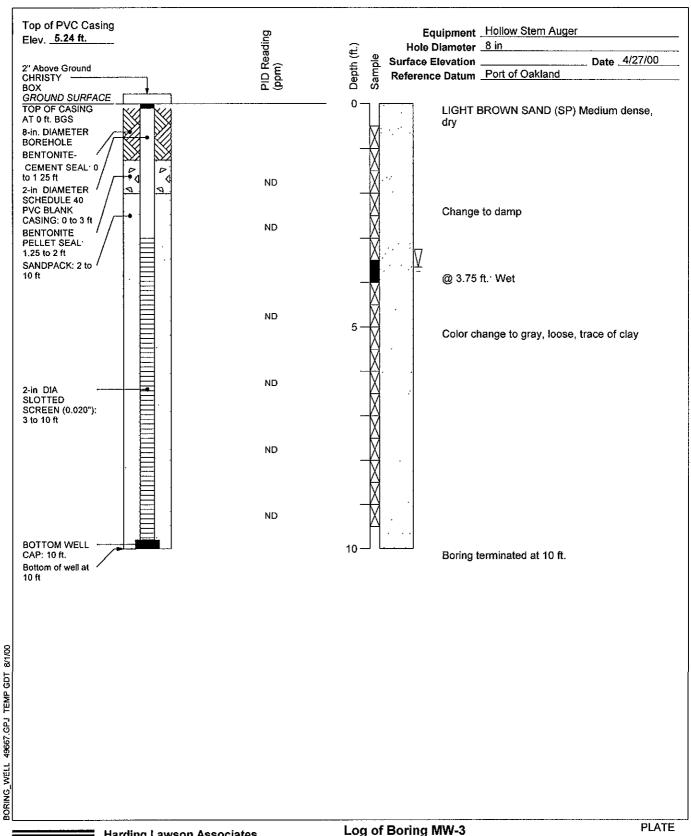
APPROVED

DATE 8/00

REVISED DATE

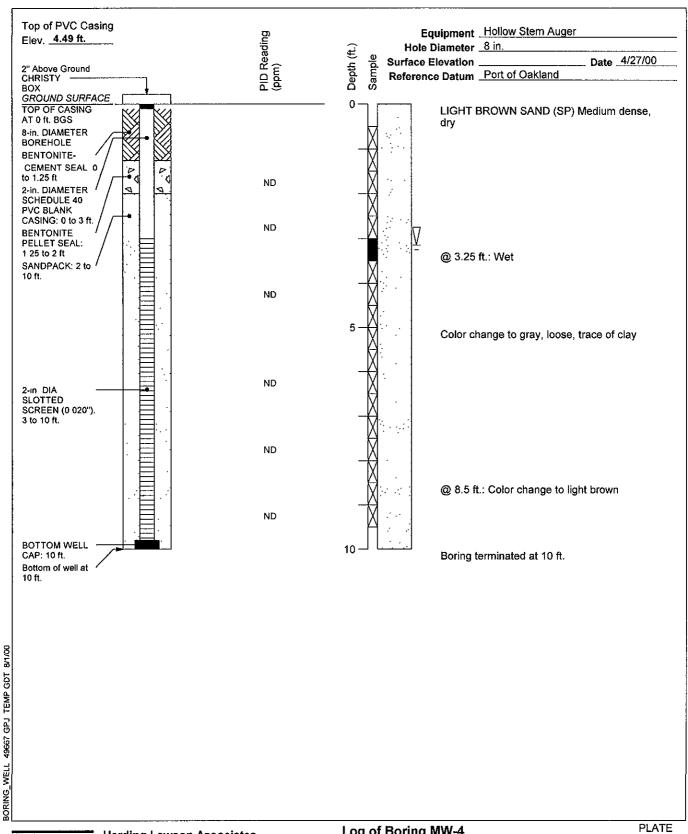
JOB NUMBER DRAWN **PCB** 49667 1

Harding Lawson Associates Engineering and **Environmental Services**


Log of Boring MW-2

Groundwater Monitoring Well Installation South Airport Self-Fueling Facility, Taxiway U Oakland, California

APPROVED


DRAWN JOB NUMBER PCB 49667 1

DATE REVISED DATE 8/00

En	gineering and vironmental Se	rvices	Groundwater Monitoring We South Airport Self-Fueling F Oakland, California		A-4
	DRAWN	JOB NUMBER	APPROVED	DATE	REVISED DATE
≣ _ਾ	PCB	49667 1	110	8/00	

Harding Lawson Associates Engineering and

49667 1

Environmental Services

PCB

Log of Boring MW-4 **Groundwater Monitoring Well Installation**

South Airport Self-Fueling Facility, Taxiway U

Oakland, California APPROVED 10 JOB NUMBER DRAWN

DATE 8/00

REVISED DATE

APPENDIX B WELL DEVELOPMENT FORMS

Project: Personnel:

Well No. MW-1

Time	Depth to Water (ft)	Gallons Removed	Turbidity (Ntu)	pH	Temp	E.C.	Recovery Rate Inches/min	Recovery Rate gpm	Observations
0300	496/8.75	Ø							white pipe resider on sen
0919-0811	- Surge	/							
0822	6.03/9.46	1 , ^	7 1000	7.90	68.4	1370			murty brown
0827	5.32/9.92	4	71500	8.00	66.3	1330			bail
0853	5.75/9.56	14	2 /55	8.21	71.1	1690			pump
0901	5.30	16	7/000	7.94	69.3	1330			tail
0907		23	· 302	8.20	69.5	1600			
0911		26	36.39	E 23	70.3	1650			
0913		39	17.14	8.25	71.2	1870			
0916		32	12.61	8.25	70.0°	1770			
0918		35	6.34	ح ₹ ،8	70.1	1820			
0919		<i>3</i> 8	3,96	. 8.24	89.6	1816			
0921	6.26	40	4.26	8.27	69.8	1950	*3		

Total Gallons Removed

Project: Personnel:

Development Method Surge/bail / Pump

Time	Depth to Water (ft)	Gallons Removed	Turbidity (Niu)	рН	Temp	E.C.	Recovery Rate Inches/min	Recovery Rate gpm	Observations
09.33	DW 10 3.21/8.46	Ø							ishite pipe residen
0940-075	0 - Su	er vel	2						_
0951	3.29/8.91	initial	7100	9.26	710	357			Sitty brown highlight
0957	,	3	21000	9.09	71.9	351			high soft
0959		6	7.1000 Ha	9.04	69.5	304			J
1007		10	<i>59</i> 8	8.92	70.6	334			
1005		15	236	9.06	70.9	447			
1007		19.	103	9.08	69.6	355			
1089		22	95	9.03	71.0	482			
1011		26	74	9.11	72.7	423		·	
1014		31	59	9.35	70.7	380			
1010	·	35	42.32	9.09	71.0	363			
1016		38	36.02	9.07	71.0	378			

Project: Personnel:

Time	Depth to Water (ft)	Gallons Removed	Turbidity (Ntu)	РH	Temp ^O C	E.C.	Recovery Rate Inches/min	Recovery Rate gpm	Observations
1021		42	31.26	9.02	71.7	557			
1023		47	30.29	8.82	70.8	394			
1026		51	25,43	8.97	69.3	397			
1028		54	23.02	9.13	72.5	363			
1030		59	21.06	9.15	70.5	418			
1032		63	19.59	9.12	69.3	398			
1034	4.92	65	·				12		
1035	3.94	105							

Total Gallons Removed

Project: Personnel: Taxivan Zl

Development Method

surje/pump

Well No. MW/3
Date: 5/8/00

Time	Depth to Water (ft)	Gallons Removed	Turbidity (Ntu)	рН	Temp PC □ F	E.C.	Recovery Rate inches/min	Recovery Rate gpm	Observations
1344	2,33/9.16	8							with pegidue
13413-12	54 - pura	well							
1359	2.61	initia	R 71000	8.99	72.3	2430			dark sitty grow
1403	•	6	71000	8.93	70.6	2290			
1407		9	71000	8.83	71.1	2600			
1410		14	597	8.84	70-1	i350			Starts to clear
1412		18	330	8.76	69.9	1790			
1415		22	284	8.68	69.7	1730			
MA		26	181	870	70.)	1650			
1419		30	146	8.65	70.3	1640			
1125		32{	738	8.62	70.2	1350			
1428		38	295	8.61	68.5	1540			
1431		42	199	8.6Z	76.7	M70			

Project:

Personnel:

Development Method June / prunp

Time	Depth to Water (ft)	Gallons Removed	Turbidity (Ntu)	рΗ	Temp 90°F	E.C.	Recovery Rate Inches/min	Recovery Rate gpm	Observations
1433	J	50	89	8.64	71.3	1370			
1436		54	69	8.60	71.1	1406			
1438		58	29.88	8.63	70.4	1310			
1441		62	Z&. &/	8,64	40.0	1340			
supeful	3.95			· · · · · · · · · · · · · · · · · · ·					
1445	3.95 3.13/9.45								
,									

Total Gallons Removed

Project: Personnel; Taxiway U

Development Method Surge / Dung

Well No. MW-4

Time	Depth to Water (ft)	Gations Removed	Turbidity (Ntu)	рН	Temp °C	E.C.	Recovery Rate inches/min	Recovery Rate gpm	Observations
1211	DN TD 2.47/9.65	Ø							whole pipe rondree
1216-12	26 - 84	معوب							
1227	2.91/409.61	171 .	11006	8.47	69.0	2120			dark on the nay
1236		4	7100c)	8.57	76.3	2140			
1239		6	7/000	5.69	74.3	1560			
1242		9	71008	8.66	78.8	1700			
1246		13	328	8.53	74.5	1090			starts to clar
1257		/8	177	8.52	79.0	1890			
1255		21	50	8.51	75.9	1360			
1300	-	25	38.31	8.59	75.3	1430			
1303		20	23.01	8.5 8	75.7	1450			
1305	,	30	37.33	8.61	77.0	1700			
1309		34	29.49	8.33	79.3	2120			

Project:

Personnel:

Development Metho

purge/pump

Well No. MW-4-Cont

Date: 57/8/00

Time	Depth to Water (ft)	Gallons Removed	Turbidity (Ntu)	pН	Temp	E.C.	Recovery Rate Inches/min	Recovery Rate gpm	Observations
1373		38	18.39	8.50	76.3	1500			
13/6		4/	18.8 <i>i</i>	8.52	76.8	1780			
1320		45	16.96	8.50	79.1	2000			
1322		50	14.95	8.49	75.8	1570			
1323	8,22								
1324	5.84								
	_								

50

APPENDIX C GROUNDWATER SAMPLING FORMS

GROUNDWATER SAMPLING FORM Harding Lawson Associates Engineering and Environmental Services MW- (Well Number: x Monitor Extraction Well Type: Other x PVC Port of Oakland - Taxiway U Job Name: St. Steel Other Job Number: 49667.1 Date: 5/30/00 Recorded By: Sampled By: HDL WELL PURGING PURGE VOLUME **PURGE METHOD** Casing Diameter (D in inches): Bailer - Type: teflon Total Depth of Casing (TD in ft BTOCK TO HOW 10 Submersible - Type: Water Level Depth (WL in ft BTOC): Other - Type: No.of Well Volumes to be purged (# PUMP INTAKE SETTING PURGE VOLUME CALCULATION Near Bottom Near Top Other X 0.0408 = Depth in feet (BTOC): TD (feet) WL (Feet) Screen Interval in feet (BTOC); from to Field Parameter Measurement PURGE TIME PURGE RATE Conductivity Purge Start: GPM: Temp. 🗴 °F 1121 Minutes pН (µS) Purge Stop: 090 10 Initial Elapsed: 7.84 コハン 71.4 PURGE VOLUME Volume: galions 70.6 Observations During Purging (Well Condition, Color, Odor): illa, no co Discharge Water Disposal: Sanitary Sewer Meter S/N 9510 9510 9510 Storm Sewer X Other onsite drum WELL SAMPLING 145 x Bailer - Type: disposable Sample Time: Sample No. Volume/Cont. Analysis Requested Preservatives Lab Comments MW-3 VOA TPH gas by 8015 HCL Sequoia 8020/MTBE/BTEX 3 VOA HCL Sequoia 2 amber VOA TOC by 415.1 HCL Sequoia TPH diesel 1 LA none Sequoia 1 500mL Poly | Total Iron HNO3 Sequoia 1 500mL Poly Ferrous Iron, NO3, SO4, PO4 none 24 hour HT on ferrous iron Sequoia none \sim

QUALITY CONTROL SAMPLES									
Duplicate	Samples	В	lank Samples	Other Samples					
Original Sample No.	Dupl Sample No.	Туре	Sample No.	Type	Sample No.				
			:						
			<u> </u>						
			:		<u> </u>				
	1		•						

GROUNDWATER SAMPLING FORM Harding Lawson Associates Engineering and Environmental Services Well Number: Well Type: x Monitor Extraction Other Job Name: Port of Oakland - Taxiway U x PVC St. Steel Other Job Number: Date: 5/30/00 Recorded By: Sampled By: HDL WELL PURGING PURGE VOLUME PURGE METHOD Casing Diameter (D in inches): 2 x Bailer - Type: teflon Total Depth of Casing (TD in ft BTOC):1 Submersible - Type: Water Level Depth (WL in ft BTOC): 3 49 Other - Type: No.of Well Volumes to be purged (# PUMP INTAKE SETTING PURGE VOLUME CALCULATION Near Bottom Near Top Other X 0.0408 = Depth in feet (BTOC): TD (feet) WL (Foot) Screen interval in feet (BTOC): from Field Parameter Measurement 4.430600 PURGE TIME FURGE RATE Conductivity Purge Start: GPM: Temp, 🗴 °F Minutes Purge Stop: GPM: 8.60 288 Initial 64.9 Elapsed: 67.3 8.40 2.5 PURGE VOLUME 8,29 Volume: gallons 66 276 Observations During Purging (Well Condition, Color, Odor): Discharge Water Disposal: Sanitary Sewer Meter S/N 9510 9510 9510 Storm Sewer X Other onsite drum WELL SAMPLING

aller - Type;	disposable		Sample Time:	1102	
Sample No.	Volume/Cont.	Analysis Requested	Preservatives	Lab	Comments
MW- 2	3 VOA	TPH gas by 8015	HCL	Sequoia	
	3 VOA	8020/MTBE/BTEX	HCL	Sequoia	
	2 amber VOA	TOC by 415.1	HCL	Seguoia	
	1 LA	TPH diesel	none	Seguoia	
	1 500mL Poly	Total Iron	HNO3	Segucia	
	1 500mL Poly	Ferrous Iron, NO3, SO4, PO4	none	Seguoia	24 hour HT on ferrous iron
X	ILP	2	none	J.	
				1	
	1				

	1	QUALITY CONTI	ROL SAMPLES	Tallassi in	
Duplicate	Samples	В	ank Samples		Other Samples
Original Sample No.	Dupl. Sample No.	Туре	Sample No.	Туре	Sample No.
<u> </u>					-
·					

GROUNDWATER SAMPLING FORM Harding Lawson Associates Engineering and Environmental Services Well Number: Well Type: x Monitor Extraction Other Port of Oakland - Taxiway U x PVC Job Name: St. Steel Other Job Number: 49667 1 Date: 5/30/00 Recorded By: Sampled By: HDL (initials) **WELL PURGING** PURGE VOLUME **PURGE METHOD** Casing Diameter (D in inches): x Bailer - Type teflon Total Depth of Casing (TD in ft BTOC): Submersible - Type Water Level Depth (WL in ft BTOC): Other - Type: No. of Well Volumes to be purged (# PUMP INTAKE SETTING FURGE VOLUME CALCULATION Near Bottom Near Top Other Depth in feet (BTOC): WL (Feet) Screen Interval in feet (BTOC): TD (feet) from to Field Parameter Measurement. PURGE TIME PURGE RATE Conductivity Purge Start: ۳ لعا Minutes pН Purge Stop: GPM: 8 7-1 Initial Elapsed: 1.5 8.04 7.9两 2.5 PURGE VOLUME Volume gallons 0,10 6. i Observations During Purging (Well Condition, Color, Odor): Discharge Water Disposal: Sanitary Sewer Meter S/N 9510 9510 9510 Storm Sewer X Other onsite drum ٠,٠,٠, WELL SAMPLING x Bailer - Type: 1031 disposable Sample Time: Sample No. Volume/Cont. Analysis Requested Preservatives Comments 3 VOA TPH gas by 8015 HCL Sequoia 3 VOA 8020/MTBE/BTEX HCL Sequoia 2 amber VOA TOC by 415.1 HCL Sequoia 11 LA TPH diesel none Seguoia 1 500mL Poly Total Iron HN03 Sequoia 1 500mL Poly Ferrous Iron, NO3, SO4, PO4 none 24 hour HT on ferrous iron Sequoia

les	4	Blank Samples		Other Samples
uni Camala Na [1			
upl. Sample No.	Туре	Sample No	Туре	Sample N
				1
				*
		•		
				· · · · · · · · · · · · · · · · · · ·

Harding Lawson Associates

GROUNDWA1	TER SAMPL	ING FORM
-----------	-----------	----------

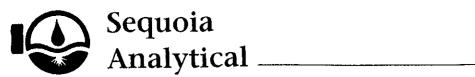
	Engineer	ing and Envir	onmental	Services		At-II Blowskaw				MIN U		
							[```		
lah Mama		art of Oaklar	ad Tavis	way II	,	wen rype:	=	,	-	1	= -	
Job Name:			<u></u>	way U		2-4	X	PVC		,	Other_	
Job Number	11	49007		100								—
Recorded By	y: <u>%</u> Z	COUGH SIGN	nature)	Tee_	;	Sampled By:			Н			
		. •		habbee it sea ton one	No	***************************************			*****	· · · · · · · · · · · · · · · · · · ·		****
	1.	······································	· ·	WELL FUNGI	NG		, !! ;;		<u>.</u>			
								PURGE	ME	THOD		•
			2	-								
				2			ype	: 				
			4	t_	.نـــا	3tiloi - 13pc.						
		, -		-			PU	MP INTAH	Œ S	ETTING		7
,	PURGE VOLUM	/E CALCULATION	DN C	(***************************************	ئىد
·										J. 10a , 0,p		
9.75.	2.93)x_	2 2 X 4 X	0.0408 = _	4.45 gais			 C):			· · · · · · · · · · · · · · · · · · ·		
TD (feet)	WL (Feet) D (II	nches) #V	Celo	culated Purge Volume				(BTOC):	,	from	to	
, , , ,	Field Paramet	ler Mensuremer	ı t		PU	RGETIME		l		PURGE RA	(#	
		Conductivity]℃	Pur	ge Start: <i>O</i> ʻ	9:	<u> 31 </u>		GPM:		
Minutes	pН	(μS)		[]] °F	Pur	ge Stop:	90	40		GPM:		
Initial	7.61	630	70.4		Ela	osed:	4					
1.5	7.63	643	675	2								
35	ber: 49867 Date: SG000 Sampled By: HDL (HBITT) WELL PURGING PURGE VOLUME PURGE METHOD Diameter (D in inches): 2 Saller - Type: teffon Submeralible - Type: deflor Submeralible - Type: deflor PURGE VOLUME PURGE METHOD Submeralible - Type: teffon Submeralible - Type: deflor PURGE VOLUME PURGE METHOD Other - Type: deflor PURGE VOLUME PUMP, NTAKE SETTING PURGE VOLUME CALOULATION Near Bottom Near Top Other PURGE VOLUME CALOULATION Near Bottom Near Top Other - Type: deflor Purge Stop: Depth in feet (BTOC): from Field Faramiele: Measurement PURGE TIME PURGE TIME PURGE TIME PURGE RATE PURGE RATE PURGE TIME PURGE RATE PURGE RATE PURGE Stop: 0.9 4											
5	7.75	749	15.8		Vol	ume:	5	·	Extraction St. Steel 5/30/00 HDL (Initials) SE METHOD RKE SETTING PURGE RA GPM: GPM: GPM: GPM: Sanitary Se X Other DO Do Cor a a a a 24 hour HT			
		'										
					Obs	servations Durin	g P	urging (W	ell C	Condition, Col	ог, Odor):	
						initia	Q	les c	2	ear be	mus	
						light &	إسبو	ewn	n			
					Dis	charge Water D	ispo	sal:		Sanitary Sev	ver	
Meter S/N	9510	9510	9510			Storm Sewer			Х	Other	onsite dru	ım
		,		WELL SAMPL	INIC		٠, ;	12, 1750	;		1000 600	
			*********									أنش
			·· · · · · · · · · · · · · · · · · · ·			Sample Time		045				_
	-1						<u>`</u>			Com	ments	\Box
IVIVV- 2	1	- 					·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
												-
		 	· · · · · · · · · · · · · · · · · · ·					_				
								Sequoia				\Box
										24 hour HT	on ferrous iro	'n
		1 C toly	, NO.	3, JOH, POH	-	nme		/				\dashv
							• • • •					┪
		 	ļ						····	<u> </u>		4
		<u> </u>							/ ///////	l		
· · · · · · · · · · · · · · · · · · ·			, <u>, , , , , , , , , , , , , , , , , , </u>				1	375				<u></u>
Original Samp			}		•			Tuna				
g	/	-pir -ample 110.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ипуріо 140.		ype		Sai	npie No.	\dashv
				;	<u>. </u>					,		1

APPENDIX D MONITORING WELL SURVEY DATA

page 1

Project: 00030 Fri Jul 21 12:08:26 2000

Point statistics:


Starting point number: 1
Current point number: 9 ('L' indicates locked point)

Point	Current Coordinate Northing	Listing by Selecting	ction Elevation	Description
"				W
	2084890.8879	6065651,7055	4.49	MW4
* 8 7	2084958.4453	6065503.1385	5.24	MW3
6 5	2085001.1226 2085076.0032	6065455.0511 6065507.0442	6.41 8.28	MW2 MW1

JUL 21 2000 12:44 PAGE.02

APPENDIX E
SOIL LABORATORY REPORTS AND CHAIN-OF-CUSTODY FORMS

16 May, 2000

Steve Osborne Harding-Lawson Associates - Oakland 383 Fourth Street Oakland, CA 94607

RE: Taxiway U Sequoia Report: W004649

Enclosed are the results of analyses for samples received by the laboratory on 28-Apr-00 13:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dimple Sharma Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Harding-Lawson Associates - Oakland

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne Reported: 16-May-00 15:38

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-1@4.5'	W004649-01	Soil	27-Apr-00 08:42	28-Apr-00 13:30
MW-2@4.0'	W004649-02	Soil	27-Apr-00 09:43	28-Apr-00 13:30
MW-3@3.5'	W004649-03	Soil	27-Apr-00 10:20	28-Apr-00 13:30
MW-4@3.0'	W004649-04	Soil	27-Apr-00 11:15	28-Apr-00 13:30
Drum 4223	W004649-05	Soil	27-Apr-00 12:00	28-Apr-00 13:30
Drum 4230	W004649-06	Soil	27-Apr-00 12:05	28-Apr-00 13:30

Sequoia Analytical - Walnut Creek

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Dimple Sharma, Project Manager

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne Reported: 16-May-00 15:38

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT

Sequoia	Analytical -	- Walnut Creek
---------	--------------	----------------

	Seq	uoin ixiini	Jucui	************		•			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1@4.5' (W004649-01) Soil	Sampled: 27-Apr-00	08:42 Rece	eived: 28-	-Apr-00 13	:30				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0E03002	03-May-00	04-May-00	EPA 8015/8020	
Benzene	ND	0.0050		17	**	11	II .	tr.	
Toluene	ND	0.0050	11	u	tŧ.	II.	11	U.	
Ethylbenzene	ND	0.0050	"	11	н	н	11	**	
Xylenes (total)	ND	0.0050	"		**	"	u	**	
Methyl tert-butyl ether	ND	0.050	n .	**	11	"	u u	**	
Surrogate: a,a,a-Trifluorotoluene		95.7 %	40-	140	"	"	"	"	•
MW-2@4.0' (W004649-02) Soil	Sampled: 27-Apr-00	09:43 Rece	eived: 28-	-Apr-00 13	:30				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0E03002	03-May-00	04-May-00	EPA 8015/8020	
Benzene	ND	0.0050	**	Ħ	n	11	**	1)	
_Toluene	ND	0.0050	"	,,,	11	n	**	II	
Ethylbenzene	ND	0.0050	**	II.	U	II	**	11	
Xylenes (total)	ND	0.0050	11	IF	18	11	11	II	
Methyl tert-butyl ether	ND	0.050	μ	11	**	"	11	IP	
Surrogate: a,a,a-Trifluorotoluene		90.7 %	40-	-140	n	"	#	"	
MW-3@3.5' (W004649-03) Soil	Sampled: 27-Apr-00	10:20 Rece	eived: 28	-Apr-00 13	:30				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0E03002	03-May-00	04-May-00	EPA 8015/8020	
Benzene	ND	0.0050	II	11	11	18	II .	rr .	
Toluene	ND	0.0050	п	**	11	#	It	17	
Ethylbenzene	ND	0.0050	ır	**	II .	**	tt.	"	
Xylenes (total)	ND	0.0050	n	n	п	**	II.	"	
Methyl tert-butyl ether	ND	0.050	u	#1	lf .	11	11	"	
Surrogate: a,a,a-Trifluorotoluene		93.0 %	40-	-140	"	11	"	"	•

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne **Reported:** 16-May-00 15:38

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
1									
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0E03002	03-May-00	04-May-00	EPA 8015/8020	
Benzene	ND	0.0050	**	u	"	II .	"	t t	
Toluene	ND	0.0050	**	II	ч	"	u	**	
Ethylbenzene	ND	0.0050	"	II		n	II	1F	
Xylenes (total)	ND	0.0050	**	п	u	н	u	**	
Methyl tert-butyl ether	ND	0.050	Ħ	ij	U	п	u	н	
Surrogate: a,a,a-Trifluorotoluene		86.0 %	40-	140	"	"	<i>n</i> ,	"	· · · · · · · · · · · · · · · · · · ·
Drum 4223 (W004649-05) Soil	Sampled: 27-Apr-00	12:00 Recei	ved: 28-A	Apr-00 13:	30				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0E03002	03-May-00	04-May-00	EPA 8015/8020	
Benzene	ND	0.0050	u	11	н	ij	II	tt.	
Toluene	ND	0.0050	u	"	11	H	II	16	
Ethylbenzene	ND	0.0050	u	11	н	II.	n	IF	
Xylenes (total)	ND	0.0050	п	**	**	H	n	u	
Methyl tert-butyl ether	ND	0.050	u	"	**	11	II	n .	
Surrogate: a,a,a-Trifluorotoluene		88.3 %	40-	140	и	"	n	"	
Drum 4230 (W004649-06) Soil	Sampled: 27-Apr-00	12:05 Recei	ved: 28- <i>A</i>	Apr-00 13::	30				
Purgeable Hydrocarbons	ND	1.0	mg/kg	20	0E03002	03-May-00	04-May-00	EPA 8015/8020	
Benzene	ND	0.0050	п	**	**	H	п	II.	
Toluene	ND	0.0050	U	11	**	ij	II .	u-	
Ethylbenzene	ND	0.0050	u	11	11	H	н	ti.	
Xylenes (total)	ND	0.0050	IJ	11	II	"	11	II.	
Methyl tert-butyl ether	ND	0.050	п	"	**	19	II	11	
Surrogate: a,a,a-Trifluorotoluene		89.7 %	40-	140	"	н	а	"	

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne **Reported:** 16-May-00 15:38

Diesel Hydrocarbons (C9-C24) with Silica Gel Cleanup by DHS LUFT Sequoia Analytical - Walnut Creek

Reporting Result Limit Units Dilution Batch Prepared Analyzed Method Notes Analyte MW-1@4.5' (W004649-01) Soil Sampled: 27-Apr-00 08:42 Received: 28-Apr-00 13:30 1.2 1.0 **DHS LUFT** D-12 Diesel Range Hydrocarbons mg/kg 0E09018 09-May-00 16-May-00 Surrogate: n-Pentacosane 142 % 50-150 Sampled: 27-Apr-00 09:43 Received: 28-Apr-00 13:30 MW-2@4.0' (W004649-02) Soil Diesel Range Hydrocarbons ND 1.0 mg/kg 0E09018 09-May-00 16-May-00 **DHS LUFT** 105 % 50-150 Surrogate: n-Pentacosane MW-3@3.5' (W004649-03) Soil Sampled: 27-Apr-00 10:20 Received: 28-Apr-00 13:30 1.0 **DHS LUFT** Diesel Range Hydrocarbons mg/kg 0E09018 09-May-00 16-May-00 90.1 % 50-150 Surrogate: n-Pentacosane MW-4@3.0' (W004649-04) Soil Sampled: 27-Apr-00 11:15 Received: 28-Apr-00 13:30 ND Diesel Range Hydrocarbons 1.0 mg/kg 0E09018 09-May-00 16-May-00 DHS LUFT 90.1% 50-150 urrogate: n-Pentacosane Drum 4223 (W004649-05) Soil Sampled: 27-Apr-00 12:00 Received: 28-Apr-00 13:30 13 1.0 mg/kg 0E09018 09-May-00 16-May-00 **DHS LUFT** D-12 Diesel Range Hydrocarbons 244 % 50-150 D-07 Surrogate: n-Pentacosane Drum 4230 (W004649-06) Soil Sampled: 27-Apr-00 12:05 Received: 28-Apr-00 13:30 **DHS LUFT** D-12 Diesel Range Hydrocarbons 1.2 1.0 0E09018 09-May-00 16-May-00

50-150

109 %

Surrogate: n-Pentacosane

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne Reported: 16-May-00 15:38

Total Metals by EPA 6000/7000 Series Methods

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1@4.5' (W004649-01) Soil	Sampled: 27-Apr-00 08:4	2 Rece	ived: 28-	Apr-00 13	:30				
Lead	1.9	1.0	mg/kg	1	0E01006	01-May-00	02-May-00	EPA 6010A	
MW-2@4.0' (W004649-02) Soil	Sampled: 27-Apr-00 09:4	3 Rece	ived: 28-	Apr-00 13	:30				
Lead	1.0	1.0	mg/kg	1	0E01006	01-May-00	02-May-00	EPA 6010A	
MW-3@3.5' (W004649-03) Soil	Sampled: 27-Apr-00 10:2	0 Rece	ived: 28-	Apr-00 13	:30				
Lead	ND	1.0	mg/kg	1	0E01006	01-May-00	02-May-00	EPA 6010A	
MW-4@3.0' (W004649-04) Soil	Sampled: 27-Apr-00 11:1	5 Rece	ived: 28-	Apr-00 13	:30				
Lead	3.2	1.0	mg/kg	1	0E01006	01-May-00	02-May-00	EPA 6010A	
Drum 4223 (W004649-05) Soil	Sampled: 27-Apr-00 12:00	Recei	ved: 28- <i>A</i>	Apr-00 13:	30				
Lead	2.5	1.0	mg/kg	1	0E01006	01-May-00	02-May-00	EPA 6010A	
Drum 4230 (W004649-06) Soil	Sampled: 27-Apr-00 12:05	Recei	ved: 28-A	Apr-00 13:	30				
Lead	3.0	1.0	mg/kg	1	0E01006	01-May-00	02-May-00	EPA 6010A	

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne **Reported:** 16-May-00 15:38

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

÷	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
0E03002 - EPA 5030B [MeOH]							<u></u>			
0E03002-BLK1)				Prepared	& Analyz	ed: 03-Ma	y-00			
e Hydrocarbons	ND	20	mg/kg							
	ND	10	"							
	ND	10	"							
zene	ND	10	**							
(total)	ND	10	**							
ert-butyl ether	ND	1.0	н							
e: a,a,a-Trifluorotoluene	0.682		"	0.600		114	70-130			··
E03002-BS1)				Prepared	& Analyz	ed: 03-Ma	y-00			
	0.778	0.10	mg/kg	0.800		97.2	70-130		•	
	0.802	0.10	q	0.800		100	70-130			
zene	0.834	0.10	II	0.800		104	70-130			
(total)	2.46	0.10	(*	2.40		102	70-130			
e: a.a.a-Trifluorotoluene	0.652		"	0.600		109	70-130			
Spike (0E03002-MS1)	Se	ource: W0046	28-11	Prepared & Analyzed: 03-May-00						
	0.816	0.10	mg/kg	0.800	ND	102	70-130			
	0.854	0.10	#1	0.800	ND	107	70-130			
zene	0.880	0.10	"	0.800	ND	110	70-130			
(total)	2.60	0.10	41	2.40	ND	108	70-130			
e: a,a,a-Trifluorotoluene	0.578	•	"	0.600		96.3	70-130			
Spike Dup (0E03002-MSD1)	Se	ource: W0046	28-11	Prepared	& Analyz	ed: 03-Ma	ıy-00			
	0.844	0.10	mg/kg	0.800	ND	105	70-130	3.37	20	
	0.882	0.10	It	0.800	ND	110	70-130	3.23	20	
zene	0.906	0.10	11	0.800	ND	113	70-130	2.91	20	
(total)	2.64	0.10	**	2.40	ND	110	70-130	1.53	20	
e: a,a,a-Trifluorotoluene	0.606		"	0.600		101	70-130			
		0.10		,	ND			1.53		20

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne Reported: 16-May-00 15:38

Diesel Hydrocarbons (C9-C24) with Silica Gel Cleanup by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0E09018 - EPA 3550A										
Blank (0E09018-BLK1)				Prepared:	09 -May -0	00 Analyz	ed: 11-Ma	y-00		
Hydraulic Fluid	ND	10	mg/kg							
Motor Oil (C16-C36)	ND	10	11							
Diesel Range Hydrocarbons	ND	1.0	"							
Surrogate: n-Pentacosane	1.11		и	1.11		100	50-150	· · · · · · · · · · · · · · · · · · ·		
LCS (0E09018-BS1)				Prepared:	09-May-0	00 Analyz	ed: 11-Ma	y-00		
Diesel Range Hydrocarbons	10.4	1.0	mg/kg	15.0		69.3	60-140			
Surrogate: n-Pentacosane	1.12		"	1.11		101	50-150			
LCS Dup (0E09018-BSD1)				Prepared:	09-May-0	00 Analyz	ed: 11-Ma	y-00		
Diesel Range Hydrocarbons	10.3	1.0	mg/kg	15.0		68.7	60-140	0.966	40	
Surrogate: n-Pentacosane	1.10		,,	1.11	· · · · · · · · · · · · · · · · · · ·	99.1	50-150			

383 Fourth Street Oakland CA, 94607 Project: Taxiway U t Number: # 49667-1

Project Number: # 49667-1 Project Manager: Steve Osborne **Reported:** 16-May-00 15:38

Total Metals by EPA 6000/7000 Series Methods - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 0E01006 - EPA 3050B										
Blank (0E01006-BLK1)				Prepared:	01-May-0	00 Analyz	ed: 02-Ma	y-00		
ead	ND	1.0	mg/kg							
LCS (0E01006-BS1)				Prepared:	01-May-0	00 Analyz	ed: 02-Ma	y-00		
Lead	50.5	1.0	mg/kg	50.0		101	80-120			
.CS Dup (0E01006-BSD1)				Prepared:	01-May-0	00 Analyz	ed: 02 -M a	y-00		
Lead	51.5	1.0	mg/kg	50,0		103	80-120	1.96	20	
Aatrix Spike (0E01006-MS1)	So	urce: W0050	03-01	Prepared:	01-May-0	00 Analyz	ed: 02-Ma	y-00		
ead	59.5	1.0	mg/kg	50.0	12	95.0	80-120			
Matrix Spike Dup (0E01006-MSD1)	So	urce: W0050	003-01	Prepared:	01-May-(00 Analyz	ed: 02-Ma	y-00		
ead	58.5	1.0	mg/kg	50 0	12	93.0	80-120	1.69	20	

404 N, Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Harding-Lawson Associates - Oakland

383 Fourth Street Oakland CA, 94607 Project: Taxiway U

Project Number: # 49667-1 Project Manager: Steve Osborne Reported: 16-May-00 15:38

Notes and Definitions

D-07	Surrogate out of control lin	nits because of peak coelution with the sam	ple.
------	------------------------------	---	------

D-12 Chromatogram Pattern: Unidentified Hydrocarbons > C16

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

Harding Lawson Associates

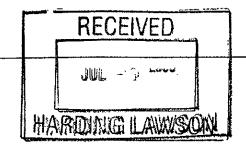
383 Fourth Street, Third Floor Oakland, California 94607 (510) 451-1001 - Phone

CHAIN OF COSTODE FORM	DY FORM	LOD)	CUS	OF	IN	CHA	Ċ
-----------------------	---------	------	-----	----	----	-----	---

V FORM

Nº 2502

No 4649


Lab: Sequeia Analy Kical

	(510) 451-31	65 - Fax				Samo	lers:	೨೦೨∽	~(t_		MITAL		COUL	7160		
Job Name	Number:4 e/Location:1 ect Manager:		<u>-1</u>	U Osbora	٠, ٩		der: Sc		M (Cart (Signature Regulared)			/TPHG	1/TPHd,0	1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cenn		
SOURCE	Water Sedment Solf OII	Unpres. HySQ HNO, HNO,	RS V.	SAMPLE N OR LAB NUM	UMBER		DATE	ne	STATION DESCRIPTION/ NOTES	EPA 8010	EPA 8020 EPA 8260	METALS EPA 8015M/TPHG	EPA 8020/R	MAR III			7,22
	X X X X X X X X X X X X X X X X X X X			MW- 3 = MW- 41	3.5	0004	<u> 0</u> 1 2	43 20 15				X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X	X			-
	LAB NUMBER	DEPTH IN	COL MTD	QA CODE	MI	SCELLANEOU	JS			OF CUST						DATE/TIME	

	NUMBER IN MTD CODE MISCELLANEOUS Yr Wk Seq FEET CD MISCELLANEOUS		MISCELLANEOUS	CHAIN	OF CO	STOUT RECORD															
Y	7	Wk		Se	₹	1	FE	ET		C	D				l .		RELINGUISHED BY: (Signature)	RECEIV	ED BY: (Signature)	DATE/TIME	
	_	7-	-	\perp			_	-				-			*	<u> </u>	RECINQUISHED BY (Signature) 73:30	RECEIV	ED BY: (Signature)	4-28-00 11.	00
	_	+		-		-		<u></u> ,	_			-			8	y 2560	RELINGUISHED BY (Signature)	RECEIV	ED BY: (Signature)	DATE/TIME	
-		_		-	-	-	-	_					-	-	5	HO TAT	RELINQUISHED BY (Signature)	RECEIV	ED BY: (Signature)	DATE/TIME	
	-		-		-		-		-					- - - -			DISPATCHED BY, (Supporture) DATE	/TIME	RECEIVED FOR LAB BY: (Signature) (Signature) (NC.)	DATESTIME X Z S/G / 3	
- !		- .			-				-	-		-		-			METHOD OF SHIPMENT		.1		
					_ _	-	-				_						SAMPLE CONDITION WHEN RECEIVED BY THE LABORA	TORY			
					\perp		L	L	<u> </u>	L.		Ц	\perp	┸							

APPENDIX F
GROUNDWATER LABORATORY REPORTS AND CHAIN-OF-CUSTODY
FORMS

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

29 June, 2000

Steve Osborne Harding-Lawson Associates - Oakland 383 Fourth Street Oakland, CA 94607

RE: Port of Oakland Sequoia Report: W005748

Enclosed are the results of analyses for samples received by the laboratory on 30-May-00 15:30. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Dimple Sharma Project Manager

CA ELAP Certificate #1271

404 N. Wiget Lane Walnut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequoialabs.com

Harding-Lawson Associates - Oakland

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1

Project Manager: Steve Osborne

Reported:

29-Jun-00 12:02

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW-4	W005748-01	Water	30-May-00 00:00	30-May-00 15:30
MW-3	W005748-02	Water	30-May-00 00:00	30-May-00 15:30
MW-2	W005748-03	Water	30-May-00 00:00	30-May-00 15:30
MW-1	W005748-04	Water	30-May-00 00:00	30-May-00 15:30

Sequoia Analytical - Walnut Creek

Dimple Sharma, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 1 of 15

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
_MW-4 (W005748-01) Water	Sampled: 30-May-00 09:50	Receive	d: 30-M	ay-00 15:30	0				
Purgeable Hydrocarbons	ND	50	ug/l	1	0F09001	09-Jun-00	09-Jun-00	EPA 8015M/8020	
Benzene	ND	0.50	f†	rr rr		17	It	ti	
Toluene	ND	0.50	**	II	tf	18	II .	п	
Ethylbenzene	ND	0.50	11	**	17	**	u	п	
Xylenes (total)	ND	0.50	**	tt.	**	17	u	lt .	
Methyl tert-butyl ether	19	2.5	*1	ıt	"	19	IS	tt-	
Surrogate: a,a,a-Trifluorotolue	ene	110 %	70-	130	"	"	"	"	
MW-3 (W005748-02) Water	Sampled: 30-May-00 10:31	Receive	ed: 30-M	ay-00 15:3	0				
Purgeable Hydrocarbons	ND	50	ug/l	1	0F09001	09-Jun-00	09-Jun-00	EPA 8015M/8020	
Benzene	ND	0 50	ij	11	ıı .	n	**	19	
_Toluene	ND	0.50	п	n	II .	IJ	11	**	
Ethylbenzene	ND	0.50	u	11	11	п	п	11	
Xylenes (total)	ND	0.50	11	II	II .	II.	IJ	11	
Methyl tert-butyl ether	7.5	2.5	It	11	11	IF	11	11	
Surrogate: a,a,a-Trifluorotolue	ene	101 %	70-	-130	11	"	"	"	
MW-2 (W005748-03) Water	Sampled: 30-May-00 11:03	Receive	ed: 30-M	ay-00 15:3	0				
Purgeable Hydrocarbons	ND	50	ug/l	1	0F09001	09-Jun-00	09-Jun - 00	EPA 8015M/8020	
Benzene	ND	0.50	u	n	Œ	II	11	11	
Toluene	ND	0.50	п	ij	11	11	11	п	
Ethylbenzene	ND	0.50	**	"	"	H	п	п	
Xylenes (total)	ND	0.50	**	ır	**	æ	u	II .	
Methyl tert-butyl ether	ND	2.5	11	lt	"	11	(t	II.	
Surrogate: a,a,a-Trifluorotolue	ene	97.7%	70-	-130	"	"	"	"	

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Harding-Lawson Associates - Oakland

383 Fourth Street

Oakland CA, 94607

Project: Port of Oakland

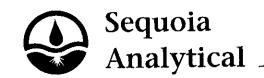
Project Number: 49667.1 Project Manager: Steve Osborne Reported:

29-Jun-00 12:02

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT Sequoia Analytical - Walnut Creek

Analyte	Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-1 (W005748-04) Water	Sampled: 30-May-00 11:45	Receive	ed: 30-Ma	y-00 15:3	0				
Purgeable Hydrocarbons	ND	50	ug/l	1	0F09001	09-Jun-00	09-Jun-00	EPA 8015M/8020	
Benzene	ND	0.50	IJ	ч	H	II .	" !	u	
Toluene	ND	0.50	п	11	н	п		17	
Ethylbenzene	ND	0.50	U	IF.	"	ų.	a l	II	
Xylenes (total)	ND	0.50	n	11	n n	u	u	* H	
Methyl tert-butyl ether	ND	2.5	II .	(t	II .	u	u	ř †	
Surrogate: a,a,a-Trifluorotolue	ene	101 %	70-1	30	"	"	"	n	

383 Fourth Street


Oakland CA, 94607

Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne Reported: 29-Jun-00 12:02

Diesel Hydrocarbons (C9-C24) with Silica Gel Cleanup by DHS LUFT

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 (W005748-01) Water	Sampled: 30-May-00 09:50	Receive	d: 30-M	ay-00 15:3	0	•			
Diesel Range Hydrocarbons	210	50	ug/l	1	0F12011	12-Jun-00	13-Jun-00	DHS LUFT	D-13
Motor Oil (C16-C36)	ND	250	"	tt.	**	II .	11		
Surrogate: n-Pentacosane		124 %	50-	150	n	"	"	H	
/IW-3 (W005748-02) Water	Sampled: 30-May-00 10:31	Receive	ed: 30-M	ay-00 15:3	0				
Diesel Range Hydrocarbons	60	50	ug/l	1	0F12011	12-Jun-00	13-Jun-00	DHS LUFT	D-12
Motor Oil (C16-C36)	ND	250	**	11	11	"	"	a .	
Surrogate: n-Pentacosane		108 %	50-	150	"	"	"	"	
MW-2 (W005748-03) Water	Sampled: 30-May-00 11:03	Receive	ed: 30-M	ay-00 15:3	0				
Diesel Range Hydrocarbons	51	50	ug/l	1	0F12011	12-Jun-00	13-Jun-00	DHS LUFT	D-12
Motor Oil (C16-C36)	ND	250	11	rt.	n	II	**	II .	
Surrogate: n-Pentacosane		102 %	50-	150	71	"	n	п	
MW-1 (W005748-04) Water	Sampled: 30-May-00 11:45	Receive	ed: 30-M	ay-00 15:3	0				
Diesel Range Hydrocarbons	60	50	ug/l	1	0F12011	12-Jun-00	13-Jun-00	DHS LUFT	D-12
Motor Oil (C16-C36)	ND	250	"	"	"	"	"	ti	
Surrogate: n-Pentacosane		96.1 %	50-	-150	"	"	"	"	

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

MTBE Confirmation by EPA Method 8260A

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 (W005748-01) Water Sample	d: 30-May-00 09:50	Receive	d: 30-May	-00 15:3	0	•			
Methyl tert-butyl ether	17	2.0	ug/l	1	0F09020	13-Jun-00	13-Jun-00	EPA 8260A	
Surrogate: Dibromofluoromethane		94.0 %	50-13	50	"	"	" .	"	
Surrogate: 1,2-Dichloroethane-d4		106 %	50-13	50	n	и	"	"	
MW-3 (W005748-02) Water Sample	d: 30-May-00 10:31	Receive	d: 30-May	-00 15:3	0				
Methyl tert-butyl ether	2.6	2.0	ug/l	1	0F09020	13-Jun-00	13-Jun-00	EPA 8260A	
Surrogate: Dibromofluoromethane		96.0 %	50-13	ī <i>0</i>	"	И	n n	"	
Surrogate: 1,2-Dichloroethane-d4		106 %	50-13	50	"	"	"	"	

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

Total Metals by EPA 6000/7000 Series Methods

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 (W005748-01) Water	Sampled: 30-May-00 09:50	Receive	d: 30-M	ay-00 15:3	0				
errous Iron	0.40	0.010	mg/l	1	0F13017	13-Jun-00	16-Jun-00	EPA 6010A	
Iron	4.6	0.010	O	11	IF	"	H	EPA 200.7	
MW-3 (W005748-02) Water	Sampled: 30-May-00 10:31	Receive	ed: 30-M	ay-00 15:3	0				
errous Iron	0.74	0.010	mg/l	i	0F13017	13-Jun-00	16-Jun-00	EPA 6010A	
Iron	3.9	0.010	**	**	**	U	n	EPA 200.7	
1W-2 (W005748-03) Water	Sampled: 30-May-00 11:03	Receive	ed: 30-M	ay-00 15:3	0				
errous Iron	0.13	0.010	mg/l	1	0F13017	13-Jun-00	16-Jun-00	EPA 6010A	·
Iron	2.9	0.010	11	II	II .	u	ч	EPA 200.7	
IW-1 (W005748-04) Water	Sampled: 30-May-00 11:45	Receive	ed: 30-M	ay-00 15:3	0				
errous Iron	1.0	0.010	mg/l	1	0F13017	13-Jun-00	16-Jun-00	EPA 6010A	
Iron	0.75	0.010	u u	u	(t	**	Ħ	EPA 200.7	
_									

383 Fourth Street

Oakland CA, 94607

Project: Port of Oakland

Project Number: 49667.1

Project Manager: Steve Osborne

Reported: 29-Jun-00 12:02

Anions by EPA Method 300.0 Sequoia Analytical - Walnut Creek

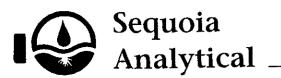
Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
MW-4 (W005748-01) Water	Sampled: 30-May-00 09:50	Receive	ed: 30-M	ay-00 15:3	0	~~····				
Nitrate as NO3	ND	0.10	mg/l	1	0F01025	31-May-00	31-May-00	EPA 300.0		
Orthophosphate as PO4	0.94	0.50	"	n.	"	41	19	ř*		
Sulfate as SO4	38	0.20	11	2	II	u	10	14		
MW-3 (W005748-02) Water	Sampled: 30-May-00 10:31	31 Received: 30-May-00 15:30								
Nitrate as NO3	ND	0.10	mg/l	1	0F01025	31-May-00	31-May-00	EPA 300.0		
Orthophosphate as PO4	ND	0.50	,,	n .	11	11	D	H		
Sulfate as SO4	51	1.0	н	10	II	11	11	"		
MW-2 (W005748-03) Water	Sampled: 30-May-00 11:03	Receive	ed: 30-M	ay-00 15:3	0					
Nitrate as NO3	1.3	0.10	mg/l	1	0F01025	31-May-00	31-May-00	EPA 300.0	N	
Orthophosphate as PO4	ND	0.50	11	ii	u	и	n.	"		
Sulfate as SO4	14	0.10	н	п	u	н	п	11		
MW-1 (W005748-04) Water Sampled: 30-May-00 11:45 Received: 30-May-00 15:30										
Nitrate as NO3	5.5	0.10	mg/l	1	0F01025	31-May-00	31-May-00	EPA 300 0		
Orthophosphate as PO4	ND	0.50	"	II .	п	N	n .	n		
Sulfate as SO4	76	1.0	"	10	"	n	n	11		

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

Conventional Chemistry Parameters by APHA/EPA Methods Sequoia Analytical - Petaluma

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW-4 (W005748-01) Water	Sampled: 30-May-00 00:00	Receive	d: 30-M	ay-00 15:30	0				
Total Organic Carbon	21.4	4.00	mg/l	4	0060459	20-Jun-00	20-Jun-00	EPA 415.1	
MW-3 (W005748-02) Water	Sampled: 30-May-00 00:00	Receive	ed: 30-M	ay-00 15:30	0				
Total Organic Carbon	22.5	4.00	mg/l	4	0060459	20-Jun-00	20-Jun-00	EPA 415.1	
MW-2 (W005748-03) Water	Sampled: 30-May-00 00:00	Receive	d: 30-M	ay-00 15:30	Ð				
Total Organic Carbon	9.39	4.00	mg/l	4	0060459	20-Jun-00	20-Jun-00	EPA 415.1	
MW-1 (W005748-04) Water	Sampled: 30-May-00 00:00	Receive	ed: 30-M	ay-00 15:30	0				
Total Organic Carbon	47.2	4.00	mg/l	4	0060459	20-Jun-00	20-Jun-00	EPA 415.1	



383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne Reported: 29-Jun-00 12:02

Total Purgeable Hydrocarbons (C6-C12), BTEX and MTBE by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0F09001 - EPA 5030B [P/T]										
Blank (0F09001-BLK1)				Prepared	& Analyz	ed: 09-Jur	ı-00			
Purgeable Hydrocarbons	ND	50	ug/l							
Benzene	ND	0.50	10							
Toluene	ND	0.50	n							
Ethylbenzene	ND	0.50	"							
Xylenes (total)	ND	0.50	II .							
Methyl tert-butyl ether	ND	2.5	u u							
Surrogate. a,a,a-Trifluorotoluene	31.3		и	30.0		104	70-130			
LCS (0F09001-BS1)				Prepared	& Analyz	ed: 09-Jur	1 - 00),		
Benzene	17.9	0.50	ug/l	20.0	· ·	89 5	70-130	· · ·		
Toluene	19.6	0.50	11	20.0		98 0	70-130			
Ethylhenzene	22.6	0.50	17	20.0		113	70-130			
Xylenes (total)	64.7	0.50	"	60 0		108	70-130			
Surrogate: a,a,a-Trifluorotoluene	26.8		· · · · · · · · · · · · · · · · · · ·	30.0		89 3	70-130			
Matrix Spike (0F09001-MS1)	Sc	ource: W0057	76-02	Prepared	& Analyz	ed: 09-Jur				
Benzene	15.9	0.50	ug/l	20.0	ND	79.5	70-130	1		
Toluene	17.2	0.50	n n	20.0	ND	86.0	70-130			
Ethylbenzene	19.2	0.50	11	20.0	ND	96.0	70-130			
Xylenes (total)	57.4	0.50	н	60.0	ND	95.7	70-130			
Surrogate: a, a, a-Trifluorotoluene	26.8	<u></u>	············	30,0	· ·	89.3	70-130	,		
Matrix Spike Dup (0F09001-MSD1)	So	ource: W0057	76-02	Prepared	& Analyz	ed: 09-Jur	1 - 00			
Benzene	17.1	0.50	ug/l	20,0	ND	85.5	70-130	7.27	20	
Toluene	17.7	0.50	11	20.0	ND	88.5	70-130	2.87	20	
Ethylbenzene	19.5	0.50	u	20.0	ИD	97.5	70-130	1,55	20	
Xylenes (total)	57.8	0.50	ij	60.0	ND	96.3	70-130	0.694	20	
Surrogate: a,a,a-Trifluorotoluene	25.5		0	30,0		85.0	70-130			

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne Reported: 29-Jun-00 12:02

Diesel Hydrocarbons (C9-C24) with Silica Gel Cleanup by DHS LUFT - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0F12011 - EPA 3510B										
Blank (0F12011-BLK1)				Prepared:	12-Jun-00) Analyze	d: 13-Jun-	00		
Diesel Range Hydrocarbons	ND	50	ug/l	<u> </u>						
Motor Oil (C16-C36)	ND	250	10							
Surrogate: n-Pentacosane	31.3		"	33.3		94.0	50-150			
LCS (0F12011-BS1)				Prepared:	12-Jun-00) Analyze	d: 16-Jun-	00		
Diesel Range Hydrocarbons	274	50	ug/l	500		54.8	35-125			
Surrogate: n-Pentacosane	39.7		rt .	33.3		119	50-150			
LCS Dup (0F12011-BSD1)				Prepared:	12-Jun-00) Analyze	d: 14-Jun-	00		
Diesel Range Hydrocarbons	331	50	ug/l	500		66.2	35-125	18.8	50	
Surrogate: n-Pentacosane	45.0		"	33.3		135	50-150			

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

MTBE Confirmation by EPA Method 8260A - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0F09020 - EPA 5030B [P/T]								<u> </u>		
Blank (0F09020-BLK2)				Prepared	& Analyz	ed: 13-Jur	ı - 00			
Methyl tert-butyl ether	ND	2.0	ug/l							
Surrogate: Dibromofluoromethane	49.0		n	50.0		98.0	50-150			
Surrogate: 1,2-Dichloroethane-d4	53.0		ff	50.0		106	50-150			
LCS (0F09020-BS2)				Prepared	& Analyz	ed: 13-Jur	1- 00			
Methyl tert-butyl ether	40.0	2.0	ug/l	50,0		80.0	70-130			
Surrogate: Dibromofluoromethane	48.0		11	50.0		96 0	50-150			
Surrogate 1,2-Dichloroethane-d4	52.0		"	50.0		104	50-150			
Matrix Spike (0F09020-MS1)	So	urce: W0060	98-17	Prepared	& Analyz	ed: 09-Jur	1- 00			
Methyl tert-butyl ether	52.0	2.0	ug/l	50.0	ND	104	60-150			
Surrogate Dibromofluoromethane	51.0		"	50 0		102	50-150			
Surrogate: 1,2-Dichloroethane-d4	50 0		"	50.0		100	50-150			
Matrix Spike Dup (0F09020-MSD1)	So	urce: W0060	98-17	Prepared	& Analyz	ed: 09-Jur	- 00			
Methyl tert-butyl ether	52,0	2.0	ug/l	50.0	ND	104	60-150	0	25	
Surrogate: Dibromofluoromethane	52.0	· · · · · · · · · · · · · · · · · · ·	"	50 0		104	50-150			
Surrogate. 1,2-Dichloroethane-d4	50.0		"	50.0		100	50-150			

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

Total Metals by EPA 6000/7000 Series Methods - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0F13017 - 200.7										
Blank (0F13017-BLK1)	Prepared: 13-Jun-00 Analyzed: 16-Jun-00									
Ferrous Iron	ND	0.010	mg/l							
ron	ND	0.010	н							
LCS (0F13017-BS1)				Prepared:	13-Jun-00) Analyze	d: 16-Jun-	00		
Ferrous Iron	1.02	0.010	mg/l	1.00		102	80-120			
ron	1.02	0.010	n	1.00		102	80-120			
LCS Dup (0F13017-BSD1)				Prepared:	13-Jun-00) Analyze	d: 16-Jun-	00		
Ferrous Iron	1.03	0.010	mg/l	1.00		103	80-120	0 976	20	
ron	1.03	0.010	II	1.00		103	80-120	0.976	20	
Matrix Spike (0F13017-MS1)	So	urce: W0061	27-01	Prepared:	13-Jun-00) Analyze	d: 16-Jun-	00		
errous Iron	1,30	0.010	mg/l	1.00	0.20	110	80-120			
ron	1 30	0.010	"	1.00	0.20	110	80-120			
Matrix Spike Dup (0F13017-MSD1)	Se	ource: W0061	27-01	Prepared:	13-Jun-00) Analyze	d: 16-Jun-	00		
Ferrous Iron	1.30	0.010	mg/l	1.00	0.20	110	80-120	0	20	
ron	1.30	0.010	tt .	1.00	0.20	110	80-120	0	20	

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

Anions by EPA Method 300.0 - Quality Control Sequoia Analytical - Walnut Creek

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0F01025 - General Preparation										
Blank (0F01025-BLK1)				Prepared	& Analyz	ed: 31-Ma	y-00			
Nitrate as NO3	ND	0.10	mg/l							
Orthophosphate as PO4	ND	0.50	n							
Sulfate as SO4	ND	0.10	"							
LCS (0F01025-BS1)				Prepared	& Analyz	ed: 31-Ma	ıy-00			
Nitrate as NO3	9 63	0.10	mg/l	10.0		96.3	80-120			
Orthophosphate as PO4	19.7	0.50	**	20.0		98 5	80-120	!		
Sulfate as SO4	9.81	0.10	**	10.0		98 1	80-120			
Matrix Spike (0F01025-MS1)	So	urce: W0057	33-01	Prepared	& Analyz	ed: 31 - Ma				
Nitrate as NO3	18.8	0 40	mg/l	20.0	ND	94.0	75-125			
Orthophosphate as PO4	89.9	2.0	u	40.0	50	998	75-125			
Sulfate as SO4	29 4	0.40	"	20.0	10	97.0	75-125			
Matrix Spike Dup (0F01025-MSD1)	So	urce: W0057	33-01	Prepared	& Analyz	ed: 31-Ma	ıy-00			
Nitrate as NO3	18.9	0.40	mg/l	20 0	ND	94.5	75-125	0.531	20	
Orthophosphate as PO4	90 3	2.0	"	40.0	50	101	75-125	0.444	20	
Sulfate as SO4	29.4	0.40	"	20.0	10	97.0	75-125	0	20	

383 Fourth Street
Oakland CA, 94607

Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne **Reported:** 29-Jun-00 12:02

Conventional Chemistry Parameters by APHA/EPA Methods - Quality Control Sequoia Analytical - Petaluma

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 0060459 - General Preparation										
Blank (0060459-BLK1)				Prepared	& Analyz	ed: 20-Jur	1-00			
Total Organic Carbon	ND	1 00	mg/l			,				
LCS (0060459-BS1)	Prepared & Analyzed: 20-Jun-00					ı - 00				
l'otal Organic Carbon	40.1	2.00	mg/l	40.0		100	80.0-120			
Matrix Spike (0060459-MS1)	So	urce: P00579	0-05	Prepared & Analyzed: 20-Jun-00						
otal Organic Carbon	41.5	4.00	mg/l	40.0	1.96	98.9	75.0-125			
Matrix Spike Dup (0060459-MSD1)	So	urce: P00579	0-05	Prepared	& Analyz	ed: 20-Jur	n-00			
otal Organic Carbon	41.0	4.00	mg/l	40.0	1.96	976	75.0-125	1.32	20.0	

404 N. Wiget Lane Wainut Creek, CA 94598 (925) 988-9600 FAX (925) 988-9673 www.sequolalabs.com

Harding-Lawson Associates - Oakland

383 Fourth Street Oakland CA, 94607 Project: Port of Oakland

Project Number: 49667.1 Project Manager: Steve Osborne Reported:

29-Jun-00 12:02

Notes and Definitions

D-12 Chromatogram Pattern: Unidentified Hydrocarbons > C16

D-13 Chromatogram Pattern: Diesel C9-C24

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference

WCO5748 Nº 2547

383 Fourth Street, Third Floor Oakland, California 94607 (510) 451-1001 - Phone (510) 451-3165 - Fax Job Number: 49667.	Samplers:	ANALYSIS REQUESTED	
Name/Location: Port of Oakland	- South Accort Self- F	Tuelin Tadiman 18	0 2 4
Name/Location: fort of Oakland Project Manager: Steve Osbane	Recorder:	SM/TPHG. OOO OOO SM/TPHG. SM/TPHG. TRRE by C Tren (24) Tren (24) Tren (24) Tren (24) Tren (24) Tren (24)	
W	E NUMBER OR DATE NUMBER k Seq Yr Mo Day Tim	STATION DESCRIPTION/ NOTES	EPA 8010 EPA 8200 EPA 8200 EPA 8270 METALS EPA 8015M/TPHG EPA 8015M/TPHG EPA 8015M/TPHG EPA 8015M/TPHG CALAL Tron (2) Total Tron Catal
1-K X 1 13 116 X MW-1		50 31 03 45	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
NUMBER DEPTH COL QA MTD CODE	MISCELLANEOUS	CHAIN OF C	JSTODY RECORD
Yr Wk Seq FEET CD	Sid TAT	RELINQUISHED BY: (Signature) 5-70 RECEI	VED BY: (Signature) DATE/TIME S 30 4:30 DATE/TIME S 30 4:30 DATE/TIME S 30 00 5:30 DATE/TIME DATE/TIME DATE/TIME
		DISPATCHED BY: (Soppature) DATE/TIME METHOD OF SHIPMENT	RECEIVED FOR LAB BY: DATE/TIME (Signature)
		SAMPLE CONDITION WHEN RECEIVED BY THE LABORATORY	

DISTRIBUTION

Groundwater Monitoring Well Installation Report South Airport Self-Fueling Facility, Taxiway U Oakland International Airport Oakland, California

December 15, 2000

Copy No. ____

4 Copies

Mr. Dale H. Klettke,

CHMM

Port of Oakland

Environmental Health & Safety Compliance 530 Water Street, 2nd

Floor

Oakland, California 94607

Quality Control Reviewer

Luis Fraticelli Associate Geologist

JGM/SJO/dmw 49667/037779R