RECEIVED

By lopprojectop at 11:44 am, Jun 05, 2006

May 11, 2006

Mr. Barney Chan Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, CA 94502

SUBJECT:

1001 42nd Street Oakland, California

Dear Mr. Chan:

Attached please find a copy of the most recent groundwater sampling report for the above referenced site. I declare, under penalty of perjury, that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

Sincerely,

Edward Kozel

EdelNyl

May 7, 2006

SEMI-ANNUAL GROUNDWATER MONITORING REPORT MARCH 2006 GROUNDWATER SAMPLING

at Kozel Property 1001 42nd Street Oakland, California

Submitted by:
AQUA SCIENCE ENGINEERS, INC.
208 W. El Pintado
Danville, CA 94526
(925) 820-9391

INTRODUCTION 1.0

This report presents the methods and findings of Aqua Science Engineers, Inc. (ASE's) semiannual groundwater monitoring at the Kozel Property located at 1001 42nd Street in Oakland, California (Figures 1 and 2). Part of the site is also located in Emeryville, California as the city limit runs through the subject property.

GROUNDWATER FLOW DIRECTION AND GRADIENT 2.0

On March 2, 2006, ASE measured the depth to water in monitoring wells MW-B2, MW-B3, MW-B4 and BES-1 using an electric water level sounder. Monitoring well MW-B1 had been recently covered with a new concrete sidewalk installed by the developer of the property to the south as a part of that site's development as a residential community. The surface of the groundwater was also checked for the presence of free-floating hydrocarbons or sheen using an interface probe and product thickness bailer. Monitoring well BES-1 contained 0.10 feet of free-Groundwater elevation data is presented in Table One. floating hydrocarbons. monitoring events have been scheduled to coincide with sampling conducted by Clayton Environmental at the adjacent Former Dunne Paints site: however, Clayton has recommended case closure for the site and therefore has discontinued groundwater monitoring. Historical elevation data from Clayton Environmental for Former Dunne Paints is also included in the Table One.

A groundwater elevation (potentiometric surface) contour map is presented as Figure 2. The groundwater flow direction at the site is generally to the southwest with an approximate gradient of 0.03 feet/foot.

MONITORING WELL SAMPLING 3.0

On March 2, 2006, ASE collected groundwater samples from monitoring wells MW-B2, MW-B3, and MW-B4 for analysis. Monitoring well MW-B1 was not sampled because it was beneath new concrete, and BES-1 was not sampled due to the presence of free-floating hydrocarbons.

Prior to sampling, the wells were purged of three well casing volumes of groundwater using disposable polyethylene bailers. The pH, temperature, and conductivity of the purge water were monitored during evacuation, and samples were not collected until these parameters stabilized. Samples were collected from each well using the same bailers. The groundwater samples to be analyzed for volatile compounds were decanted from the bottom of the bailers using low flow emptying devices into 40-ml volatile organic analysis (VOA) vials, preserved with hydrochloric acid, and sealed without headspace. The remaining samples were decanted into 1-liter amber glass bottles. All of the samples were labeled and stored on ice for transport to Severn Trent Laboratories (STL San Francisco) of Pleasanton, California (CA DHS ELAP# 2496) under appropriate chain of custody documentation.

Well sampling purge water was contained in a sealed and labeled 55-gallon steel drum for temporary storage until off-site disposal can be arranged. See Appendix A for copies of the well sampling field logs.

4.0 ANALYTICAL RESULTS FOR GROUNDWATER

All groundwater samples were analyzed by STL San Francisco for total petroleum hydrocarbons as mineral spirits (TPH-MS) by modified EPA Method 8015M with silica gel cleanup, and volatile organic compounds (VOCs) by EPA Method 8260B. The analytical results are tabulated in Table Two, and a copy of the certified analytical report and chain of custody form are included in Appendix B.

4.1 Mineral Spirit Results

• The groundwater sample collected from monitoring well MW-B2 contained 9,200 parts per billion (ppb) TPH-MS. This is an increase from the previous sampling, but is still consistent with previous results. The groundwater sample collected from monitoring well MW-B4 contained 2,300 ppb TPH-MS, which is a slight decrease from the previous sampling. No TPH-MS was detected in the groundwater sample collected from MW-B3.

4.2 VOC Results

- The groundwater sample collected from monitoring well MW-B2 contained 1.8 ppb tert-butylbenzene. This is a decrease from the last sampling. No other VOCs were detected in the groundwater sample from monitoring well MW-B2.
- No VOCs were detected in the groundwater sample from monitoring well MW-B3. This is a decrease from the previous sampling.
- The groundwater sample collected from monitoring well MW-B4 contained 3.5 ppb tert-butylbenzene and 0.86 ppb vinyl chloride. These concentrations are lower than the previous sampling. No other VOCs were detected in the groundwater sample from monitoring well MW-B4.

5.0 CONCLUSIONS

Monitoring BES-1 contained a measurable thickness of free-floating hydrocarbons this quarter, which is consistent with previous findings. The free-floating hydrocarbons were bailed from the well and contained in a drum on-site. There was an increase in the TPH-MS concentration in MW-B2, although the results are consistent with historical results. The TPH-MS concentration in MW-B4 decreased slightly this quarter. No TPH-MS was detected in monitoring well MW-B3 during this sampling period. All of the VOC concentrations detected during this sampling were lower than concentrations detected during the previous sampling. None of the VOC concentrations in any of the groundwater samples analyzed exceeded California Regional

-2-

Water Quality Control Board, San Francisco Bay Region (RWQCB) environmental screening levels (ESLs) for sites where groundwater is not a current or potential source of drinking water.

6.0 RECOMMENDATIONS

The property is currently in the process of being sold. Once the details of the sale are completed, a remedial action plan will be prepared for the site. ASE recommends continued groundwater monitoring at the site on a semi-annual basis. The next groundwater monitoring event is scheduled for September 2006.

7.0 REPORT LIMITATIONS

The results presented in this report represent conditions at the time of the groundwater sampling, at the specific locations where the samples were collected, and for the specific parameters analyzed by the laboratory. It does not fully characterize the site for contamination resulting from unknown sources, or for parameters not analyzed by the laboratory. All of the laboratory work cited in this report was prepared under the direction of an independent CAL-DHS certified laboratory. The independent laboratory is solely responsible for the contents and conclusions of the chemical analysis data.

-3-

Aqua Science Engineers appreciates the opportunity to assist the Edward R. and Elizabeth A. Kozel Charitable Remainder Trust with its environmental needs. Should you have any questions or comments, please feel free to call us at (925) 820-9391.

Respectfully submitted,

AQUA SCIENCE ENGINEERS, INC.

Robert E. Kitay, P.G., R.E.A.

Rad C. Kilon

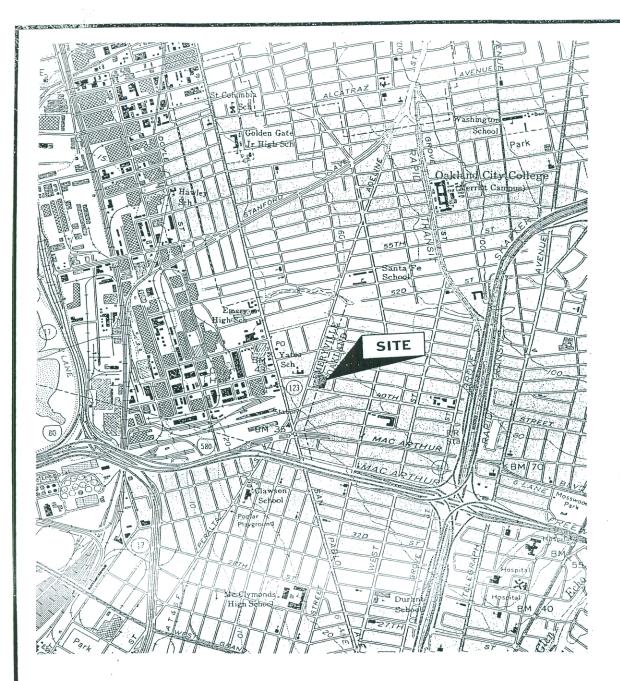
Senior Geologist

Attachments: Figures 1 and 2

Tables One and Two Appendices A and B

Mr. Edward Kozel, Edward R. and Elizabeth A. Kozel Charitable Remainder Trust, 20 cc: Oak Knoll Drive, Healdsburg, CA 95448-3108

Mr. Thomas Trapp, Barg, Coffin, Lewis & Trapp, LLP, One Market, Steuart Tower, Suite 2700, San Francisco, CA 94105-1475

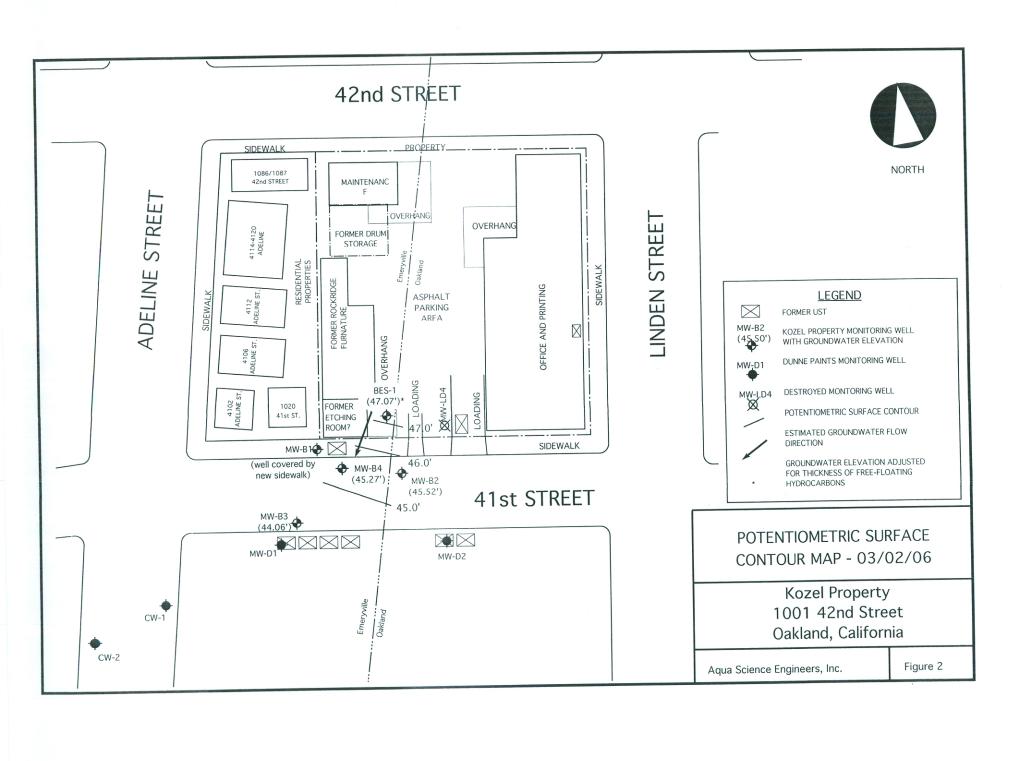

Mr. Kyle Fisher, Friedmann Goldberg, LLP, 420 Aviation Boulevard, Suite 201, Santa Rosa, CA 95403

Mr. John McManus, Cushman and Wakefield, 1111 Broadway, Suite 1600, Oakland, CA 94607

Mr. Barney Chan, Alameda County Health Care Services Agency, 1131 Harbor Bay Parkway, Suite 250, Alameda, CA 94502

Ms. Betty Graham, California Regional Water Quality Control Board, San Francisco Bay Region, 1515 Clay Street, Suite 1400, Oakland, CA 94612

FIGURES


NORTH

SITE LOCATION MAP

Kozel Property 1001 42nd Street Oakland, California

AQUA SCIENCE ENGINEERS, INC.

FIGURE 1

TABLES

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

		Top of Casing	Depth to	Depth to	Groundwater
18/ - 11	Date of	Elevation	Water	Product	Elevation
Well ID	Measurement	(msl)	(feet)	(feet)	(msl)
ID	Measurement	(11131)	(1661)	(1000)	
Former O	NE Facility				
MW-B1	6/10/93	49.92	6.14		43.78
	7/8/93		6.64		43.28
	8/24/93		6.69		43.23
	9/29/93		8.46		41.46
	10/20/93		6.69		43.23
	11/23/93		6.65		43.27
	12/10/98				
	12/14/99				
	6/15/04		6.00	5.85	44.04*
	9/14/04		6.18	6.14	43.77*
	12/16/04		5.14	5.12	44.80*
	3/30/05		3.54	3.50	46.41*
	6/27/05	Well cove	ered with new	concrete sid	dewalk
	3/2/06	Well cove	ered with new	concrete si	dewalk
MW-B2	6/10/93	50.77	6.75		44.02
	7/8/93		6.91		43.86
	8/24/93		7.22		43.55
	9/29/93		8.80		41.97
	10/20/93		7.25		43.52
	11/23/93		7.26		43.51
	12/10/98		6.43		44.34
	12/14/99		6.50		44.27
	6/15/04		6.40		44.37
	9/14/04		6.56		44.21
	12/16/04		5.88		44.89
	3/30/05		5.27		45.50
	6/27/05		5.99		44.78
	3/2/06		5.25		45.52

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

		Top of Casing	Depth to	Depth to	Groundwater
Well	Date of	Elevation	Water	Product	Elevation
ID	Measurement	(msl)	(feet)	(feet)	(msl)
					40.17
MW-B3	6/10/93	49.02	6.85		42.17 42.97
	7/8/93		6.05		42.97
	8/24/93		6.21		41.28
	9/29/93		7.74		42.78
	10/20/93		6.24		42.76
	11/23/93		6.18		44.08
	12/10/98		4.94		43.94
	12/14/99		5.08 5.43		43.59
	6/15/04		5.43		43.39
	9/14/04		4.67		44.35
	12/16/04		3.92		45.10
	3/30/05		4.91		44.11
	6/27/05 3/2/06		4.96		44.06
	3/2/00				
MW-B4	6/10/93	49.74	6.00		43.74
	7/8/93		6.14		43.60
	8/24/93		6.34		43.40
	9/29/93		7.97		41.77
	10/20/93		6.11		43.63
	11/23/93		6.38		43.36
	12/10/98		6.20		43.54
	12/14/99		6.05	-1	43.69 44.16
	6/15/04		5.58	sheen	43.79
	9/14/04		5.95		44.50
	12/16/04		5.24 4.42		45.32
	3/30/05		5.24		44.50
	6/27/05		5.24 4.47		45.27
	3/2/06		7.77		10121
MW-LD4	6/10/93	51.51	6.98		44.53
1-114-LD-1	7/8/93		7.18		44.33
	8/24/93		7.31		44.20
	9/29/93		7.43		44.08
	10/20/93		7.37		44.14
	11/23/93		7.32		44.19
	12/10/98		6.14		45.37
	12/14/99		6.52		44.99
	6/15/04		Well Abando	ned	

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

		Top of Casing	Depth to	Depth to	Groundwater
Well	Date of	Elevation	Water	Product	Elevation
ID	Measurement	(msl)	(feet)	(feet)	(msl)
BES-1	12/10/98 12/14/99 6/15/04 9/14/04 12/16/04 3/30/05 6/27/05 3/2/06	Not surveyed 54.27	10.18 10.98 9.95 10.28 7.94 7.15 9.1 7.28	9.94 10.21 7.92 7.12 9.12 7.18	 46.35* 47.14* 45.19* 47.07*
Former D	Ounne Paints				
MW-D1	6/10/93 7/8/93 8/24/93 9/29/93 10/20/93 11/23/93 12/14/99	50.56	5.29 5.67 6.01 7.69 6.20 6.08 4.60		45.27 44.89 44.55 42.87 44.36 44.48 45.96
	11/12/03 3/12/03 6/15/04 9/14/04	49.32	5.98 5.97 6.07 5.86		43.34 43.35 43.25 43.46
MW-D2	6/10/93 7/8/93 8/24/93 9/29/93 10/20/93 11/23/93 12/10/98	50.56	6.25 6.37 6.47 7.96 6.48 6.44 5.68		44.31 44.19 44.09 42.60 44.08 44.12 44.88 44.76
	12/14/99 11/12/03 3/12/03 6/15/04 9/14/04	50.52	5.80 9.52 8.94 5.89 6.01		41.70 41.58 44.63 44.51
CW-1	11/12/03 3/12/03 6/15/04 9/14/04	47.55	8.93 6.85 7.85 8.38		38.62 40.70 39.70 39.17
CW-2	11/12/03 3/12/03 6/15/04 9/14/04	47.59	9.25 7.22 8.40 8.98		38.34 40.37 39.19 38.61

TABLE ONE

Groundwater Elevation Data Kozel Property 1001 42nd Street, Oakland, CA 94608

Well ID	Date of Measurement	Top of Casing Elevation (msl)	Depth to Water (feet)	Depth to Product (feet)	Groundwater Elevation (msl)
CW-3	11/12/03 3/12/03 6/15/04 9/14/04	46.39	8.30 6.04 7.74 8.65		38.09 40.35 38.65 37.74

NOTES:

Current data is in bold.

 $^{^{\}star}$ = Groundwater elevation adjusted for free-floating hydrocarbons by the equation: Adjusted groundwater elevation = Top of of casing elevation - depth to groundwater + (0.8 x free-floating hydrocarbon thickness)

Summary of Analytical Results for **GROUNDWATER** Samples Kozel Property (Former O.N.E. Color Communications)
And Former Dunne Quality Paints
1001 42nd Street, Oakland, CA 94608
All results are in **parts per billion (ppb)**

Well ID & Dates Sampled	Mineral Spirits	Other TPH (As Noted)	Toluene	Ethyl benzene	Total Xylenes	tert-Butyl benzene	sec-Butyl benzene	n-Butyl benzene	Vinyl chloride	1,1- Dichloro ethane	trans-1,2- Dichloro ethene	cis-1,2- Dichloro ethene	Other VOCs
Former O.N.E. Color Communic	cations												
MW-B1 9/30/1991 6/10/1993 9/29/1993 5/28/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005 6/27/2005 3/2/2006	- - 43,000 26,000	< 50 ^a ; 18,000 ^c ; 29,000 ^e 27,000 ^o ; 57,000 ^o - 1,100,000 ^a ; 37,000 ^c	6 ND ND < 2.5	Not Sam	Not Sa Not Sa Not Sampled pled Due to	ND ND ND 23 Impled Due to Impled Due to Inpled Due to Inpled Due to Inpled Concrete New Concrete	Free Product Free Product roduct (0.04 Sidewalk Pou	-feet) ured Over W		ND ND ND < 2.5	ND ND ND	ND ND ND < 2.5	5 (benzene) ND ND VD < 2.5 - <25
MW-B2 6/10/1993 9/29/1993 12/10/1998 12/14/1999 5/28/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005 6/27/2005 3/2/2006	290,000 150,000 630 1,100 3,000 410 480 14,000 4,300 9,200	3,800°; 1,400° 1,000°; ND°; 2,400°; < 1,00 22,000°; 1,600°	ND ND ND - < 0.5 < 5.0 < 5.0 < 0.5 < 0.5 < 0.5	ND ND ND - < 0.5 < 5.0 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5	ND ND ND - < 0.5 < 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	ND ND ND - 3.2 < 10 < 10 1.8 5.8 5.9	ND ND ND - 3.2 < 10 < 10 1.4 4.1 4.7 < 1.0	ND ND ND - < 0.5 33 < 10 < 1.0 < 1.0 < 1.0 < 1.0	ND ND ND - < 0.5 < 5.0 < 5.0 < 0.5 2.2 2.2 < 0.5	ND ND ND - < 0.5 < 5.0 < 5.0 < 0.5 < 0.5 < 0.5 < 0.5	ND ND ND - < 5.0 < 5.0 < 0.5 < 0.5 < 0.5	ND ND ND - < 0.5 < 5.0 < 5.0 < 0.5 0.57 < 0.5 < 0.5	ND ND ND - < 0.5 - < 5 < 5.0 - < 500 < 5.0 - < 500 < 0.5 - < 50 < 0.5 - < 50 < 0.5 - < 50 < 0.5 - < 50
MW-B3 6/10/1993 9/29/1993 12/10/1998 12/14/1999 5/28/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005	2,400 120 < 50 ND < 50 < 50 < 50 < 50	1,700°; 510° ND°; ND°; 830°; ND° ND°; ND° - - -	ND ND ND - < 0.5 < 0.5 < 0.5 < 0.5	ND ND ND - < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	ND ND - < 0.5 < 1.0 < 1.0 < 1.0	ND ND - < 0.5 < 1.0 < 1.0 < 1.0 < 1.0	ND ND ND - < 0.5 < 1.0 < 1.0 < 1.0	ND ND - < 0.5 < 1.0 < 1.0 < 1.0	ND ND - < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	ND ND - < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	ND ND ND - - < 0.5 < 0.5 < 0.5	ND ND ND - < 0.5 < 0.5 < 0.5 < 0.5	ND ND ND - < 0.5 - < 5 < 0.5 - < 50 < 0.5 - < 50 < 0.5 - < 50 1,1,1-TCA @ 0.5 and TCE @
6/27/2005 3/2/2006	< 50 < 50	-	< 0.5 < 0.5	< 0.5 < 0.5	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	< 0.5 < 0.5	3.4 < 0.5 - < 50

Summary of Analytical Results for GROUNDWATER Samples Kozel Property (Former O.N.E. Color Communications) And Former Dunne Quality Paints 1001 42nd Street, Oakland, CA 94608 All results are in parts per billion (ppb)

Well ID & Dates Sampled	Mineral Spirits	Other TPH (As Noted)	Toluene	Ethyl benzene	Total Xylenes	tert-Butyl benzene	sec-Butyl benzene	n-Butyl benzene	Vinyl chloride	1,1- Dichloro ethane	trans-1,2- Dichloro ethene	cis-1,2- Dichloro ethene	Other VOCs
MW-B4 6/10/1993 9/29/1993 12/10/1998 12/14/1999 5/28/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005 6/27/2005	1,400 7,500 5,100 990 1,300 400 450 3,000 2,800	36,000°; 36,000° 1,000°; ND°; 2,700°; ND° 7,000°; 14,000°	ND ND ND - < 0.5 < 5.0 < 5.0 < 1.0 < 0.5 < 0.5	ND ND ND - < 0.5 < 5.0 < 5.0 < 1.0 < 0.5 < 0.5	ND ND ND - < 0.5 < 10 < 10 < 1.0 < 1.0	ND ND ND - 2.8 < 10 < 10 4.6 6.5 7.1	ND ND ND - < 0.5 < 10 < 10 < 2.0 2.0 3.0 < 1.0	ND ND ND - < 0.5 < 10 < 10 < 1.0 < 1.0 < 1.0	ND ND ND - 1.8 < 5.0 < 5.0 < 1.0 1.3 1.9 0.86	ND ND ND - < 0.5 < 5.0 < 5.0 < 1.0 < 0.5 < 0.5	ND ND ND - - < 5.0 < 5.0 < 1.0 < 0.5 < 0.5	ND ND ND - < 0.5 < 5.0 < 5.0 < 1.0 < 0.5 < 0.5 < 0.5	ND ND ND - < 0.5 - < 5 < 5.0 - < 500 < 1.0 - < 100 < 0.5 - < 50 < 0.5 - < 50
3/2/2006 BES-1 4/21/1994 12/10/1998 12/14/1999 5/28/2003 6/18/2003 6/15/2004 9/14/2004 12/16/2004 3/30/2005 6/27/2005 3/2/2006	2,300 12,000 78,000 72,000 60,000 120,000	18,000° < 1,000°; < 1,000° 19,000°; 84,000° NA	< 0.5 ND ND - < 0.5 < 0.5 < 0.5		ND ND - < 0.5 < 0.5 Not Sa Not Sa Not Sa Not Sanot Sampleo	ND ND - 4.4 - 0.5	ND ND - < 0.5 < 0.5 Free Product Free Product roduct (0.0)	ND ND - < 0.5 < 0.5 : : : : : : : : : : : : : : : : : : :	ND ND - 20 18	ND ND - 1.5 < 0.5	ND ND - 2.1 < 0.5	ND ND - 17 14	ND ND - < 0.5 - < 5 < 0.5 - < 5
MW-LD4 9/30/1991 6/10/1993 9/29/1993 12/10/1998 12/14/1999 1/13/2000* 6/15/2004	700 130 440,000 630,000	21,000°; 1.100° 170°; ND°; 83°; ND° -	3.1 ND ND ND -	9.0 ND ND ND -	24 ND ND ND	- - - - - - Abandon	- - - - -	-	- - - - -	- - - - -	- - - - -	-	2.0 (benzene) - - - - - -

Summary of Analytical Results for **GROUNDWATER** Samples Kozel Property (Former O.N.E. Color Communications) And Former Dunne Quality Paints 1001 42nd Street, Oakland, CA 94608 All results are in **parts per billion (ppb)**

Well ID & Dates Sampled	Mineral Spirits	Other TPH (As Noted)	Toluene	Ethyl benzene	Total Xylenes	tert-Butyl benzene	sec-Butyl benzene	n-Butyl benzene	Vinyl chloride	1,1- Dichloro ethane	trans-1,2- Dichloro ethene	cis-1,2- Dichloro ethene	Other VOCs
Former Dunne Paints													
MW-D1	1 000		-	_	_	_	_	_	_	_	-	-	-
8/26/1988	1,000 < 1,000		2.0	ND	1.8	-	_	-	-	-	-	-	-
1/18/1989 4/24/1989	< 1,000	-	ND	ND	1.1	-	-	-	-	-	-	-	-
2/21/1990	< 100	NDa: NDc: NDa	ND	0.4	1.3	-	-	-	-	-	-	-	-
6/10/1992	< 50	ND ^a ; ND ^c ; ND ^e	ND	ND	ND	-	-	-	-	-	-	-	-
6/10/1993	-	220°; 230°	ND	ND	ND		-	-	-	-	-	-	-
9/24/1993	< 50	ND ^a ; ND ^c	ND	ND	ND	-	-	-	-	-	-	-	-
9/29/1993	110	-	ND	ND	ND	-	-	-	-	-	-	-	_
12/14/1999	< 50	-		F 0		< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
11/12/2003	85	- :	< 5.0	< 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
3/12/2004	260	-	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
6/15/2004	100	-	< 5.0 < 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
9/14/2004	< 50	-	< 5.0	< 5.0	< 10	< 3.0	۷ 3.0						
MW-D2													_
8/26/1988	1,600	-	-	-	-	-	-	-	-	-	-	_	_
1/18/1989	< 1,000	-	6.3	ND	12	-	-	-	-	-	_	_	_
4/24/1989	< 1.000	-	ND	ND	7.7	-	-	-	-	_	_	_	_
2/21/1990	300		ND	0.3	1.5 ND	-	-			_	-	_	-
6/10/1992	76	ND ^a ; ND ^c	ND	ND ND	ND ND	-				_	_	_	-
6/10/1993	-	9,100°; 6,200°	ND	ND	ND			_	_	_	_	-	-
9/24/1993	< 50	ND ^a ; ND ^c	ND ND	ND	ND	_	_	-	_	-	-	-	-
9/29/1993	220	ND ^a ; ND ^c ; 95 ^a ; ND ^e	ND	ND	ND	_	_	_	-	-	_	-	-
12/10/1998	180	ND; ND; 95; ND	ND	ND	IND								
12/14/1999	100	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
11/12/2003	1,400 330	_	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
3/12/2004 6/15/2004	< 50	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
9/14/2004	< 50	-	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
014.1													
CW-1	85	_	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
11/12/2003 3/12/2004	< 50	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
6/15/2004	< 50	_	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 0.5 - < 50
9/14/2004	< 50	-	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0 - < 50
CW-2										F 0	F 0		< 0.5 - < 50
11/12/2003	< 50	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 0.5 - < 50
3/12/2004	< 50	_	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 0.5 - < 50
6/15/2004	< 50	-	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 10 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 < 5.0	< 5.0 - < 50
9/14/2004	< 50	-	< 5.0	< 5.0	< 10	< 5.0	< 5.0	< 5.0	< 5.0	₹ 5.0	< 5.0	\ 3.0	. 5.5

Summary of Analytical Results for **GROUNDWATER** Samples Kozel Property (Former O.N.E. Color Communications) And Former Dunne Quality Paints 1001 42nd Street, Oakland, CA 94608 All results are in parts per billion (ppb)

Well ID & Dates Sampled	Mineral Spirits	Other TPH (As Noted)	Toluene	Ethyl benzene	Total Xylenes	tert-Butyl benzene	sec-Butyl benzene	n-Butyl benzene	Vinyl chloride	1,1- Dichloro ethane	trans-1,2- Dichloro ethene	cis-1,2- Dichloro ethene	Other VOCs
CW-3 11/12/2003 3/12/2004 6/17/2004 9/14/2004	< 50 < 50 < 50 < 50	:	< 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 10	< 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0	< 10 < 10 < 10 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0	< 5.0 < 5.0 < 5.0 < 5.0	5.1 (TCE) < 0.5 - < 50 < 0.5 - < 50 < 5.0 - < 50
ESL	NE	VARIES	130	290	13	NE	NE	NE	4.0	47	590	590	VARIES

Notes:

Most recent concentrations are in Bold.

Non-detectable concentrations noted by the less than sign (<) followed by the laboratory reporting limit or "ND".

NA indicates the data is not available.

ESL = Environmental screening levels presented in the "Screening For Environmental Concerns at Sites With Contaminated Soil and Groundwater (July 2003)" document prepared by the California Regional Water Quality Control Board. San Francisco Bay Region.

NE Indicates an ESL has not been established

[&]quot;-" indicates not tested.

 $^{^{}a}$ = TPH-d; b = TEPH (non-diesel); c = TPH-g; d = TPPH (non-gasoline); e = Kerosene

^{*} indicates a grab sample.

APPENDIX A

Well Sampling Field Log

AQUA SCIENCE ENGINEERS

WELL SAMPLING FIELD LOG

PROJECT NAME	Kozel		
JOB NUMBER	3976	DATE OF SAMPLING	3/2/06
	5-1	SAMPLER	dr
TOTAL DEPTH OF WE	LL	WELL DIAMETER	2
DEPTH TO WATER PR	7 2	8	
PRODUCT THICKNESS	0.10		
DEPTH OF WELL CAS	ING IN WATER		
NUMBER OF GALLONS	S PER WELL CASING VOLUM	ME	
NUMBER OF WELL CA	ASING VOLUMES TO BE REM	IOVE 3	
REQUIRED VOLUME O	F GROUNDWATER TO BE P	URGED PRIOR TO SAMPLING	
EQUIPMENT USED TO		disposable bailer	
TIME EVACUATION S		TIME EVACUATION COMPLET	ΓED
TIME SAMPLES WERE	COLLECTED		
DID WELL GO DRY		AFTER HOW MANY GALLON	S
VOLUME OF GROUND	WATER PURGED		
SAMPLING DEVICE	disposable bailer		
SAMPLE COLOR		ODOR/SEDIMENT	

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1			
2			
3			

SAMPLES COLLECTED

NOT SAMPLED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	RESERVE
	5	40ml VOA	VOCs, Mineral Sprits	Y

AQUA SCIENCE ENGINEERS

WELL SAMPLING FIELD LOG

PROJECT NAME	Kozel		
JOB NUMBER	3976	DATE OF SAMPLING	3/2/06
	J-B2	SAMPLER	dr
TOTAL DEPTH OF WELL	3.5	WELL DIAMETER	2
DEPTH TO WATER PRIC	R TO PURGING	5.25	
PRODUCT THICKNESS	Ø		
DEPTH OF WELL CASIN	G IN WATER	18.25	
NUMBER OF GALLONS	PER WELL CASING V	OLUME 3, 1	
NUMBER OF WELL CAS	ING VOLUMES TO BE	REMOVE 3	0 7
REQUIRED VOLUME OF	GROUNDWATER TO	BE PURGED PRIOR TO SAMPLING	9.3
EQUIPMENT USED TO F		disposable bailer	
TIME EVACUATION STA		TIME EVACUATION COM	IPLETED 1517
TIME SAMPLES WERE (518	
DID WELL GO DRY	no	AFTER HOW MANY GAL	LONS n/a
VOLUME OF GROUNDY	VATER PURGED	9.3	
SAMPLING DEVICE	disposable bailer		
SAMPLE COLOR	clear	ODOR/SEDIMENT So	lvent/sheen

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1	66.2	6.80	680
2	65.7	6.83	678
3	65.5	6.84	675

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	RESERVE
MW-B2	1/3	L / 40ml VOA	VOCs, Mineral Sprits	Y

AQUA SCIENCE ENGINEERS

WELL SAMPLING FIELD LOG

PROJECT NAME	Kozel		0.40.40.6
JOB NUMBER	3976	DATE OF SAMPLING	3/2/06
WELL ID. MW	-B3	SAMPLER	dr
TOTAL DEPTH OF WE	0. 0	WELL DIAMETER	2
DEPTH TO WATER PR	OR TO PURGING	96	
PRODUCT THICKNESS	ϕ		
DEPTH OF WELL CAS	ING IN WATER) 9	. 24	
NUMBER OF GALLONS	S PER WELL CASING VOL	UME 3.5	
NUMBER OF WELL CA	SING VOLUMES TO BE R	EMOVE 3	
REQUIRED VOLUME O	F GROUNDWATER TO BE	PURGED PRIOR TO SAMPLING	10
EQUIPMENT USED TO		disposable bailer	
TIME EVACUATION S	17 1	TIME EVACUATION COMPL	ETED 1414
TIME SAMPLES WERE	11.	15	
DID WELL GO DRY	no	AFTER HOW MANY GALLO	ONS M/A
VOLUME OF GROUND	OWATER PURGED	0	
SAMPLING DEVICE	disposable bailer		
SAMPLE COLOR	cleer	ODOR/SEDIMENT non	e/pore

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1	65.0	4.70	535
2	64.9	6.74	505
3	64.9	6.75	52

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	RESERVE
MW1-B3	8 1/3	IL 40ml VOA	VOCs, Mineral Sprits	Υ

AQUA SCIENCE ENGINEERS 738.48

WELL SAMPLING FIELD LOG

PROJECT NAME	Kozel		
JOB NUMBER	3976	DATE OF SAMPLING	3/2/06
	- B4	SAMPLER	dr
TOTAL DEPTH OF WELL		WELL DIAMETER	2
DEPTH TO WATER PRIO		1.47	
PRODUCT THICKNESS	Ø		
DEPTH OF WELL CASIN	G IN WATER	18.33	
NUMBER OF GALLONS I		LUME 3.	
NUMBER OF WELL CAS	ING VOLUMES TO BE I	REMOVE 3	
REQUIRED VOLUME OF	GROUNDWATER TO B	E PURGED PRIOR TO SAMPLING	1.3
EQUIPMENT USED TO P		disposable bailer	<u> </u>
TIME EVACUATION STA	1.4	TIME EVACUATION COMPLE	TED 1445
TIME SAMPLES WERE C	COLLECTED 144	16	
DID WELL GO DRY	hb	AFTER HOW MANY GALLON	is na
VOLUME OF GROUNDW	ATER PURGED	9.3	
SAMPLING DEVICE	disposable bailer	A	
SAMPLE COLOR	elear	ODOR/SEDIMENT Shee	n-Spirits

CHEMICAL DATA

VOLUME PURGED	TEMPERATURE	PH	CONDUCTIVITY
1	44.5	6.79	570
2	4.4	6.80	610
3	4,3	6.82	615

SAMPLES COLLECTED

SAMPLE	# OF CONTAINERS	SIZE AND TYPE OF CONTAINER	ANALYSIS	RESERVE
MW-134	¢ 1/3	1L/ 40ml VOA	VOCs, Mineral Sprits	Y

APPENDIX B

Certified Analytical Report and Chain of Custody Documentation

ANALYTICAL REPORT

Job Number: 720-2393-1

Job Description: Kozel

For:

Aqua Science Engineers Inc 208 West El Pintado Road Danville, CA 94526

Attention: Dave Allen

Survider Sidhu

Surinder Sidhu Project Manager I ssidhu@stl-inc.com 03/16/2006

Project Manager: Surinder Sidhu

METHOD SUMMARY

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

Description	Lab Location	Method	Preparation Method
Matrix: Water			
Volatile Organic Compounds by GC/MS (Low Level) Purge-and-Trap	STL-SF STL-SF	SW846 8260E	SW846 5030B
Nonhalogenated Organics using GC/FID -Modified (Diesel	STL-SF	SW846 8015E	3
Range Organics) Separatory Funnel Liquid-Liquid Extraction Silica Gel Cleanup	STL-SF STL-SF		SW846 3510C SW846 3630C

LAB REFERENCES:

STL-SF = STL-San Francisco

METHOD REFERENCES:

SW846 - "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

SAMPLE SUMMARY

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

Lab Sample ID	Client Sample ID	Client Matrix	Date/Time Sampled	Date/Time Received
	MW-B2	Water	03/02/2006 1518	03/03/2006 1620
720-2393-1	MW-B3	Water	03/02/2006 1415	03/03/2006 1620
720-2393-2 720-2393-3	MW-B4	Water	03/02/2006 1446	03/03/2006 1620

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B2

Lab Sample ID:

720-2393-1

Client Matrix:

Water

Date Sampled: Date Received:

03/02/2006 1518

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

d:\data\200603\030606\720-

5030B

Lab File ID: Initial Weight/Volume:

40 mL

Dilution:

1.0

Final Weight/Volume:

40 mL

Date Analyzed: Date Prepared: 03/06/2006 1804 03/06/2006 1804

Amplito	Result (ug/L)	Qualifier	RL
Analyte	ND		5.0
Methyl tert-butyl ether	ND		50
Acetone	ND		0.50
Benzene	ND		0.50
Dichlorobromomethane	ND		1.0
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND		1.0
Bromomethane	ND		50
Methyl Ethyl Ketone	ND		1.0
n-Butylbenzene	ND		1.0
sec-Butylbenzene			1.0
tert-Butylbenzene	1.8		5.0
Carbon disulfide	ND		0.50
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		1.0
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		0.50
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		0.50
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		1.0
1,3-Dichloropropane	ND		0.50
1,1-Dichloropropene	ND		1.0
1,2-Dibromo-3-Chloropropane	ND		0.50
Ethylene Dibromide	ND		
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,2-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		0.50
Hexachlorobutadiene	ND		1.0
Isopropylbenzene	ND		0.50
4-Isopropyltoluene	ND		1.0
	ND		5.0
Methylene Chloride			

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B2

Lab Sample ID:

720-2393-1

Client Matrix:

Water

Date Sampled:

03/02/2006 1518

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

d:\data\200603\030606\720-

Initial Weight/Volume:

40 mL

Dilution:

1.0

Final Weight/Volume:

40 mL

Date Analyzed: Date Prepared:

03/06/2006 1804 03/06/2006 1804

	Result (ug/L)	Qualifier	RL
Analyte	ND ND		50
nethyl isobutyl ketone	ND		1.0
Naphthalene	ND		1.0
N-Propylbenzene	ND		0.50
Styrene			0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		1.0
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		1.0
Trichlorofluoromethane	ND		0.50
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl abetate Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
2,2-Dichiolopropane	0/ 5		Acceptance Limits
Surrogate	%Rec		
4-Bromofluorobenzene	100		79 - 118
1,2-Dichloroethane-d4	95		78 - 117
Toluene-d8	97		77 - 121

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B3

Lab Sample ID:

720-2393-2

Client Matrix:

Water

Date Sampled:

03/02/2006 1415

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

d:\data\200603\030606\720-

Dilution:

1.0

Initial Weight/Volume: Final Weight/Volume:

40 mL 40 mL

RL

Date Analyzed: Date Prepared: 03/06/2006 1838 03/06/2006 1838

Analyta	Result (ug/L)	Qualifier	RL
Analyte	ND		5.0
Methyl tert-butyl ether	ND		50
Acetone	ND		0.50
Benzene	ND		0.50
Dichlorobromomethane	ND		1.0
Bromobenzene	ND		1.0
Chlorobromomethane	ND		1.0
Bromoform	ND ND		1.0
Bromomethane			50
Methyl Ethyl Ketone	ND		1.0
n-Butylbenzene	ND		1.0
sec-Butylbenzene	ND		1.0
tert-Butylbenzene	ND		5.0
Carbon disulfide	ND		0.50
Carbon tetrachloride	ND		0.50
Chlorobenzene	ND		1.0
Chloroethane	ND		1.0
Chloroform	ND		1.0
Chloromethane	ND		0.50
2-Chlorotoluene	ND		0.50
4-Chlorotoluene	ND		
Chlorodibromomethane	ND		0.50
1,2-Dichlorobenzene	ND		0.50
1,3-Dichlorobenzene	ND		0.50
1,4-Dichlorobenzene	ND		0.50
1,3-Dichloropropane	ND		1.0
1,1-Dichloropropene	ND		0.50
1,2-Dibromo-3-Chloropropane	ND		1.0
Ethylene Dibromide	ND		0.50
Dibromomethane	ND		0.50
Dichlorodifluoromethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,1-Dichloroethane	ND		0.50
1,1-Dichloroethene	ND		0.50
	ND		0.50
cis-1,2-Dichloroethene	ND		0.50
trans-1,2-Dichloroethene	ND		0.50
1,2-Dichloropropane	ND		0.50
cis-1,3-Dichloropropene	ND		0.50
trans-1,3-Dichloropropene	ND		0.50
Ethylbenzene	ND		1.0
Hexachlorobutadiene	ND		0.50
Isopropylbenzene	ND		1.0
4-Isopropyltoluene	ND		5.0
Methylene Chloride	ND		

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B3

Lab Sample ID:

720-2393-2

Client Matrix:

Water

Date Sampled:

03/02/2006 1415

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Instrument ID:

Saturn 2K3

Preparation:

5030B

Analysis Batch: 720-6241

Lab File ID:

d:\data\200603\030606\720-

Initial Weight/Volume:

40 mL

Dilution: Date Analyzed:

1.0 03/06/2006 1838

Final Weight/Volume:

40 mL

Date Prepared:

03/06/2006 1838

A contract	Result (ug/L)	Qualifier	RL
Analyte	ND		50
methyl isobutyl ketone	ND		1.0
Naphthalene	ND		1.0
N-Propylbenzene	ND		0.50
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane			0.50
Tetrachloroethene	ND		0.50
Toluene	ND		1.0
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		1.0
Trichlorofluoromethane	ND		0.50
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	ND		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
	%Rec		Acceptance Limits
Surrogate			79 - 118
4-Bromofluorobenzene	103		78 - 117
1,2-Dichloroethane-d4 Toluene-d8	98 94		77 - 121

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B4

Lab Sample ID:

720-2393-3

Client Matrix:

Water

Date Sampled:

03/02/2006 1446

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

d:\data\200603\030606\720-

Dilution:

1.0

Initial Weight/Volume:

40 mL

Date Analyzed:

03/06/2006 1911

Final Weight/Volume:

40 mL

Date Prepared:

03/06/2006 1911

Analyte	Result (ug/L) Qualifier	RL
	ND	5.0
Methyl tert-butyl ether	ND	50
Acetone	ND	0.50
Benzene	ND	0.50
Dichlorobromomethane	ND	1.0
Bromobenzene	ND	1.0
Chlorobromomethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	50
Methyl Ethyl Ketone	ND ND	1.0
n-Butylbenzene		1.0
sec-Butylbenzene	ND	1.0
tert-Butylbenzene	3.5	5.0
Carbon disulfide	ND	0.50
Carbon tetrachloride	ND	0.50
Chlorobenzene	ND	1.0
Chloroethane	ND	1.0
Chloroform	ND	1.0
Chloromethane	ND	0.50
2-Chlorotoluene	ND	0.50
4-Chlorotoluene	ND	
Chlorodibromomethane	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	0.50
1,3-Dichloropropane	ND	1.0
1,1-Dichloropropene	ND	0.50
1,2-Dibromo-3-Chloropropane	ND	1.0
Ethylene Dibromide	ND	0.50
Dibromomethane	ND	0.50
Dichlorodifluoromethane	ND	0.50
	ND	0.50
1,1-Dichloroethane	ND	0.50
1,2-Dichloroethane	ND	0.50
1,1-Dichloroethene	ND	0.50
cis-1,2-Dichloroethene	ND	0.50
trans-1,2-Dichloroethene	ND	0.50
1,2-Dichloropropane	ND	0.50
cis-1,3-Dichloropropene	ND	0.50
trans-1,3-Dichloropropene	ND	0.50
Ethylbenzene	ND ND	1.0
Hexachlorobutadiene	ND ND	0.50
Isopropylbenzene		1.0
4-Isopropyltoluene	ND	5.0
Methylene Chloride	ND	3.0

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B4

Lab Sample ID:

720-2393-3

Client Matrix:

Water

Date Sampled:

03/02/2006 1446

Date Received:

03/03/2006 1620

8260B Volatile Organic Compounds by GC/MS (Low Level)

Method:

8260B

Analysis Batch: 720-6241

Instrument ID:

Saturn 2K3

Preparation:

5030B

Lab File ID:

d:\data\200603\030606\720-

Dilution:

1.0

Initial Weight/Volume:

40 mL

Date Analyzed: Date Prepared:

03/06/2006 1911 03/06/2006 1911 Final Weight/Volume:

40 mL

Analyto	Result (ug/L)	Qualifier	RL
Analyte	ND		50
methyl isobutyl ketone	ND		1.0
Naphthalene	ND		1.0
N-Propylbenzene	ND		0.50
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane	ND		0.50
1,1,2,2-Tetrachloroethane			0.50
Tetrachloroethene	ND		0.50
Toluene	ND		1.0
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		1.0
Trichlorofluoromethane	ND		0.50
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		0.50
Vinyl acetate	ND		50
Vinyl chloride	0.86		0.50
Xylenes, Total	ND		1.0
2,2-Dichloropropane	ND		0.50
2,2-Dichioroproparie	0/ 🗅		Acceptance Limits
Surrogate	%Rec		79 - 118
4-Bromofluorobenzene	102		
1,2-Dichloroethane-d4	95		78 - 117
Toluene-d8	95		77 - 121

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B2

Lab Sample ID:

720-2393-1

Client Matrix:

Water

Date Sampled:

03/02/2006 1518

Date Received:

03/03/2006 1620

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method:

8015B

3510C

Dilution:

Date Analyzed:

Preparation:

Date Prepared:

5.0

03/13/2006 2100

03/06/2006 1648

Analysis Batch: 720-6565

Prep Batch: 720-6233

Instrument ID:

HP DRO3

N/A Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

250 mL 1 mL

Injection Volume:

Column ID:

PRIMARY

RL Qualifier Result (ug/L) Analyte 250 Mineral Spirit Range Organics [C9-C13] 9200 Acceptance Limits %Rec Surrogate 60 - 130 93 o-Terphenyl

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B3

Lab Sample ID:

720-2393-2

Client Matrix:

Water

Date Sampled:

03/02/2006 1415

Date Received:

03/03/2006 1620

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method:

8015B

Analysis Batch: 720-6565

Instrument ID:

HP DRO3

Preparation:

3510C

Prep Batch: 720-6233

N/A Lab File ID:

Initial Weight/Volume:

Final Weight/Volume:

250 mL 1 mL

Dilution: Date Analyzed: 1.0 03/12/2006 0028

Injection Volume: Column ID:

PRIMARY

Date Prepared:

03/06/2006 1648

RL

Analyte

ND

Result (ug/L)

Qualifier

50

Mineral Spirit Range Organics [C9-C13]

%Rec

Acceptance Limits

Surrogate o-Terphenyl

90

60 - 130

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Client Sample ID:

MW-B4

Lab Sample ID:

720-2393-3

Client Matrix:

Water

Date Sampled:

03/02/2006 1446

Date Received:

03/03/2006 1620

8015B Nonhalogenated Organics using GC/FID -Modified (Diesel Range Organics)

Method:

Dilution:

8015B

3510C

1.0

Date Analyzed: Date Prepared:

Preparation:

03/12/2006 0055 03/06/2006 1648

Analysis Batch: 720-6565

Prep Batch: 720-6233

Instrument ID:

HP DRO3

N/A Lab File ID:

250 mL Initial Weight/Volume: 1 mL Final Weight/Volume:

Injection Volume:

Column ID:

PRIMARY

RL Qualifier Result (ug/L) Analyte 50 2300 Mineral Spirit Range Organics [C9-C13] Acceptance Limits %Rec Surrogate 60 - 130 92 o-Terphenyl

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

QC Association Summary

Lab Sample ID	Client Sample ID	Client Matrix	Method	Prep Batch
GC/MS VOA				
Analysis Batch:720-624 LCS 720-6241/19 MB 720-6241/20 720-2393-1 720-2393-2 720-2393-3	Lab Control Spike Method Blank MW-B2 MW-B3 MW-B4	Water Water Water Water Water	8260B 8260B 8260B 8260B 8260B	
GC Semi VOA				
Prep Batch: 720-6233 LCS 720-6233/2-B LCSD 720-6233/3-B MB 720-6233/1-B 720-2393-1 720-2393-2 720-2393-3	Lab Control Spike Lab Control Spike Duplicate Method Blank MW-B2 MW-B3 MW-B4	Water Water Water Water Water	3510C 3510C 3510C 3510C 3510C 3510C	
Analysis Batch:720-65 LCS 720-6233/2-B LCSD 720-6233/3-B MB 720-6233/1-B 720-2393-1 720-2393-2 720-2393-3	Lab Control Spike Lab Control Spike Duplicate Method Blank MW-B2 MW-B3 MW-B4	Water Water Water Water Water Water	8015B 8015B 8015B 8015B 8015B 8015B	720-6233 720-6233 720-6233 720-6233 720-6233 720-6233

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Method Blank - Batch: 720-6241

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-6241/20

Client Matrix: Water

Dilution:

1.0

Date Analyzed: 03/06/2006 1020 Date Prepared: 03/06/2006 1020 Analysis Batch: 720-6241

Prep Batch: N/A

Units: ug/L

Instrument ID: Saturn 2K3

Lab File ID: d:\data\200603\030606\MB

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result Q	lual RL
Methyl tert-butyl ether	ND	5.0
Acetone	ND	50
	ND	0.50
Benzene Dichlorobromomethane	ND	0.50
	ND	1.0
Bromobenzene	ND	1.0
Chlorobromomethane	ND	1.0
Bromoform	ND	1.0
Bromomethane	ND	50
Methyl Ethyl Ketone	ND	1.0
n-Butylbenzene	ND	1.0
sec-Butylbenzene	ND	1.0
tert-Butylbenzene	ND	5.0
Carbon disulfide	ND	0.50
Carbon tetrachloride	ND	0.50
Chlorobenzene		1.0
Chloroethane	ND	1.0
Chloroform	ND	1.0
Chloromethane	ND	0.50
2-Chlorotoluene	ND	0.50
4-Chlorotoluene	ND	0.50
Chlorodibromomethane	ND	0.50
1,2-Dichlorobenzene	ND	0.50
1,3-Dichlorobenzene	ND	0.50
1,4-Dichlorobenzene	ND	1.0
1,3-Dichloropropane	ND	0.50
1,1-Dichloropropene	ND	1.0
1,2-Dibromo-3-Chloropropane	ND	
Ethylene Dibromide	ND	0.50
Dibromomethane	ND	0.50
Dichlorodifluoromethane	ND	0.50
1,1-Dichloroethane	ND	0.50
1,2-Dichloroethane	ND	0.50
1,1-Dichloroethene	ND	0.50
cis-1,2-Dichloroethene	ND	0.50
trans-1,2-Dichloroethene	ND	0.50
1,2-Dichloropropane	ND	0.50
cis-1,3-Dichloropropene	ND	0.50
trans-1,3-Dichloropropene	ND	0.50
	ND	0.50
Ethylbenzene	ND	1.0
Hexachlorobutadiene	ND	0.50
Isopropylbenzene		

Calculations are performed before rounding to avoid round-off errors in calculated results.

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Method Blank - Batch: 720-6241

Method: 8260B Preparation: 5030B

Lab Sample ID: MB 720-6241/20

Client Matrix: Water 1.0 Dilution:

Date Analyzed: 03/06/2006 1020 Date Prepared: 03/06/2006 1020 Analysis Batch: 720-6241

Prep Batch: N/A

Units: ug/L

Instrument ID: Saturn 2K3

Lab File ID: d:\data\200603\030606\MB

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Result	Qual	RL
	ND		1.0
4-Isopropyltoluene	ND		5.0
Methylene Chloride	ND		50
methyl isobutyl ketone	ND		1.0
Naphthalene	ND		1.0
N-Propylbenzene	ND ND		0.50
Styrene	ND		0.50
1,1,1,2-Tetrachloroethane			0.50
1,1,2,2-Tetrachloroethane	ND		0.50
Tetrachloroethene	ND		0.50
Toluene	ND		1.0
1,2,3-Trichlorobenzene	ND		1.0
1,2,4-Trichlorobenzene	ND		0.50
1,1,1-Trichloroethane	ND		0.50
1,1,2-Trichloroethane	ND		0.50
Trichloroethene	ND		1.0
Trichlorofluoromethane	ND		0.50
1,2,3-Trichloropropane	ND		0.50
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		0.50
1,2,4-Trimethylbenzene	ND		0.50
1,3,5-Trimethylbenzene	ND		50
Vinyl acetate	ND		0.50
Vinyl chloride	ND		1.0
Xylenes, Total	ND		0.50
2,2-Dichloropropane	ND		0.50
Surrogate	% Rec	Acceptance Limit	ts
	102	79 - 118	
4-Bromofluorobenzene	98	78 - 117	
1,2-Dichloroethane-d4 Toluene-d8	92	77 - 121	

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Laboratory Control Sample - Batch: 720-6241

Method: 8260B Preparation: 5030B

Lab Sample ID: LCS 720-6241/19

Analysis Batch: 720-6241 Prep Batch: N/A

Units: ug/L

Instrument ID: Saturn 2K3

Client Matrix: Water

1.0

Lab File ID: d:\data\200603\030606\LC:

Dilution: Date Analyzed: 03/06/2006 0947 Date Prepared: 03/06/2006 0947

Initial Weight/Volume: 40 mL Final Weight/Volume: 40 mL

Analyte	Spike Amount	Result	% Rec.	Limit	Qual
Benzene Chlorobenzene 1,1-Dichloroethene Toluene Trichloroethene	20.0 20.0 20.0 20.0 20.0	17 20 17 17	86 99 84 87 85	69 - 129 61 - 121 65 - 125 70 - 130 74 - 134	
Surrogate	% R	ec	Ac	ceptance Limits	
4-Bromofluorobenzene 1,2-Dichloroethane-d4 Toluene-d8	99 89 96			79 - 118 78 - 117 77 - 121	

Job Number: 720-2393-1

Client: Aqua Science Engineers Inc

Method Blank - Batch: 720-6233

Method: 8015B Preparation: 3510C

Lab Sample ID: MB 720-6233/1-B

Client Matrix:

Water

1.0 Dilution:

Date Analyzed: 03/11/2006 2212 Date Prepared: 03/06/2006 1648 Analysis Batch: 720-6565 Prep Batch: 720-6233

Units: ug/L

Instrument ID: HP DRO3 Lab File ID:

Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL

Injection Volume:

Column ID:

PRIMARY

RL Qual Result Analyte 50 ND Mineral Spirit Range Organics [C9-C13] Acceptance Limits % Rec Surrogate 60 - 130 83 o-Terphenyl

Laboratory Control/ Laboratory Control Duplicate Recovery Report - Batch: 720-6233 Method: 8015B Preparation: 3510C

LCS Lab Sample ID: LCS 720-6233/2-B

Client Matrix: Dilution:

Water 1.0

Date Analyzed:

03/07/2006 1513

Date Prepared:

03/06/2006 1648

Analysis Batch: 720-6565 Prep Batch: 720-6233

Units: ug/L

Instrument ID: HP DRO3 Lab File ID: N/A

250 mL Initial Weight/Volume: 1 mL Final Weight/Volume:

Injection Volume:

Column ID:

PRIMARY

LCSD Lab Sample ID: LCSD 720-6233/3-B

Client Matrix: Dilution:

Water 1.0

Date Analyzed:

03/07/2006 1540

Date Prepared:

03/06/2006 1648

Analysis Batch: 720-6565 Prep Batch: 720-6233

Units: ug/L

HP DRO3 Instrument ID:

Lab File ID:

Initial Weight/Volume: 250 mL Final Weight/Volume: 1 mL

Injection Volume:

Column ID:

PRIMARY

	9	6 Rec.			
Analyte	LCS	LCSD	Limit	RPD	RPD Limit LCS Qual LCSD Qual
Diesel Range Organics [C10-C28]	76	78	60 - 130	2	30
Surrogate	L	.CS % Rec	LCSD %	Rec	Acceptance Limits
o-Terphenyl	S	95	94		60 - 130

208 W. El Pintado Road Danville, CA 94526 (925) 820-9391 FAX (925) 837-4853

Chain of Custody

39682

							7	2	0) ==	4	37	9	Т	ype of A	Analysis to be	Performed	Other	Tur	narc	uno	d Tim
Analytical Laboratory Na	me:	2	T	1											12)							
Project Name:							San	ple	Loc	atio	n:				5,11ca (5							
Koz								1				1-1-1	(A-		13							
405	-C/						San	velo	r Sic	rnat	ure:	kkud										
Sampled by:							Jan	ipie	i Dig	Sitiat	care.				3							
David	d Rain	S													1							
	San	ple							hod		V				5							
	Ту	pe.		Ma	trix		F	rese	rve	d		Samplin	9		18-							
														1	- 3	-						
		1150					0				Number of Containers			(1)	Mineral	102			Standard			
		Composite	1-1				(4°		2		iber aine			S	3.3	4			pui	2		day
	Grab	om	ate	Soil	Other	Other	Cold	HG	HNO	Other	lum	Date	Time	>	E	10			Sta	1 day	2 day	5 day
Sample ID	Ü	O	15	ഗ്	Ö	Ö	2	toros	honey	0	Name and Address of the Owner, where the Owner, which is		-	-		_			×		a	M.J
MW-B2 MW-B3 MW-R4	X		K				X	-			4	3-2-06	1518	F	>	X			1			
11W-B3	1												1415						\mathbb{H}			
MW-B4	V						1				V	V	1446	4	V	4			1			
1100			1																			
							-	-														
							_															
						1																
		-																				
			_		77"	t -1 /			tain		15					Comments:						
					10	tai +	OI	con	tain	ers.	12		_									
Relinquished by:		Da	te			Tim	e	Rec	ceive	ed b	y:		Date	Tin	ne	3-4	Long He	-/ ,				
1/1		3	3-	do	12	21)	10	1/-	元	1		3/3/6	12	20	1-	LON HO AMBER	11 401				
MA		5	3.	/	11	-70	1/4	-	al	-		malen	3-3-66	8	26	1 ′ ′	11.11.00	- '-'				
on mayer		2.	2.	6	10	B			d	10	un	Minor	100	10	(1)				40			
																			-	-		

LOGIN SAMPLE RECEIPT CHECK LIST

Client: Aqua Science Engineers Inc

Job Number: 720-2393-1

Login Number: 2393

Question	T/F/NA	Comment
Radioactivity either was not measured or, if measured, is at or below background	NA	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
There are no discrepancies between the sample IDs on the containers and the	True	
COC. Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	