Mr. Barney Chan Alameda County Health Care Serve a Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 2530 Alameda, California 94502

Interim Investigation Data Report

1137-1167 65th Street Oakland, California 94608 Case No.: RO0000082

RECEIVED

9:24 am, May 09, 2008

Alameda County Environmental Health

Dear Mr. Chan:

Re:

On behalf of John Nady, Cambria Environmental Technology, Inc. (Cambria) is pleased to submit this *Interim Investigation Data Report* for the above site. This report summarizes the findings of the first of three phases of the assessment described in the Alameda County Health Care Services Agency (ACHCSA) approved August 26, 2003 *Investigation Work Plan* prepared by Cambria. This report presents revised well locations and screen intervals. Upon ACHCSA concurrence, Cambria will commence well installation, which is the second phase of assessment in the workplan.

Based on the current and previous investigations, Cambria offers these conclusions:

- No groundwater or surface water sensitive receptors were identified within ½-mile of the site.
- Underground utilities do not appear to be acting as conduits for preferential migration of site compounds of concern.
- The B-zone is comprised of silty sand stringers and only exists in the southwestern portion of the site.
- Hydrocarbons and VOCs are commingled at the site. A significant issue is petroleum hydrocarbons in soil and groundwater above the ESLs across the site and offsite. Another issue is benzene and xylene and select halogenated VOCs in a few soil and groundwater locations onsite and offsite.
- Concentrations of compounds of concern in onsite and offsite soil and groundwater have been sufficiently defined to merit the installation of monitoring wells.

Based on our findings from these investigations, Cambria recommends a few modifications to the initial monitoring well installation plan presented in the ACHCSA approved August 26, 2003 *Investigation Work Plan*. Cambria recommends installation of the following monitoring wells:

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

- MW-2A, MW-3A, MW-4A, and MW-5A screened from 5 to 15 ft bgs (A-zone) and MW-1A and MW-6A screened from 5 to 12 ft bgs (A-zone) to monitor concentrations of compounds of concern in the perched/shallow groundwater zone;
- MW-1B and MW-6B screened from 16 to 22 ft bgs (B-zone) to monitor concentrations of compounds of concern in the intermediate zone located in the southwestern portion of the property; and
- MW-1C, MW-4C, and MW-6C screened from approximately 28 to 40 ft bgs (C-zone) to monitor concentrations of compounds of concern and the groundwater gradient in the true groundwater zone.

Upon completion of well installation activities, Cambria will submit an investigation report detailing our findings.

If you have any questions or comments regarding this report, please contact me at (510) 420-3338.

Sincerely,

Cambria Environmental Technology, Inc.

Jason D. Olson, E.I.T.

Project Manger

Enclosure: February 24, 2004 Interim Investigation Data Report

cc: Mr. Frederic Schrag, 6701 Shellmound Street, Emeryville, California 94608 Edward P. Sangster, Kirkpatrick & Lockhart, Four Embarcadero Center, 10th Floor, San Francisco, CA 94111

INTERIM INVESTIGATION DATA REPORT

1137-1167 65th Street Oakland, California 94608 Case No.: RO0000082

February 24, 2004

Prepared for Submittal to:

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Prepared by:

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Jason D. Olson, E.I.T.

Project Manager

Bob Clark-Riddell, P.E.

Principal Engineer

TABLE OF CONTENTS

INTRODUCTION	1
SITE BACKGROUND	1
REGIONAL GEOLOGY AND SETTINGSITE GEOLOGYSITE HYDROGEOLOGYSITE GROUNDWATER USE AND SENSITIVE REG	
FIELD ACTIVITIES SUMMARY	3
PRELIMINARY DATA FINDINGS	4
	4
CONCLUSIONS AND RECOMMENDATION	NS5
F	IGURES
Figure 1	Site Plan
Figure 2	Cross Section Locations
Figure 3	Geologic Cross Section A – A'
Figure 4	Geologic Cross Section B – B'
Figure 5	Geologic Cross Section C - C'
Figure 6	TPH Concentrations in Soil that Exceed the ESL
Figure 7	VOC Concentrations in Soil that Exceed the ESL
Figure 8TPH Cor	ncentrations in Groundwater that Exceed the ESL
Figure 9	TPH Concentrations in Soil that Exceed the ESL
-	TABLES
And a second	
	Soil Analytical Data: Petroleum Hydrocarbons
	Soil Analytical Data: Volatile Organic Compounds
	ndwater Analytical Data: Petroleum Hydrocarbons
Table 2Groundwa	ater Analytical Data: Volatile Organic Compounds
АР	PENDICES
Appendix A	Boring Logs
	Laboratory Analytical Reports
· ·	

H:\Nady\Reports\2-04 Interim Investigation Data Report\02-24-04 - Final - Interim Investigation Data Report.doc

INTERIM INVESTIGATION DATA REPORT

1137-1167 65th Street Oakland, California 94608 Case No.: RO0000082

February 24, 2004

INTRODUCTION

On behalf of John Nady, Cambria Environmental Technology, Inc. (Cambria) is submitting this *Interim Investigation Data Report* for the above-referenced site. During the September 11, 2003 Cambria meeting with Mr. Barney Chan and Mr. Scott Seery of the Alameda County Health Care Services Agency (ACHCSA), ACHCSA approved the first and second of three phases of site assessment proposed in Cambria's August 26, 2003 *Investigation Work Plan* (work plan). The first phase of assessment included a soil boring investigation, conduit study, and sensitive receptor survey designed to address site data gaps. The planned second phase includes site well installation activities to monitor groundwater concentration trends by obtaining repeatable data. The third phase, which is pending the second phase and regulatory approval, is a soil gas investigation designed to assess potential indoor air impacts from site compounds of concern.

This report summarizes the findings of the first phase of assessment and recommends well locations for ACHCSA concurrence to begin the second phase of the assessment. The site background, field activities summary, preliminary data findings, and conclusions and recommendations are presented below. Additional details will be presented in an investigation report submitted after well installation activities.

SITE BACKGROUND

Site Description

The site is currently comprised of a group of buildings separated by narrow walkways and occupying the addresses of 1137, 1145, 1147, and 1167, Oakland, California (Figure 1). The site topography is at an elevation of approximately 35 feet above mean sea level (ft msl). The site vicinity is of mixed residential, commercial, and light industrial use.

Regional Geology and Setting

The site is located approximately ¾-miles east of the San Francisco Bay. The site is situated on alluvial fan deposits of the Temescal Formation, comprised of interfingering lenses of clayey gravel, sandy silt, clay, and sand-clay-silt mixtures (Radburch, D.H., 1957).

CAMBRIA

Site Geology

Based on previous investigations, the subsurface soils generally consist of interbedded layers of low permeability silts and clays and moderate permeability sandy silt and clay mixtures to a total explored depth of 36 ft bgs. A discontinuous layer of silty sand varying in thickness from 0.5 to 3.5-feet is present from 15 to 20 ft bgs in the southeastern portion of the site. For the August 26, 2003 work plan, Cambria prepared three hydrogeologic cross sections to facilitate future placement of boring and well screen intervals. The cross section locations are shown on Figure 2. The cross sections are included as Figures 3, 4, and 5. These cross sections will be updated with data from this investigation upon the completion of well installation activities. Boring logs for the January 2004 investigation are included in Appendix A.

Site Hydrogeology

Several water-bearing zones have been identified beneath the site. A perched zone ranging in thickness from 1.5 to 2.0-feet is typically present at varying depths from approximately 3.5 to 6 feet bgs. A shallow water-bearing zone ranging in thickness of 1 to 8 feet is present at varying depths from approximately 6 to 12 ft bgs. In certain areas of the site, the perched and shallow water-bearing zones appear to be hydraulically connected. This perched and/or shallow water-bearing zone (present at approximately 3.5 to 12 ft bgs) has been designated the A-zone. A semi-confined or confined water-bearing zone is present in the southeastern portion of the site at approximately 16 to 22 ft bgs, and has been designated the B-zone. A deeper, confined or semi-confined water-bearing zone begins at approximately 28 ft bgs, and has been designated the C-zone. This water bearing zone may represent the true groundwater in the area. The lower extent of the C-zone is not yet defined.

The groundwater gradients and flow directions for the various water-bearing zones cannot be adequately determined based on available data, and will be evaluated by the planned monitoring wells. The inferred direction of groundwater flow for all water-bearing zones beneath the site is west towards the bay.

Site Groundwater Use and Sensitive Receptor Survey

Cambria understands that site groundwater is in the East Bay plain beneath and adjacent to Emeryville, where groundwater is not considered a potential drinking water resource. As part of this investigation, Cambria conducted a sensitive receptor survey for beneficial use wells (e.g., municipal supply, domestic, irrigation, etc.) and surface water bodies within ½-mile of the site. While several environmental monitoring wells were located during the survey, Cambria did not locate any surface water bodies or beneficial use wells within ½-mile of the site.

Conduit Study

As part of this investigation, Cambria conducted a conduit study to determine if preferential migration pathways exist near the site and merit additional investigation. Underground utilities are shown on Figure 1. No preferential migration pathways were located adjacent to the site in Peabody Lane. Based on site concentrations in grab groundwater samples near 65th Street, it is unlikely that preferential migration is occurring via the underground utilities located in 65th Street.

FIELD ACTIVITIES SUMMARY

In January 2004, Cambria advanced nineteen soil borings to further define the extent of petroleum hydrocarbons and volatile organic compounds (VOCs) in soil and groundwater beneath the site (Figure 1). Soil samples were collected at the intervals specified in the August 26, 2003 work plan. Cambria collected nine A-zone, one B-zone, and four C-zone groundwater samples. To prevent cross contamination of deeper groundwater samples, a dual-walled direct push rig was used to obtain multiple discrete depth groundwater samples (e.g., A-zone and C-zone groundwater samples were collected from boring SB-17A/C using a dual-walled direct push rig). Soil and groundwater samples were analyzed for hydrocarbons and VOCs in accordance with the August 26, 2003 work plan. The borings are summarized in the tables below.

		_		
A-Zo	ne	Bo	rın	เตร

	Screen	Depth to
Boring	Interval	Water
U		
Location	(ft bgs)	(ft bgs)
SB-12A	8 to 13	4.5
SB-13	NA	Soil Only
SB-14A	2 to 7	4.0
SB-15A	8 to 13	4.0
_SB-16A	8 to 13	4.0
ŜB-17A/C	8 to 13	No Recovery
SB-18A	7 to 12	1.5
SB-19A	14 to 19	No Recovery
SB-20A/C	8 to 13	8.0
SB-21A	4.5 to 9.5	8.5
SB-22A/C	5 to 10	No Recovery
SB-23	NA	Soil Only
SB-24	NA	Soil Only
SB-25A	5 to 10	5.0
SB-26A	8 to 13	4.0

B-Zone Borings

		
	Screen	Depth to
Boring	Interval	Water
Location	(ft bgs)	(ft bgs)
SB-17B	17 to 22	16.5

C-Zone Borings

	_ Screen	Depth to
Boring.	Interval	Water
Location	(ft bgs)	(ft bgs)
SB-14C	30.5 to 35.5	No Recovery
SB-17A/C	29 to 34	No Recovery
SB-18B/C**	26 to 31	25.0
SB-18B/C	35 to 40	34.0
SB-20A/C	29 to 34	31.0
SB-22A/C	41 to 46*	Not Measured
SB-25C	29 to 34	29.0

^{*} dual-walled direct push rig not used

Based on field observations, the B-zone is comprised of a silty sand / sandy silt layer approximately 0.5 to 3.5 ft thick (boring SB-17B) and is present from approximately 16 to 22 ft bgs (borings SB-7

^{**} Sample SB-18B actually collected in C-zone.

CAMBRIA

and SB-17B). The B-zone was only observed in borings SB-7, SB-17A/C, SB-17B, and SB-18B/C located in the southwestern portion of the site. Note that for boring SB-18 Cambria collected grab groundwater samples from 26 to 31 feet bgs (sample SB-18B) and from 35 to 40 (sample SB-18C). Upon review of boring logs and groundwater analytical results from SB-18B and SB-18C, Cambria considers the sample designated as SB-18B to reflect first encountered groundwater from the C-zone and sample SB-18C to represent deeper groundwater from the C-zone. In general, the same VOCs were detected at similar concentrations in samples from SB-18B and SB-18C (see Table 4).

3

PRELIMINARY DATA FINDINGS

Cambria screened all current and historic soil and groundwater analytical data against the July 2003 Environmental Screening Limits (ESLs) established by the Regional Water Quality Control Board – San Francisco Bay Region (RWQCB) for commercial sites overlying a non-drinking water aquifer. Cambria's data findings for hydrocarbons and VOCs are described below. Soil and groundwater analytical data are summarized in Tables 1, 2, 3, and 4. Hydrocarbon and VOC concentrations exceeding the ESLs in soil and groundwater are shown on Figures 6, 7, 8, and 9. Analytical laboratory reports are included in Appendix B.

Hydrocarbons

Hydrocarbon Concentrations in Soil: Hydrocarbon concentrations in soil exceed the ESLs in five areas of the site (see Figure 6): 1) shallow soil in the immediate area surrounding the former interior USTs, 2) shallow soil in the immediate area of the former exterior USTs, 3) shallow soil in the area of the former product piping and floor drain (borings SB-8, SB-21, SB-22, and SB-24), 4) soil from approximately 3.5 to 17.5 ft bgs in the southwestern most portion of the site (borings SB-7 and SB-18), and 5) shallow soil in the area of Peabody lane defined by borings SB-5 and SB-15.

Hydrocarbon Concentrations in Groundwater: Hydrocarbon concentrations in the B-zone and C-zone groundwater samples did not exceed the ESLs. Hydrocarbon concentrations in groundwater exceeding the ESLs in the A-zone primarily surround the five hydrocarbon soil areas discussed above (see Figure 8). While A-zone concentrations appear to have migrated offsite, the detections in boring SB-20 (the presumed most downgradient boring) are just above the ESL limit.

VOCs

VOCs in Soil: VOC concentrations in soil exceed the ESLs in two areas of the site (see Figure 7): 1) benzene and xylene concentrations in soil at 7.5 ft bgs (at the top of the groundwater table) located

CAMBRIA

downgradient of the former gasoline UST (borings SB-14 and SB-15) and 2) xylene concentrations in soil from 7.5 to 17.5 ft bgs in the southwestern most portion of the site (boring SB-18).

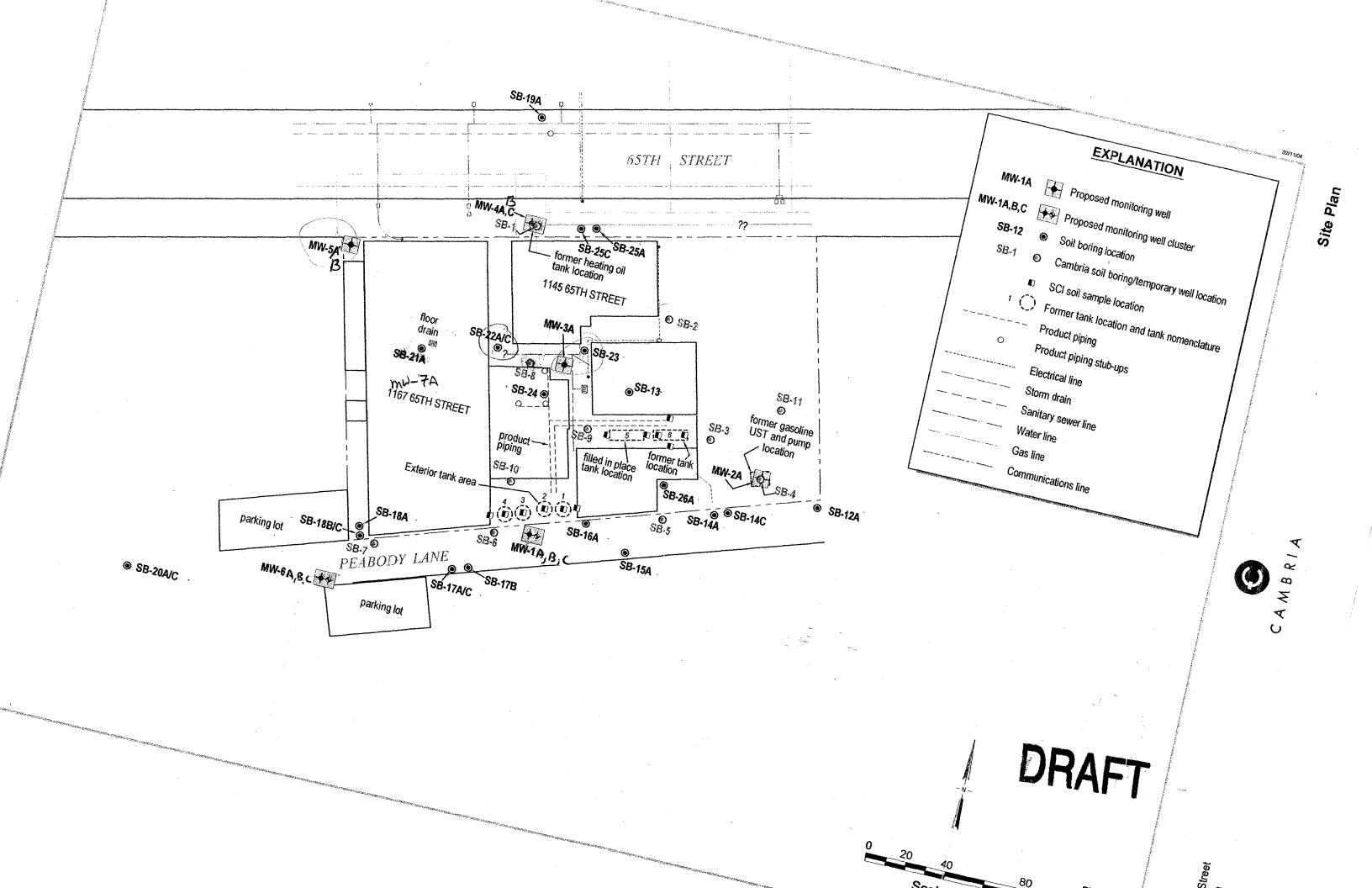
VOCs in Groundwater: VOC concentrations in groundwater exceeding the ESLs are shown on Figure 9. VOC concentrations in A-zone groundwater exceeding the ESLs were limited to benzene and xylenes near the former interior, exterior, and gasoline USTs. VOC concentrations in B-zone and C-zone groundwater exceeding the ESLs were tetrachloroethene (PCE), trichloroethene (TCE), and cis 1,2-dichloroethene (cis 1,2-DCE) near the southwestern most portion of the site (borings SB-17 and SB-18).

CONCLUSIONS AND RECOMMENDATIONS

Based on the current and previous investigations, Cambria offers these conclusions:

- No groundwater or surface water sensitive receptors were identified within ½-mile of the site.
- Underground utilities do not appear to be acting as conduits for preferential migration of site compounds of concern.
- The B-zone is comprised of silty sand stringers and only exists in the southwestern portion of the site.
- Hydrocarbons and VOCs are commingled at the site. A significant issue is petroleum
 hydrocarbons in soil and groundwater above the ESLs across the site and offsite. Another issue
 is benzene and xylene and select halogenated VOCs in a few soil and groundwater locations
 onsite and offsite.
- Concentrations of compounds of concern in onsite and offsite soil and groundwater have been sufficiently defined to merit the installation of monitoring wells.

Based on our findings from these investigations, Cambria recommends a few modifications to the initial monitoring well installation plan presented in the ACHCSA approved August 26, 2003 *Investigation Work Plan*. Cambria recommends installation of the following monitoring wells:


- MW-2A, MW-3A, MW-4A, and MW-5A screened from 5 to 15 ft bgs (A-zone) and MW-1A and MW-6A screened from 5 to 12 ft bgs (A-zone) to monitor concentrations of compounds of concern in the perched/shallow groundwater zone;
- MW-1B and MW-6B screened from 16 to 22 ft bgs (B-zone) to monitor concentrations of compounds of concern in the intermediate zone located in the southwestern portion of the property; and

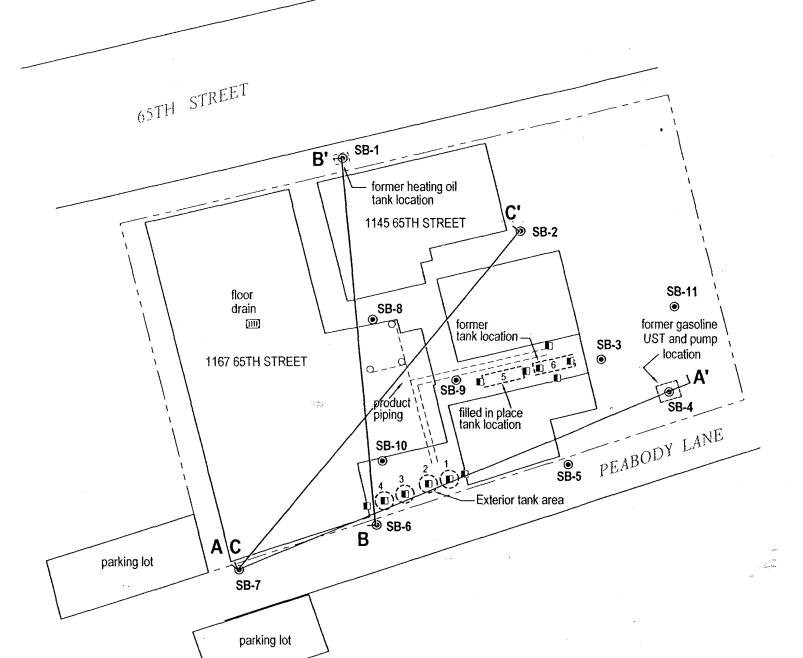
CAMBRIA

• MW-1C, MW-4C, and MW-6C screened from approximately 28 to 40 ft bgs (C-zone) to monitor concentrations of compounds of concern and the groundwater gradient in the true groundwater zone.

Upon completion of well installation activities, Cambria will submit an investigation report detailing our findings.

SB-1

● Cambria soil boring/temporary well location


■ SCI soil sample location

Former tank location and tank nomenclature

- Product piping

Product piping stub-ups

Location of geologic cross-section

DRAFT

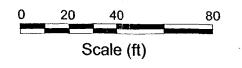
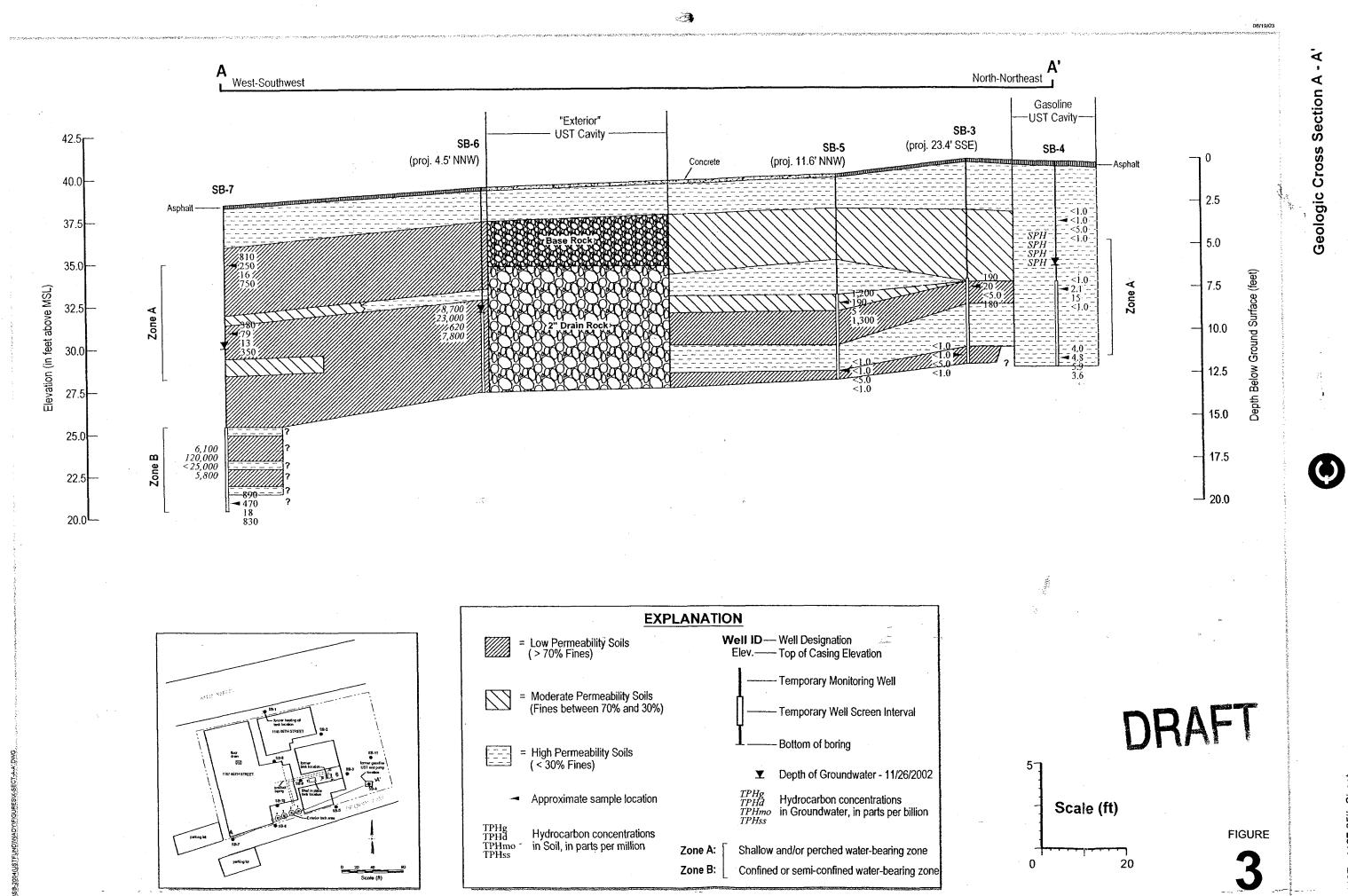
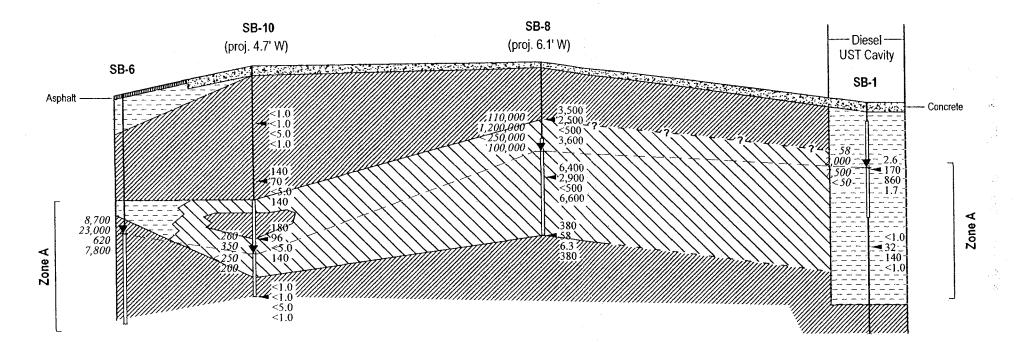
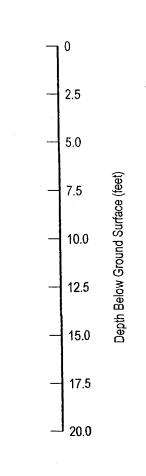



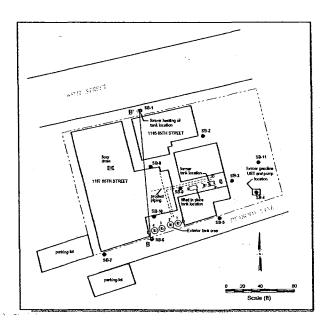
FIGURE 2

1137 - 1167 65thStreet Oakland, California

1137 - 1167 65th Street Oakland, California




 $\mathbf{\omega}$


 $\mathbf{\omega}$

Geologic Cross Section

B South North

42.5

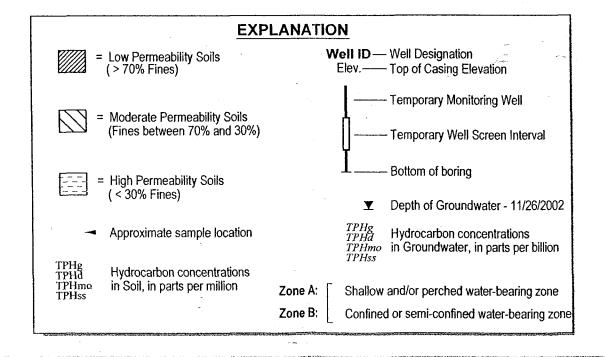
40.0

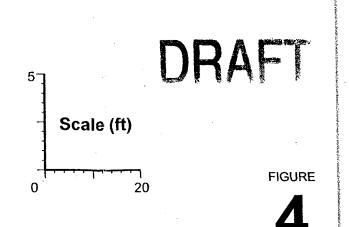
37.5

35.0

32.5

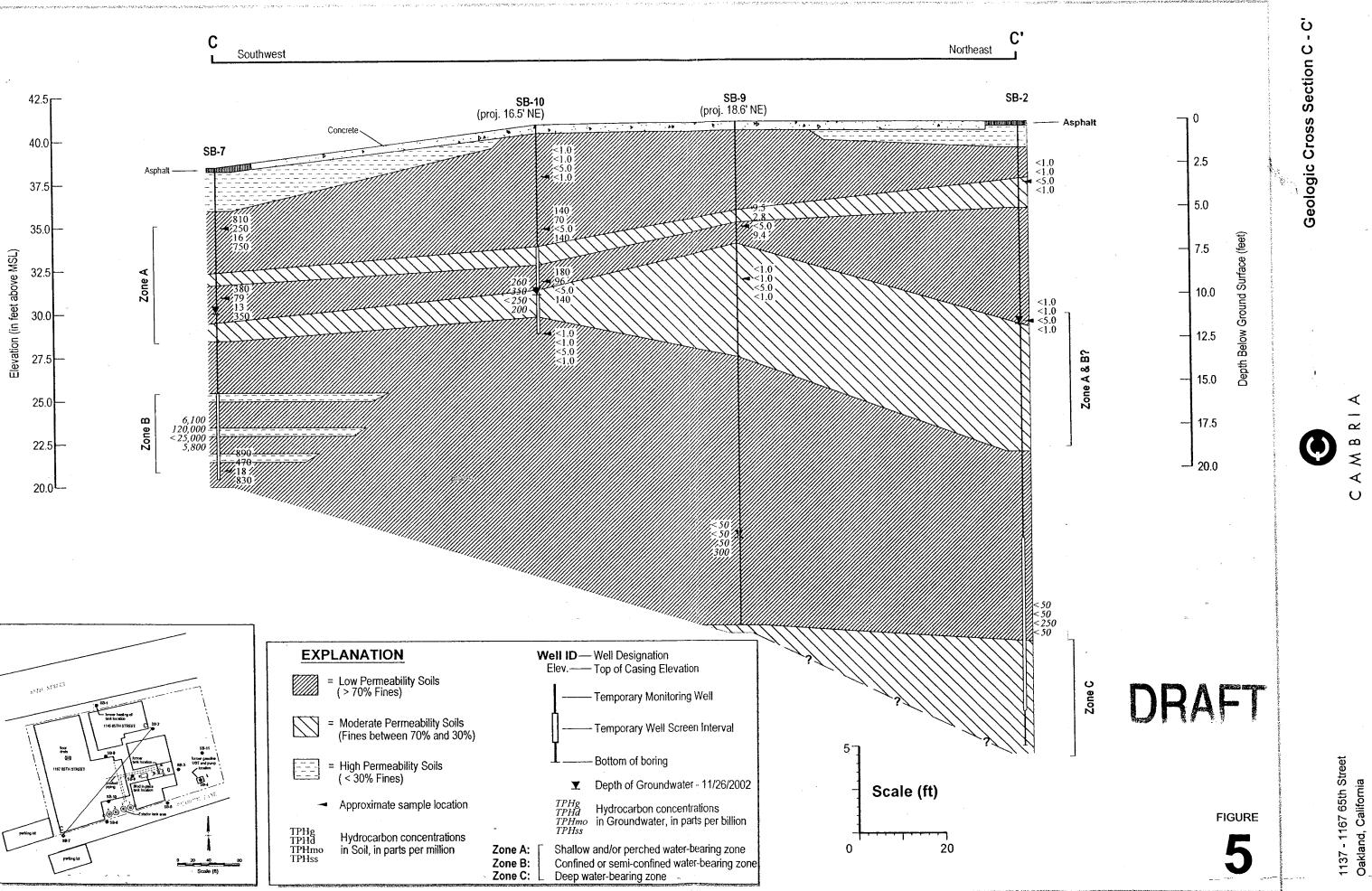
30.0

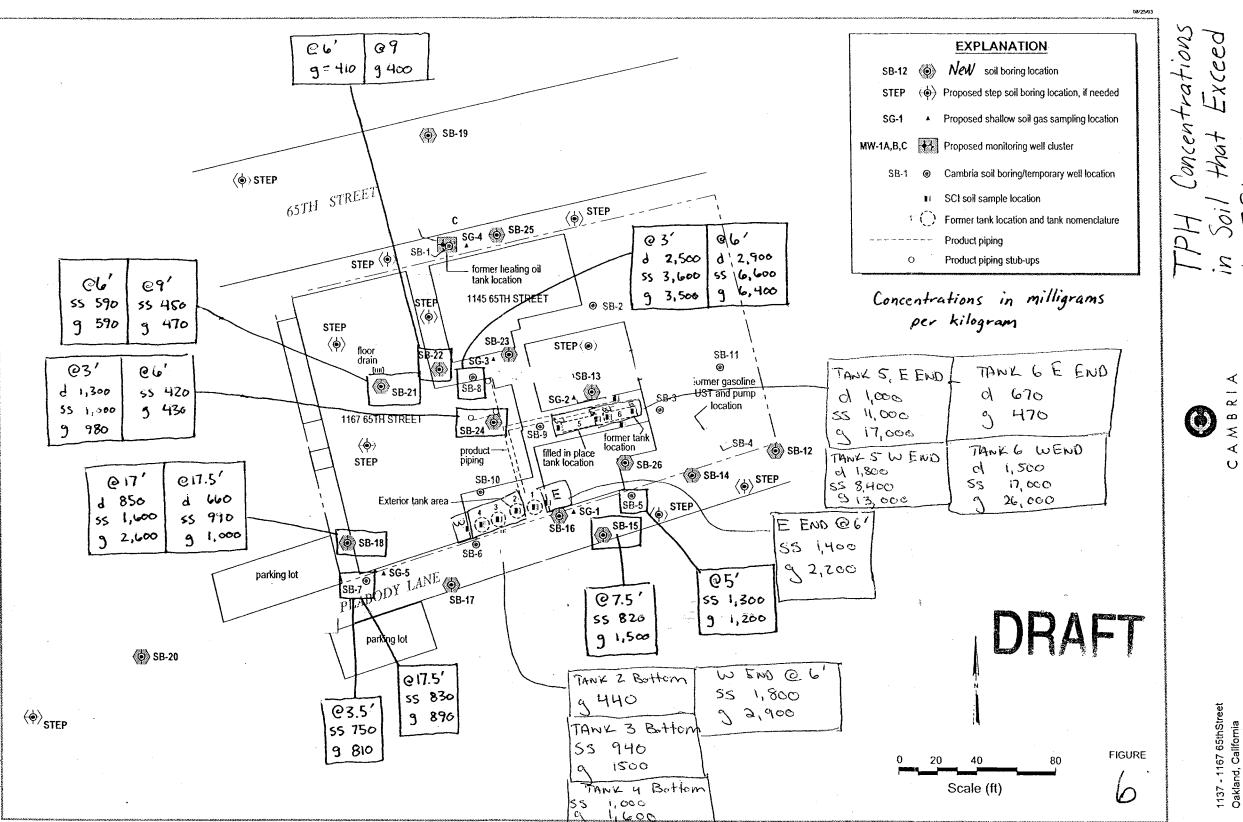

27.5

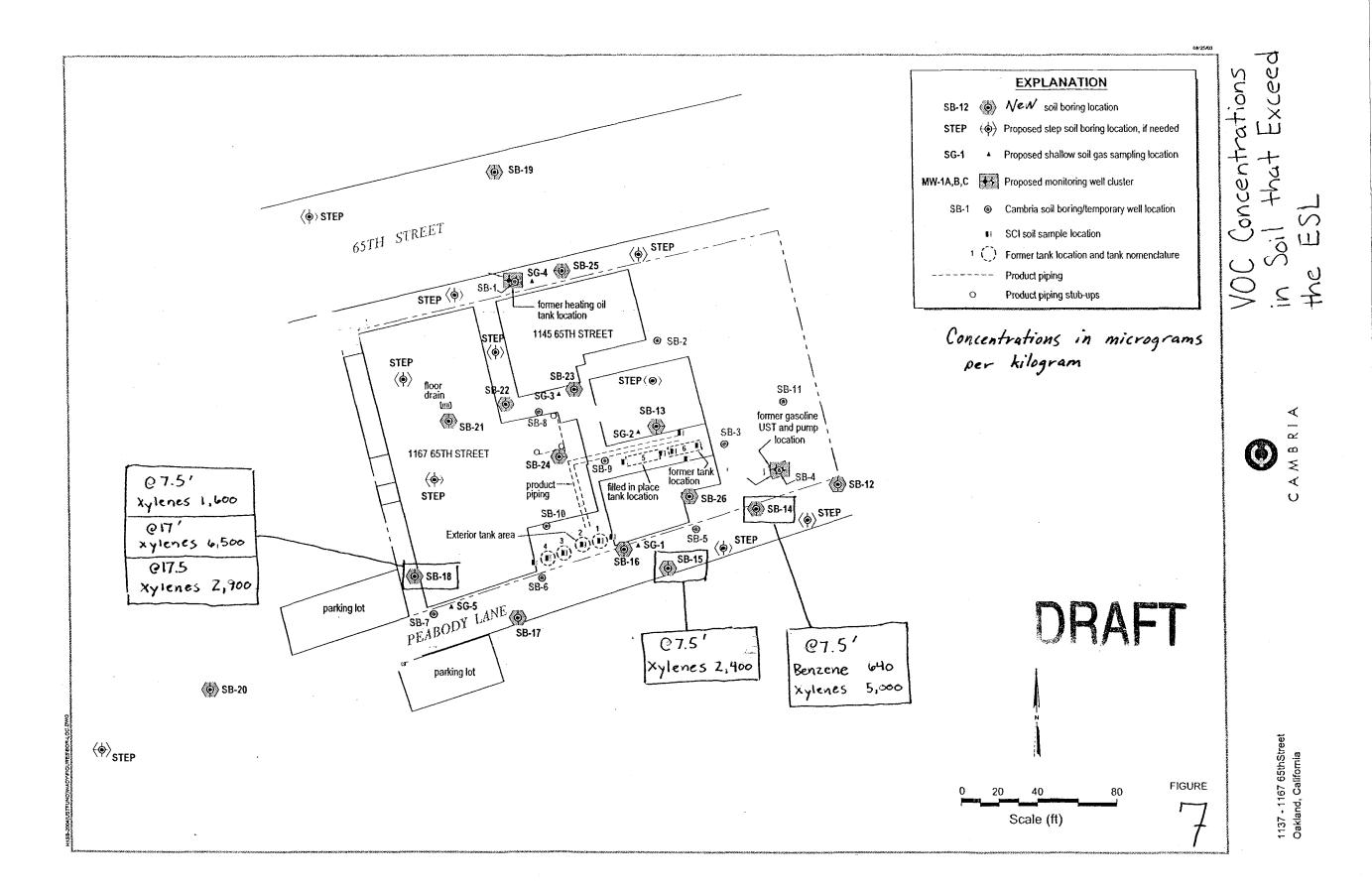

25.0

22.5

20.0


Elevation (above MSL)





A M B R I

1137 - 1167 65th Street Oakland, California

TPH Concentrations in Groundwater that

1137 - 1167 65thStree Oakland, Callfornia

⟨�⟩STEP

cis-1,2-DCE 1,800

parking lot

TCE 430

Deeper C-Zona

cis-1,2-DCE 1,200

PCE 300

⟨o⟩ SB-20

⟨•⟩_{STEP}

65TH STREET

STEP (6)

1167 65TH STREET

STEP

(⊕) SB-18

parking lot

MR ESL

Table 1. Soil Analytical Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

	Date	Sample				
Sample ID	Sampled	Depth	TPHmo	TPHd	TPHss	TPHg
		(ft)			mg/kg —	
Residential ESL, r	on-drinking water		500	500	100	100
Commercial ESL,	non-drinking wate	r	1,000	500	400	400
a .a .						
Current Cambria	- *			.1.0	4.0	-1.0
SB-11-7.5	11/25/2002	7.5	<5.0	<1.0	<1.0	<1.0
SB-13@6.0	1/5/2004	6.0	<5.0	21	150	140
SB-13@11.5	1/5/2004	11.5	<5.0	41	260	260
SB-14@7.5	1/9/2004	7.5	<5.0	64	100	210
SB-14@11.5	1/9/2004	11.5	<5.0	<1.0	<1.0	<1.0
SB-15@7.5	1/12/2004	7.5	9.3	190	820	1,500
SB-15@11.5	1/12/2004	11.5	<5.0	<1.0	<1.0	<1.0
SB-16@7.5	1/12/2004	7.5	<5.0	59	49	90
SB-16@11.5	1/12/2004	11.5	<5.0	<1.0	<1.0	<1.0
						r
SB-17@3.5	1/8/2004	3.5	210	110	<1.0	<1.0
SB-17@7.5	1/8/2004	7.5	< 5.0	<1.0	<1.0	<1.0
SB-17@11.5	1/8/2004	11.5	<5.0	<1.0	<1.0	<1.0
SB-17@17.5	1/8/2004	17.5	<5.0	<1.0	<1.0	<1.0
SB-17@20	1/8/2004	20.0	5.5	1.4	<1.0	<1.0
SB-18@3.5	1/6/2004	3.5	<5.0	<1.0	<1.0	<1.0
SB-18@7.5	1/6/2004	7.5	<50	230	310	340
SB-18@11.5	1/6/2004	11.5	<5.0	8.5	5.7	6.2
SB-18@17	1/6/2004	17.0	<100	850	1,600	2,600
SB-18@17.5	1/9/2004	17.5	<50	660	990	1,000
SB-18@20	1/9/2004	20.0	<5.0	<1.0	<1.0	<1.0
SB-21@3	1/20/2004	3.0	<5.0	<1.0	<1.0	<1.0
SB-21@6	1/20/2004	6.0	<25	220	590	590
SB-21@9	1/20/2004	9.0	<25	270	450	470
SB-22@3.0	1/7/2004	3.0	<5.0	1.1	<1.0	<1.0

Table 1. Soil Analytical Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

	Date	Sample				
Sample ID	Sampled	Depth	TPHmo	TPHd	TPHss	TPHg
	<u> </u>	(ft)	←		mg/kg	
Residential ESL,	non-drinking water		500	500	100	100
Commercial ESL,	non-drinking wate	er	1,000	500	400	400
22 22 24 2	1 17 17 00 0 1			222	220	410
SB-22@6.0	1/7/2004]	6.0	11	230	220	410
SB-22@9.0	1/7/2004	9.0	6.7	150	220	400
SB-23@3	1/6/2004	3.0	<5.0	<5.0 <1.0 <1.0 <5.0 <1.0 <1.0		
SB-23@6	1/6/2004	6.0	<5.0	<1.0	<1.0	<1.0
SB-23@9	1/6/2004	9.0	<5.0	<1.0	<1.0	<1.0
SB-24@3	1/5/2004	3.0	<250	1,300	1,000	980
SB-24@6	1/5/2004	6.0	8.9	220	420	430
SB-24@9	1/5/2004	9.0	<5.0	54	43	43
3D 24G)	1/3/2004	7.0	43.0	J.		.5
SB-26@7.5	1/7/2004	7.5	6.8	150	220	240
SB-26@11.5	1/7/2004	11.5	<5.0	67	98	180
revious Cambria		3.5	860	170	1.7	2.6a,b
SB-1-3.5 SB-1-7.5	11/25/2002 11/25/2002	7.5	140	32	<1.0	<1.0
SB-2-3.5	11/25/2002	7.5 3.5	<5.0	<1.0	<1.0	<1.0
SB-2-11.5	11/25/2002	11.5	<5.0	<1.0	<1.0	<1.0
SB-2-11.5 SB-3-7.5	11/25/2002	7.5	<5.0	20	180	190a
SB-3-11.5	11/25/2002	11.5	<5.0	<1.0	<1.0	<1.0
SB-4-3.5	11/25/2002	3.5	<5.0	<1.0	<1.0	<1.0
SB-4-7.5	11/25/2002	7.5	15	2.1	<1.0	<1.0
SB-4-11.5	11/25/2002	11.5	5.9	4.8	3.6	4.0
SB-5-7.5	11/25/2002	7.5	5	190	1,300	1,200a
SB-5-11.5	11/25/2002	11.5	<5.0	<1.0	<1.0	<1.0
SB-7-3.5	11/25/2002	3.5	16	250	750	810a
SB-7-7.5	11/25/2002	7.5	13	79	350	380a
SB-7-17.5	11/25/2002	17.5	18	470	830	890a
SB-8-3	11/25/2002	3.0	<500	2,500	3,600	3,500a
SB-8-6	11/25/2002	6.0	<500	2,900	6,600	6,400a
SB-8-9	11/25/2002	,9.0	6.3	58	380	380a
SB-9-6	11/25/2002	6.0	<5.0	2.8	9.4	9.5a

Table 1. Soil Analytical Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

	Date	Sample				
Sample ID	Sampled	Depth	TPHmo	TPHd	TPHss	ТРНд
	10.	(ft)			mg/kg ———	
Residential ESL, n			500	500	100	100
Commercial ESL,	non-drinking wate	<u>r</u>	1,000	500	400	400
SB-9-9	11/25/2002	9.0	<5.0	<1.0	<1.0	<1.0
SB-10-3	11/25/2002	3.0	<5.0	<1.0	<1.0	<1.0
SB-10-6	11/25/2002	6.0	<5.0	70	140	140a
SB-10-9	11/25/2002	9.0	<5.0	96	140	180a
SB-10-12	11/25/2002	12.0	<5.0	<1.0	<1.0	<1.0
Previous SCI Samp	oles					
Tank 1 Bottom	2/25/2002			69	74	110
Tank 2 Bottom	2/25/2002			34	280	440
Tank 3 Bottom	2/25/2002			220	940	1,500
Tank 4 Bottom	2/25/2002			12	1,000	1,600
E End @ 6'	2/26/2002	6.0		220	1,400	2,200
W End @ 6'	2/26/2002	6.0		390	1,800	2,900
Pipe #1	2/26/2002			68	< 0.99	< 0.99
Pipe #2	2/26/2002			6.8	< 0.95	< 0.95
Tank 5 E End	2/13/2002			1,000	11,000	17,000
Tank 5 W End	2/13/2002			1,800	8,400	13,000
Tank 6 N Wall	3/7/2002	2.0		53	< 0.98	<0.98
Tank 6 S Wall	3/7/2002	5.0		260	270	310
Tank 6 E End	2/13/2002			670	300	470
Tank 6 W End	2/13/2002			1,500	17,000	26,000

Abbreviations and Methods:

Bold values represent concentrations above the commericial ESL.

mg/kg = Milligrams per kilogram, equivalent to parts per million (ppm)

ND = Not detected above laboratory reporting limit; see laboratory report for individual reporting limits

TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method 8015C with silica gel cleanup

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C with silica gel cleanup

TPHss = Total petroleum hydrocarbons as Stoddard solvent by EPA Method 8021B/8015Cm

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8021B/8015Cm

TPHnap = Total petroleum hydrocarbons as naphtha by EPA Method 8015m/8020

^{-- =} Not available, not analyzed, or does not apply

Table 1. Soil Analytical Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Sample ID	Date Sampled	Sample Depth (ft)	TPHmo	TPHd	TPHss mg/kg	TPHg
Residential ESL, n	on-drinking water		500	500	100	100
Commercial ESL,	non-drinking wate	er	1,000	500	400	400

Lead by EPA Method 6010C

Residential ESL = Table B - Environmental Screening Levels Shallow Soil <3 meters (Groundwater is not a Current or Potential Source of Drinking Water) established by the SFBRWQCB, Interim Final July 2003.

Commercial ESL = Table B - Environmental Screening Levels Shallow Soil <3 meters (Groundwater is not a Current or Potential Source of Drinking Water) established by the SFBRWQCB, Interim Final July 2003.

a = Laboratory note: TPH pattern that does not appear to be derived from gasoline (Stoddard solvent/mineral spirit?)

b = Laboratory note: heavier gasoline range compounds are significant (aged gasoline?)

Table 2. Soil Analytical Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, California

					·								
Sample ID	Date Sampled	Depth		Toulen	in the second			Ser. 12.7.	Trichlor	and the state of t	1,2.Dick	Areignation are a second are a	, Junie
•		(ft) }	_				ug	g/kg					
	-drinking water E		180	9,300	4,700	1,500	88	1,600	260	6.7	52	520	
Commercial, nor	n-drinking water I	ESL	380	9,300	13,000	1,500	250	3,600	730	19	150	1,500	
Current Cambrid	a Samples												
SB-13@6	1/5/2004	6.0	<50	<50	<50	<50	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	<5.0	
SB-13@11.5	1/5/2004	11.5	<100	<100	<100	<100	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-14@7.5	1/9/2004	7.5	640	390	1,800	5,000	<400	<400	<400	<400	<400	<400	
SB-14@11.5	1/9/2004	11.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	
SB-15@7.5	1/12/2004	7.5	<1,000	<1,000	<1,000	2,400	<400	<400	<400	<400	<400	<400	
SB-15@11.5	1/12/2004	11.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-16@7.5	1/12/2004	7.5	<50	<50	69	110	<100	<100	<100	<100	<100	<100	
SB-16@11.5	1/12/2004	11.5	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-17@3.5	1/8/2004	3.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-17@7.5	1/8/2004	7.5	<5.0	< 5.0	<5.0	<5.0	<5.0	8.3	< 5.0	<5.0	< 5.0	<5.0	
SB-17@11.5	1/8/2004	11.5 %	< 5.0	<5.0	< 5.0	< 5.0	< 5.0	180	< 5.0	8.3	7.4	<5.0	
SB-17@17.5	1/8/2004	17.5	< 5.0	< 5.0	<5.0	< 5.0	<10	170	<10	<10	<10	<10	
SB-17@20	1/8/2004	20.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-18@3.5	1/6/2004	3.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-18@7.5	1/6/2004	7.5	<200	<200	310	1,600	<400	<400	<400	<400	<400	<400	
SB-18@11.5	1/6/2004	11.5	<5.0	<5.0	<5.0	15	<50	<50	<50	<50	<50	<50	
SB-18@17	1/6/2004	17.0	<200	<200	1,100	6,500	<400	<400	<400	<400	<400	<400	
SB-18@17.5	1/9/2004	18.5	<250	<250	570	2,900	<400	<400	<400	<400	<400	<400	
SB-18@20	1/9/2004	20.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-21@3	1/20/2004	3.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-21@6	1/20/2004	6.0	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	
SB-21@9	1/20/2004	9.0	<200	<200	230	<200	<200	<200	<200	<200	<200	<200	
ol-soil&gw2004.xls	;					I of 4							

H:\Nady\Tables\Tbl-soil&gw2004.xls

Table 2. Soil Analytical Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, California

								· <u> </u>					
Sample ID	Date Sampled	Depth	Per legisla					Sir. 12.7.	Trichlor.	and Selfons	Marida 12-Dich	Menyang Menyang	indiction of the state of the s
	Date Bampion ,	(ft)	_				ug	/kg —				<u> </u>	
Residential, non	-drinking water ESI		180	9,300	4,700	1,500	88	1,600	260	6.7	52	520	
Commercial, no	n-drinking water ES	L	380	9,300	13,000	1,500	250	3,600	730	19	150	1,500	
							-						
SB-22@3.0	1/7/2004	3.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-22@6.0	1/7/2004	6.0	<200	<200	<200	670	<400	<400	<400	<400	<400	<400	
SB-22@9.0	1/7/2004	9.0	<200	<200	<200	770	<100	<100	<100	<100	<100	<100	
SB-23@3	1/6/2004	3.0	<5.0	<5.0	<5.0	<5.0	13	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-23@6	1/6/2004	6.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	< 5.0	
SB-23@9	1/6/2004	9.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-24@3	1/5/2004	3.0	<500	<500	<500	<500	<400	<400	<400	<400	<400	<400	
SB-24@6	1/5/2004	6.0	<200	<200	240	<200	<400	<400	<400	<400	<400	<400	
SB-24@9	1/5/2004	9.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	
SB-26@7.5	1/7/2004	7.5	<200	<200	<200	<200	<100	<100	<100	<100	<100	<100	
SB-26@11.5	1/7/2004	11.5	<200	<200	<200	330	<50	<50	<50	<50	<50	<50	
		3											
Previous Cambr	ia Samples		·								·,		
SB-1-3.5	11/25/2002	3.5	<5.0	37	16	120	44	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-1-7.5	11/25/2002	7.5	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	
SB-2-3.5	11/25/2002	3.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-2-11.5	11/25/2002	11.5	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-3-7.5	11/25/2002	7.5	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	
SB-3-11.5	11/25/2002	11.5	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-4-3.5	11/25/2002	3.5	<5.0	< 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-4-7.5	11/25/2002	7.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
SB-4-11.5	11/25/2002	11.5	<5.0	<5.0	7.4	11	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	
SB-5-7.5	11/25/2002	7.5	<200	<200	<200	<200	<200	<200	<200	<200	<200	<200	
SB-5-11.5	11/25/2002	11.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
l coil&mu2004 vl	c					2 of 4							

2 of 4

Table 2. Soil Analytical Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, California

<u></u>					<u> </u>						·		
Sample ID	Date Sampled	Depth	a de la companya de l			\$1, 1600 P. S.		Sister Si	Pichlo.	Oction Viny	12.Dic.	Mediya Pane	**************************************
		(ft) !	←				uş	g/kg —				\rightarrow	
Residential, non	-drinking water Es	SL	180	9,300	4,700°	1,500	88	1,600	260	6.7	52	520	
Commercial, nor	n-drinking water E	ESL	380	9,300	13,000	1,500	250	3,600	730	19	150	1,500	
SB-7-3.5 SB-7-7.5	11/25/2002 11/25/2002	3.5 7.5	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	<100 <100	
SB-7-17.5	11/25/2002	17.5	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	
SB-8-3	11/25/2002	3.0	< 500	<500	<500	<500	<500	<500	<500	< 500	<500	< 500	
SB-8-6	11/25/2002	6.0	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	<1,000	
SB-8-9	11/25/2002	9.0	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	
SB-9-6	11/25/2002	6.0	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	
SB-9-9	11/25/2002	9.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	<5.0	< 5.0	
SB-10-3	11/25/2002	3.0	< 5.0	<5.0	< 5.0	<5.0	56	< 5.0	< 5.0	< 5.0	<5.0	<5.0	
SB-10-6	11/25/2002	6.0	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	
SB-10-9	11/25/2002	9.0	<500	< 500	<500	< 500	<500	< 500	<500	< 500	<500	<500	
SB-10-12	11/25/2002	12.0	<5.0	<5.0	< 5.0	< 5.0	<5.0	<5.0	<5.0	18	<5.0	<5.0	
SB-11-7.5	11/25/2002	7.5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	<5.0	
Previous SCI Sa	mples .												
Tank 1 Bottom	2/25/2002		<130	<130	<130	<130	<130	<130	<130	<130	<130	<130	
Tank 2 Bottom	2/25/2002		<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	
Tank 3 Bottom	2/25/2002		<250	<250	<250	<250	310	<250	<250	<250	<250	<250	
Tank 4 Bottom	2/25/2002		<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	
E End @ 6'	2/25/2002	6.0	<250	<250	<250	950	<250	<250	<250	<250	<250	<250	
W End @ 6'	2/25/2002	6.0	<250	<250	<250	<250	<250	<250	<250	<250	<250	<250	
Pipe #1	2/25/2002		<5.0	< 5.0	< 5.0	<5.0	< 5.0	<5.0	< 5.0	<5.0	< 5.0	< 5.0	
Pipe #2	2/25/2002		<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	<4.9	
Tank 5 E End	3/7/2002		<2,000	<2,000	8,600	<2,000	<2,000	<2,000	<2,000	<2,000	<2,000	<2,000	
Tank 5 W End	3/7/2002		<1,700	<1,700	5,900	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	<1,700	
Tank 6 N Wall	3/7/2002	2.0	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	<4.7	
Tank 6 S Wall	3/7/2002	5.0	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	<4.8	
Tank 6 E End	3/7/2002		<420	<420	<420	<420	<420	<420	<420	<420	<420	<420	
Tank 6 W End	3/7/2002		<3,100	<3,100	<3,100	<3,100	<3,100	<3,100	<3,100	<3,100	<3,100	<3,100	

Table 2. Soil Analytical Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, California

Sample ID	Date Sampled	Depth	Bergarene	Towers of the state of the stat		Sylvenses	Tetrach,	Cist 12-Dic	Tricing College	Salles (Villy)	1,2.Dig.,	Methylene	Single Control of the
		(ft),	←				u	g/kg ——				→	
Residential, non	ı-drinking water Es	SL	180	9,300	4,700	1,500	88	1,600	260	6.7	52	520	
Commercial, no	n-drinking water E	ESL	380	9,300	13,000	1,500	250	3,600	730	19	150	1,500	

Abbreviations and Methods:

Bold values represent concentrations above the commericial ESL.

ug/kg = Micrograms per kilogram, equivalent to parts per billion (ppb)

Volatile organic compounds by EPA Method 8260B

< n = Chemical not present at a concentration in excess of detection limit shown

ND = None detected above laboratory reporting limit, see laboratory report for individual reporting limits.

Residential ESL = Table B - Environmental Screening Levels Shallow Soils <3 meters (Groundwater is not a Current

or Potential Source of Drinking Water) established by the SFBRWQCB, Interim Final July 2003.

Commercial ESL = Table B - Environmental Screening Levels Shallow Soils <3 meters (Groundwater is not a Current

or Potential Source of Drinking Water) established by the SFBRWQCB, Interim Final July 2003.

(160,000) = No RBSL published for component. The value presented is from EPA's Preliminary Remediation Goals (PRG), 2000.

Table 3. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Boring ID	Date	Groundwater	Depth					
TOC	Sampled	Elevation (ft)/	to Water	TPHmo	TPHd	TPHss	TPHg	Notes
(ft*)		Screen Interval	(ft)		ug	/L		
		(ft bgs)						
ESL - Potential D	-			100	100	100	100	
ESL - Not a Poter	itial Drinking Wa	ter Source		640	640	500	500	
			1 **					
Current Cambria								
SB-12A	1/13/2004	8 to 13	4.5	300	130	<50	230	h,c,e,d,f
, ,								
SB-14A	1/9/2004	2 to 7	4.0	<250	<50	<50	<50	c
SB-14C	1/9/2004	30.5 to 35.5	NW					
SB-15A	1/12/2004	8 to 13	4.0	290	2,400	2,500	2,700	a,c,d
3D-13A	1/12/2004	8 10 15	4.0	290	2,400	2,300	2,700	a,c,d
SB-16A	1/12/2004	8 to 13	4.0	9,800	23,000	1,500	1,700	a,b,c,d,e,i
00 10/1	1/12/2004	0 10 15	4.0	2,000	25,000	1,000	2,7.00	4,0,0,4,0,1
SB-17A	1/13/2004	8 to 13	NW					
SB-17B	1/8/2004	17 to 22	16.5	<250	95	<50	120	c,d,f,g
SB-17C	1/13/2004	29 to 34	NW					
SB-18A	1/6/2004	7 to 12	1.5	<2,500	11,000	2,100	3,900	d,b
SB-18B**	1/9/2004	26 to 31	25.0	<250	92	<50	250	g,h
SB-18C	1/9/2004	. 35 to 40	34.0			170	300	c,g,h
	_		*					
SB-19A	1/13/2004	14 to 19	,NW					
			,	,				
SB-20A	1/13/2004	8 to 13	8.0	<250	1,400	610	680	b,d,j
SB-20C	1/13/2004	29 to 34	31.0	<250	<50	<50	<50	c
on or t	1/20/2024	15.05	8.5	-25,000	110,000	5,600	6,100	a,b,i,k
SB-21A	1/20/2004	4.5 to 9.5	8.3	<25,000	110,000	3,000	0,100	4,0,1,1
SB-22A	1/7/2004	5 to 10	NW					
SB-22C	1/7/2004	41 to 46*		<250	110	<50	<50	c,f
	2, 200 .			-				
SB-25A	1/8/2004	5 to 10	5.0	<250	64	<50	<50	c,f,g
SB-25C	1/8/2004	29 to 34	29.0	<250	<50	<50	<50	c

1 of 4

Table 3. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Boring ID TOC	Date Sampled	Groundwater Elevation (ft)/	Depth to Water	TPHmo	TPHd	TPHss	ТРНg	Notes
(ft*)		Screen Interval (ft bgs)	(ft)	4	u	g/L		
ESL - Potential I	orinking Water Sou			100	100	100	100	
ESL - Not a Pote	ntial Drinking Wat	ter Source		640	640	500	500	
SB-26A	1/7/2004	8 to 13	4.0	1,000	5,300	2,600	3,000	c,d,e
Previous Cambri	a Samples							
SB-1	11/25/2002	35.39	3.45					
(38.84)	11/26/2002	35.44	3.40	7,500	2,000	<50	58	
SB-2	11/25/2002	11.61	29.50			· 		
(41.11)	11/26/2002	29.46	·11.65	<250	<50	<50	<50	
SB-4	11/25/2002	34.02	6.90		·		·	
(40.92)	11/26/2002	34.82	6.10					SPH
SB-6	11/25/2002	28.24	11.25					
(39.49)	11/26/2002	32.19	7.30	620	23,000	7,800	8,700a,b,c	
SB-7	11/25/2002	28.20	10.30					
(38.50)	11/26/2002	30.10	8.40	<25,000	120,000	5,800	6,100a,b,c	
SB-8	11/25/2002	36.30	4.70				-	
(41.00)	11/26/2002	36.55	4.65	<250,000	1,200,000	100,000	110,000a,b,c	
SB-9	11/25/2002	16.02	25.00					
(41.02)	11/26/2002	17.07	23.95	300	50	<50	<50c	
SB-10	11/25/2002	29.27	11.60					
(40.87)	11/26/2002	31.12	9.75	<250	350	200	260a,c	
SB-11	11/25/2002	12.15	29.30	<u></u>			. 	
(41.45)	11/25/2002	19.55	21.90	<250	<50	<50	<50	

Table 3. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Boring ID	Date	Groundwater	Depth					
TOC	Sampled	Elevation (ft)/	to Water	TPHmo	TPHd	TPHss	TPHg	Notes
(ft*)					u	g/L 		
		(ft bgs)	*)					
ESL - Potential D	rinking Water Soi	ігсе		100	100	100	100	
ESL - Not a Poter	itial Drinking Wa	ter Source		640	640	500	500	
Previous SCI San	iples)					
Interior	2/20/2002				94,000	13,000	21,000	
Exterior	2/25/2002				82,000	42,000	66,000	
4								

Abbreviations:

Bold values represent concentrations above the non-drinking water ESL.

TOC Elev. (ft) = Top of casing elevation in feet above mean sea level

ug/L = micrograms per liter = parts per billion = ppb

TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method 8015C with silica gel cleanup

TPHd = Total petroleum hydrocarbons as diesel by EPA Method 8015C with silica gel cleanup

TPHss = Total petroleum hydrocarbons as Stoddard solvent by EPA Method 8021B/8015Cm

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method 8021B/8015Cm

TPHnap = Total petroleum hydrocarbons as naphtha by EPA Method 8015m/8020

ND = None detected above laboratory reporting limit, see laboratory report for individual reporting limits.

--- = Not available, not analyzed, or does not apply.

< n = Chemical not present at a concentration in excess of detection limit shown.

SPH = Separate phase hydrocarbons detected in well; no groundwater collected.

Notes:

- * = Grab groundwater sample was collected without protection against cross contamination between groundwater zones; sample may not be discrete.
- ** = Sample SB-18B collected in the C-zone
- a = Laboratory note: TPH pattern that does not appear to be derived from gasoline (Stoddard solvent/mineral spirit?)
- b = Laboratory note: lighter than water immiscible sheen/product is present
- c = Laboratory note: liquid sample that contains greater than ~2 vol. % sediment
- d = Laboratory note: gasoline range compounds are significant
- e = Laboratory note: oil range compounds are significant
- f = Laboratory note: diesel range compounds are significant; no recognizable pattern
- g = Laboratory note: one to a few isolated non-target peaks present
- h = Laboratory note: unmodified or weakly modified gasoline is significant
- i = Laboratory note: sample diluted due to high organic content
- j = Laboratory note: strongly aged gasoline or diesel range compounds are significant
- k = Laboratory note: stoddard solvent/mineral spirit

Table 3. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Boring ID	Date	Groundwater	Depth					
TOC	Sampled	Elevation (ft)/	to Water	TPHmo	TPHd	TPHss	TPHg	Notes
(ft*)		Screen Interval (ft bgs)	(ft)		ug	z/L		
ESL - Potential Dr	inking Water So	urce		100	100	100	100	
ESL - Not a Poten	SL - Not a Potential Drinking Water Source				640	500	500	

ESL - Potential Drinking Water Source = Table A - Environmental Screening Levels (Groundwater is a Current or Potential Source of Drinking Water) established by the SFBRWQCB, Interim Final July 2003.

ESL - Not A Potential Drinking Water Source = Table B - Environmental Screening Levels (Groundwater is not a Current or Potential Source of Drinking Water) established by the SFBRWQCB, Interim Final July 2003.

Table 4. Groundwater Analytical and Elevation Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, Calif.

		·			-,		·							
Boring ID		Screen Interval / Groundwater	Depth to	September 1	34 Ballon		S. S		7.56.12.4 26.12.4	Pichlor Pichlor	July C.		Medylen Street	
(TOC)	Date Sampled	l Elevation	Water		<u> </u>		104	<u> </u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>	<u></u>
(ft*)		(ft)	(ft)				/	ug/L	,				<u>→</u>	Notes
	tial Drinking W			1.0	40	30	13	5.0	6.0	5.0	0.5	5.0	5.0	<u></u>
ESL - Not a	Potential Drink	king Water Sour	ce	46	130	290	₊ 13	120	590	360	4.0	100	2,200	
Current Can	nbria Samples				1	Man C	Mor air	170	6000	140 140				
SB-12A	1/13/2004	8 to 13	4.5	<0.5	2.0	(130.5 °	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
3D-12A	1/13/2004	0 10 13	4.3	<0.5	2.0	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	C 0.5	
SB-14A	1/9/2004	2 to 7	4.0	0.58	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	•
SB-14C	1/9/2004	30.5 to 35.5	NW											

SB-15A	1/12/2004	8 to 13	4.0	< 0.5	< 0.5	<0.5	17	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	
											¢.			
SB-16A	1/12/2004	8 to 13	4.0	0.65	0.51	1.3	7.7	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	
SB-17A	1/13/2004	8 to 13	NW											
SB-17B	1/8/2004	17 to 22	16.5	< 0.5	< 0.5	< 0.5	< 0.5	<50	1,100	<50	<50	<50	<50	
SB-17C	1/13/2004	29 to 34	NW										/ Hobbar	4.4
								as*	TN0	nt Ac	100	- Below	Lagar.	6104
SB-18A	1/6/2004	7 to 12	1.5	<5.0	< 5.0	<5.0	11	≤2.5	<2.5	<2.5	<2.5	<2.5	<2.5	
SB-18B**	1/9/2004	26 to 31	25.0	0.54	< 0.5	< 0.5	0.64	630	1,800	430	<100	<100	<100	
SB-18C	1/9/2004	35 to 40	34.0	0.82	< 0.5	<0.5	1.3	300	1,200	250	<50	<50	<50	
					*									
SB-19A	1/13/2004	14 to 19	NW											
				* .										
SB-20A	1/13/2004	8 to 13	8.0	< 0.5	< 0.5	<0.5	3.3	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	
SB-20C	1/13/2004	29 to 34	31.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
	*													
SB-21A	1/20/2004	4.5 to 9.5	8.5	< 5.0	< 5.0	<5.0	< 5.0	<50	<50	< 50	<50	<50	<50	
SB-22A	1/7/2004	5 to 10	NW				*							
SB-22C	1/7/2004	41 to 46*		< 0.5	< 0.5	< 0.5	<0.5	<0.5	<0.5	< 0.5	< 0.5	< 0.5	<0.5	

Table 4. Groundwater Analytical and Elevation Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, Calif.

Boring ID (TOC)	Date Sampled	Screen Interval / Groundwater Elevation	Depth to Water	September 1					Sist, S.	Pricing Dicingon	Josephene Viny	Anoride 1.2.Di.	Aren John Pare	
(ft*)	Date Sampled	(ft)	(ft)			<u>/ ~ </u>	<u>/ </u>	ug/	/			<u> </u>	/ ₹ /	Notes
	tial Drinking Wa			1.0	40	30	13	5.0	6.0	5.0	0.5	5.0	5.0	TYOLES
	Potential Drinki		ce	46	130	290	13	120	590	360	4.0	100	2,200	
	<u></u>												-	
SB-25A	1/8/2004	5 to 10	5.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	
SB-25C	1/8/2004	29 to 34	29.0	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
SB-26A	1/7/2004	8 to 13	4.0	6.2	< 5.0	< 5.0	13	< 5.0	< 5.0	< 5.0	< 5.0	<5.0	< 5.0	
	mbria Samples													
SB-1	11/25/2002	35.39	3.45											
(38.84)	11/26/2002	35.44	3.40	1.7	3.2	0.55	3.6	1.2	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	a,b,c
SB-2	11/25/2002	11.61	29.50											
(41.11)	11/26/2002	29.46	11.65	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	<0.5	< 0.5	< 0.5	<0.5	
SB-4	11/25/2002	34.02	6.90											
(40.92)	11/26/2002	34.82	6.10											SPH
SB-6	11/25/2002	28.24	11,.25									2.5		
(39.49)	11/26/2002	32.19	7.30	2.1	1.2	<0.5	0.55	< 0.5	1.2	<0.5	0.90	< 0.5	<0.5	d,e,f,g
an a		20.20	10.00											
SB-7	11/25/2002	28.20	10.30		0.74	.0.5		.0.5		-0.5	1.2	-0.5	-0.5	
(38.50)	11/26/2002	30.10	8.40	<0.5	0.74	< 0.5	3	<0.5	<0.5	<0.5	1.3	<0.5	<0.5	i,,j,k,l,m
CD 0	11/25/2002	26.20	4.70					:						
SB-8	11/25/2002	36.30 36.55	4.70 4.65	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	0
(41.00)	11/26/2002	30.33	4.03	<10	<10	<10	<10	<10	~10	~10	~10	~10	~10	U
SB-9	11/25/2002	16.02	25.00											
(41.02)	11/25/2002	17.07	23.95	<0.5	0.88	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
(41.02)	11/20/2002	17.07	23.33	~0.5	0.00	~0. 5	~0,.5	~0.5	~0. 5	10.5	10.5		10.0	

Table 4. Groundwater Analytical and Elevation Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, Calif.

Boring ID (TOC)	Date Sampled	Screen Interval / Groundwater Elevation	Depth to Water	A September 1	Septimon Sep	i dining		S Supplied to the second secon	Cis. 1.3	Tricula, Chicago	Signal of Mark	1,2.Di	Medylene Charles	in line
(ft*)		(ft)	! (ft)	\leftarrow				ug/l					\rightarrow	Notes
ESL - Potent	tial Drinking Wa	iter Source		1.0	40	30	13	5.0	6.0	5.0	0.5	5.0	5.0	
ESL - Not a	Potential Drinki	ng Water Sour	ce	46	130	290	13	120	590	360	4.0	100	2,200	
SB-10	11/25/2002	29.27	11.60						(The on	r 40			
(40.87)	11/26/2002	31.12	9.75	<2.5	3.4	<2.5	<2.5	<2.5	170	<2.5	45	<2.5	<2.5	p,q
										,		€ Bo	a D	
SB-11	11/25/2002	12.15	29.30									- 00		
(41.45)	11/26/2002	19.55	21.90	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	t
Trip Blank	11/26/2002			< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	
•														
Previous SC	I Samples													
Interior	2/20/2002			47	< 5.0	9.4	114	<5.0	< 5.0	<5.0	< 5.0	<5.0	<5.0	
Exterior	2/20/2002			<7.1	<7.1	<7.1	24	83	9.6	<7.1	<7.1	<7.1	<7.1	
												r		

Abbreviations:

TOC Elev. (ft) = Top of casing elevation in feet above mean sea level

ug/L = micrograms per liter = parts per billion = ppb

Volatile organic compounds by EPA Method 8260B

- --- = Not available, not analyzed, or does not apply
- < n = Chemical not present at a concentration in excess of detection limit shown
- * = Grab groundwater sample was collected without protection against cross contamination between groundwater zones; may not be discrete.
- ** = Sample 18B collected in the C-zone

Bold values represent concentrations above the non-drinking water ESL.

Notes:

- a = Carbon Disulfide: 0.64 ug/L
- a = 2-Hexanone: 0.58 ug/L
- b = Methyl tertiary-butyl ether (MTBE): 5.1 ug/L l = trans-1,2-Dichloroethene: 0.99 ug/L
- d = tert-Butylbenzene: 4.6 ug/L
- e = Chloroethane: 3.8 ug/L
- f = 1,1-Dichloroethene: 1.4 ug/L
- g = trans-1,2-Dichloroethene: 2.6 ug/L
- i = tert-Butylbenzene: 7.3 ug/L

- j = Chloroethane: 16 ug/L
- k = 1.1-Dichloroethene: 1.7 ug/L
- m = 1,1,2,2-Tetrachloroethane: 16 ug/L
- o = 1,2-Dichlorobenzene: 20 ug/L
- p = 1,1-Dichloroethene: 19 ug/L
- q = trans-1,2-Dichloroethene: 3.9 ug/L
- t = Methyl tertiary-butyl ether (MTBE): 3.9 ug/L

ESL - Not A Potential Drinking Water Source = Table B - Environmental Screening Levels (Groundwater is not a Current or Potential Source of Drinking Water)

ESL - Potential Drinking Water Source = Table A - Environmental Screening Levels (Groundwater is a Current or Potential Source Drinking Water) established by the SFBRWQCB, Interim Final July 2003.

Table 4. Groundwater Analytical and Elevation Data: Volatile Organic Compounds - 1137-1167 65th Street, Oakland, Calif.

Screen Interval / Boring ID Groundwater Depth to (TOC) Date Sampled Elevation Water	Agentical Control of the Control of	a. John John	All Maries		J. J	Allen China		Vivy C	Anoride 1,2.Dz.	Mediverse and the state of the	ide la
(ft*) (ft)					ug/	L ——				\rightarrow	Notes
ESL - Potential Drinking Water Source	1.0	40	30	13	5.0	6.0	5.0	0.5	5.0	5.0	
ESL - Not a Potential Drinking Water Source	46	130	290	13	120	590	360	4.0	100	2,200	

established by the SFBRWQCB, Interim Final July 2003.

Appendix A
Boring Logs

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A

Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

DRAFT

BORING/WELL LOG

CLIENT NAME	John Nady	BORING/WELL NAME SB-12A	- <u>-</u> _
JOB/SITE NAME	65th Street	DRILLING STARTED 12-Jan-04	
OCATION	1137-1167 65th Street, Oakland, California	DRILLING COMPLETED 13-Jan-04	
PROJECT NUMBER _	522-1000	WELL DEVELOPMENT DATE (YIELD) NA	
DRILLER _	Precision	GROUND SURFACE ELEVATION NA	
DRILLING METHOD _	Hydraulic push, Truck mounted Envirocore	TOP OF CASING ELEVATION NA	
BORING DIAMETER _	2.5 inches	SCREENED INTERVAL NA	
LOGGED BY	M. Meyers	DEPTH TO WATER (First Encountered) 4.5 ft (12-Jan-04)	Ž
REVIEWED BY	R. Clark-Riddell, PE# 49629	DEPTH TO WATER (Static) NA	

Located in Peabody Ln. near SE corner of property. Temp casing w 5 ft of screen (8 to 13 ft bgs) installed to collect GW samples REMARKS CONTACT DEPTH (ft bgs) SAMPLE ID GRAPHIC LOG TPHg (ppm) PID (ppm) DEPTH (ft bgs) EXTENT BLOW U.S.C.S. LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT: 3 inches thick.

Clayey SILT (ML): dark brown; stiff; moist; 30% clay, 0.3 60% silt, 10% fine to coarse grained sand; low plasticity; low estimated permeability. ML @ 4': becomes olive gray; wet; 30% clay, 70% silt; $\bar{\Delta}$ medium plasticity; slight odor. 3.0 Portland Type 7.0 I/II Cement Gravelly Sandy SILT (ML): olive gray and light brown; very stiff; moist; 60% silt, 20% fine to very coarse grained 5.4 ML sand, 20% angular gravel to 20mm in diameter; low plasticity; moderate estimated permeability; mottled. 10.0 Sandy SILT (ML): light brown; very stiff; moist; 10% clay, 60% silt, 30% fine to coarse grained sand; low 7.6 ML plasticity; moderate estimated permeability. 13.0 Bottom of Boring @ 13 ft WELL LOG (PID/TPHG) HANADYANADY GPJ DEFAULT GDT 2/23/04

DRAFT

BORING/WELL LOG

		50000		
LIENT NAME	John Nady	BORING/WELL NAME SB-13		
OB/SITE NAME	65th Street	DRILLING STARTED 05-Jan-04		·
OCATION	1137-1167 65th Street, Oakland, California	DRILLING COMPLETED 05-Jan-04		
ROJECT NUMBER _	522-1000	WELL DEVELOPMENT DATE (YIELD)	NA	
RILLER	Precision	_ GROUND SURFACE ELEVATION	NA	
RILLING METHOD _	Hydraulic push, limited access Envirocore	_ TOP OF CASING ELEVATION NA		
ORING DIAMETER _	2 3/8 inches	SCREENED INTERVAL NA		
OGGED BY	M. Meyers	_ DEPTH TO WATER (First Encountered)	NA	7
REVIEWED BY	R. Clark-Riddell, PE# 49629	DEPTH TO WATER (Static)	NA	

KEM	ARKS		Located onsite inside studio building near center of property, no GW encountered.								
PID (ppm)	TPHg (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
170 145 405	140		SB-13 @6		5	SM		CONCRETE: 3 inches thick. Silty SAND (SM): gray; medium dense; damp; 30% silt, 70% very fine to fine grained sand; high estimated permeability. ② 2': odor encountered. ② 4': gravel size concrete fragments to 35mm in diameter encountered. Clayey SILT (MH): blue gray; medium stiff; moist; 40% clay, 60% silt; high plasticity; low estimated permeability. Clayey Silty SAND (SM): blue gray and light brown;	0.3 5.0 7.0		✓ Portland Type I/II Cement
285	260		SB-13 @11.5		10 10 	SM		medium dense; damp; 30% clay, 30% silt, 40% fine grained sand; medium estimated permeability; mottled. @ 9': becomes predominantly orange brown; 15% clay, 20% silt, 60% fine grained sand, 5% gravel to 20mm in diameter; high estimated permeability.	12.0		Bottom of Boring @ 12 ft
WELL LOG (PIDTPHS) H:NADY:NADY:GPJ DEFAULT.GDT 2/23/04											

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

SB-14A/C CLIENT NAME BORING/WELL NAME John Nady DRILLING STARTED 09-Jan-04 JOB/SITE NAME 65th Street DRILLING COMPLETED ___09-Jan-04 1137-1167 65th Street, Oakland, California LOCATION WELL DEVELOPMENT DATE (YIELD) PROJECT NUMBER 522-1000 **GROUND SURFACE ELEVATION** DRILLER Precision Hydraulic push, track mounted Envirocore TOP OF CASING ELEVATION NA DRILLING METHOD SCREENED INTERVAL BORING DIAMETER 2 3/8 inches 4.0 ft (09-Jan-04) DEPTH TO WATER (First Encountered) LOGGED BY M. Meyers REVIEWED BY_ R. Clark-Riddell, PE# 49629 **DEPTH TO WATER (Static)** NA

Located in Peabody Lane near former pump location. No GW in C-zone. A-zone GW sample collected from above 5 ft bgs, C-zon REMARKS CONTACT DEPTH (ft bgs) TPHg (ppm) (mdd) DEPTH (ft bgs) U.S.C.S. GRAPHIC LOG BLOW COUNTS EXTENT SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM 윤 CONCRETE: 3 inches thick. 0.3 Sandy SILT (ML): dark brown; stiff; moist; 10% clay, 60% silt, 30% fine to medium grained sand; low plasticity; ML medium estimated permeability. 3.0 Clayey SILT (ML): light brown; stiff; moist; 15% clay, ∇ 80% silt, 5% fine grained sand; low plasticity; low ML estimated permeability. 5.0 @ 4': becomes wet. 6 Sandy SILT (ML): gray; stiff; moist; 10% clay, 55% silt, 30% fine to very coarse grained sand, 5% gravel to 10mm in diameter; low plasticity; moderate estimated 210 SB-14 72 permeability; mottled. @7.5 @ 7': becomes green gray; medium stiff; wet; 70% silt, 30% fine to medium grained sand. @ 10': becomes stiff; moist; 60% silt, 30% very coarse grained sand, 10% well rounded gravel to 20mm in <1.0 SB-14 diameter; some shell fragments. 21 @11.5 @ 11': becomes light brown; damp; 50% silt, 30% fine to very coarse grained sand, 20% subrounded gravel to 2 20mm in diameter; some shell fragments; mottled; FeO2 staining. @ 13': becomes very stiff. 0.7 Portland Type I/II Cement ML @ 19': becomes orange brown; stiff; moist; 55% silt, 40% 1.5 fine grained sand, 5% well rounded gravel to 10mm in diameter; some shell fragments. 0 DEFAULT.GDT 0.7 @ 27': becomes 70% silt, 30% fine to very coarse grained 2.2 @ 28': becomes light brown; 70% silt, 30% fine grained sand; with less FeO2 staining. 0 32.0 Silty SAND (SM): orange brown; dense; moist; 40% silt, 60% fine grained sand; moderate estimated permeability. SM 34.0 Clayey SILT (ML): light brown; very stiff; damp; 30% ML PAGE 1 OF

Continued Next Page

BORING/WELL LOG

CLIENT NAME JOB/SITE NAME

LOCATION

John Nady

65th Street 1137-1167 65th Street, Oakland, California BORING/WELL NAME DRILLING STARTED

SB-14A/C

DRILLING COMPLETED 09-Jan-04

09-Jan-04

Continued from Previous Page

aaren marin	**************************************	paramany	Nomer on the Constitution of the Constitution	Kaupum.	-	og enis o canacas neces	4	Continued from Previous Page			enutour provincement	TT TO THE ACTION OF THE CONTRACT OF THE CONTRA
PID (ppm)	TPHg (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT	G DEPTH (ft bgs)	WEL	L DIAGRAM
				×				clay, 70% silt; medium plasticity; low estimated permeability. @ 35.5' Encountered drilling refusal.	/ 35	.5	V/XV/	Bottom of
						ļ		@ 35.5' Encountered drilling refusal.				Bottom of Boring @ 35.5 ft
								t.		Ì		
										ł		
										İ		
										ľ		
	j											
	Ì											
										,		
					}		1		ļ			
					-							<u> </u>
				8.5		- ve						
												;
											}	
												,
					ļ	}						
							-	,				
100000 00 0			<u> </u>	,	1				L	E 1084 0170000,40000	1	PAGE 2

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

PAGE 1 OF

SB-15A CLIENT NAME John Nady BORING/WELL NAME JOB/SITE NAME **DRILLING STARTED** 12-Jan-04 65th Street DRILLING COMPLETED ___12-Jan-04 1137-1167 65th Street, Oakland, California LOCATION **PROJECT NUMBER** WELL DEVELOPMENT DATE (YIELD) NA 522-1000 Precision **GROUND SURFACE ELEVATION** DRILLER DRILLING METHOD Hydraulic push, Truck mounted Envirocore TOP OF CASING ELEVATION NA 2.5 inches SCREENED INTERVAL BORING DIAMETER M. Meyers DEPTH TO WATER (First Encountered) 4.0 ft (12-Jan-04) LOGGED BY R. Clark-Riddell, PE# 49629 **DEPTH TO WATER (Static)** NA

REVIEWED BY REMARKS Located on south side of Peabody Ln. Temp casing w 5 ft of screen (8 to 13 ft bgs) installed to collect GW samples. CONTACT DEPTH (ft bgs) GRAPHIC LOG TPHg (ppm) (mdd) DEPTH (ft bgs) U.S.C.S. BLOW COUNTS EXTENT SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM PID (ASPHALT: 4 inches thick. 0.3 Sandy SILT (ML): dark brown; stiff; moist; 60% silt, 30% fine to very coarse grained sand, 10% gravel to 10mm in diameter; low plasticity; moderate estimated permeability. ML ∇ @ 4': becomes wet. 5.0 Clayey SILT (ML): greenish gray; very stiff; wet; 30% >1.000 ML 6.0 clay, 65% silt, 5% very coarse grained sand; low plasticity; Portland Type low estimated permeability. Silty SAND (SM): blue gray; dense; wet; 30% silt, 70% I/II Cement 1,500 SB-15 fine grained sand; moderate estimated permeability; odor.

@ 8': becomes moist; 30% silt, 50% sand, 20% angular 802 @7.5 SM gravel to 30mm in diameter. 10.0 Sandy SILT (ML): light brown; very stiff; moist; 50% silt, 40% very coarse grained sand, 10% well rounded gravel 1.7 <1.0 SB-15 ML to 20mm in diameter; low plasticity; moderate estimated @11.5 permeability. 13.0 Bottom of Boring @ 13 ft OG (PID/TPHG) HANADYANADY.GPJ DEFAULT.GDT 2/23/04

BORING/WELL LOG

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAME _	John Nady	BORING/WELL NAME SB-16A		
JOB/SITE NAME	65th Street	DRILLING STARTED 12-Jan-04		
LOCATION _	1137-1167 65th Street, Oakland, California	DRILLING COMPLETED 12-Jan-04		
PROJECT NUMBER _	522-1000	WELL DEVELOPMENT DATE (YIELD)	NA	
DRILLER _	Precision	GROUND SURFACE ELEVATION	NA	
DRILLING METHOD _	Hydraulic push, Truck mounted Envirocore	TOP OF CASING ELEVATION NA		
BORING DIAMETER _	2.5 inches	SCREENED INTERVAL NA		
LOGGED BY	M. Meyers	DEPTH TO WATER (First Encountered)	4.0 ft (12-Jan-04)	∇
REVIEWED BY	R. Clark-Riddell, PE# 49629	DEPTH TO WATER (Static)	NA	<u> </u>
REMARKS	Located on north side of Peabody Ln. Temp casir	ng w 5 ft of screen (8 to 13 ft bgs) installed to	collect GW samples.	
	anananan pananga menengan menengan kanananan panangan kananan menengan bahan bahan bahan bahan bahan bahan bah			MARCO CONTRACTOR CONTR

REVIEWED I	BY	R	l, Cla	ark-Rid	dell, P	E# 496	29 DEPTH TO WATER (Static)	NA		<u> </u>
REMARKS	-	<u> </u>	ocat	ed on i	north s	ide of I	Peabody Ln. Temp casing w 5 ft of screen (8 to 13 ft bgs) installed		ct GW sam	ples.
PID (ppm) TPHg (ppm)	BLOW COUNTS	SAMPLEID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELI	_ DIAGRAM
					ML		ASPHALT: 6 inches thick. Gravelly Sandy SILT (ML): dark brown; stiff; moist; 10% clay, 60% silt, 15% fine to very coarse grained sand, 15% gravel to 30mm in diameter; moderate estimated permeability.	0.5		-
56				 - 5 - 	ML		Clayey SILT (ML): greenish gray; soft; wet; 30% clay, 60% silt, 10% very coarse grained sand; medium plasticity; low estimated permeability.	7.0		✓ Portland Type
126		SB-16 @7.5			ML		<u>Sandy SILT</u> (ML): greenish gray; very stiff; moist; 10% clay, 50% silt, 40% fine grained sand; low plasticity; moderate estimated permeability; odor.			I/II Cement
5.7 <1.0		SB-16 @11.5			ML		Gravelly Sandy SILT (ML): light brown; very stiff; moist; 60% silt, 20% fine to very coarse grained sand, 20% well rounded gravel to 15mm in diameter; low plasticity; moderate estimated permeability.	11.0		Bottom of Boring @ 13 ft
;										
				-						
yaan aaaaa ka aa	a									PAGE 1 O

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A

Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

DRAFT

BORING/WELL LOG

LIENT NAME	John Nady	BORING/WELL NAME SB-17A/C		
OB/SITE NAME	65th Street	DRILLING STARTED 13-Jan-04		
OCATION	1137-1167 65th Street, Oakland, California	DRILLING COMPLETED 13-Jan-04		
PROJECT NUMBER _	522-1000	WELL DEVELOPMENT DATE (YIELD)	NA	
RILLER	Precision	GROUND SURFACE ELEVATION	NA	
RILLING METHOD _	Hydraulic push, Truck mounted Envirocore	TOP OF CASING ELEVATION NA		
BORING DIAMETER	2.5 inches	SCREENED INTERVAL NA		
OGGED BY	M. Meyers	DEPTH TO WATER (First Encountered)	28.0 ft (13-Jan-04)	$\overline{\nabla}$
REVIEWED BY	R. Clark-Riddell, PE# 49629	_ DEPTH TO WATER (Static)	NA	
SELLIDICO.	to the Heat of Deleter Te			

REMARKS Located on south side of Peabody Ln. Temp casing w 5 ft of screen (8 to 13 & 29 to 34 ft bgs) installed to collect GW samples. CONTACT DEPTH (# bgs) GRAPHIC LOG SAMPLE ID PID (ppm) TPHg (ppm DEPTH (ft bgs) EXTENT U.S.C.S. BLOW COUNTS LITHOLOGIC DESCRIPTION WELL DIAGRAM CONCRETE: 3 inches thick. 0.3 Sandy SILT (ML): dark brown; medium stiff; moist; 10% clay, 50% silt, 30% fine to coarse grained sand, 10% ML angular gravel to 15mm in diameter; low plasticity; moderate estimated permeability. Clayey SILT (ML): brown; stiff; damp; 30% clay, 60% silt, 10% very fine to fine grained sand; low plasticity; low estimated permeability. @ 6': becomes 30% clay, 60% silt, 5% very fine to fine grained sand, 5% well rounded gravel to 10mm in @ 8': becomes very stiff; with no gravel. ML @ 14': becomes 25% clay, 60% silt, 10% very fine to fine grained sand, 5% well rounded gravel to 10mm in diameter. 16.5 Silty SAND (SM): brown; medium dense; wet; 40% silt, Portland Type 60% fine grained sand; moderate estimated permeability. I/II Cement SM @ 19': rock encountered >40mm in diameter. 20.0 Sandy SILT (ML): brown; stiff; damp; 10% clay, 60% ML silt, 20% fine grained sand, 10% well rounded gravel to 20mm in diameter; low plasticity; moderate estimated 22.0 permeability 0 Clayey SILT (ML): light brownish gray; stiff; moist; 25% clay, 70% silt, 5% coarse grained sand; medium plasticity; low estimated permeability. DEFAULT.GDT ML 0 @ 25': becomes 20% clay, 70% silt, 5% coarse grained sand, 5% well rounded gravel to 10mm in diameter. ☑ 28.0 WELL LOG (PID/TPHG) H:\NADY\NADY.GPJ Gravelly Sandy SILT (ML): light brownish gray; stiff; wet; 10% clay, 50% silt, 20% coarse grained sand, 20% well rounded gravel to 10mm in diameter; low plasticity; moderate permeabilty. ML 34.0 Bottom of Boring @ 34 ft PAGE 1 OF

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A

Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

BORING/WELL NAME SB-17B **CLIENT NAME** John Nady JOB/SITE NAME 65th Street DRILLING STARTED 08-Jan-04 DRILLING COMPLETED 08-Jan-04 LOCATION 1137-1167 65th Street, Oakland, California WELL DEVELOPMENT DATE (YIELD) NA PROJECT NUMBER 522-1000 **GROUND SURFACE ELEVATION** Precision DRILLER DRILLING METHOD _ Hydraulic push, track mounted Envirocore TOP OF CASING ELEVATION NA BORING DIAMETER 2 3/8 inches SCREENED INTERVAL DEPTH TO WATER (First Encountered) M. Meyers 16.5 ft (08-Jan-04) LOGGED BY REVIEWED BY_ **DEPTH TO WATER (Static)** R. Clark-Riddell, PE# 49629 8.5 ft (08-Jan-04)

Located on south side of Peabody Ln. Temp casing w 5 ft of screen (17 to 22 ft bgs) installed to collect GW samples. REMARKS

PID (ppm)	TPHg (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL	. DIAGRAM
	<1.0		SB-17 B@3.5	X		ML.		CONCRETE: 3 inches thick. Sandy SILT (ML): dark brown; medium stiff; moist; 10% clay, 50% silt, 30% fine to coarse grained sand, 10% angular gravel to 15mm in diameter; low plasticity; moderate estimated permeability.	0.3		
0	<1.0		SB-17		5 			Clayey SILT (ML): brown; stiff; damp; 30% clay, 60% silt, 10% very fine to fine grained sand; low plasticity; low estimated permeability. @ 6': becomes 30% clay, 60% silt, 5% very fine to fine grained sand, 5% well rounded gravel to 10mm in			
0		-	B@7.5		- 10-	ML		diameter. @ 8': becomes very stiff; with no gravel.	<u></u>		a Dadland Tura
0	<1.0		SB-17 B@11.5					@ 14': becomes 25% clay, 60% silt, 10% very fine to fine			✓ Portland Type I/II Cement
0	<1.0		SB-17		15 			grained sand, 5% well rounded gravel to 10mm in diameter.	☑ 16.5		
0	<1.0		B@17.5 SB-17 B@20		-20-	SM ML		@ 19': rock encountered >40mm in diameter. Sandy SILT (ML): brown; stiff; damp; 10% clay, 60% silt, 20% fine grained sand, 10% well rounded gravel to	20.0		
								20mm in diameter; low plasticity; moderate estimated permeability.	22.0		Bottom of Boring @ 22 f
					:						
							-				

CLIENT NAME

LOCATION

DRILLER

LOGGED BY

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

2 3/8 inches M. Meyers

BORING/WELL LOG

(510) 420-9170	JMATI			
John Nady	BORING/WELL NAME	SB-18A		
65th Street	_ DRILLING STARTED	06-Jan-04		
1137-1167 65th Street, Oakland, California	DRILLING COMPLETED	06-Jan-04	****	
522-1000	WELL DEVELOPMENT DA	ATE (YIELD)	NA	
Precision	_ GROUND SURFACE ELE	VATION _	NA	
Hydraulic push, limited access Envirocore	TOP OF CASING ELEVAT	T ION NA		

SCREENED INTERVAL **DEPTH TO WATER (First Encountered)** 1.5 ft (06-Jan-04)

R. Clark-Riddell, PE# 49629 REVIEWED BY_ **DEPTH TO WATER (Static)** NA REMARKS Located at SW corner of property. Temp casing w 5 ft of screen (7 to 12 ft bgs) installed to collect GW samples. CONTACT DEPTH (ft bgs) GRAPHIC LOG TPHg (ppm) PID (ppm) DEPTH (ft bgs) U.S.C.S. EXTENT BLOW COUNTS SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM Clayey SILT (ML): dark brown; soft; moist; 20% clay, 70% silt, 10% very fine grained sand; low plasticity; low ∇ estimated permeability. @ 1.5': becomes wet. ML SB-18 <1.0 @3.5 5.0 Gravelly Silty SAND (SM): blue gray; medium dense; moist; 30% silt, 50% very fine to coarse grained sand, 237 20% very angular to subrounded gravel to 30mm in diameter; moderate estimated permeability. 340 SB-18 @7.5 191 SM Portland Type I/II Cement 6.2 SB-18 12.0 11.5 Clayey SILT (ML): yellowish orange and greenish gray; stiff; moist; 30% clay, 70% silt; low plasticity; low estimated permeability; mottled. ML 16.0 Sandy CLAY (CL): blue gray; very stiff; damp; 75% clay, 25% fine grained sand; medium plasticity; low estimated CL 17.0 2,600 SB-18 654 @17 permeability. 20 Bottom of Drilling refusal encountered. Boring @ 20 ft WELL LOG (PID/TPHG) HINADYINADY.GPJ DEFAULT.GDT

CLIENT NAME

LOCATION PROJECT NUMBER

DRILLER

LOGGED BY

REMARKS

REVIEWED BY

JOB/SITE NAME

DRILLING METHOD

BORING DIAMETER ___

Cambria Environmental Technology, Inc.

1137-1167 65th Street, Oakland, California

Hydraulic push, track mounted Envirocore

R. Clark-Riddell, PE# 49629

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

John Nady

65th Street

522-1000

Precision

2 3/8 inches

M. Meyers

BORING/WELL LOG

DRAFT

_	BORING/WELL NAME	SB-18B/C			
	DRILLING STARTED	09-Jan-04			
	DRILLING COMPLETED	09-Jan-04			
	WELL DEVELOPMENT DA	ATE (YIELD)_	NA		
	GROUND SURFACE ELEV	VATION	NA		
	TOP OF CASING ELEVAT	ION NA		``	
_	SCREENED INTERVAL	NA			
	DEPTH TO WATER (First	Encountered)	34.0 ft (09-Jan-04)		∇
	DEPTH TO WATER (Statio	c)	11.0 ft (09-Jan-04)		Y

Located at SW corner of property. Temp casing w 5 ft of screen (26 to 31 & 35 to 40 ft bgs) installed to collect GW samples.

PID (ppm) TPHg (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC	907	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL DIA	AGRAM .
1,000		SB-18 @17.5 SB-18 @20.0		- 10 - 10 - 15 - 20 - 25 - 30	ML ML ML ML SM			Sandy SILT (ML): blue gray; very stiff; damp; 60% silt, 30% fine to coarse grained sand, 10% gravel to 20mm in diameter; low plasticity; moderate estimated permeability. Clavey SILT (ML): light brown; very stiff; damp; 30% clay, 70% silt; medium plasticity; low estimated permeability. Sandy SILT (ML): light brown; stiff; damp; 10% clay, 60% silt, 30% fine grained sand; low plasticity; moderate estimated permeability. (25': becomes soft and moist. Clavey SILT (ML): light brown; very stiff; damp; 30% clay, 70% silt; medium plasticity; low estimated permeability. Sandy SILT (ML): light brown; very stiff; damp; 30% clay, 70% silt, medium plasticity; low estimated permeability. Sandy SILT (ML): light brown; very stiff; damp; 30% fine grained sand; low plasticity; moderate estimated permeability. Gravelly Sandy SILT (ML): light brown; very stiff; damp; 60% silt, 25% fine to very coarse grained sand, 15% well rounded gravel to 15mm in diametter; low plasticity; moderate estimated permeability. Gravelly Silty SAND (SM): light brown; dense; wet; 30%	20.0 20.0 23.0 26.0 28.0 31.0	P. IVI	ortland Type Il Cement
		-		-35				Continued Next Page			PAGE 1 OF

BORING/WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

John Nady	
65th Street	

1137-1167 65th Street, Oakland, California

BORING/WELL NAME DRILLING STARTED

DRILLING COMPLETED 09-Jan-04

SB-18B/C 09-Jan-04

PID (ppm)	TPHg (ppm) BLOW COUNTS SAMPLE ID EXTENT DEPTH (ft bgs) U.S.C.S. LOG						GRAPHIC LOG	LITHOLOGIC DESCRIPTION NOT ACT DEPTH (# pgs) OCONTACT DEPTH (# pgs) OCONTACT DEPTH (# pgs)
					-40-	SM ML SM ML		silt, 50% medium grained sand, 20% well rounded gravel to 30mm; high estimated permeability. Silty SAND (SM): light brown; medium dense; wet; 20% silt, 80% medium grained sand; high estimated permeability. Clayey SILT (ML): light brown; stiff; moist; 30% clay, 65% silt, 5% well rounded gravel to 20mm in diameter; medium plasticity; low estimated permeability. Silty SAND (SM): light brown; dense; wet; 30% silt, 70% fine to medium grained sand; moderate estimated permeability. Sandy SILT (ML): light brown; stiff; moist; 70% silt, 20% fine grained sand, 10% well rounded gravel to 10mm in diameter; low plasticity; moderate estimated permeability.
							,	

BORING/WELL LOG

CLIENT NAME	John Nady	BORING/WELL NAME SI	3-19A		
JOB/SITE NAME	65th Street	DRILLING STARTED12	2-Jan-04		
LOCATION	1137-1167 65th Street, Oakland, California	DRILLING COMPLETED13	3-Jan-04		
PROJECT NUMBER _	522-1000	WELL DEVELOPMENT DATE	(YIELD)	NA	
DRILLER	Precision	GROUND SURFACE ELEVATI	ON1	<u> </u>	
DRILLING METHOD	Hydraulic push, Truck mounted Envirocore	TOP OF CASING ELEVATION	_NA		
BORING DIAMETER	2.5 inches	SCREENED INTERVAL	_NA		
LOGGED BY	M. Meyers	DEPTH TO WATER (First Enc	ountered)	9.0 ft (12-Jan-04)	$\bar{\Sigma}$
REVIEWED BY	R. Clark-Riddell, PE# 49629	DEPTH TO WATER (Static)		NA	Y
REMARKS	Located on north side of 65th St. Temp casing w	5 ft of screen (14 to 19 ft bgs) in	stalled to col	lect GW samples.	

PID (ppm)	TPHg (ppm) BLOW COUNTS	SAMPLE ID EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WELL [DIAGRAM
0.0			10-	ML ML ML		ASPHALT: 6 inches thick. Silty SAND (SM): medium brown; dense; moist; 10% clay, 30% silt, 50% fine to very coarse grained sand, 10% gravel to 10mm in diameter; moderate estimated permeability. Clayey SILT (ML): olive gray; very stiff; moist; 40% clay, 60% silt; medium plasticity; low estimated permeability. Gravelly Sandy SILT (ML): light brown; very stiff; moist; 10% clay, 45% silt, 30% fine to very coarse grained sand, 15% subrounded gravel to 30mm in diameter; low plasticity; moderate estimated permeability. Gravelly Silty SAND (SM): light brown; dense; wet; 40% silt, 40% fine to very coarse grained sand, 20% subrounded gravel to 30mm in diameter; moderate estimated permeability. Gravelly Sandy SILT (ML): light brown; very stiff; moist; 10% clay, 50% silt, 20% fine to very coarse grained sand, 20% angular gravel to 20mm in diameter; moderate estimated permeability. Clayey SILT (ML): orange brown; very stiff; damp; 30% clay, 70% silt; low plasticity; low estimated permeability.	5.0 7.0 7.0 11.0 17.0		Portland Type I/II Cement Bottom of Boring @ 19 ft

BORING/WELL LOG

CLIENT JOB/SIT LOCATI PROJEC DRILLE DRILLIN BORING LOGGE REVIEW REMAR	TE NATION CT NUTER NG ME G DIA ED BY WED E	JMBER ETHOD METER	65th 113 522 Pred Hyd 2.5 M. M	-1000 cision raulic pu inches Meyers Clark-Rid	65th St ush, Tru	reet, O uck mo E# 496		DRILLING STARTED DRILLING COMPLETED WELL DEVELOPMENT DA GROUND SURFACE ELEV TOP OF CASING ELEVATI SCREENED INTERVAL DEPTH TO WATER (First & DEPTH TO WATER (Static	Oft (13-Jan-04) Let bgs) to collect GW samples.		
PID (ppm)	TPHg (ppm)	BLOW	SAMPLE ID	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHO	DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WELL DIAGRAM
WELL LOG (PID/TPHG) H:NVADYNADY GPJ DEFAULT.GDT 2/23/04 O <td></td> <td></td> <td></td> <td>5</td> <td>ML ML ML</td> <td></td> <td>fine to coarse graine diameter; low plastic diameter; low plastic @ 5': becomes light coarse grained sand Silty SAND (SM): grasilt, 60% medium to estimated permeabil @ 11': becomes ligh medium to very coar to 20mm in diameter Sandy SILT (ML): lig 30% medium to coar gravel to 30mm in diestimated permeabil @ 16': becomes 70% grained sand. @ 18': becomes 60% grained sand. Gravelly Sandy SILT (ML): lig clay, 60% silt, 30% gravel to 30mm in diestimated permeabil clay, 60% silt, 10% flow estimated permeabil sand. Sandy SILT (ML): lig clay, 60% silt, 10% flow estimated permeabil gravelly Sandy SILT (ML): lig clay, 60% silt, 30% firounded gravel to 20 estimated permeabil gravell gravell to 20 estimated permeabil gravell gravell to 20 estimated permeabil gravell gravell gravell to 20 estimated permeabil gravell /td> <td>een gray; medium dense; we very coarse grained sand; mity; odor. It brown; dense; moist; 40% as grained sand, 10% angular; moderate estimated permetrial permetrial sand, 10% well representation of the second sand, 20% well ameter; low plasticity; moderate sand, 20% well ameter; low plasticity; moderate sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 3 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; moderate sand; low plasticit</td> <td>very very st; 40% hoderate silt, 50% ar gravel eability. 0% silt, ounded rate coarse coarse stiff; I rounded rate 0% lasticity; 0% silt, 0% silt, 0% silt, 0% silt, 0% lasticity;</td> <td>23.0 26.0 30.0 31.0</td> <td>Portland Type I/II Cement</td>				5	ML ML ML		fine to coarse graine diameter; low plastic diameter; low plastic @ 5': becomes light coarse grained sand Silty SAND (SM): grasilt, 60% medium to estimated permeabil @ 11': becomes ligh medium to very coar to 20mm in diameter Sandy SILT (ML): lig 30% medium to coar gravel to 30mm in diestimated permeabil @ 16': becomes 70% grained sand. @ 18': becomes 60% grained sand. Gravelly Sandy SILT (ML): lig clay, 60% silt, 30% gravel to 30mm in diestimated permeabil clay, 60% silt, 10% flow estimated permeabil sand. Sandy SILT (ML): lig clay, 60% silt, 10% flow estimated permeabil gravelly Sandy SILT (ML): lig clay, 60% silt, 30% firounded gravel to 20 estimated permeabil gravell gravell to 20 estimated permeabil gravell gravell to 20 estimated permeabil gravell gravell gravell to 20 estimated permeabil gravell	een gray; medium dense; we very coarse grained sand; mity; odor. It brown; dense; moist; 40% as grained sand, 10% angular; moderate estimated permetrial permetrial sand, 10% well representation of the second sand, 20% well ameter; low plasticity; moderate sand, 20% well ameter; low plasticity; moderate sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 3 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; permeability. If (ML): medium brown; very stiff; moist; 60 grained sand; low plasticity; moderate sand; low plasticit	very very st; 40% hoderate silt, 50% ar gravel eability. 0% silt, ounded rate coarse coarse stiff; I rounded rate 0% lasticity; 0% silt, 0% silt, 0% silt, 0% silt, 0% lasticity;	23.0 26.0 30.0 31.0	Portland Type I/II Cement

BORING/WELL LOG

CLIENT NAME JOB/SITE NAME LOCATION

John Nady 65th Street 1137-1167 65th Street, Oakland, California BORING/WELL NAME DRILLING STARTED

SB-20A/C 13-Jan-04

DRILLING COMPLETED 13-Jan-04

PID (ppm)	TPHg (ppm) BLOW COUNTS SAMPLE ID EXTENT DEPTH (ft bgs) U.S.C.S. GRAPHIC LOG						GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	WELL DIAGRAM		
0						SM		silt, 60% very fine to fine grained sand; moderate estimated permeability.	40.0		Bottom of Boring @ 40 f		
											·		
		-	-										
								•					

LOCATION

DRILLER

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A

Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME BORING/WELL NAME SB-21A John Nady JOB/SITE NAME DRILLING STARTED 65th Street 20-Jan-04 1137-1167 65th Street, Oakland, California DRILLING COMPLETED ___20-Jan-04 WELL DEVELOPMENT DATE (YIELD) NA PROJECT NUMBER 522-1000 Precision NA **GROUND SURFACE ELEVATION** DRILLING METHOD Hand Auger TOP OF CASING ELEVATION NA BORING DIAMETER ___ 3 inches SCREENED INTERVAL NA

	NG DIA			Inci				SUREENED INTERVAL NA	
	GED BY EWED				eyers ark-Rid	Idali Di	E# 409	DEPTH TO WATER (First Encountered) 8.5 ft (20-Jan-04)	<u></u>
	EWED ARKS	DI						DEPTH TO WATER (Static) NA n west side of property. Temp casing w 5 ft of screen (4.5 to 9.5 ft bgs) installed to collect GV	V samples
NEIVI/		-		.003	teu ijisi	ue oull	uniy or		v sampies
PID (ppm)	TPHg (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION LITHOLOGIC DESCRIPTION WELL DIAG	RAM
2.2						ML		CONCRETE: 4 inches thick. Clayey SILT (ML): dark brown; stiff; moist; 30% clay, 1.5	
130 1092	<1.0 590		SB-21 @3 SB-21 @6	X		ML		60% silt, 10% angular gravel to 20mm in diameter; low plasticity; low estimated permeability. @ 1': becomes mottled dark brown, gray, and light brown. Sandy SILT (ML): dark brown; stiff; moist; 10% clay, 55% silt, 30% medium grained sand, 5% gravel to 10mm in diameter; low plasticity; moderate estimated permeability. @ 4': becomes green gray; with odor.	and Type ement
	470		SB-21 @9	X		ML		Gravelly Sandy SILT (ML): green gray; stiff; wet; 50% silt, 30% sand, 20% rounded gravel to 20mm in diameter; low plasticity; moderate estimated permeability; strong odor. @ 9.5': Encountered refusal.	m of g @ 9.5 ft
								@ 9.5. Encountered relusal.	
			Ì						**
			1						
		Ì	j.			· .		*	
704									
,GDT 2/23/04									
.1,GD									
EFAU									
GE 0									
AADY.(
ADY									
E C		,					-		
JTPHC									
G (PIC									
WELL LOG (PID/TPHG), HINADYINADY GPJ, DEFAULT									
¥ I									PAGE 1 OF

CLIENT NAME

LOCATION

DRILLER

LOGGED BY

REVIEWED BY

JOB/SITE NAME

PROJECT NUMBER

DRILLING METHOD

BORING DIAMETER

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

John Nady

65th Street

522-1000

Precision

2 3/8 inches

M. Meyers

BORING/WELL LOG

5.0 ft (07-Jan-04)

SB-22A/C BORING/WELL NAME DRILLING STARTED __07-Jan-04 1137-1167 65th Street, Oakland, California DRILLING COMPLETED __ 07-Jan-04 WELL DEVELOPMENT DATE (YIELD) NA. **GROUND SURFACE ELEVATION** Hydraulic push, track mounted Envirocore TOP OF CASING ELEVATION NA SCREENED INTERVAL

DEPTH TO WATER (First Encountered)

R. Clark-Riddell, PE# 49629 DEPTH TO WATER (Static) NA Located onsite near center of property. Temp casing w 5 ft of screen (5 to 10 & 41 to 46 ft bgs) installed to collect GW samples

CONCRETE. 6" Hick. Lossys SLL" (ML), brank brown: medium stiff, moist; 20% observed to medium grained sand, medium stiff, moist; 20% observed to medium grained sand, medium stiff, moist; 20% observed to medium grained sand, medium stiff, moist; 20% observed to medium grained sand, so gravel to observed to medium grained sand, so gravel to observed to some stiff, moist; 30% observed to some stiff, so the some sand, so gravel to observed to some stiff, so the some sand, so gravel to observed to some stiff, so the some sand, so gravel to observed to some some sprained sand, so gravel to sprained sand	REM	ARKS		L	ocat	ıs) inst	alled to collect GW samp	<u>ple</u> s.				
CONCRETE: 6' thick. ML Clayery SII, T (ML): dark brown; medium stiff; moist; 20% clay, 70% silt, 10% fine to medium grained sand; medium plasticity; low estimated permeability. Sandy Clayery SII, T (ML): brown; soft; moist; 30% clay, 70% silt, 10% fine to medium grained sand, 5% gravel to 10mm in diameter; low plasticity; low estimated permeability. Sandy Clayery SII, T (ML): brown; soft; moist; 30% clay, 50% silt, 30% sil	PID (ppm)	TPHg (ppm)	BLOW COUNTS SAMPLE ID EXTENT DEPTH (ft bgs) U.S.C.S. GRAPHIC LOG		GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT MEDTH (# bgs) MEDTH (# bgs)					
Clayer SiLT (ML): light brown; very stiff; damp; 30% clay, 70% silt; medium plasticity; low estimated permeability.	6477 115 3022 13 302 10 203 10 203 203 203 203 203 203 203 203 203 20	<1.0	BLOW	SB-22 @3 SB-22 @6	EXTENSION OF THE PARTY OF THE P		ML ML SM ML		CONCRETE: 6" thick. Clayey SILT (ML): dark brown; medium stiff; moist; 20% clay, 70% silt, 10% fine to medium grained sand; medium plasticity; low estimated permeability. Sandy Clayey SILT (ML): brown; soft; moist; 30% clay, 50% silt, 15% fine to medium grained sand, 5% gravel to 10mm in diameter; low plasticity; low estimated permeability. Gravelly Silty SAND (SM): blue gray; medium dense; wet; 30% silt, 50% fine to coarse grained sand, 20% angular gravel to 10mm in diameter; high estimated permeability. Sandy SILT (ML): orange brown and blue gray; stiff; moist; 10% clay, 60% silt, 30% fine grained sand; low plasticity; moderate estimated permeability; mottled. ② 7: becomes damp, decreased mottling. ② 9: becomes 10% clay, 50% silt, 30% fine grained sand, 10% angular gravel to 10mm in diameter. Gravelly Sandy SILT (ML): orange brown; stiff; damp; 10% clay, 50% silt, 20% fine grained sand, 20% angular gravel to 8mm in diameter; low plasticity; moderate estimated permeability. ② 12': becomes dry. ② 18': becomes mottled orange brown and blue gray. Clayey SILT (ML): brown; very stiff; damp; 30% clay, 70% silt; medium plasticity; low estimated permeability; some FeO2 nodules. Sandy SILT (ML): brown; soft; moist; 65% silt, 30% very fine to fine grained sand, 5% well rounded gravel; low plasticity; moderate estimated permeability. ② 27': becomes hard; dry; 50% silt, 40% fine to very coarse grained sand, 10% well rounded gravel. ② 29': becomes medium stiff.	0.5 2.0 5.0 6.0	Portland T	
Continued Next Page PAGE	WELL LOG (PID)				X	35-			clay, 70% silt; medium plasticity; low estimated permeability.		PAGE	**************************************

BORING/WELL LOG

CLIENT	N.	AME
JOB/SIT	Ε	NAME

John Nady 65th Street BORING/WELL NAME **DRILLING STARTED**

SB-22A/C <u>07-Jan-04</u>

LOCATION 1137-1167 65th Street, Oakland, California DRILLING COMPLETED 07-Jan-04

Continued from Previous Page

								Continued from Previous Page			
PID (ppm)	TPHg (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG	LITHOLOGIC DESCRIPTION	CONTACT DEPTH (ft bgs)	WEL	L DIAGRAM
0 0	TPHg (ppr	BLOW	SAMPLE	EXTEN	HL430 (sbq))	ML ML	GRAPHI CRAPHI	@ 35': becomes medium plasticity. @ 38': some FeO2 nodules. @ 41': becomes mottled light brown and brown. Gravelly SiLT (ML): light brown and brown; very stiff; dry; 10% clay, 60% silt, 10% fine to coarse sand, 20% well rounded gravel to 20mm in diameter; low plasticity; low estimated permeability. @ 46': Encountered drilling refusal.	CONTAC 43.0 46.0	WEL	Bottom of Boring @ 46 ft
WELL LOG (PIDTIPHG) HINNADTINADTIGFO DEFAULTIGOT ZIZOT											

BORING/WELL LOG

CLIENT NAME	John Nady	BORING/WELL NAME
JOB/SITE NAME	65th Street	DRILLING STARTED
LOCATION	1137-1167 65th Street, Oakland, California	DRILLING COMPLETED
PROJECT NUMBER	522-1000	WELL DEVELOPMENT
DRILLER _	Precision	GROUND SURFACE EL
DRILLING METHOD	Hydraulic push, limited access Envirocore	TOP OF CASING ELEV
BORING DIAMETER	2 3/8 inches	SCREENED INTERVAL
LOGGED BY	M. Meyers	DEPTH TO WATER (Fir
REVIEWED BY	R. Clark-Riddell, PE# 49629	DEPTH TO WATER (Sta
		•

SB-23 06-Jan-04 **D** 06-Jan-04 DATE (YIELD) NA EVATION NA ATION NA NA 6.5 ft (06-Jan-04) rst Encountered) atic) NΑ

REMA	ARKS		L	ocat	ted ons	ite nea	r cente	or of property.
PID (ppm)	TPHg (ppm)	BLOW COUNTS	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	LITHOLOGIC DESCRIPTION WELL DIAGRAM OD DIAGRAM	
0	<1.0	-	SB-23	×	<u> </u>	ML		CONCRETE: 3 inches thick. Sandy SILT (ML): light brown; medium stiff; moist; 10% clay, 50% silt, 30% sand, 10% gravel to 40mm in diameter; low plasticity; moderate estimated permeability; some brick.
0	<1.0		@3 SB-23 @6		- 5 - - 5 -	ML		@ 1.5': becomes dark brown. Clayey SILT (ML): dark brown; medium stiff; moist; 30% clay, 60% silt, 10% fine grained sand; low plasticity; low estimated permeability. @ 5': becomes orange brown. @ 6.5': becomes wet and mottled.
0	<1.0		SB-23 @9		 - 10-	ML		@ 7": becomes moist; 30% clay, 55% slit, 10% fine grained sand, 5% gravel to 10mm in diameter. Sandy SILT (ML): orange brown and light brown; medium stiff; moist; 50% silt, 40% fine grained sand, 10% angular to subrounded gravel; moderate estimated permeability.
								Bottom of Boring @ 12
	·				}			
			ă.		-			
3/04								
DEFAULT.GDT 2/23/04								
¬]								
WELL LOG (PID/TPHG), H:\NADY\NADY.GP								
G (PID/TPHG)								
WELL LO								PAGE 1 (

BORING/WELL LOG

PAGE 1 OF 1

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

CLIENT NAI JOB/SITE N LOCATION PROJECT N DRILLER DRILLING N BORING DI LOGGED B REVIEWED REMARKS	AME IUMBEF IETHOD AMETEF Y	65 111 R 52 Pr Hy R 2: M. R. Lc	th S 37- 22-10 ecis dra 3/8 i Me	ion ulic pu nches yers urk-Rid	sh, lim dell, Pl	ited ac E# 496 dio buile		DEPTH TO WATER (First Encountered) 5.0 ft (05-Jan-04) DEPTH TO WATER (Static) NA perty. Temp casing w 5 ft of screen (7 to 12 ft bgs) installed to collect GW				
PID (ppm) TPHg (ppm)	BLOW	SAMPLE ID	EXTENT	DEPTH (ft bgs)	U.S.C.S.	GRAPHIC LOG		DLOGIC DESCRIPTION		CONTACT DEPTH (ft bgs)	WELI	_ DIAGRAM
980 470 345 83 43 430		SB-24 @3 SB-24 @6 SB-24 @9		- 5	ML		@ 5': becomes blue @ 7': becomes light @ 10': becomes 10' medium grained sar Silty SAND (SM): gr	ark brown; medium stiff; moivery fine to fine grained sand estimated permeability. e gray; stiff; wet. brown; mottled. % clay; 50% silt; 40% very f	ine to	11.0		Portland Type I/II Cement Bottom of Boring @ 12 ft

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A

Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME John Nady **BORING/WELL NAME** SB-25A JOB/SITE NAME 65th Street DRILLING STARTED 08-Jan-04 LOCATION 1137-1167 65th Street, Oakland, California DRILLING COMPLETED _ 08-Jan-04 PROJECT NUMBER 522-1000 WELL DEVELOPMENT DATE (YIELD) NA **GROUND SURFACE ELEVATION** DRILLER Precision Hydraulic push, track mounted Envirocore DRILLING METHOD TOP OF CASING ELEVATION NA BORING DIAMETER 2 3/8 inches SCREENED INTERVAL M. Meyers 5.0 ft (08-Jan-04) **DEPTH TO WATER (First Encountered)** LOGGED BY REVIEWED BY R. Clark-Riddell, PE# 49629 **DEPTH TO WATER (Static)** NA

REMARKS Located on sidewalk south of 65th St. Temp casing w 5 ft of screen (5 to 10 ft bgs) installed to collect GW samples. CONTACT DEPTH (ft bgs) GRAPHIC LOG TPHg (ppm) EXTENT DEPTH (ft bgs) U.S.C.S. PID (ppm) BLOW SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM ASPHALT: 4 inches thick. 0.3 Clayey SILT (ML): brown; medium stiff; moist; 30% clay, 60% silt, 10% very fine grained sand; low plasticity; low estimated permeability. ML ∇ 2.2 @ 5': becomes wet. 6.0 Silty SAND (SM): brown; medium dense; wet; 40% silt, 60% fine grained sand; moderate estimated permeability. 1.5 @ 7': becomes orange brown; dense; damp; 40% silt, SM 60% fine to very coarse grained sand. 10.0 10 Bottom of Boring @ .10 ft

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

CLIENT NAME John Nady __SB-25C BORING/WELL NAME JOB/SITE NAME 65th Street **DRILLING STARTED** __ 08-Jan-04 LOCATION 1137-1167 65th Street, Oakland, California **DRILLING COMPLETED** 08-Jan-04 PROJECT NUMBER 522-1000 WELL DEVELOPMENT DATE (YIELD) **DRILLER** Precision NA **GROUND SURFACE ELEVATION** DRILLING METHOD Hydraulic push, Envirocore TOP OF CASING ELEVATION NA BORING DIAMETER 2.5 inches SCREENED INTERVAL M. Meyers LOGGED BY DEPTH TO WATER (First Encountered) 29.0 ft (08-Jan-04) R. Clark-Riddell, PE# 49629 **DEPTH TO WATER (Static)** NA

REVIEWED BY REMARKS Located on sidewalk south of 65th St. Temp casing w 5 ft of screen (29 to 34 ft bgs) installed to collect GW samples. GRAPHIC LOG CONTACT DEPTH (# bg TPHg (ppm) U.S.C.S. (mdd) EXTENT DEPTH (# bgs) BLOW COUNTS SAMPLE LITHOLOGIC DESCRIPTION WELL DIAGRAM PID (ASPHALT: 4 inches thick. 0.3 Clayey SILT (ML): brown; medium stiff; moist; 30% clay, 60% silt, 10% very fine grained sand; low plasticity; low estimated permeability. ML 5 @ 5': becomes wet. 6.0 Silty SAND (SM): brown; medium dense; wet; 40% silt, 60% fine grained sand; moderate estimated permeability. @ 7": becomes orange brown; dense; damp; 40% silt, and SM 60% fine to very coarse grained sand. 10.0 Gravelly Sandy SILT (ML): orange brown; stiff; damp; 50% silt, 30% fine grained sand, 20% subround gravel to 0 20mm in diameter; moderate estimated permeability; mottled; some shell fragments. @ 12': becomes light gray; very stiff; 60% silt, 40% fine 0 grained sand; some FeO2 staining. ML @ 14': becomes 60% silt, 30% fine grained sand, 10% well rounded gravel to 20mm in diameter. 0 Portland Type @ 17': becomes 50% silt, 35% fine grained sand, 15% 18.0 I/II Cement well rounded gravel to 30mm in diameter.

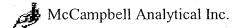
Clayey SILT (ML): orange brown; very stiff; damp; 35% 0 clay, 60% silt, 5% very fine grained sand; medium plasticity; low estimated permeability; some shell 20 fragments. ML 0 WELL LOG (PID/TPHG) HINADYNADY.GPJ DEFAULT.GDT 0 @ 25': becomes 20% clay, 60% silt, 10% fine grained 26.0 sand, 10% well rounded gravel to 10mm in diameter; low estimated permeability. Sandy SILT (ML): orange brown; stiff; moist; 10% clay, ML 50% silt, 40% fine grained sand; low plasticity; moderate estimated permeability. ☑ 29.0 Gravelly Sandy SILT (ML): brown; stiff; wet; 50% silt, ML 30 35% fine to very coarse grained sand, 15% gravel to 30.5 20mm in diameter; moderate estimated permeability; mottled with clay chucks. 0 Clayey SILT (ML): light brown; stiff; moist; 30% clay, ML 70% silt; medium plasticity; low estimated permeability. @ 32': becomes very stiff; damp; no shell fragments. 34.0 Bottom of Boring @ 34 ft PAGE 1 OF

Cambria Environmental Technology, Inc.

5900 Hollis Street, Suite A Emeryville, California 94608 Telephone: (510) 420-0700 Fax: (510) 420-9170

BORING/WELL LOG

LIENT NAME _	John Nady	BORING/WELL NAME	SB-26A		
OB/SITE NAME	65th Street	DRILLING STARTED	07-Jan-04		
OCATION	1137-1167 65th Street, Oakland, California	DRILLING COMPLETED	07-Jan-04		
PROJECT NUMBER _	522-1000	WELL DEVELOPMENT DA	ATE (YIELD)	NA .	
RILLER _	Precision	GROUND SURFACE ELE	VATION	NA	
RILLING METHOD _	Hydraulic push, track mounted Envirocore	TOP OF CASING ELEVAT	ION NA		
BORING DIAMETER _	2 3/8 inches	SCREENED INTERVAL	NA		
OGGED BY	M. Meyers	DEPTH TO WATER (First	Encountered)	4.0 ft (07-Jan-04)	$\overline{\nabla}$
REVIEWED BY	R. Clark-Riddell, PE# 49629	DEPTH TO WATER (Stati	c)	NA	Ţ
PEMARKS	Located in rear of property. Temp casing w.5 ft	of ecreon (8 to 13 ft has) insta	lied to collect G	M camples	


GRAPHIC LOG CONTACT DEPTH (ft bgs SAMPLE ID TPHg (ppm) U.S.C.S. PID (ppm) DEPTH (ft bgs) BLOW COUNTS EXTENT LITHOLOGIC DESCRIPTION WELL DIAGRAM 7.0 ASPHALT: 4 inches thick. 0.3 Sandy Clayey SILT (ML): dark brown; soft; moist; 25% clay, 60% silt, 15% fine to very coarse grained sand; medium plasticity; low estimated permeability; mottled; ML some organics. V @4': becomes medium stiff and wet. 5.0 5.0 Sandy SILT (ML): blue gray; stiff; moist; 10% clay, 60% ML 6.0 silt, 30% fine to medium grained sand; low plasticity; moderate estimated permeability.

Gravelly SILT (ML): blue gray; stiff; moist; 50% silt, 10% fine to coarse grained sand, 20% very angular to Portland Type ML I/II Cement 240 SB-26 8.0 300 @7.5 subround gravel to 30mm in diameter; moderate ML estimated permeability. Gravelly Sandy SILT (ML): blue gray; stiff; moist; 10% clay, 50% silt, 25% fine to medium grained sand, 15% 10.0 ML gravel to 15mm in diameter; low plasticity; moderate 180 SB-26 estimated permeability.

Sandy SILT (ML): orange brown; stiff; moist; 15% clay, 0 12.0 @11.5 ML13.0 60% silt, 25% fine grained sand; medium plasticity; low Bottom of estimated permeability. Boring @ 13 ft Gravelly Sandy SILT (ML): olive brown; stiff; moist; 50% silt, 30% sand, 20% gravel to 30mm in diameter; moderate estimated permeability. WELL LOG (PID/TPHG) H:\NADY\NADY.GPJ_DEFAULT.GDT_2/23/04

PAGE 1 OF

Appendix B Laboratory Analytical Reports

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	1	Date Sampled: 01/20/04
5900 Hollis St, Suite A	Nady	Date Received: 01/21/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/27/04
	Client P.O.:	Date Completed: 01/27/04

WorkOrder: 0401231

January 27, 2004

Dear Matt:

Enclosed are:

- 1). the results of 1 analyzed sample from your #522-1000-020; John Nady project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

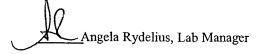
Yours truly

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/20/04			
5900 Hollis St, Suite A	Nady	Date Received: 01/21/04			
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/22/04			
Ellici yvine, CA 34000	Client P.O.:	Date Analyzed: 01/22/04			

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*


Extraction Method: SW5030B	•	Method: SW8021B	,	der: 0401231
Lab ID	0401231-001C			
Client ID	SB-21A			g Limit for
Matrix	W			F = 1
DF	100		S	, W
Compound		Concentration	μg/kg	μg/L
Bromodichloromethane	ND<50		l NA	0.5
Bromoform	ND<50		NA NA	0.5
Bromomethane	ND<50		NA	0.5
Carbon Tetrachloride	ND<50		NA	0.5
Chlorobenzene	ND<50		NA	0.5
Chloroethane	ND<50		NA	0.5
2-Chloroethyl vinyl ether	ND<50		NA NA	0.5
Chloroform	ND<50		NA	0.5
Chloromethane	ND<50		NA	0.5
Dibromochloromethane	ND<50	,	NA	0.5
1,2-Dichlorobenzene	ND<50		NA	0.5
1,3-Dichlorobenzene	ND<50		NA	0.5
1,4-Dichlorobenzene	ND<50		NA NA	0.5
Dichlorodifluoromethane	ND<50		NA NA	0.5
1,1-Dichloroethane	ND<50		NA	0.5
1,2-Dichloroethane	ND<50		NA NA	0.5
1,1-Dichloroethene	ND<50		l NA	0.5
cis-1,2-Dichloroethene	ND<50		NA NA	0.5
trans-1,2-Dichloroethene	ND<50		NA	0.5
1,2-Dichloropropane	ND<50		NA NA	0.5
cis-1,3-Dichloropropene	ND<50		NA NA	0.5
trans-1,3-Dichloropropene	ND<50		NA NA	0.5
Methylene chloride	ND<50		NA NA	0.5
1,1,2,2-Tetrachloroethane	ND<50		NA	0.5
Tetrachloroethene	ND<50		NA NA	0.5
1,1,1-Trichloroethane	ND<50		NA NA	0.5
1,1,2-Trichloroethane	ND<50		» NA	0.5
Trichloroethene	ND<50		NA	0.5
Trichlorofluoromethane	ND<50		NA	0.5
Vinyl Chloride	ND<50		NA NA	0.5
	1	e Recoveries (%)		
%SS:	83.6			
Comments	j,h			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μ g/L, soil/sludge/solid samples in μ g/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/20/04		
5900 Hollis St, Suite A	Nady	Date Received: 01/21/04		
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/22/04		
	Client P.O.:	Date Analyzed: 01/22/04		

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B	Апа		Work Order: 0401231			
			WORK Order: 0401231			
Lab ID	0401231-001A					
Client ID	SB-21A				D	T :
	777				Reporting DF	=1
Matrix	W		c.			
DF	10	- And Andrews -	oras matematica at a contra at		S	W
Compound	Concentration				ug/kg	μg/L
ТРН(g)	6100				NA	50
TPH(ss)	5600				NA	50
МТВЕ	ND<50		Λ	7.	NA	5.0
Benzene	ND<5.0				NA	0.5
Toluene	ND<5.0				NA	0.5
Ethylbenzene	ND<5.0				NA	0.5
Xylenes	ND<5.0				NA	0.5
	Surro	ogate Recoveries	(%)			1
%SS:	110	·				
Comments	e,h					

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	McCampbell	Analytical
--	------------	------------

Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/20/04			
5900 Hollis St, Suite A	Nady	Date Received: 01/21/04			
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/21/04			
	Client P.O.:	Date Analyzed: 01/23/04			

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SV	W3510C		Analytical methods: SW8015C		Work Or	der: 0401231
Lab ID	Client ID	Matrix	atrix TPH(d) TPH(mo)		DF	% SS
0401231-001B	SB-21A	w	110,000,n,h	ND<25,000	100	#
				1		
	 					
						
						ļ
					-	
						<u> </u>
						
	_			6-		

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

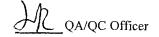
cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

R

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm


Matrix: W

WorkOrder: 0401231

EPA Method: SW8	021B/8015Cm E	Extraction:	SW5030E	}	BatchID: 10039			Spiked Sample ID: 0401228-011A			
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(btex) [£]	ND	60	95.3	94.8	0.553	90.9	82.3	9.93	70	130	
MTBE	ND	10	95.4	93.4	2.15	91	95.4	4.78	70	130	
Benzene	ND	10	102	103	1.85	105	99.3	5.92	70	130	
Toluene	ND	10	105	106	1.20	108	102	5.01	70	130	
Ethylbenzene	ND	10	105	107	1.69	108	99.8	7.63	70	130	
Xylenes	ND	30	107	110	3.08	110	92.7	17.1	70	130	
%SS:	119	10	112	113	0.744	116	116	0	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

110 2nd Avenue South, #D7. Pacheco. CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0401231

EPA Method: SW8015C	I	SW35100	SW3510C BatchID: 10042			Spiked Sample ID: N/A				
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	N/A	7500	N/A	N/A	N/A	99.4	96.1	3.34	70	130
%SS:	N/A	2500	N/A	N/A	N/A	98.9	96.6	2.36	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

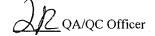
QA/QC Officer

110 2nd Avenue South, #D7. Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B

Matrix: W

WorkOrder: 0401231


EPA Method: SW8021B	E	Extraction:	SW5030E	3	BatchID:	9978	S	Spiked Sampl	e ID: 04012	219-001E
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Chlorobenzene	ND	10	90.9	89.4	1.67	95	91.7	3.56	70	130
1.1-Dichloroethene	ND	10	85.5	84.1	1.63	95.6	92.1	3.74	70	130 .
Trichloroethene	ND	10	103	98.1	5.11	100	91.2	9.60	70	130
%SS:	86.7	10	88.2	88.4	0.187	93.5	93.5	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

McCampbell Analytical Inc.

CHAIN-OF-CUSTODY RECORD

of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0401231

Report to:

Matt Meyers

Cambria Env. Technology 5900 Hollis St. Suite A

TEL: FAX:

(510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; John Nady

Bill to:

Accounts Payable

Cambria Env. Technology.

5900 Hollis St. Ste. A Emeryville, CA 94608

Date Received:

Requested TAT:

1/21/04

5 days

Emeryville, C	CA 94608	PO:		Emeryville, CA 94608	Date Printed: 1/21/04
	· · · · · · · · · · · · · · · · · · ·	1 .		Requested Tests (See legend below	()
Sample ID	ClientSampID	Matrix Collection D	ate Hold 1 2	3 4 5 6 7 8 9 1	0 11 12 13 14 15
0401231-001	SB-21A	Water 1/20/04 11:20	:00 C A	В	

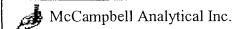
Test Legend:

1	8010B_W
6	
11	

2	G-MBTEX_W
7	
12	

3	TPH(DMO)_W
8	
13	

4	
9	
14	


5	
10	
15	

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCA	MPBEL	L ANA	LYTI	CAI	. IN	IC.									1	ľU	JRN	1 V	C:					E:			1					-	₽		 X8		
T-1 (025)	PACHE	CO, CA 94:		0	(การ	\ 70	0 17	. 7.2					ΕĐ	FR	en	mir	eď	· [Ve	2	\boxtimes	No	RU Y	JSH		24 H	IOL	JR 4	48 I	-101	UR	5 E	λΥ		
Telephone: (925) 7 Report To: Matt Meyers	98-1020		Bill To) 19	8-16	122				+			-	1011			naly		_							1		Oth	ner		Co		ents	
Company: Cambria Environme	ental Techn					-							1	T		Т			T	T	T	1	1	<u>-</u>		T	T		_	 -							
5900 Hollis Street, Suite A													1		İ		1				1			1						1							
Emeryville, Ca 94608		E-mail:	mmey	ers@	cam	ıbria	ı-en	v.co	m						ļ		ļ										- 1		Ì	,	ļ						
Tele: (510) 420-3314		Fax: (5																				1							Į								
Project #:522-1000-020		Project l	Vame:	John	Nad	ly								1		1			İ										- }								
Project Location: 1137-1167 65	th Street, O	akland) a						_					. .																							
Sampler Signature: —													_	2 0 0	, io		Ì														ļ						
4	SAM	PLING		13		M/	\TR	ΙX			ETH SER		¥ 0.5	by crA	y EPA	0 10																					
SAMPLE ID (Field Point Name) LOCATION	Date	Time	# Containers	Type Containers	Water	400	Air	Sludge	Other	Ice	HCI	Other	BTEV ANT DE har EDA 900	BIEA and MIBE	I PHg/SS/d/mo by EPA 801	VOCS by EFA 8			-																		
3B-21A	1/20/04	1024	7	VOAS Amba	X	k				X	χ		k		7	<																					
	- '/ - '	1,, 50	f	leanox e		780		\dashv	\dashv			\vdash	1		-	-					Í	+-			-	-+	-+		-1								
			 		-			-+		+											-	-			-		-										
	_	ļ	ļ		ļ					+										<u> </u>																	
		ļ			_				\perp				_ '								<u>.</u>													<u> </u>			~
	ļ	Î			Ì				- 1]											-													
		 			1				T				-		-						1			7-	_												
			ļ		 			-		_		+													- -] .						
		 	 	ļ- -	 	-			\dashv	+		+	-			-+-					 											· · ·					
			 	<u> </u>	 			-				-								ļ	<u> </u>				- -												
				<u> </u>	<u> </u>					_ _		_	.	<u>. </u>				E/C		ب		1	_		-												
			1														d	റവ്	CO SP/	NDI	101	I NET		سنا		CON	ROP	RIAT NER	S		1						
												-	7-		_		D	ECH	LOF	INA	7777	III I	CIAN		- 1	PRE	SEF	(VED	114	LAB.	-						Ī
		<u> </u>	 	ļ	-			+	寸		+	-	┪┈	-		-			ER		 -	VO!	*	68	te-	ME	TAL	s o	THE								
		ļ	 		-				+	-		+-	-			+-	P	RES	EK	77.1	ON			+	-						-			. —			
Relinquished By:	Date:	Time:		ved By S <i>e</i> c	v ru	ED.	io.	CAT	10	\ '\ '			T.	JOW	arks est j	os				tion	lim	nits.	<u>!</u>						1_								
Relinquished By:	Date:	Time: // 5 5		ved By		K.	1	1	r ,	(-5 1 - 5	3				d d					٦	<i>C</i> 3.2	פט	νd														
Relingfished By X2 33	Date: 12/204	14.30	Rocei			10	To.	10		<u> </u>		_	L																<u></u>						·		

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/20/04
5900 Hollis St, Suite A	Nady	Date Received: 01/21/04
Emanuilla CA 04608	Client Contact: Matt Meyers	Date Reported: 01/27/04
Emeryville, CA 94608	Client P.O.:	Date Completed: 01/27/04

WorkOrder: 0401230

January 27, 2004

Dear Matt:

Enclosed are:

- 1). the results of 3 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/20/04							
5900 Hollis St, Suite A	Nady	Date Received: 01/21/04							
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/21/04							
Enteryvine, CA 94008	Client P.O.:	Date Analyzed: 01/22/04							

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B			lytical Method: SW802	•	Work Orde	
	Lab ID	0401230-001A	0401230-002A	0401230-003A		
	Client ID	SB-21@3'	SB-21@6'	SB-21@9'	Reporting	Limit for
	Matrix	S	S	S	DF	=1
	DF	ì	20	40	S	W
Compound			Conc	entration	mg/Kg	ug/L
ТРН(g)		ND	590	470	1.0	NA
TPH(ss)		ND	590	450	1.0	NA
МТВЕ		ND	ND<1.0	ND<2.0	0.05	NA
Benzene		ND	ND<0.10	ND<0.20	0.005	NA
Toluene		ND	ND<0.10	ND<0.20	0.005	NA
Ethylbenzene		ND	ND<0.10	0.23	0.005	NA
Xylenes		ND	ND<0.10	ND<0.20	0.005	NA
		Surr	ogate Recoverie	s (%)		<u></u>
%SS:		90.5	85.3	84.6		
Comments			g	g		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/20/04
5900 Hollis St, Suite A	Nady	Date Received: 01/21/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/21/04
	Client P.O.:	Date Analyzed: 01/21/04-01/23/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW3550C			Analytical methods: SW8015C			Work Order: 0401230		
Lab ID Client ID M		Matrix	TPH(d)	TPH(mo)	DF	% SS		
0401230-001A	SB-21@3'	S	ND	ND	1	90.2		
0401230-002A	SB-21@6'	S	220,n	ND<25	. 5	117		
0401230-003A	SB-21@9'	S	270,n	ND<25	5	99.8		
						İ		
-,								
						-		
· · · · · · · · · · · · · · · · · · ·				,				
						<u> </u>		

Reporting Limit for DF =1; ND means not detected at or	·W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

4

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com


Cambria Env. Technology	Client Project ID: #522-1000-020; John Nady Client Contact: Matt Meyers Client P.O.:	Date Sampled: 01/20/04		
5900 Hollis St, Suite A		Date Received: 01/21/04		
Emeraville CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/21/04		
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/22/04		

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Extraction Method: SW5030	An	alytical Method: SW802	IB	Work Orde	er: 0401230	
Lab ID	0401230-001A	0401230-002A	0401230-003A			
Client ID	SB-21@3'	SB-21@6'	SB-21@9'	Reporting		
Matrix	S	S	S	DF	DF =1	
DF	1	20	40	S	w	
Compound		Conc	entration	μg/Kg	μg/L	
Bromodichloromethane	ND	ND<100	ND<200	5.0	NA	
Bromoform	ND	ND<100	ND<200	5.0	NA	
Bromomethane	ND	ND<100	ND<200	5.0	NA	
Carbon Tetrachloride	ND	ND<100	ND<200	5.0	NA	
Chlorobenzene	ND	ND<100	ND<200	5.0	NA	
Chloroethane	ND	ND<100	ND<200	5.0	NA	
2-Chloroethyl vinyl ether	ND	ND<100	ND<200	5.0	NA	
Chloroform	ND	ND<100	ND<200	5.0	NA	
Chloromethane	ND	ND<100	ND<200	5.0	NA	
Dibromochloromethane	ND	ND<100	ND<200	5.0	NA	
1,2-Dichlorobenzene	ND	ND<100	ND<200	5.0	NA	
1,3-Dichlorobenzene	ND	ND<100	ND<200	5.0	NA	
1,4-Dichlorobenzene	ND	ND<100	ND<200	5.0	NA	
Dichlorodifluoromethane	ND	ND<100	ND<200	5.0	NA	
1,1-Dichloroethane	ND	ND<100	ND<200	5.0	NA	
1,2-Dichloroethane	ND	ND<100	ND<200	5.0	NA	
1,1-Dichloroethene	ND	ND<100	ND<200	5.0	NA	
cis-1,2-Dichloroethene	ND	ND<100	ND<200	5.0	NA	
trans-1,2-Dichloroethene	ND	ND<100	ND<200	5.0	NA	
1,2-Dichloropropane	ND	ND<100	ND<200	5.0	NA	
cis-1,3-Dichloropropene	ND	ND<100	ND<200	5.0	NA	
trans-1,3-Dichloropropene	ND	ND<100	ND<200	5.0	NA	
Methylene chloride	ND	ND<100	ND<200	5.0	NA	
1,1,2,2-Tetrachloroethane	ND	ND<100	ND<200	5.0	NA	
Tetrachloroethene	ND	ND<100	ND<200	5.0	NA	
1,1,1-Trichloroethane	ND	ND<100	ND<200	5.0	NA	
1,1,2-Trichloroethane	ND	ND<100	ND<200	5.0	NA	
Trichloroethene	ND	ND<100	ND<200	5.0	NA	
Trichlorofluoromethane	ND	ND<100	ND<200	5.0	NA	
Vinyl Chloride	ND	ND<100	ND<200	5.0	NA	
	Surr	ogate Recoverie	s (%)			
%SS:	98.9	94.1	79.5			
Comments		j	j			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0401230

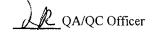
EPA Method: SW8021B	/8015Cm E	Extraction: SW5030B			BatchID:	10038	Spiked Sample ID: 0401212-011A					
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(btex) [£]	ND	0.60	101	102	1.20	105	96.7	7.81	70	130		
мтве	ND	0.10	89	92.4	3.70	83	86.2	3.78	70	130		
Benzene	ND	0.10	102	101	0.642	103	103	0	70	130		
Toluene	ND	0.10	88.9	88.2	0.735	92.4	90.2	2.46	70	130		
Ethylbenzene	ND	0.10	106	105	0.573	110	105	4.84	70	130		
Xylenes	ND	0.30	96.3	96.3	0	100	100	0	70	130		
%SS:	104	0.10	111	107	3.67	117	116	0.858	70	130		

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD ≈ Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.rnccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0401230

EPA Method: SW8015C	E	Extraction:	SW35500	2	BatchID: 10040			Spiked Sample ID: 0401225-002A				
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(d)	1.39	150	97.9	97.2	0.703	95.3	94.5	0.756	70	130		
%SS:	105	50	95.8	94.9	1.01	97.9	94.7	3.37	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QA/QC Officer

110 2nd Avenue South, #D7, Pacheco. CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B

Matrix: S

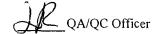
WorkOrder: 0401230

EPA Method: SW8021B	Extraction: SW5030			BatchID: 10043			Spiked Sample ID: 0401230-001A				
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
	μg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Chlorobenzene	ND	50	72.4	76.6	5.65	80.9	78.9	2.56	70	130	
1.1-Dichloroethene	ND	50	87.5	92.3	5.29	113	110	2.52	70	130	
Trichloroethene	ND	50	78.7	83.6	6.13	93.1	90	3.42	70	130	
%SS:	98.9	50	96.6	96.5	0.153	98.4	96.2	2.28	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

d

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0401230

Report to:

Matt Meyers

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

TEL: FAX:

(510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A

Emeryville, CA 94608

Requested TAT:

5 days

Date Received:

1/21/04

Date Printed:

1/21/04

Littlet yville, (JA 94000	, 0.														 					
)			Requested Tests (See legend below)										and the second s						
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4		5	6		7	8	9	10	11	12	13	14	15
	ı															 		- Labor F Man a c 1994			
0401230-001	SB-21@3'	Soil	1/20/04 10:00:00		А	Α	Α				<u> </u>				_	 		ļ	<u> </u>		
0401230-002	SB-21@6'	Soil	1/20/04 10:10:00		A	A	A					\perp		<u> </u>		 				ļ	
0401230-003	SB-21@9'	Soil	1/20/04 10:25:00		Α	Α	A				<u> </u>			<u></u>]					

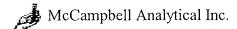
Test Legend:

1	8010B_S
6	
11	

2	G-MBTEX_S
7	
12	

3	TPH(DMO)_S
8	
13	

4	
9	
14	


į	5	1	 	 	 		 		 	4.184	-
i		l	 	 	 	-	 				
ĺ	10										
-	15	ľ		 	 	-	 ٠				

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

CHAIN OF CUSTODY RECORD RUSH 24 HOUR 48 HOUR 5 DAY McCAMPBELL ANALYTICAL INC. TURN AROUND TIME: 110 2nd AVENUE SOUTH, #D7 PACHECO, CA 94553-5560 EDF Required? Tyes No Fax: (925) 798-1622 Telephone: (925) 798-1620 Bill To: Cambria Other Comments Analysis Request Report To: Matt Meyers Company: Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A E-mail: mmeyers@cambria-env.com Emeryville, Ca 94608 Fax: (510) 420-9170 Tele: (510) 420-3314 Project Name: John Nady Project #:522-1000-020 Project Location: 1137-1167 65th Street, Oakland Other Grand MTBE by EPA 3015 Sampler Signature: METHOD MATRIX SAMPLING PRESERVED Type Containers # Containers SAMPLE ID LOCATION (Field Point Name) Air Sludge Other Ice HCl Date Time SB-21@3' $|\mathbf{x}|\mathbf{x}|\mathbf{x}$ 1/20/04/10:00 TUBE SB-21@ 6 10:10 111 SB-21@9 10:25 APPROPRIATE CONTAINERS PRESERVED IN LAB GOOD CONDITION HEAD SPACE ABSENT DECHLORINATED IN LAB | METALS | OTHER 0&0 VOAS I PRESERVATION Relinquished By: Time: 1/20/04 1SEC URED LOCATION Lowest possible detection limits. 12:20 Please email results. Received By Time: 5 day turn around

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/13/04
5900 Hollis St, Suite A	Nady	Date Received: 01/14/04
Emoravitle CA 04609	Client Contact: Matt Meyers	Date Reported: 01/20/04
Emeryville, CA 94608	Client P.O.:	Date Completed: 01/20/04

WorkOrder: 0401149

January 20, 2004

Dear Matt:

Enclosed are:

- 1). the results of 3 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@nccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/13/04
5900 Hollis St, Suite A	Nady	Date Received: 01/14/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/15/04
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/15/04

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B		alytical Method: SW802			der: 0401149
Lab ID	0401149-001A	0401149-002A	0401149-003A		
Client ID	SB-12A	SB-20C	SB-20A	Reportin	g Limit for
Matrix	W	W	W	D	F = 1
DF	<u> </u>	1	1	s	W
Compound		Conc	entration	ug/kg	μg/L
ТРН(g)	230	ND	680	NA	50
TPH(ss)	ND	ND	610	NA	50
МТВЕ	ND<40	ND	ND	NA	5.0
Benzene	ND	ND	ND	NA	0.5
Toluene	2.0	ND	ND	NA	0.5
Ethylbenzene	ND	ND	ND	NA	0.5
Xylenes	ND	ND	3.3	NA	0.5
	Surr	ogate Recoverie	es (%)		
%SS:	113	113	109		The second of the second
Comments	a,i	i	g,h		

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

d	McCampbell Analytical	Inc
A CONTRACTOR OF THE PARTY OF TH	• •	

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/13/04
5900 Hollis St, Suite A	Nady	Date Received: 01/14/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/14/04
Eneryvine, CA 94008	Client P.O.:	Date Analyzed: 01/14/04-01/15/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

xtraction method: SV	W3510C		Analytical methods: SW8015C	Analytical methods: SW8015C Wor								
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS						
0401149-001C	SB-12A	¹ , w	130,g,d,b,i	300	1	104						
0401149-002C	SB-20C	w	ND,i	, ND	1.	106						
0401149-003C	SB-20A	W	1400,d,h	ND	1	107						
		·										
	······································											
			•									
						† -						
						-						
1												
				-								
			•	8								

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/13/04
5900 Hollis St, Suite A	Nady	Date Received: 01/14/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/15/04-01/16/04
Emeryvine, CA 94000	Client P.O.:	Date Analyzed: 01/15/04-01/16/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8021B Work Order: 0401149

Lab ID	0401149-001B	0401149-002B	0401149-003B		n .:	
Client ID	SB-12A	SB-20C	SB-20A		Reporting DF	
Matrix	W	W	W		Di	-1
DF	1	1	1		S	W
Compound		Conc	entration		μg/kg	μg/L
Bromodichloromethane	ND	ND	ND		NA	0.5
Bromoform	ND	ND	ND		NA	0.5
Bromomethane	ND	ND	ND		NA	0.5
Carbon Tetrachloride	ND	ND	ND		NA	0.5
Chlorobenzene	ND	ND	ND		NA	0.5
Chloroethane	ND	ND	ND		NA	0.5
2-Chloroethyl vinyl ether	ND	ND	ND		NA	0.5
Chloroform	ND	ND	ND		NA	0.5
Chloromethane	ND	ND	ND		NA	0.5
Dibromochloromethane	ND	ND	ND		NA	0.5
1,2-Dichlorobenzene	ND	ND	ND		NA	0.5
1,3-Dichlorobenzene	ND	ND	ND	İ	NA	0.5
1,4-Dichlorobenzene	ND	ND	ND		NA	0.5
Dichlorodifluoromethane	ND	ND	ND	Í	NA	0.5
1,1-Dichloroethane	ND	ND	ND		NA	0.5
1,2-Dichloroethane	ND	ND	ND		NA	0.5
1,1-Dichloroethene	ND	ND	ND		NA	0.5
cis-1,2-Dichloroethene	ND	ND	ND		NA	0.5
trans-1,2-Dichloroethene	ND	ND	ND		NA	0.5
1,2-Dichloropropane	ND	ND	ND		NA	0.5
cis-1,3-Dichloropropene	ND	ND	ND		NA	0.5
trans-1,3-Dichloropropene	ND	ND	ND		NA	0.5
Methylene chloride	ND	ND	ND		NA	0.5
1,1,2,2-Tetrachloroethane	ND	ND	ND		NA	0.5
Tetrachloroethene	ND	ND	ND	q;	NA	0.5
1,1,1-Trichloroethane	ND	ND	ND	50	NA	0.5
1,1,2-Trichloroethane	ND	ND	ND		NA	0.5
Trichloroethene	ND	ND	ND		NA	0.5
Trichlorofluoromethane	ND	ND	ND		NA	0.5
Vinyl Chloride	ND	ND	ND		NA	0.5
	Surr	ogate Recoverie	s (%)	·		•
%SS:	98.3	95.7	98.8			
Comments	i	i	h			

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0401149

EPA Method: SW802	21B/8015Cm E	Extraction:	SW5030E	3	BatchID:	9987	Spiked Sample ID: 0401140-001A									
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)						
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High						
TPH(btex) [£]	ND	60	94.3	93.1	1.22	91	89.8	1.38	70	130						
MTBE	ND	10	103	108	4.64	105	104	0.779	70	130						
Benzene	ND	10	107	106	1.04	108	102	5.14	70	130						
Toluene	ND	10	111	109	1.60	111	106	4.33	70	130						
Ethylbenzene	ND	10	111	108	2.25	112	107	4.08	70	130						
Xylenes	ND	30	110	110	0	113	110	2.99	70	130						
%SS:	117	100	108	107	0.333	107	106	0.775	70	130						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0401149

EPA Method: SW8015C	E	Extraction:	SW35100)	BatchID:	9981	e ID: N/A				
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	N/A	7500	N/A	N/A	N/A	104	107	2.60	70	130	
%SS:	N/A	2500	N/A	N/A	N/A	112	115	2.53	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

A QA/QC Officer

QC SUMMARY REPORT FOR SW8021B

Matrix: W

WorkOrder: 0401149

EPA Method: SW8021B	E	Extraction:	SW5030E	3	BatchID:	9978	Spiked Sample ID: 0401219-001E									
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)						
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High						
Chlorobenzene	ND	10	90.9	89.4	1.67	95	91.7	3.56	70	130						
1,1-Dichloroethene	ND	10	85.5	84.1	1.63	95.6	92.1	3.74	70	130						
Trichloroethene	ND	10	103	98.1	5.11	100	91.2	9.60	70	130						
%SS:	86.7	10	88.2	88.4	0.187	93.5	93.5	0	70	130						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0401149

Report to:

Matt Meyers"

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608 TEL: FAX:

(510) 420-0700

FAX: (510) 420-3394 ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A

Emeryville, CA 94608

Requested TAT:

5 days

dested IAI.

Date Received:

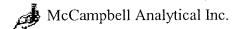
1/14/04

Date Printed:

1/14/04

		4	}							 	Requ	este	d Tes	ts (S	ee le	gend	belo	ow)							
Sample ID	ClientSampID	Matrix	Collection Date		1	- !	2	3	4	 5	[6	3	7	T	8	9		10	11	i . İ.	12	13		14	15
0401149-001	SB-12A	Water	1/13/04 7:30:00 AN	4 🗆	В	Ţ	Α		· · · · · ·	 	Ī			1		-	-	-				i			
0401149-002	SB-20C	Water	1/13/04 12:45:00		В	!	Α	С			1				:					-		;			
0401149-003	SB-20A	Water	1/13/04 1:10:00 PM	1 🗆	В	1000000	Α	С]			.i	. !		. [.					1	1.		

Test Legend:


1 8010B_W	2 G-MBTEX_W	3 TPH(DMO)_W	4	5
6	7	8]	9	10
11	12	13	14	15

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

McCAMPBELL ANALYTICAL INC. 110 2nd AVENUE SOUTH, #D7															,	י זיד	י א כד											CO	RD				
			110 2 nd A	VENUE S	HTUC	#D7	r II,	чС,	•														ME		RUS			HOU	R 4	CH 8	UR	. .XQ 5 DAY	
	Telenho	ne: (925) 798		CO, CA 94:	553-55		ax: (′92·	5) 7¢	8-16	627				E	DF	Re	qui	reď	_? [$_{ m Y}$ [es	X	No)		- 1		~ \ T		J.(- 0/11	
	Report To: Matt N		. 1020	F	Bill To				-1-1-2	O 1	V 4- 4-							1					quest					Т	Oth	er	Cor	nrnents	
	Company: Cambr.		ental Tech	nnology,	Inc.																		1								1		
- 1	5900 Hollis Street,	Suite A																		-													
	Emeryville, Ca 940	508		E-mail:	mine	yers(Dcai	nbr	ia-ei	v.cc	m				}									ļ.)		.			
	Tele: (510) 420-33	314		Fax: (5	10) 42	20-91	70																										
l	Project #:522-1000			Project 1		: Jolu	1 Na	dy					·~															Ì					
	Project Location: 1	137-1167 65	th Street,	Oakland	,										8015	8015												1					
	Sampler Signature																										ļ	-					
	SAMPLING MATRIX METHO														by EPA	y EPA	3010															-	
}	SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Sludge	Los	HCI	HNO ₃	Other	BTEX and MTBE	TPHg/ss/d/mo by EPA	VOCs by EPA 8010																
2	SB-12A		1/13/04	730	7	L Ambe	χ			_		(X			×	X	X		-	+	-	+-	+	+		\dashv	+	_		_	-		_
	58-20 C		1/13/04		1	y su:	1		+	-	1	1	-			1	i		7	+	+	- -		+			-	-			 		
7	SB-20A		1/13/04		$+ \downarrow -$	1	1			+-	1	1	-			\downarrow	J			_			-	+-		-	+-	1			·		
1 }	38 2014	!	1713704	1 10		 	+		+		+	+	-		•													-			 		-
}				 	 	 -	1				╁	-												+				-			 		
ŀ	·		 				+		-	+-	+	+	-						-		-		+-				_						
-			ļ			 	\vdash	-	-		+-								-		-+-	-+	+-	1-1			+	-			ļ		
- }		·		 	<u> </u>	 	-		-		-	+-											 	}	-			-		_}	\- <u></u>		_
					<u> </u>	<u> </u>		_			_								_	_				-			<u> </u>	-			ļ		
L					L																					.						*· <u>- · · · · · · · · · · · · · · · · · · </u>	
	}		j	ļ		}												j															
]																													
ľ					<u> </u>							T																				- <u> </u>	
ŀ		<u></u>				 -		7		-	+-	+-							_	_	_	+-			_	_							
-						 		\neg	+	+-	1	+	f - f	-	-				-	_		+			-	+	-	1					
-	Relinquished By:		Date:	Time:		ived B		<u>ا</u> لم	Lo	ca+	10	<u> </u>	11	 	Lo		t po				ion	limit	is.								1		
	Relinquished By:		Date: // 14/04	Time:		ived B		· (UU E	TP.	1	&Y YX	2	Ple	ase	em	ail r	esul	ts.		CE/f	~ (Y)	NDITI	ON_		//	~~~	IT'S TN	jat e ers			
	Reimquished By:	<u>'</u> -f	Date: 1/14/0\$	Time: 1815	Rece	ived B	Jul)	Vo	<u>U</u>	19								-,		•	HEA! DEC!	D SPA HLOR	CEA	ED IN		080	PRE	SERV	ED IN	LAB_		

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/20/04
Emeryvine, CA 34000	Client P.O.:	Date Completed: 01/20/04

WorkOrder: 0401123

January 20, 2004

Dear Matt:

Enclosed are:

- 1). the results of 2 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Yours truly

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
http://www.mccampbell.com E-mail: main@nccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/14/04
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/14/04

Gasoline Range (C6-C12) Stoddard Solvent (C9-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction Method: SW5030B	An	alytical Method: SW802	1B/8015Cm		Work Order: 0401123				
Lab ID	0401123-001A	0401123-002A			······································				
Client ID	SB-15A	SB-16A	· · · · · · · · · · · · · · · · · · ·		Reporting Limit for				
Matrix	W	W			DF	=1			
DF	ľ	1		Company of the compan	S	W			
Compound		ug/kg	μg/L						
ТРН(g)	2700	1700			NA	50			
TPH(ss)	2500	1500			NA	50			
МТВЕ	ND	ND			NA	5.0			
Benzene	ND	0.65			NA	0.5			
Toluene	ND	0.51			NA	0.5			
Ethylbenzene	ND	1.3			NA	0.5			
Xylenes	17	7.7			NA	0.5			
	Surr	ogate Recoverie	es (%)		I	1			
%SS:	97.2	103		,					
Comments	e,i	e,h,i				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

* water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

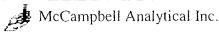
+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCampbell Analytical Inc

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/13/04
	Client P.O.:	Date Analyzed: 01/14/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SV	V3510C		Analytical methods: SW8015C	Work Order: 0401123					
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS			
0401123-001B	0401123-001B SB-15A		2400,d,i	290	1	111			
0401123-002B	SB-16A	w	23,000,d,g,h,i	9800	20	116			
									
						ļ			
	÷								
-									


Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/14/04-01/16/04
Lineryvine, Cr. 94000	Client P.O.:	Date Analyzed: 01/14/04-01/16/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)* Extraction Method: SW5030B Analytical Method: SW8021B Work Order: 0401123 0401123-001C 0401123-002C Lab ID Reporting Limit for Client ID SB-15A SB-16A DF = 1Matrix W W DF 5 S W Compound Concentration μg/kg $\mu g/L$ ND<2.5 Bromodichloromethane ND NA 0.5 Bromoform ND ND<2.5 NA 0.5 Bromomethane ND ND<2.5 NA 0.5 Carbon Tetrachloride ND ND<2.5 NΑ 0.5 Chlorobenzene ND ND<2.5 NΑ 0.5 Chloroethane ND ND<2.5 NA 0.5 2-Chloroethyl vinyl ether ND ND<2.5 NA 0.5 Chloroform ND ND<2.5 NA 0.5 Chloromethane ND ND<2.5 NA 0.5 Dibromochloromethane ND ND<2.5 NA 0.5 1,2-Dichlorobenzene ND ND<2.5 NA 0.5 1,3-Dichlorobenzene ND ND<2.5 NA 0.5 1,4-Dichlorobenzene ND ND<2.5 NA 0.5 Dichlorodifluoromethane ND ND<2.5 NA 0.5 1,1-Dichloroethane ND ND<2.5 NA 0.5 1,2-Dichloroethane ND ND<2.5 NA 0.5 ND 1,1-Dichloroethene ND<2.5 NA 0.5 cis-1,2-Dichloroethene ND ND<2.5 NA 0.5 trans-1,2-Dichloroethene ND ND<2.5 NA 0.5 1,2-Dichloropropane ND ND<2.5 NA 0.5 cis-1,3-Dichloropropene ND ND<2.5 NA 0.5 trans-1,3-Dichloropropene ND ND<2.5 NA 0.5 Methylene chloride ND ND<2.5 NA 0.5 1,1,2,2-Tetrachloroethane ND ND<2.5 NA 0.5 ND<2.5 Tetrachloroethene ND NA 0.5 1,1,1-Trichloroethane ND ND<2.5 NA 0.5 1,1,2-Trichloroethane ND ND<2.5 NA 0.5 Trichloroethene ND ND<2.5 NA 0.5 ND Trichlorofluoromethane ND<2.5 NA 0.5 Vinyl Chloride ND ND<2.5 NA 0.5 Surrogate Recoveries (%) %SS: 94.6 97.1

j,h,i

Angela Rydelius, Lab Manager

Comments

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μ g/L, soil/sludge/solid samples in μ g/kg, wipe samples in μ g/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

110 2nd Avenue South, #D7, Pacheco, CA. 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0401123

EPA Method: SW80)21B/8015Cm E	extraction:	SW5030E	3	BatchID:	9973	S	Spiked Sample ID: 0401128-004A					
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
МТВЕ	ND<10	10	117	119	1.15	107	104	2.42	70	130			
Benzene	29.52	10	NR	NR	NR	107	103	3.64	70	130			
Toluene	0.52	10	108	110	1.68	111	106	4.13	70	130			
Ethylbenzene	8.12	10	107	105	0.850	111	107	3.65	70	130			
Xylenes	4.70	30	114	114	0	110	110	0	70	130			
%SS:	109	100	112	114	1.80	110	109	1.37	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0401123

EPA Method: SW8015C TPH(d)	. E	xtraction:	SW35100	0	BatchID:	9946	Spiked Sample ID: N/A					
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria (
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
	N/A	7500	N/A	N/A	N/A	93	91.7	1.38	70	130		
%SS:	N/A	100	N/A	N/A	N/A	96.3	94.7	1.68	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B

Matrix: W

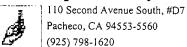
WorkOrder: 0401123

EPA Method: SW8021B	E	Extraction:	3	BatchID:	9978	S	Spiked Sample ID: 0401219-001E						
	Samplė	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria				
	µg/L µg/L		% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
Chlorobenzene	ND	10	90.9	89.4	1.67	95	91.7	3.56	70	130			
1,1-Dichloroethene	ND	10	85.5	84.1	1.63	95.6	92.1	3.74	70	130			
Trichloroethene	ND	10	103	98.1	5.11	100	91.2	9.60	70	130			
%SS:	86.7	10	88.2	88.4	0.187	93.5	93.5	0	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


* MS and / or MSD spike recoveries.may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

QA/QC Officer

CHAIN-OF-CUSTODY RECORD

Page I of I

WorkOrder: 0401123

Report to:

Matt Meyers"

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608

TEL: , (510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; John Nady PO:

Bill to:

Requested TAT:

5 days

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A

Emeryville, CA 94608

Date Received:

1/13/04

Date Printed:

1/13/04

]	Ī	Requested Tests (See legend below)																	
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4		5	6	7		8	9	 10	11	1	2	13	14	15
																	,					
0401123-001	SB-15A	Water	1/12/04 3:00:00 PM		C	A	В					T	7	T		 			1		· · · · · · · · · · · · · · · · · · ·	η.
0401123-002	SB-16A	Water	1/12/04 3:30:00 PM		С	A	В	-			-	1	_			 					·	

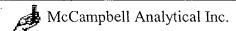
Test Legend:

[1]	8010B_W	
6		
[11]		

2	G-MBTEX_W	
7		-
12		

3	TPH(DMO)_W
8	
13	

4	
9	
14	į


5		1 a - m - ma	
10			
15	•	,	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

		······································													· · · · ·		•		$\overline{}$	H	AI	N	$\overline{\rm OF}$	Cl	IJS'	$\overline{\Gamma O}$	DY	ΙR	ŒC	CO	RD		
		McCAM					$L \Pi$	۷C.								Т	UF	N.							Ţ				_				\boxtimes
		,	110 2 nd A	VENUE SO CO, CA 945										1						_	7		M		RĮ	JSH	2	4 H(OUF	٤ 4	B HO	UR 5	DAY
	Telepho	ne: (925) 798		JO, CA 34.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ax:	(925	79	8-16	22			I	ED)E.]	Rec	quir	ed?	· L	۱ Y	es	Δ,	N	0								
	Report To: Matt N			F	Bill To	: Ca	mbr	ia											A	Ana	lysis	Re	ques	t		,		_		Othe	er	Com	ments
	Company: Cambr	ia Environme	ntal Tech	ınology,	Inc.											ĺ																	
	5900 Hollis Street	, Suite A			å									_	1																		
	Emeryville, Ca 94			E-mail:				mbri	a-en	v.co1	n			_														- 1					
	Tele: (510) 420-3314 Fax: (510) 420-9170									4					- 1	į																	
	Project #:522-1000-020 Project Name: John Nady Project Location: 1137-1167 65 th Street, Oakland								-																								
			"Street,	Oakland		1								- ×	SULS	015		ļ															
	Sampler Signature					T	Ţ				Ι λ	1ETH	IOD.	- 8	7 Y	8 A.						-						1				1	
		}	SAMI	PLING]	8	L	MA	TRI	X	PR	ESER	VEI	Other , G	oy	TPHg/ss/d/mo by EPA 8015	VOCs by EPA 8010																
	CHARLEID				ers	Type Containers								rpc	185	d or	PA 8					ŀ											
	SAMPLE ID (Field Point Name)	LOCATION			# Containers	ont	1.			اه				7	Z D	/p/s	by E									1							
	(11014) 01110 11111110		Date	Time) a	Water	=	-	Sludge Other		5	HNO3	her Ev	E 7 3	Hg/s	င္ထ	-										l					
				l) ##	[†]		Soil	Z 5	2 2	Ice	H		5 5	18	TP	>																
135	SB-15A SB-16A		1/12/04	3:00	7	Amber L Yegs	X				X	K		×		X	X									ļ							
124	SB-16A		1/12/04	3 30	7	Amer	4×				\times	X		\bot			ス										L						
ן שכי	· · · · · · · · · · · · · · · · · · ·																																
Ì														_ _																			
				 	<u> </u>		1					-	- -							1				-									
				 	-	╁──	╁┈			+				1		-	\neg				_				1						_		
	· · · · · · · · · · · · · · · · · · ·					 	-	++	+	+			+				\neg			-				+	+							-	
					-		 			-		-	+	+-			\dashv			+	+-				-							-	
]					ļ	 	┼	\vdash		-			-				+			+	+	+		-				-					
			ļ	ļ	ļ		1			-									-	-	-+-		+						_+				
					<u> </u>	ļ	-		_	_					_	_							- -										
- 1					<u> </u>	<u> </u>	<u> </u>					_		_ _			_					_										-	
			<u> </u>		<u> </u>		1_		_								-		-		_	_		_ _						-		 	
																				_				_		<u> </u>		_		_		ļ	
		·																														<u> </u>	_
	Relinquished By:		Date:	Time:	Rece	ived B	y:					`				narl																•	
ļ			1/12/04	242	L ´	SEC	ر 12 و مسلم	9	wc	ATI	ر 							ssibl ail re			tion	lim.	ıts.										
	Relinquished By:	/	Date:	Time:		ived H	y:	7	· X	IF.		9 m	٠,	1	1162	ase	CIIIZ	ın re	sull	.5.			ICE/t	•	1/		,	/	/	,			,
1	/XM7M (26	1/13,	10:05	ļ	7-//		10		À	2	<u>ر</u>	 	_									GOO	DCC					/ ,	APPR	OPRI.	ATE.	
	Refinduished By:	1280	Dale:	Time:	Rece	ived B	y./.	0	\ (c.	W	ļ															ABSE TED I	N LA		(CONT PRES	AINE ERVE	RS D IN LA	TA.
1	U/1 MEN +	000	1/12	13.00	<u></u>		M_{Ω}	<u></u>	٧v														PRE	SERV	ATTO	ON_	PAG	0	1	-MPT	40	OTHER.	

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/16/04
Emeryvine, CA 94000	Client P.O.:	Date Completed: 01/16/04

WorkOrder: 0401122

January 16, 2004

Dear Matt:

Enclosed are:

- 1). the results of 4 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/13/04
Emeryvine, CA 94006	Client P.O.:	Date Analyzed: 01/13/04-01/15/04

Gasoline Range (C6-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE*

Extraction Method: SW5030B	Ar	nalytical Method: SW802			Work Orde	r: 0401122
Lab I	D 0401122-001A	0401122-002A	0401122-003A	0401122-004A		
Client I	D SB-15@7.5	SB-15@11.5	SB-16@7.5	SB-16@11.5	Reporting	Limit for
Matr	ix S	S	S	S	DF	
, E	OF 200	1	10	1	S	W
Compound		Conc	entration		mg/Kg	ug/L
ТРН(g)	1500	ND	90	ND	1.0	NA
TPH(ss)	820	ND	49	ND	1.0	NA
МТВЕ	ND<10	ND	ND<0.50	ND	0.05	NA
Benzene	ND<1.0	ND	ND<0.050	ND	0.005	NA
Toluene	ND<1.0	ND	ND<0.050	ND	0.005	NA
Ethylbenzene	ND<1.0	ND	0.069	ND	0.005	NA
Xylenes	2.4	. ND	0.11	ND	0.005	NA
	Suri	rogate Recoverie	es (%)	- L	1	1
%SS:	99.8	100	94.5	95.3		
Comments	e		e	31-		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe,

product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCampbell Analytical Inc.

Cambria Env. Technology		Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/13/04
	Client P.O.:	Date Analyzed: 01/13/04-01/14/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW	/3550C		Analytical methods: SW8015C		Work Or	der: 0401122
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0401122-001A	SB-15@7.5	S	190,d,b	9.3	1	104
0401122-002A	SB-15@11.5	S	ND	ND	1	105
0401122-003A	SB-16@7.5	S	59,d,b	ND	1	99.8
0401122-004A	SB-16@11.5	S	ND	ND	ı	103
						İ
				·		
				Ar.		

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/12/04
5900 Hollis St, Suite A	Nady	Date Received: 01/13/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/13/04
Energy inc, CA 94006	Client P.O.:	Date Analyzed: 01/14/04-01/15/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Extraction Method: SW5030 Analytical Method: SW8021B Work Order: 0401122 Lab ID 0401122-001A 0401122-002A 0401122-003A 0401122-004A Reporting Limit for Client ID SB-15@7.5 SB-15@11.5 SB-16@7.5 SB-16@11.5 DF = 1Matrix S S S S DF 80 20 S W 1 1 Compound Concentration μg/Kg μg/L Bromodichloromethane ND<400 ND ND<100 ND 5.0 NA Bromoform ND<400 ND ND<100 ND 5.0 NA ND<400 ND Bromomethane ND<100 ND 5.0 NA Carbon Tetrachloride ND<400 ND ND<100 ND 5.0 NA Chlorobenzene ND<400 ND ND<100 ND 5.0 NA Chloroethane ND<400 ND ND<100 ND 5.0 NA ND ND 2-Chloroethyl vinyl ether ND<400 ND<100 5.0 NA Chloroform ND<400 ND ND<100 ND 5.0 NA Chloromethane ND<400 ND ND<100 ND 5.0 NA Dibromochloromethane ND<400 ND ND<100 ND 5.0 NA 1,2-Dichlorobenzene ND<400 ND ND<100 ND 5.0 NA ND<400 ND 5.0 1,3-Dichlorobenzene ND<100 ND NA ND<400 ND ND<100 ND 5.0 1.4-Dichlorobenzene NA ND<400 ND ND<100 Dichlorodifluoromethane ND 5.0 NA 1,1-Dichloroethane ND<400 ND ND<100 ND 5.0 NA 1,2-Dichloroethane ND<400 ND ND<100 ND 5.0 NA 1,1-Dichloroethene ND<400 ND ND<100 ND 5.0 NA cis-1,2-Dichloroethene ND<400 ND ND<100 5.0 ND NA trans-1,2-Dichloroethene 5.0 ND<400 ND ND<100 ND NA 1,2-Dichloropropane ND<400 ND ND<100 ND 5.0 NA cis-1,3-Dichloropropene ND<400 ND ND<100 ND 5.0 NA trans-1,3-Dichloropropene ND<400 ND ND<100 ND 5.0 NA Methylene chloride ND<400 ND ND<100 ND 5.0 NA 1,1,2,2-Tetrachloroethane ND<400 ND ND<100 ND 5.0 NA Tetrachloroethene ND<400 ND ND<100 ND 5.0 NA 1,1,1-Trichloroethane ND<400 ND ND<100 ND 5.0 NA 1,1,2-Trichloroethane ND<400 ND ND<100 ND 5.0 NA Trichloroethene ND<400 ND ND<100 ND 5.0 NA Trichlorofluoromethane ND<400 ND ND<100 ND 5.0 NA Vinyl Chloride ND<400 ND ND<100 ND 5.0 NA Surrogate Recoveries (%) %SS: 93.2 82.6 87.5 114 Comments

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

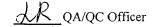
^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S


WorkOrder: 0401122

EPA Method: SW8021B/80	015Cm E	Extraction:	SW5030E	3	BatchID:	9976	S	piked Sampl	le ID: 0401	125-001A
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptanc	e Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	0.13	0.60	81.1	79.2	1.91	104	102	1.13	70	130
MTBE	ND	0.10	93.2	95.5	2.41	104	99	4.54	70	130
Benzene	ND	0.10	104	105	0.431	106	104	1.52	70	130
Toluene	ND	0.10	91.2	92.2	1.06	92.6	90.9	1.78	70	130
Ethylbenzene	ND	0.10	109	108	1.11	109	110	0.410	70	130
Xylenes	ND	0.30	100	100	0	100	100	0	70	130
%SS:	86.7	0.10	115	118	2.58	118	118	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0401122

EPA Method: SW8015C	E	xtraction:	SW35500)	BatchID:	9962	S	piked Sampl	e ID: 04011	02-007A
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	ND	150	107	106	0.129	95.3	96.3	1.05	70	130
%SS:	98.7	100	115	115	0	96.2	98.2	2.11	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B

Matrix: S

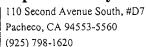
WorkOrder: 0401122

EPA Method: SW8021B	E	Extraction:	SW5030		BatchID:	9966	S	piked Sampl	le ID: 04011	08-004A
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	μg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Chlorobenzene	ND	50	76.8	81.2	5.65	84.5	85	0.630	70	130
1,1-Dichloroethene	ND	50	95.1	94.4	0.741	117	111	4.92	70	130
Trichloroethene	ND	50	77.1	82.9	7.23	97.2	89.8	7.94	70	130
%SS:	87.9	100	77.8	87.6	11.8	86.3	79.8	7.84	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CHAIN-OF-CUSTODY RECORD

of 1

WorkOrder: 0401122

Report to:

Matt Meyers"

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

TEL: FAX:

(510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A Emeryville, CA 94608 Date Received:

Requested TAT:

1/13/04

5 days

Date Printed:

1/13/04

			1			The second control of the second	1 1 100 1 11P (Spi 1000)			Req	ueste	d Test	s (See	leger	ıd be	low)					*****	
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5		6	7	8		9	10	11		12	13	14	15
	:																					
0401122-001	SB-15@7.5	Soil	1/12/04 1:25:00 PM		Α	Α	Α		1	_ [ĺ			
0401122-002	SB-15@11.5	Soil	1/12/04 1:30:00 PM		A	Α	A										T					
0401122-003	SB-16@7.5	Soil	1/12/04 2:30:00 PM		Α	Α	l A															T
0401122-004	SB-16@11.5	Soil	1/12/04 2:40:00 PM		Α	Α	Α	7						1				1	i			

Test Legend:

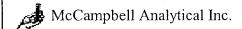
1	8010B_S	 	1
6		 	
[11]			1

2	G-MBTEX_S	
7		_
12		

3	<u></u>	TPH	(DMO)_S	
8	1				
13	<u>}</u>				

4	Ì	 	 	 	
9	3	 			
14	3	 	 		

5			
1			
10			
15			


Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

ce te

Telephor	McCAM 1 ne: (925) 798-	10 2 nd A PACHEO	L ANAI venue sc co, ca 945	UTH,	#D7 60	J IN		79	8-16	2.2				EI			RN qui	AF	ROI	UN	D ´	ΓIN	ΛE:		DII]		()RI (48 H]	R 5	B DA	-
Report To: Matt M		1020	F-	Bill To	o: Ca	_		,	- 10										An											Ot	ner		Com	men	ts
Company: Cambri		ntal Tech											+																						
5900 Hollis Street,		11.01		1									\neg																						
Emeryville, Ca 946			E-mail:	mme	yers(a	can	ıbria	-en	v.coi	n																									
Tele: (510) 420-33			Fax: (5)																	,			ļ									1			
Project #:522-1000	-020		Project l				ly																												
Project Location: 1	137-1167 65	th Street,	Oakland											1.5	2													ļ							
Sampler Signature:													_	A 801	4 80																				
-	C	SAM	PLING		ers]	MA'	[RI	X		MET		ED]	3 by EP	by EP.	8010																			
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Air	Other	Ice	HCI	HNO ₃	Other	BTEX and MTBE	TPHg/ss/d/mo by EPA 801	VOCs by EPA 8010																			
53-1507.5		1/12/04	1125	1	NBE		×			X				X	X	Х									ļ		 					_			
3B-15 811 5			1:30		1)			1																	ļ								
FB-16@7.5			2 30				T																	ļ				<u></u>	<u></u>						
5B-16011.5		V	2.40	V	\		$\sqrt{}$			V						V																			
	<u></u>	<u> </u>					_																												
					<u> </u>				+																										
			 	 	 			-	+-	\vdash	-						ļ												1						
		 	_	-	-		+			-								-					 		†	-	†	 							
				ļ	 	-	-			├													-												
			_	ļ		ļ		_	-	ļ								-							 -	+									
					ļ	_		_	-	<u> </u>							ļ	ļ								.		<u> </u>	ļ						
					<u> </u>					Ĺ							<u> </u>								.	ļ			ļ						
]																							<u></u>				
		1							T																										
Relinquished By:		 	Time:	/	Sec	JRE	- (Lo c	ATI	<u>ن</u>	``			Lo		st p	ossil nail i			ctio	n li:	mits	3.		ICE/	DD C				<u>/</u>	-	AI C	PROP	RIATI	E /
Relinquished By:	_	Date: /	Time:	1	eivid/B	22	5	<u> </u>	+	2	2	\subset	5	`															SENT DIN I	LAB		_PF	ESER	VED !	IN LA
Relipquished By:	+280	1/3	Time:	<u> </u>	eived B	Jul)	V	Ŵ	J	/														PRE	SER	VAT	TON		-	OAG	<u></u>	(BTALS	01	LIKK.

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled:	01/09/04
5900 Hollis St, Suite A	Nady	Date Received:	01/12/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported:	01/20/04
	Client P.O.:	Date Completed:	01/20/04

WorkOrder: 0401109

January 20, 2004

Dear Matt:

Enclosed are:

- 1). the results of 3 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology		Date Sampled: 01/09/04
5900 Hollis St, Suite A	Nady	Date Received: 01/12/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/13/04
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/13/04

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B	An	alytical Method: SW802	1B/8015Cm		Work Ord	er: 0401109
Lab ID	0401109-001A	0401109-002A	0401109-003A			
Client ID	SB-18B	SB-14A	SB-18C		Reporting Limit for DF = 1	
Matrix	W	W	, W			
DF	1	1	1		S	W
Compound		Conc	entration		ug/kg	μg/L
ТРН(g)	250	ND	300		NA	50
TPH(ss)	ND	ND	170		NA	50
МТВЕ	ND<200	ND	ND<110		NA	5.0
Benzene	0.54	0.58	0.82		NA	0.5
Toluene	ND	ND	ND		NA	0.5
Ethylbenzene	ND	ND	ND .		NA	0.5
Xylenes	0.64	ND	1.3		NA	0.5
	Surr	ogate Recoverie	s (%)			1
%SS:	#	118	#			
Comments	f,a	i	f,a,i			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@nccampbell.com/

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/09/04
5900 Hollis St, Suite A	Nady	Date Received: 01/12/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/12/04
Emeryvine, CA 94000	Client P.O.:	Date Analyzed: 01/13/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

traction method: SW3510C Analytical methods: SW8015C		Work Order: 0401109				
Lab lD	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0401109-001C	SB-18B	w	92,d,f	ND	1	93.5
0401109-002C	SB-14A	W	ND,i	. ND	1	97.1
			***************************************		!	
	···					
	·					

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

Cambria Env. Technology	Nady	Date Sampled: 01/09/04
5900 Hollis St, Suite A		Date Received: 01/12/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/14/04-01/15/04
	Client P.O.:	Date Analyzed: 01/14/04-01/15/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Analytical Method: SW8021B Extraction Method: SW5030B Work Order: 0401109

					
Lab I	D 0401109-001B	0401109-002B	0401109-003B		
Client I	D SB-18B	SB-14A	SB-18C	Reporting	
Matr	ix W	w w w			-1
	OF 200	1	100	S	W
Compound		Conc	entration	μg/kg	μg/L
Bromodichloromethane	ND<100	ND	ND<50	NA	0.5
Bromoform	ND<100	ND	ND<50	NA	0.5
Bromomethane	ND<100	ND	ND<50	NA	0.5
Carbon Tetrachloride	ND<100	ND	ND<50	NA	0.5
Chlorobenzene	ND<100	ND	ND<50	NA	0.5
Chloroethane	ND<100	ND	ND<50	NA	0.5
2-Chloroethyl vinyl ether	ND<100	ND	ND<50	NA	0.5
Chloroform	ND<100	ND	ND<50	NA NA	0.5
Chloromethane	ND<100	ND	ND<50	. NA	0.5
Dibromochloromethane	ND<100	ND	ND<50	NA	0.5
1,2-Dichlorobenzene	ND<100	ND	ND<50	NA	0.5
1,3-Dichlorobenzene	ND<100	ND	ND<50	NA NA	0.5
1,4-Dichlorobenzene	ND<100	ND	ND<50	NA NA	0.5
Dichlorodifluoromethane	ND<100	ND	ND<50	NA	0.5
1,1-Dichloroethane	ND<100	ND	ND<50	NA	0.5
1,2-Dichloroethane	ND<100	ND	ND<50	i NA	0.5
1,1-Dichloroethene	ND<100	ND	ND<50	NA NA	0.5
cis-1,2-Dichloroethene	1800	ND	1200	NA	0.5
trans-1,2-Dichloroethene	ND<100	ND	ND<50	NA	0.5
1,2-Dichloropropane	ND<100	ND	ND<50	NA	0.5
cis-1,3-Dichloropropene	ND<100	ND	ND<50	NA NA	0.5
trans-1,3-Dichloropropene	ND<100	ND	ND<50	NA NA	0.5
Methylene chloride	ND<100	ND	ND<50	NA	0.5
1,1,2,2-Tetrachloroethane	ND<100	ND	ND<50	NA	0.5
Tetrachloroethene	630	ND	300	NA	0.5
1,1,1-Trichloroethane	ND<100	ND	ND<50	NA NA	0.5
1,1,2-Trichloroethane	ND<100	ND	ND<50	NA NA	0.5
Trichloroethene	430	ND	250	NA	0.5
Trichlorofluoromethane	ND<100	ND	ND<50	NA	0.5
Vinyl Chloride	ND<100	ND	ND<50	NA	0.5
	Surr	ogate Recoverie			1
%SS:	93.5	89.8	92.2		
Comments		i	i		···-

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

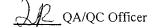
110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0401109


EPA Method: SV	V8021B/8015Cm E	extraction:	SW5030B	}	BatchID:	9956	Spiked Sample ID: 0401095-003A								
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)					
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High					
TPH(btex) [£]	ND	60	90.1	90.7	0.695	99.9	104	4.12	70	130					
MTBE	ND	10	107	107	0	96.6	100	4.00	70	130					
Benzene	ND	10	109	108	1.62	110	114	3.57	70	130					
Toluene	ND	10	113	111	1.98	106	110	3.48	70	130					
Ethylbenzene	ND	10	115	113	1.96	114	118	3.36	70	130					
Xylenes	ND	30	117	113	2.90	107	107	0	70	130					
%SS:	117	10	111	110	0.928	105	105	0	70	130					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8021B

Matrix: W

WorkOrder: 0401109

EPA Method: SW8021B	E	extraction:	SW5030E	3	BatchID:	9945	Spiked Sample ID: 0401079-010A								
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)					
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High					
Chlorobenzene	ND	10	94	94.4	0.472	96.5	96.2	0.299	70	130					
1,1-Dichloroethene	ND	10	99.2	92.6	6.89	101	98.5	2.47	70	130					
Trichloroethene	ND	10	85.5	87.7	2.46	94.3	90.3	4.32	70	130					
%SS:	85.7	100	94.4	93.3	1.19	97.7	98.8	1.10	70	130					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = <math>100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

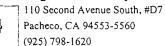
Matrix: W

WorkOrder: 0401109

EPA Method: SW8015C	E	extraction:	SW35100	5	BatchID:	9946	Spiked Sample ID: N/A									
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)						
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High						
TPH(d)	N/A	7500	N/A	N/A	N/A	93	91.7	1.38	70	130						
%SS:	N/A	100	N/A	N/A	N/A	96.3	94.7	1.68	70	130						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE


MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0401109

Report to:

Jason Olson

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608

TEL: FAX:

(510) 420-0700

(510) 420-3394 ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Accounts Payable

Cambria Env. Technology 5900 Hollis St, Ste. A

Emeryville, CA 94608

Requested TAT:

5 days

Date Received:

1/12/04

Date Printed:

1/12/04

			1		[Requested Tests (See legend below)																						
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1		2	Ī	3	4		5		6		7		8	9		10		11	1	2	13		15
0401109-001	SB-18B	Water	1/9/04 2:30:00 PM		В		Α		С				1		İ										1		į	
0401109-002	SB-14A	Water	1/9/04 3:00:00 PM		В		Α		С																		-	
0401109-003	SB-18C	Water	1/9/04 4:30:00 PM		В		Α						Ţ		 -		1.			1							-	j

Test Legend:

1	8010B_W
6	
11	

2	G-MBTEX_W
7	
12	

3	TPH(DMO)_W
8	
13	

4	
9	
14	

5]		
131		
10		
15		

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

	McCAMPBELL ANALYTICAL INC.										CHAIN OF CUSTODY RECORD																								
					, ANAL venue so			LIN	C.								TU	IRN	[A]	30	UN	D 7	ПΜ	E:						_			· ~ ·	A	
					O, CA 945]_	r \ r=	n	equi	, ,	- I	7	x 7	\	7,] 	RUS	H	24 I	JOU	R 4	18 H	lOL,	IR 5	DA.	Y
		ne: (925) 798	-1620)				ax: (798-	1622	2	·			リル	K	equi	rea						NO					~		т			
	Report To: Matt M					ill To	: Ca	mbri	1						 	,		T		An	alys	is R	eque	st					—	Oth	er		Com	ment	S
	Company: Cambri		ntal T	[ech		·									┨	1								- 1					1						
	5900 Hollis Street,					77.1			 -															- }											
	Emeryville, Ca 946				E-mail:				bria-	env.	com				-								1												
	Tele: (510) 420-33				Fax: (51				<u>. </u>						1									ļ											
	Project #:522-1000 Project Location: 1		th C+		Project N	vanie:	Jonr	INAC	<u>y</u>						┨																	Ĭ			
			Stre	et, (Jakland										3015	015							}	-			}								
	Sampler Signature:						1	T .			$\neg \tau$	MF	тно	(1(PA S	PA 8							1												
			SA	\MP	LING		573		MAT	RIX			SERV		À	y El	3010															- }			
	SAMPLE ID					le 13	Type Containers								BTEX and MTBE by EPA	TPHg/ss/d/mo by EPA 8015	VOCs by EPA 8010					ĺ													
	(Field Point Name)	LOCATION	1 .	ļ	æ.	Containers	Juo	1.1		le					Id M	/p/s	by E		-									1				ŀ			
	(**************************************		Dat	:e	Time	Jon	8	Water	:= <u>.</u>	Sludge	Other	n E	HNO.	Other	EX a	Hg/s	CS						1									-			
			İ			#	7	≽	Soil	S	ō		ť E	Πŏ	BT	1	>			•															
چل	5B-18B		1/1	૦પે	2:30	7	Si And	X				××			×	X	X																		-
10	5B-14B		viai	०५	300	W	1	11				7 7			1	1									_ .						_				
Ú,			19	1,4	4.30	6	VERS	V				11	1		V	1	1																5,55	NI	D/M.
•							T	1							1																		• •		
•						<u> </u>		1			7	_	1	1	1				T	-									T						
	J		 					1-	_	+		+	- 	+	}		-	-				i									- 1				
			 					+	-	+		-	+	+-	╁─		-							-				·	-						
							 -	+-+		-				+-	 -			-	 -				+				+								
			ļ			ļ		1 -	-					┦		-	ļ	 						+											
		<u> </u>								\perp				_	<u></u> -		ļ	-	ļ <u>-</u>					↓	-		-								
	1													<u> </u>	L											_			ļ. <u>.</u>						
																																		· 	
		,	†					1		7-1				7										ĺ	1										
			 					1-1								†··· -	-																		
						 		1	+-	+-		-		+					_					-		_	_	_	T						
	Relinquished By:		Date		Time:	Rece	ived B	<u> </u>						۰ـــــــــــــــــــــــــــــــــــــ	P.	eina	rks	J	<u> </u>	L	<u> </u>							<u>\</u>	ــــــــــــــــــــــــــــــــــــــ						· ·
	Reiniquished By:		i a		6:30		ا کی نق		n i	O CA	د ۱۲ ت	رن			1			iossi	ble ·	dete	ctio	n lir	nits.				,								
	Relipquished By:		Date		7:50 Time:		ived P		7)									nail						¥	E/C		\mathcal{I}			/					,
	Reinduished By.		17/		1/30	K	: بهست برجیر		ve,	~~	2%	7			1									G	ooō	CON	DITIO	אכ	V		API	PRO	PRIAT	R 1	
	1 /		Date		Time:	Rece	ived D	y:	7	9					1									H D	ECHI FVD	SPAC JORN	E AB	SENT DIN	LAH	⁄ـــــــــــــــــــــــــــــــــــــ	CO	NTA	NERS	V	<u></u>
	Travel Com	28	1/12/		1798	6	L			\mathcal{V}_{-}																	TION	VOA	, -	O&G			s on		<u> </u>
	1000 C		$\frac{1}{7}Z$, ^ 	1700		<u>- ب</u>	/		AA.					٠										7505	AVA	11110	'==	Y _				工二		

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/09/04
5900 Hollis St, Suite A	Nady	Date Received: 01/12/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/20/04
Emeryvine, CA 94008	Client P.O.:	Date Completed: 01/20/04

WorkOrder: 0401108

January 20, 2004

Dear Matt:

Enclosed are:

- 1). the results of 4 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/09/04
5900 Hollis St, Suite A	Nady	Date Received: 01/12/04
Emoravillo CA 04609	Client Contact: Matt Meyers	Date Extracted: 01/12/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/13/04-01/15/04

Gasoline Range (C6-C12), Stoddard Solvent (C9-C12) Volatile Hydrocarbons as Gasoline with BTEX and MTBE* Extraction Method: SW5030B Analytical Method: SW8021B/8015Cm Work Order: 0401108

Extraction Method: SW5030B		An	Work Order: 0401108						
	Lab ID	0401108-001A	0401108-002A	0401108-003A	0401108-004A				
	Client ID	SB-14@7.5	SB-14@11.5	SB-18@17.5	SB-18@20	Reporting			
	Matrix	S	S	s. S	S	DF =1			
	DF	50	1	50	1	S	W		
Compound			mg/Kg	ug/L					
ТРН(g)		210	ND	1000	ND	1.0	NA		
TPH(ss)		100	ND	990	ND	1.0	NA		
МТВЕ		ND<2.5	ND	ND<2.5	ND	0.05	NA		
Benzene		0.64	ND	ND<0.25	ND	0.005	NA		
Toluene		0.39	ND	ND<0.25	ND	0.005	NA		
Ethylbenzene		1.8	ND	0.57	ND	0.005	NA		
Xylenes		5.0	ND	2.9	ND	0.005	NA		
		Surr	ogate Recoverie	es (%)					
%SS:		114	101	107	95.0				
Comments		a		e					

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in nig/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/09/04						
5900 Hollis St, Suite A	Nady	Date Received: 01/12/04						
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/12/04						
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/12/04-01/13/04						

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

xtraction method: SV	V3550C		Analytical methods: SW8015C		Work O	rder: 0401108
Lab lD	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0401108-001A	SB-14@7.5	S	64,d	ND	1	114
0401108-002A	SB-14@11.5	S	ND	ND	1	105
0401108-003A	SB-18@17.5	S	660,d,b	ND<50	10	98.6
0401108-004A	SB-18@20	S	ND	ND	1	95.6
-						-
			·			<u> </u>
						<u> </u>
	·					ļ

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in μ g/L, wipe samples in μ g/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in μ g/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/09/04
5900 Hollis St, Suite A	Nady	Date Received: 01/12/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/12/04
	Client P.O.:	Date Analyzed: 01/14/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Analytical Method: SW8021B Extraction Method: SW5030 Work Order: 0401108 0401108-004A Lab ID 0401108-001A 0401108-002A 0401108-003A Reporting Limit for SB-14@7.5 SB-14@11.5 SB-18@20 Client ID SB-18@17.5 DF = 1Matrix S S S S DF 80 80 1 W S $\mu g/Kg$ $\mu g/L$ Compound Concentration Bromodichloromethane ND<400 ND ND<400 ND5.0 NA Bromoform ND<400 ND ND<400 ND 5.0 NA ND<400 Bromomethane ND ND<400 ND 5.0 NA ND<400 ND Carbon Tetrachloride ND<400 ND 5.0 NΑ ND<400 ND Chlorobenzene ND<400 ND 5.0 NA Chloroethane ND<400 ND ND<400 ND 5.0 NA 2-Chloroethyl vinyl ether ND<400 ND ND<400 ND 5.0 NA Chloroform ND<400 ND ND 5.0 ND<400 NA ND<400 Chloromethane ИD ND<400 ND 5.0 NA Dibromochloromethane ND<400 ND ND<400 ND 5.0 NA 1,2-Dichlorobenzene ND<400 ND ND<400 5.0 ND NA ND<400 1,3-Dichlorobenzene ND ND<400 ND 5.0 NA 1,4-Dichlorobenzene ND<400 ND ND<400 ND 5.0 NA Dichlorodifluoromethane ND<400 ND ND<400 ND 5.0 NA 1,1-Dichloroethane ND<400 ND ND<400 ND 5.0 NA 1,2-Dichloroethane ND<400 ND ND<400 ND 5.0 NA ND 1,1-Dichloroethene ND<400 ND ND<400 5.0 NA cis-1,2-Dichloroethene ND<400 ND ND<400 ND 5.0 NA trans-1,2-Dichloroethene ND<400 ND ND<400 ND 5.0 NA ND<400 ND ND<400 ND 1,2-Dichloropropane 5.0 NA cis-1,3-Dichloropropene ND<400 ND ND ND<400 5.0 NA trans-1,3-Dichloropropene ND<400 ND ND<400 ND 5.0 NA ND<400 Methylene chloride ND ND<400 ND 5.0 NA 1,1,2,2-Tetrachloroethane ND<400 ND ND 5.0 ND<400 NA Tetrachloroethene ND<400 ND ND<400 ND 5.0 NA 1,1,1-Trichloroethane ND<400 ND ND<400 ND 5.0 NA 1,1,2-Trichloroethane ND<400 ND ND<400 ND 5.0 NA ND<400 ND Trichloroethene ND<400 ND 5.0 NA Trichlorofluoromethane ND<400 ND ND<400 ND 5.0 NA ND<400 Vinyl Chloride ND ND<400 ND 5.0 NA Surrogate Recoveries (%) %SS: 101 118 84.5 87.9 Comments

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

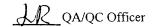
h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S


WorkOrder: 0401108

EPA Method: SW8021B/8	015Cm E	extraction:	SW5030B	;	BatchID:	9961	Spiked Sample ID: 0401102-007A						
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(btex) [£]	ND	0.60	100	104	4.04	101	101	0	70	130			
MTBE	ND	0.10	98	97.6	0.364	97.8	101	3.43	70	130			
Benzene	ND	0.10	108	108	0	107	105	2.21	70	130			
Toluene	ND	0.10	94.4	95	0.591	91	91.5	0.471	70	130			
Ethylbenzene	ND	0.10	114	114	0	108	109	0.706	70	130			
Xylenes	ND	0.30	103	103	0	100	100	0	70	130			
%SS:	90.3	0.10	115	114	0.873	116	119	2.55	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked), RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0401108

EPA Method: SW8015C	Extraction: SW3550C				BatchID:	9962	Spiked Sample ID: 0401102-007A					
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(d)	ND	150	107	106	0.129	95.3	96.3	1.05	70	130		
%SS:	98.7	100	115	115	0	96.2	98.2	2.11	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B

Matrix: S

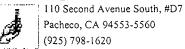
WorkOrder: 0401108

EPA Method: SW8021B	Extraction: SW5030				BatchID:	9966	Spiked Sample ID: 0401108-004A					
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria (
	μg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
Chlorobenzene	ND	50	76.8	81.2	5.65	84.5	85	0.630	70	130		
1,1-Dichloroethene	ND	50	95.1	94.4	0.741	117	111	4.92	70	130		
Trichloroethene	ND	50	77.1	82.9	7.23	97.2	89.8	7.94	70	130		
%SS:	87.9	100	77.8	87.6	11.8	86.3	79.8	7.84	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0401108

Report to:

Jason Olson

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608

TEL: :

(510) 420-0700

FAX:

(510) 420-3394

ProjectNo: #522-1000-020; John Nady PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A Emeryville, CA 94608 Requested TAT:

5 days

Date Received:

1/12/04

Date Printed:

1/12/04

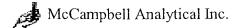
																							
	V.	1								Reque	ested	Tests	(See	lege	nd b	elow)	. I					in .	
ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	1	5	6		7	8		9	10		11	12	İ	13	14	15
																				•			
SB-14@7.5	Soil	1/9/04 8:20:00 AM		\ A	Α	A	T	T			-		• •	1		:	i			-			1
SB-14@11.5	Soil	1/9/04 8:40:00 AM		А	Α	Α				١,				1		İ			!	Ť			
SB-18@17.5	Soil	1/9/04 11:30:00 AM		Α	Α	А								Ţ			İ			7		-	
SB-18@20	Soil	1/9/04 11:40:00 AM		Α	A	Α										Ī				"			
	SB-14@7.5 SB-14@11.5 SB-18@17.5	SB-14@7.5 Soil SB-14@11.5 Soil SB-18@17.5 Soil	SB-14@7.5 Soil 1/9/04 8:20:00 AM SB-14@11.5 Soil 1/9/04 8:40:00 AM SB-18@17.5 Soil 1/9/04 11:30:00 AM	SB-14@7.5 Soil 1/9/04 8:20:00 AM SB-14@11.5 SB-14@11.5 Soil 1/9/04 8:40:00 AM SB-18@17.5 SB-18@17.5 Soil 1/9/04 11:30:00 AM SB-18@17.5	SB-14@7.5 Soil 1/9/04 8:20:00 AM A SB-14@11.5 Soil 1/9/04 8:40:00 AM A SB-18@17.5 Soil 1/9/04 11:30:00 AM A	SB-14@7.5 Soil 1/9/04 8:20:00 AM A A SB-14@11.5 Soil 1/9/04 8:40:00 AM A A SB-18@17.5 Soil 1/9/04 11:30:00 AM A A	SB-14@7.5 Soil 1/9/04 8:20:00 AM A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM A A A	SB-14@7.5 Soil 1/9/04 8:20:00 AM A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM A A A	SB-14@7.5 Soil 1/9/04 8:20:00 AM A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A	SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A A A SB-18@17.5 Soil 1/9/04 11:30:00 AM □ A A A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A<	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A<	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12 13 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A	ClientSampID Matrix Collection Date Hold 1 2 3 4 5 6 7 8 9 10 11 12 13 14 SB-14@7.5 Soil 1/9/04 8:20:00 AM □ A A A A A A SB-14@11.5 Soil 1/9/04 8:40:00 AM □ A

Test Legend:

1	8010B_S
6	
11	

2	G-MBTEX_S
7	
12	

3	TPH(DMO)_S	ĺ
8	The second secon	
13		j


4		5
9	;	10
14	:	15∫

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

								**					•				Cl	IA	IN	O	F (CU	ST	OI	ΟY	RE	CO	RI)			
	McCAM					LINC								JΤ	JRN	ΙA	RO	UN	ID T	TIN	IE:										A	
			O, CA 945		0								~ T \ T	ת -	.equ		10		37.	_ \overline	1	NI.	RUS	SH	24.	HOU	JR. 4	8 H	OUR	. 5 D	AY	
	ne: (925) 798	-1620				ax: (92	5) 79	8-16	22			1		· K	.equ	1160						INO					Otlo		10	lomin	2016	
	Report To: Matt Meyers Bill To: Cambria									-	-,		An	Tarys	sis R	cequ	lest						Oth	er	+	OHIII	ents					
Company: Cambria Environmental Technology, Inc.							\dashv																									
5900 Hollis Street, Emeryville, Ca 946			E-mail:	mma	vers@	Doamhr	ia en			_		-														1						
Tele: (510) 420-33			Fax: (51				ia-cii	Y.CO,	11			-																				
Project #:522-1000			Project N																				ļ									
Project Location: 1	137-1167 65			ā] 、	5 0										İ									
Sampler Signature:													801																			
		SAME	PLING		र	M.A	TRJ.	X		AETT ESEI	IOD RVED	BTEX and MTBE by EPA	TPHg/ss/d/mo by EPA 8015	8010																		
				ers	Type Containers							TBE	on of	8 40	2																	
SAMPLE ID (Field Point Name)	LOCATION		en.	Containers	Sont			ט				W Pu	l/p/s	VOCe by FPA	7		-						İ									
(1 tota 1 omit (amo)		Date	Time	Con	be (Water	Air	Other	63	HCI	HNO,	EX.	Hg/s	حٌ ا	3																	
				#	Ţ	Wate	Y Fi	<u> </u>	Ice	Ħ		2 2		>																		
- 38-1407.5		119/24	8:20	1	TUGÉ	X			Ж			×	(×	<u> </u>	<				ļ													
50.198115		1	8:40	1	1							1	1				_		-							_						
>B-18,0175			11:30														_		<u> </u>													
56-18-QW		1	11:40	V	V	V			V			Ŋ	\mathcal{I}	1	<u> </u>												_					
7- 18-00 20		<u>`</u>																	İ													
			 			1-1-								-								ł										
		 			-			-	1			7		-																		
						++-		+-			-	-	1			1										1						
			 	l ——	<u> </u>			1	┢	1		-(~										
		 		-	-			+	\vdash					-					†						-							- /****
		}	ļ	 	 		}}		-	 		+			-		-	 							_							
		ļ	ļ	 -	<u> </u>	╂─┼─		+-	 -	-		_		-		+		-	ļ·				+		 							
		ļ		ļ <u>.</u>														-									1		-			
		 	ļ	ļ	<u> </u>	 	<u> </u>										.								+							
		<u> </u>		<u> </u>	1.0				<u></u>			+-		a ulc		<u> </u>	<u>.L.</u>	<u> </u>	1								لـــــــــــــــــــــــــــــــــــــ		!			
Relinquished By:		Date:	Time:	Kece	ived B ∠⊭(y: UREO	Loca	4 Tie	n'				Rem Low		s: poss	ible	dete	ectic	n li	mits				/	/							
	·	117 04 Date:	(30) Time:		ived B) 		5 6	300					mail							ICE/r		_	_			,				
Relinquished By:		Date: //2/04	11:30		tr	. 1	Qv.	\int_{0}^{x}	_ 7	8											- 1	HEAI) SPA	CRA	TION_ ABSEN	VT_	_	AP CC	PROP	RIATE VERS_	/	
Relinguished By	298	Date:	Time:	Rece	iyed B	y:	56	72													•	JECE	TUK	LANL	LEO II	Y LAE		_PR	eser'	VED IN	LAB	
Trufen	2010	1/2/07	1251	0	K.			\mathcal{T}_{A}	1			\perp		<u> </u>								RES	ERV	ATIC	N		O&G	M	STALS	ОТНЕ	R	
60	, n	1 harles	1700		1	1()	11	. 1/	/ L	,																						

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/15/04
	Client P.O.:	Date Completed: 01/15/04

WorkOrder: 0401089

January 15, 2004

Dear Matt:

Enclosed are:

- 1). the results of 3 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/10/04-01/13/04
Lineryvine, CA 94000	Client P.O.:	Date Analyzed: 01/10/04-01/13/04

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX and MTBE*

Extraction Method: SW5030B		alytical Method: SW802	•	Work (Order: 0401089
Lab I	O 0401089-001A	0401089-002A	0401089-003A		
Client I	SB-25A	SB-25C	SB-17B	Reporti	ng Limit for
Matri	x W	W		OF =1	
D	F 1	1 ,	1	S	W
Compound		Conc	ug/kg	μg/L	
ТРН(g)	ND	ND	120	NA	50
TPH(ss)	ND	ND	ND	NA	50
МТВЕ	ND	ND	ND<50	NA	5.0
Benzene	ND	ND	ND	NA	0.5
Toluene	ND	ND	ND	NA	0.5
Ethylbenzene	ND	ND	ND	NA	0.5
Xylenes	ND	ND	ND	NA	0.5
	Surr	ogate Recoverie	s (%)		
%SS:	102	113	82.2		
Comments	i	i	f,i		

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
Foremaille CA 04609	Client Contact: Matt Meyers	Date Extracted: 01/09/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/09/04-01/10/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW3510C			Analytical methods: SW8015C	Work Order: 0401089			
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS	
0401089-001C	SB-25A	w	64,b,f,i	ND	. 1	106	
0401089-002C	SB-25C	w	ND,i	ND	1	105	
0401089-003C	SB-17B	w	95,b,d,i	ND	1	103	
					!		
1							
	ANA M					ļ	
					:		
						 	
		,					

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

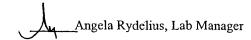
^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / STLC / STLP / TCLP extracts are reported in µg/L.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
E	Client Contact: Matt Meyers	Date Extracted: 01/10/04-01/13/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/10/04-01/13/04


	Chent 1:0::			=======================================	J/ 0 +
Halogenated V Extraction Method: SW5030B	-	by P&T and GO	•	Basic Target List)*	er: 0401089
Lab ID	0401089-001B	0401089-002B	0401089-003B	on old	
	SB-25A	SB-25C	SB-17B	Reporting	Limit for
Client ID					=1
Matrix	W	W	W		
DF	1	1	100	S	W
Compound		Conc	entration	μg/kg	μg/L
Bromodichloromethane	ND	ND	ND<50	NA	0.5
Bromoform	ND	ND	ND<50	NA NA	0.5
Bromomethane	ND	ND	ND<50	NA	0.5
Carbon Tetrachloride	ND	ND	ND<50	NA	0.5
Chlorobenzene	ND.	ND	ND<50	NA	0.5
Chloroethane	ND	ND	ND<50	NA	0.5
2-Chloroethyl vinyl ether	ND	ND	ND<50	NA	0.5
Chloroform	ND	ND	ND<50	NA	0.5
Chloromethane	ND	ND	ND<50	NA NA	0.5
Dibromochloromethane	ND	ND	ND<50	NA NA	0.5
1,2-Dichlorobenzene	ND	ND	ND<50	NA NA	0.5
1,3-Dichlorobenzene	ND	ND	ND<50	NA NA	0.5
1,4-Dichlorobenzene	ND	ND	ND<50	NA	0.5
Dichlorodifluoromethane	ND	ND	ND<50	NA NA	0.5
1,1-Dichloroethane	ND	ND	ND<50	i NA	0.5
1,2-Dichloroethane	ND	ND	ND<50	' NA	0.5
1,1-Dichloroethene	ND	ND	ND<50	NA NA	0.5
cis-1,2-Dichloroethene	ND	ND	1100	NA	0.5
trans-1,2-Dichloroethene	ND	ND	ND<50	NA	0.5
1,2-Dichloropropane	ND	ND	ND<50	NA	0.5
cis-1,3-Dichloropropene	ND	ND	ND<50	NA	0.5
trans-1,3-Dichloropropene	ND	ND	ND<50	NA	0.5
Methylene chloride	ND	ND	ND<50	NA NA	0.5
1,1,2,2-Tetrachloroethane	ND	ND	ND<50	NA	0.5
Tetrachloroethene	ND	ND	ND<50	NA	0.5
1,1,1-Trichloroethane	ND	ND	ND<50	NA NA	0.5
1,1,2-Trichloroethane	ND	ND	ND<50	NA	0.5
Trichloroethene	ND	ND	ND<50	NA	0.5
Trichlorofluoromethane	ND	ND	ND<50	NA	0.5
Vinyl Chloride	ND	ND	ND<50	NA	0.5
	Surr	ogate Recoverie	s (%)		
%SS:	103	83.9	90.7		
I =		1			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in μg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0401089

EPA Method: SW	/8021B/8015Cm	Extraction:	on: SW5030B BatchID: 9942 Spiked Sar						ole ID: 0401076-003A		
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	µg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
МТВЕ	ND	10	101	102	0.899	106	98.9	7.33	70	130	
Benzene	ND	10	111	107	4.21	107	102	5.14	70	130	
Toluene	ND	10	107	104	2.79	104	99.5	4.55	70	130	
Ethylbenzene	ND	10	115	111	3.63	112	107	4.88	70	130	
Xylenes	ND	30	107	100	6.45	107	100	6.45	70	130	
%SS:	101	100	104	102	1.72	99.6	116	15.6	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0401089

EPA Method: SW8015C	E	Extraction:	SW35100	2	BatchID:	9946	Spiked Sample ID: N/A									
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%							
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High						
TPH(d)	N/A	7500	N/A	N/A	N/A	93	91.7	1.38	70	130						
%SS:	N/A	100	N/A	N/A	N/A	96.3	94.7	1.68	70	130						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B

Matrix: W

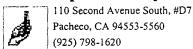
WorkOrder: 0401089

EPA Method: SW8021B	E	extraction:	SW5030E	3	BatchID:	9945	S	Spiked Sample ID: 0401079-010A								
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria							
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High						
Chlorobenzene	ND	10	94	94.4	0.472	96.5	96.2	0.299	70	130						
1,1-Dichloroethene	ND	10	99.2	92.6	6.89	101	98.5	2.47	70	130						
Trichloroethene	ND	10	85.5	87.7	2.46	94.3	90.3	4.32	70	130						
%SS:	85.7	100	94.4	93.3	1.19	97.7	98.8	1.10	70	130						

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike smount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CHAIN-OF-CUSTODY RECORD

WorkOrder: 0401089

Report to:

Ron Scheele

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

TEL: FAX:

(510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A Emeryville, CA 94608 Date Received:

1/9/04

5 days

Date Printed:

Requested TAT:

1/9/04

			. J	<u>-</u>						R	eques	ted Te	ests (See I	egend	pelow)					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4		5	6	7		8	9	10	11	12	13	14	15
	i																				
0401089-001	SB-25A	Water	1/8/04 1:00:00 PM		В	Α	C														
0401089-002	SB-25C	Water	1/8/04 3:50:00 PM		В	Α	С		-											Ī	
0401089-003	SB-17B	Water	1/8/04 4:45:00 PM		В	Α	С					1	i								

Test Legend:

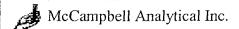
1	8010B_W									
6										
11										

2	G-MBTEX_W
7	
12	

3	TPH(DMO)_W	ļ
8		
13		

4	
9	
14	

a contract on the same and the same
The state of the s


Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

Cell

																		(\mathbf{H}	\mathbf{AI}	N (ЭF	CI	IJS	\mathbf{IO}	\mathbf{DY}	RI	\mathbf{CC}	ЭR	D			
		McCAM	IPBELI	L ANA]	LYT:	[CA]		IC.								TUF	RN.	AR	OU	MI) T	IMI	Ξ:]							হৈ	
		. 1		VENUE SO															_	,		\ K -2(RU	JSH	24	HO	UR	48 I	JOE	JR 5	DAY	
	Telepho	ne: (925) 798		CO, CA 945	227-220	ou p	ax. (925)	798.	-162	2.			EI	DF	Red	quir	ed?	ــا ا	Γ	zes.		N,	0									
	Report To: Matt N		1020	F	Bill To									 	·							ques						0	ther		Comi	nents	_
	Company: Cambr		ntal Tech																			1											
	5900 Hollis Street,				3																												
	Emeryville, Ca 94			E-mail:	mine	yers(n)can	nbria-	env.	coin																							
	Tele: (510) 420-33			Fax: (5	10) 42	0-91	70																										
	Project #:522-1000	0-020		Project l		Johr	ı Na	dy																									
	Project Location: 1	1137-1167 65	th Street,	Oakland	1									1.5	8015																		
	Sampler Signature		}											A 801	4 80																		
,	*		SAMI	PLING		ers		МАТ	RIX			SERV		E by EPA	TPHg/ss/d/mo by EPA	VOCs by EPA 8010																	
	SAMPLE ID				Containers	Type Containers								BTEX and MTBE	/mo	SPA.																	
	(Field Point Name)	LOCATION	Date	Time	ıtai	Son	h		ည့			,,		and h	/ss/d	by F																	
	Ì		Date	1 """	Col	8	Water	Soil	Sludge	Other		HNO	Other	ΕX	PHg	S																	
					#	15	≯	S ₹	S	0	의	FE	0	60	F	>																	
125	SB-25A		1/8/04	Ipm	7	Voas	X			.	4-	}		4'	+	4																	
+10)	5B-25C		1	3:50	71	Anor. Vecs	14			1	x 4	t		بخ	¥	4																	
	SB-17B			4.45	7	mbe	×				ل ہد	7		×	Х,	4											1						
12	30 1/15			1	-/-	Voca			+		-								~_													•	
					 	<u> </u>		-	+	 	_	+								_	_		7	Ţ <u> </u>				-					
				ļ	 	 	-		+			+-	+			1 1			_									1	-				
			 		 	 	+		+-		+		-					-			-	-		-	\vdash		_	~-	1				
			ļ		 	├	+		+	\vdash	-	+-	+			+		-	+		-			+					†- -				
				ļ	ļ	 	-			$\vdash \vdash$	-+											- -	+		+		-						
				ļ	1	<u> </u>			-	-	-		-							_													_
						<u> </u>					_		-							-	-		_		-		}		 				
												_									_		_ _	-	-			_	ļ				
																								ļ			_						
																												_					
					1	1																											
	Relinquished By:	1	Date:	Time:		ived B				<u> </u>			<u> </u>	Re	ma	rks:																	
		-/	1/8/24	5 300	1 ′	500	yize	:0 ·	- E E	47-1	e ~>	τ,		Lo	we	st po	ssibl	le de	etęc	tion	lim	its.				/		/				i i	
	Relinquished By:	111	Date:	Time:		ived B	y;	11	ام کا کا چھی	_	, . , .	74	$\sqrt{2}$		ฮสรด	e ema	ail re	suit	S. 🕾				E/t*_	CON	V DITTO	YKT							
	1 mm	WI	1/9/04	pm	1	f(S)	17	Z/ C			ΔÁ	ان سع	٠									H	EAD.	SPAC	EABS	SENT	·	(CONT	MIA	IATE ERS	\leq	
	Relinquished By:	(uta 7 Q 2	Date:	Time:	Rece	ived B	By:	Ar.C	/ \	Val	II	1														D IN L			PRES	ERV	ED IN L	AB	-
	UNDE	FOOC	179	14:30	1			Nm	<u></u>	V/ /		\sim										Pi	LESE	RVA	NOIT						Jinek		_

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04			
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04			
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/15/04			
Encryvinc, CA 94008	Client P.O.:				

WorkOrder: 0401088

January 15, 2004

Dear Matt:

Enclosed are:

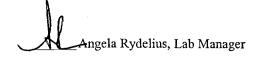
- 1). the results of 5 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/09/04
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/10/04


Gasoline Range (C6-C12), Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX and MTBE*

Extraction Method: SW5030B Analytical Method: SW8021B/8015Cm Work Order: 0401088 Lab ID 0401088-001A 0401088-002A 0401088-003A 0401088-004A Client ID SB-17@3.5 SB-17@7.5 SB-17@11.5 SB-17@17.5 Reporting Limit for DF = 1S S Matrix DF 1 1 S W Compound Concentration mg/Kg ug/L TPH(g) ND ND ND ND 1.0 NA TPH(ss) ND ND ND ND 1.0 NA MTBE ND ND ND ND 0.05 NA ND Benzene ND ND ND 0.005 NA Toluene ND ND ND ND 0.005 NA Ethylbenzene ND ND ND ND 0.005 NA Xylenes ND ND ND ND 0.005 NA Surrogate Recoveries (%) %SS: 94.4 101 90.8 94.1

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

Comments

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/09/04
Emery vine, Cri 5 1000	Client P.O.:	Date Analyzed: 01/10/04

Gasoline Range (C6-C12), Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX and MTBE*

Extraction Method: SW5030B	An		Work Order: 0401088			
Lab ID	0401088-005A					
Client ID Matrix	SB-17@20 S				Reporting Limit	
	S					
DF	1				S	W
Compound		Conce	ntration		mg/Kg	ug/L
ТРН(g)	ND				1.0	NA
TPH(ss)	ND				1.0	NA
МТВЕ	ND	,	AAA		0.05	NA
Benzene	ND				0.005	NA
Toluene	ND				0.005	NA
Ethylbenzene	ND				0.005	NA
Xylenes	ND				0.005	NA
	Surr	ogate Recoveries	(%)	· · · · · · · · · · · · · · · · · · ·		<u> </u>
%SS:	97.9					
Comments						
	<u> </u>		l		1	

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	McCampbell Analytical	Inc.
2.7		

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
Emorphillo CA 04608	Client Contact: Matt Meyers	Date Extracted: 01/09/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/09/04

	Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*									
Extraction method:	SW3550C		Analytical methods: SW8015C		Work O	rder: 0401088				
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS				
0401088-001A	SB-17@3.5	S	110,g,b	210	20	116				
0401088-002A	SB-17@7.5	S	ND	ND	1	107				
0401088-003A	SB-17@11.5	S	ND	ND	1	105				
0401088-004A	SB-17@17.5	S	ND	ND	1	110				
0401088-005A	SB-17@20	S	1.4,g	5.5	1	110				
	ļ									
						 				
-										
		<u> </u>								
	 		11777			ļ				
·										
	ļ			<u> </u>		i				

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/08/04				
5900 Hollis St, Suite A Client Contact: Matt Meyer	Ivady 	Date Received: 01/09/04				
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/09/04				
Encryvine, CA 34006	Client P.O.:	Date Analyzed: 01/10/04-01/13/04				

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Extraction Method: SW5030	,	alytical Method: SW802	·		Work Orde	1. 0401008	
Lab ID	0401088-001A	0401088-002A	0401088-003A	0401088-004A	Donosti	1 ii. C.	
Client ID	SB-17@3.5	SB-17@7.5	SB-17@11.5	SB-17@17.5	Reporting DF		
Matrix	S	S	S	S	I		
DF	1	1	1	2	S	W	
Compound		Conc	entration		μg/Kg	μg/L	
Bromodichloromethane	ND	ND	ND	ND<10	5.0	NA	
Вготобогт	ND	ND	ND	ND<10	5.0	NA	
Bromomethane	ND	ND	ND	ND<10	5.0	NA	
Carbon Tetrachloride	ND	ND	ND	ND<10	5.0	NA	
Chlorobenzene	ND	ND	ND	ND<10	5.0	NA	
Chloroethane	ND	ND	ND	ND<10	5.0	· NA	
2-Chloroethyl vinyl ether	ND	ND	ND	ND<10	5.0	NA	
Chloroform	ND	ND	ND	ND<10	5.0	NA	
Chloromethane	ND	ND	ND	ND<10	5.0	NA	
Dibromochloromethane	ND	ND	ND	ND<10	5.0	NA	
1,2-Dichlorobenzene	ND	ND	ND	ND<10	5.0	NA	
1,3-Dichlorobenzene	ND	ND	ND	ND<10	5.0	NA	
1,4-Dichlorobenzene	ND	ND	ND	ND<10	5.0	NA	
Dichlorodifluoromethane	ND	ND	ND	ND<10	5.0	NA	
1,1-Dichloroethane	ND	ND	ND	ND<10	5.0	NA	
1,2-Dichloroethane	ND	ND	ND	ND<10	5.0	NA	
1,1-Dichloroethene	ND	ND	ND	ND<10	5.0	NA	
cis-1,2-Dichloroethene	ND	8.3	180	170	5.0	NA	
trans-1,2-Dichloroethene	ND	ND	ND	ND<10	5.0	NA	
1,2-Dichloropropane	ND	ND	7.4	ND<10	5.0	NA	
cis-1,3-Dichloropropene	ND	ND	ND	ND<10	5.0	NA	
trans-1,3-Dichloropropene	ND	ND	ND	ND<10	5.0	NA	
Methylene chloride	ND	ND	ND	ND<10	5.0	NA	
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND<10	5.0	NA	
Tetrachloroethene	ND	ND	ND	ND<10	5.0	NA	
1,1,1-Trichloroethane	ND	ND	ND	ND<10	5.0	NA	
1,1,2-Trichloroethane	ND	ND	ND	ND<10	5.0	NA	
Trichloroethene	ND	ND	ND	ND<10	5.0	NA	
Trichlorofluoromethane	ND	ND	ND	ND<10	5.0	NA	
Vinyl Chloride	ND	ND	8.3	ND<10	5.0	NA	
	Surr	ogate Recoverie	s (%)	•	·	·	
%SS:	102	95.0	101	95.7	[-	
Comments		† 		1			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	,	Date Sampled: 01/08/04
5900 Hollis St, Suite A	Nady	Date Received: 01/09/04
Emanaille CA 04608	Client Contact: Matt Meyers	Date Extracted: 01/09/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/10/04-01/13/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Extraction Method: SW5030 Analytical Method: SW8021B Work Order: 0401088

Extraction Method. SW 3030	Analytica	i Method, 3W 6021B	WOIK Olde	1.0401086
Lab ID Client ID	0401088-005A SB-17@20		Reporting	
Matrix	S		Di	
DF	1	-	S	W
Compound		Concentration	μg/Kg	μg/L
Bromodichloromethane	ND		5.0	NA
Bromoform	ND		5.0	NA
Bromomethane	ND:		5.0	NA
Carbon Tetrachloride	ND		5.0	NA
Chlorobenzene	ND		5.0	NA
Chloroethane	ND		5.0	NA
2-Chloroethyl vinyl ether	ND		5.0	NA
Chloroform	ND		5.0	NA
Chloromethane	ND		5.0	NA
Dibromochloromethane	ND		5.0	NA
1,2-Dichlorobenzene	ND		5.0	NA
1,3-Dichlorobenzene	ND		5.0	. NA
1,4-Dichlorobenzene	ND		5.0	NA
Dichlorodifluoromethane	ND		5.0	NA
1,1-Dichloroethane	ND		5.0	NA
1,2-Dichloroethane	ND		5.0	NA
1,1-Dichloroethene	ND		5.0	NA
cis-1,2-Dichloroethene	ND		5.0	NA
trans-1,2-Dichloroethene	ND		5.0	NA
1,2-Dichloropropane	ND		5.0	NA
cis-1,3-Dichloropropene	ND		5.0	NA
trans-1,3-Dichloropropene	ND		5.0	NA
Methylene chloride	ND		5.0	NA
1,1,2,2-Tetrachloroethane	ND		5.0	NA
Tetrachloroethene	ND		5.0	NA
1,1,1-Trichloroethane	ND		5.0	NA
1,1,2-Trichloroethane	ND		5.0	NA
Trichloroethene	ND		5.0	NA
Trichlorofluoromethane	ND		5.0	NA
Vinyl Chloride	ND		5.0	NA
	Surroga	te Recoveries (%)		
%SS:	98.3			
Comments				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0401088

EPA Method: SW802	1B/8015Cm E	extraction:	SW5030E	SW5030B BatchID: 9949				Spiked Sample ID: 0401080-003A			
	Sample	Sample Spiked		MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(blex) [£]	ND	0.60	115	98.7	15.0	101	100	1.34	70	130	
МТВЕ	ND	0.10	108	97	10.8	95.7	94.2	1.56	70	130	
Benzene	ND	0.10	112	102	9.73	103	97.9	4.58	70	130	
Toluene	ND	0.10	93.7	89.8	4.31	91.6	87.8	4.15	70	130	
Ethylbenzene	ND	0.10	110	106	3.11	109	106	3.44	70	130	
Xylenes	ND	0.30	, 100	100	0	100	99.7	0.334	70	130	
%SS:	98.9	100	117	109	7.08	105	114	8.22	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram, sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0401088

EPA Method: SW8015C		Extraction:	SW35500		BatchID: 9948			Spiked Sample ID: 0401080-003A			
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	: Criteria (%)	
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(d)	13.57	150	98.5	98.7	0.186	91.5	92.7	1.30	70	130	
%SS:	104	100	98.1	94.9	3.28	95.4	95.3	0.161	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike, MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

N/A = not enough sample to perform matrix spike and matrix spike duplicate.
NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

QC SUMMARY REPORT FOR SW8021B

Matrix: S

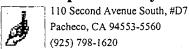
WorkOrder: 0401088

EPA Method: SW8021B	E	Extraction:	SW5030	BatchID: 9947			Spiked Sample ID: 0401080-003A			
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	: Criteria (%)
·	µg/Кg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
Chlorobenzene	ND	50	86.9	73.8	16.4	81.6	82.6	1.22	70	130
1,1-Dichloroethene	ND	50	110	101	8.57	86.4	90.3	4.43	70	130
Trichloroethene	ND	50	96.4	77.6	21.7	78.7	78.9	0.364	70	130
%SS:	102	100	94.2	88.9	5.76	94.7	94.7	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or landing content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0401088

Report to:

Ron Scheele

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608

(510) 420-0700

(510) 420-3394 ProjectNo: #522-1000-020; John Nady

PO:

TEL:

FAX;

Bill to:

Accounts Payable

Cambria Env. Technology.

5900 Hollis St, Ste. A Emeryville, CA 94608 Date Received:

Requested TAT:

Date Printed:

1/9/04

1/9/04

5 days

			3		Requested Tests (See legend below)																			
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	<u> </u>	5	(3	. 7	8		9	10)	11	12	2	13	14	15
0401088-001	SB-17@3.5	Soil	1/8/04 2:10:00 PM	TOT	————	Α	A							T		·				Ţ	T			
0401088-002	SB-17@7.5	Soil	1/8/04 2:45:00 PM		Α	Α	А															-		
0401088-003	SB-17@11.5	Soil	1/8/04 2:50:00 PM		Α	Α	A					.												7
0401088-004	SB-17@17.5	Soil	1/8/04 3:05:00 PM		Α	Α	A]				T					1		· · · · .	**	
0401088-005	SB-17@20	Soil	1/8/04 3:15:00 PM		Α	Α	Α					ĺ												

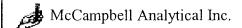
Test Legend:

1	8010B_S
6	
11	

2	G-MBTEX_S
7	
12	

3	TPH(DMO)_S
8	
13	

4	
0	
14	


5	 	 	
10	 	 	
15	 		

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

																	(CH	A	N	Ol	F C	ĽU	ST	O	$\mathbf{D}\mathbf{Y}$	R	EC	OF	D			
	McCAM					NI	J.								TU	RN	ΑF	ROT	INL	D I	ΊM	Œ:										\boxtimes	
	1		VENUE SC CO, CA 945															Г	7			. د		RUS	SH	24	HC	UR	48	HO	UR	5 DA	·Υ
Telephor	ne: (925) 798			,55.55.6	F	ax: (9	25)	798-1	622	2			E	DF	Re	qui				_			No								,		
Report To: Matt M	1eyers		E	Bill To	: Ca1	mbria												Ana	alysi	s R	equ	est					_	()ther		Cor	ninei	nts
Company: Cambri	a Environme	ntal Tech	mology, l	Inc.								·					1				-	1								1			
5900 Hollis Street,	Suite A											·					}					1						}					
Emeryville, Ca 940			E-mail:				ria-	env.c	om																				ļ		}		
Tele: (510) 420-33			Fax: (51																			İ											
Project #:522-1000	1-020 		Project l	Name:	John	Nady	/						1				l		1		1		1										
Project Location: 1		"Street,	Oakland_	;									8015	8015			- 1													1			
Sampler Signature:	>			1	т	T .			7	ME	THO)[)	EPA 8	P.A 8			j]								- }				}		
	,	SAMI	PLING]	513	M	[AT]	RIX		PRES	ERV	/ED	ĝ.	y E.	3010				ļ							İ							
CAMBLEID				Containers	Type Containers			1					BTEX and MTBE	TPHg/ss/d/mo by EP.A	by EPA 8010											1							
SAMPLE ID (Field Point Name)	LOCATION		T	fair	Jon			υ					N Pu	/p/ss	by E								1	- 1									
(,		Date	Time	log	be [Water	= 1-	Sludge	Other	a) F	HNO,	Other	EXa	Hg/	VOCs		.]		ļ					1									
				#	Ţ	 ≥ 5	3 Z	SI	Ō	E E		ō	BT	E	×																ļ		
SB-170 3.5		1/8/04	2:10	1	7068		<			×			×	汷	×												_					·	
SB-17@7.5		1	2.45	1	Ì	1				1			11																				
SB-17011.5			2:50	\prod	17							7									İ			_ [<u> </u>		
5B-17@ 17.5			3:05				1			4	1]															}				}		
58-17@20			3:15	V	1	1 1	,				+-	+-	1	V	V																		
3 10 - 17 6 20			73	\ <u> </u>	 ` -		+	$\dagger \dagger$	_	V	+	+	<u> </u>	 																			
		 		 -				++		-	+-	-		-	-			-							_		_	- -					
			ļ	├		 	+	++			-	+	ļ.——	 	 - -				-+				\rightarrow	-			一	-		-			
			ļ	ļ	<u> </u>			++			+-	+	ļ	ļ	-				-+	-+		\dashv											
			ļ	ļ	<u> </u>		_				-	 	 		 														-	+			
		<u></u>		ļ	ļ	<u> </u>		-	_		+	 	 	-	 														+		 		
	·								_		<u> </u>	4_	ļ	<u> </u>	ļ	.								_						-			
			ļ		<u> </u>						<u> </u>		ļ	ļ	<u> </u>		_										-			-			
									\perp				_							_						_	_ -		-		ļ		
<u></u>													ł																		<u> </u>	 	
Relinquished By:	<u> </u>	Date:	Time:		ived B	y:					,		R	ema	rks:											-							
-		1/8/04	5:39pm		se cu	NEN	LO	C41	-/0	·/						ossib			ctior	ı lin	nits.		,		-								
Relinquished By: Date: Time: Received/By:							Pl	ease	e en	nail i	esu	ITS.		Ī	CE/t		NDF	TION	T	١		APP	ROPE	LATE	٠ _								
le am	Z(M) _	19/04	im	13.7	- 2		. ۵۰	<u> بمين</u>	<u>()</u>											-	A T	CD	4 (7)	ARN	KNI.	AP		CON PRE	ITAIN SERV	ED I	N LV	3	
Relinquished By	4.000	Date:	1430	Rece		5 :	۔ ر م	1	1/	/	_	eren francez	Γ.												VOA	8	O&G		TALS		HER		
WITTOEX	#000	1/7	11.00	//	W	M		/	00		0		l							1	PRE	SER	VATI	ION									

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/13/04
Energyme, CA 34000	Client P.O.:	Date Completed: 01/13/04

WorkOrder: 0401070

January 13, 2004

Dear Matt:

Enclosed are:

- 1). the results of 2 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Yours truly

|--|

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com


Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04					
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04					
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04					
Entryvine, CA 94000	Client P.O.:	Date Analyzed: 01/08/04					

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Gasoline Range (C6-C12) St Extraction Method: SW5030B		alytical Method: SW8021			er: 0401070	
Lab ID	0401070-001A	0401070-002A				
Client ID	SB-26A	Reporting	Limit for			
Matrix	W	W		DF		
DF	10	1		S	W	
Compound		ug/kg	μg/L			
ТРН(g)	3000	ND		NA	50	
TPH(ss)	2600	ND		NA	50	
МТВЕ	ND<50	ND		NA	5.0	
Benzene	6.2	ND		NA	0.5	
Toluene	ND<5.0	ND ·		NA	0.5	
Ethylbenzene	ND<5.0	ND		NA	0.5	
Xylenes	13	ND		NA	0.5	
	Surr	ogate Recoveries	s (%)		1	

Comments	e,i	i		
	<u> </u>			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	McCampbell Analytical Inc.
--	----------------------------

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04					
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04					
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04					
Emeryvine, CA 54000	Client P.O.:	Date Analyzed: 01/09/04					

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW	3510C		Analytical methods: SW8015C											
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS								
0401070-001B	SB-26A	w	5300,d,g,i	1000	1	103								
0401070-002B	SB-22C	w	110,b,i	ND	1	102								
	· · · · · · · · · · · · · · · · · · ·													
		·												
	~													
					į									
						1								
				0										

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

Lab ID

0401070-001C

ND<5.0

ND<5.0

ND<5.0

.ND<5.0

ND<5.0

ND<5.0

ND<5.0

Extraction Method: SW5030B

Dichlorodifluoromethane

1,1-Dichloroethane

1,2-Dichloroethane

1,1-Dichloroethene

cis-1,2-Dichloroethene

1,2-Dichloropropane

trans-1,2-Dichloroethene

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Work Order: 0401070

NA

NA

NA

NΑ

NA

NA

NA

0.5

0.5

0.5

0.5

0.5

0.5

0.5

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04
Emanuilla CA 04609	Client Contact: Matt Meyers	Date Extracted: 01/09/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/09/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Analytical Method: SW8021B

0401070-002C

Reporting Limit for Client ID SB-26A SB-22C DF = 1Matrix W W DF 10 S w μg/kg Compound Concentration μg/L ND Bromodichloromethane ND<5.0 NA 0.5 Bromoform ND<5.0 ND NA 0.5 ND<5.0 ND NA Bromomethane 0.5 ND<5.0 ND Carbon Tetrachloride NA 0.5 ND Chlorobenzene ND<5.0 NΑ 0.5 Chloroethane ND<5.0 ND NA 0.5 ND<5.0 2-Chloroethyl vinyl ether ND NA 0.5 ND<5.0 ND Chloroform NA 0.5 ND<5.0 ND NA Chloromethane 0.5 Dibromochloromethane ND<5.0 ND NΑ 0.5 ND 1,2-Dichlorobenzene ND<5.0 NA 0.5 1,3-Dichlorobenzene ND<5.0 ND NA 0.5 1,4-Dichlorobenzene ND<5.0 ND NA 0.5

ND

ND

ND

ND

ND

ND

ND

cis-1,3-Dichloropropene	ND<5.0	ND			l NA l	0.5
trans-1,3-Dichloropropene	ND<5.0	ND			NA	0.5
Methylene chloride	ND<5.0	ND			NA	0.5
1,1,2,2-Tetrachloroethane	ND<5.0	ND			NA	0.5
Tetrachloroethene	ND<5.0	ND			NA	0.5
1,1,1-Trichloroethane	ND<5.0	ND		я-	NA	0.5
1,1,2-Trichloroethane	ND<5.0	ND		2.	NA	0.5
Trichloroethene	ND<5.0	ND			NA	0.5
Trichlorofluoromethane	ND<5.0	ND			NA	0.5
Vinyl Chloride	ND<5.0	ND			NA .	0.5
	Surro	gate Recover	ries (%)			
%SS:	110	97.5				
Comments	j,i	i				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0401070

EPA Method: SW802	1B/8015Cm E	Extraction:	SW5030E	3	BatchID:	9933	S	Spiked Sample ID: 0401073-005A						
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)				
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High				
TPH(btex) [£]	66.45	60	84.7	81.4	1.71	93.3	94.9	1.66	70	130				
МТВЕ	ND	10	118	116	1.44	98.7	101	1.93	70	130				
Benzene	ND	10	113	111	2.08	108	109	0.775	70	130				
Toluene	ND	10	115	113	1.93	112	110	1.21	70	130				
Ethylbenzene	ND	10	115	107	7.38	111	111	0	70	130				
Xylenes	1.09	30	116	113	2.82	110	110	0	70	130				
%SS:	118	100	112	113	0.562	111	110	0.776	70	130				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0401070

EPA Method: SW8015C	E	xtraction:	SW35100	>	BatchID:	9928	Spiked Sample ID: N/A						
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(d)	N/A	7500	N/A	N/A	N/A	99	99.8	0.799	70	130			
%SS:	N/A	100	N/A	N/A	N/A	101	100	1.15	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

QC SUMMARY REPORT FOR SW8021B

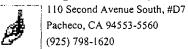
Matrix: W

WorkOrder: 0401070

EPA Method: SW8021B	E	Extraction:	SW5030E	3	BatchID:	9915	le ID: 04010	ID: 0401029-001B			
	Sample Spiked		MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%		
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Chlorobenzene	ND	10	97.1	96.2	0.872	99.2	102	2.38	70	130	
1,1-Dichloroethene	ND	10	105	102	2.76	110	105	4.30	70	130	
Trichloroethene	ND	10	90.1	94	4.28	94	89.9	4.47	70	130	
%SS:	105	100	105	110	4.62	109	108	1.43	70	. 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0401070

Report to:

Ron Scheele

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

TEL:

FAX: (510) 420-3394

(510) 420-0700

ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A Emeryville, CA 94608 Requested TAT:

5 days

Date Received:

1/8/04

Date Printed:

1/8/04

]	, <u> </u>			 		 	Req	uest	ed T	ests	(See	leg	end l	oelow	/)		•				
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5		6	7	7	8		9	1	0	11	1:	2	13	14	15
	i	· ·									-													
0401070-001	SB-26A	Water	1/7/04 10:10:00 AM		С	А	В						T							Ī	Ī			
0401070-002	SB-22C	Water	1/7/04 4:20:00 PM		С	A	В										I.							

Test Legend:

1	8010B_W
6	
[11]	

2	G-MBTEX_W
7	
12	

3	TPH(DMO)_W	
8]
13		7

4
9
14
Add to a comparation of a control of

5	
A CAMPAGE CO. CO. C. C. C. C. C.	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

[\mathbf{C}	H	ΑI	NO)F	CU	ST	OD	Y		CO				
		McCAMPBELL ANALYTICAL INC.					TURN AROUND TIME: Q Q Q																									
		1	110 2"d AY PACHEC	VENUE SC CO, CA 945										RUSH 24 HOUR 48 HOUR 5 DAY						Y												
	Telephor	ne: (925) 798				F			798	3-162	22			EDF Required? Yes No																		
	Report To: Matt M				Bill To	: Ca	mbr	ia						_			,		Ana	lysis	Rec	uest	,					Oth	er	C	mmen	ts
	Company: Cambri	a Environme	ntal Tech	mology, l	Inc.									4																1		
1	5900 Hollis Street,				· .									_							-											
	Emeryville, Ca 946			E-mail:				nbria	i-env	/.con	n			-						İ												
- 1	Tele: (510) 420-33			Fax: (5)										-					-											ļ		
ļ	Project #:522-1000	-020		Project 1		John	ı Na	<u>dy</u>	 -					+																		
}	Project Location: 1		"Street,	Oakland										8015	015			İ														
	Sampler Signature:				·	,	γ				Δ.	ETH	OD.	PA 8	8 Y 8																	
	,	U	SAMI	PLING		ξ.		MA	TRIX	X	PRI	ESER	VED	BTEX and MTBE by EP.A	TPHg/ss/d/mo by EPA 8015	VOCs by EPA 8010																
İ	·			<u> </u>	ens	Type Containers								TBE	no b	PA 8														ŀ		
	SAMPLE ID (Field Point Name)	LOCATION		!	Containers	ont								M pa	s/d/r	y El																
	(Fleid Folin Name)		Date	Time	luo;) oc	Water	1	Air	Other		_ 5	Other Other	X	4g/s	CS														١.		
					# 0	Tyı	Wa	Soil	Air		Ice	HCI		BTI	TF.	8																[
120	C2 21 A		1/7/04	10:10	-7	VOAS Amber	X			+-	x	X	-	11/	1×	人			_								1					
1	SB-26A -SB-22C	<u></u>			1 /	Unber Vees	1	-+		+	1	X				X		_		-		-										
- 455	-513-22C	- 	1/7/04	4:20		Vees Amba	X	-	+	+	Δ	^	+	-	+	12.			+			- -					 	-				
			ļ		ļ	ļ			_			_		-	- -						+		ļ			-	 					
					ļ	<u> </u>	L						_ _	-					_			_					.					
{														_		ļ							1_		_		<u> </u>	ļ				
															<u> </u>												<u> </u>					
																		-														
							<u> </u>			1			-	1-																		
			 		 -	ļ —	╁╌			+-		-	+-	-	-	T-						_										
					 		+-					-	+		-	+	-		-								-					
				 		 	-	-			-				 									} <u> </u> -			- 	++				
			<u> </u>		ļ	 			_				+	-	 -	4				-							<u>-</u>	+		-		
														_	_						_						ļ					
,																														\bot		
	Relinquished By:		Date;	Time:		ived B	•	-با								ırks:								ICE/Y	~							
		•	1/7/04	Spm		1 SEG	YRE	Lo	CAT	ioN							ossib			tion	limi	ts.		GOOD	0 001	DITIO	ON_	<u> </u>	·	APPR	OPILIATI	
	Relinquished By:		Date:	Time:	Rece	eived [y:	. مو ا		. 1	0	<i>(</i> -,] P	leas	e en	nail r	esuli	ts.							CE AB			<u> </u>	CONT	AINERS ERVED	
	1200		178.	9:15	L	1/1	(A	LX	` 7		0		2													MITON	VO/				ALS OT	
	Relinquished By:	2.7	Date.	Time:	Rece	eived B	y: /	1.7)	1/	2/	10	1											rres	ESP(VA	MION				·		
	Relinquished By:	X IJY	1/8	14:00	1		N	JUK		V	N																					

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/13/04
Emeryvine, CA 34008	Client P.O.:	Date Completed: 01/13/04

WorkOrder: 0401069

January 13, 2004

Dear Matt:

Enclosed are:

- 1). the results of 5 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

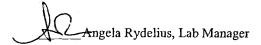
All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

Yours trul

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04
Effetyville, CA 34006	Client P.O.:	Date Analyzed: 01/09/04


Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B	An	alytical Method: SW802	1B/8015Cm		Work Orde	т: 0401069			
Lab II	0401069-001A	0401069-002A	0401069-003A	0401069-004A					
Client II	SB-26@7.5	SB-26@11.5	SB-22@3.0	SB-22@6.0	Reporting Limit fo				
Matri	S	S	S	S	DF =1				
D	40	40	1	40	S	W			
Compound		Concentration							
ТРН(g)	240	180	ND	410	1.0	NA			
TPH(ss)	220	98	ND ND	220	1.0	NA			
МТВЕ	ND<2.0	ND<2.0	ND	ND<2.0	0.05	NA			
Benzene	ND<0.20	ND<0.20	ND	ND<0.20	0.005	NA			
Toluene	ND<0.20	ND<0.20	ND	ND<0.20	0.005	NA			
Ethylbenzene	ND<0.20	ND<0.20	ND	ND<0.20	0.005	NA			
Xylenes	ND<0.20	0.33	ND	0.67	0.005	NA			
	Surr	ogate Recoverie	s (%)		<u> </u>				
%SS:	98.2	94.4	90.8	83.2					
Comments	е	e		е		··			

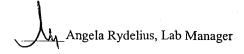
* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCampbell Analytical Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.nccampbell.com E-mail: main@nccampbell.com


Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04				
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04				
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04				
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/09/04				

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B	traction Method: SW5030B Analytical Method: SW8021B/8015Cm						
Lab ID Client ID Matrix	0401069-005A SB-22@9.0 S				Reporting DF	Limit for	
DF	40		· .		S	W	
Compound			mg/Kg	ug/L			
TPH(g)	400				1.0	NA	
TPH(ss)	220				1.0	NA	
мтве	ND<2.0				0.05	NA	
Benzene	ND<0.20				0.005	NA	
Toluene	ND<0.20				0.005	NA	
Ethylbenzene	ND<0.20				0.005	NA	
Xylenes	0.77				0.005	NA	
	Surro	gate Recoveries	(%)				
%SS:	83.3						
Comments	е			C on			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

McCampbell	Analytical	Inc
	McCampbell	McCampbell Analytical

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04
Emeryvine, CA 34000	Client P.O.:	Date Analyzed: 01/08/04-01/09/04

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

extraction method: SV	V3550C		Analytical methods: SW8015C		Work Or	der: 0401069
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0401069-001A	SB-26@7.5	S	150,d,b	6.8	1	102
0401069-002A	SB-26@11.5	S	67,d,b	ND	1	114
0401069-003A	SB-22@3.0	S	1.1,b	ND	1	110
0401069-004A	SB-22@6.0	S	230,d,b,g	11	1	99.6
0401069-005A	SB-22@9.0	S	150,d,b	6.7	1	102
			,			
		j				
						į
				c _r		

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04					
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04					
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04					
Eneryvine, CA 94008	Client P.O.:	Date Analyzed: 01/09/04					

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Analytical Method: SW8021B Extraction Method: SW5030 Work Order: 0401069 Lab ID 0401069-001A 0401069-002A 0401069-003A 0401069-004A Reporting Limit for Client ID SB-26@7.5 SB-26@11.5 SB-22@3.0 SB-22@6.0 DF = IMatrix S S S S 20 10 S W DF 80 μg/Kg μg/L Compound Concentration Bromodichloromethane ND<100 ND<50 ND ND<400 5.0 NA Bromoform ND<100 ND<50 ND ND<400 5.0 NA Bromomethane ND<100 ND<50 ND ND<400 5.0 NA Carbon Tetrachloride ND<100 ND<50 ND ND<400 5.0 NA Chlorobenzene ND<100 ND<50 ND ND<400 5.0 NA Chloroethane ND<100 ND<50 ND ND<400 5.0 NA 2-Chloroethyl vinyl ether ND<100 ND<50 ND ND<400 5.0 NA Chloroform ND<100 ND<50 ND ND<400 5.0 NA Chloromethane ND<100 ND<50 ND ND<400 5.0 NA Dibromochloromethane ND<100 ND<50 ND ND<400 5.0 NA 1,2-Dichlorobenzene ND<100 ND<50 ND ND<400 5.0 NA 1,3-Dichlorobenzene ND<100 ND<50 ND ND<400 5.0 NA 1,4-Dichlorobenzene ND<100 ND<50 ND ND<400 5.0 NA ND<100 Dichlorodifluoromethane ND<50 ND ND<400 5.0 NA 1,1-Dichloroethane ND<100 ND<50 ND ND<400 5.0 NA ND<400 5.0 1,2-Dichloroethane ND<100 ND<50 ND NΑ 1,1-Dichloroethene ND<100 ND<50 ИD ND<400 5.0 NA ND<50 5.0 cis-1,2-Dichloroethene ND<100 ND ND<400 NA NΑ trans-1,2-Dichloroethene ND<100 ND<50 ND ND<400 5.0 ND<50 ND<400 5.0 1,2-Dichloropropane ND<100 ND NA cis-1,3-Dichloropropene ND<100 ND<50 ND ND<400 5.0 NA trans-1,3-Dichloropropene ND<100 ND<50 ND ND<400 5.0 NA Methylene chloride ND<100 ND<50 ND ND<400 5.0 NA 1,1,2,2-Tetrachloroethane ND<100 ND<50 ND ND<400 5.0 NA Tetrachloroethene ND<100 ND<50 ND ND<400 5.0 NA 1,1,1-Trichloroethane ND<100 ND<50 ND ND<400 5.0 NA 1,1,2-Trichloroethane ND<100 ND<50 ND ND<400 5.0 NA ND<50 Trichloroethene ND<100 ND ND<400 5.0 NA ND<100 ND<50 Trichlorofluoromethane ND ND<400 5.0 NA Vinyl Chloride ND<100 ND<50 ND ND<400 5.0 NA Surrogate Recoveries (%) %SS: 105 106 106 104 Comments

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

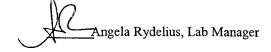
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.nccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/07/04					
5900 Hollis St, Suite A	Nady	Date Received: 01/08/04					
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04					
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/09/04					

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*


Extraction Method: SW5030 Analytical Method: SW8021B Work Order: 0401069 0401069-005A Lab ID Reporting Limit for Client ID SB-22@9.0 DF = 1Matrix S 20 DF S W Concentration $\mu g/Kg$ μg/L Compound ND<100 Bromodichloromethane 5.0 NA Bromoform ND<100 5.0 NA ND<100 Bromomethane 5.0 NA Carbon Tetrachloride ND<100 5.0 NA Chlorobenzene ND<100 5.0 NA Chloroethane ND<100 5.0 NA ND<100 2-Chloroethyl vinyl ether 5.0 NA Chloroform ND<100 5.0 NA Chloromethane ND<100 5.0 NA Dibromochloromethane ND<100 5.0 NA 1,2-Dichlorobenzene ND<100 5.0 NA ND<100 1,3-Dichlorobenzene 5.0 NA ND<100 5.0 1,4-Dichlorobenzene NA ND<100 5.0 Dichlorodifluoromethane NA 1,1-Dichloroethane ND<100 5.0 NA 1,2-Dichloroethane ND<100 5.0 NA 1,1-Dichloroethene ND<100 5.0 NA cis-1,2-Dichloroethene ND<100 5.0 NA trans-1,2-Dichloroethene 5.0 ND<100 NΑ 1,2-Dichloropropane ND<100 5.0 NA cis-1,3-Dichloropropene ND<100 5.0 NA trans-1,3-Dichloropropene ND<100 5.0 NA Methylene chloride ND<100 5.0 NA 1,1,2,2-Tetrachloroethane ND<100 5.0 NA Tetrachloroethene ND<100 5.0 NA 1,1,1-Trichloroethane ND<100 5.0 NA 1,1,2-Trichloroethane ND<100 5.0 NA Trichloroethene ND<100 5.0 NA Trichlorofluoromethane ND<100 5.0 NA Vinyl Chloride ND<100 5.0 NA Surrogate Recoveries (%) %SS: 105

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

Comments

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0401069

EPA Method: SW8021B/8	3015Cm E	Extraction:	SW5030E	3	BatchID:	9930	S	Spiked Sample ID: 0401054-002A						
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)				
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High				
TPH(btex) [£]	ND	0.60	109	98.4	9.94	96	100	4.23	70	130				
мтве	ND	0.10	102	94.1	7.83	93.3	94.5	1.28	70	130				
Benzene	ND	0.10	103	102	0.782	101	105	3.47	70	130				
Toluene	ND	0.10	91.6	87.7	4.30	88.2	93.3	5.56	70	130				
Ethylbenzene	ND	0.10	106	105	0.743	103	110	7.13	70	130				
Xylenes	0.01	0.30	95	91.3	3.75	96.7	103	6.67	70	130				
%SS:	98.0	100	103	100	2.96	111	116	4.41	70	130				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(blex) = sum of BTEX areas from the FID.

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0401069

EPA Method: SW8015C	Extraction: SW3550C				BatchID: 9939			Spiked Sample ID: 0401065-002A					
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(d)	ND	150	91.9	89.2	2.94	90.2	92.8	2.79	70	130			
%SS:	109	100	97.9	95.1	2.85	95.2	97.8	2.74	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

NONE

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622

http://www.mccampbell.com E-mail: main@inccampbell.com

QC SUMMARY REPORT FOR SW8021B

Matrix: S

WorkOrder: 0401069

EPA Method: SW8021B	E	Extraction:	SW5030	BatchID: 9920				Spiked Sample ID: 0401034-001A					
	Sample Spiked MS		MS*	MSD*	MSD* MS-MSD		LCSD	LCS-LCSD	Acceptance Criteria				
	µg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
Chlorobenzene	ND	50	84	83.1	1.05	96.6	90.2	6.76	70	130			
1.1-Dichloroethene	ND	50	80.4	80.2	0.297	91.2	87.4	4.24	70	130			
Trichloroethene	ND	50	75.5	75.4	0.114	85.9	87.5	1.84	70	130			
%SS:	120	100	109	108	0.930	105	109	3.39	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD ≈ Relative Percent Deviation

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0401069

Report to:

Ron Scheele

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

TEL: FAX:

(510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; John Nady PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A

Emeryville, CA 94608

Date Received:

Requested TAT:

1/8/04

Date Printed:

1/8/04

5 days

			ė.	1						R	eques	sted	Tests	S (See	lege	nd b	elow)							
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4		5	6	\prod	7	8		9	10		11	12	2	13	14	15
	\$ <u>*</u>																							
0401069-001	SB-26@7.5	Soil	1/7/04 9:45:00 AM		Α	Α	A		7	Ī		T		Ī	-			Ţ		1				
0401069-002	SB-26@11.5	Soil	1/7/04 9:55:00 AM		Α	Α	Α									-								
0401069-003	SB-22@3.0	Soil	1/7/04 10:50:00 AM		Α	Α	Α	1		1					-									
0401069-004	SB-22@6.0	Soil	1/7/04 11:45:00 AM		Α	Α	Α													1			1	
0401069-005	SB-22@9.0	Soil	1/7/04 11:55:00 AM		A	Α	А			1										-	_			

Test Legend:

1	8010B_S
6	
11	1404 - 1404 -

2	G-MBTEX_S											
7	L											
12												

3	TPH(DMO)_S
8	
13	4

4	 	 		
9	 	 	 	
14			 	

5	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

CAC-

McCAMPBELL ANALYTICAL INC. 110 2 nd AVENUE SOUTH, #D7 PACHECO, CA 94553-5560 Telephone: (925) 798-1620 Report To: Matt Meyers Bill To: Cambria Company: Cambria Environmental Technology, Inc.							E	ED				AR ed?	OU E	IND] Y	TI es	ME	: No	RII				JR ·		1	R 5								
					: Car	mori	a							7				- A	Alla.	lysis	Rec	Juest	·				 	T	T		COIII	CICITES	
Company: Cambri	a Environme	ntal Tech	mology, l	lnc.									_			1			1														1
5900 Hollis Street,	Suite A			·									_		1					- [- 1
Emeryville, Ca 946	08		E-mail:	nune	yers@	cair	bria	-env	con	1					İ													i					
Tele: (510) 420-33	14		Fax: (51	0) 42	0-917	70							_																				- 1
Project #:522-1000			Project 1	Varne:	John	Nac	ly						_														-						ĺ
Project Location: 1137-1167 65 th Street, Oakland					, 	_ 2	: '	2																									
Sampler Signature:												<u></u>	A 801		08				-								ł						
	υ	SAMI	PLING		STS	1	МАЛ	RIX		ME PRE	SER				by EPA 801	3010																	
SAMPLE ID (Field Point Name)	LOCATION	Date	Time	# Containers	Type Containers	Water	Soil	Sludge	Other	Ice	HCI	HINO3	DTEX and MTBE		TPfIg/ss/d/mo by	VOCs by EPA 8010																	
SB-26075		1/7/04	7.45		TUBE		χ			X			X		x	X									-								
		1777-1	9:55	 - 			1			1		+	1;		1	7	_																
SB-26@11.5			·			-	┪-	+				+						-+															
58-22630			10:50			-					_	-																					-
SB-256 P-0			11:45							\perp			44		1_ -	- -		_ _	-	_													
58-2269.0			11:55	1	$ \downarrow\rangle$		Ψ			\mathbb{V}			$\bot \psi$														_						
														-			ļ																
			 					1			+		_]					
			 				-	+-	+	-		+		+	-			+			 	-	-			1	1						
			<u> </u>			-								- -														 					
								_ _	\sqcup				_	_	-			-				_				-	-			}			
					'														_ _			_					_		<u> </u> .				
																ŀ											1		<u> </u>				
			ļ		 	1	-						_								_			,,,,									Ì
				 -	ļ	1	-		┼┤	-+	-		- -									+	 				1	-					
				 		 		_ -	ļ				-										·					-					
																							<u> </u>			<u></u>		<u></u>	لبل				
Relinquished By:		Date:	Time:		ived B:	-	LOCA	4710	س'				L	LO V		pos				tion	limi	ts.		ICE/t	D CON	IDITIO	NC			AÞ	PROPR	TATT 1	
Relinguished By:	/	Date:	Time:	Rece	ivel 18	y: Of	<u> </u>	,)	#	2	35	رد	P	'lea	ase	ema	il re	sult	s.					DECI	D SPAC	NATE	D IN I	LAB	0&0	CC _PR	NTAIN ESERV ETALS	ERS ED IN I	<u>√</u> AB
Relinguighed By:	#280	Pate:	Time: 14'00	Rece	ived B		W	7	Va	Z														. RES	SERVA	MOLIN	·					K	

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/06/04
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/13/04
Emeryvine, CA 94008	Client P.O.:	Date Completed: 01/13/04

WorkOrder: 0401049

January 13, 2004

Dear Matt:

Enclosed are:

- 1). the results of 1 analyzed sample from your #522-1000-020; John Nady project,
- 2). a QC report for the above sample
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com/E-mail: main@mccampbell.com/

Cambria Env. Technology	,	Date Sampled: 01/06/04				
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04				
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/08/04				
	Client P.O.:	Date Analyzed: 01/08/04				

Gasoline Range (C6-C12), Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX and MTBE*

Extraction Method: SW5030B	Ana		Work Order: 0401049					
Lab ID	0401049-001A							
Client ID	SB-18A				Reporting	Limit for		
Matrix	W				DF	=1		
DF	10		E		S	W		
Compound		Concentration						
ТРН(g)	3900				NA	50		
TPH(ss)	2100				NA	50		
МТВЕ	ND<50				NA	5.0		
Benzene	ND<5.0				NA	0.5		
Toluene	ND<5.0				NA	0.5		
Ethylbenzene	ND<5.0				NA	0.5		
Xylenes	11				NA	0.5		
	Surre	ogate Recoveries	(%)		<u> </u>	<u></u>		
%SS:	83.7					1000000		
Comments	e,h	,			,			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

Angela Rydelius, Lab Manager

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/06/04	
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04	
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/07/04	
	Client P.O.:	Date Analyzed: 01/08/04	

Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

extraction method: SW	3510C		Analytical methods: SW8015C		Work Order: 0401049			
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS		
0401049-001B	SB-18A	w	11,000,d,h	ND<2500	10	107		
	-							
						-		
						<u> </u>		
						 		
						-		
						ļ		
					-			
				_				

Reporting Limit for DF =1; ND means not detected at or	W	50	250	μg/L
above the reporting limit	S	NA	NA	mg/Kg

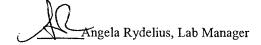
^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

+The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/06/04
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04
E : : : : : : : : : : : : : : : : : : :	Client Contact: Matt Meyers	Date Extracted: 01/08/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/08/04


Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Extraction Method: SW5030B Analytical Method: SW8021B Work Order: 0401049

Lab ID	0401049-001C					
Client ID	SB-18A				Reporting	
Matrix	W				DF	=1
DF	5				S	W
Compound		Conce	ntration		μg/kg	μg/L
Bromodichloromethane	ND<2.5				. NA	0.5
Bromoform	ND<2.5				NA NA	0.5
Bromomethane	ND<2.5				NA	0.5
Carbon Tetrachloride	ND<2.5				NA	0.5
Chlorobenzene	ND<2.5				NA	0.5
Chloroethane	ND<2.5				NA	0.5
2-Chloroethyl vinyl ether	ND<2.5				NA	0.5
Chloroform	ND<2.5				NA	0.5
Chloromethane	ND<2.5				NA	0.5
Dibromochloromethane	ND<2.5				NA	0.5
1,2-Dichlorobenzene	ND<2.5				NA	0.5
1,3-Dichlorobenzene	ND<2.5				NA	0.5
1,4-Dichlorobenzene	ND<2.5				NA	0.5
Dichlorodifluoromethane	ND<2.5				NA	0.5
1,1-Dichloroethane	ND<2.5				NA	0.5
1,2-Dichloroethane	ND<2.5				NA	0.5
1,1-Dichloroethene	ND<2.5				NA	0.5
cis-1,2-Dichloroethene	ND<2.5				NA	0.5
trans-1,2-Dichloroethene	ND<2.5				NA	0.5
1,2-Dichloropropane	ND<2.5				NA	0.5
cis-1,3-Dichloropropene	ND<2.5				NA	0.5
trans-1,3-Dichloropropene	ND<2.5				NA	0.5
Methylene chloride	ND<2.5				NA	0.5
1,1,2,2-Tetrachloroethane	ND<2.5				NA	0.5
Tetrachloroethene	ND<2.5			24	NA	0.5
1,1,1-Trichloroethane	ND<2.5				NA	0.5
1,1,2-Trichloroethane	ND<2.5				NA	0.5
Trichloroethene	ND<2.5				NA	0.5
Trichlorofluoromethane	ND<2.5				NA	0.5
Vinyl Chloride	ND<2.5				NA	0.5
	Surrog	ate Recoveries	(%)			'
%SS:	101					
Comments	j,h					

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: W

WorkOrder: 0401049

EPA Method: SW802	1B/8015Cm E	Extraction:	SW5030E	3	BatchID:	9929	S	piked Sampl	e ID: 0401	055-001A
	Sample	Sample Spiked		MSD*	MS-MSD	LCS	LCSD.	LCS-LCSD	Acceptanc	e Criteria (%)
	μg/L	µg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(btex) [£]	ND	60	107	104	2.85	90.8	97.7	7.25	70	130
MTBE	ND	10	100	100	0	105	110	4.53	70	130
Benzene	ND	10	101	86	16.5	104	104	0	70	130
Toluene	ND	10	111	96.3	13.7	108	109	1.03	70	130
Ethylbenzene	ND	10	104	93.8	10.7	108	108	0	70	130
Xylenes	1.85	30	110	107	2.90	110	110	.0	70	130
%SS:	100	100	104	97.1	6.40	109	110	0.782	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccanpbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

Matrix: W

WorkOrder: 0401049

EPA Method: SW8015C	E	Extraction:	SW35100	>	BatchID:	9928	Spiked Sample ID: N/A					
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)		
	µg/L	pg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High		
TPH(d)	N/A	7500	N/A	N/A	N/A	99	99.8	0.799	70	130		
%SS:	N/A	100	N/A	N/A	N/A	101	100	1.15	70	130		

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone : 925-798-1620 Fax : 925-798-1622

http://www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B

Matrix: W

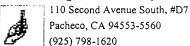
WorkOrder: 0401049

EPA Method: SW8021B	E	Extraction:	SW5030E	3	BatchID:	9915	Spiked Sample ID: 0401029-001B							
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)				
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High				
Chlorobenzene	ND	10	97.1	96.2	0.872	99.2	102	2.38	70	130				
1,1-Dichloroethene	ND	10	105	102	2.76	110	105	4.30	70	130				
Trichloroethene	ND	10	90.1	94	4.28	94	89.9	4.47	70	130				
%SS:	105	100	105	110	4.62	109	108	1.43	70	130				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.


[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CHAIN-OF-CUSTODY RECORD

Page 1 of I

WorkOrder: 0401049

Report to:

Ron Scheele

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

TEL: FAX:

(510) 420-0700

(510) 420-3394 ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Accounts Payable

Cambria Env. Technology 5900 Hollis St, Ste. A

Emeryville, CA 94608

Requested TAT:

5 days

Date Received:

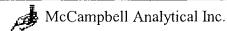
1/7/04

Date Printed:

1/7/04

			1																						
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2		3	4		5		6	7	7	8	9	I.	10	11	12		13	14	15
												2													
0401049-001	SB-18A	Water	1/6/04 1:45:00 PM		С	A		В	Ĺ													<u> </u>		<u>.</u> .	

Test Legend:


1 8010B_W	2 G-MBTEX_W	3 TPH(DMO)_W	4	5
6	7	8	9 [[10]
111	[12]	[13]	14	15

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

								,										Cl	HA	IN	O)	F (CU	ST	'OI	ΟY	RF	CC	OR	D		
	McCAN					E IN	1C.						ı		7	ruri	ΝA	RĊ	UN	\mathbb{D}	ΓΙΜ	IE:										Q
	!		VENUE SO CO, CA 945																<u> </u>		ĺΣ	2		RUS	SH	24	НО	UR	48	HOI	JR 5 D	AY .
Telepho	ne: (925) 798				F		(925)	798	-162	22				EL)F	Requ	iire	d?	·	Ye	s 🗡	× .	No									
Report To: Matt M					o: Ca	mbri	a											Aı	nalys	is R	eque	est						0	ther	,	Comme	nts
Company: Cambri	ia Environme	ntal Tecl	nology,	Inc.									_														ł					
5900 Hollis Street,				1									_			İ						}	1									
Emeryville, Ca 940			E-mail:				nbria	-env	.cor	<u>n</u>			_														1	,				
Tele: (510) 420-33			Fax: (5										_								.						1				•	
Project #:522-1000)-020		Project 1		: Johr	ı Na	dy						{											ļ								
Project Location: 1		"Street,	Oakland -										\dashv	8015	015					:												
Sampler Signature	- X			1	T	Т					ETF	IOD.		EPA 8	A 8												1					
,	0	SAMI	PLING		13		MA?	(RI)	ζ	PR	ESEF	RVE	D	by E	y EF	8010					.											
CAMPIEID				ers	Type Containers							T		BTEX and MTBE	TPHg/ss/d/mo by EPA 8015	PA 8																
SAMPLE ID (Field Point Name)	LOCATION	_ `		Containers	ont			43	,					M M	ı/p/s	VOCs by EPA					. }											
(Freid Folia Hallie)		Date	Time	lo	De C	Water		Air Sludge	her		_	HNO,	Other	X at	Hg/s	Cs						İ										
				#	T _Z	§	Soil	Slud	Ö	Ice	뙤		히	BTI	TP	8 .																
SB-18A		1/6/04	1:45	19	VOAS	ĺχ		-		×.	X	\top	7	X	×	X		 									1					
3(3 (0))	<u> </u>	1101-1	' ' ' '		LANDER		-	+-	+-			+	-					+-			\neg		_		-+		-					
				 					+	\vdash	-	_	-	-+			-	+	-											-		
				ļ	ļ	-		+	-				-		\dashv										-				_ _ ,			
				<u> </u>	<u> </u>				-			_	_					.						_			_ _		_			
	•			l <u></u>									.				_ _										_ _					
											1	İ	İ		ŀ																	
																											Ì					
													_				1															
			ļ	7		-		_	+		+	+	7	-+	-+			-														
			ļ	 -		-		+	-	-+							-		 			-										
				ļ		-		-	 			-						-			+								-			
			ļ	<u> </u>	ļ		_				_	}-						<u> </u>	ļ													
								_ _	-				_					J								<u> </u>	_					·
													_]																1	ļ	·——-	
				`																												
Relinquished By:	<u> </u>	Date:	Time:		eived B		 '		-)	·	 '		7	Rei					-													
1-	•	1/2/04	4pm	/	589	efiz	G,	Lo	حنب	T10.	o'					t poss			ectio	n lir	nits.		CE/t°		صيا							
Relinquished By:		Date:	Time:	Rece	eiven B	y:	22.2			52				Ple	ase	emai	l res	ults.				Č	1001	oo co	NDI	TION_ ABSE	NT	سي	E	ONT	OPRIATE AINERS	Marie Part France Comment
A Amon.		177	114	† <i>Ci</i>	111	ride	A	TI.	- d	0	\Box								٠.			I	DECI	ILOF	NNIS	TED I	N LA	В	P	RES	erved in	
Relinquistical By:	00	Daje:	Time:			Ŋ:						-										1	RES	SER\	/ATT	on On	OAS	-08	O	META	LS OTHE	
1 11/1VYE	X #260	117	13:4)			M	0/		Z	-75	,,											•										

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/06/04
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/13/04
Eneryvine, CA 94000	Client P.O.:	Date Completed: 01/13/04

WorkOrder: 0401048

January 13, 2004

Dear Matt:

Enclosed are:

- 1). the results of 7 analyzed samples from your #522-1000-020; John Nady project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/06/04
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/07/04
Emeryvine, CA 34000	Client P.O.:	Date Analyzed: 01/07/04-01/09/04

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX	& MTBE*
---	---------

Extraction Method: SW5030B	Ana	Work Order: 0401048				
Lab ID	0401048-001A	0401048-002A	0401048-003A	0401048-004A		
Client ID	SB-23@3	SB-23@6	SB-23@9	SB-18@3.5	Reporting	Limit for
Matrix	S	S	S	S	DF	
DF]	1	1	<u> </u>	S	W
Compound		Conc	entration		mg/Kg	ug/L
ТРН(g)	ND	ND	ND	ND	1.0	NA
TPH(ss)	ND	ND	ND	ND	1.0	NA
МТВЕ	ND	ND	ND	ND	0.05	NA
Benzene	ND	ND	ND	ND	0.005	NA
Toluene	ND	ND	ND	ND	0.005	NA
Ethylbenzene	ND	ND	ND	ND	0.005	NA
Xylenes	ND	ND	ND	ND	0.005	NA
	Surr	ogate Recoverie	s (%)			
%SS:	90.6	91.5	93.3	96.3		
Comments						
	l	<u> </u>	1			

* water and vapor samples and all TCLP & SPLP extracts are reported in μg/L, soil/sludge/solid samples in mg/kg, wipe samples in μg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

	M
--	---

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/06/04
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/07/04
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/07/04-01/09/04

Gasoline Range (C6-C12) Stoddard Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

	Ana		Work Order: 0401048			
Lab ID	0401048-005A	0401048-006A	0401048-007A			
ient ID	SB-18@7.5	SB-18@11.5	SB-18@17		Reporting	Limit for
Matrix	S	S	S		DF	=1
DF	40	1	40		S	W
		Conce	entration		mg/Kg	ug/L
	340	6.2	2600		1.0	NA
	310	5.7	1600		1.0	NA
	ND<2.0	ND	ND<2.0		0.05	NA
	ND<0.20	ND	ND<0.20		0.005	NA
	ND<0.20	ND	ND<0.20		0.005	NA
	0.31	ND	1.1		0.005	NA
	1.6	0.015	6.5		0.005	NA
	Surre	ogate Recoverie	s (%)			
	84.4	84.8	93.9			
	e	е	e			. 41
1	ent ID Matrix	Ab ID 0401048-005A Ient ID SB-18@7.5 Matrix S DF 40 340 310 ND<2.0 ND<0.20 ND<0.20 0.31 1.6 Surress	Description	SB-18@7.5 SB-18@11.5 SB-18@17 Matrix S	Lab ID 0401048-005A 0401048-006A 0401048-007A lent ID SB-18@7.5 SB-18@11.5 SB-18@17 Matrix S S S DF 40 1 40 Concentration 340 6.2 2600 310 5.7 1600 ND ND ND ND ND ND ND ND ND ND ND ND ND ND 1.1 1.6 0.015 6.5 Surrogate Recoveries (%) 84.4 84.8 93.9 e e e	Description

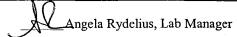
* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology		Date Sampled: 01/06/04
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/07/04
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/07/04-01/08/04


Diesel (C10-23) and Oil (C18+) Range Extractable Hydrocarbons as Diesel and Motor Oil*

Extraction method: SW	/3550C	\ 	Analytical methods: SW8015C	Work Order: 0401048		
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0401048-001A	SB-23@3	S	ND	ND	1	107
0401048-002A	SB-23@6	S	ND	ND	1	103
0401048-003A	SB-23@9	S	ND	ND	1	105
0401048-004A	SB-18@3.5	S	ND	ND	1	105
0401048-005A	SB-18@7.5	S	230,d,b	ND<50	10	117
0401048-006A	SB-18@11.5	S	8.5,d	ND	1	94.0
0401048-007A	SB-18@17	S	850,d	ND<100	20	103
!						
				· ·		

Reporting Limit for DF =1;	W	NA NA	ŇA	ug/L
ND means not detected at or above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; John Nady	Date Sampled: 01/06/04				
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04				
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/07/04				
Ellici yvine, en 94000	Client P.O.:	Date Analyzed: 01/08/04				

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Extraction Method: SW5030	An:	alytical Method: SW802	IB		Work Orde	r: 0401048
Lab ID	0401048-001A	0401048-002A	0401048-003A	0401048-004A		
Client ID	SB-23@3	SB-23@6	SB-23@9	SB-18@3.5	Reporting	
Matrix	S	S	S	S	DF =1	
DF	1	l	1	. 1	S	W
Compound		μg/Kg	μg/L			
Bromodichloromethane	ND	ND	ND	ND	5.0	NA
Bromoform	ND	ND	ND	ND	5.0	NA
Bromomethane	ND	ND	ND	ND	5.0	NA
Carbon Tetrachloride	ND .	ND	ND	ND	5.0	NA
Chlorobenzene	ND	ND	ND	ND	5.0	NA
Chloroethane	ND	ND	ND	ND	5.0	NA
2-Chloroethyl vinyl ether	ND	ND	ND	ND	5.0	NA
Chloroform	ND	ND	ND	ND	5.0	NA
Chloromethane	ND	ND	ND	ND	5.0	NA
Dibromochloromethane	ND	ND	ND	ND	5.0	NA
1,2-Dichlorobenzene	ND	ND	ND	ND	5.0	NA
1,3-Dichlorobenzene	ND	ND	ND	ND	5.0	NA
1,4-Dichlorobenzene	ND	ND	ND	ND	5.0	NA
Dichlorodifluoromethane	ND	ND	ND	ND	5.0	NA
1,1-Dichloroethane	ND	ND	ND	ND	5.0	NA
1,2-Dichloroethane	ND	ND	ND	ND	5.0	NA
1,1-Dichloroethene	ND	ND	ND	ND	5.0	NA
cis-1,2-Dichloroethene	ND	ND	ND	ND	5.0	NA
trans-1,2-Dichloroethene	ND -	ND	ND	ND	5.0	NA
1,2-Dichloropropane	ND	ND	ND	ND	5.0	NA
cis-1,3-Dichloropropene	ND	ND	ND	ND	5.0	NA
trans-1,3-Dichloropropene	ND	ND	ND	ND	5.0	NA
Methylene chloride	ND	ND	ND	ND	5.0	NA
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	5.0	NA
Tetrachlorgethene	13	ND ND	ND	ND	5.0	NA
1,1,1-Trichloroethane	ND	ND	ND	ND	5.0	NA
1,1,2-Trichloroethane	. ND	ND	ND	ND	5.0	NA
Trichloroethene	ND	ND	ND	ND	5.0	NA
Trichlorofluoromethane	DN	ND	ND	ND	5.0	NA
Vinyl Chloride	, ND	ND	ND	ND	5.0	NA
	Surr	ogate Recoverie	s (%)			
%SS:	104	102	103	112		
Comments	ļ					

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

Extraction Method: SW5030

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Work Order: 0401048

Cambria Env. Technology	Client Project ID: #522-1000-020; John	Date Sampled: 01/06/04				
5900 Hollis St, Suite A	Nady	Date Received: 01/07/04				
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/07/04				
	Client P.O.:	Date Analyzed: 01/08/04				

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)* Analytical Method: SW8021B

Lab 1D 0401048-005A 0401048-006A 0401048-007A Reporting Limit for Client ID SB-18@7.5 SB-18@11.5 SB-18@17 DF = 1Matrix S S S DF 10 80 80 S W Concentration μg/Kg μg/L Compound Bromodichloromethane ND<400 ND<50 ND<400 5.0 NA Bromoform ND<400 ND<50 ND<400 5.0 NA Bromomethane ND<400 ND<50 ND<400 5.0 NA Carbon Tetrachloride ND<400 ND<50 ND<400 5.0 NΑ Chlorobenzene ND<400 ND<50 ND<400 5.0 NA Chloroethane ND<400 ND<50 ND<400 5.0 NA 2-Chloroethyl vinyl ether ND<400 ND<50 ND<400 5.0 NΑ Chloroform ND<400 ND<50 ND<400 5.0 NA Chloromethane ND<400 ND<50 ND<400 5.0 NA Dibromochloromethane ND<400 ND<50 ND<400 5.0 NA 1,2-Dichlorobenzene ND<400 ND<50 ND<400 5.0 NA 1,3-Dichlorobenzene ND<400 ND<50 ND<400 5.0 NA 1,4-Dichlorobenzene ND<400 ND<50 ND<400 5.0 NA Dichlorodifluoromethane ND<400 ND<50 ND<400 5.0 NA 1,1-Dichloroethane ND<400 ND<50 ND<400 5.0 NΑ 1,2-Dichloroethane ND<400 ND<50 ND<400 5.0 NA 1,1-Dichloroethene ND<400 ND<50 ND<400 5.0 NA cis-1,2-Dichloroethene ND<400 ND<50 ND<400 5.0 NA trans-1,2-Dichloroethene ND<400 ND<50 ND<400 5.0 NA 1,2-Dichloropropane ND<400 ND<50 ND<400 5.0 NA cis-1,3-Dichloropropene ND<400 ND<50 ND<400 5.0 NA trans-1,3-Dichloropropene ND<400 ND<50 ND<400 5.0 NA Methylene chloride ND<400 ND<50 ND<400 5.0 NA 1,1,2,2-Tetrachloroethane ND<400 ND<50 ND<400 5.0 NA Tetrachloroethene ND<400 ND<50 ND<400 5.0 NA

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

ND<400

ND<400

ND<400

ND<400

ND<400

106

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

ND<50

ND<50

ND<50

ND<50

ND<50

Surrogate Recoveries (%)

111

ND<400

ND<400

ND<400

ND<400

ND<400

104

5.0

5.0

5.0

5.0

5.0

NA

NA

NA

NA

NA

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

Trichloroethene

Vinyl Chloride

%SS:

Comments

110 2nd Avenue South, #D7. Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail:

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0401048

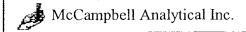
EPA Method:	SW8021B/8015C	Extraction: SW5030B BatchID: 991				9917	917 Spiked Sample ID: 0401032-001A					
	9	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
		mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
TPH(blex) [£]		ND	0.60	104	99.5	4.76	105	104	1.17	70	130	
MTBE	1	ND	0.10	86.3	94.1	8.67	86.1	85.5	0.800	70	130	
Benzene		ND	0.10	102	104	1.72	91.5	96	4.83	70	130	
Toluene		ND	0.10	90.7	91.1	0.442	80.2	84.6	5.40	70	130	
Ethylbenzene		ND	0.10	110	107	3.04	102	106	3.98	70	130	
Xylenes		ND	0.30	100	100	0	96.3	100	3.74	70	130	
%SS:		97.1	0.10	111	107	3.67	112	114	1.77	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).


^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0401048

EPA Method: SW8015C	E	xtraction:	SW35500	>	BatchID: 9918			Spiked Sample ID: 0401032-001A		
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High
TPH(d)	ND	150	92.9	91.1	1.96	103	103	0	70	130
%SS:	102	100	99.8	94.9	4.99	107	107	0	70	130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.
NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B

Matrix: S

WorkOrder: 0401048

EPA Method: SW8021B	Extraction: SW5030			BatchID: 9920			Spiked Sample ID: 0401034-001A				
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)	
	μg/Kg	μg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High	
Chlorobenzene	ND	50	84	83.1	1.05	96.6	90.2	6.76	70	130	
1.1-Dichloroethene	ND	50	80.4	80.2	0.297	91.2	87.4	4.24	70	130	
Trichloroethene	ND	50	75.5	75.4	0.114	85.9	87.5	1.84	70	130	
%SS:	120	100	109	108	0.930	105	109	3.39	70	130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0401048

Report to:

Ron Scheele

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608 TEL:, FAX: (510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; John Nady

PO:

Bill to:

Requested TAT:

5 days

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A

Date Received:

1/7/04

Emeryville, CA 94608

Date Printed:

1/7/04

		*	3	ĺ						F	₹equ	ieste	d Te	sts	(See	lege	nd b	elow)							
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	T	5	6	6	7		8		9	10		11		12	13	14	1 15
•	·			٠.									,												
0401048-001	SB-23@3	Soil	1/6/04 9:45:00 AM		Α	Α	Α]							ļ	[_						İ
0401048-002	SB-23@6	Soil	1/6/04 10:15:00 AM		Α	Α.	Α											!							
0401048-003	SB-23@9	Soil	1/6/04 10:35:00 AM		Α	Α	A											!	1		. .				
0401048-004	SB-18@3.5	Soil	1/6/04 11:40:00 AM		Α	Α	Α											!							
0401048-005	SB-18@7.5	Soil	1/6/04 12:40:00 PM		Α	Α	Α					i													
0401048-006	SB-18@11.5	Soil	1/6/04 12:50:00 PM		Α	Α	Α				-								l						
0401048-007	SB-18@17	Soil	1/6/04 2:45:00 PM		Α	Α	A	T.,	i																

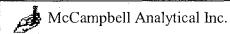
Test Legend:

1	8010B_S	1
6		1
11		į

2	G-MBTEX_S
7	
12	

3	TPH(DMO)_S
8	
13	

4		
9		!
14	A CONTRACTOR OF THE PROPERTY O	


-		
2	m - 11 - 14	
10		
15		

Prepared by: Maria Venegas

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

																				CI	H.A	II	1) F	\mathbf{C}	US	T (OI	Y	RJ	EC	O	RD			
	McCAM	IPBELI	L ANAI	LYT	ICAI	LIN	VC.									,	ΓU	RN																	5	•
			VENUE SC																							כו	US	H	24	НО	UR	48	H.O	UR	5 D.	ΑY
Telenho	ne: (925) 798		CO, CA 945	33-33		ax:	(925	5) 7	98-	162	2 .				E	DF	Re	qui	red	l?	لــا	Y	es :	XI	N	O										
Report To: Matt N		1020	E	Bill To	o: Ca:			7										*				/sis	_								()the	r	Co	nıme	nts
Company: Cambr		ntal Tech																																		
5900 Hollis Street,																						ŀ				İ										
Emeryville, Ca 940		7	E-mail:	mme	yers@	gcar	nbri	a-e	nv.	com	1																									
Tele: (510) 420-33	314		Fax: (5	10) 42	20-917	70																İ		1												
Project #:522-1000	0-020		Project 1	Vame	: John	Na Na	dy																													
Project Location: 1	137-1167 65	th Street,	Oakland											_	\$015	315																				
Sampler Signature		}	<u> </u>	,									K I CO EO		PA 8(A 8(
		SAM	PLING		ی		MA	TR	XĽ				HOD Rve		BTEX and MTBE by EPA	TPHg/ss/d/mo by EPA 8015	VOCs by EPA 8010									.,				ļ						*
			Ī	533	ine										rbe	d on	A 8																			
SAMPLE ID (Field Point Name)	LOCATION			Containers	Type Containers				43						Jud M	s/d/r	by El																			
(Field Follit Ivallie)		Date	Time	luo	Je C	Water		ا	Sludge	per		5	HNO3	Other	ЗХ а≀	Hg/s	CS																	-		
)#	Ty	%	Soil	Air	Sh	ŏ	Ice	HC	田.	ŏ	BT	Ţ	\ \ \																			
53-2303		1/6/04	9:45	1	TURE		Х				X				X	X	X																			
58-23@ 6		1	10:15	1			1								1	1				ļ					_						_	_				
3B-23@9			10:35			T																						_						L		
SB-18@3.5			11:40		11						1				T																					
SB-18075			12 80	1-1-	††	 	H				71																	-								
		 	12:50	1 /	++	-	11			_	$\dagger \dagger$			一	1		-							1							-					
58-18@11.5		 	1	+,	1	+	V	-			1,		-		1	V	1	-		<u> </u>		+				_		-		1				1		
SB-18@17		V	2:45	1	V	+	V				Y		-		<u>y</u>	-	V.	ļ		-	+	+-	+		-		-			-				+		
		 		10		-	-				-							 -			+		+			+	+							-		
		ļ		ļ	-													 		ļ <u>-</u>	-	-	-			+								-		
				<u> </u>	ļ							_	-					.	ļ	ļ		-	+													
				ļ	<u> </u>	1_										<u></u>				ļ		_		_ _					_ _					-		
										ŀ	ł																			_						
		<u> </u>																												_ _						
		· 		1	 	1																												ĺ		
Relinquished By:	1	Date:	Time:	Rec	eived B	ly:	<u></u>		لـــــا	1				-		ema																				
		1/6/04			158		le-	ر	20	47	-10-	ای						ossi				on l	imi				/									
Relinquished B		Da/e:	Time:	Rec	cived B	<u> </u>	20	7)						P1	ease	e en	nail	rest	ilts.							DITIO E AE		NT.		4	APPE	OPR	IATE ERS	L	
Amores		1/7	11345	Γ.	7/	/	0	<u>ر</u>	<u> </u>																			ED II	V LAI			PRES	ERV	ED IN	LAB_	
Relinguished By:	× #981	Dite:	Time: 13.47	Rec		V.	//	Jack Williams			Z													PRI	ESEI	₹VA	101	7	DAS	0.8	èG	MET	ALS	отне	R	

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; Nady	Date Sampled: 01/05/04
5900 Hollis St, Suite A	Systems	Date Received: 01/06/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 01/12/04
Emeryvine, CA 94000	Client P.O.:	Date Completed: 01/12/04

WorkOrder: 0401034

January 12, 2004

Dear Matt:

Enclosed are:

- 1). the results of 5 analyzed samples from your #522-1000-020; Nady Systems project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Mangager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; Nady	Date Sampled: 01/05/04
5900 Hollis St, Suite A	Systems	Date Received: 01/06/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/06/04
Eneryvine, CA 94000	Client P.O.:	Date Analyzed: 01/07/04-01/09/04

Gasoline Range (C6-C12) Stoddar Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B		An	alytical Method: SW802	1B/8015Cm		Work Orde	r: 0401034
	Lab ID	0401034-001A	0401034-002A	0401034-003A	0401034-004A		
	Client ID	SB-13@6	SB-13@11.5	SB-24@3	SB-24@6	Reporting	Limit for
V.	Matrix	S	S	S	S	DF	=1
	DF	10	20	100	40	S	W
Compound			Conc	entration		mg/Kg	ug/L
TPH(g)		140	260	980	430	1.0	NA
TPH(ss)		150	260	1000	420	1.0	NA
МТВЕ		ND<0.50	ND<1.0	ND<5.0	ND<2.0	0.05	NA
Benzene		ND<0.050	ND<0.10	ND<0.50	ND<0.20	0.005	NA
Toluene		ND<0.050	ND<0.10	ND<0.50	ND<0.20	0.005	NA
Ethylbenzene		ND<0.050	ND<0.10	ND<0.50	0.24	0.005	NA
Xylenes		ND<0.050	ND<0.10	ND<0.50	ND<0.20	0.005	NA
	,	Surr	ogate Recoverie	s (%)	, , , , , , , , , , , , , , , , , , ,	I	
%SS:		88.4	91.7	79.1	103		
Comments		e	e	e	e		

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology		Date Sampled: 01/05/04
5900 Hollis St, Suite A	Systems	Date Received: 01/06/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/06/04
Elleryvine, CA 94000	Client P.O.:	Date Analyzed: 01/07/04-01/09/04

Gasoline Range (C6-C12) Stoddar Solvent Range (C9-C12) Volatile Hydrocarbons with BTEX & MTBE*

Extraction Method: SW5030B		ical Method: SW8021				er: 0401034
Lab ID	0401034-005A				 -	
Client ID	SB-24@9				Reporting	Limit for
Matrix	S				DF	=1
DF	10				S	W
Compound		Conce	ntration		mg/Kg	ug/L
TPH(g)	43				1.0	NA
TPH(ss)	43				1.0	NA
МТВЕ	ND<0.50				0.05	NA
Benzene	ND<0.050		,		0.005	NA
Toluene	ND<0.050				0.005	NA
Ethylbenzene	ND<0.050				0.005	NA
Xylenes	ND<0.050			·	0.005	NA
	Surrog	ate Recoveries	(%)			•
%SS:	83.2					
Comments	e					
 				<u> </u>	\$	

water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe,

product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.nccampbell.com/E-mail: main@mccampbell.com/

Cambria Env. Technology	Client Project ID: #522-1000-020; Nady	Date Sampled: 01/05/04
5900 Hollis St, Suite A	Systems	Date Received: 01/06/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/06/04
incryvinc, CA 94000	Client P.O.:	Date Analyzed: 01/06/04-01/07/04

Dienet (C. 19-23) and On (C. 197) Namee Extractable fiver ocal bons as Dienet and Wiotof On	(C18+) Range Extractable Hydrocarbons as Diesel and Motor (Oil*
---	---	------

V3550C		Analytical methods: SW80150	2	Work Order: (
Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS				
SB-13@6	S	21,d,b	ND	1	110				
SB-13@11.5	S	41,d,b	ND	1	109				
SB-24@3	S	1300,d,b	ND<250	50	112				
SB-24@6	S	220,d,b	8.9	1	102				
SB-24@9	S	54,d,b	, ND	1	119				
					 				
					- 				
· · · · · · · · · · · · · · · · · · ·					 				
					 				
					-				
,			,		+				
									
	Client ID SB-13@6 SB-13@11.5 SB-24@3 SB-24@6 SB-24@9	Client ID Matrix SB-13@6 S SB-13@11.5 S SB-24@3 S SB-24@6 S SB-24@9 S	Client ID Matrix TPH(d) SB-13@6 S 21,d,b SB-13@11.5 S 41,d,b SB-24@3 S 1300,d,b SB-24@6 S 220,d,b SB-24@9 S 54,d,b	Client ID Matrix TPH(d) TPH(mo) SB-13@6 S 21,d,b ND SB-13@11.5 S 41,d,b ND SB-24@3 S 1300,d,b ND<	Client ID Matrix TPH(d) TPH(mo) DF SB-13@6 S 21,d,b ND 1 SB-13@11.5 S 41,d,b ND 1 SB-24@3 S 1300,d,b ND 250 50 SB-24@6 S 220,d,b 8.9 1 SB-24@9 S 54,d,b ND 1				

Reporting Limit for DF =1; ND means not detected at or	W	NA	NA	ug/L
above the reporting limit	S	1.0	5.0	mg/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology		Date Sampled: 01/05/04
5900 Hollis St, Suite A	Systems	Date Received: 01/06/04
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 01/06/04
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 01/06/04-01/07/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*

Lab ID Client ID Matrix DF Compound	0401034-001A SB-13@6 S	0401034-002A SB-13@11.5	0401034-003A	0401034-004A		
Matrix DF	S		CD 2462			
DF			SB-24@3	SB-24@6	Reporting DF	
		S	S	S	Dr	-1
Compound	1	1	80	80	S	W
Compound		Conc	entration		µg/Кg	μg/L
Bromodichloromethane	ND	ND	ND<400	ND<400	5.0	NA
Bromoform	ND	ND	ND<400	ND<400	5.0	NA
Bromomethane	ND	ND	ND<400	ND<400	5.0	NA
Carbon Tetrachloride	ND	ND	ND<400	ND<400	5.0	NA
Chlorobenzene	ND	ND	ND<400	ND<400	5.0	NA
Chloroethane	ND	ND	ND<400	ND<400	5.0	NA
2-Chloroethyl vinyl ether	ND	ND	ND<400	ND<400	5.0	NA
Chloroform	ND	ND	ND<400	ND<400	5.0	NA
Chloromethane	ND	ND	ND<400	ND<400	5.0	NA
Dibromochloromethane	ND	ND	ND<400	ND<400	5.0	NA
1,2-Dichlorobenzene	ND	ND	ND<400	ND<400	5.0	NA
1,3-Dichlorobenzene	ND	ND	ND<400	ND<400	5.0	NA
1,4-Dichlorobenzene	ND ND ND<400			ND<400	5.0	NA
Dichlorodifluoromethane			ND<400	ND<400	5.0	NA
1,1-Dichloroethane	ND	ND	ND<400	ND<400	5.0	NA
1,2-Dichloroethane	ND	ND	ND<400	ND<400	5.0	NA
1,1-Dichloroethene	ND	ND	ND<400	ND<400	5.0	NA
cis-1,2-Dichloroethene	ND	ND	ND<400	ND<400	5.0	NA
trans-1,2-Dichloroethene	ND	ND	ND<400	ND<400	5.0	NA
1,2-Dichloropropane	ND	ND	ND<400	ND<400	5.0	NA
cis-1,3-Dichloropropene	ND	ND	ND<400	ND<400	5.0	NA
trans-1,3-Dichloropropene	ND	ND	ND<400	ND<400	5.0	NA
Methylene chloride	ND	ND	ND<400	ND<400	5.0	NA
1,1,2,2-Tetrachloroethane	ND	ND	ND<400	ND<400	5.0	NA
Tetrachloroethene	ND	ND	ND<400	ND<400	5.0	NA
1,1,1-Trichloroethane	ND	ND	ND<400	ND<400	5.0	NA
1,1,2-Trichloroethane	ND	ND	ND<400	ND<400	5.0	NA
Trichloroethene	ND	ND	ND<400	ND<400	5.0	NA
Trichlorofluoromethane	richlorofluoromethane ND ND		ND<400	ND<400	5.0	NA
Vinyl Chloride	ND	ND	ND<400	ND<400	5.0	NA
	Surr	ogate Recoverie	es (%)		·	
%SS:	120	116	118	111		
Comments			j	j		

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

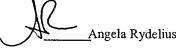
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 http://www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000-020; Nady	Date Sampled: 01/05/04
5900 Hollis St, Suite A	Systems	Date Received: 01/06/04
E	Client Contact: Matt Meyers	Date Extracted: 01/06/04
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 01/06/04-01/07/04

Halogenated Volatile Organics by P&T and GC-ELCD (8010 Basic Target List)*


Analytical Method: SW8021B Extraction Method: SW5030 Work Order: 0401034 0401034-005A Lab ID Reporting Limit for SB-24@9 Client ID DF = 1Matrix S DF 10 S W μg/Kg Compound Concentration μg/L Bromodichloromethane ND<50 5.0 NA Bromoform ND<50 5.0 NA 5.0 ND<50 NA Bromomethane Carbon Tetrachloride ND<50 5.0 NA Chlorobenzene ND<50 5.0 NA Chloroethane ND<50 5.0 NA 5.0 2-Chloroethyl vinyl ether ND<50 NA 5.0 Chloroform ND<50 NA Chloromethane ND<50 5.0 NA Dibromochloromethane ND<50 5.0 NA 5.0 1,2-Dichlorobenzene ND<50 NA 1,3-Dichlorobenzene ND<50 5.0 NA 1,4-Dichlorobenzene ND<50 5.0 NA 5.0 Dichlorodifluoromethane ND<50 NA 5.0 1,1-Dichloroethane ND<50 NA 5.0 NA 1,2-Dichloroethane ND<50 ND<50 5.0 NA 1,1-Dichloroethene cis-1,2-Dichloroethene ND<50 5.0 NA ND<50 5.0 NΑ trans-1,2-Dichloroethene 5.0 NA 1,2-Dichloropropane ND<50 5.0 NA cis-1,3-Dichloropropene ND<50 ND<50 5.0 NA trans-1,3-Dichloropropene NA ND<50 5.0 Methylene chloride 5.0 NA ND<50 1,1,2,2-Tetrachloroethane ND<50 5.0 NA Tetrachloroethene ND<50 5.0 NA 1,1,1-Trichloroethane ND<50 5.0 NA 1,1,2-Trichloroethane 5.0 NA ND<50 Trichloroethene ND<50 NΑ Trichlorofluoromethane 5.0 Vinyl Chloride ND<50 5.0 NA Surrogate Recoveries (%) %SS: 120 Comments

* water and vapor samples and all TCLP & SPLP extracts are reported in µg/L, soil/sludge/solid samples in µg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~2 vol. % sediment; j) sample diluted due to high organic content; k) reporting limit rasied due to insufficient sample amount.

QC SUMMARY REPORT FOR SW8021B/8015Cm

Matrix: S

WorkOrder: 0401034

EPA Method: SW8021B	/8015Cm E	Extraction:	SW5030E	3	BatchID:	9917	Spiked Sample ID: 0401032-001A								
	Sample	Spiked	MS*	MSD*	MS-MSD*	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)					
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High					
МТВЕ	ND	0.10	86.3	94.1	8.67	86.1	85.5	0.800	70	130					
Benzene	ND	0.10	102	104	1.72	91.5	96	4.83	70	130					
Toluene	ND	0.10	90.7	91.1	0.442	80.2	84.6	5.40	70	130					
Ethylbenzene	ND	0.10	110	107	3.04	102	106	3.98	70	130					
Xylenes	ND	0.30	100	100	0	96.3	100	3.74	70	130					
%SS:	97.1	0.10	111	107	3.67	112	114	1.77	70	130					

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

^{*} MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

[£] TPH(btex) = sum of BTEX areas from the FID.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8015C

Matrix: S

WorkOrder: 0401034

EPA Method: SW8015C		Extraction: SW3550C			BatchID:	9918	Spiked Sample ID: 0401032-001A						
,	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)			
	mg/Kg	mg/Kg	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	Low	High			
TPH(d)	ND	150	92.9	91.1	1.96	103	103	0	70	130			
%SS:	102	100	99.8	94.9	4.99	107	107	0	70	130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

* MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

QC SUMMARY REPORT FOR SW8021B

Matrix: S

WorkOrder: 0401034

EPA Method: SW8021B	Е	Extraction:	SW5030		BatchID:	9920	Spiked Sample ID: 0401034-001A							
	Sample	Spiked	MS*	MSD*	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	e Criteria (%)				
	μg/Kg μg/Kg % Rec. % Rec. % RPD %		% Rec.	% Rec.	% RPD	Low	High							
Chlorobenzene	ND	50	84	83.1	1.05	96.6	90.2	6.76	70	130				
1.1-Dichloroethene	ND	50	80.4	80.2	0.297	91.2	87.4	4.24	70	130				
Trichloroethene	ND	50	75.5	75.4	0.114	85.9	87.5	1.84	70	130				
%SS:	120	100	109	108	0.930	105	109	3.39	70	130				

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS and / or MSD spike recoveries may not be near 100% or the RPDs near 0% if: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) if that specific sample matrix interferes with spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and acetone may occasionally appear in the method blank at low levels.

CHAIN-OF-CUSTODY RECORD

Page 1 of

5 days

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

WorkOrder: 0401034

Report to:

Mary C. Holland-Ford

Cambria Env. Technology

5900 Hollis St, Suite A Emeryville, CA 94608 TEL: FAX:

(510) 420-0700

(510) 420-3394

ProjectNo: #522-1000-020; Nady Systems

PO:

Bill to:

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A Emeryville, CA 94608 Date Received:

Requested TAT:

Received: 1/6/04

Date Printed: 1/6/04

													_													
											F	₹equ	este	d Te	sts (See	lege	nd b	elow))					•	-
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1		2	3	4		5	6	3	7		8		9	10) :	.11	•	12	13	1	4 15
0401034-001	SB-13@6	Soil	1/5/04 1:10:00 PM		A	A	Α .			 !	- ***				<u>-</u> -		1.51		;	:		;				
0401034-002	SB-13@11.5	Soil	1/5/04 1:25:00 PM		Α	į A	۹ :	Α							T				!	Ť						:
0401034-003	SB-24@3	Soil	1/5/04 2:00:00 PM		Α	J	4 .	Α	:			1														
0401034-004	SB-24@6	Soil	1/5/04 2:55:00 PM		Α	A	1	Α	1			1-								1					!	
0401034-005	SB-24@9	Soil	1/5/04 3:10:00 PM		Α	A	١ .	Α	1			1			1							-			!	

Test Legend:

1 8010B_S	2 G-MBTEX_S	3 TPH(DMO)_S	4	5
6	7	8	9	10
[11]	12	[13]	14]	15

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

							CHAIN OF CUSTODY RECORD																								
McCAMPBELL ANALYTICAL INC. 110 2"d avenue south, #D7							TURN AROUND TIME:																								
PACHECO, CA 94553-5560								EDF Required? Yes No														1.7/Y									
Telephone: (925) 798-1620 Fax: (925) 798-1622																															
Report To: Matt Meyers Bill To: Cambria									_	Analysis Request Other										r	Comn	ients									
Company: Cambria Environmental Technology, Inc.									-	10	1 (1 %)	`							ı												
5900 Hollis Street, Suite A									- 2	bes	No.				ļ				0		- 1										
Emeryville, Ca 94608 E-mail: mmeyers@cambria-env.com									- \ \	154	. S. (=							7831												
Tele: (510) 420-3314 Fax: (510) 420-9170 Project #:522-1000-020 Project Name: Nady Systems								801 517 MTBE		5520	(41.8							EPA 625 / 8270 48310													
Project Location: 1137-1167 6	5 th Street		vario.	1144	<u> </u>							- } +) sc (, Sho	\ \	3020		۲			5 / 8		ł	6						
Sampler Signature:									/802	3	5 S	Carb		8 / 5	ļ	O			4 62			109/					ļ				
CAMPLING MATRIX METHOD								BTEX & TPH as Gas (602/8020	(\$ 10	Total Petroleum Oil & Grease (5520 E&F/B&F)	Total Petroleum Hydrocarbons (418.1)	\ \ \ \	P A		EPA 608 / 8080 PCB's ONLY	EPA 624 / 8240 / 8260		y EP.			Lead (7240/7421/239.2/6010)										
	67	T	SI	Type Containers					T RESOURCE DE			ا ا	(8)) mn	l m	100	Y (E)	080	1 080	2407	270	₹'s b	tals	sle	7421						•
SAMPLE ID LOCATION		}	Containers									TPH	ا ا	tro le	[] S	EPA 601 (8010)	Ä	EPA 608 / 8080	3 / 80	4 / 8.	EPA 625 / 8270	PAH's / PNA's by	CAM-17 Metals	LUFT 5 Metals	240/						
(Field Point Name)	Date	Time	ont	Ü	te l	_	dge	er		_	ر ا	de ×	3	I Pe	l b	109	1X	09	1 608	١ 62،	1 62	1's/	<u>X</u>	FT 5	d (7;	_				Ì	
	1		# C	Typ	Water	Sou	Sludge	Other	Ice	HCI	HNO ₃	BTE	TPL	Tota	Tot	EP.	BTE	EP/	EP?	EP/	EP/	PA	CA	57	Lea	RCI					
5B-13@6	1/5/04	1:10	1	TUBE		x			X			X	(X			×															—delice or
SB-13@11,5	1	1.25	1	1		1			χ			11																			
5B-24@3		2.00							χ																						
SB-2466		2.55							X																						
SB-24@9	1 1	3 10	1	11		/	1		X		1	1	1	/	-	1		T													
38-2181	 -'	3.70-	-'-	'-			1-1			\dashv	-	<u>`</u>	+ :	<u> </u>	†		1	1													
				-	1	+-	1		_	-+	+	┪				-															
		 			-	+	+					-			-		1-	 -													
			 	 	++						+-	-	-		-	+-															
	_	<u> </u>	ļ	ļ	-		+																					•			
	_	ļ	ļ	ļ						_	+				-															 	
	ļ	ļ			1				_	\perp	-	-	-		-	+-		.											-,		
			<u> </u>	L		_ _	1					-	-																		
1												.																			<u>\$</u>
				<u> </u>							_							<u> </u>												<u></u> _	
Relinquished By:	Date:	Time:		ived B	•					\	-			arks								אקיץ	•	. /	/						,
1/5/03 5pm 'SECURED LOCATION'								Lowest possible detection limits. Please email results. CEPT GOOD CONDITION APPROPRIATE																							
Relinquished By: Date: Time: Received By: UTPA EY							1										ERVED I	N LAB													
Stones 1/6/04 950 EX-P E. RICARDO						-	,								I	RE	SER	ΫΑΤ:	ION	VOA	S	O&G	MET	ALS OT	IER						
Relinguished By: Date: Time: Received By: 1/6/4 (300)																															
EX. 1/64 Bac ///////////////////////////////////															 -											·					