September 6, 2005

RECEIVED

1:50 pm, May 06, 2008

Alameda County
Environmental Health

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Groundwater Monitoring Report - Second Quarter 2005

1137-1167 65th Street Oakland, California Case No. RO0000082

Dear Mr. Chan:

On behalf of Mr. John Nady, Cambria Environmental Technology, Inc. is submitting the *Groundwater Monitoring Report – Second Quarter 2005*. Presented in this report is a summary of the field activities and a presentation of the results for the second quarter 2005 groundwater monitoring event. In addition, this report contains recommendations for third quarter 2005 activities.

If you have any questions, please feel free to call me at (510) 420-3314.

Sincerely,

Cambria Environmental Technology, Inc.

Matthew A. Meyers Project Geologist

Attachment: Groundwater Monitoring Report – Second Quarter 2005

cc: Mr. Frederic Schrag, 6701 Shellmound Street, Emeryville, California 94608 (3 Copies)

Cambria Environmental Technology, Inc.

5900 Hollis Street Suite A Emeryville, CA 94608 Tel (510) 420-0700 Fax (510) 420-9170

GROUNDWATER MONITORING REPORT – SECOND QUARTER 2005

1137-1167 65th Street Oakland, California 94608 Case No.: RO0000082

September 6, 2005

Prepared for Submittal to:

Mr. Barney Chan Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Prepared by:

Cambria Environmental Technology, Inc. 5900 Hollis Street, Suite A Emeryville, California 94608

Written by:

Matthew A. Meyers Project Geologist

All work performed by Cambria Environmental Technology, Inc. for this site was conducted under my supervision. To the best of my knowledge, the data contained herein are true and accurate and satisfy the scope of work prescribed by the client for this project. The data, findings, recommendations, specifications or professional opinions presented herein were prepared in accordance with generally accepted professional engineering and geologic practice. We make no other warranty, either expressed or implied.

No. 7564

Brandon S. Wilken, P.G.

Project Geologist

GROUNDWATER MONITORING REPORT – SECOND QUARTER 2005

1137-1167 65th Street Oakland, California 94608 Case No.: RO0000082

SEPTEMBER 6, 2005

INTRODUCTION

This report describes the second quarter 2005 groundwater monitoring activities performed at 1137-1167 65th Street, Oakland, California (Figure 1). This groundwater monitoring event was conducted at the direction of the Alameda County Health Care Services Agency, Environmental Health Division (ACHCSA). This report presents a summary of the monitoring activities and results for the second quarter 2005. In addition, this report contains recommendations for third quarter 2005 activities.

MONITORING ACTIVITIES

On June 15 and 16, 2005, Cambria coordinated with Muskan Environmental Sampling (MES) to perform quarterly groundwater monitoring activities at the site. MES measured groundwater levels and collected groundwater samples from monitoring wells MW-1A through MW-4A, MW-6A, MW-7A, MW-1B, MW-4B, MW-5B, MW-6B, MW-1C, MW-4C, and MW-6C (Figure 2). Copies of the field data sheets are included as Appendix A.

Water Level Measurements: Depth to groundwater measurements were recorded to the nearest 0.01-foot, relative to a previously established reference elevation. Measurements were collected using an electric, conductance-actuated well sounder. The groundwater level measurement data are summarized in Table 1.

Groundwater Sampling: MES collected groundwater samples from wells MW-1A through MW-4A, MW-6A, MW-7A, MW-1B, MW-4B, MW-5B, MW-6B, MW-1C, MW-4C, and MW-6C. Field activities associated with the sampling event included well purging, field water quality measurements, sample collection, and equipment decontamination.

Prior to sampling, the wells were purged to remove standing water in the well casings and promote the inflow of representative groundwater from the surrounding formation. The wells were purged by repeated bailing using a new, pre-cleaned, disposable bailer. Field measurements of the pH, specific conductance, and temperature of the purged groundwater were measured initially and after the extraction of each successive casing volume or at regular volume intervals. Casing volumes were calculated based on the well diameter and the height of the water column in the well casing.

Typically, well purging continued until consecutive pH, specific conductance, and temperature measurements were within 10 percent. Field water quality measurements, purge volumes and sample collection data were recorded on field sampling data forms (Appendix A).

Groundwater samples were collected from each of the wells using disposable bailers. The samples were decanted from the bailers into 40-milliliter (mL) glass volatile organic analysis (VOA) vials supplied by McCampbell Analytical, Inc. (McCampbell) of Pacheco, California. Immediately after collection, the sample containers were labeled and placed on water-based ice in a cooler. Chain-of-custody procedures were followed at all times from sample collection to transfer to McCampbell (Appendix B).

To minimize the potential for cross-contamination, the groundwater monitoring equipment was decontaminated prior to being deployed in the first monitoring well and between successive wells. The probe of the electric well sounder used for water level measurements was rinsed thoroughly with distilled water prior to first use and between subsequent water level measurements. The disposable bailers were discarded after use at each well.

Groundwater samples were analyzed for total petroleum hydrocarbons as diesel (TPHd), total petroleum hydrocarbons as gasoline (TPHg), total petroleum hydrocarbons as motor oil (TPHmo), and total petroleum hydrocarbons as stoddard solvent (TPHss) by modified United States Environmental Protection Agency (EPA) Method SW8015C. Aromatic hydrocarbon compounds [benzene, toluene, ethylbenzene, total xylenes (BTEX)] and methyl tertiary-butyl ether (MTBE) were quantified by EPA Method SW8021B. Samples were also analyzed for halogenated volatile organic compounds (HVOCs) by EPA Method SW8260B, but only reported for the EPA Method 8010 target list. Samples marked for TPHd and TPHmo analysis were subjected to silica gel cleanup prior to analysis. The laboratory analytical report is included in Appendix B. Analytical results are summarized on Figures 2, 3, and 4 and presented in Tables 1 and 2.

RESULTS

Groundwater Flow Direction and Gradient: Depth-to-water measurements collected on June 15, 2005 ranged from 2.33 to 8.60 feet below top of casing. Groundwater elevations were calculated by subtracting the depth to water measurements from the surveyed top of casing elevations. The groundwater elevations for A, B, and C-zone aquifers were each plotted on a site plan and contoured. The groundwater in the A-zone flowed predominantly towards the south-southwest with a gradient of approximately 0.027 feet per foot (ft/ft) (Figure 2). The groundwater in the B-zone flowed towards the southwest with a gradient of approximately 0.021 ft/ft (Figure 3). The groundwater in the C-zone aquifer flowed towards the west-southwest with a gradient of approximately 0.007 ft/ft (Figure 4). The groundwater flow directions and gradients are consistent with the previous quarter's results.

Depth-to-water and groundwater elevation data for the site are summarized in Table 1.

Chemicals Detected in the A-Zone Aquifer: Petroleum hydrocarbons were detected in the A-zone aquifer monitoring wells MW-1A, MW-2A, MW-3A, MW-4A, MW-6A, and MW-7A. The highest TPHd concentration was detected in well MW-7A at 24,000 micrograms per liter (μg/L). The maximum TPHg concentration was detected in well MW-1A at 2,800 μg/L. The maximum TPHss concentration was detected in well MW-7A at 3,900 μg/L. The maximum TPHmo concentration was detected in well MW-2A at 330 μg/L.

No MTBE was detected in the A-zone aquifer. Benzene was detected at 1.0 mg/L in well MW-4A. Toluene was detected in monitoring wells MW-2A and MW-4A at concentrations of $2.9 \,\mu\text{g/L}$ and $1.9 \,\mu\text{g/L}$, respectively. Ethylbenzene was detected in monitoring well MW-6A at a concentration of $0.60 \,\mu\text{g/L}$. Xylenes were detected in monitoring wells MW-1A, MW-3A, MW-4A, and MW-6A at concentrations between of $2.1 \,\mu\text{g/L}$ and $5.9 \,\mu\text{g/L}$

HVOCs were detected in the A-zone aquifer in monitoring wells MW-1A, MW-3A, MW-4A, MW-6A, and MW-7A. No HVOCs were detected in well MW-2A. Groundwater analytical data is presented in Tables 1 and 2 and summarized on Figure 2. The HVOC detections were as follows:

- Tetrachloroethene (PCE) was detected in monitoring wells MW-1A and MW-4A at concentrations of 62 μg/L and 1.4 μg/L, respectively.
- cis-1,2-Dichloroethene (cis-1,2-DCE) and trichloroethene (TCE) were detected in monitoring well MW-1A at concentrations of 24 μg/L and 19 μg/L, respectively.
- Vinyl chloride, trans-1,2-dichloroethene (trans-1,2-DCE), and 1,1-dichloroethane (1,1-DCA) were detected in wells MW-1A at concentrations of 10 μg/L, 2.4 μg/L, and 3.0 μg/L, respectively, and MW-6A at concentrations of 3.2 μg/L, 2.5 μg/L, and 1.5 μg/L, respectively.
- Chloroethane was detected in well MW-6A at a concentration of 6.9 μg/L.
- 1,2-Dichlorobenzene (1,2-DCB) was detected in monitoring wells MW-1A, MW-3A, MW-6A, and MW-7A at concentrations of 2.6 μg/L, 52 μg/L, 3.3 μg/L, and 1.8 μg/L, respectively.
- 1,3-Dichlorobenzene (1,3-DCB) and 1,4-dichlorobenzene (1,4-DCB) were detected in well MW-3A at concentrations of 1.5 μg/L and 8.3 μg/L, respectively. 1,4-DCB was also detected in well MW-6A at a concentration of 0.60 μg/L.

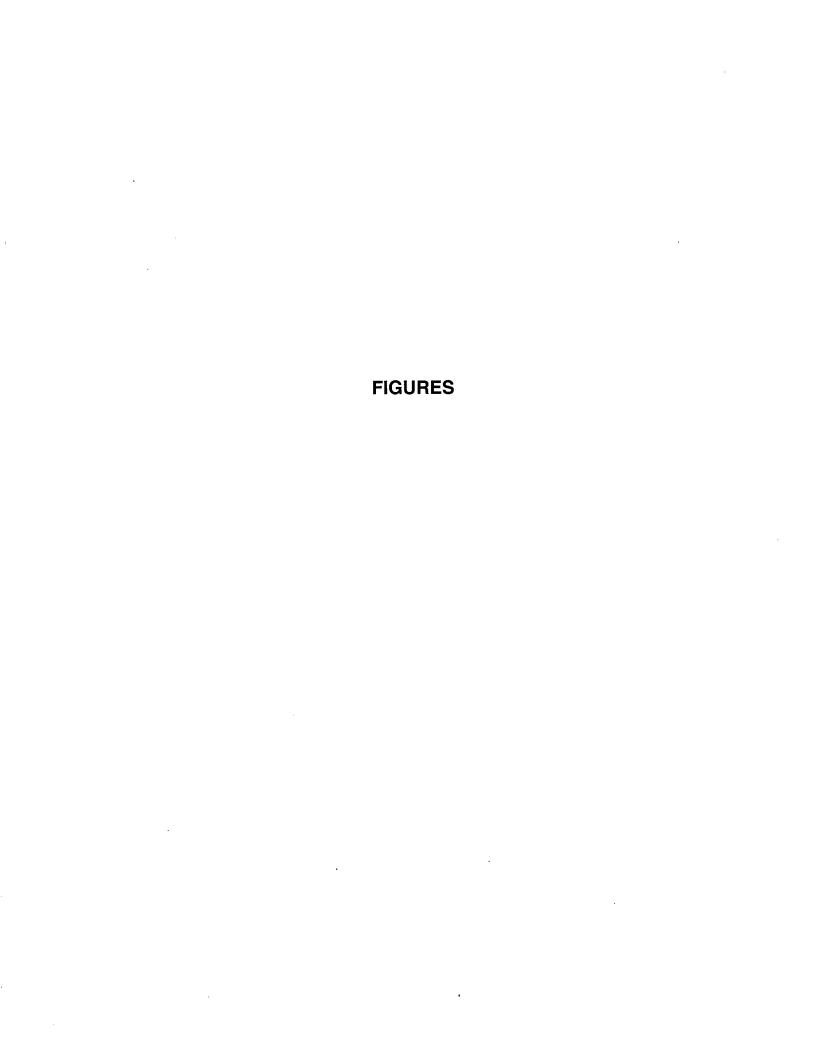
Chemicals Detected in the B-Zone Aquifer: TPHd, TPHg, and TPHss were only detected in B-zone aquifer monitoring well MW-6B at concentrations of 1,700 µg/L, 900 µg/L, and 1,300 µg/L, respectively. No TPHmo was detected in the B-zone aquifer. Xylenes were detected in monitoring well MW-6B at a concentration of 1.9 µg/L, and were the only aromatic hydrocarbon compounds detected in the B-zone aquifer.

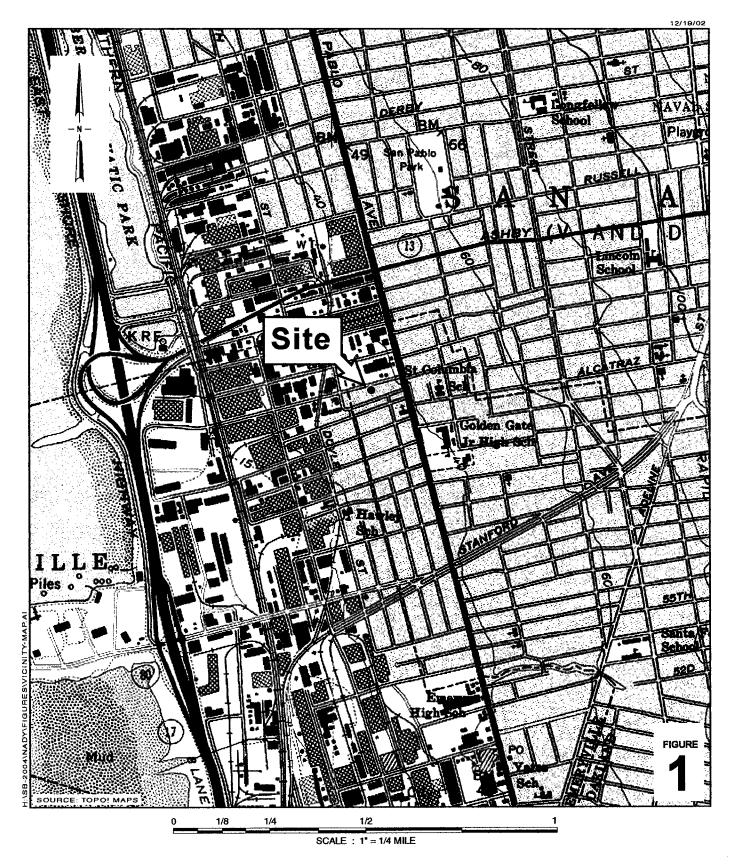
HVOCs were detected in B-zone aquifer wells MW-1B and MW-6B. Chloroform, cis-1,2-DCE, 1,1-DCA, and 1,2-DCA were detected in well MW-1B at concentrations of 1.3 μ g/L, 3.3 μ g/L, 8.8 μ g/L, and 9.9 μ g/L, respectively. 1,2-DCB, 1,1-DCA, and vinyl chloride were detected in well MW-6B at concentrations of 1.4 μ g/L, 0.66 μ g/L, and 0.55 μ g/L, respectively. No HVOCs were detected in wells MW-4B or MW-5B. Groundwater analytical data is summarized in Tables 1 and 2 and presented on Figure 3.

Chemicals Detected in the C-Zone Aquifer: No petroleum hydrocarbons, BTEX, or MTBE were detected at or above laboratory reporting limits in the C-zone aquifer.

HVOCs were only detected in C-zone aquifer monitoring wells MW-6C. PCE, TCE, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCA, and vinyl chloride were detected in the well MW-6C at concentrations of 3.1 μ g/L, 3.1 μ g/L, 20 μ g/L, 0.64 μ g/L, 1.4 μ g/L, and 5.7 μ g/L, respectively. Groundwater analytical data is summarized in Tables 1 and 2 and presented on Figure 4.

RECOMMENDED THIRD QUARTER 2005 ACTIVITIES


Cambria makes the following recommendations:


- Conduct a quarterly groundwater monitoring event during the third quarter 2005. A report detailing the activities and findings of the third quarter 2005 event should be submitted to ACHCSA by November 11, 2005.
- Pending State Water Resources Control Board approval, subsequent groundwater analytical and well gauging data should be uploaded to GeoTracker in compliance with California State Assembly Bill 592.

ATTACHMENTS

- Figure 1 Vicinity Map
- Figure 2 Groundwater Flow and Chemical Concentrations A Zone
- Figure 3 Groundwater Flow and Chemical Concentrations B Zone
- Figure 4 Groundwater Flow and Chemical Concentrations C Zone
- Table 1 Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons
- Table 2 Groundwater Analytical and Elevation Data: Halogenated Volatile Organic Compounds
- Appendix A Field Data Sheets
- Appendix B Laboratory Analytical Report
- Appendix C Non-Hazardous Waste Manifest

Vicinity Map

EXPLANATION

Monitoring well location Soil boring location

■ SCI soil sample location

Product piping stub-ups

Product piping

Electrical line Storm drain

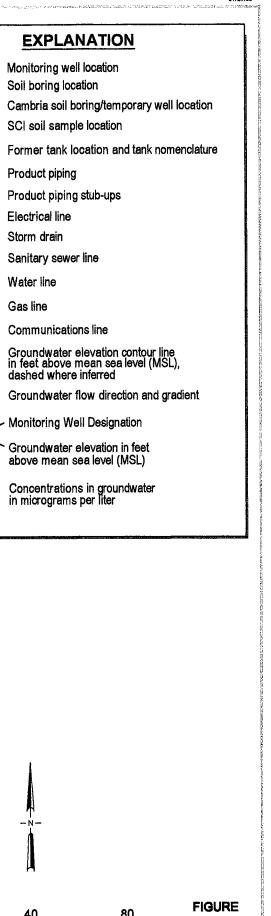
Water line Gas line

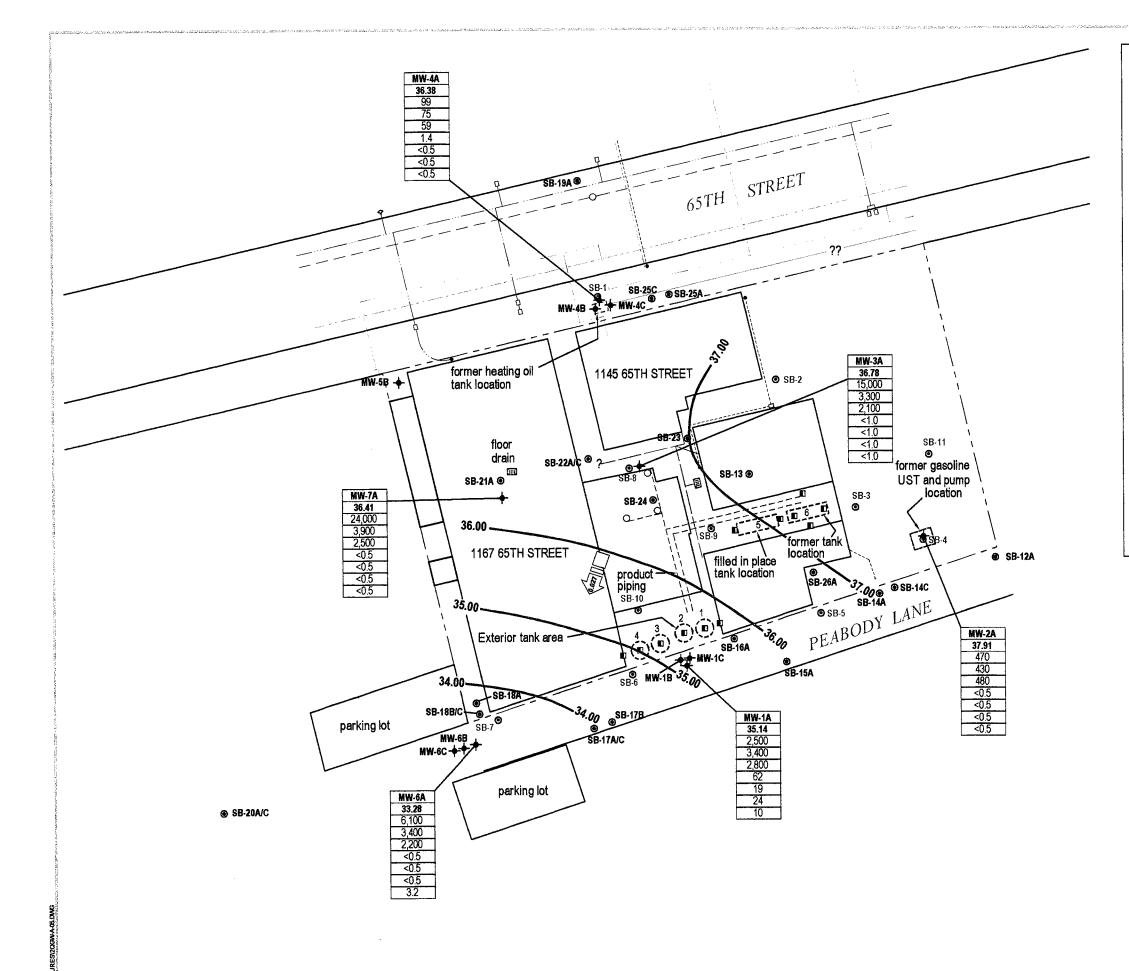
Scale (ft)

Sanitary sewer line

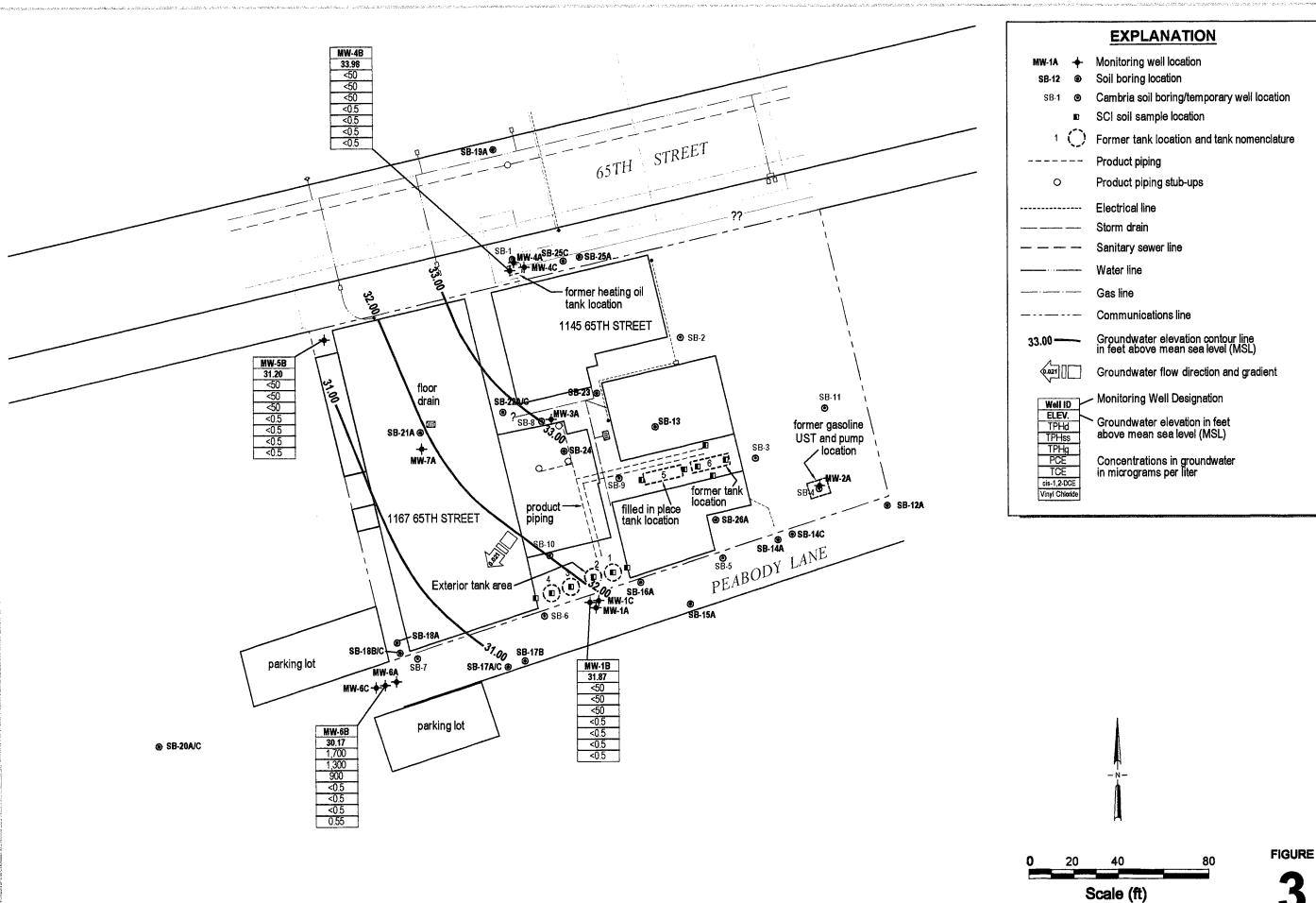
Communications line

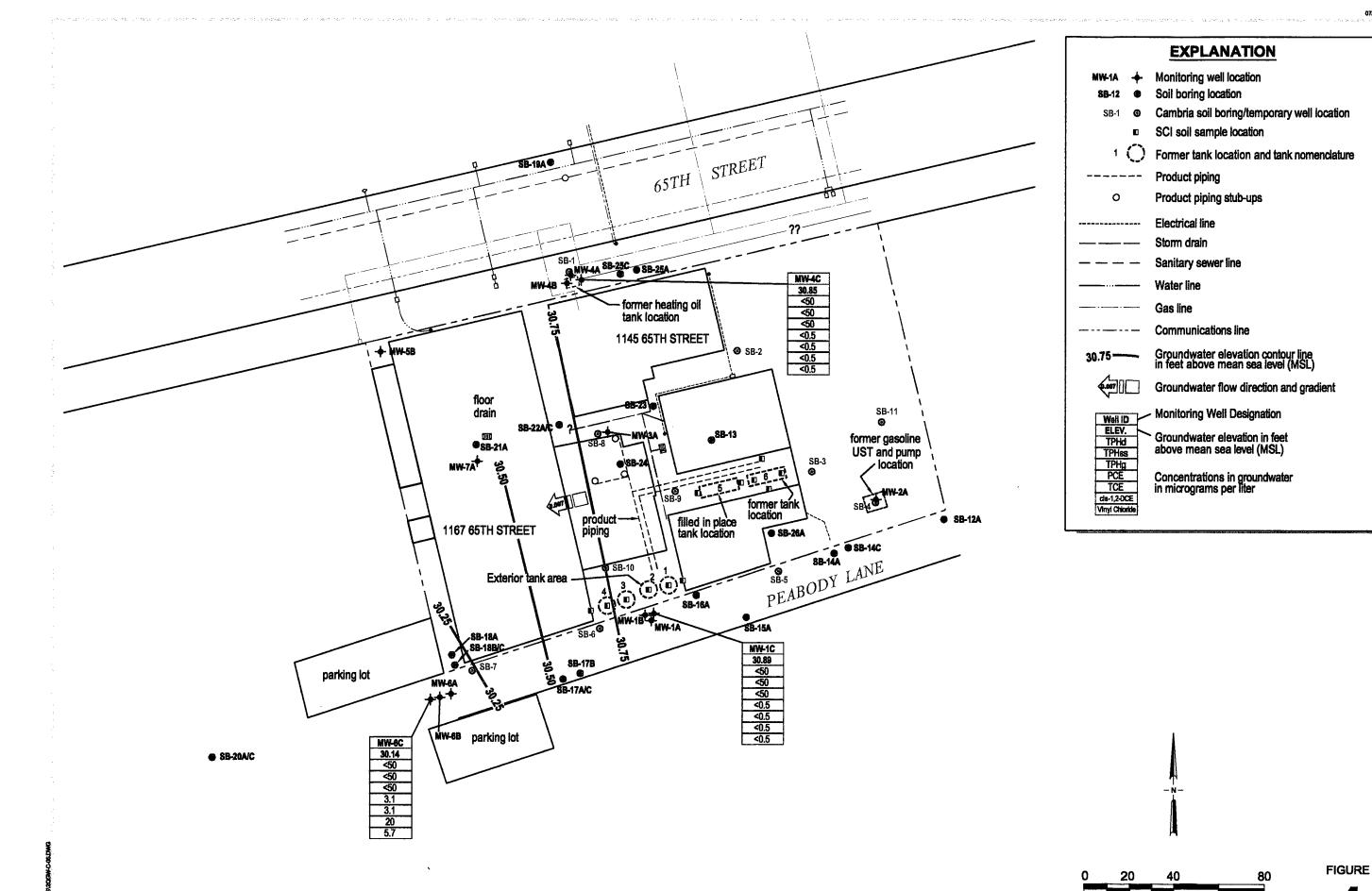
0


37.00


Well ID ELEV. TPHd TPHss TPHg PCE TCE

cis-1,2-DCE


Vinyl Chloride


June 15-16, 2005

- 1167 65th Street 1137 - 1167 65th Str Oakland, California

1137 - 1167 65th Street Oakland, California

Scale (ft)

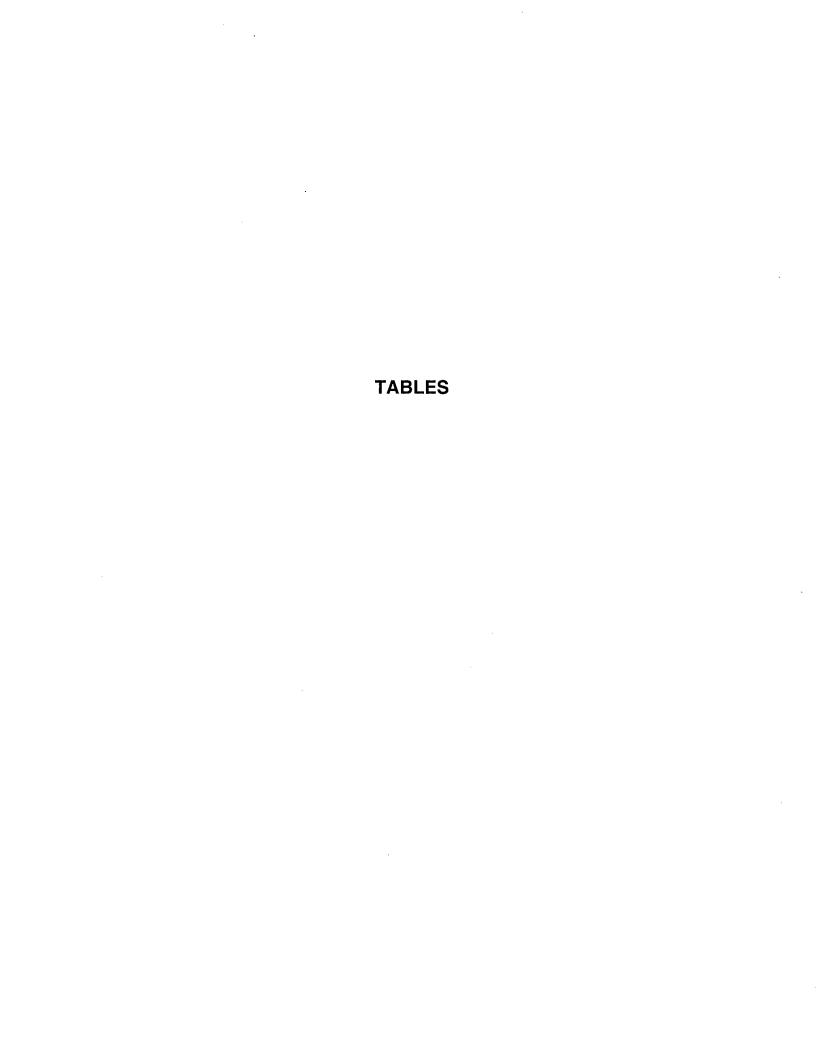


Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Well ID	Date	Groundwater	Depth										
TOC	Sampled	Elevation	to Water	TPHd	TPHg	TPHmo	TPHss	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	Notes
(ft*)		(ft)	(ft)					μg/L —				<u> </u>	
California MCLs								1.0	150	300	1,750	13	
ESL - Not a Poten	tial Drinking Wate	r Source		640	500	640	500	46	130	290	100	1,800	
MW-1A	6/3/2004	35.14	4.50	1,300	1,400	260	2,500	<0.5	<0.5	2.0	11	<5.0	
39.64	11/23/2004	36.54	3.10	1,400	2,300	<250	2,800	0.64	<0.5	2.5	9.7	6.8	a,b,c
39.04		37.02	2.62	3,200	4,800	<250	6,000	0.68	<0.5	2.0	6.8	<5.0	d,c
	3/14/2005	35.14	4.50	2,500	2,800	<250	3,400	<2.5	<2.5	<2.5	5.9	<25	a,b,h,i,c
	6/15/2005	35.14	4.30	2,500	2,000	220	3,400	V2. 3	-	-	3.7		4,0,144,0
MW-2A	6/3/2004	36.48	4.24	2,900	1,700	<250	3,500	<0.5	3.5	4.9	5.1	<5.0	
40.72	11/23/2004	37.83	2.89	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
	3/14/2005	39.02	1.70										
	3/15/2005			560	360	450	260	<0.5	2.5	<0.5	<0.5	<5.0	e,d,g,i
	6/15/2005	37.91	2.81										
	6/16/2005			470	480	330	430	<0.5	2.9	<0.5	<0.5	<5.0	a,b,i,g,e
MW-3A	6/3/2004	36.56	4.32	90,000	4,800	6,000	12,000	0.ک>	<5.0	⋖5.0	<5.0	<50	
40.88	11/23/2004	37.89	2.99	22,000	3,800	<2,500	5,700	<5.0	<5.0	<5.0	<5.0	<50	a,c,d
40.00	3/14/2005	37.28	3.60										
	3/15/2005	57.20		37,000	2,400	<2,500	3,500	<1.7	<1.7	<1.7	<1.7	<17	¢,d,i
	6/15/2005	36.78	4.10				-,						
	6/16/2005			15,000	2,100	<1,200	3,300	⊲ 1.7	<1.7	<1.7	2.4	<17	a,c,d,h,i
										0.6			
MW-4A	6/3/2004	36.26	2.45	270	<50	440	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
38.71	11/23/2004	37.13	1.58	73	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	d
	3/14/2005	36.66	2.05										
	3/15/2005			210	<50	300	<50	0.91	1.7	<0.5	1.9	<5.0	g,d,f,i
	6/15/2005	36.38	2.33										
	6/16/2005			99	59	<250	75	1.0	1.9	<0.5	2.1	<5.0	j,d,ſ
MW-6A	6/3/2004	31.98	6.00	3,500	970	340	2,400	<0.5	<0.5	<0.5	2.1	<5.0	
37.98	11/23/2004	33.13	4.85	1,400	1,900	<250	3,000	<0.5	<0.5	<0.5	3.0	<5.0	a,c
	3/14/2005	35.03	2.95	5,900	2,900	<250	2,600	<5.0	<5.0	<5.0	<5.0	<50	e,d,i
	6/15/2005	33.28	4.70	6,100	2,200	<250	3,400	<0.5	<0.5	0.60	4.4	<10	a,i,c,d

H.\Nady\QMR\2005\2Q05QMR

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Well ID	Date	Groundwater	Depth	mn***	mpyy	mp.	20077	D	Telesar	Ethylbenzene	Xylenes	MTBE	Notes
TOC	Sampled	Elevation	to Water	TPHd	TPHg	TPHmo	TPHss	Benzene	Toluene	Eurylbenzene	Aylenes	—— >	110102
(fi*)		(ft)	(ft)	<u> </u>				μg/L- 1.0	150	300	1,750	13	
alifornia MCLs					500	640	500	46	130	290	100	1,800	
SL - Not a Poten	ial Drinking Water	Source	 -	640	300	640	300	40	130	250	100	1,800	
MW-7A	6/3/2004	36.08	4.50		3,900		9,900	<5.0	<5.0	<5.0	6.6	<50	
40.58	11/23/2004												
	3/14/2005	37.03	3.55	14,000	3,900	620	3,700	<5.0	<5.0	<5.0	<5.0	<50	c,d,h
	6/15/2005	36.41	4.17	24,000	2,500	<1,200	3,900	<5.0	<5.0	<5.0	<5.0	<50	a,c,d,h,i
MW-1B	6/3/2004	25.10	14.40	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
39.50	11/23/2004	26.24	13.26	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
27.27	3/14/2005	33.97	5.53	52	<50	<250	<50	0.60	<0.5	<0.5	<0.5	<5.0	đ,i
	6/15/2005	31.87	7.63	<50	<50	<2.50	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i
MW-4B	6/3/2004	33.52	5.02	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
38.54	11/23/2004	34.65	3.89	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
	3/14/2005	34.78	3.76										
	3/15/2005			<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i
	6/15/2005	33.98	4.56										
	6/16/2005			<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i
MW-5B	6/3/2004	30.16	8.82	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
38.98	11/23/2004	31.32	7.66	<50	<50	<250	<50	<0.5	< 0.5	<0.5	<0.5	<5.0	
	3/14/2005	32.71	6.27										
	3/15/2005			<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i
	6/15/2005	31.20	7.78	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i
MW-6B	6/3/2004	29.36	8.30	2,300	1,100	<250	2,900	<0.5	<0.5	<0.5	1.4	<5.0	
37.66	11/23/2004	30.53	7.13	280	500	<250	700	<0.5	<0.5	<0.5	1.6	<5.0	a,c
	3/14/2005	31.86	5.80	5,200	1,300	340	1,200	<0.5	<0.5	<0.5	<0.5	<5.0	e,d,i
	6/15/2005	30.17	7.49	1,700	900	<250	1,300	<0.5	<0.5	<0.5	1.9	<5.0	a,c

Table 1. Groundwater Analytical and Elevation Data: Petroleum Hydrocarbons - 1137-1167 65th Street, Oakland, California

Well ID TOC	Date Sampled	Groundwater Elevation	Depth to Water	TPHd	TPHg	TPHmo	TPHss	Benzene ——— µg/L	Toluene	Ethylbenzene	Xylenes	мтве	Notes
(ft*) difornia MCLs		(ft)	(ft)					1.0	150	300	1,750	13	
	ial Drinking Water	Course		640	500	640	500	46	130	290	100	1,800	
SL - NOLE I OLEIO	iai Diniking was	. 304100			500	0.00	300		154			.,	
MW-1C	6/3/2004	30.07	9.42	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
39.49	11/23/2004	31.30	8.19	<50	<50	<250	<50	<0.5	<0.5	<0.5	< 0.5	<5.0	
	3/14/2005	32.58	6.91	<50	<50	<250	<50	< 0.5	<0.5	<0.5	<0.5	<5.0	f
	6/15/2005	30.89	8.60	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
MW-4C	6/3/2004	30.10	8.40	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
38.50	11/23/2004	31.31	7.19	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
	3/14/2005	33.15	5.35										
	3/15/2005			<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	i
	6/15/2005	30.85	7.65										
	6/16/2005			<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	
MW-6C	6/3/2004	27.89	9.70	240	160	<250	340	<0.5	<0.5	<0.5	1.1	<5.0	
37.59	11/23/2004	29.21	8.38	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0,5	<5.0	
	3/14/2005	31.79	5.80	60	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	d
	6/15/2005	30.14	7.45	<50	<50	<250	<50	<0.5	<0.5	<0.5	<0.5	<5.0	

Abbreviations:

TOC (ft*) = Top of casing elevation in feet above mean sea level

μg/L = micrograms per liter - approximately equal to parts per billion = ppb

ft = measured in feet

TPHd = Total petroleum hydrocarbons as diesel by EPA Method SW8015C with silica gel cleanup.

TPHg = Total petroleum hydrocarbons as gasoline by EPA Method SW8015C.

TPHmo = Total petroleum hydrocarbons as motor oil by EPA Method SW8015C with silica gel cleanup.

TPHss = Total petroleum hydrocarbons as stoddard solvent by EPA Method SW8015C.

Benzene, toluene, ethylbenzene, and xylenes by EPA Method SW8021B.

MTBE = Methyl tertiary-butyl ether by EPA Method SW8021B (EPA Method SW8260).

-- = Not available, not applicable, not analyzed, not measured

California MCLs = California Department of Health Services Maximum Contaminant Levels; Drinking water standards established by the Department of Health Services. Title 22, California Code of Regulations, Section 64444, Table 64444-A.

ESL = Not A Potential Drinking Water Source IV, Table B. [Screening for Environments Concerns at Site With Contaminated Soil

and Groundwater, Volumes 1 and 2. Interim Final. California Regional Water Quality Control Board - San Francisco Bay Region.] February 2005.

Notes:

a = TPH pattern that does not appear to be derived from gasoline

(stoddard solven/mineral spirit?).

b = No recognizable pattern.

c = Stoddard solvent/mineral spirit.

d = Diesel range compounds are significant; no recognizable pattern.

e = Gasoline range compounds are significant.

f = One to a few isolated peaks present

g = Oil range compounds are significant.

h = Lighter than water immiscible sheen/product is present.

i = Liquid sample contains greater than ~1 vol. % sediment.

j = Unmodified or weakly modified gasoline is significant

Table 2. Groundwater Analytical and Elevation Data: Halogenated Volatile Organic Compounds - 1137-1167 65th Street, Oakland, California

Well ID TOC (fr*)	Dale Sampled	Groundwater Elevation (ft)	Depth to Water (ft)	Chloroethane	Chloroform	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Trichloroethene	1,2-Dichlorobenzene µg/L		trans-1,2-Dichloroethene	1,1-Dichloroethzne	1,2-Dichloroethane	Vinyl Chloride	Notes
California MC	Ls	(-7	757		100 (a)	1	5	5	600	6	10	5	0.5	0.5	
ESL - Not a Po	otential Drinkin	g Water Source		12	330	190	120	360	14	590	590	47	200	3.8	
MW-1A	6/3/2004	35.14	4.50	<2.5	<2.5	<2.5	55	16	<2.5	36	<2.5	<2.5	<2.5	6.3	
39.64	11/23/2004	36.54	3.10	<1.0	<1.0	<1.0	38	11	<1.0	51	2.4	2.8	<1.0	9.5	
	3/14/2005	37.02	2.62	<1.0	<1.0	<1.0	42	12	2.0	32	2.2	2.4	<1.0	8.0	
	6/15/2005	35.14	4.50	<1.0	<1.0	<1.0	62	19	2.6	24	2.4	3.0	<1.0	10	h,i
MW-2A	6/3/2004	36.48	4.24	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
40.72	11/23/2004	37.83	2.89	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
40.72	3/14/2005	39.02	1.70												
	3/15/2005			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	6/15/2005	37.91	2.81						-						•
	6/16/2005		2.01	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	0/10/2000			1010											
MW-3A	6/3/2004	36.56	4.32	⋖0	⋖0	⊲0	⋖0	<00	⋖0	<50	⋖0	ර0	⊲0	⋖0	a
40.88	11/23/2004	37.89	2.99	⋖5.0	⋖5.0	⋖5.0	⋖5.0	<5.0	<5.0	⋖5.0	<5.0	⋖5.0	⋖5.0	⋖5.0	
	3/14/2005	37.28	3.60	-											
															j, i, 1,3-dichlorobenzene (1.2),
	3/15/2005	-		<1.0	<1.0	<1.0	<1.0	<1.0	43	<1.0	<1.0	<1.0	<1.0	<1.0	1,4-dichlorobenzene (5.7)
	6/15/2005	36.78	4.10	-									-		
	6/16/2005	-		<1.0	<1.0	<1.0	<1.0	<1.0	52	<1.0	<1.0	<1.0	<1.0	<1.0	h.j., 1,3-dichlorobenzene (1.5), 1,4-dichlorobenzene (8.3)
MW-4A	6/3/2004	36.26	2.45	<0.5	<0.5	<0.5	1.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
38.71	11/23/2004	37.13	1.58	<0.5	<0.5	<0.5	1.9	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	3/14/2005	36.66	2.05			••			-						
	3/15/2005			<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	6/15/2005	36.38	2.33		-										
	6/16/2005			<0.5	<0.5	<0.5	1.4	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
MW-6A	6/3/2004	31.98	6.00	4.7	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.8	2.1	<0.5	6.7	
37.98	11/23/2004	33.13	4.85	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	3/14/2005	35.03	2.95	0.61	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	6/15/2005	33.28	4.70	6.9	<0.5	<0.5	<0.5	<0.5	3,3	<0.5	2.5	1.5	<0.5	3.2	i, 1,4-dichlorobenzene (0.60)
	compac:	24.00		.0.5	-0.6	-0.5	-A.E	.0.6	2.0	26		25		-0.6	
MW-7A	6/3/2004	36.08	4.50	<0.5	<0.5	<0.5	<0.5	<0.5	2.0	<0.5	<0.5	<0.5	<0.5	<0.5	
40.58	11/23/2004									-0.6					
	3/14/2005	37.03	3.55	<0.5	<0.5	<0.5	<0.5	<0.5	2.6	<0.5	<0.5	<0.5	<0.5	<0.5	h L:
	6/15/2005	36.41	4.17	<0.5	<0.5	<0.5	<0.5	<0.5	1.8	<0.5	<0.5	<0.5	<0.5	<0.5	h,i

H:\NadyQMR\2005\2Q05QMR

Table 2. Groundwater Analytical and Elevation Data: Halogenated Volatile Organic Compounds - 1137-1167 65th Street, Oakland, California

Well ID	Date	Groundwater	Depth												
TOC	Sampled	Elevation	to Water	Chloroethane	Chloroform	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Trichloroethene			trans-1,2-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethane	-	Notes
(fr*)		(ft)	(ft)	<u> </u>					µg/L-					<u> </u>	
California MC					100 (a)	1	.5	5	600	590	10 590	<u>5</u> 47	200	0.5 3.8	
		ng Water Source		12	330	190	120	360	14		•				
MW-1B	6/3/2004	25.10	14.40	<0.5	8.3	<0.5	<0.5	<0.5	<0.5	3.9	<0.5	8.1 8.4	7.9	<0.5 <0.5	
39.50	11/23/2004	26.24	13.26	<0.5	6.2	<0.5	<0.5	<0.5	<0.5	2.5	<0.5	8.4 5.2	8.8 12	<0.5	
	3/14/2005	33.97	5.53	1.1	1.9	<0.5	<0.5	<0.5	<0.5	3.8	<0.5	3.2 8.8	9.9	<0.5	
	6/15/2005	31.87	7.63	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	3.3	<0.5	8.0	9.9	<0.5	•
MW-4B	6/3/2004	33.52	5.02	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
38.54	11/23/2004	34.65	3.89	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	3/14/2005	34.78	3.76						-		-				
	3/15/2005			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	6/15/2005	33.98	4.56						-	-	-				
	6/16/2005			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
MW-5B	6/3/2004	30.16	8.82	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
38.98	11/23/2004	31.32	7.66	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
50.50	3/14/2005	32.71	6.27				-			••	••				
	3/15/2005			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	6/15/2005	31.20	7.78	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
MW-6B	6/3/2004	29.36	8.30	0.65	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
37.66	11/23/2004	30.53	7.13	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.89	<0.5	<0.5	
37.00	3/14/2005	31.86	5.80	<0.5	<0.5	<0.5	<0.5	<0.5	1.1	<0.5	<0.5	<0.5	<0.5	3.5	i
	6/15/2005	30.17	7,49	<0.5	<0.5	<0.5	<0.5	<0.5	1.4	<0.5	<0.5	0.66	<0.5	0.55	
MW-1C	6/3/2004	30.07	9.42	<0.5	0.57	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
39.49	11/23/2004	31.30	9.42 8.19	<0.5	0.56	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
39.47	3/14/2005	32.58	6.91	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	6/15/2005	30.89	8.60	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	•
	3,10,2003	5007		7010			10.00								
MW-4C	6/3/2004	30.10	8.40	<0.5	0.84	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
38.50	11/23/2004	31.31	7.19	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	3/14/2005	33.15	5.35							-	-				
	3/15/2005			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	i
	6/15/2005	30.85	7,65						-	-	-				
	6/16/2005			<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	

H:\NadyQMR\2005\2Q05QMR

Table 2. Groundwater Analytical and Elevation Data: Halogenated Volatile Organic Compounds - 1137-1167 65th Street, Oakland, California

Well ID	Date	Groundwater	Depth												
TOC	Sampled	Elevation	to Water	Chloroethane	Chloroform	1,1,2,2-Tetrachloroethane	Tetrachloroethene	Trichloroethene	1,2-Dichlorobenzene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	1,1-Dichloroethane	1,2-Dichloroethane	Vinyl Chloride	Notes
(fr*)		(ft)	(ft)	—					µg/L-					→	
California MC	Ls				100 (a)	1	5	5	600	6	10	5	0.5	0.5	
ESL - Not a P	otential Drinkir	ng Water Source		12	330	190	120	360	. 14	590	590	47	200	3.8	
MW-6C	6/3/2004	27.89	9.70	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	2.8	<0.5	0.61	<0.5	<0.5	
37.59	11/23/2004	29.21	8.38	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
	3/14/2005	31.79	5.80	<0.5	<0.5	<0.5	1.8	1.9	<0.5	12	<0.5	1.1	<0.5	2.3	
	6/15/2005	30.14	7.45	<0.5	<0.5	<0.5	3.1	3.1	<0.5	20	0.64	1.4	<0.5	5.7	

Abbreviations:

TOC (fr*) = Top of casing elevation in feet above mean sea level

μg/L = micrograms per liter - approximately equal to parts per billion = ppb

ft = measured in feet

Halogenated Volatile Organic Compounds analyzed by EPA Method SW8260B.

California MCLs = California Department of Health Services Maximum Contaminant Levels; Drinking water standards established by the

Department of Health Services. Title 22 California, Code of Regulations, Section 64444, Table 64444-A.

ESL = Not A Potential Drinking Water Source IV, Table B. Screening for Environments Concerns at Site With Contaminated Soil

and Groundwater, Volumes 1 and 2. Interim Final. California Regional Water Quality Control Board - San Francisco Bay Region. February 2005.

-- = Not available, not applicable, not analyzed, not measured

Notes:

a = Total Trihalomethanes

b = Sample diluted due to high organic content

h = lighter than water immiscible sheen/product is present

i = liquid sample that contains greater than ~1 vol. % sediment

j = sample diluted due to high organic content/matrix interference

H:\NadyQMR\2005\2Q05QMR

APPENDIX A

Field Data Sheets

WELL GAUGING SHEET

Client:	Cambria	Environmental	Technolo	ogy Inc.
---------	---------	----------------------	----------	----------

Site

Address: 1137-1167 65th Street Oakland, CA

Date:

6/15/2005

Signature:

Well ID	Time	Depth to SPH	Depth to Water	SPH Thickness	Depth to Bottom	Comments
MW-1A	7:35		4.50		14.39	
MW-1B	6:50		7.63		19.74	
MW-1C	6:55		8.60		34.52	
MW-2A	7:00		2.81		11.13	
MW-3A	7:45		4.10		13.95	
MW-4A	7:05		2.33		12.67	
MW-4B	7:10		4.56		20.77	
MW-4C	7:15		7.65		32.01	
MW-5B	7:20		7.78		23.04	
MW-6A	7:40		4.70		14.40	
MW-6B	7:30		7.49		21.98	

WELL GAUGING SHEET

Client:	Cambria Env	vironmental]	Technology I	nc.		
Site	1137- 1167					
Date:	6/15/2005			Signature:		2
Well ID	Time	Depth to SPH	Depth to Water	SPH Thickness	Depth to Bottom	Comments
MW-6C	7:25		7.45		33.81	
MW-7A	1:00		4.17		10.00	
						!
						·

				•			• •	
Date:		6/15/2005						
Client:		Cambria Er	vironmen	tal Techno	logy Inc.			
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	, CA	···		
Well ID:		MW-1A				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			14.39	Fe=	mg/L		
Depth to V	Water:			4.50	ORP=	mV		
Water Col	umn Heigh	t :		9.89	DO=	mg/L		
Gallons/ft	•			0.16				
1 Casing	Volume (gal	() :		1.58	СОММЕ	NTS:		
3 Casing	Volumes (ga	al):		4.75	Turbid			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
9:45		24.5	7.18	429				
9:50	3.2	24.3	7.14	462				
9:55	4.7	24.3	7.13	455	-			
Sample							<u> </u>	
D:	Date:		Time	Containe	er Type	Preservative	Analytes	Method
MW-1A		/2005	10:00	Voa, Am		нсі, ісе	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010
						Signatur	e: }	

						III I OIL	· - · · · · · · · · · · · · · · · · · ·	
Date:		6/15/2005						
Client:		Cambria Er	nvironmen	tal Techno	logy Inc.			
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	, CA			
Well ID:		MW-1B						
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			19.74	Fe=	mg/L		
Depth to V	Water:			7.63	ORP=	mV		
Water Col	umn Heigh	t:		12.11	DO=	mg/L		
Gallons/ft	•			0.16				
1 Casing V	Volume (gal	· · · · · · · · · · · · · · · · · · ·		1.94	соммі	ENTS:		
				5.81	Turbid			•
TIME:	Volumes (ga CASING VOLUME (gal)	TEMP	pН	COND.				
8:55		25.1	7.16	629				
9:00	3.9	24.7	7.12	680				
9:05	5.8	24.8	7.14	674]			
Sample ID:	Date:		Time	Containe	er Type	Preservative	Analytes	Method
MW-1B		/2005	9:10	Voa, Am		HCl, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010
						Signati	ıre:	1

			· · · · · · · · · · · · · · · · · · ·			III I OILI		
Date:		6/15/2005		··				· · · · · · · · · · · · · · · · · · ·
Client:	· · · · · · · · · · · · · · · · · · ·	Cambria Er	vironmen	tal Techno	logy Inc.			
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA			
Well ID:		MW-1C						
Well Diam	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			34.52	Fe=	mg/L		
Depth to V	Water:			8.60	ORP=	mV		
Water Col	umn Heigh	t:		25.92	DO=	mg/L		
Gallons/ft	:			0.16				
1 Casing V	Volume (ga	D:		4.15	COMMI	ENTS:		
	Volumes (g		· · ·	12.44	Turbid			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
8:15		25.3	6.98	520	1			
8:20	· · · · · · · · · · · · · · · · · · ·	25.3	7.02	541	1			
8:25		25.2	7.04	569				
					-			
Sample ID:	Date:		Time	Containe	er Type	Preservative	Analytes	Method
MW-1C		/2005	8:30	Voa, Am		HCI, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010
						Signatu	re:	<u> </u>

Date:		6/15/2005						
Client:		Cambria Er	vironmen	tal Techno	logy Inc.			
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA			
Well ID:		MW-2A				· · · · · · · · · · · · · · · · · · ·		
Well Dian	neter:	4"						
Purging D	evice:	4" PVC Ba	iler					
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			11.13	Fe=	mg/L		
Depth to V	Water:			2.81	ORP=	mV		
Water Co	umn Heigh	t:		8.32	DO=	mg/L		
Gallons/ft	•			0.65				
1 Casing	Volume (gal	l):		5.41	СОММЕ	NTS:		-
	Volumes (ga			16.22				
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND. (μS)				
7:30		23.9	6.83	499	1			
7:35	· · · · · · · · · · · · · · · · · · ·	24.1	6.85	523]			
7:40	16.2	24.2	6.86	540				
Sample				C		P	Analistas	Makkad
ID:	Date:		Time	Containe	er 1ype	Preservative	Analytes TPHg/ss,	8015, 8020, 8010
MW-2A	A 6/16/2005 7:45		7:45	Voa, Am	ber	HCI, ICE	BTEX, MTBE, TPHd/mo, HVOCs	
						Signatur	re: 🗸	<u></u>

Date:		6/15/2005							
Client:		Cambria E	nvironmen	tal Techno	logy Inc.				
Site Addı	ress:	1137-1167	65th Stree	et Oakland,	, CA				
Well ID:		MW-3A							
Well Dian	neter:	2"							
Purging D	Device:	Disposable	Bailer						
Sampling	Method:	Disposable	Bailer						
Total Wel	ll Depth:			13.95	Fe=	mg/L			
Depth to	Water:			4.10	ORP=	mV			
Water Co	lumn Heigh	t:		9.85	DO=	mg/L			
Gallons/ft	t :			0.16					
1 Casing	Volume (ga	l):		1.58	СОММІ	ENTS:			
3 Casing	Volumes (g	al):		4.73	Very turb	oid			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND. (μS)					
8:15		24.4	7.01	598					
8:20	3.2	24.6	6.98	560					
8:25	4.7	24.6	7.00	572	-				
								,	
Sample ID:	Date:		Time	Containe	er Tyne	Preservative	Analytes	Method	
MW-3A				Voa, Amber		HCl, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010	
						Signat	ure:	<u> </u>	

		 						
Date:		6/15/2005				<u>.</u>		
Client:		Cambria En	vironmen	tal Techno	logy Inc.			
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA			
Well ID:		MW-4A						
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling 2	Method:	Disposable	Bailer					
Total Well	Depth:			12.67	Fe=	mg/L		
Depth to V	Vater:			2.33	ORP=	mV		
Water Col	umn Height	t <u>:</u>	-=-	10.34	DO=	mg/L		
Gallons/ft	•			0.16				
1 Casing V	/olume (gal):		1.65	СОММЕ			
3 Casing V	/olumes (ga	al):		4.96	Very turb	id		
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
7:00	1.7	23.7	6.81	510	1			
7:05	3.3	23.9	6.79	497]			
7:10	5.0	24.0	6.83	490	-			
						1		<u> </u>
Sample ID:	Date:		Time	Containe	er Type	Preservative	Analytes	Method
MW-4A			7:15	Voa, Amber		HCI, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010
						Signat	ure:	1

Date:		6/15/2005							
Client:		Cambria Er	vironmen	tal Techno	logy Inc.				
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA				
Well ID:		MW-4B							
Well Dian	neter:	2"							
Purging D	evice:	Disposable	Bailer						
Sampling	Method:	Disposable	Bailer	· · · · · ·					
Total Wel	Depth:			20.77	Fe=	mg/L	 , .		
Depth to V	Vater:			4.56	ORP=	mV			
Water Col	umn Heigh	t:		16.21	DO=	mg/L			
Gallons/ft	:			0.16					
1 Casing V	Volume (ga	l):		2.59	СОММЕ				
3 Casing V	Volumes (ga	al):		7.78	Very turb	id			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	рΉ	COND.					
6:25	2.6	23.7	7.02	437	1				
6:30	5.2	23.8	6.95	470]				
6:35	7.8	23.9	6.99	458	-				
Sample					1	1			
ID:	Date:	<u></u>	Time	Containe	er Type	Preservative	Analytes	<u> </u>	
MW-4B	3 6/16/2005 6:4		6:40	Voa, Amber		HCI, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010	
						Signatu	re:	<u></u>	

		··	,					
Date:	······	6/15/2005				··		·
Client:		Cambria Er	vironmen	tal Techno	logy Inc.			
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA			
Well ID:		MW-4C				·	· · · · · · · · · · · · · · · · · · ·	
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer			<u> </u>		
Sampling	Method:	Disposable	Bailer					
Total Wel	l Depth:			32.01	Fe=	mg/L		
Depth to V	Water:			7.65	ORP=	mV		
Water Col	umn Heigh	t:		24.36	DO=	mg/L		
Gallons/ft	:			0.16				
1 Casing V	Volume (gal):		3.90	COMME	NTS:		
	Volumes (ga			11.69	Turbid			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	рН	COND.				
5:45		23.9	7.01	610	1			
5:50	7.8	24.2	6.97	627]			
5:55	11.7	24.0	6.99	643]			
Sample ID:	Date:	ï	Time	Containe	er Type	Preservative	Analytes	Method
MW-4C			6:00	Voa, Am		HCI, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010
							_	
						Signatur	re: 🕗	1

Date:		6/15/2005						
Client:		Cambria E	nvironmen	ıtal Techno	logy Inc.			
Site Addr	ess:	1137-1167	65th Stree	et Oakland,	CA			
Well ID:		MW-5B		• • • • •				
Well Dian	neter:	2"						
Purging D	evice:	Disposable	Bailer					
Sampling	Method:	Disposable	Bailer				-	
Total Wel	l Depth:			23.04	Fe≔	mg/L		
Depth to V	Water:			7.78	ORP=	mV		
Water Col	umn Heigh	t:		15.26	DO=	mg/L		
Gallons/ft	:			0.16				
1 Casing V	Volume (gal	 l):		2.44	COMM	ENTS:		
	Volumes (ga			7.32	1			
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.				
2:00	2.4	25.7	7.03	628	1			
2:05	4.9	25.9	7.08	599]			
2:10	7.3	25.9	7.10	603	-			
Sample								
ID:	Date:		Time	Containe	r Type	Preservative	Analytes TPHg/ss,	Method 8015, 8020, 8010
MW-5B	B 6/15/2005 2:15 Vo		Voa, Am	ber	HCl, ICE	BTEX, MTBE, TPHd/mo, HVOCs	8013, 8020, 8010	
						Signatu	ure:	<u></u>

Date:		6/15/2005											
Client:		Cambria Eı	vironmen	tal Techno	logy Inc.		-						
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA								
Well ID:		MW-6A	•										
Well Dian	neter:	2"	2"										
Purging D	evice:	Disposable	Bailer										
Sampling	Method:	Disposable	Bailer										
Total Wel	1 Depth:			14.40	Fe=	mg/L							
Depth to V	Water:			4.70	ORP=	mV							
Water Col	lumn Heigh	t:		9.70	DO=	mg/L							
Gallons/ft	:			0.16									
1 Casing	Volume (gal	l):		1.55	COMME	NTS:							
	Volumes (ga			4.66	Very turbid, slight sheen								
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND.									
12:00		24.9	7.05	617	1								
12:05	 	25.4	7.09	639									
12:10	4.7	25.3	7.11	645									
Sample	D		T:	Cantaina	T	D-second dive	Amalutas	Maked					
ID:	Date:	_	Time	Containe	ег туре	Preservative	Analytes TPHg/ss,	8015, 8020, 8010					
MW-6A	W-6A 6/15/2005 12		12:15	Voa, Am	ber	HCI, ICE	BTEX, MTBE, TPHd/mo, HVOCs	, , , , , , , , , , , , , , , , , , , ,					
						Signatu	re:	-)					

		6/15/0005								
Date:	<u></u>	6/15/2005		·						
Client:		Cambria En	vironment	al Techno	logy Inc.	· · · · · · · · · · · · · · · · · · ·				
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA					
Well ID:		MW-6B								
Well Dian	eter:	2"								
Purging D	evice:	Disposable	Bailer							
Sampling	Method:	Disposable	Bailer					<u> </u>		
Total Wel	Depth:			21.98	Fe=	mg/L		· · · · · · · · · · · · · · · · · · ·		
Depth to V	Vater:	<u> </u>		7.49	ORP=	mV				
Water Col	umn Height	•		14.49	DO=	mg/L				
Gallons/ft	:			0.16	l					
1 Casing V	/olume (gal):		2.32	COMME	NTS:				
	Volumes (ga			6.96	Very turbid, slight sheen					
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	рН	COND. (μS)						
11:15	2.3	24.9	7.25	629	7					
11:20	4.6	24.7	7.29	655						
11:25	7.0	24.6	7.31	658						
					-					
Sample ID:	Date:	<u> </u>	Time	Containe	er Type	Preservative	Analytes	Method		
MW-6B				Voa, Am		HCI, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010		
		,		1		Signatu	re:	J		

Date:		6/15/2005		<u></u>			·		
Client:		Cambria Er	vironmen	tal Techno	logy Inc.	 			
Site Addr		1137-1167							
Well ID:		MW-6C							
Well Dian	neter:	2"							
Purging D	evice:	Disposable	Bailer						
Sampling	Method:	Disposable	Bailer						
Total Wel	l Depth:			33.81	Fe=	mg/L			
Depth to V	Water:			7.45	ORP=	mV			
Water Col	umn Height	t :		26.36	DO=	mg/L			
Gallons/ft	:			0.16					
1 Casing V	Volume (gal):		4.22	СОММ	ENTS:			
3 Casing V	Volumes (ga	al):		12.65	Turbid				
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	pН	COND. (µS)					
10:40		24.7	7.32	520	1				
10:45	· · · · ·	25.0	7.28	541]				
10:50	12.7	25.1	7.27	535	1				
Sample									
ID:	Date:		Time	Containe	r Type	Preservative	Analytes TPHg/ss,		
MW-6C	C 6/15/2005 10:55		10:55	Voa, Am	ber	HCI, ICE	BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010	
						Signatu	re: A		

Date:		6/15/2005									
Client:		Cambria Er	vironmen	tal Techno	logy Inc.						
Site Addr	ess:	1137-1167	65th Stree	t Oakland,	CA						
Well ID:		MW-7A									
Well Dian	neter:	2"									
Purging D	evice:	Disposable	Bailer								
Sampling	Method:	Disposable									
Total Wel	l Depth:			10.00	Fe=	mg/L					
Depth to V	Water:			4.17	ORP=	mV					
Water Co	lumn Heigh	t:		5.83	DO=	mg/L					
Gallons/ft	•			0.04							
1 Casing	Volume (gal	l):		0.23	СОММЕ	NTS:					
3 Casing	Volumes (ga	al):		0.70	Turbid	Turbid					
TIME:	CASING VOLUME (gal)	TEMP (Celsius)	рН	COND.							
1:15		23.9	7.13	429	1						
1:20	0.5	23.5	7.20	445]						
1:25	0.7	23.7	7.17	438	_						
Sample					<u> </u>						
ID:	Date:		Time	Containe	r Type	Preservative	Analytes	Method			
MW-7A			1:30	Voa, Am	ber	HCl, ICE	TPHg/ss, BTEX, MTBE, TPHd/mo, HVOCs	8015, 8020, 8010			
		1,500.00						0			
						Signatur	e:	5			

APPENDIX B

Laboratory Analytical Report

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Reported: 06/23/05
Emeryvine, CA 94008	Client P.O.:	Date Completed: 06/23/05

WorkOrder: 0506310

June 23, 2005

Dear Matt:

Enclosed are:

- 1). the results of 13 analyzed samples from your #522-1000; Nady Systems project,
- 2). a QC report for the above samples
- 3). a copy of the chain of custody, and
- 4). a bill for analytical services.

All analyses were completed satisfactorily and all QC samples were found to be within our control limits. If you have any questions please contact me. McCampbell Analytical Laboratories strives for excellence in quality, service and cost. Thank you for your business and I look forward to working with you again.

Angela Rydelius, Lab Manager

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 06/18/05-06/21/05
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 06/18/05-06/21/05

Extraction Method: SW5030B	Analytical Method: SW8021B/8015Cm				Work Ord	er: 0506310
Lab ID	0506310-001A	0506310-002A	0506310-003A	0506310-004A		
Client ID	MW-1A	MW-1B	MW-1C	MW-2A	Reporting Limit for DF = 1	
Matrix	W	W	W	W		
DF	5	1	1	l and the second	S	W
Compound		Conc	entration		ug/kg	μg/L
TPH(g)	2800	ND	ND	480	NA	50
TPH(ss)	3400	ND	ND	430	NA	50
МТВЕ	ND<25	ND	ND	ND	NA	5.0
Benzene	ND<2.5	ND	ND	ND	NA	0.5
Toluene	ND<2.5	ND	ND	2.9	NA	0.5
Ethylbenzene	ND<2.5	ND	ND	ND	NA	0.5
Xylenes	5.9	ND	ND	ND	NA	0.5
	Surr	ogate Recoveries	s (%)			
%SS:	118	113	104	93		
Comments	e,m,h,i	i		e,m,i		ener a a mila a a a a marina an

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05
·	Client Contact: Matt Meyers	Date Extracted: 06/18/05-06/21/05
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 06/18/05-06/21/05

Extraction Method: SW5030B	Analytical Method: SW8021B/8015Cm				Work Orde	er: 0506310
Lab ID	0506310-005A	0506310-006A	0506310-007A	0506310-008A		. —
Client ID	MW-3A	MW-4A	MW-4B	MW-4C	Reporting Limit for DF =1	
Matrix	W	W	W	W		
DF	3.3	1	1	1	S	W
Compound		Conc	entration		ug/kg	μg/L
TPH(g)	2100	59	ND	ND	NA	50
TPH(ss)	3300	75	ND	ND	NA	50
МТВЕ	ND<17	ND	ND	ND	NA	5.0
Benzene	ND<1.7	1.0	ND	ND	NA	0.5
Toluene	ND<1.7	1.9	ND	ND	NA	0.5
Ethylbenzene	ND<1.7	ND	ND	ND	NA	0.5
Xylenes	2.4	2.1	ND	ND	NA	0.5
Surrogate Recoveries (%)						
%SS:	97	108	105	103		
Comments	e,h,i	a	i			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 06/18/05-06/21/05
Elliciyville, CA 94000	Client P.O.:	Date Analyzed: 06/18/05-06/21/05

Extraction Method: SW5030B		Analytical Method: SW8021B/8015Cm Work Order: 0					er: 0506310
	Lab ID	0506310-009A	0506310-010A	0506310-011A	0506310-012A		
	Client ID	MW-5B	MW-6A	MW-6B	MW-6C	Reporting Limit for DF =1	
	Matrix	W	W	W	W		
	DF	1	1	1	1	S	W
Compound			Conce	entration		ug/kg	μg/L
TPH(g)		ND	2200	900	ND	NA	50
TPH(ss)		ND	3400	1300	ND	NA	50
МТВЕ		ND	ND<10	ND	ND	NA	5.0
Benzene		ND	ND	ND	ND	NA	0.5
Toluene		ND	ND	ND	ND	NA	0.5
Ethylbenzene		ND	0.60	ND	ND	NA	0.5
Xylenes		ND	4.4	1.9	ND	NA	0.5
		Surre	ogate Recoveries	(%)			
%SS:		105	118	90	114		
Comments		i	e,i	е			

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Systems	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A		Date Received: 06/16/05
•	Client Contact: Matt Meyers	Date Extracted: 06/18/05-06/21/05
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 06/18/05-06/21/05

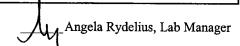
Extraction Method: SW5030B	Analytical Method: SW8021B/8015Cm		Work Order:	Work Order: 0506310	
Lab ID	0506310-013A				
Client ID	MW-7A		Reporting Li	mit for	
Matrix	W		DF =	DF =1	
DF	10		S	W	
Compound		Concentration	ug/kg	μg/L	
TPH(g)	2500		NA	50	
TPH(ss)	3900		NA	50	
МТВЕ	ND<50		NA	5.0	
Benzene	ND<5.0		NA	0.5	
Toluene	ND<5.0		NA	0.5	
Ethylbenzene	ND<5.0		NA	0.5	
Xylenes	ND<5.0		NA	0.5	
	Surroga	ate Recoveries (%)			
%SS:	91				
Comments	e,h,i				
	<u> </u>				

^{*} water and vapor samples and all TCLP & SPLP extracts are reported in ug/L, soil/sludge/solid samples in mg/kg, wipe samples in µg/wipe, product/oil/non-aqueous liquid samples in mg/L.

[#] cluttered chromatogram; sample peak coelutes with surrogate peak.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified gasoline is significant; b) heavier gasoline range compounds are significant(aged gasoline?); c) lighter gasoline range compounds (the most mobile fraction) are significant; d) gasoline range compounds having broad chromatographic peaks are significant; biologically altered gasoline?; e) TPH pattern that does not appear to be derived from gasoline (stoddard solvent / mineral spirit?); f) one to a few isolated non-target peaks present; g) strongly aged gasoline or diesel range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) reporting limit raised due to high MTBE content; k) TPH pattern that does not appear to be derived from gasoline (aviation gas). m) no recognizable pattern; n) TPH(g) range non-target isolated peaks subtracted out of the TPH(g) concentration at the client's request.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com


Cambria Env. Technology	, ,	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A	A Systems	Date Received: 06/16/05
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 06/16/05
Dinery vine, On 94000	Client P.O.:	Date Analyzed: 06/17/05-06/21/05

Diesel Range (C10-C23) Motor Oil Range (C18+) Extractable Hydrocarbons with Silica Gel Clean-Up*

Extraction method: SW	3510C		Analytical methods: SW8015C		Work O	rder: 0506310
Lab ID	Client ID	Matrix	TPH(d)	TPH(mo)	DF	% SS
0506310-001B	MW-1A	w	2500,n,h,i	ND	1	98.0
0506310-002B	MW-1B	w	ND,i	ND	1	107
0506310-003B	MW-1C	w	ND	ND	1	93.0
0506310-004B	MW-2A	w	470,d,g,i	330	1	111
0506310-005B	MW-3A	w	15,000,n,b,h,i	ND<1200	5	105
0506310-006B	MW-4A	w	99,b,f	ND	1	103
0506310-007B	MW-4B	w	ND,i	ND	1	100
0506310-008B	MW-4C	w	ND	ND	1	91.0
0506310-009B	MW-5B	w	ND,i	ND	1	89.0
0506310-010B	MW-6A	w	6100,n,b,i	ND	1	84.0
0506310-011B	MW-6B	w	1700,n	ND	1	93.0
0506310-012B	MW-6C	w	ND	ND	1	90.0
0506310-013B	MW-7A	W	24,000,n,b,h,i	ND<1200	5	116
	mit for DF =1;	W	50	250	μ	g/L
	t detected at or eporting limit	S	NA	NA	m	g/Kg

^{*} water samples are reported in µg/L, wipe samples in µg/wipe, soil/solid/sludge samples in mg/kg, product/oil/non-aqueous liquid samples in mg/L, and all DISTLC / STLC / SPLP / TCLP extracts are reported in µg/L.

⁺The following descriptions of the TPH chromatogram are cursory in nature and McCampbell Analytical is not responsible for their interpretation: a) unmodified or weakly modified diesel is significant; b) diesel range compounds are significant; no recognizable pattern; c) aged diesel? is significant); d) gasoline range compounds are significant; e) unknown medium boiling point pattern that does not appear to be derived from diesel; f) one to a few isolated peaks present; g) oil range compounds are significant; h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; k) kerosene/kerosene range; l) bunker oil; m) fuel oil; n) stoddard solvent/mineral spirit.

[#] cluttered chromatogram resulting in coeluted surrogate and sample peaks, or; surrogate peak is on elevated baseline, or; surrogate has been diminished by dilution of original extract.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 06/18/05
Emeryvine, CA 94008	Client P.O.:	Date Analyzed: 06/18/05

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*

Extraction Method: SW5030B

Analytical Method: SW8260B

Work Order: 0506310

Extraction Method: SW5030B	An	alytical Method: SW826)B		Work Orde	r: 0506310		
Lab ID	0506310-001C	0506310-002C	0506310-003C	0506310-004C				
Client ID	MW-1A	MW-1B	MW-1C	MW-2A	Reporting DF			
Matrix	W	W	W	W	Dr	=1		
DF	2	1	1	1	S	W		
Compound		Concentration						
Bromodichloromethane	ND<1.0	ND	ND	ND	NA	0.5		
Bromoform	ND<1.0	ND	ND	ND	NA	0.5		
Bromomethane	ND<1.0	ND	ND	ND	NA	0.5		
Carbon Tetrachloride	ND<1.0	ND	ND	ND	NA	0.5		
Chlorobenzene	ND<1.0	ND	ND	ND	NA	0.5		
Chloroethane	ND<1.0	ND	ND	ND	NA	0.5		
2-Chloroethyl Vinyl Ether	ND<2.0	ND	ND	ND	NA	1.0		
Chloroform	ND<1.0	1.3	ND	ND	NA	0.5		
Chloromethane	ND<1.0	ND	ND	ND	NA	0.5		
Dibromochloromethane	ND<1.0	ND	ND	ND	NA	0.5		
1,2-Dichlorobenzene	2.6	ND	ND	ND	NA	0.5		
1,3-Dichlorobenzene	ND<1.0	ND	ND	ND	NA	0.5		
1,4-Dichlorobenzene	ND<1.0	ND	ND	ND	NA	0.5		
Dichlorodifluoromethane	ND<1.0	ND	ND	ND	NA	0.5		
1,1-Dichloroethane	3.0	8.8	ND	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<1.0	9.9	ND	ND	NA	0.5		
1,1-Dichloroethene	ND<1.0	ND	ND	ND	NA	0.5		
cis-1,2-Dichloroethene	24	3.3	ND	ND	NA	0.5		
trans-1,2-Dichloroethene	2.4	ND	ND	ND	NA	0.5		
1,2-Dichloropropane	ND<1.0	ND	ND	ND	NA	0.5		
cis-1,3-Dichloropropene	ND<1.0	ND	ND	ND	NA	0.5		
trans-1,3-Dichloropropene	ND<1.0	ND	ND	ND	NA	0.5		
Methylene chloride	ND<1.0	ND	ND	ND	NA	0.5		
1,1,2,2-Tetrachloroethane	ND<1.0	ND	ND	ND	NA	0.5		
Tetrachloroethene	62	ND	ND	ND	NA	0.5		
1,1,1-Trichloroethane	ND<1.0	ND	ND	ND	NA	0.5		
1,1,2-Trichloroethane	ND<1.0	ND	ND	ND	NA	0.5		
Trichloroethene	19	ND	ND	ND	NA	0.5		
Trichlorofluoromethane	ND<1.0	ND	ND	ND	NA	0.5		
Vinyl Chloride	, 10	ND	ND	ND	NA	0.5		
	Su	rrogate Recoverie	es (%)					
%SS1:	97	110	110	100				
%SS2:	93	107	105	98				
%SS3:	88	107	101	96				
Comments	h,i	i		i		**************************************		
		tace	·					

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

Angela Rydelius, Lab Manager

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

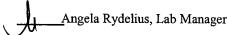
h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see at ached narrative.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 06/18/05
	Client P.O.:	Date Analyzed: 06/18/05

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*

Extraction Method: SW5030B


Analytical Method: SW8260B

Work Order: 0506310

Extraction Method: SW5030B	An	alytical Method: SW826	OB		Work Orde	r: 0506310		
Lab II	0506310-005C	0 0506310-005C 0506310-006C 0506310-007C 0506310-00						
Client II	MW-3A	MW-4A	MW-4B	MW-4C	Reporting DF			
Matri		W	W	W	Dr	-1		
D	F 2	1	1	1	S	W		
Compound		Conc	entration	-	μg/kg	μg/L		
Bromodichloromethane	ND<1.0	ND	ND	ND	NA	0.5		
Bromoform	ND<1.0	ND	ND	ND	NA	0.5		
Bromomethane	ND<1.0	ND	ND	ND	NA	0.5		
Carbon Tetrachloride	ND<1.0	ND	ND	ND	NA	0.5		
Chlorobenzene	ND<1.0	ND	ND	ND	NA	0.5		
Chloroethane	ND<1.0	ND	ND	ND	NA	0.5		
2-Chloroethyl Vinyl Ether	ND<2.0	ND	ND	ND	NA	1.0		
Chloroform	ND<1.0	ND	ND	ND	NA	0.5		
Chloromethane	ND<1.0	ND	ND	ND	NA	0.5		
Dibromochloromethane	ND<1.0	ND	ND	ND	NA	0.5		
1,2-Dichlorobenzene	52	ND	ND	ND	NA	0.5		
1,3-Dichlorobenzene	1.5	ND	ND	ND	NA	0.5		
1,4-Dichlorobenzene	8.3	ND	ND	ND	NA	0.5		
Dichlorodifluoromethane	ND<1.0	ND	ND	ND	NA	0.5		
1,1-Dichloroethane	ND<1.0	ND	ND	ND	NA	0.5		
1,2-Dichloroethane (1,2-DCA)	ND<1.0	ND	ND	ND	NA	0.5		
1,1-Dichloroethene	ND<1.0	ND	ND	ND	NA	0.5		
cis-1,2-Dichloroethene	ND<1.0	ND	ND	ND	NA	0.5		
trans-1,2-Dichloroethene	ND<1.0	ND	ND	ND	NA	0.5		
1,2-Dichloropropane	ND<1.0	ND	ND	ND	NA	0.5		
cis-1,3-Dichloropropene	ND<1.0	ND	ND	ND	NA	0.5		
trans-1,3-Dichloropropene	ND<1.0	ND	ND	ND	NA	0.5		
Methylene chloride	ND<1.0	ND	ND	ND	NA	0.5		
1,1,2,2-Tetrachloroethane	ND<1.0	ND	ND	ND	NA	0.5		
Tetrachloroethene	ND<1.0	1.4	ND	ND	NA	0.5		
1,1,1-Trichloroethane	ND<1.0	ND	ND	ND	NA	0.5		
1,1,2-Trichloroethane	ND<1.0	ND	ND	ND	NA	0.5		
Trichloroethene	ND<1.0	ND	ND	ND	NA	0.5		
Trichlorofluoromethane	ND<1.0	ND	ND	ND	NA	0.5		
Vinyl Chloride	ND<1.0	ND	ND	ND	NA	0.5		
	Sı	rrogate Recoverie	es (%)					
%SS1:	107	108	111	107				
%SS2:	101	108	106	106				
%SS3:	101	107	108	102		-		
Comments	h,i		i					
			·	*	···			

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05-06/16/05				
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05				
Emeryville, CA 94608	Client Contact: Matt Meyers	Date Extracted: 06/18/05				
Eliki yville, CA 74000	Client P.O.:	Date Analyzed: 06/18/05				

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*

Lab ID 0506310-009C 0506310-010C 0506310-011C 0506310-012C Reporting L DF Client ID MW-5B MW-6A MW-6B MW-6C DF Matrix W W W W DF 1 1 1 1 S Compound Concentration µg/kg Bromodichloromethane ND ND ND ND NA Bromoform ND ND ND ND NA NA Bromomethane ND ND ND ND NA	Work Order: 0506310		
Matrix W W W W W W W W W			
Matrix W W W W W W W DF DF			
Compound Concentration μg/kg Bromodichloromethane ND ND ND ND NA Bromoform ND ND ND ND ND NA Bromomethane ND ND ND ND ND NA Bromomethane ND ND ND ND NA ND NA Carbon Tetrachloride ND ND ND ND ND NA NA NA Chlorotetrachloride ND ND ND ND NA NA NA NA NA ND ND ND NA NA NA NA ND ND NA NA NA ND ND NA NA NA NA ND ND NA NA	-1		
Bromodichloromethane	· W		
Bromoform ND ND ND ND NA Bromomethane ND ND ND ND NA Carbon Tetrachloride ND ND ND ND ND NA Chlorotetholorotetholoromethane ND ND ND ND ND NA Chloroethyl Vinyl Ether ND ND ND ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND ND ND NA 2-Chloroethane ND ND ND ND ND NA NA	μg/L		
Bromomethane ND ND ND ND NA Carbon Tetrachloride ND ND ND ND ND NA Chloroetenee ND ND ND ND ND NA Chloroethane ND ND ND ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND ND NA Chloroethyl Vinyl Ether ND ND ND ND ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND ND NA Chloroethyl Vinyl Ether ND ND ND ND ND NA Chloroethane ND ND ND ND ND NA Chloroethane ND ND ND ND NA NA 1,4-Dichloroethane ND ND ND ND NA NA NA 1,1-Dichloroethane ND ND ND <td>0.5</td>	0.5		
Carbon Tetrachloride ND ND ND ND NA Chlorobenzene ND ND ND ND NA Chloroethane ND 6.9 ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND ND NA NA NA ND ND ND NA NA NA ND ND ND NA ND NA ND NA ND NA ND NA ND NA NA NA ND ND NA N	0.5		
Chlorobenzene ND ND ND NA Chloroethane ND 6.9 ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND NA 2-Chloroform ND ND ND ND NA Chloroform ND ND ND ND NA Chloromethane ND ND ND ND NA Dibromochloromethane ND ND ND ND NA 1,2-Dichlorobenzene ND ND ND NA NA 1,3-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorodethane ND ND ND ND NA 1,1-Dichloroethane ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA 1,1-Dichloroethene ND	0.5		
Chloroethane ND 6.9 ND ND NA 2-Chloroethyl Vinyl Ether ND ND ND ND NA Chloroform ND ND ND ND NA Chloromethane ND ND ND ND NA Dibromochloromethane ND ND ND ND NA 1,2-Dichlorobenzene ND ND ND NA 1,3-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND ND ND ND NA 1,1-Dichlorobenzene ND ND ND ND NA 1,1-Dichlorobenzene ND ND ND ND NA 1,1-Dichloroethane ND ND ND ND NA 1,2-Dichloroethane ND ND ND ND NA 1,1-Dichloroethene	0.5		
2-Chloroethyl Vinyl Ether ND ND ND NA Chloroform ND ND ND ND NA Chloroform ND ND ND ND NA Chloromethane ND ND ND ND NA Dibromochloromethane ND ND ND ND NA 1,2-Dichlorobenzene ND ND ND NA NA 1,3-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorodethane ND ND ND ND NA 1,1-Dichloroethane ND ND ND ND NA 1,1-Dichloroethane ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA	0.5		
Chloroform ND ND ND ND NA Chloromethane ND ND ND ND NA Dibromochloromethane ND ND ND ND NA 1,2-Dichlorobenzene ND ND ND NA NA 1,3-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND 0.60 ND ND NA Dichlorodifluoromethane ND ND ND ND NA 1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA	0.5		
Chloromethane ND ND ND ND NA Dibromochloromethane ND ND ND NA ND NA 1,2-Dichlorobenzene ND ND ND ND NA 1,3-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND 0.60 ND ND NA Dichlorodifluoromethane ND ND ND ND NA 1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA 1,2-Dichloroethene ND ND ND ND NA	1.0		
Dibromochloromethane ND ND ND NA 1,2-Dichlorobenzene ND 3.3 1.4 ND NA 1,3-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND 0.60 ND ND NA Dichlorodifluoromethane ND ND ND ND NA 1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA 1,2-Dichloroethene ND ND ND ND NA	0.5		
1,2-Dichlorobenzene ND 3.3 1.4 ND NA 1,3-Dichlorobenzene ND ND ND ND NA 1,4-Dichlorobenzene ND 0.60 ND ND NA Dichlorodifluoromethane ND ND ND ND NA 1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA cis-1,2-Dichloroethene ND ND ND ND NA	0.5		
1,3-Dichlorobenzene ND ND ND NA 1,4-Dichlorobenzene ND 0.60 ND ND NA Dichlorodifluoromethane ND ND ND ND NA 1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA cis-1,2-Dichloroethene ND ND ND ND NA	0.5		
1,4-Dichlorobenzene ND 0.60 ND ND NA Dichlorodifluoromethane ND ND ND ND NA 1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA cis-1,2-Dichloroethene ND ND ND ND NA	0.5		
1,4-Dichlorobenzene ND 0.60 ND ND NA Dichlorodifluoromethane ND ND ND ND NA 1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA cis-1,2-Dichloroethene ND ND ND ND NA	0.5		
1,1-Dichloroethane ND 1.5 0.66 1.4 NA 1,2-Dichloroethane (1,2-DCA) ND ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA cis-1,2-Dichloroethene ND ND ND ND NA	0.5		
1,2-Dichloroethane (1,2-DCA) ND ND ND NA 1,1-Dichloroethene ND ND ND ND NA cis-1,2-Dichloroethene ND ND ND ND NA	0.5		
1,1-Dichloroethene ND ND ND NA cis-1,2-Dichloroethene ND ND ND 20 NA	0.5		
1,1-Dichloroethene ND ND ND NA cis-1,2-Dichloroethene ND ND ND 20 NA	0.5		
cis-1,2-Dichloroethene ND ND ND 20 NA	0.5		
	0.5		
	0.5		
1,2-Dichloropropane ND ND ND NA	0.5		
cis-1,3-Dichloropropene ND ND ND NA	0.5		
trans-1,3-Dichloropropene ND ND ND ND NA	0.5		
Methylene chloride ND ND ND NA NA	0.5		
1,1,2,2-Tetrachloroethane ND ND ND NA	0.5		
Tetrachloroethene ND ND ND 3.1 NA	0.5		
1,1,1-Trichloroethane ND ND ND NA	0.5		
1,1,2-Trichloroethane ND ND ND NA	0.5		
Trichloroethene ND ND ND 3.1 NA	0.5		
Trichlorofluoromethane ND ND ND NA	0.5		
Vinyl Chloride ND 3.2 0.55 5.7 NA	0.5		
Surrogate Recoveries (%)			
%SS1: 107 102 101 106			
%SS2: 102 86 106 106			
%SS3: 98 113 112 105			
Comments i i			

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

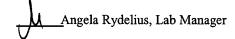
ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

[#] surrogate diluted out of range or surrogate coelutes with another peak.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 $Telephone: 925\text{-}798\text{-}1620 \quad Fax: 925\text{-}798\text{-}1622$ Website: www.mccampbell.com E-mail: main@mccampbell.com

Cambria Env. Technology	Client Project ID: #522-1000; Nady	Date Sampled: 06/15/05-06/16/05
5900 Hollis St, Suite A	Systems	Date Received: 06/16/05
E	Client Contact: Matt Meyers	Date Extracted: 06/18/05
Emeryville, CA 94608	Client P.O.:	Date Analyzed: 06/18/05

Halogenated Volatile Organics by P&T and GC-MS (8010 Basic Target List)*


Extraction Method: SW5030B	Analytical	Work Orde	Work Order: 0506310		
Lab ID	0506310-013C		D time	T ! ! (C	
Client ID	MW-7A		Reporting DF		
Matrix	W		•		
DF	1		S	W	
Compound		μg/kg	μg/L		
Bromodichloromethane	ND		NA	0.5	
Bromoform	ND		NA	0.5	
Bromomethane	ND		NA NA	0.5	
Carbon Tetrachloride	ND		NA	0.5	
Chlorobenzene	ND		NA	0.5	
Chloroethane	ND		NA	0.5	
2-Chloroethyl Vinyl Ether	ND		NA	1.0	
Chloroform	ND		NA	0.5	
Chloromethane	ND		NA	0.5	
Dibromochloromethane	ND		NA	0.5	
1,2-Dichlorobenzene	1.8		NA	0.5	
1,3-Dichlorobenzene	ND		NA	0.5	
1,4-Dichlorobenzene	ND		NA	0.5	
Dichlorodifluoromethane	ND		NA	0.5	
1,1-Dichloroethane	ND		NA	0.5	
1,2-Dichloroethane (1,2-DCA)	ND		NA	0.5	
1,1-Dichloroethene	ND		NA	0.5	
cis-1,2-Dichloroethene	ND		NA	0.5	
trans-1,2-Dichloroethene	ND		NA	0.5	
1,2-Dichloropropane	ND		NA	0.5	
cis-1,3-Dichloropropene	ND		NA	0.5	
trans-1,3-Dichloropropene	ND		NA	0.5	
Methylene chloride	ND		NA	0.5	
1,1,2,2-Tetrachloroethane	ND		NA	0.5	
Tetrachloroethene	ND		NA	0.5	
1,1,1-Trichloroethane	ND		NA	0.5	
1,1,2-Trichloroethane	ND		NA	0.5	
Trichloroethene	ND		NA	0.5	
Trichlorofluoromethane	ND		NA	0.5	
Vinyl Chloride	ND		NA	0.5	
	Surrog	ate Recoveries (%)			
%SS1:	106				
%SS2:	105				
%SS3:	109				
Comments	h,i				

^{*} water and vapor samples are reported in µg/L, soil/sludge/solid samples in mg/kg, product/oil/non-aqueous liquid samples and all TCLP & SPLP extracts are reported in mg/L, wipe samples in µg/wipe.

ND means not detected above the reporting limit; N/A means analyte not applicable to this analysis.

surrogate diluted out of range or surrogate coelutes with another peak.

h) lighter than water immiscible sheen/product is present; i) liquid sample that contains greater than ~1 vol. % sediment; j) sample diluted due to high organic content/matrix interference; k) reporting limit near, but not identical to our standard reporting limit due to variable Encore sample weight; m) reporting limit raised due to insufficient sample amount; n) results are reported on a dry weight basis; p) see attached narrative.

NONE

McCampbell Analytical, Inc.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560
Telephone: 925-798-1620 Fax: 925-798-1622
Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0506310

EPA Method: SW8021B/801	EPA Method: SW8021B/8015Cm Extraction: SW5030B					BatchID: 16675 Spiked Sample ID: 0506304-007A				
Analyte	Sample	Spiked	мѕ	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD
MTBE	ND	10	109	109	0	116	115	0.783	70 - 130	70 - 130
Benzene	ND	10	105	104	1.26	106	106	0	70 - 130	70 - 130
Toluene	ND	10	106	103	1.97	107	109	1.95	70 - 130	70 - 130
Ethylbenzene	ND	10	107	108	0.230	107	109	1.37	70 - 130	70 - 130
Xylenes	ND	30	110	110	0	110	110	0	70 - 130	70 - 130
%SS:	101	10	99	96	2.76	99	96	3.44	70 - 130	70 - 130

 $All \ target \ compounds \ in \ the \ Method \ Blank \ of \ this \ extraction \ batch \ were \ ND \ less \ than \ the \ method \ RL \ with \ the \ following \ exceptions:$

BATCH 16675 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0506310-001A	6/15/05 10:00 AM	6/21/05	6/21/05 1:56 AM	0506310-002A	6/15/05 9:10 AM	6/20/05	6/20/05 10:28 PM

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8021B/8015Cm

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0506310

EPA Method: SW8021B/8015Cm Extraction: SW5030B					Batc	hID: 1668	8	Spiked Sample ID: 0506315-004A			
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)	
	μg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD	
МТВЕ	ND	10	110	107	3.13	113	107	4.87	70 - 130	70 - 130	
Benzene	ND	10	104	102	2.20	103	103	0	70 - 130	70 - 130	
Toluene	ND	10	105	103	1.98	105	105	0	70 - 130	70 - 130	
Ethylbenzene	ND	10	107	104	2.07	106	105	0.373	70 - 130	70 - 130	
Xylenes	ND	30	110	107	3.08	110	107	3.08	70 - 130	70 - 130	
%SS:	96	10	95	96	0.469	95	96	0.297	70 - 130	70 - 130	

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions: NONE

BATCH 16688 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0506310-003A	6/15/05 8:30 AM	6/18/05	6/18/05 3:43 AM	0506310-004A	6/16/05 7:45 AM	6/18/05	6/18/05 4:13 AM
0506310-005A	6/16/05 8:30 AM	6/21/05	6/21/05 2:26 AM	0506310-006A	6/16/05 7:15 AM	6/20/05	6/20/05 11:57 PM
0506310-007A	6/16/05 6:40 AM	6/18/05	6/18/05 5:43 AM	0506310-008A	6/16/05 6:00 AM	6/18/05	6/18/05 6:13 AM
0506310-009A	6/15/05 2:15 PM	6/18/05	6/18/05 6:42 AM	0506310-010A	6/15/05 12:15 PM	6/21/05	6/21/05 12:27 AM
0506310-011A	6/15/05 11:30 AM	6/21/05	6/21/05 1:26 AM	0506310-012A	6/15/05 10:55 AM	6/18/05	6/18/05 7:12 AM
0506310-013A	6/15/05 1:30 PM	6/21/05	6/21/05 9:41 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

£ TPH(btex) = sum of BTEX areas from the FID.

cluttered chromatogram; sample peak coelutes with surrogate peak.

N/A = not applicable or not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8015C

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0506310

EPA Method: SW8015C	E	Extraction: SW3510C				hID: 1668	2	Spiked Sample ID: N/A		
Analyte	Sample	Spiked	MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance	Criteria (%)
	µg/L	μg/L μg/L % Rec.			% RPD	% Rec.	% Rec.	% RPD MS/MSD LCS/L		
TPH(d)	N/A	1000	N/A	N/A	N/A	117	118	0.911	N/A	70 - 130
%SS:	N/A	2500	N/A	N/A	N/A	106	107	0.527	N/A	70 - 130

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 16682 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0506310-001B	6/15/05 10:00 AM	6/16/05	6/17/05 12:22 PM	0506310-002B	6/15/05 9:10 AM	6/16/05	6/21/05 1:24 PM
0506310-003B	6/15/05 8:30 AM	6/16/05	6/17/05 2:36 PM	0506310-004B	6/16/05 7:45 AM	6/16/05	6/17/05 1:59 PM
0506310-005B	6/16/05 8:30 AM	6/16/05	6/21/05 12:10 AM	0506310-006B	6/16/05 7:15 AM	6/16/05	6/21/05 2:37 PM
0506310-007B	6/16/05 6:40 AM	6/16/05	6/17/05 5:55 PM	0506310-008Ь	6/16/05 6:00 AM	6/16/05	6/17/05 7:02 PM
0506310-009Ъ	6/15/05 2:15 PM	6/16/05	6/17/05 8:09 PM	0506310-010Ъ	6/15/05 12:15 PM	6/16/05	6/17/05 9:15 PM
0506310-011b	6/15/05 11:30 AM	6/16/05	6/17/05 10:22 PM	0506310-012Ъ	6/15/05 10:55 AM	6/16/05	6/17/05 11:28 PM
0506310-013B	6/15/05 1:30 PM	6/16/05	6/20/05 11:00 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

% Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

110 2nd Avenue South, #D7, Pacheco, CA 94553-5560 Telephone: 925-798-1620 Fax: 925-798-1622 Website: www.mccampbell.com E-mail: main@mccampbell.com

QC SUMMARY REPORT FOR SW8260B

W.O. Sample Matrix: Water

QC Matrix: Water

WorkOrder: 0506310

EPA Method: SW8260B	E	xtraction:	SW5030E	3	Batc	hID: 1668	9	Spiked Sample ID: 0506310-007C					
Analyte	Sample Spiked		MS	MSD	MS-MSD	LCS	LCSD	LCS-LCSD	Acceptance Criteria (%)				
	µg/L	μg/L	% Rec.	% Rec.	% RPD	% Rec.	% Rec.	% RPD	MS / MSD	LCS / LCSD			
Chlorobenzene	ND	10	117	118	0.967	118	116	1.14	70 - 130	70 - 130			
1,2-Dichloroethane (1,2-DCA)	ND	10	106	108	2.07	110	114	3.40	70 - 130	70 - 130			
1,1-Dichloroethene	ND	10	115	117	1.87	119	119	0	70 - 130	70 - 130			
Trichloroethene	ND	10	92.9	94.1	1.20	96.1	98	1.88	70 - 130	70 - 130			
%SS1:	111	10	88	89	1.66	92	93	1.42	70 - 130	70 - 130			
%SS2:	106	10	98	99	1.38	97	98	1.23	70 - 130	70 - 130			
%SS3:	108	10	107	104	2.88	106	110	3.88	70 - 130	70 - 130			

All target compounds in the Method Blank of this extraction batch were ND less than the method RL with the following exceptions:

NONE

BATCH 16689 SUMMARY

Sample ID	Date Sampled	Date Extracted	Date Analyzed	Sample ID	Date Sampled	Date Extracted	Date Analyzed
0506310-001C	6/15/05 10:00 AM	6/18/05	6/18/05 9:18 AM	0506310-002C	6/15/05 9:10 AM	6/18/05	6/18/05 10:03 AM
0506310-003C	6/15/05 8:30 AM	6/18/05	6/18/05 10:48 AM	0506310-004C	6/16/05 7:45 AM	6/18/05	6/18/05 11:34 AM
0506310-005C	6/16/05 8:30 AM	6/18/05	6/18/05 12:20 PM	0506310-006C	6/16/05 7:15 AM	6/18/05	6/18/05 1:07 PM
0506310-007C	6/16/05 6:40 AM	6/18/05	6/18/05 1:54 PM	0506310-008C	6/16/05 6:00 AM	6/18/05	6/18/05 2:39 PM
0506310-009C	6/15/05 2:15 PM	6/18/05	6/18/05 4:55 PM	0506310-010C	6/15/05 12:15 PM	6/18/05	6/18/05 5:40 PM
0506310-011C	6/15/05 11:30 AM	6/18/05	6/18/05 6:25 PM	0506310-012C	6/15/05 10:55 AM	6/18/05	6/18/05 7:10 PM
0506310-013C	6/15/05 1:30 PM	6/18/05	6/18/05 7:55 PM				

MS = Matrix Spike; MSD = Matrix Spike Duplicate; LCS = Laboratory Control Sample; LCSD = Laboratory Control Sample Duplicate; RPD = Relative Percent Deviation.

MS / MSD spike recoveries and / or %RPD may fall outside of laboratory acceptance criteria due to one or more of the following reasons: a) the sample is inhomogenous AND contains significant concentrations of analyte relative to the amount spiked, or b) the spiked sample's matrix interferes with the spike recovery.

N/A = not enough sample to perform matrix spike and matrix spike duplicate.

NR = analyte concentration in sample exceeds spike amount for soil matrix or exceeds 2x spike amount for water matrix or sample diluted due to high matrix or analyte content.

Laboratory extraction solvents such as methylene chloride and freon 113 may occasionally appear in the method blank at low levels.

[%] Recovery = 100 * (MS-Sample) / (Amount Spiked); RPD = 100 * (MS - MSD) / ((MS + MSD) / 2).

McCAMPBI	ELL ANA	ALYT	ICAL,	IN	C. #D7									Per F	78887	, -						C					RE				K
		PACHEO	O, CA 945	53-550	60									1.6	JRN	Al	ωt	JNL	7 1]	LIVI.	Ľ.		□ DI	⊫ JSH] !4 H		□ 48 H		□: 72 IH	
	site: <u>www.me</u> c e: (925) 798-		com Em	il: m			mpb (92:			622				ED!	F Re	quir	ed? (Yes	No				ΚU	J311	. 4	. 4 11	K	70 11		/ 2 I	IK 5
Report To: Matt		1020	Ë	ill To								ogv	+					_	nal		Rec	mes	t						Other	T	Comm
Company: Camb		nental T							******						Zet -												33	┰			
5900	Hollis St. Ste	e A												8015)	silicage	BE				gene	:			TBA,			20) 8015/802J				Filter Sampl
	ryville, CA 9	4608	<u>.</u>	E-N	Mail:	mr	neye	15	Can	γc)	a-en	v- C19	201	+	15	8 E			Ì	Con				PE,			13				for M
Tele: 510-420-3				ax: ((510)	420)-917	70			_	_		Gas (602 / 8021		135	3	8		ors/		જ		E, Di			30)				analy
Project #: 522-10	000		P	rojec	t Na	me;	Nac	72 S	275	em	S.		_	02 /	∞ 17	1664	(418	Š	<u>8</u>	roct		icide		AMC 82	5		× × ×				Yes/
Project Location:	1137-1167	1 65th	<u>'St</u>	Oak'	lani	الرلا	Α_	٠					_	9) se	602	lse (I	Suon	8	ticid	,Y; A	des)	Herb	වි	EE, T		826(18 F	j			
Sampler Signatur	e: Muskan F	Invironn	nental Sa	mpli	ng	•	£	12						as G	CEPA Oil C	Gree	cark	/ 802	! Pes	NO	stici	[D]	8	ETE		s by	E PA	15			
		SAMI	PLING		ers	1	MA	TRI	X	PR	IET!	HOD RVE	a [']	& TPH as	MTBE / BTEX ONLY (EPA 602 / 8021) TPH as Diesel / Motor Oil (8015)	Total Petroleum Oil & Grease (1664 / 5520 E/B&F)	Total Petroleum Hydrocarbons (418.1)	EPA 502.2 / 601 / 8010 / 8021 (HVOCs)	EPA 505/ 608 / 8081 (C! Pesticides)	EPA 608 / 8082 PCB's ONLY; Aroclors / Congeners	EPA 507 / 8141 (NP Pesticides)	EPA 515 / 8151 (Acidic Cl Herbicides)	EPA 524.2 / 624 / 8260 (VOCs)	Fuel Additives (MTBE, ETBE, TAME, DIPE, 1.2 - DCA, 1.2 - EDB, ethanol) by 8260B		VOCs and fuel additives by 8260	TPHG/BIEX & MIBE BY (8015/8020)	0108]		
6.3377				ers	aji.				Т	 ^ `				× &	X ON	0 11	H HI	01/8	808/	22 PC	41 (1)	S1 (A	24/8	S (M	Z W	ad ad	8 P		1 1		
SAMPLE ID (Field Point Name)	LOCATION	l		Containers	Containers									MTBE / BTEX	BTE	rolet	role	2/6	809/	308/	18 /	/ 81	2/6	itive	TPHg by 8015 M	d fue	S S	HUOC	[
(Tiero Tonic Ivanic)		Date	Time	Į į	l s	ter		. 2	ie ig	[E-2]	إبرا	္ခ	je l	3E /	BE/J	l Pet	l Pet	505	505	809	507	515	524	Add	g by	's an	20 4 10 4	1 5			
) #	Type	Water	Soil	Air	Other	ICE	HCL	HNO ₃	Other	E	MTH	Tota	Tota	EPA	EPA	EPA	EPA	EPA	EPA	Fuel 1.2-	HA	VOC	HAIL DO	1	1		
MWIA		6-15-05	10:00	5	Amb VOa	$\frac{1}{x}$		-	+-	X		-	+		X	-	-										- 			╅	<u></u>
MW-1B			9:10	Ť	٦	11		$\neg \vdash$		ΙÌ	Ì			7		<u> </u>	1									-	-	17		1	
- MW-IC		1	8.30	\vdash	T	11		\top	-	$\dagger \dagger$	H		╅			+	+	-				<u>-</u>			 			$\dagger \dagger$	1	\dashv	
MW-2A		6-1605		\vdash	\vdash	$\dagger \dagger$		+	+	H		_	十	-+		\dagger	+	<u> </u>						-				11	11	_	•
		6-100)	8:30			H		+	-	H		+	+	-	$\dashv \dagger$	┼	+	 										+	1		
					1-1	+/-		-	+	++		+	+	-	\dashv													+		+	_
MWYA		 	7:15	\vdash	╂┈┼	+		_	+-	╁┼	$\left \cdot \right \left \cdot \right $		+			├	+	ļ -							<u> </u>			++		+	
MW-4B	ļ		6:40	\vdash	1	H	_	+	+	\Box	$ \cdot $		4	_		ļ		-						-	-		_#	++		_	
MW-4C		<u> </u>	6:00		$\sqcup \downarrow$				_	\coprod	Ш	_	_			1	<u> </u>	<u> </u>					ļ		<u> </u>			\coprod		4	
MW-5B		6-15-05	2115		$\sqcup \bot$				\perp	Ш														<u> </u>	<u></u>			\coprod			
MW-6A			12:15	Ш				_																							
MW-6B			11:30		\prod					П			T																		
MD-60			10:55	\Box	\prod			\top	1	\prod		\top	_		$\exists f$		1											11		1	
MW-7A			1:30	#	4			-	+-	H^-		\dashv	+		1	 -			\vdash						 		44	14		十	
TB		*	1	2	Voc			\dashv		1.	4,				F	_	_											 	++	一,	4010
1 15		100		or_	000	1	\vdash	\dashv	+	1	37		+	7	-			 										-	$\overline{\Box}$		10 10
Relinquished by:	L	Date: /	Time:	Rece	والالانا	 K:				-			\dashv			2000		\mathcal{L}	L	Ш	7-	\bigsqcup_{i}	L	Ш	<u> </u>	Ш		ــــــــــــــــــــــــــــــــــــــ	LL		
1/2	-	416/05	100 / C					•/			_/				ì	GOC	D CO	NDI	TON	\checkmark	_	/·	APP	ROP	RIAT	3 \ .					
Relinquished By:	 	Date:	Time:	Rece	eived I	<i>y py</i> C 3v:	- L		<u> </u>		A		\dashv			HEA DEC	D SP/ HLOR	LCE A	ABSE FED I	NT_ NLA			COV	ITAN	NERS VED	ı V	7				
1																PRE				DAS/	,				ענטע וסוו		~}				

110 Second Avenue South, #D7 Pacheco, CA 94553-5560 (925) 798-1620

CHAIN-OF-CUSTODY RECORD

Page 1 of 1

WorkOrder: 0506310

ClientID: CETE

Report to:

Matt Meyers

Cambria Env. Technology 5900 Hollis St, Suite A

Emeryville, CA 94608

TEL:

(510) 420-0700

(510) 420-9170 FAX: ProjectNo: #522-1000; Nady Systems

PO:

Bill to:

Requested TAT:

5 days

Accounts Payable

Cambria Env. Technology

5900 Hollis St, Ste. A

Date Received:

06/16/2005

Emeryville, CA 94608

Date Printed: 06/16/2005

				:						Reques	ted Test	s (See I	egend l	pelow)					
Sample ID	ClientSampID	Matrix	Collection Date	Hold	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0506310-001	MW-1A	Water	6/15/05 10:00:00		<u> </u>	Α	Α	В	Ţ		Ţ		1						
0506310-002	MW-1B	Water	6/15/05 9:10:00 AM		С	Α		В										į	
0506310-003	MW-1C	Water	6/15/05 8:30:00 AM		С	Α		В			1					ļ	-	ļ Ļ	
0506310-004	MW-2A	Water	6/16/05 7:45:00 AM		С	Α		В								1	 		
0506310-005	MW-3A	Water	6/16/05 8:30:00 AM		С	Α		В								ļ	ļ	<u> </u>	
0506310-006	MW-4A	Water	6/16/05 7:15:00 AM		С	Α		В				<u> </u>	<u> </u>	<u> </u>		<u> </u>	 	: +	
0506310-007	MW-4B	Water	6/16/05 6:40:00 AM		С	Α		В	<u> </u>	ļ						ļ	i	1	_
0506310-008	MW-4C	Water	6/16/05 6:00:00 AM		С	Α		В								<u> </u>			_ _
0506310-009	MW-5B	Water	6/15/05 2:15:00 PM		С	Α		В	i	1						<u> </u>	ļ	:	
0506310-010	MW-6A	Water	6/15/05 12:15:00		С	Α		В	ļ				J				-		
0506310-011	MW-6B	Water	6/15/05 11:30:00		С	Α		В									<u> </u>	-	
0506310-012	MW-6C	Water	6/15/05 10:55:00		С	Α		В			<u> </u>					ļ			
0506310-013	MW-7A	Water	6/15/05 1:30:00 PM		С	Α		В			:	!	1	<u> </u>			<u>i</u>	<u> </u>	

Test Legend:

1	8010BMS_W
6	
11	

2	G-MBTEX_W
7	
12	

3	PREDF REPORT
8	
13	

4	TPH(D)WSG_W
9	
14	

5	
10	
15	

Prepared by: Melissa Valles

Comments:

NOTE: Samples are discarded 60 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at client expense.

APPENDIX C

Non-Hazardous Waste Manifest

NON-HAZARDOUS WASTE

	1	ION-HAZA	RPOUS WASIE	MANIF	ESI		EES1	9	
	NON-HAZARDOUS WASTE MANIFEST	1. Generator's US E	PA ID No.		Manifest Document No.	NH	3315	2. Page of	1
	3. Generator's Name and Mailing Address	MBELA SULTE D	EMEDINII E	120					
		· 01/6 /4	CHERYDICCE 2011						
	4. Generator's Phone (5/C) 4/2/ 5. Transporter 1 Company Name	9-33/4	6. US EPA ID Number	18					
		VICES	1		A. State Trans B. Transporter	<u>`</u>		100	
	EVERGREEN ENVIRONMENTAL SER' 7. Transporter 2 Company Name	VICES	CAD982413262 8. US EPA ID Number		C. State Trans				
	O. D. Janes J. F. W. N. and Ch. Address		10 FRA ID Number		D. Transporter)	-	
	Designated Facility Name and Site Address		10. US EPA ID Number		E. State Facilit	ly S ID			
	EVERGREEN OIL, INC. 6880 Smith Avenue				F. Facility's Ph	ione			
	Newark, CA 94560		CAD980887418		510 795	-4400			
	11. WASTE DESCRIPTION	,	•	12. Conta			13. Total Quantity	1	14. Unit t./Vol.
	a.		· · · · · · · · · · · · · · · · · · ·	140.	Type		Quantity		., voi.
	Non-Hazardous waste, liquid		_	11	DM	ر	9 29 A		
0	<i>(10</i>	ILGE INTE	Te)	901	-11-	-	220		G
GHZHR	u.								
E									
R A	С.								
A T O									
Ŏ R	d.								
	•								
	G. Additional Descriptions for Materials Listed Al	bove	· · · · · · · · · · · · · · · · · · ·		H. Handling C	odes for	Wastes Listed Al	oove	
				_					
	1/15. 1/67 65 da	ST OME	UNNIO CA 14	609					
	15. Special Handling Instructions and Additional	Information		,	والمعامل الماليات		,		
	Profile #				Invoice: 🔀 Sales Orde	r:			
	Do not ingest Wear protective clothing								
	In case of emergency call: CHEMTREC	800-424-9300	PROJECT NU	MSER	3521	1-10	00-52	7	
	 GENERATOR'S CERTIFICATION: I hereby in proper condition for transport. The materia 	certify that the contents als described on this ma	s of this shipment are fully and accurate anifest are not subject to federal hazard	ely described an dous waste regu	d are in all resp lations.	pects	_ .		
		×	i Š					Date	
	Printed/Typed Name		Signature				Mor		Year
	The second secon	a कि जैसे हैं । इस के ब्रह्म न के जिसके के का	Math AN	TANGER WARRAN	संबद्धिकार ः कार्य () राज्य	15403 St	S., Profesional and the control	7125	1.5
R	17: Transporter 1 Ackrowledgement of Receipt Printed/Typed Name	of Materials	Signature		科学的 如		Mor	Date oth Day	Year
Ñ	March Sandt	h	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Co		Ź	/	120	KS
Ö	18. Transporter 2 Acknowledgement of Receipt	of Materials						Date	对的型
RANSPORTER	Printed/Typed Name		Signature				Mor	oth Day	Year
	19. Discrepancy Indication Space								1
FA									
C	20. Facility Owner or Operator: Certification of r	eceint of the weste met	erials covered by this manifest, except	as noted in item	19.				
L	20. Facility Owner or Operator: Certification of f	eceipi oi ille waste mate	енаю сочетва ву инѕ піаппеві, ехсері	as noteu in item	. 1 <i>3.</i>			Date	
T	Printed/Typed Name		Signature				Moi		Year
Y			1					1	1