Atlantic Richfield Company

Chuck Carmel

Remediation Management Project Manager

RECEIVED By Alameda County Environmental Health 3:06 pm, Jul 30, 2015 PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3804 Mobile: (510) 798-8314 E-Mail: chuck.carmel@bp.com

March 31, 2015

Re: Soil Investigation and Vapor Intrusion Assessment Report Former Richfield Oil Company Station #374 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct."

Submitted by,

Chuck Carmel Remediation Management Project Manager

Attachment:

Prepared for

Mr. Charles Carmel Operations Project Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

SOIL INVESTIGATION AND VAPOR INTRUSION ASSESSMENT REPORT

Former Richfield Oil Company Station No.374 6407 Telegraph Avenue, Oakland, California ACEH Case No. RO000078 Prepared by

4820 Business Center Drive, Suite 110 Fairfield, CA 94534 (707) 455-7290 www.broadbentinc.com

March 31, 2015

Project No. 06-88-602

March 31, 2015

Project #06-88-602

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: Soil Investigation and Vapor Intrusion Assessment Report Former Richfield Oil Company Station #374, 6407 Telegraph Ave., Oakland, Alameda County ACEH Case #RO0000078

Dear Mr. Carmel:

Broadbent & Associates, Inc. (Broadbent) is pleased to submit this *Soil Investigation and Vapor Intrusion Assessment Report* (Report) on behalf of Atlantic Richfield Company (a BP affiliated company), for Former Richfield Oil Company Station #374 located at 6407 Telegraph Avenue, Oakland, Alameda County, California (the Site). This Report presents a description of recently conducted activities including advancement of soil borings and a vapor intrusion assessment. This work was carried out in accordance with the *Second Addendum to Soil Vapor Investigation Work Plan, June 27, 2014.*

Please do not hesitate to contact me at (707) 455-7290.

Sincerely, BROADBENT & ASSOCIATES, INC.

alix Mar PROF Alexander J. Martinez RISTENE TIDWELL Senior Staff Geologist 969 No. CERTIFIED

Kristene Tidwell, P.G., C. Hg. Senior Geologist

cc: Ms. Karel Detterman, P.G., Alameda County Environmental Health (submitted via ACEH ftp site) Mr. Bill Phua, Fruitvale-Farnum Associates, LLC, 638 Webster St., #300, Oakland, CA 94607 Mr. Hugh K. Phares, III, Attorney at Law, 911 Paru St., Alameda, CA 94501-4033 Electronic copy uploaded to GeoTracker

CONCEPTUAL SITE MODEL AND CASE CLOSURE REQUEST

Former Richfield Company Station No. 374 6407 Telegraph Ave, Oakland, California Fuel Leak Case No. RO0000078

TABLE OF CONTENTS

No. Section

Page

1.0		duction	
2.0	Site D	Description and Background	1
3.0	Geolo	ogy and Hydrogeology	1
	3.1	Regional Setting	1
	3.2	Historic Site-Specific Conditions	2
4.0	Soil II	nvestigation Activities	2
	4.1	Preliminary Activities, Local Permitting, and Notification	2
	4.2	Soil Borings	2
	4.3	Soil Sampling and Analysis	3
	4.4	Investigation Derived Soil and Water Disposal	3
	4.5	Groundwater Sampling and Analysis	3
5.0	Vapo	r Intrusion Assessment Activities	3
	5.1	Preliminary Activities, Local Permitting and Notification	3
	5.2	Soil Vapor Probe Borings	4
	5.3	Soil Vapor Probe Construction	4
	5.4	Soil Vapor Probe Sampling	4
	5.5	Laboratory Analysis of Soil Vapor Samples	5
6.0	Inves	tigation Results	5
	6.1	Encountered Lithology	6
	6.2	Groundwater Elevation and Gradient	6
	6.3	Soil Analytical Results	6
	6.4	Groundwater Analytical Results	6
	6.5	Soil Vapor Analytical Results	7
7.0	Conc	lusions and Recommendations	7
8.0	Refer	ences	8

CONCEPTUAL SITE MODEL AND CASE CLOSURE REQUEST

Former Richfield Company Station No. 374 6407 Telegraph Ave, Oakland, California Fuel Leak Case No. RO0000078

DRAWINGS

- Drawing 1: Site Map with Proposed Additional Soil Vapor Probe and Soil Boring Locations
- Drawing 2: Groundwater Elevation Contours and Analytical Summary Map, August 8, 2014
- Drawing 3: GRO Isoconcentration Contour Map February 12, 2015
- Drawing 4: Benzene Isoconcentration Contour Map February 12, 2015
- Drawing 5: MTBE Isoconcentration Map February 12, 2015
- Drawing 6: Underground Utility Map March 21, 2014

TABLES

Table 1:Conceptual Site ModelTable 2:Soil Analytical Results – December 2014 and January 2015Table 3:Groundwater Analytical Results - December 2014 and January 2015Table 4:Soil Vapor Analytical Results – February 25, 2015

APPENDICES

- Appendix A: Historic Site Soil and Groundwater Data
- Appendix B: Historic Boring Logs and Cross Sections
- Appendix C: Drilling Permits
- Appendix D: Soil Boring/Soil Vapor Logs
- Appendix E: Soil Vapor Sampler Notes
- Appendix F: Laboratory Analytical Reports
- Appendix G: Soil Vapor Analytical Results December 18, 2013

1.0 INTRODUCTION

Broadbent & Associates, Inc. (Broadbent) has prepared this *Soil Investigation and Vapor Intrusion Assessment Report* (Report) on behalf of the Atlantic Richfield Company (ARC) – a BP affiliated company, for Former Richfield Oil Company Station #374 located at 6407 Telegraph Avenue in Oakland, Alameda County, California (Site). A Site Map is presented as Drawing 1.

This Report documents soil investigation and vapor intrusion assessment activities recently conducted. These activities included installing two nested soil vapor sampling probes (two distinct depths for each location) and a soil investigation of three different soil boring locations offsite. A Site description, background, details of field activities, a discussion of results, conclusions and recommendations are presented in the following Sections.

2.0 SITE DESCRIPTION AND BACKGROUND

Station No. 374 is located at the northwest corner of Telegraph and Alcatraz Avenues in an area of mixed residential and commercial land use. The elevation of the Site is approximately 164 feet above mean sea level with local topography sloping gently to the southwest (United States Geological Survey [USGS], Oakland West Quadrangle, California). Surrounding land use is primarily single- and multi-family residences with commercial buildings located east and southeast of the Site. The Assessor's Parcel Number is 16-1424.

The adjacent property to the west is a, multi-story apartment complex. The adjacent property to the north is a restaurant/store. Across Alcatraz Avenue to the south of the Site is a dry cleaner. Across Telegraph to the east of the Site is a pawn shop and window decorations shop. A Site Location Map is provided as Drawing 1. A Site Map depicting current groundwater elevation and analytical data is presented as Drawing 2.

3.0 GEOLOGY AND HYDROGEOLOGY

3.1 Regional Setting

According to the *East Bay Plain Groundwater Basin Beneficial Use Evaluation Report* (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the Oakland Sub-Area of the East Bay Plain of the San Francisco Basin. The Oakland Sub-Area contains a sequence of alluvial fan deposits. The alluvial fill thickness ranges from 300 to 700 feet deep and there are no well-defined aquitards such as estuarine muds. The largest and deepest wells in this sub-area have historically pumped one to two million gallons per day at depths greater than 200 feet. Overall, sustainable yields are low due in part to low recharge potential. The Merrit sand in West Oakland was an important part of the early water supply for the City of Oakland. It is shallow (up to 60 feet), but before the turn of the last century, septic systems contaminated the water supply wells.

Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of groundwater flow is from east to west or from the Hayward Fault to the San Francisco Bay. Groundwater flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically are oriented in an east to west direction.

3.2 Historic Site-Specific Conditions

Based on historical groundwater monitoring information that began during the Second Quarter 2000, depth-to-water (DTW) measurements range historically from approximately 4.5-9 feet below ground surface (bgs). The groundwater gradient direction associated with the Site is predominantly to the southwest. Based on review of historic geologic boring logs, soil beneath the Site generally consists of silty clay, clay, sand and gravelly sands.

4.0 SOIL INVESTIGATION ACTIVITIES

The purpose of this recently conducted investigation was to collect data in order to evaluate current subsurface adjacent offsite Site conditions, including the presence and extent of residual hydrocarbon impacts in soil and groundwater. In order to evaluate current subsurface conditions, two nested soil vapor probes were installed at depths of 3 and 5 ft-bgs in a small courtyard between the Site and an apartment complex on Irwin Court. Additionally, three soil borings were drilled to first encountered groundwater.

4.1 Preliminary Activities, Local Permitting, and Notification

Necessary permits including drilling permits from the Alameda County Public Works Agency (ACPWA) were secured prior to carrying out the field investigation. Copies of these permits are included in Appendix C. Additionally, all borings were marked and areas were outlined with white spray paint, and an Underground Service Alert (USA) ticket was secured to notify all utility companies on the area of the upcoming activities. Additionally, all boring locations were cleared for underground utilities by NorCal Geophysical (NorCal) on December 2, 2014. NorCal's utility locate report is included in Appendix D.

The Site-specific HASP was prepared for use by field personnel. The HASP addressed hazards associated with drilling activities. A copy of the HASP was available onsite during work. The subcontractor(s) performing field activities were provided with a copy of the HASP prior to initiating work, and daily safety tailgate meetings were conducted to review hazards and drilling safety associated with execution of the work.

4.2 Soil Borings

Gregg Drilling and Testing, Inc. (Gregg) mobilized to the Site on December 4 and 10, 2014 as well as January 16, 2015 to perform borehole clearance using a hand auger for all proposed soil boring and soil vapor probe locations. The soil vapor probes were hand augered to their respective depths of 3 and 5 ft-bgs, while the soil borings were hand augered to at least 10 ft-bgs or first encountered groundwater. On December 4 and 10, 2014 and January 16, 2015, Broadbent personnel oversaw the soil boring activities and soil vapor probe installations. Soil samples were collected via the hand auger into brass sleeves, where each end was securely capped. During the January 16, 2015 sampling event, one soil boring was cleared to 6.5 ft-bgs with a hand auger and later drilled to a total depth of 15 ft-bgs via direct push. This particular event was conducted to assess the subsurface near one of the proposed soil borings not finished due to refusal at 6 and 8.5 ft-bgs. B-1 was the original borehole location, which was hand auger and direct push. Soil samples were collected using a macrocore sampler lined with acetate tubes for the direct push drilling. All soil borings were logged for lithology, presence of first-encountered groundwater and identification of potential contamination.

Soil borings were classified according to the Unified Soil Classification System (USCS), and were additionally logged using visual and manual methods for parameters including odor, staining, color, grain size, and moisture content. Field screening for hydrocarbons will include use of a photo-ionization detector (PID) measurements. Boring/soil vapor logs are presented in Appendix E.

4.3 Soil Sampling and Analysis

Collected soil sample cores were sealed with Teflon sheets, capped and placed in a chilled cooler. Samples were then be submitted to TestAmerica Laboratory (TestAmerica) of Irvine, California, a statecertified analytical laboratory, under standard chain-of-custody protocol. Soil samples were analyzed for Gasoline-Range Organics (GRO, C6-C12) by EPA Method 8015M and for Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), 5 Fuel Oxygenates (DIPE, ETBE, MTBE, TAME & TBA), Ethanol, 1,2-Dibromoethane (EDB), 1,2-Dichloroethane (1,2-DCA) and Naphthalene by EPA Method 8260B. Table 2 summarizes soil analytical results.

4.4 Investigation-Derived Soil and Water Disposal

Soil produced during the investigation was temporarily stored on-site in 55-gallon drums, pending characterization for proper disposal. Broadbent coordinated on February 5, 2015 the transportation and disposal of the excess soil and water to the appropriate California-regulated facilities.

4.5 Groundwater Sampling and Analysis

First encountered groundwater samples were collected during the soil investigation activities for soil borings B-1/B-1b, B-2, and B-3. No irregularities were reported during sampling activities. Samples were submitted under chain-of-custody protocol to Test America Laboratories, Inc. of Irvine, California, for analysis of Gasoline-Range Organics (GRO, C6-C12) by EPA Method 8015M and for Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX), 5 Fuel Oxygenates (DIPE, ETBE, MTBE, TAME & TBA), Ethanol, 1,2-Dibromoethane (EDB), 1,2-Dichloroethane (1,2-DCA) and Naphthalene by EPA Method 8260B. The laboratory analytical reports, including chain-of-custody documentation, are provided in Appendix G. Table 3 summarizes groundwater analytical results.

5.0 VAPOR INTRUSION ASSESSMENT ACTIVITIES

The purpose of soil vapor sampling activities discussed herein was to collect data in order to evaluate current subsurface Site conditions including the presence and extent of residual hydrocarbon. Additional soil vapor sampling was conducted to determine whether a vapor intrusion risk to the current building occupants associated with the historic release exists. In order to evaluate this potential risk, two soil vapor probes in two sampling locations (Drawing 1) were installed. Soil vapor sampling activities were performed in accordance with The California Department of Toxic Substances Control's (DTCS's) *Advisory – Active Soil Gas Investigations* (DTSC, 2012).

5.1 Preliminary Activities, Local Permitting, and Notification

Necessary permits including drilling permits from the ACPWA were secured prior to carrying out the field investigation. Copies of these permits are included in Appendix D. Borings were marked and areas were outlined with white spray paint, and an Underground Service Alert (USA) ticket was secured to notify utility companies in the area of the upcoming activities. Additionally, boring locations were

cleared for underground utilities by NorCal Geophysical (NorCal) on December 2, 2014 NorCal's utility locate maps are included in Appendix E.

The Site-specific HASP was prepared for use by field personnel. The HASP addressed hazards associated with drilling activities. A copy of the HASP was available onsite during work. The subcontractor(s) performing field activities were provided with a copy of the HASP prior to initiating work, and daily safety tailgate meetings were conducted to review hazards and drilling safety associated with execution of the work.

5.2 Soil Vapor Probe Borings

Two soil vapor sampling locations were installed (SG-2A/B, SG-3A/B; Drawing 1) on December 4 and 10, 2015 by Gregg. Two soil vapor probes were installed at each location: An "A" soil vapor probe was constructed with the probe installed at 3.5 ft bgs, and a "B" soil vapor probe was constructed with the probe installed at 5 ft bgs. The two depth intervals were installed at each location to assess the potential bioattenuation of residual hydrocarbons in soil vapor. Specific bioattenuation indicator parameters (oxygen, argon, methane, and carbon dioxide; see Section 5.4 below) were measured in each interval to determine the presence and length of any zone of bioattenuation.

In lieu of nested multi-level wells, each soil vapor boring was constructed to a specific depth within its own boring, thus minimizing the potential for short-circuiting. Probes SG-2A and SG-2B are located in the courtyard of the building in order to quantify risks to existing or future building occupants. Soil vapor probes SG-2A/B and SG-3A/B were installed on the southeast portion of the property. These locations were intended to evaluate risks the residences to the east of the property. Each probe is horizontally separated by at least three feet at each location; soil boring B-3 is in between each soil vapor location with SG-3A/B to the north and SG-2A/B to the south. SG-3A/B boring log is identified as SG-3, but is constructed identical as SG-2A/B as a nested well.

5.3 Soil Vapor Probe Construction

Soil vapor probes were constructed by attaching a 6-inch long soil vapor probe tip to a 0.125-inch diameter Teflon tubing extending approximately two feet above the surface. The soil vapor probe tips were constructed of double-woven stainless steel wire screen with a 0.057-inch pore diameter, equipped with stainless-steel end fittings. Each soil vapor probe was embedded within the middle of a one-foot thick sand filter pack of #2/12 sorted sand, topped with 1.5 feet of dry powdered Bentonite clay below a minimum of one-half foot of hydrated powdered Bentonite clay, and completed with a traffic-rated well vault at the surface set with neat cement concrete surface seal to match the existing grade.

5.4 Soil Vapor Probe Sampling

Broadbent personnel conducted soil vapor sampling activities on February 25, 2015. No rainfall event of 0.5 inches or more had recently occurred within 24 hours of sampling. During the soil vapor sampling event on February 25, 2015, it was discovered that the well box for SG-3A/B had been flooded, likely from the past storm events and SG-2B contained water in the tubing while conducting the soil vapor sampling. Due to concerns noted by field staff that the integrity of the soil vapor might have been compromised from the water in the well box, soil vapor was not collected for SG-3A/B and soil vapor was not collected from SG-2B.

Initially, the soil vapor sampling train was assembled by connecting the Swagelok fitting at the end of the probe's tubing to an inline vacuum gauge with a tee then to a 100-cubic centimeter (cc) calibrated syringe with three-way valve at the tip. Coming off the tee for the sample was a one-liter Summa canister, supplied by the laboratory under high vacuum (-30 inches Mercury, in.Hg), leak checked and batch-certified to be free of contaminants. With the valve of the soil vapor probe closed and the valve to the Summa canister closed, the sampling train was checked for leaks during a, "shut-in" leak test by applying with the calibrated syringe a vacuum of -15 in.Hg for a period of five minutes (-15 in.Hg is fifty percent above the standard threshold of -10 in.Hg considered representative of "No Flow" conditions). When the applied vacuum did not drop during the shut-in test, the sampling train assembly was considered leak-tested tight.

After the shut-in leak test, the closed valve of the soil vapor probe was opened and the sampling train slowly purged of one calculated interior volume using the calibrated syringe. The calculated interior volume included the aboveground tubing, appurtenances, below-ground tubing, probe tip, but not the pore space within the filter pack. The main purpose in waiting to sample for at least one month after installation is to allow the soil vapor in the fine sand filter pack to equilibrate to the soil vapor in the undisturbed soil surrounding the implant location. In the tight permeability soils encountered at this Site, the first soil vapor drawn in from outside the implant tubing was assumed to be the most representative and likely contain highest concentrations than would be encountered through excessive purging.

Following the completion of purging, a clear-plastic shroud was setup over the sampling train to contain the chemical tracer/leak-check compound of Helium gas. The shroud was placed to completely cover the soil vapor sampling implant wellhead, its aboveground tubing, and the tubing, fittings, and sample Summa canister that will make up the sampling train. Once setup, Helium gas was released via tubing under the shroud. A Radiodetection Model MGD-2002 Helium detector was used to monitor the concentration within the shroud by placing its sensor probe within. Prior to and during sampling, a positive-pressure concentration of approximately 20 percent Helium was maintained within the shroud using the compressed gas cylinder's flow regulator.

Once a positive-pressure Helium atmosphere was created under the shroud, the valve to the Summa canister was opened and the sample collected. The sampling rates into the Summa canisters was fixed by laboratory-supplied critical orifice assemblies (i.e. mini flow regulators) with a 0.0060 inch orifice allowing approximately 200 standard cc per minute (cc/min). Samples were collected into the Summa canisters until the vacuum dropped from the initial laboratory-supplied vacuum of -30 in.Hg to -5 in.Hg. Sample start times, end times, starting vacuums, ending vacuums, and Helium concentrations during sampling were recorded in the field notes. Soil vapor samples may not be collected if the probes or integrity of the well box have been compromised. For example, a sample will not be collected if water from a storm event is present within the well box or if water droplets are present within the tubing during the collection process. One sample was not collected during the most recent soil vapor investigation. These notes are included in Appendix E.

5.5 Laboratory Analysis of Soil Vapor Samples

Collected samples were submitted to TestAmerica under standard chain-of-custody protocol. At the laboratory, soil vapor samples will be analyzed for GRO by EPA Method TO-3 and for BTEX, Naphthalene and MTBE by EPA Method TO-15. Soil vapor samples will also be analyzed for Oxygen (O_2) and Carbon Dioxide (CO_2), Methane (CH_4) and Helium (tracer/leak-check compound) by Modified ASTM D-1946.

Laboratory analyses for soil vapor samples were performed in accordance with EPA standard holding times for Summa canisters. Table 4 summarizes soil vapor sampling results.

6.0 INVESIGATION RESULTS

The following sections summarize the results of the recently conducted Site assessment activities. These results include encountered lithology, groundwater gradient and elevation, soil analytical results, groundwater analytical results and soil vapor analytical results. The analytical results were compared to Environmental Screening Levels (ESLs; CRWQCB, 2013) and applicable Low Threat UST Closure Policy (LTCP; SWRCB, 2012), where appropriate. Soil boring/soil vapor logs are included in Appendix E. Soil analytical results and applicable ESLs and LTCP criteria are summarized in Table 2. Table 3 provides a summary of groundwater analytical results and applicable ESLs. Table 4 summarizes soil vapor analytical results and applicable ESLs. Drawing 2 depicts groundwater elevation contours from August 4, 2014. Drawings 3, 4 and 5 depict GRO, benzene and MTBE isoconcentrations in groundwater, respectively.

6.1 Encountered Lithology

Soils encountered during soil investigation/vapor probe activities consisted of primarily silt, clay, and sand with minor variable amounts of gravels present. Trace amounts of fine grained sand within the clay was noted in the first four feet of B-1 and B-1A. A distinct sand layer was noted in B-3 from 1.5-6 ft-bgs. Clay and silt identified for each soil boring/soil vapor probe had a stiff consistencies. Moisture was noted in each soil boring down to total depth.

6.2 Groundwater Elevation and Gradient

Groundwater surface elevations ranged from 155.94 ft above msl in well MW-1 to 148.84 ft above msl in well MW-5 according to the most recent groundwater monitoring event (3Q14). Water level elevations yielded a potentiometric groundwater gradient to the southeast at approximately 0.03 ft/ft. Potentiometric groundwater elevation contours are presented in Drawing 2. This calculated groundwater gradient is consistent with previous monitoring events.

6.3 Soil Analytical Results

Soil samples were collected at various intervals for each soil boring; B-1 samples were collected at 3 and 7 ft-bgs, B-2 samples were collected at 3-3.5 and 8-8.5 ft-bgs and B-3 samples were collected at 3-3.5 and 5-5.5 ft-bgs. The occurrence of residual hydrocarbon compounds was detected in soil samples collected from B-1. Concentrations of GRO were detected at 3 and 7 ft-bgs at 1.6 mg/kg and 0.95 mg/kg, respectively. Detected concentrations in soil appear to be minor to non-detect residual resulting from the highly degraded petroleum plume. There were no detections of residual hydrocarbon concentrations in soil borings B-2 and B-3.

Shallow soil samples collected (above 10 feet bgs) did not contain any petroleum concentrations in excess of values listed in Table 1 of the LTCP. Residual concentrations of petroleum in soil do not pose a risk for direct contact. Soil analytical results are summarized in Table 2.

6.4 Groundwater Analytical Results

Residual concentrations of petroleum hydrocarbons in groundwater were detected in soil borings B-1b and B-2. The highest overall petroleum compound concentrations were detected in B-2 These concentrations included GRO at 24,000 μ g/L, benzene at 3,900 μ g/L, toluene at 380 μ g/L, ethylbenzene at 3,600 μ g/L, xylenes at 1,300 μ g/L, and naphthalene at 1,900 μ g/L. No MTBE was detected in this boring. No other petroleum compounds were detected in these downgradient soil boring locations. There were no detections of residual petroleum hydrocarbon concentrations in soil boring B-3.

Concentrations in excess of ESLs were detected both soil borings B-1 and B-2. GRO, BTEX, and naphthalene exceeded their respective ESLs. Table 3 summarizes groundwater analytical results and ESLs. Laboratory analytical reports are included in Appendix G. GRO and benzene contaminant isoconcentration maps are included as Drawings 3 and 4, respectively.

6.5 Soil Vapor Analytical Results

No benzene, toluene, ethylbenzene or MTBE were detected in any of the two (SG-1A & SG-2A) soil vapor samples collected. GRO, total xylenes and naphthalene were detected for each collected sample. However, the concentrations for GRO, total xylenes and naphthalene were below Tier 1 ESLs. Soil vapor analytical results are summarized in Table 4. After the installation of newly installed soil vapor probes on December 10, 2014, two major storm events occurred in December. During the soil vapor sampling event on February 25, 2015, it was discovered that the well box for SG-3A/B had been flooded, likely from the past storm events and SG-2B contained water in the tubing while conducting the soil vapor sampling. Due to concerns noted by field staff that the integrity of the soil vapor might have been compromised from the water in the well box, soil vapor was not collected for SG-3A/B and soil vapor was not collected from SG-2B. Broadbent field personnel removed the water from the well box and will re-mobilize at a later date to complete the sample collection for SG-3A/B.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The results of the recently conducted investigation indicates that residual impacts are present, primarily in groundwater, at highest concentrations downgradient of the Site across Alcatraz Avenue at soil boring location B-2. These residual impacts are largely present in silt and clay. Groundwater gradient is relatively flat (0.03 ft/ft), which is consistent with the noted lithology and the regional geologic conditions and depositional environment. Therefore, residual contaminant migration of petroleum hydrocarbons remaining in groundwater is likely limited both laterally and vertically by lithologic conditions.

According to the First Quarter 2015 Monitoring Report, onsite well MW-4 had the highest concentrations of GRO and benzene of 7,000 μ g/L and 120 μ g/L, respectively. High concentrations of GRO and BTEX were detected above their respective ESLs in downgradient soil borings B-1 and B-2 at 8,800 μ g/L and 24,000 μ g/L, respectively. Boring B-1 is approximately 85 feet downgradient of B-2 and although it appears the contamination plume has crossed Alcatraz Avenue, B-1 yielded lower concentrations for GRO and BTEX than B-2. Well MW-5, which is 110 feet downgradient of B-1, contained no petroleum hydrocarbons (First Quarter 2015 Monitoring Report). Based on these data, observations and analysis, the extent of remaining petroleum hydrocarbons in groundwater is defined.

Soil vapor analytical and soil analytical results indicate that no concentrations above ESLs or applicable LTCP criteria exist. These data indicate minimal to no risk for the onsite building occupants from

potential petroleum vapor intrusion to indoor air, outdoor air exposure and potential direct contact with soil. However, soil vapor samples from SG-2B and SG-3A/B need to be collected to further evaluate risks to offsite residents.

Overall, recent data indicates that residual petroleum hydrocarbons have degraded since Site groundwater was sampled in 1999 to 2002, likely due to natural attenuation. However, high concentrations of GRO and benzene downgradient of the Site indicate that contamination may spread beyond the localized wells onsite or an additional offsite hydrocarbon source may be present. Although offsite well MW-5 has historically yielded no detections of petroleum hydrocarbons in previous sampling events, concentrations in the upgradient soil borings suggest the plume may have migrated offsite and may continue extend further downgradient. It is recommended the need for an offsite investigation and the potential of an offsite source be evaluated. Additionally, soil vapor sampling near the recently advanced offsite borings is recommended to assess potential risks to occupants of adjacent off site building if it is deterioned impactes originated from the Site. A potentioal offsite source across Telegraph Avenue (Mobil/Givens Investment Company) has initialle been identified and this Site contained LNAPL when UST's were removed. Due to shallowgroundwater conditions, this LNAPL potentially could have travelled through adjacent utility trenches.

8.0 REFERENCES

- Broadbent & Associates, 2014. Third Quarter 2014 Monitoring Report. Atlantic Richfield Company Station No. 374, 6407 Telegraph Avenue, Oakland California, ACEH Case No. RO 0000078. October 31.
- Broadbent & Associates, 2014. Second Addendum to Soil Vapor Investigation Work Plan. Atlantic Richfield Company Station No. 374, 6407 Telegraph Avenue, Oakland California, ACEH Case No. RO 0000078. June 27.

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
CSM ElementDescriptionGeology and HydrogeologyRegionalAccording to the East Bay Plain Groundwater Basin Beneficial Use Evaluation (California Regional Water Quality Control Board – San Francisco Bay Region/SFRWQCB, June 1999), the Site is located within the Oakland Sub-Are the East Bay Plain of the San Francisco Basin. The Oakland Sub-Area contains sequence of alluvial fans. The alluvial fill thickness ranges from 300 to 700 ft depth. There are no well-defined aquitards such as estuarine muds. The larg deepest wells in this sub-area historically pumped one to two million gallons at depths greater than 200 ft. Overall, sustainable yields are low due in part recharge potential. The Merrit sand in West Oakland was an important part 		Region/SFRWQCB, June 1999), the Site is located within the Oakland Sub-Area of the East Bay Plain of the San Francisco Basin. The Oakland Sub-Area contains a sequence of alluvial fans. The alluvial fill thickness ranges from 300 to 700 ft in depth. There are no well-defined aquitards such as estuarine muds. The largest and deepest wells in this sub-area historically pumped one to two million gallons per day at depths greater than 200 ft. Overall, sustainable yields are low due in part to low recharge potential. The Merrit sand in West Oakland was an important part of the early water supply for the City of Oakland. It is shallow (up to 60 ft), but before the turn of the last century, septic systems contaminated the water supply wells. Throughout most of the Alameda County portion of the East Bay Plain, from Hayward north to Albany, water level contours show that the general direction of groundwater flow is from east to west or from the Hayward Fault to the San Francisco Bay. Groundwater flow direction generally correlates to topography. Flow direction and velocity are also influenced by buried stream channels that typically	None	NA
	Site	The Site elevation is approximately 163 ft above sea level. The water table fluctuates seasonally and over time. Historically, depth-to-water measurements have ranged from approximately 5 to 11 ft bgs). During First Quarter 2013, the average depth to groundwater in onsite wells MW-1, MW-2, MW-4, and MW-7 through MW-9 was approximately 5.5 ft. Groundwater flow direction during the First Quarter 2013 monitoring event on February 14, 2013 was to the southwest at a gradient of approximately 0.04 ft/ft.	None	NA

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Geology and Hydrogeology (continued)	blogy andSiteThe Site is typically underlain by silty and sandy clays with intervals consisting ofrogeology(continued)sands and gravels to a maximum explored depth of approximately 28 ft bgs. The			
Surface Water Bodies		The nearest surface water body is an unnamed creek that terminates 3,400 ft east of the Site (Closure Solutions, 2012). The nearest natural drainage is Claremont Creek, located approximately 1.2 miles west-northwest of the Site. Claremont Creek flows generally east to west near the Site vicinity. The San Francisco Bay is located approximately 2 miles west of the Site.	None	NA
Nearby Wells		A Sensitive Receptor Survey was carried out in February 2011 by Closure Solutions to identify the presence of water wells within a ½-mile radius of the Site. According to Closure Solutions' report, 2 wells were identified within a ½-mile radius in the downgradient and crossgradient groundwater flow direction and its intended use is unknown. A Sensitive Survey will be conducted by Broadbent to verify the water wells found by Closure Solutions and to determine Ecological Receptors and nearest schools and hospitals.	Yes	Conduct Survey

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Constituents of Concern	Light-Non Aqueous Phase Liquids (LNAPL)	LNAPL has not been observed at this Site in monitoring wells. However, LNAPL was observed during the soil investigation conducted by Applied Geosystems (AGS) in 1988. One inch of LNAPL was observed in a grab groundwater sample collected from boring B-1. Additionally, product sheen was also observed in grab groundwater samples from borings B-2 and B-4. Product sheen was also encountered in observation wells W-1 and W-2 in the former UST pit during the UST removal and excavation in June 1988 (AGS, 1988).	None	NA
	Gasoline Range Organics (GRO)	Concentrations of GRO have historically been detected in four of the nine Site monitoring wells (MW-4 and MW-7 through MW-9). In wells MW-7 and MW-9, only low and intermittent concentrations of GRO have been historically detected. Historical concentrations of GRO have been reported in well MW-4 and have consistently been detected since 2000. No GRO has been detected in offsite wells MW-3, MW-5, and MW-6. Onsite wells MW-1 and MW-2 have historically have had detections of GRO concentrations but within the last five years it has been reported as non-detect. Drawing 3 presents isoconcentration contours for the most recent groundwater monitoring and sampling event (February 2015) and the soil investigation during December 2014 and January 2015.	None	NA
	Benzene	Benzene has historically been detected in all wells except for MW-1, MW-3, MW-5, and MW-6. However, well MW-2 had sporadic detections sat low concentrations of no greater than 3 µg/L. The highest onsite concentration of benzene was detected in well MW-4 at 5,100 µg/L in June 2000. Maximum benzene concentrations have consistently been detected in MW-4. MW-8 had a high detection of benzene during the 1Q13 event at 350 µg/L, but was detected at 1.5 µg/L the following sample event. Drawing 4 represents isoconcentration contours of benzene in groundwater during the most recent groundwater monitoring event (1Q15), and soil investigation.	None	NA

CONCEPTUAL SITE MODEL

CSM Sub- Element	Description	Data Gap	How to Address
MTBE	Methyl tert butyl ether (MTBE) has been historically detected in all wells. However, in wells MW-3, MW-6, MW-7 only low concentrations have been detected. The highest historic concentration of MTBE was reported in well MW-1 in March 2001 at a concentration of 2,710 μ g/L. Drawing 5 represents isoconcentration contours of MTBE in groundwater during the most recent groundwater monitoring event (1Q15). The plume is extensive across the Site. MW-1 continues to exhibit the highest concentrations of MTBE. However, MTBE is not present in any of the downgradient wells or in the soil borings. MTBE concentrations have consistently been in decline since 2001.	None	NA
Onsite	The main sources of contamination onsite were from the former UST's and pump islands located in the southeastern area of the site. In February 1988, a leak was detected in the vapor/vent line of the unleaded system during annual tank testing. The results of a April 1988 limited environmental site assessment conducted by AGS which included four soil borings near the USTs indicated soil and groundwater contamination with LNAPL and sheen being observed in the groundwater grab sample collected from the soil boring locations. Between June 7 and 10, 1988, the four gasoline USTs were removed from the Site and on September 21, 1996, two pump islands along with its associated underground product lines were removed. Removal of UST's and pump islands was to control and mitigate the spread of contamination. Subsequent soil remediation and soil investigations determined residual hydrocarbon contamination still exists around the former UST and pump islands locations. A decreasing trend in hydrocarbon residuals in the groundwater can be seen in all wells however MW-4 still contains the highest concentration of GRO.	None	NA
	Element MTBE	ElementDescriptionMTBEMethyl tert butyl ether (MTBE) has been historically detected in all wells. However, in wells MW-3, MW-6, MW-7 only low concentrations have been detected. The highest historic concentration of MTBE was reported in well MW-1 in March 2001 at a concentration of 2,710 µg/L. Drawing 5 represents isoconcentration contours of MTBE in groundwater during the most recent groundwater monitoring event (1Q15). The plume is extensive across the Site. MW-1 continues to exhibit the highest concentrations of MTBE. However, MTBE is not present in any of the downgradient wells or in the soil borings. MTBE concentrations have consistently been in decline since 2001.OnsiteThe main sources of contamination onsite were from the former UST's and pump islands located in the southeastern area of the site. In February 1988, a leak was detected in the vapor/vent line of the unleaded system during annual tank testing. The results of a April 1988 limited environmental site assessment conducted by AGS which included four soil borings near the USTs indicated soil and groundwater 	ElementDescriptionGapMTBEMethyl tert butyl ether (MTBE) has been historically detected in all wells. However, in wells MW-3, MW-6, MW-7 only low concentrations have been detected. The highest historic concentration of MTBE was reported in well MW-1 in March 2001 at a concentration of 2,710 µg/L. Drawing 5 represents isoconcentration contours of MTBE in groundwater during the most recent groundwater monitoring event (1015). The plume is extensive across the Site. MW-1 continues to exhibit the highest concentrations of MTBE. However, MTBE is not present in any of the downgradient wells or in the soil borings. MTBE concentrations have consistently been in decline since 2001.NoneOnsiteThe main sources of contamination onsite were from the former UST's and pump islands located in the southeastern area of the site. In February 1988, a leak was detected in the vapor/vent line of the unleaded system during annual tank testing. The results of a April 1988 limited environmental site assessment conducted by AGS which included four soil borings near the USTs indicated soil and groundwater contamination with INAPL and sheen being observed in the groundwater grab sample collected from the soil boring locations. Between June 7 and 10, 1988, the four gasoline USTs were removed from the Site and on September 21, 1996, two pump islands along with its associated underground product lines were removed. Removal of UST's and pump islands was to control and mitigate the spread of contamination. Subsequent soil remediation and soil investigations determined residual hydrocarbon contamination still exists around the former UST and pump islands locations. A decreasing trend in hydrocarbon residuals in the groundwater can be seen in all wells however MW-4 still contains the highest concentration of GRO.

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential Sources (continued)	Onsite (continued)	presented herein does not indicate that an ongoing hydrocarbon release is occurring, since hydrocarbon concentrations have steadily been decreasing since the removal of the former UST's and associated pump islands. The Site monitoring and sampling history indicate that hydrocarbon releases occurred from the former UST location and pump islands, with no additional releases having occurred.		
	Offsite	Diagonally across the site is a former Mobil service station that ceased operation in 1983. A petroleum leak was reported in March 1986 and the four USTs were removed in May 1986. Confirmation soil and groundwater samples were taken during the removal and excavation of the UST's. The site is approximately 120 feet southeast and cross-gradient to ARCO 374. (Resna, 1992). In 2009 a notice of violation from SWRCB which the responsible party has not responded to and is missing the laboratory report of the groundwater sampling that took place. In 2012, a notice of enforcement referral was issued to the San Francisco Bay Regional Water Quality Control Board. No further work has been conducted since the notice of enforcement referral was first issued in 2012. This site may be a potential secondary source of contamination but due to the groundwater direction of the Site and its crossgradient proximity to Arco 374, it is unlikely impacting the Site.	None	NA
Nature and Extent of Environmental Impacts	Extent in Soil	Soil appears defined at the Site. Upon completion of an offsite soil boring investigation conducted by Broadbent in November 2010, moderate concentrations of GRO, benzene, toluene, ethylbenzene, and total xylenes (BTEX) are present within the soil at 8.0 to 9.5 ft bgs in the east pump island investigation area. Hydrocarbon concentrations diminish in concentration with depth and horizontal distance from this east pump island. One exception to this observation is the MW-8 soil sample at 11 ft bgs where the GRO concentration was 1,400 mg/kg. The soil	None	NA

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and Extent of Environmental Impacts (continued)	Extent in Soil (continued)	analytical data demonstrates that the soil petroleum hydrocarbon impact around the east pump island is defined vertically at 12.5 ft bgs, to levels below residential Regional Water Quality Control board ESLs for shallow soil scenarios where the groundwater is a potential drinking water resource. The soil analytical data also demonstrates that the petroleum hydrocarbon impact in soil around the east pump island is sufficiently defined laterally.		
		The soil data from this investigation are consistent with the elevated GRO concentrations in soil samples collected during Broadbent's November 11, 2009 <i>Soil and Groundwater Investigation</i> where soil boring B-15 contained 1,400 mg/kg at 4.5 ft bgs and B-13 contained 1,800 mg/kg at 8.5 ft bgs. These observed concentrations are indicative of a point release from the former product piping that spreads outward when encountering a more permeable (sandy, gravelly) layer. The data also is consistent with the previous high concentration of 6,500 mg/kg GRO detected in product line sample PL-3 5' collected on December 4, 2008 during product line replacement and fuel dispenser upgrades (Broadbent, 2009).		
		Low concentrations of MTBE were detected in shallow soil samples collected from MW-8 and MW-9. Six of the 18 soil samples detected MTBE concentrations and none of the 18 detected TBA concentrations exceeded the residential ESLs for shallow soil scenarios where the groundwater is a potential drinking water resource. Two of the six MTBE samples (MW-8-14.5 and MW-9-15.5) were collected within the capillary fringe and MTBE concentrations are likely from a groundwater source. Neither MTBE nor TBA concentrations in soil exceeded the residential ESLs for shallow soil where the ground water is not a potential drinking water resource.		

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Nature and	Extent in Soil	In December 2014 and January 2015, Broadbent conducted an offsite soil		
Extent of	(continued)	investigation across the Site on Alcatraz Avenue and at the neighboring apartment		
Environmental Impacts		complex to determine if residual hydrocarbon concentrations have migrated from		
(continued)		the Site. GRO, benzene, Ethylbenzene, xylenes and naphthalene were all detected in soil boring B-1b at 3 ft bgs. However, all were detected below 1.0 mg/kg, while GRO		
(continued)		was detected at 1.6 mg/kg. No other analytes were detected during the		
		investigation.		
	Extent in	The groundwater monitoring network at the Site include nine wells (MW-1 thru		Conduct
	Shallow	MW-9); upgradient wells (MW-1, MW-2, MW-7 thru MW-9); and downgradient	Yes	Downgradient
	Groundwater	wells (MW-3 thru MW-6). Isoconcentration maps for the most recent groundwater		Assessment
		monitoring and sampling event (1Q15) for GRO, benzene, and MTBE are included as		
		Drawings 3 through 5 respectively. Based on these drawing s and the On-site Soil		
		and Groundwater Investigation Report (Broadbent, 2011), the extent of petroleum		
		compounds is well defined in all directions, and is predominately limited around the former UST's and southern pump island area with the exception of MTBE plume		
		which encompasses a bigger area. Additionally, free product is not present at this		
		Site, and dissolved petroleum concentrations are decreasing. The data is adequate		
		for understanding the CSM.		
	Extent in	Soil Borings B-1 through B-5 (MW-1 through MW-5) were all advanced to 27 ft bgs		
	Deeper	and borings B-16 to B-18 (MW-6 through MW-9) and soil boring B-19 were		
	Groundwater	advanced to 20 ft bgs. Based on the results of these boring logs and the On-site Soil	None	NA
		and Groundwater Investigation Report (Broadbent, 2011), petroleum compounds in		
		groundwater are vertically defined within the first-encountered groundwater		
		between 7 to 12 ft bgs. The deeper groundwater zone was not encountered nor was		
		petroleum constituents were detected or observed deeper than 15 ft bgs.		

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
	Extent in Deeper Groundwater (continued)	No soil borings drilled during the December 2014/January 2015 soil investigation, were deeper than 15 ft-bgs.		
	Extent in Soil	Two soil vapor assessments have been performed at the Site. The first was		
Nature and Extent of Environmental Impacts (continued)	Vapor	conducted on December 18, 2013 for SG-1A, located in the vicinity of MW-4 onsite. No significant irregularities were reported during the analysis of the soil gas samples. The results from this investigation are summarized in Appendix G. The apartments located west of the Site are downgradient to the former UST locations. Two proposed soil vapor probes locations, nested (SG-2A/B & SG-3) in between the apartment complex and the Site (Drawing 1) will assess the potential risk of soil vapor intrusion from the Site. An evaluation of the apartment complex foundation will also be conducted in order to assist in determining the risk involved from soil vapor intrusion. Based on the results from the soil vapor investigation conducted on February 25, 2015, GRO and total xylenes were detected in SG-1A and SG-2A respectively. Detected concentrations of GRO and total xylenes were below their respective ESL reporting limits. Soil gas was not collected from SG-3 due to water in well box. No other residual hydrocarbon concentrations were detected during the investigation.	Yes	Conduct Soil Vapor Investigation Near Recent Borings
Migration Potential Pathways Conduits		Historic maps of underground utilities including water, sewer line and communication are included as Drawing 6. The majority of the mapped underground utilities are believed to be relatively shallow (less than three feet bgs). Exception is the mapped sewer pipeline that is located within the area where the release occurred. Since depth to groundwater is typically measured as high as 6 feet bgs, there is a potential that the deeper sewer system conduits may be acting as preferential pathways for contaminant migration.	No	NA

CONCEPTUAL SITE MODEL Atlantic Richfield Company Station 374 6407 Telegraph Ave Oakland, California

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address	
Potential Receptors	Onsite	No onsite water supply wells or surface water exists. The only potential onsite receptor would be onsite workers exposed to gasoline vapors. However, the exposure from current fueling operations represents a greater risk than any associated with potential groundwater or soil or soil vapor exposure (SWCRB, 2012).			
	Offsite	As discussed above, the apartments west of the site are located down gradient of the Site and are considered a potential offsite receptor. This receptor is in close proximity to the former USTs with MW-4 still containing high concentrations of GRO and Benzene. Although the concentrations of GRO and Benzene in groundwater on the offsite wells MW-4, MW-5, and MW-6 were reported as non-detect, there is a possibility that the plume could be beneath the apartments and terminate there (as seen in Drawing 4 and Drawing 5).	Yes	Offsite Soil Vapor Assessment near recent borings	
		Another potential offsite receptor is the apartment complex across Alcatraz Avenue. The most recent soil investigation indicated that the contamination plume has migrated downgradient across the street with high groundwater concentrations of GRO and benzene in soil borings B-1 and B-2.			
		As mentioned above, a Sensitive Receptor Survey was carried out in February 2011 by Closure Solutions to identify the presence of water wells within a ½-mile radius of the Site. According to Closure Solutions' report, two wells were identified within a ½-mile radius in the downgradient and crossgradient groundwater flow direction and its intended use is unknown. Closure Solution was unable to locate these wells and were deemed not in use according to their Survey. The nearest natural drainage is Claremont Creek, located approximately 1.2 miles northwest of the Site. Claremont Creek flows generally east to west near the Site vicinity. The SRS does			

CONCEPTUAL SITE MODEL

CSM Element	CSM Sub- Element	Description	Data Gap	How to Address
Potential	Offsite	not contain Ecological receptors and nearby schools and hospitals. Broadbent		
Receptors	(continued)	proposes to conduct an updated SRS to fill in these data gaps.		
(continued)				

CONCEPTUAL SITE MODEL

Atlantic Richfield Company Station 374 6407 Telegraph Ave Oakland, California

Notes:

bgs = below ground surface BTEX = benzene, toluene, ethylbenzene, xylenes DRO = Diesel Range Organics ESL = Environmental Screen Levels ft = foot ft/ft = foot per foot GRO = Gasoline Range Organics LNAPL = Light-Non Aqueous Phase Liquid mg/kg = milligrams per kilogram MTBE = Methyl tert-butyl Ether NA = Not Applicable UST = Underground Storage Tank µg/L = micrograms per liter µg/m³ = micrograms per cubic meter

Table 2Soil Analytical ResultsDecember 2014 and January 2015ARCO Station No. 3746407 Telegraph Avenue, Oakland, California

Soil Boring Indentification	Soil Sample Depth (feet bgs)	Date Collected	GRO (mg/kg)	Benzene (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	Total Xylenes* (mg/kg)	MTBE (mg/kg)	Naphthalene (mg/kg)	ETBE (mg/kg)	TAME (mg/kg)	TBA (mg/kg)	DIPE (mg/kg)	EDB (mg/kg)	Ethanol (mg/kg)
B-1B	3	1/16/2015	1.6	0.0043	<0.0010	0.0020	0.0050	<0.0020	0.050	<0.0020	<0.0020	<0.050	<0.0020	<0.0010	<0.20
B-1B	7	1/16/2015	0.95	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.050	<0.0020	<0.0010	<0.20
B-2	3-3.5	12/4/2014	<0.39	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.050	<0.0020	<0.0010	<0.20
В-2	8-8.5	12/4/2014	<0.38	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.050	<0.0020	<0.0010	<0.20
B-3	3-3.5	12/10/2014	<0.40	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.050	<0.0020	<0.0010	<0.20
В-3	5-5.5	12/10/2014	<0.40	<0.0010	<0.0010	<0.0010	<0.0020	<0.0020	<0.0020	<0.0020	<0.0020	<0.050	<0.0020	<0.0010	<0.20
LTCP Criteria - 0 to 5 fe	et bgs		NA	8.2	NA	89	NA	NA	45	NA	NA	NA	NA	NA	NA
LTCP Criteria - 5 to 10 f	feet bgs		NA	12	NA	134	NA	NA	45	NA	NA	NA	NA	NA	NA
LTCP Criteria - Utility W	Vorker		NA	14	NA	314	NA	NA	219	NA	NA	NA	NA	NA	NA

Notes:

feet bgs = feet below ground surface mg/kg= milligrams per kilogram GRO = gasoline range organics (C6-C12) MTBE = methyl tert-butyl ether ETBE = ethyl tert-butyl alcohol TAME = tert-amyl methyl ether TBA = tert butyl alcohol

DIPE = di isopropyl ether 1,2-DCA = 1,2-dichloroethane EDB = 1,2-dibromoethane <X.XX = not detected above reporting limit of X.XX mg/kg

NA = not analyzed

LTCP = Low Threat UST Closure Policy, California Stae Water Resources Control Board (SWRCB), August 17, 2012 LTCP Criteria listed in Table 1, page 8 of the LTCP for a commercial/industrial exposure scenario

Table 3 **Groundwater Analytical Results** December 2014 and January 2015 ARCO Station No. 374 6407 Telegraph Avenue, Oakland, California

Soil Boring Identification	Date Collected	GRO (µg/L)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene µg/L)	Total Xylenes* (μg/L)	MTBE (µg/L)	Naphthalene (µg/L)	DIPE (µg/L)	ETBE (µg/L)	TAME (μg/L)	1,2-DCA (μg/L)	EDB (µg/L)	Ethanol (μg/L)
B-1B	1/16/2015	8,800	690	170	630	1,200	<10	52	<10	<10	<10	<10	<10	<3,000
B-2	12/4/2014	24,000	3,900	380	3,600	1,300	<50	1,900	<50	<50	<50	<50	<50	<15,000
B-3	12/10/2014	<50	<0.50	<0.50	<0.50	<1.0	<0.50	<1.0	<0.50	<0.50	<0.50	<0.50	<0.50	<150
ESLs - DW		100	1.0	40	30	20	5.0	6.1	NE	NE	NE	0.5	0.05	NE
ESLs - NDW		210	46	130	43	100	1,800	24	NE	NE	NE	200	150	NE

Notes:

<X.XX = not detected above reporting limit of X.XX μ g/L

NE = ESL not established

feet bgs = feet below ground surface µg/L= micrograms per liter GRO = gasoline range organics (C6-C12) MTBE = methyl tert-butyl ether ETBE = ethyl tert-butyl alcohol TAME = tert-amyl methyl ether TBA = tert butyl alcohol DIPE = di isopropyl ether 1,2-DCA = 1,2-dichloroethane EDB = 1,2-dibromoethane

ESLs - Tier 1 Environmental Screening Levels, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board (CRWQCB), Interim Final, December 2013. Commercial/Industrical exposure scenario; Table E-2

ESL - DW = Environmental Screening Levels (ESLs), shallow soils (<3 meters bgs), groundwater is a current potential source of drinking water for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008)

ESL - NDW = Environmental Screening Levels (ESLs), shallow soils (<3 meters bgs), groundwater is NOT a current potential source of drinking water for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008)

Table 4 Soil Vapor Analytical Results February 25, 2015 ARCO Station No. 374 6407 Telegraph Avenue, Oakland, California

Soil Vapor Probe Identification	Probe Sample Depth (feet bgs)	Date Collected	GRO (µg/m³)	Benzene (µg/m³)	Toluene (μg/m³)	Ethylbenzene (μg/m3)	Total Xylenes* (μg/m³)	MTBE (µg/m ³)	Naphthalene (µg/m³)	Carbon Dioxide (%)	Methane (%)	Oxygen (%)
SG-1A	2.5-3	2/25/2015	5,300	<13	<15	<17	67	<14	<21	4.2	0.0018	17.0
SG-2A	3-3.5	2/25/2015	5,200	<13	<15	<17	53	<14	<21	6.8	0.0015	14.0
ESLs			2,500,000	420	1,300,000	4,900	440,000	47,000	360	NA	NA	NA

Notes:

feet bgs = feet below ground surface

μg/m³= micrograms per cubic meter GRO = gasoline range organics (C6-C12) MTBE = methyl tert-butyl ether <X.XX = not detected above reporting limit of X.XX μ g/m³

NA = not analyzed

ESLs - Tier 1 Environmental Screening Levels, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board (CRWQCB), Interim Final, December 2013. Commercial/Industrical exposure scenario; Table E-2

APPENDIX A

Historic Site Soil and Groundwater Data

			Top of	Bottom of		Water Level	Concentrations in µg/L								
Well ID and Date Monitored	P/NP	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	рН	Footnote
ESL - DW							100	1.0	40	30	20	5.0		_	
ESL - NDW							210	46	130	43	100	1,800			
MW-1															
6/20/2000		158.91	7.00	27.00	6.86	152.05									
9/28/2000			7.00	27.00	7.50	151.41									
12/17/2000			7.00	27.00	7.49	151.42									
3/23/2001			7.00	27.00	5.90	153.01	<50	< 0.5	< 0.5	< 0.5	< 0.5	2,710			
6/21/2001			7.00	27.00	7.45	151.46									
9/23/2001			7.00	27.00	8.46	150.45									
12/31/2001			7.00	27.00	5.50	153.41									
3/21/2002			7.00	27.00	4.71	154.20	<5,000	<50	<50	<50	<50	2,000			
4/17/2002			7.00	27.00	5.54	153.37									
8/12/2002			7.00	27.00	7.77	151.14									
12/6/2002			7.00	27.00	7.65	151.26									
1/29/2003			7.00	27.00	5.88	153.03									b
5/23/2003			7.00	27.00	5.62	153.29	<10,000	<100	<100	<100	<100	1,600	1.3	7.1	
9/4/2003			7.00	27.00	7.85	151.06									
11/20/2003	Р		7.00	27.00	8.17	150.74	1,600	<10	<10	<10	<10	1,500	1.7	6.7	
02/02/2004	Р	164.57	7.00	27.00	6.71	157.86							1.0		f
05/14/2004	Р		7.00	27.00	7.08	157.49	<2,500	<25	<25	<25	<25	1,200	1.4	6.6	
09/02/2004	Р		7.00	27.00	8.12	156.45	580	<5.0	<5.0	<5.0	<5.0	660	3.8	6.7	
11/04/2004	Р		7.00	27.00	7.38	157.19	1,700	<10	<10	<10	<10	580	6.0	6.5	
02/08/2005	Р		7.00	27.00	6.60	157.97	<1,000	<10	<10	<10	<10	610	0.71	6.5	
05/09/2005	Р		7.00	27.00	6.84	157.73	540	<5.0	<5.0	<5.0	5.5	620	3.12	6.6	е
08/11/2005	Р		7.00	27.00	7.36	157.21	540	<2.5	<2.5	<2.5	4.0	390	0.8	6.6	
11/18/2005	Р		7.00	27.00	8.02	156.55	350	<2.5	<2.5	<2.5	<2.5	340	2.6	6.7	е
02/16/2006	Р		7.00	27.00	6.44	158.13	350	<2.5	<2.5	<2.5	<2.5	340	1.6	6.7	е
5/30/2006	Р		7.00	27.00	6.87	157.70	270	<2.5	<2.5	<2.5	<2.5	420	4.73	6.4	
8/24/2006	Р		7.00	27.00	7.75	156.82	95	<5.0	<5.0	<5.0	<5.0	180	0.65	6.9	
11/1/2006	Р		7.00	27.00	8.28	156.29	120	<5.0	<5.0	<5.0	<5.0	220	1.65	7.07	
2/7/2007	NP		7.00	27.00	7.40	157.17	120	<5.0	<5.0	<5.0	<5.0	190	1.88	7.45	е

Table 1. Summary of Groundwater Monitoring Data: Relative Water Elevations and Laboratory Analyses

ARCO Service Station #0374, 6407 Telegraph Ave., Oakland, CA

Offsite Subsurface Environmental Investigation ARCO Station 374, Oakland, California

.

TABLE 1 CUMULATIVE RESULTS OF LABORATORY ANALYSES OF SOIL SAMPLES ARCO Station 374 6407 Telegraph Avenue Oakland, California (Page 1 of 2)									
Sample Number	TPHg	Benzene	Toluene	Ethyl- benzene	Total Xylenes				
April 1988 - Limited En	vironmental Site	Assessment	a ann an Airlean an Airlean an Airlean Airlean Airlean ann an Aonachta						
S-05-B1	165	NA	NA	NA	NA				
S-10-B1	48	NA	NA	NA	NA				
S-05-B2	260	NA	NA	NA	NA				
S-8.5-B2	60	NA	NA	NA	NA				
S-05-B3	64	NA	NA	NA	NA				
S-09-B3	62	NA	NA	NA	NA				
S-05-B4	389	NA	NA	NA	NA				
S-8.5-B4	930	NA	NA	NA	NA				
June 1988 - Excavation a	and Removal of U	ISTs							
S-11-T1A	399	14.7	20. 0	20.5	91.9				
S-11-T1B	8	2.57	0.74	0.39	2.75				
S-12-T2A	4	0,35	0.10	0.38	0.70				
S-12-T2B	75	0.91	1.77	3.61	11.92				
S-12-T3A	4	2.54	0.13	< 0.05	0.13				
S-12-T3B	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-12-T4A	1,097	16.3	34.5	81.6	188.2				
S-12-T4A2**	795	23.1	24.9	67.1	130.9				
S-12-T4B	3	0.76	< 0.05	< 0.05	< 0.05				
S-13-PIT	3.6	0.738	0.038	0.154	0.566				
July 1989 - Limited Subs	urface Investigati	on							
S-3.5-B1/MW-1	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-8.5-B1/MW-1	60	0.66	2.9	0.99	5.2				
S-3.5-B2/MW-2	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-13.5-B2/MW-2	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-18.5-B2/MW-2	<2	< 0.05	<0.05	<0.05	< 0.05				
S-3.5-B3/MW-3	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-3.5-B4/MW-4	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-13.5-B4/MW-4	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-18.5-B4/MW-4	<2	< 0.05	< 0.05	< 0.05	< 0.05				
S-0731-B4 (1a,b,c,d)*	21	< 0.05	< 0.05	<0.05	0.37				
April 1, 1992 - Offsite In									
S-5.5-B5	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005				
S-14.5-B5	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005				
S-5.5-B6	< 1.0	< 0.005	< 0.005	< 0.005	< 0.005				

See notes on Page 2 of 2.

Offsite Subsurface Environmental Investigation ARCO Station 374, Oakland, California

TABLE 1	
CUMULATIVE RESULTS OF LABORATORY ANALYSES	
OF SOIL SAMPLES	
ARCO Station 374	
6407 Telegraph Avenue	
Oakland, California	
(Page 2 of 2)	

Results are in parts per million (ppm).

- TPHg: Total petroleum hydrocarbons as gasoline.
- <: Below the reporting limits of the analytical method.
- *: Signifies composite sample following aeration.
- **: Resample area near sample T4A following additional excavation.
- NA: Not analyzed.

Sample designations: S-5.5

S-S.S-B6

Boring number Sample depth in feet Soil sample

Task number and location Sample depth in feet Soil sample

Table 1 Soil Analytical Data Product Line and Dispenser Excavation Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and Total Lead)

ARCO Service Station 0374 6407 Telegraph Avenue at Alcatraz Avenue Oakland, California

Sample	Date	Sample Depth	TPPH as Gasoline	Benzene	Toluene	Ethyl- benzene	Vidence	Total Lead
ID	Sampled	(feet)	(ppm)	(ppm)	(ppm)	(ppm)	Xylenes (ppm)	(ppm)
Product Lin		(1000)	(ppm)	(ppni)	Тррину	(ppin)	(ppin)	(ppm)
TR-A-1	9/21/95	3	NA	NĂ	NA	NA	NA	15
TR-A-2	9/21/95	з	<1	<0.0050	<0.0050	<0.0050	<0.0050	NA
TR-A-3	9/21/95	3	<1	<0.0050	<0.0050	<0.0050	<0.0050	NA
TR-A-8	9/21/95	3	65	<0.025	0.15	0.096	6.7	NA
TR-A-9	9/21/95	3	<1	<0.0050	<0.0050	<0.0050	<0.0050	NA
TR-A-10	9/21/95	3	<1	<0.0050	<0.0050	<0,0050	<0.0050	NA
TR-A-11	9/21/95	3	1.9	<0.0050	<0.0050	0.0050	<0.0050	NA
TR-A-12	9/21/95	3	6,2	. <0.0050	<0.0050	0.0067	<0.0050	NA
TR-A-13	9/21/95	3	48	0.30	2.2	0.53	3.6	NA
Product Dis	pensers							
TR-A-4	9/21/95	3	<1	<0.0050	<0.0050	<0.0050	<0,0050	NA
TR-A-6	9/21/95	3	140	<0,50	1.1	0.80	1.5	NA
TR-A-14	9/21/95	3	89	2.1	8.5	1.7	9.4	NA
TR-A-15	9/21/95	3	19	0.0089 ·	0.37	0.045	1.9	NA
ppm = Part NA = Nota	nalyzed							
< = Indica	ates the cond	centration is	below the de	ection limit,				

Table 1. Soil Sampling Analytical DataAtlantic Richfield Company Station #3746407 Telegraph Avenue, Oakland, California

	Sampling						Labo	oratory An	alytical R	esults (mg	/kg)					
Soil Sample ID	Depth	Sampling					Total									
_	(feet bgs)	Date	GRO	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	Ethanol	1,2 DCA	EDB	Lead
D1-2.5'	2.5	12/4/2008	120	0.15	< 0.10	1.8	9.7	< 0.10	<1.0	< 0.20	< 0.20	<0.20	<10	<0.10	< 0.10	4.76
D2-2.5'	2.5	12/4/2008	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.10	< 0.0010	< 0.0010	5.50
D3-2.5'	2.5	12/4/2008	17	0.46	< 0.10	0.91	1.8	< 0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	< 0.10	< 0.10	11.70
D4-2.5'	2.5	12/4/2008	1,500	3.6	0.12	3.6	2.9	< 0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	<0.10	< 0.10	8.65
D-4 5'	5.0	12/9/2008	5,300	19	1.1	23	31	< 0.50	<5.0	<1.0	<1.0	<1.0	<50	< 0.50	< 0.50	11.2
D5-2.5'	2.5	12/4/2008	2.9	< 0.0010	0.0019	< 0.0010	0.0021	0.0038	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.10	< 0.0010	< 0.0010	5.38
D6-2.5'	2.5	12/4/2008	1.7	0.0054	0.015	0.0037	0.021	0.0055	< 0.010	< 0.0020	< 0.0020	< 0.0020	0.19	< 0.0010	< 0.0010	5.81
PL1-3'	3.0	12/4/2008	8.0	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.046	0.019	< 0.0020	< 0.0020	0.0027	< 0.10	< 0.0010	< 0.0010	5.49
PL2-3'	3.0	12/4/2008	< 0.50	0.0059	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.0020	< 0.0020	< 0.0020	<0.10	< 0.0010	< 0.0010	6.03
PL3-3'	3.0	12/4/2008	6,500	18	0.74	25	12	< 0.20	<2.0	< 0.40	< 0.40	<0.40	<20	<0.20	< 0.20	12.20
PL-3 5'	5.0	12/9/2008	0.78	0.035	< 0.0010	0.019	0.0021	0.012	< 0.010	< 0.0020	< 0.0020	< 0.0020	<0.10	< 0.0010	< 0.0010	5.43
PL4-3'	3.0	12/4/2008	26	< 0.10	< 0.10	0.35	<0.10	0.16	<1.0	< 0.20	< 0.20	< 0.20	<10	< 0.10	< 0.10	5.16
PL5-3'	3.0	12/4/2008	15	< 0.10	<0.10	0.36	0.10	<0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	<0.10	<0.10	4.89
Soil Waste Composite 1	NA	12/4/2008	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.010	< 0.0020	< 0.0020	< 0.0020	<0.10	< 0.0010	< 0.0010	5.37
Soil Waste Composite 2	NA	12/4/2008	77	0.11	0.71	0.28	0.62	< 0.10	<1.0	< 0.20	< 0.20	< 0.20	<10	<0.10	< 0.10	8.24

NOTES:

Concentrations detected a	above laboratory	reporting limits are in bold

bgs = Below ground surface mg/kg = Milligrams per kilogram NA = Not applicable GRO = Gasoline Range Organics MTBE = Methyl Tert-Butyl Ether TBA = Tert-Butyl Alcohol DIPE = Di-Isopropyl Ether ETBE = Ethyl Tert-Butyl Ether TAME = Tert-Amyl Methyl Ether 1,2-DCA = 1,2-Dichloroethane EDB = 1,2-Dibromoethane

Laboratory Analytical Results from On-Site Soil Investigation, 13 November 2008 Atlantic Richfield Company Service Station #374, 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

Soil Boring Samples (Concentrations in milligrams per kilogram, mg/kg)

Sample ID	GRO	Benzene	Toluene	Ethyl-	Total Xvlenes		~~DF	* • • • • •	DIDE	4.0.004			
			Toluene	benzene	Aylenes	MTBE	ETBE	TAME	DIPE	1,2-DCA	EDB	TBA	Ethanol
B-11-15	<0.50	<0.0010	<0.0010	<0.0010	<0.0010	0.014	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	<0.010	<0.10
B-12-15.5	<0.50	<0.0010	<0.0010	<0.0010	<0.0010	0.0072	<0.0020	<0.0020	<0.0020	<0.0010	< 0.0010	0.011	<0.10
Waste Comp.	NA	<0.0010	<0.0010	<0.0010	<0.0010	0.0084	<0.0020	<0.0020	<0.0020	NA	NA	<0.010	NA

Notes:

GRO: Gasoline Range Organics, hydrocarbon chain lengths C6-C12

MTBE: Methyl-tertiary Butyl Ether

ETBE: Ethyl Tert-Butyl Ether

TAME: Tert-Amyl Methyl Ether

DIPE: Di-Isopropyl Ether

1,2-DCA: 1,2-Dichloroethane

EDB: 1,2-Dibromomethane

TBA: Tert-Butyl Alcohol

<: Analyte not detected above the laboratory reporting limit given

NA: Analysis not requested or performed

Laboratory Analytical Results from On-Site Soil & Ground-Water Investigation, 21 September 2009 Atlantic Richfield Company Service Station #374, 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

Soil Boring Samples (Concentrations in milligrams per kilogram, mg/kg)

				Ethyl-	Total								
Sample ID	GRO	Benzene	Toluene	benzene	Xylenes	MTBE	ETBE	TAME	DIPE	1,2-DCA	EDB	TBA	Ethanol
B-13 4.5'	1.7	0.048	0.0017	0.036	0.019	0.024	<0.0020	<0.0020	<0.0020	<0.0010	<0.0010	0.052	<0.10
B-13 6.5'	67	0.38	<0.10	0.82	1.8	<0.10	<0.20	<0.20	<0.20	<0.10	<0.10	<1.0	<10
<u>B-13 8.5'</u>	1,800	8.2	71	32	190	<1.0	<2.0	<2.0	<2.0	<1.0	<1.0	<10	<100
B-14 4.5'	<0.50	0.0018	<0.0010	<0.0010	<0.0010	0.012	<0.0020	<0.0020	< 0.0020	< 0.0010	< 0.0010	0.014	<0.10
B-14 6.5'	0.73	0.011	<0.0010	0.0023	<0.0010	0.025	<0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	0.031	<0.10
B-14 8.5'		0.56	<0.10	6.3	0.70	<0.10	<0.20	< 0.20	<0.20	<0.10	< 0.10	<1.0	<10
<u>B-15 4.5'</u>	1,400	0.87	<0.10	4.3	3.0	<0.10	<0.20	<0.20	<0.20	<0.10	< 0.10	<1.0	<10
<u>B-15 6.5'</u>	170	0.91	<0.10	2.8	7.5	<0.10	<0.20	< 0.20	<0.20	<0.10	<0.10	<1.0	<10
B-15 8.5'	940	2.2	<1.0	13	52	<1.0	<2.0	<2.0	<2.0	<1.0	<1.0	<10	<100
ESL - DW	83	0.044	2.9	2.3	2.3	0.023	NE	NE	NE	0.0045	0.0033	0.075	NE
ESL - NDW	100	0.12	9.3	2.3	11	8.4	NE	NE	NE	0.22	0.019	100	NE

Ground-Water Grab Sample (Concentrations in micrograms per Liter, µg/L)

				Ethyl-	Total								
Sample ID	GRO	Benzene	Toluene	benzene	Xylenes	MTBE	ETBE	TAME	DIPE	1,2-DCA	EDB	TBA	Ethanol
B-15W	19,000	3,700	54	840	1,600	250	<20	<20	<20	<20	<20	<400	<12,000
ESL - DW	100	1.0	40	30	20	5.0	NE	NE	NE	0.5	0.05	12	NE
ESL - NDW	210	46	130	43	100	1,800	NE	NE	NE	200	150	18,000	NE

Notes for both tables:

GRO: Gasoline Range Organics, hydrocarbon chain lengths C6-C12

MTBE: Methyl-tertiary Butyl Ether

ETBE: Ethyl Tert-Butyl Ether

TAME: Tert-Amyl Methyl Ether

DIPE: Di-Isopropyl Ether

1,2-DCA: 1,2-Dichloroethane

EDB: 1.2-Dibromomethane

TBA: Tert-Butyl Alcohol

<: Analyte not detected above the laboratory reporting limit given

Conc: Concentration in Italics exceeds ESL-DW; Concentration in Bold Italics exceeds ESL-NDW

ESL - DW: Residential Environmental Screening Level (in soil or ground water, as approp.), for shallow soil, where ground water is potential drinking water resource

ESL - NDW: Residential Environmental Screening Level (in soil or ground water, as approp.), for shallow soil, where ground water is not potential drinking water resource NE: ESL not established

		Sample						Concentra	ntions in (m	g/Kg)	-					
Boring and Sample Date	Sample ID	Depth (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	Ethanol	ТВА	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
ESL - DW			83	0.044	2.9	2.3	2.3	0.023	NE	0.075	NE	NE	NE	0.0045	0.0033	
ESL - NDW			100	0.12	9.3	2.3	11	8.4	NE	100	NE	NE	NE	0.22	0.019	
B-19																
11/23/2010	B-19-3	3	2.7	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-5	5	2.6	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-6	6	< 0.50	0.0053	< 0.0010	< 0.0010	< 0.0010	0.0032	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-8	8	190	0.84	0.0065	5.5	0.044	0.015	<0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-9.5	9.5	250	0.19	0.0016	1.4	0.0094	0.011	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-11	11	18	<0.10	< 0.10	< 0.10	<0.10	<0.10	<10	<1.0	<0.20	< 0.20	<0.20	<0.10	<0.10	DF
11/23/2010	B-19-12.5	12.5	47	0.018	< 0.0010	0.026	0.0025	0.0013	< 0.10	0.013	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-14	14	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	<0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	B-19-15.5	15.5	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0034	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
MW-7																
11/22/2010	MW-7-3	3	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-7-5	5	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0017	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-7-6	6	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.0023	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/24/2010	MW-7-8	8	650	0.0047	< 0.0010	9.2	9.3	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/24/2010	MW-7-9.5	9.5	< 0.50	< 0.0010	< 0.0010	0.0014	0.0014	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/24/2010	MW-7-11	11	<0.50	< 0.0010	< 0.0010	0.0015	0.0017	< 0.0010	<0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/24/2010	MW-7-12.5	12.5	< 0.50	< 0.0010	< 0.0010	0.0018	0.0021	0.0017	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/24/2010	MW-7-14	14	1.2	< 0.0010	< 0.0010	0.0020	0.0024	0.0080	<0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
MW-8																
11/22/2010	MW-8-3	3	2.6	0.0099	< 0.0010	< 0.0010	0.0023	0.011	< 0.10	0.013	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-8-5	5	1.7	0.057	< 0.0010	0.028	0.0033	0.0075	<0.10	0.013	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-8-6	6	3.2	0.23	< 0.10	0.75	< 0.10	<0.10	<10	<1.0	< 0.20	< 0.20	< 0.20	<0.10	<0.10	
11/23/2010	MW-8-8	8	510	2.7	< 0.10	8.8	5.0	0.13	<10	<1.0	< 0.20	< 0.20	< 0.20	<0.10	<0.10	
11/23/2010	MW-8-9.5	9.5	900	1.2	< 0.10	12	6.7	<0.10	<10	<1.0	< 0.20	< 0.20	< 0.20	<0.10	<0.10	
11/23/2010	MW-8-11	11	1,400	<0.10	< 0.10	< 0.10	0.11	<0.10	<10	<1.0	<0.20	< 0.20	<0.20	<0.10	<0.10	
11/23/2010	MW-8-12.5	12.5	0.93	0.0041	< 0.0010	0.0036	0.0018	0.0014	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	MW-8-14.5	14.5	0.57	0.022	< 0.0010	0.011	0.0056	0.036	< 0.10	0.011	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	

Table 1. Laboratory Soil Analytic Results from On-Site Investigation, November 22 to 24, 2010

		Sample						Concentra	tions in (m	g/Kg)						
Boring and Sample Date	Sample ID	Depth (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	Ethanol	TBA	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
ESL - DW ESL - NDW			83 100	0.044 0.12	2.9 9.3	2.3 2.3	2.3 11	0.023 8.4	NE NE	0.075 100	NE NE	NE NE	NE NE	0.0045 0.22	0.0033 0.019	
MW-9																
11/22/2010	MW-9-3	3	5.2	0.0069	< 0.0010	0.0012	0.0028	0.046	< 0.10	0.026	< 0.0020	< 0.0020	0.0030	< 0.0010	< 0.0010	
11/22/2010	MW-9-5	5	1.4	0.0024	< 0.0010	0.0052	< 0.0010	0.031	<0.10	0.037	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/22/2010	MW-9-6	6	3.5	0.025	< 0.0010	0.060	0.0036	0.033	< 0.10	0.036	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	MW-9-8	8	710	1.2	< 0.20	16	28	<0.20	<20	<2.0	< 0.40	< 0.40	<0.40	<0.20	<0.20	
11/23/2010	MW-9-11	11	54	<0.10	< 0.10	< 0.10	< 0.10	<0.10	<10	<1.0	< 0.20	< 0.20	< 0.20	<0.10	<0.10	DF
11/23/2010	MW-9-12.5	12.5	46	< 0.0010	< 0.0010	< 0.0010	0.0014	< 0.0010	0.12	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	MW-9-14	14	9.3	0.0012	< 0.0010	0.0013	0.0017	< 0.0010	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	
11/23/2010	MW-9-15.5	15.5	< 0.50	< 0.0010	< 0.0010	< 0.0010	< 0.0010	0.031	< 0.10	< 0.010	< 0.0020	< 0.0020	< 0.0020	< 0.0010	< 0.0010	

Table 1. Laboratory Soil Analytic Results from On-Site Investigation, November 22 to 24, 2010

SYMBOLS AND ABBREVIATIONS:

< = Not detected at or above specified laboratory reporting limit GRO = Gasoline range organics MTBE = Methyl tert-butyl ether TBA = tert-Butyl alcohol MTBE = Methyl tert-butyl ether DIPE = Di-isopropyl ether ETBE = Ethyl tert-butyl ether TAME = tert-Amyl methyl ether 1,2-DCA = 1,2-Dichloroethane EDB = 1,2-Dibromoethane mg/kg = Milligrams per Kilogram

DF = Reporting limits elevated due to matrix interference

ESL - DW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil Groundwater, Interim Final-November 2007 (Revised May 2008).

ESL - NDW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is NOT a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil Groundwater, Interim Final-November 2007 (Revised May 2008).

NE = ESL not established

NOTES:

GRO (C6-C12) analyzed using EPA method 8015B. Concentrations in Italics exceeds ESL-DW Concentrations in Bold Italics exceeds ESL-NDW Benzene, toluene, ethylbenzene, total xylenes, MTBE, ethanol and TBA analyzed using EPA method 8260B.

			Top of	Bottom of		Water Level			Concentr	ations in µ	₽/Ц.				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-1 Cont.															
5/8/2007	Р	164.57	7.00	27.00	6.50	158.07	<500	<5.0	<5.0	<5.0	<5.0	420	1.21	6.94	
8/8/2007	NP		7.00	27.00	8.17	156.40	82	< 0.50	< 0.50	< 0.50	< 0.50	110	1.16	7.00	е
11/14/2007	NP		7.00	27.00	8.01	156.56	170	<2.5	<2.5	<2.5	<2.5	210	1.92	6.49	
2/22/2008	Р		7.00	27.00	6.00	158.57	<50	< 0.50	< 0.50	< 0.50	< 0.50	250	2.57	6.65	
5/24/2008	NP		7.00	27.00	7.58	156.99	<50	<5.0	<5.0	<5.0	<5.0	380	2.28	6.81	
8/21/2008	NP		7.00	27.00	8.60	155.97	<50	<2.5	<2.5	<2.5	<2.5	170	2.16	6.98	
11/19/2008	NP		7.00	27.00	8.88	155.69	<50	< 0.50	< 0.50	< 0.50	< 0.50	30	2.12	7.27	
2/23/2009	Р		7.00	27.00	6.40	158.17	78	<2.5	<2.5	<2.5	<2.5	240	2.19	6.03	
5/14/2009	Р		7.00	27.00	6.67	157.90	53	< 0.50	< 0.50	< 0.50	< 0.50	200	1.75	6.69	
8/20/2009	NP		7.00	27.00	8.25	156.32	150	<2.0	<2.0	<2.0	<2.0	170	2.14	6.25	i (GRO)
2/19/2010	Р		7.00	27.00	6.07	158.50	<50	< 0.50	< 0.50	< 0.50	< 0.50	170	0.92	6.66	
8/10/2010	NP		7.00	27.00	7.58	156.99	<50	<2.5	<2.5	<2.5	<2.5	230	3.86	7.1	
12/16/2010	Р	164.45	7.00	27.00	6.64	157.81	<50	<2.0	<2.0	<2.0	<2.0	140	1.20	6.86	j
2/14/2011	NP		7.00	27.00	7.10	157.35	<50	<2.5	<2.5	<2.5	<2.5	170	1.18	6.7	
5/20/2011			7.00	27.00	6.38	158.07									
8/15/2011	NP		7.00	27.00	7.24	157.21	<50	<2.5	<2.5	<2.5	<2.5	130	2.54	6.9	
2/2/2012	Р		7.00	27.00	7.32	157.13	<50	<1.0	<1.0	<1.0	<1.0	66	1.01	7.1	
MW-2															
6/20/2000		157.92	7.00	27.00	7.67	150.25									
9/28/2000			7.00	27.00	8.51	149.41									
12/17/2000			7.00	27.00	8.14	149.78									
3/23/2001			7.00	27.00	7.21	150.71	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
6/21/2001			7.00	27.00	7.99	149.93									
9/23/2001			7.00	27.00	8.52	149.40									
12/31/2001			7.00	27.00	6.01	151.91									
3/21/2002			7.00	27.00	5.95	151.97	<50	< 0.5	< 0.5	< 0.5	< 0.5	45			
4/17/2002			7.00	27.00	6.45	151.47									
8/12/2002			7.00	27.00	8.08	149.84									

			Top of	Bottom of		Water Level			Concentra	ations in µg	g/L				
Well ID and		TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-2 Cont.															
12/6/2002		157.92	7.00	27.00	8.29	149.63									
1/29/2003			7.00	27.00	7.22	150.70									b
5/23/2003			7.00	27.00	6.85	151.07	<50	< 0.50	< 0.50	< 0.50	< 0.50	55	1.4	7.2	
9/4/2003			7.00	27.00	7.94	149.98									
11/20/2003			7.00	27.00	8.05	149.87									
02/02/2004	Р	163.46	7.00	27.00	7.00	156.46	74	< 0.50	< 0.50	< 0.50	< 0.50	37	1.1	8.9	f
05/14/2004			7.00	27.00	7.97	155.49									
09/02/2004	Р		7.00	27.00	8.19	155.27	<250	<2.5	<2.5	<2.5	<2.5	67	2.7	6.9	
11/04/2004			7.00	27.00	7.54	155.92									
02/08/2005	Р		7.00	27.00	6.72	156.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	30	0.86	6.7	
05/09/2005			7.00	27.00	7.16	156.30									
08/11/2005	Р		7.00	27.00	7.85	155.61	<50	< 0.50	< 0.50	< 0.50	< 0.50	35	1.0	6.6	
11/18/2005			7.00	27.00	8.23	155.23									
02/16/2006	Р		7.00	27.00	6.82	156.64	<50	< 0.50	< 0.50	< 0.50	< 0.50	39	1.3	7.0	
5/30/2006			7.00	27.00	7.23	156.23									
8/24/2006	Р		7.00	27.00	8.00	155.46	60	< 0.50	< 0.50	< 0.50	< 0.50	25	0.90	6.8	
11/1/2006			7.00	27.00	8.38	155.08									
2/7/2007	NP		7.00	27.00	7.88	155.58	<50	0.50	< 0.50	< 0.50	< 0.50	7.2	0.94	7.39	
5/8/2007			7.00	27.00	7.28	156.18									
8/8/2007	NP		7.00	27.00	8.38	155.08	88	3.2	< 0.50	< 0.50	< 0.50	7.2	0.94	7.75	
11/14/2007			7.00	27.00	8.10	155.36									
2/22/2008	Р		7.00	27.00	6.75	156.71	<50	< 0.50	< 0.50	< 0.50	< 0.50	24	2.18	7.02	
5/24/2008			7.00	27.00	7.98	155.48									
8/21/2008	NP		7.00	27.00	8.58	154.88	<50	2.6	< 0.50	< 0.50	< 0.50	4.9	2.20	7.11	
11/19/2008			7.00	27.00	8.66	154.80									
2/23/2009	Р		7.00	27.00	6.67	156.79	74	1.0	< 0.50	< 0.50	< 0.50	24	2.25	6.16	
5/14/2009			7.00	27.00	7.02	156.44									
8/20/2009	NP		7.00	27.00	8.41	155.05	82	2.4	< 0.50	< 0.50	< 0.50	8.4	2.19	6.37	

			Top of	Bottom of		Water Level			Concentra	ations in µ	g/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-2 Cont.															
2/19/2010	NP	163.46	7.00	27.00	7.36	156.10	<50	< 0.50	< 0.50	< 0.50	< 0.50	22	0.81	6.90	
8/10/2010	NP		7.00	27.00	7.69	155.77	<50	< 0.50	< 0.50	< 0.50	< 0.50	23	2.40	7.67	
12/16/2010	Р	163.49	7.00	27.00	7.12	156.37	<50	< 0.50	< 0.50	< 0.50	< 0.50	17	0.69	7.06	j
2/14/2011	NP		7.00	27.00	7.35	156.14	<50	< 0.50	< 0.50	< 0.50	< 0.50	11	0.87	7.0	
5/20/2011			7.00	27.00	7.02	156.47									
8/15/2011	NP		7.00	27.00	7.62	155.87	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.7	1.45	7.1	
2/2/2012	Р		7.00	27.00	7.56	155.93	<50	< 0.50	< 0.50	< 0.50	<0.50	1.8	0.85	7.3	
MW-3															
6/20/2000		153.64	7.00	27.00	6.42	147.22	<50	<0.5	<0.5	< 0.5	<1.0	<10			
9/28/2000			7.00	27.00	7.31	146.33									
12/17/2000			7.00	27.00	6.45	147.19	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
3/23/2001			7.00	27.00	6.01	147.63									
6/21/2001			7.00	27.00	6.80	146.84	110	5.5	< 0.5	5.4	4.1	2.5			
9/23/2001			7.00	27.00	7.32	146.32									
12/31/2001			7.00	27.00	4.48	149.16	<50	<0.5	< 0.5	< 0.5	< 0.5	4.9			
3/21/2002			7.00	27.00	4.36	149.28									
4/17/2002			7.00	27.00	5.31	148.33	<50	< 0.5	< 0.5	< 0.5	< 0.5	8.7			
8/12/2002			7.00	27.00	7.00	146.64									
12/6/2002			7.00	27.00	7.32	146.32	<50	< 0.5	< 0.5	< 0.5	< 0.5	6.2	1.4	6.7	
1/29/2003			7.00	27.00	6.07	147.57									b
5/23/2003			7.00	27.00	6.45	147.19	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	0.9	7.7	
9/4/2003			7.00	27.00	6.93	146.71									с
11/20/2003			7.00	27.00	7.04	146.60									с
02/02/2004		159.21	7.00	27.00	5.92	153.29									f
05/14/2004			7.00	27.00	7.52	151.69									
09/02/2004	Р		7.00	27.00	7.19	152.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	6.5	9.3	8.9	
11/04/2004			7.00	27.00	6.40	152.81									
02/08/2005			7.00	27.00	6.01	153.20									

			Top of	Bottom of		Water Level			Concentra	ations in µ	g/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-3 Cont.															
05/09/2005		159.21	7.00	27.00	6.74	152.47									
08/11/2005	Р		7.00	27.00	6.77	152.44	<50	< 0.50	< 0.50	< 0.50	< 0.50	11	1.9	6.5	
11/18/2005			7.00	27.00	7.83	151.38									
02/16/2006			7.00	27.00	7.26	151.95									
5/30/2006			7.00	27.00	5.82	153.39									
8/24/2006	Р		7.00	27.00	7.00	152.21	<50	< 0.50	< 0.50	< 0.50	< 0.50	7.6	1.15	6.4	
11/1/2006			7.00	27.00	7.50	151.71									
2/7/2007			7.00	27.00	6.90	152.31									
5/8/2007			7.00	27.00	5.95	153.26									
8/8/2007	NP		7.00	27.00	7.47	151.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.21	6.93	
11/14/2007			7.00	27.00	7.05	152.16									
2/22/2008			7.00	27.00	5.50	153.71									
5/24/2008			7.00	27.00	7.03	152.18									
8/21/2008	NP		7.00	27.00	7.80	151.41	<50	< 0.50	< 0.50	< 0.50	< 0.50	3.1	2.11	6.84	
11/19/2008			7.00	27.00	7.69	151.52									
2/23/2009			7.00	27.00	7.28	151.93									
5/14/2009			7.00	27.00	6.17	153.04									
8/20/2009	NP		7.00	27.00	7.38	151.83	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	2.05	7.01	
2/19/2010			7.00	27.00	5.31	153.90									
8/10/2010	NP		7.00	27.00	7.12	152.09	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	1.27	7.33	
12/16/2010			7.00	27.00	5.65	153.56									j
2/14/2011			7.00	27.00	6.20	153.01									
5/20/2011			7.00	27.00	5.77	153.44									
8/15/2011	Р		7.00	27.00	6.41	152.80	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.04	7.0	
2/2/2012			7.00	27.00	6.34	152.87									
MW-4															
6/20/2000		156.53	7.00	27.00	7.50	149.03	20,000	5,100	440	1,000	1,700	<250			с
9/28/2000			7.00	27.00	8.20	148.33									

			Top of	Bottom of		Water Level			Concentra	ations in µş	g/L				
Well ID and Date Monitored	P/NP	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	pН	Footnote
ESL - DW ESL - NDW							100 210	1.0 46	40 130	30 43	20 100	5.0 1,800			
							210	40	150	75	100	1,000			
MW-4 Cont.															
12/17/2000		156.53	7.00	27.00	8.11	148.42	4,320	1,240	<20	27.2	249	<100			
3/23/2001			7.00	27.00	6.69	149.84									
6/21/2001			7.00	27.00	8.01	148.52	2,800	470	16	19	160	130			
9/23/2001			7.00	27.00	8.91	147.62									
12/31/2001			7.00	27.00	4.42	152.11	4,600	1,500	100	160	210	160			
3/21/2002			7.00	27.00	4.98	151.55									
4/17/2002			7.00	27.00	6.23	150.30	7,100	2,200	110	290	450	<250			
8/12/2002			7.00	27.00	8.24	148.29									
12/6/2002			7.00	27.00	8.42	148.11	1,500	410	6.8	20	29	43	1.1	6.7	а
1/29/2003			7.00	27.00	7.20	149.33									b
5/23/2003			7.00	27.00	7.18	149.35	<5,000	1,300	89	210	260	<50	1.4	6.9	
9/4/2003			7.00	27.00	8.15	148.38									с
11/20/2003			7.00	27.00	8.73	147.80									с
02/02/2004	Р	163.25	7.00	27.00	6.25	157.00	980	280	21	29	38	29	1.4	10.6	c, f, g
05/14/2004			7.00	27.00	8.38	154.87									g
09/02/2004	Р		7.00	27.00	8.36	154.89	260	11	<1.0	5.5	14	28	2.4	7.4	g
11/04/2004			7.00	27.00	7.71	155.54									c, g
02/08/2005	Р		7.00	27.00	6.27	156.98	7,500	1,700	320	480	920	45	0.65	6.5	g
05/09/2005			7.00	27.00	5.90	157.35									g
08/11/2005	Р		7.00	27.00	7.96	155.29	3,100	1,100	41	160	110	32	0.6	6.5	g
11/18/2005			7.00	27.00	8.57	154.68									g
02/16/2006	Р		7.00	27.00	6.28	156.97	9,400	1,800	130	600	420	35	0.5	6.8	g
5/30/2006		162.47	7.00	27.00	7.02	155.45									g
8/24/2006	Р		7.00	27.00	8.26	154.21	3,600	1,400	21	110	70	39	1.00	6.8	0
11/1/2006			7.00	27.00	8.67	153.80									
2/7/2007	NP		7.00	27.00	8.02	154.45	3,100	570	17	170	110	67	0.95	7.07	
5/8/2007			7.00	27.00	7.03	155.44									
8/8/2007	NP		7.00	27.00	8.60	153.87	2,900	630	22	67	57	72	0.93	6.79	
8/8/2007	NP		7.00	27.00	8.00	155.87	2,900	630	22	0/	57	12	0.93	0.79	

			Top of	Bottom of		Water Level			Concentra	ations in µ	g/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-4 Cont.															
11/14/2007		162.47	7.00	27.00	8.53	153.94									
2/22/2008	Р		7.00	27.00	6.25	156.22	3,900	880	39	180	92	70	2.31	6.87	
5/24/2008			7.00	27.00											d
8/21/2008	NP		7.00	27.00	8.96	153.51	3,700	1,100	26	85	130	53	2.26	6.80	
11/19/2008			7.00	27.00	9.20	153.27									
2/23/2009	Р		7.00	27.00	6.35	156.12	3,000	220	9.1	23	19	39	2.21	6.51	
5/14/2009			7.00	27.00	7.00	155.47									
8/20/2009	NP		7.00	27.00	8.05	154.42	5,700	1,100	35	110	100	23	2.17	6.81	
2/19/2010	Р		7.00	27.00	5.71	156.76	12,000	1,200	120	230	390	<5.0	0.81	6.70	i
8/10/2010	NP		7.00	27.00	7.59	154.88	9,700	1,500	120	400	400	<20	3.81	6.8	
12/16/2010	Р	162.48	7.00	27.00	6.83	155.65	15,000	1,800	82	270	210	<25	0.49	6.81	j
2/14/2011	NP		7.00	27.00	7.33	155.15	260	< 0.50	< 0.50	2.7	11	13	0.80	7.10	
5/20/2011			7.00	27.00	6.89	155.59									
8/15/2011	Р		7.00	27.00	7.59	154.89	8,600	2,100	86	250	210	<12	1.02	7.0	1
2/2/2012	Р		7.00	27.00	7.71	154.77	4,600	1,000	34	23	33	<12	0.60	7.2	
MW-5															
6/20/2000		151.33	10.00	23.00	7.84	143.49	<50	< 0.5	<0.5	<0.5	<1.0	<10			
9/28/2000			10.00	23.00	8.37	142.96	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
12/17/2000			10.00	23.00	8.36	142.97	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
3/23/2001			10.00	23.00	7.55	143.78	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
6/21/2001			10.00	23.00	8.20	143.13	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
9/23/2001			10.00	23.00	8.68	142.65	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
12/31/2001			10.00	23.00	7.57	143.76	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
3/21/2002			10.00	23.00	6.12	145.21	<50	< 0.5	< 0.5	< 0.5	<0.5	3.2			
4/17/2002			10.00	23.00	6.61	144.72	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5			
8/12/2002			10.00	23.00	8.14	143.19	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5	4.1	7.6	
12/6/2002			10.00	23.00	8.65	142.68	<50	< 0.5	< 0.5	< 0.5	<0.5	<2.5	1.1	6.8	
1/29/2003			10.00	23.00	7.22	144.11	<50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.50	1	6.6	b

			Top of	Bottom of		Water Level			Concentra	ations in µį	g/L				
Well ID and Date Monitored	P/NP	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-5 Cont.															
5/23/2003		151.33	10.00	23.00	7.31	144.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	6.6	
9/4/2003			10.00	23.00	9.50	141.83	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.2	6.7	
11/20/2003			10.00	23.00	8.31	143.02									
02/02/2004			10.00	23.00	6.92	144.41									c, f, h
05/14/2004			10.00	23.00	8.56	142.77									h
09/02/2004	Р		10.00	23.00	8.79	142.54	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.5	6.8	h
11/04/2004			10.00	23.00	8.33	143.00									c, h
02/08/2005			10.00	23.00	7.28	144.05									h
05/09/2005			10.00	23.00	8.19	143.14									h
08/11/2005	Р		10.00	23.00	8.39	142.94	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	6.6	h
11/18/2005			10.00	23.00	11.25	140.08									h
02/16/2006			10.00	23.00	9.22	142.11									h
5/30/2006			10.00	23.00	7.52	143.81									h
8/24/2006	Р		10.00	23.00	7.95	143.38	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.60	6.6	
11/1/2006			10.00	23.00	8.32	143.01									
2/7/2007			10.00	23.00	8.25	143.08									
5/8/2007			10.00	23.00	7.60	143.73									
8/8/2007	Р		10.00	23.00	8.12	143.21	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.26	7.31	
11/14/2007			10.00	23.00	9.10	142.23									
2/22/2008			10.00	23.00	7.48	143.85									
5/24/2008			10.00	23.00	8.12	143.21									
8/21/2008	Р		10.00	23.00	8.65	142.68	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.14	6.54	
11/19/2008			10.00	23.00	11.86	139.47									
2/23/2009			10.00	23.00	10.20	141.13									
5/14/2009			10.00	23.00	9.63	141.70									
8/20/2009	Р		10.00	23.00	8.52	142.81	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.01	6.47	
2/19/2010			10.00	23.00											d
8/10/2010	Р		10.00	23.00	8.05	143.28	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.15	7.1	

			Top of	Bottom of		Water Level			Concentra	ations in µ	p/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	рН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-5 Cont.															
12/16/2010		156.90	10.00	23.00	8.10	148.80									j
2/14/2011			10.00	23.00											d
5/20/2011			10.00	23.00											d
8/15/2011	Р		10.00	23.00	7.91	148.99	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.46	7.4	
2/2/2012			10.00	23.00	8.08	148.82									
MW-6															
6/20/2000		153.84	5.00	15.00	4.79	149.05									
9/28/2000			5.00	15.00	5.39	148.45									
12/17/2000			5.00	15.00	4.71	149.13									
3/23/2001			5.00	15.00	4.69	149.15	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5			
6/21/2001			5.00	15.00	5.22	148.62									
9/23/2001			5.00	15.00	5.40	148.44									
12/31/2001			5.00	15.00	3.95	149.89									
3/21/2002			5.00	15.00	2.94	150.90	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.2			
4/17/2002			5.00	15.00	5.11	148.73									
8/12/2002			5.00	15.00	5.23	148.61									
12/6/2002			5.00	15.00	5.29	148.55									
1/29/2003			5.00	15.00	4.79	149.05									b
5/23/2003			5.00	15.00	4.31	149.53	<50	< 0.50	< 0.50	< 0.50	< 0.50	9.4	1	6.7	
09/04/03			5.00	15.00											d
11/20/2003			5.00	15.00	6.31	147.53									
02/02/2004		159.41	5.00	15.00	4.78	154.63									f
05/14/2004			5.00	15.00	6.29	153.12									
09/02/2004			5.00	15.00	5.79	153.62									d
11/04/2004			5.00	15.00											d
02/08/2005			5.00	15.00	5.13	154.28									
05/09/2005			5.00	15.00	4.52	154.89									
08/11/2005	Р		5.00	15.00	5.02	154.39	<50	< 0.50	< 0.50	< 0.50	< 0.50	7.9	2.1	6.6	

			Top of	Bottom of		Water Level			Concentra	ations in µ	g/L				
Well ID and		тос	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO		
Date Monitored	P/NP	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН	Footnote
ESL - DW							100	1.0	40	30	20	5.0			
ESL - NDW							210	46	130	43	100	1,800			
MW-6 Cont.															
11/18/2005		159.41	5.00	15.00	6.31	153.10									
02/16/2006			5.00	15.00	4.24	155.17									
5/30/2006			5.00	15.00	4.45	154.96									
8/24/2006	Р		5.00	15.00	5.18	154.23	<50	< 0.50	< 0.50	< 0.50	< 0.50	12	3.4	6.8	
11/1/2006			5.00	15.00	6.05	153.36									
2/7/2007			5.00	15.00	5.00	154.41									
5/8/2007			5.00	15.00	4.30	155.11									
8/8/2007	NP		5.00	15.00	5.51	153.90	<50	< 0.50	< 0.50	< 0.50	< 0.50	0.57	2.94	6.87	
11/14/2007			5.00	15.00	5.38	154.03									
2/22/2008			5.00	15.00	4.70	154.71									
5/24/2008			5.00	15.00	5.25	154.16									
8/21/2008	NP		5.00	15.00	6.14	153.27	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.99	7.13	
11/19/2008			5.00	15.00	5.94	153.47									
2/23/2009			5.00	15.00	5.00	154.41									
5/14/2009			5.00	15.00	4.60	154.81									
8/20/2009	NP		5.00	15.00	5.65	153.76	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.0	1.98	6.81	
2/19/2010			5.00	15.00	7.28	152.13									
8/10/2010	NP		5.00	15.00	5.02	154.39	<50	< 0.50	< 0.50	< 0.50	< 0.50	4.3	1.99	6.93	
12/16/2010			5.00	15.00	4.50	154.91									j
2/14/2011			5.00	15.00	4.80	154.61									
5/20/2011			5.00	15.00	4.29	155.12									
8/15/2011	Р		5.00	15.00	4.52	154.89	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	1.55	7.1	
2/2/2012			5.00	15.00											d
MW-7															
12/16/2010	Р	164.80	5.00	20.00	6.52	158.28	700	< 0.50	< 0.50	15	32	62		7.08	j
2/14/2011	NP		5.00	20.00	6.77	158.03	7,100	1,700	98	260	210	<20	1.02	6.8	
5/20/2011	NP		5.00	20.00	5.84	158.96	570	< 0.50	< 0.50	37	25	4.6	1.66	6.7	1 (GRO)
8/15/2011	Р		5.00	20.00	6.96	157.84	420	<1.0	<1.0	49	6.7	14	0.58	6.9	

			Top of	Bottom of		Water Level			Concentra	ations in µ	g/L				
Well ID and Date Monitored	P/NP	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	DO (mg/L)	рН	Footnote
ESL - DW ESL - NDW							100 210	1.0 46	40 130	30 43	20 100	5.0 1,800			
MW-7 Cont.															
2/2/2012	Р	164.80	5.00	20.00	7.15	157.65	<50	< 0.50	< 0.50	< 0.50	< 0.50	6.2	0.45	7.5	
MW-8															
12/16/2010	Р	164.14	5.00	20.00	6.85	157.29	520	43	< 0.50	4.1	21	150	0.46	7.12	j
2/14/2011	NP		5.00	20.00	7.30	156.84	<50	<2.0	<2.0	<2.0	<2.0	110	1.07	6.7	
5/20/2011	NP		5.00	20.00	6.88	157.26	<50	<2.0	<2.0	<2.0	<2.0	88	1.35	6.5	
8/15/2011	Р		5.00	20.00	6.00	158.14	<50	5.2	<1.0	9.7	<1.0	57	0.51	6.7	
2/2/2012	Р		5.00	20.00	7.57	156.57	<50	< 0.50	< 0.50	< 0.50	< 0.50	3.9	0.68	7.1	
MW-9															
12/16/2010	Р	163.77	5.00	20.00	6.63	157.14	330	18	< 0.50	11	38	390	0.57	6.97	j
2/14/2011	NP		5.00	20.00	6.85	156.92	<50	<4.0	<4.0	<4.0	<4.0	270	0.98	6.9	
5/20/2011	NP		5.00	20.00	6.39	157.38	66	<4.0	<4.0	<4.0	<4.0	280	1.64	6.7	1 (GRO)
8/15/2011	NP		5.00	20.00	7.09	156.68	<50	<2.0	<2.0	<2.0	<2.0	120	0.88	7.1	
2/2/2012	Р		5.00	20.00	7.18	156.59	<50	< 0.50	< 0.50	< 0.50	< 0.50	34	0.65	7.2	

Symbols & Abbreviations: -- = Not analyzed/applicable/measured/available < = Not detected at or above laboratory reporting limit DO = Dissolved oxygenDTW = Depth to water in ft below TOC ft bgs = Feet below ground surface GRO = Gasoline range organics GWE = Groundwater elevation measured in ft mg/L = Milligrams per liter MTBE = Methyl tert-butyl ether NP = Well was not purged prior to sampling P = Well was purged prior to sampling TOC = Top of casing measured in ftTPH-g = Total petroleum hydrocarbons as gasoline $\mu g/L =$ Micrograms per liter BTEX = Benzene, toluene, ethylbenzene and xylenes

ESL - DW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

ESL - NDW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is NOT a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

NE = ESL not established

Footnotes:

- a = Chromatogram pattern: Gasoline C6-C10 for GRO/TPH-g
- b = Beginning this quarter, groundwater samples were analyzed by EPA method 8260B for TPH-g, BTEX, and fuel oxygenates
- c = Wells gauged with ORC sock in well
- d = Well inaccessible
- e = The hydrocarbon result for GRO was partly due to individual peaks in the quantitative range
- f = Well resurveyed on 1/27/2004 to NAVD88
- g = Upon review of survey data (1/27/2004), TOC elevation for MW-4 is actually 162.47 ft.
- h = Upon review of survey data (1/27/2004), MW-5 was not surveyed from the TOC. MW-5 was surveyed from the pavement due to inaccessibility to the TOC. Therefore, survey data for MW-5 from the TOC
- is unavailable. Historic data prior to 5/30/2006 (change in consultant) not modified
- i = Quantitation of unknown hydrocarbon(s) in sample based on gasoline
- $j = Surveyed \ 12/9/2010$
- $\mathbf{k} = \mathbf{Grab}$ groundwater sample
- l = Quantitated against gasoline

Notes:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12

Values for DO and pH were obtained through field measurements

The DTW's and TOC's for wells MW-5 and MW-6 were taken from Delta Environmental sampling sheets because the well logs were not available

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

ARCO Service Station #0374, 6407	Telegraph Ave., Oakland, CA
----------------------------------	-----------------------------

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-1									
3/23/2001			2,710						
3/21/2002			2,000						
5/23/2003	<20,000	<4,000	1,600	<100	<100	<100			
11/20/2003	<2,000	<400	1,500	<10	<10	<10			а
05/14/2004	<5,000	<1,000	1,200	<25	<25	<25	<25	<25	
09/02/2004	<1,000	<200	660	<5.0	<5.0	<5.0	<5.0	<5.0	
11/04/2004	<2,000	<400	580	<10	<10	<10	<10	<10	
02/08/2005	<2,000	<400	610	<10	<10	<10	<10	<10	
05/09/2005	<1,000	<200	620	<5.0	<5.0	<5.0	<5.0	<5.0	a
08/11/2005	<500	250	390	<2.5	<2.5	2.6	<2.5	<2.5	a
11/18/2005	<500	<100	340	<2.5	<2.5	<2.5	<2.5	<2.5	a
02/16/2006	<1,500	<100	340	<2.5	<2.5	<2.5	<2.5	<2.5	
5/30/2006	<1,500	<100	420	<2.5	<2.5	<2.5	<2.5	<2.5	a
8/24/2006	<3,000	<200	180	<5.0	<5.0	<5.0	<5.0	<5.0	
11/1/2006	<3,000	<200	220	<5.0	<5.0	<5.0	<5.0	<5.0	a
2/7/2007	<3,000	<200	190	<5.0	<5.0	<5.0	<5.0	<5.0	
5/8/2007	<3,000	<200	420	<5.0	<5.0	<5.0	<5.0	<5.0	
8/8/2007	<300	<20	110	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/14/2007	<1,500	<100	210	<2.5	<2.5	<2.5	<2.5	<2.5	
2/22/2008	<300	<10	250	< 0.50	< 0.50	1.5	< 0.50	< 0.50	
5/24/2008	<3,000	<100	380	<5.0	<5.0	<5.0	<5.0	<5.0	
8/21/2008	<1,500	<50	170	<2.5	<2.5	<2.5	<2.5	<2.5	
11/19/2008	<300	<10	30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/23/2009	<1,500	<50	240	<2.5	<2.5	<2.5	<2.5	<2.5	
5/14/2009	<300	<10	200	< 0.50	< 0.50	1.3	< 0.50	< 0.50	
8/20/2009	<1,200	<40	170	<2.0	<2.0	<2.0	<2.0	<2.0	
2/19/2010	<300	<10	170	< 0.50	< 0.50	1.2	< 0.50	< 0.50	
8/10/2010	<1,500	<50	230	<2.5	<2.5	<2.5	<2.5	<2.5	
12/16/2010	<1,200	<40	140	<2.0	<2.0	<2.0	<2.0	<2.0	

ARCO Service Station #0374, 6407	Telegraph Ave., Oakland, CA
----------------------------------	-----------------------------

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-1 Cont.									
2/14/2011	<1,500	<50	170	<2.5	<2.5	<2.5	<2.5	<2.5	
8/15/2011	<1,500	<50	130	<2.5	<2.5	<2.5	<2.5	<2.5	
2/2/2012	<600	<20	66	<1.0	<1.0	<1.0	<1.0	<1.0	
MW-2									
3/23/2001			<2.5						
3/21/2002			45						
5/23/2003	<100	<20	55	< 0.50	< 0.50	0.53			
02/02/2004	<100	<20	37	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
09/02/2004	<500	<100	67	<2.5	<2.5	<2.5	<2.5	<2.5	
02/08/2005	<100	<20	30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	35	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	а
02/16/2006	<300	<20	39	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/24/2006	<300	<20	25	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/7/2007	<300	<20	7.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	7.2	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
2/22/2008	<300	<10	24	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	4.9	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
2/23/2009	<300	<10	24	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/20/2009	<300	<10	8.4	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
2/19/2010	<300	<10	22	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/10/2010	<300	<10	23	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
12/16/2010	<300	<10	17	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
2/14/2011	<300	<10	11	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/15/2011	<300	<10	1.7	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
2/2/2012	<300	<10	1.8	<0.50	< 0.50	< 0.50	<0.50	<0.50	
MW-3									
6/20/2000			<10						
12/17/2000			<2.5						

ARCO Service Station #0374, 6407	7 Telegraph Ave., Oakland, CA
----------------------------------	-------------------------------

Well ID and		Concentrations in µg/L							
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-3 Cont.									
6/21/2001			2.5						
12/31/2001			4.9						
4/17/2002			8.7						
12/6/2002			6.2						
5/23/2003	<100	<20	1.6	< 0.50	< 0.50	< 0.50			
09/02/2004	<100	<20	6.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
8/24/2006	<300	<20	7.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	1.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	3.1	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/20/2009	<300	<10	2.2	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/10/2010	<300	<10	1.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<300	<10	1.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-4									
6/20/2000			<250						
12/17/2000			<100						
6/21/2001			130						
12/31/2001			160						
4/17/2002			<250						
12/6/2002			43						
5/23/2003	<10,000	<2,000	<50	<50	<50	<50			
02/02/2004	<500	<100	29	<2.5	<2.5	2.6	<2.5	<2.5	
09/02/2004	<200	<40	28	<1.0	<1.0	<1.0	<1.0	<1.0	
02/08/2005	<5,000	<1,000	45	<25	<25	<25	<25	<25	
08/11/2005	<2,000	<400	32	<10	<10	<10	<10	<10	
02/16/2006	<6,000	<400	35	<10	<10	<10	<10	<10	
8/24/2006	<1,500	<100	39	<2.5	<2.5	<2.5	<2.5	<2.5	
2/7/2007	<6,000	<400	67	<10	<10	<10	<10	<10	
8/8/2007	<6,000	<400	72	<10	<10	<10	<10	<10	

Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	ТВА	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-4 Cont.									
2/22/2008	<6,000	<200	70	<10	<10	<10	<10	<10	
8/21/2008	<12,000	<400	53	<20	<20	<20	<20	<20	
2/23/2009	<3,000	<100	39	<5.0	<5.0	<5.0	<5.0	<5.0	
8/20/2009	<12,000	<400	23	<20	<20	<20	<20	<20	
2/19/2010	<3,000	<100	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
8/10/2010	<12,000	<400	<20	<20	<20	<20	<20	<20	
12/16/2010	<15,000	<500	<25	<25	<25	<25	<25	<25	
2/14/2011	<300	<10	13	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/15/2011	<7,500	<250	<12	<12	<12	<12	<12	<12	
2/2/2012	<7,500	<250	<12	<12	<12	<12	<12	<12	
MW-5									
6/20/2000			<10						
9/28/2000			<2.5						
12/17/2000			<2.5						
3/23/2001			<2.5						
6/21/2001			<2.5						
9/23/2001			<2.5						
12/31/2001			<2.5						
3/21/2002			3.2						
4/17/2002			<2.5						
8/12/2002			<2.5						
12/6/2002			<2.5						
1/29/2003	<40	<20	< 0.50	< 0.50	< 0.50	< 0.50			
5/23/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50			
9/4/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
09/02/2004	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
08/11/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

				ARCO Serv	vice Station	#0374, 6407	Telegraph	Ave., Oakla	nd, CA
Well ID and				Concentrat	ions in µg/L				
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-5 Cont.									
8/21/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/20/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/10/2010	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/15/2011	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
MW-6									
3/23/2001			<2.5						
3/21/2002			5.2						
5/23/2003	<100	<20	9.4	< 0.50	< 0.50	< 0.50			
08/11/2005	<100	<20	7.9	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	a
8/24/2006	<300	<20	12	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/8/2007	<300	<20	0.57	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/21/2008	<300	<10	1.9	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/20/2009	<300	<10	2.0	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/10/2010	<300	<10	4.3	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/15/2011	<300	<10	2.2	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
MW-7									
12/16/2010	<300	<10	62	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
2/14/2011	<1,2000	<400	<20	<20	<20	<20	<20	<20	
5/20/2011	<300	<10	4.6	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
8/15/2011	<600	<20	14	<1.0	<1.0	<1.0	<1.0	<1.0	
2/2/2012	<300	<10	6.2	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	
MW-8									
12/16/2010	<300	<10	150	< 0.50	< 0.50	1.7	< 0.50	<0.50	
2/14/2011	<1,200	<40	110	<2.0	<2.0	<2.0	<2.0	<2.0	
5/20/2011	<1,200	<40	88	<2.0	<2.0	<2.0	<2.0	<2.0	
		1	1	1	1	1	1	1	

<20

<10

<600

<300

8/15/2011

2/2/2012

57

3.9

<1.0

< 0.50

<1.0

< 0.50

<1.0

< 0.50

<1.0

< 0.50

<1.0

< 0.50

ARCO Service Station #0374	. 6407 Telegraph Ave	Oakland, CA
mee bei nee beauton noora	, 0407 I Clegi upil 1170.	Oumania, Ori

Well ID and				Concentrat					
Date Monitored	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Footnote
ESL - DW	NE	12	5.0	NE	NE	NE	0.5	0.05	
ESL - NDW	NE	18,000	1,800	NE	NE	NE	200	150	
MW-9									
12/16/2010	<300	40	390	< 0.50	< 0.50	4.1	< 0.50	<0.50	
2/14/2011	<2,400	<80	270	<4.0	<4.0	<4.0	<4.0	<4.0	
5/20/2011	<2,400	<80	280	<4.0	<4.0	<4.0	<4.0	<4.0	
8/15/2011	<1,200	<40	120	<2.0	<2.0	<2.0	<2.0	<2.0	
2/2/2012	<300	<10	34	< 0.50	< 0.50	< 0.50	< 0.50	<0.50	

Symbols & Abbreviations: -- = Not analyzed/applicable/measured/available < = Not detected at or above the laboratory reporting limi 1,2-DCA = 1,2-Dichloroethane ether EDB = 1,2-Dibromoethane ETBE = Ethyl tert-butyl ether MTBE = Methyl tert-butyl ether TAME = tert-Amyl methyl ether TBA = tert-Butyl alcohol µg/L = Micrograms per Liter

ESL - DW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

ESL - NDW = Environmental Screning Levels (ESLs), shallow soils (<3 meters bgs), groundwater is NOT a current or potential source of drinking water, for residential land use. Ref. California Regional Water Quality Control Board, San Francisco Bay Region (CRWQCB-SFBR), Screening for Environmental Concerns at Sites with Contaminated Soil & Groundwater, Interim Final-November 2007 (Revised May 2008).

NE = ESL not established

Footnotes:

a = The continuing calibration verification for ethanol was outside of client contractual limits, however, it was within method acceptance limits. The data should still be useful for its intended purpose

Notes:

All volatile organic compounds analyzed using EPA Method 8260B

The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information

APPENDIX B

Historic Boring Logs and Cross Sections

				4 inche	eet Diameter of bo		Slot size:		
	nen dia:						 Materiai type:		
			The second se		g Company, Inc. Drill		Leroy		
					er		Fleid Geologiet:		
					Istered Profession	11e			
				Registre	ion No.	<u>State</u> <u>C</u>	<u>A</u>		
			Γ	USCS			<u>1999-99-564-524-624-624-624-624-624-624-64-64-64-64-64-64-64-64-64-64-64-64-64</u>	and de the second state of the	Well
epth	Semple No.	Blows	P.I.D.	Code		Descripti	on	NURCHERCORPORTED IN THE REAL OF MICHINE	Const.
0 -					Asphalt.		₩2000000000000000000000000000000000000		
				CL	Silty clay, dark bro	own, slightly c tlets, minor i	lamp, medium pl	asticity,	
2 -		H_{12}^4				adarah mundar t			2 4 4 4 4 4
4 -	S3.5	II 12 18	0						
- T									
6 -									
		т з		v					
8 -	S8.5	H_{5}	110	=	Sandy clay, gradin	g to clay with	n gravel, some r	nottling,	
10-					slight plastici	ty, stiff, notic	eable odor.		
12-	-	T-15		<u>₹</u>					
	S-13.5			-	Slightly green, ha	ď.			
4 -	1 1								
16•	$\left \right $								
18	S18.5	1110			Silty clay, some s	and and grav	el, light brown,	moist,	
20.			-		medium plas	ticity, very sti	ff.		
						10	ection continues	downward	
						()		Gommundy	<u> 1999</u>
		2			106	OF BOR	ING B-1/M	//W-1	PLA
2			×			ARCO St	ation No. 374		
	Appile			etems	=		igraph Avenu I, Callfornia	8	
RO	JECT	NQ.	סר	039-3					<u> </u>

Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Consi
				CL	Silty clay, some sand and gravel, light brown, moist, medium plasticity, stiff.	
-22-		1.3				
-24-	S23	47	0		Trace gravel.	
-26-						
-28-	S27 2	.3 5 7	0			<u></u>
30		Ì			Total Depth = $28-1/2$ feet.	
-32 -						
-34 -						
- 36 -						
-38-						
- 40						
-42-						
-44-						
-46-						
-48-						
- 50						
	Statistica and a state of the s					
				Z	LOG OF BORING B-1/MW-1	PLA
	Applied	1 0	eoSy	etema	ARCO Station No. 374 6407 Telegraph Avenue	5
JEC	T NO.	18	039-	3	Oakland, California	

Amenia dist	ote	ľ:	<u>4 incl</u>	nes Length 27 feet Slot size 0.020-	<u>3–89</u> 0–inch	
Screen dismeter: 4 inch		4 inch				
Drilling Com	pen	y • <u>Kvilh</u>	aug Drill	ing Company, Inc. Driller: Rod and Leroy		
Method Use	đr_	Hollow-	-Stem A	uger Field Geologist, Becky ar	id Keit	
	8	Ignatu		egistered Professional		
			Registri	stion No.1 Stater CA		
	مىرىيى مەربى مەربىيە مەربى					
epth Sample No.	Blows	P.I.D.	USCS Code	Description	Well	
	144	an a			Const	
0 -		• Recatilision of the second				
			CL	Sandy clay, dark brown, damp, slight plasticity, very stiff.	2 10 2	
2 -						
¢ 7 5	6 10	Ô				
4 - \$-3.5	12	0				
6 -					##	
а Н	7		<u>v</u>			
السلسة ا	20 25	ο	-	Silty clay, with some gravel, light brown, damp, hard.		
10-						
2-	5					
4 - S-13.5	5 7 15	0		Very stiff.		
				tory out.		
6-						
			⊻			
8- 1	7					
	25	0		Silty clay with gravel, brown, moist, hard.		
.0-						
				(Section continues downward)		
		<u></u> L		(Geodon continues downward)		
	À		à	LOG OF BORING B-2/MW-2	PLAT	
		oSyst		ARCO Station No. 374	6	
Applied						
Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const
-------	---------------	------------------	--------	--------------	---	---------------
				CL	Silty clay with gravel, brown, moist, hard.	
-55-		.3				
24	S-23 🗴	5 12	0		Silty clay, some fine gravel, dark brown, stiff.	
-24-					a second and group, dank prown, dank	
-26-						
-28-	S-27 X	1.10 20 25	0		Silty clay with sand, medium brown, slightly damp, slight plasticity, hard.	
					Total Depth = $28-1/2$ feet.	
-30 -						
-32 -						
-34						
-36-						
-38-						
- 40						
-42 -					、	
-44-						
-46-						
-48-						
.50 _						
F		L.	l	<u>l</u>		.ł
					LOG OF BORING B-2/MW-2	PLA
	Applied	G	oSys	items	ARCO Station No. 374 6407 Telegraph Avenue	7
JEC.	T NO.	18	039-:	3	Oakland, California	

Total depth of borin	19128-1/2 feet	Diameter of i	oring: 11 inc	hes Date drilled.	7-7-89
Casing diameter	4 inches	Lengthı	27 feet	Slot size	0.020-inch
Screen diameter:	4 inches	Length:	20 feet	_ Material type:	Sch 40 PVC
Drilling Company Kvil	haug Drilling Co	ompany, Inc. Di	ller: Rod ar	nd Leroy	
Method Used: Hollov	v-Stem Auger			Field Geologist	Becky and Keith
Signat	ure of Registe	red Professio	nalı		
	Registration	No.:	State:	CA	

Depth	Sample No.	Blows	P.I.D.	USCS Code								
- 0 -					Concrete (4 inches) over baserock (6 inches),							
- 2 -		3		CL	Silty clay, with sand and some gravel, medium brown, damp, slight plasticity, stiff, rootlets.	7 0 0 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0						
- 4 -	S3,5	10	0			∀ ♥ ♥ ♥ ♥ ♥ ₩ ₽ ₩						
- 6 -		2		.								
	S-8.5	248	ο	-	Damp.							
- 10- - 12-				Ā								
	S-13.5	4 6 10	8.5	=	Some mottling, moist.							
- 16 -												
- 18 -	s–18.52	-6 5 (12	9.1		Silty clay, minor gravel, light to medium brown, damp, medium plasticity, stiff.							
					(Section continues downward							
					LOG OF BORING B-3/MW-3	PLAT						
				eterne 039-3	ARCO Station No. 374 6407 Telegraph Avenue Oakland, California	8						

Depth	Sampie No.	BLOWS	P.I.D.	USCS Code	Description	Well Const.	
			and a second second second	CL	Silty clay, minor gravel, light to medium brown, damp, medium plasticity, stiff.		
-22-	s-23	·6 /8	0				
-24-		X '2			Very stiff.		
-26-		5					
-28 -	S-27	10 12	1		Silty clay with sand, slight plasticity.		
-30 -					Total Depth = $28 - 1/2$ feet.		
-32-							
-34 -							
-36-							
- 38-							
- 40 -							
-42-			-				
-44-							
- 46-							
- 48-							
- 50 -							
					E LOG OF BORING B-3/MW-3 ARCO Station No. 374	_	
	Appile		8039	etema		9	

Total depth of borin Casing diameter:		iches	Length	_	27 feet	Slot size	
Screen diameter	4 in	ches	Length		feet	Material type:	
Drilling Company _{'Kvil}	haug Di	rilling Co	mpany, Inc.Dr	iller.	Rod ar	nd Leroy	
Method Usedi Holloy	-Stem	Auger				Field Geologist,	Becky and Kei
Signat	ure of	Register	red Protessio	nah			

Registration No.1_____ States_____CA___

Depth	Sample No.	Blows	P.I.D.	USCS Code	Description	Well Const.	
0-				CL	Silty clay, some sand and fine-grained gravel, very dark brown, slightly damp, slight plasticity, stiff.		
4 -	3.5	2 3 8	o				
6 - 8 -	8.5	☐ 3 ☐ 4 10	0	V			
10 - 12 - 14 -	S—13.5	4 10 25	41.6	 GM	Sandy gravel, some silt, medium brown, very moist, medium dense, obvious odor.		
16 - 18 - 20 -	S18.5	15 15 20	0		W e t, dense.		
					(Section continues downward		
				39-3	LOG OF BORING B-4/MW-4 ARCO Station No. 374 6407 Telegraph Avenue Oakland, California	PLAT	

Depth	Semple No.	BLOWS	P.I.D.	USCS Code	Description	Well Const.
			ngi Chigan kata kata kata kata kata kata kata ka	GM	Sandy gravel, some silt, medium brown, very moist, medium dense.	
-55-		.6 /12		CL	Silty clay, some sand and gravel, very stiff.	
-24 -	s-23.5	15	0			
-26-		.7				
-28-	S-27	20	0		Grades more gravelly. Total Depth = 27-1/2 feet.	
20						
-30						
-32 -						
-34 -						
-36-						
-38-						
- 40 -						
-42-					、	
-44-						
-46-						
- 48-						
-50 -						
					LOG OF BORINGB-4/MW-4	PLAT
2	Applied GeoSystems				ARCO Station No. 374 6407 Telegraph Avenue Oakland, California	1

	•	-				-			Casing diameter:4	Inches
									0.020-inch Steve Stone	
	-									
Men	100 1			inatur	e of Re	gistered	Profes		Field Geologist: <u>Rob Ca</u> CA	mppeli
epth	Samp	ole	SMO	P.I.D.	USCS			Descri	ption	Well
	No	·	Ē		Code				•	Cons
								Alcatraz Aven	ue	
0 -					SW	<u>Asphalt</u> Gravelly	(6 inc y sand,	hes). gray, damp, v	ery dense: Fill (Baserock).	
2 -					CL				se-grained sand, dark blue- asticity, very stiff.	
4 -						Color c	:hange t	o light brown	at 4 feet.	∇ ∇ ∇ ∇ ∇ ∇
6 - 5	S−5.5	The second secon	7 8	0				o light brown dules present.	mottled with green, hard;	
8 -					▼		•	o green at 7- el – 4/9/92).		
10- s	5-10	田1	5 0 .0	0		Color c	:hange t	o dark green	at 10 feet, moist.	
12 -										
				ŀ		Color c	hange t	o light brown	at 13 feet.	
14 - S·	-14.5		4	0	CL	pl	asticity,	hard.	own, very moist, medium	
16 -		12	А	-	CL	Gravelly	oclay w asticity,	ith sand, light	brown, very moist, low	
18 -		8	3		CL			sand, light bro very stiff.	own, very moist, low	
20 - 5	-19		0	0 -		Clayey	sand, b	rown, wet, med	dium dense.	
				F	СН	Silty clo	sy, light	brown, very r	noist, high plasticity, hard.	
l			L		<u></u>			(Se	ection continues downward)	
					<i>a</i> a		1	LOG OF BO	RING B-5/MW-5	PLAT
0	Norlköl	ng t		B Restore	Nature			ARCO	Station 374 egraph Avenue	4
OJE	<u>Ω</u> Τ.			600'	25.05				d, California	-

Depth	Sample No.	BLOWS	P.I.D.	USCS Code	Description	Well Const
-55-				СН	Silty clay, light brown, very moist, high plasticity, hard.	
-24 -	S-24.5	T 10 22 35	0	ML.	Sandy silt with clay, brown, moist, low plasticity, hard.	
-26-		133			Total depth = $25-1/2$ feet.	
- 58 -						
- 30 -						
-32 -						
-34 -						
- 36 -						
- 38 -						
40-						
42 -						
44 -						
46-						
48-						
50 -						
Wa	erking ta		XA store N	A	ARCO Station 374	PLATE
ROJE)025.(6407 Telegraph Avenue Oakland, California	J

An-180.000

Stears and

Station and

Dri	lling (Cor	npc			feet Slot size: 0.020-inch Drilling Driller: Steve Stone	
			d:		Hollow	-Stem Auger Field Geologist: Rob Can	npbell
					Registra	tion No. <u>: RCE 044600</u> State: <u>CA</u>	
eptr	Samp No		Blows	P.I.D.	USCS Code	Description	Wel Cons
0 -			-			Paved Street: Irwin Court. Asphalt (7 inches). Gravelly sand, gray, damp, very dense: Fill (baserock).	- v -
2 -					SW CL	Silty clay, dark brown mottled with green, moist, medium plasticity, stiff.	
4 -		E	4 6		V	Color change to light brown at 3-1/2 feet. (Water level - 4/9/92)	
6 -	S-5.5		9	0	CL	Sandy clay with silt, light brown, moist, low plasticity, stiff; some organic fragments and root holes.	
8 - 0-	S-10		11 18 25 . 4	0	GP	Sandy gravel with some silt, light brown, wet, dense.	
2 -	~	×	8	0			
4 - 6 -	S-15		6 12 18 11	0	CL	Silty clay with gravel, light brown, very moist, medium	
8 -			25 32	0		plasticity, hard. Total depth = 17 feet.	
0 -							

LOG OF BORING B-6/MW-6 ARCO Station 374 6407 Telegrapf Avenue Oakland, California

6

PROJECT:

60025.05

SOIL	BORING	LOG
	DOMING	

Boring No. B-11

Sheet: 1 of 1

Client	ARCO 374	Date	November 13, 2008	}	Marton
Address	6407 Telegraph Avenue	Drilling Co.	RSI	rig type: Geoprobe GH-40	
	Oakland, CA	Driller	Juan Morales		
Project No.	<u>E374</u>	Method	Direct Push	borehole diameter: 3"	
Logged By:	Scott Bittinger	Sampler:	Acetate Liner		
Mail Deals					

Well Pack grout: 16 ft. to 0 ft.

	Sample	Blow	Sar	npie	Well	Depth	Lithologic	Descriptions of Materials and Conditions (PP			
Тур	e No.	Count	Time	Recov.	Details	Scale	Column				
						1		Airknife to 5' bgs.			
					······································	2		mixed fill material (fine grained soil, sand, and gravel mixtures) with plastic and other debris			
					e da en	3 4 5	CL	SILTY CLAY fill material, olive brown to greenish gray, dry to moist			
						6					
						8	00				
						9 10	GP	GRAVEL (crushed rock fill material), fine gravel particle size, very wet			
						11 12	-				
						13 14					
S	B11-15		9:03		and and a second s	15 16	CL	SILTY CLAY, grayish brown (13.5' to 15'), light olive brown with orange iron oxide stains (15'-16'), wet (13.5'-15'), moist (15'-16'), stiff	4.2		
						17 18					
						19 					
			R	ecovery	,		c	Comments: total depth = 16'			
			S	ample		_]		the second se			
								STRATUS Environmental, inc.			

Boring No. B-12

Sheet: 1 of 1

Client	ARCO 374	Date	November 13, 2008
Address	6407 Telegraph Avenue	Drilling Co.	RSI rig type: Geoprobe GH-40
	Oakland, CA	Driller	Juan Moraies
Project No.	<u>E374</u>	Method	Direct Push borehole diameter: 3"
Logged By:	Scott Bittinger	Sampler;	Acetate Liner
	4. 10 5 4. 0 5		

Well Pack grout: 16 ft. to 0 ft.

	Sample Blow		Sample		Weli	Depth	Lithologic			
Туре	e No.	Count	Time	Recov.		Scale	Column	Descriptions of Materials and Conditions	PID (PPM	
						1		Airknife to 5' bgs.		
]	344	2		mixed fill material (fine grained soil, sand, and gravel mixtures) with plastic	+	
		•						and other debris		
					in in the second	_ ³				
					{``.}}	_4	CL	SILTY CLAY fill material, olive brown to greenish gray, dry to moist		
						5	01			
					s adver	6				
					4.	₇				
						8				
		++								
		+			ur - 144 Tel III - 14	_9				
				******	1994 - 1994 - 1994 - 1994 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	10	GP	GRAVEL (crushed rock fill material), fine gravel particle size, very wel		
					1	_11	~ 1	crow 22 (orabled rook in matchal), inte graver particle size, very wet		
	*********				· 1944	12				
						14				
					Ż					
s	B12-15.5		9:50		- 	15	CL	SILTY CLAY, light olive brown, damp to moist, stiff	6.3	
						16	-			
						17	ļ			
						18				
						19				
							ſ			
				Recover	v	1		Comments: total depth = 16'		
			1	1000701	y					
			S	ample						
								STRATUS		
								ENVIRONMENTAL, INC.		
							l			

Boring No. B-13

Sheet: 1 of 1

Client	ARCO 374	Date	September 21, 2009
Address	6407 Telegraph Avenue	Drilling Co.	RSI Drilling rig type: Powerprobe 6600
	Oakland, CA	Driller	Gilberto
Project No.	<u>E374</u>	Method	Geoprobe Hole Diameter: 2 inches
Logged By:	Collin Fischer	Sampler:	Continuous Core

	Sample	Blow	s	ample	Death	T		1
Туре	No.	Coun	F	Recov.	Depth Scale	Lithologic Column	Descriptions of Materials and Constitutions	PID
					1 2		Cleared to 6.5' bgs with air knife,	(PPM)
					3 4	CL	Silty clay with sand, CL, (0'-5.5'), dark gray, moist, medium plasticity 60% clay, 30% silt, 10% medium grained sand	
<u>s</u>	B-13 4.5'	N/A	1120	100	5			18
S	B-13 6.5'	N/A	1130	100	6 7	sc	Clayey sand with silt and gravel, SC, (5.5'-7.5'), dark gray, moist, HC odor 50% medium grained sand, 25% clay, 15% silt, 10% medium gravel	48
S	B-13 8.5'	N/A	1515	100	8	ML	Clayey silt, ML, (7.5'-8.5'), dark gray, moist, medium plasticity, HC odor 60% silt, 40% clay	3800
						SC	Clayey sand with silt and gravel, SC, (8.5'-12.5'), dark gray, moist to wet 50% coarse grained sand, 25% clay, 15% silt, 10% coarse gravel	
					13 14 15 16	CL	Silty clay with gravel, CL, (12.5'-18'), dark yellowish brown, moist, medium plasticity 70% clay 30% silt	
					17 18 19			
				ecovery _	20	c	omments: Failed water sample from temporary screen interval from 8'-18' bgs.	
			Sa	ample	L.		STRATUS Environmental, inc.	

ſ

Boring No. B-14

Sheet: 1 of 1

Client	ARCO 374	Date	September 21, 2009
Address	6407 Telegraph Avenue	Drilling Co.	RSI Drilling rig type: Powerprobe 6600
	Oakland, CA	Driller	Gilberto
Project No.	E374	Method	Geoprobe Hole Diameter: 2 inches
Logged By:	Collin Fischer	Sampler:	Continuous Core

	Sample	Blow	Sample Time Recov.		Depth	Lithologic Column					
Туре	No.	Count			Scale		Descriptions of Materials and Conditions				
							Cleared to 6.5' bgs with air knife.	<u>(PPM)</u>			
					2 3	CL	Silty clay with sand, CL, (0'-5.5'), dark gray, moist, medium plasticity 60% clay, 30% silt, 10% medium grained sand				
S	B-14 4.5'	N/A	0940	100	4 5			0			
S	B-14 6.5'	N/A	0950	100	6		Clayey silt, ML, (5.5'-7'), dark gray, moist, medium plasticity, HC odor 60% silt 40% clay	0			
S	B-14 8.5'	N/A	1100	100	8 9 10	ML	Clayey silt with sand and gravel, ML, (7'-11'), dark gray, moist, medium plasticity HC odor, 50% silt, 30% clay, 10% fine grained sand, 10% medium gravel	62			
					11 12 13						
					14 15 16	SC	Clayey sand with silt and gravel, SC, dark yellowish brown, wet 50% coarse grained sand, 25% clay, 15% silt, 10% coarse gravel				
					17 18 19						
			R	ecovery			Comments: Failed water sample from temporary screen intervals from 4.5'-14.5'				
				ample —		a	and 8'-18' bgs.				
							STRATUS Environmental, inc.				
	na kana di Milana kata Manjarana M										

T

T

E

Boring No. B-15

7

Sheet: 1 of 1

Client	ARCO 374	Date	September 21, 2009
Address	6407 Telegraph Avenue	Drilling Co.	RSI Drilling rig type: Powerprobe 6600
	Oakland, CA	Driller	Gilberto
Project No.	E374	Method	Geoprobe Hole Diameter: 2 inches
Logged By:	Collin Fischer	Sampler:	Continuous Core

	Sample	Blow	S	ample	Depth	Lithologic					
Туре	No.	Count	Time	Recov.	Scale	Column	Descriptions of Materials and Conditions	PID			
					1		Cleared to 6.5' bgs with air knife.	(PPM			
					2 3	CL	Silty clay with sand, CL, (0'-5.5'), dark gray, moist, medium plasticity 60% clay, 30% silt, 10% medium grained sand				
s	B-15 4,5'		4045		4	0L	sova cray, 50 % sin, 10% medium grained sand				
	B-15 4,5	N/A	1015	100	5			163			
s	B-15 6.5'	N/A	1025	100	6 7			82			
s	B-15 8.5'	N/A	1210	100	8	ML	Clayey silt, ML, (5.5'-9.5'), dark gray, moist, medium plasticity, HC odor 60% silt, 40% clay				
					9			146			
					10 11		Clayey sand with silt and gravel, SC, (9.5'-11.5'), dark gray, wet, HC odor 50% medium grained sand, 25% clay, 15% silt, 10% coarse gravel				
					12	sc					
					13 14		Clayey sand with silt and gravel, SC, (11.5'-15'), dark yellowish brown, moist 50% medium to coarse grained sand, 25% clay, 15% silt, 10% coarse gravel				
					15		<u></u>				
					16 	CL	Silty clay, CL, (15'-18'), dark yellowish brown, moist, medium plasticity 70% clay, 30% silt				
					18						
					19						
			I	ecovery	20		Comments: Water sample taken from temporary screen interval (8'-18') bgs.				
			Sa	ample —							
							STRATUS				
							ENVIRONMENTAL, INC.				

PROJ	BROADE ENGINEERING, ECT NAME: B			,			HOLOGIC AND MONITOR WELL CONSTRUCTION LOG SITE ADDRESS: 6407 Telegraph Ave., Oakland, CA				
	ECT NUMBER		2				LEGAL DESC: APN:				
LOGG	ED BY: A	aron Sonerho	lm			FACILIT	FACILITY ID OR WAIVER: NOI NUMBER:				
DATE	11/24/2	<u>010</u> ST	ART:	0745		DRILLIN	IG COMPANY: Gregg DR	ILLER:	Jason		
WELL	.ID:	W-7	STOP:	101	5	DRILLIN	IG METHOD: Hollow Stem Auger SAMPLE METH	OD: <u>Split</u>	Spoon		
(FEET)	MONITOR WELL CONSTRUCTION DIAMETER: <u>4"</u>	SAMPLE ID	PID	MOISTL	RE COLOR	CONSIE	STENC ^{Y CLA} SSIFA GRAIN SIZE	CATION	REMARKS & ODORS		
	#2/12 SAND	MW-7-3 MW-7-5 MW-7-6 MW-7-8 MW-7-9.5	0.0 ppm 0.0 ppm 8.7 ppm 385 ppm 0.0 ppm	Moist Moist Moist	Gray to Dk. Gray Dk. gray Dk. gray Brown - Reddish brown Brown Dark	Stiff Med. Dense	Silty clay - clayey silt with sand Clayey silt with some sand and gravel Clayey silt with sand grading to silty sand and gravel Sand, fine grained poorly graded with trace silt	CL ML SP			
11		MW-7-11 MW-7-12.5	9.4 ppm		brown		Silty sand with gravel	SM			
13		11111-12.0	0.0 ppm	Very moist		Very stiff	Clayey silt and sand and gravel	CL			
14 — 15 —		MW-7-14 MW-7-15.5	0.0 ppm 0.0 ppm				Silty sands with gravels, fine to coarse grained	SM			
16 —	SCREEN	MW-7-17	0.0 ppm								
18 — 	0.01"	MW-7-18.5	0.0 ppm	Very moist to wet		Stiff	Wet at 18 feet Silty clay with gravel	CL			
20		MW-7-20	0.0 ppm								
THIS SUMM	L BORING DE MARY APPLIES ONLY AT TH GE AT THIS LOCATION WIT	IS LOCATION AND AT THE	TIME OF LOGGING	. SUBSURFACE C	GE NO:		-		H: 7.44'		

PROJ	BROADB ENGINEERING, ECT NAME: B					HOLOGIC AND MONITOR WELL CONSTRUCTION LOG SITE ADDRESS:6407 Telegraph Ave., Oakland, CA					
	ECT NUMBER		02				DESC:				
LOGG	GED BY: <u>A</u>	aron Sonerho	Im			FACILIT	FACILITY ID OR WAIVER: NOI NUMBER:				
DATE	:11/23/20	010ST	ART:	1300		DRILLIN	IG COMPANY: Gregg	DRILLER: _	Jason		
WELL	.ID: <u>B-17/M</u>	N-8	STOP:	170	0	DRILLIN	IG METHOD: Hollow Stem Auger SAMPL	_E METHOD: <u>Spli</u>	t Spoon		
(FEET)	MONITOR WELL CONSTRUCTION DIAMETER: <u>4"</u>	SAMPLE ID	PID	MOISTL	RE COLOR	CONSIE	GRAIN SIZE	CLASSIFICATION	REMARKS & ODORS		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	#2/12 SAND BENTONITE GROUT SCREEN INTELATIONITE	 MW-8-3 MW-8-5 MW-8-6 MW-8-9.5 MW-8-11. MW-8-12.5 MW-8-15.5 MW-8-17.5 MW-8-18.5 	 14.8 ppm 26.3 ppm 79.0 ppm 563 ppm 334 ppm 710 ppm 8.1 ppm 0.0 ppm 0.0 ppm 0.0 ppm 	₩ Moist Wery moist to wet ∑ Moist	Greenish gray to Dk. Gray Greenish gray to dk. gray Brown - Reddish brown with greenish gray Brown - reddish brown Greenish gray		GRAIN SIZE Silty clay with sand Clayey silt with fine to coarse sand and grave Sand, poorly graded, fine grained with trace Silty sand with occasional gravel Clayey silt Silty sand with gravel Wet at 16.5 feet Silty Clay with fine to coarse grained sand	el ML silt SP SM ML SM	ODORS		
		MW-8-20	0.0 ppm		Brown			CI			
THIS SUMM	L BORING DEI MARY APPLIES ONLY AT TH GE AT THIS LOCATION WIT	IS LOCATION AND AT TH	E TIME OF LOGGING	. SUBSURFACE C		FER AT OTHER L			TH:		

PRO	BROADE ENGINEERING, DJECT NAME: B						HOLOGIC AND MONITOR WELL CONSTRUCTION LOG SITE ADDRESS: 6407 Telegraph Ave., Oakland, CA				
	DJECT NUMBER		02				DESC:				
LOC	GGED BY: <u>A</u>	aron Sonerho	lm			FACILIT	Y ID OR WAIVER:	NOI NUMBER:			
DAT	TE:11/23/2	010 ST	TART: ()910		DRILLIN	IG COMPANY: Gregg	DRILLER:	Jason		
	LL ID:B-18/M\			120			IG METHOD: Hollow Stem Auger SAMF				
DEPTH (FEET)	MONITOR WELL CONSTRUCTION DIAMETER: 4"	SAMPLE ID	PID	MOIST				CLASSIFICATION	REMARKS & ODORS		
				MOL	COC	CO/.	GRAIN SIZE	·// _{ON}			
1 —	GROUT			Moist	Gray to Dk. Gray		Silty clay				
3 —	BENTONIT	MW-9-3	24.9 ppm					CL			
5 —		MW-9-5	13.5 ppm				Silty clay				
6 — 7 —	AND	MW-9-6	75.0 ppm	•			Silty clay with sand and gravel	_			
- 8 — -	#2/12 S	MW-9-8	1386 ppm	 Moist	Gray to Brown	Stiff	Clayey silt with occasional sand and grave	el la			
9 — - 10 —							No recovery at 9.5'	ML			
- 11 — -		MW-9-11	2475 ppm		Brown - Reddish brown	Firm					
12 — - 13 —		MW-9-12.5	3794 ppm		Dk. gray to greenish gray						
- 14 — -		MW-9-14	14.5 ppm	Moist	Brown	Med. dense	Silty sand with coarse gravel	SM			
15 — - 16 —		MW-9-15.5	1.6 ppm	Very moist	Brown to Reddish brown						
- 17 —	SCREEN	MW-9-17	0.0 ppm	\ ₩et			Wet at 17 feet				
18 — - 19 —	0.01"	MW-9-18.5	0.0 ppm			Med. dense	Silty sand with gravel	SM			
20		MW-9-20	0.0 ppm			Hard		CL			
THIS S	TAL BORING DE	IS LOCATION AND AT TH		SUBSURFACE C		FFER AT OTHER L	OCATIONS AND -	UNDWATER DEPT	H: 7.31'		

PRO		BENT & AS WATER RESO BP/ARCO 374					DGIC AND MONITOR WELL CONS	STRUC	CTION LOG					
			2				DESC: APN:							
LOG	GED BY:	aron Sonerho	lm			FACILIT	FACILITY ID OR WAIVER: NOI NUMBER:							
DATE	. 11/23/2	. <u>010</u> ST	TART:	0745		DRILLIN	DRILLING COMPANY: Gregg DRILLER: Jasc							
WEL	_ ID: <u>B-19</u>		STOP:	084	3	DRILLIN	DRILLING METHOD: Hollow Stem Auger SAMPLE METHOD: Split Spoon							
DEPTH (FEET)	SOIL BORING	SAMPLE ID	PID	MOISTI	IRE COLOR	CONSI	STENCY CLASS, GRAIN SIZE	FICATION	REMARKS & ODORS					
1 — 2 — 3 —	GROUT	B-19-3	12.8 ppm	Moist	Gray to Dk. Gray	Stiff	Silty clay with sand	CL						
4 — 5 — 6 —		B-19-5 B-19-6	7.0 ppm 17.5 ppm			Stiff	Silty clay or clayey silt with some and gravel — — — — — — — — — — — — — — — — — — —							
7 — 8 —		B-19-8	4602 ppm	▼	Gray to Dk. gray			ML						
9 — 10 —		B-19-9.5	5896 ppm		Brown - Reddish brown									
11 —		B-19-11	4558 ppm	Moist to very moist		Stiff	Silty clay - clayey silt with thin sand and fine gravel lenses	CL						
12 — 		B-19-12.5	514 ppm											
 14		B-19-14	7.7 ppm		Brown - reddish brown		Silty clay - clayey silt with occasional coarse sand							
15 — 		B-19-15.5	4.5 ppm			Very stiff	Silty sands, coarse sand and gravel	SM						
 17		B-19-17	0.0 ppm	Very moist to Wet ▽	Lt. Brown		Wet at 17.5 feet							
18 — 		B-19-18.5	0.0 ppm			Stiff	Sandy silt to clayey silt							
20		B-19-20	0.0 ppm				Silt - clayey silt	ML						
THIS SUN	AL BORING DE MARY APPLIES ONLY AT TH NGE AT THIS LOCATION WI	HIS LOCATION AND AT TH		. SUBSURFACE C		FFER AT OTHER I	LOCATIONS AND		TH: <u>8.50'</u>					

APPENDIX C

Drilling Permits

Alameda County Public Works Agency - Water Resources Well Permit

Associates

Work Total: \$265.00

Works Requesting Permits:

Borehole(s) for Investigation-Contamination Study - 3 Boreholes Driller: Gregg Drilling - Lic #: 485165 - Method: Hand

Specifications

Permit Number	Issued Dt	Expire Dt	# Boreholes	Hole Diam	Max Depth
W2014-	11/26/2014	03/04/2015	3	2.00 in.	10.00 ft
1136					

Specific Work Permit Conditions

1. Backfill bore hole by tremie with cement grout or cement grout/sand mixture. Upper two-three feet replaced in kind or with compacted cuttings. All cuttings remaining or unused shall be containerized and hauled off site. The containers shall be clearly labeled to the ownership of the container and labeled hazardous or non-hazardous.

2. Boreholes shall not be left open for a period of more than 24 hours. All boreholes left open more than 24 hours will need approval from Alameda County Public Works Agency, Water Resources Section. All boreholes shall be backfilled according to permit destruction requirements and all concrete material and asphalt material shall be to Caltrans Spec or County/City Codes. No borehole(s) shall be left in a manner to act as a conduit at any time.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

Alameda County Public Works Agency - Water Resources Well Permit

5. Applicant shall contact assigned inspector listed on the top of the permit at least five (5) working days prior to starting, once the permit has been approved. Confirm the scheduled date(s) at least 24 hours prior to drilling.

6. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

7. NOTE:

Under California laws, the owner/operator are responsible for reporting the contamination to the governmental regulatory agencies under Section 25295(a). The owner/operator is liable for civil penalties under Section 25299(a)(4) and criminal penalties under Section 25299(d) for failure to report a leak. The owner/operator is liable for civil penalties under Section 25299(b)(4) for knowing failure to ensure compliance with the law by the operator. These penalty provisions do not apply to a potential buyer.

8. Permit is valid only for the purpose specified herein. No changes in construction procedures, as described on this permit application. Boreholes shall not be converted to monitoring wells, without a permit application process.

	struction-Va regg Drilling		Work Total: \$265.00					
Specificati Permit #		Expire Date	Owner Well Id	Hole Diam.	Casing Diam.	Seal Depth	Max. Depth	
W2014- 1137	11/26/2014	03/04/2015	SG-2A/B	2.00 in.	2.00 in.	1.00 ft	5.50 ft	
W2014- 1137	11/26/2014	03/04/2015	SG-3A/B	2.00 in.	2.00 in.	1.00 ft	5.50 ft	

Specific Work Permit Conditions

1. Drilling Permit(s) can be voided/ cancelled only in writing. It is the applicant's responsibility to notify Alameda County Public Works Agency, Water Resources Section in writing for an extension or to cancel the drilling permit application. No drilling permit application(s) shall be extended beyond ninety (90) days from the original start date. Applicants may not cancel a drilling permit application after the completion date of the permit issued has passed.

2. Compliance with the above well-sealing specifications shall not exempt the well-sealing contractor from complying with appropriate state reporting-requirements related to well destruction (Sections 13750 through 13755 (Division 7, Chapter 10, Article 3) of the California Water Code). Contractor must complete State DWR Form 188 and mail original to the Alameda County Public Works Agency, Water Resources Section, within 60 days, including permit number and site map.

3. Permittee shall assume entire responsibility for all activities and uses under this permit and shall indemnify, defend and save the Alameda County Public Works Agency, its officers, agents, and employees free and harmless from any and all expense, cost, liability in connection with or resulting from the exercise of this Permit including, but not limited to, properly damage, personal injury and wrongful death.

4. Permittee, permittee's contractors, consultants or agents shall be responsible to assure that all material or waters generated during drilling, boring destruction, and/or other activities associated with this Permit will be safely handled, properly managed, and disposed of according to all applicable federal, state, and local statutes regulating such. In no case shall these materials and/or waters be allowed to enter, or potentially enter, on or off-site storm sewers, dry wells, or waterways or be allowed to move off the property where work is being completed.

5. Prior to any drilling activities, it shall be the applicant's responsibility to contact and coordinate an Underground

Alameda County Public Works Agency - Water Resources Well Permit

Service Alert (USA), obtain encroachment permit(s), excavation permit(s) or any other permits or agreements required for that Federal, State, County or City, and follow all City or County Ordinances. No work shall begin until all the permits and requirements have been approved or obtained. It shall also be the applicants responsibilities to provide to the Cities or to Alameda County an Traffic Safety Plan for any lane closures or detours planned. No work shall begin until all the permits and requirements have been approved or obtained.

6. No changes in construction procedures or well type shall change, as described on this permit application. This permit may be voided if it contains incorrect information.

7. Applicant shall submit the copies of the approved encroachment permit to this office within 10 days.

8. Wells shall have a Christy box or similar structure with a locking cap or cover. Well(s) shall be kept locked at all times. Well(s) that become damaged by traffic or construction shall be repaired in a timely manner or destroyed immediately (through permit process). No well(s) shall be left in a manner to act as a conduit at any time.

9. Copy of approved drilling permit must be on site at all times. Failure to present or show proof of the approved permit application on site shall result in a fine of \$500.00.

10. Vapor monitoring wells above water level constructed with tubing maybe be backfilled with pancake-batter consistency bentonite. Minimum surface seal thickness is two inches of cement grout around well box.

Vapor monitoring wells above water level constructed with pvc pipe shall have a minimum seal depth (Neat Cement Seal) of 2 feet below ground surface (BGS). Minimum surface seal thickness is two inches of cement grout around well box. All other conditions for monitoring well construction shall apply.

APPENDIX D

Soil Boring/Soil Vapor Logs

U	BRO	A	IBENT			Lľ	THOLO	GIC AND MONITOR	WELL CONST	RU	CTION LOG
PRC	DJECT NA	/E:	BP 374				SITE AD	DRESS: <u>6407 Telegraph Aven</u>	ue, Oakland, California	1	
PRC	DJECT NU	MBER	:06-88-602	2			LEGAL [DESC:	APN:		
LOG	GED BY:	L	u Damerell				FACILITY ID OR WAIVER: NOI NUMBER:				
DAT	E: <u>12</u>	/4/20	14 ST/	ART:	1320		DRILLI	NG COMPANY: Gregg	_ DRILLER:Joh	ın Ha	ncock
WEL	_L ID: <u>B</u> -	1	STOP:	1345			DRILLING METHOD: <u>Hand Auger</u> SAMPLE METHOD: <u>Han</u>				
DEPTH (FEET)	BORIN DIAMETER:		SAMPLE ID	PID (ppm)	MOISTI	JRE COLOR	CONSIS	EN ^{CI} GRAIN SIZE	CLASSIFICA	TION	REMARKS, ODORS & BLOW COUNT
1 —					Slightly Moist		Stiff/Firm	10.5" Asphali Clay		CL	Mild Hydrocarbon Odor
2 —				4.4		Gray	Stiff/Firm	Clay with Trace Organ and Trace Fine S		CL	Mild Hydrocarbon Odor
3 —	- - -		B-1-141204 @3'-3.5'	25 32.6		Mottled Gray/ Dark Gray	Stiff/Firm	Clay with Trace Fin and 5% 1" Diameter		CL	Mild Hydrocarbon Odor
4 —	GROUT	-		14.8		Green/ Gray	Stiff/Firm	$\overline{}$ $$ $\overline{\phantom{0$		ML	— — — — — – None
5 — - 6 —				18.6		Green/ Gray	Stiff/Firm	Silt (85%), Sand (2" Diameter Gravel	10%), (<5%)	ML	
- 7 —	-			14.3							
8 —				32.5							
o — _								Refusal at 8.5	5'		
9 —	-										
10 —											
 11	-										
 12	_										
 13	-										
14 —	_										
15 —	_										
 16	-										
- 17 —	-										
- 19	_										
20	_										
THIS SU	AL BORIN	NLY AT TH	PTH: 8.5	TIME OF LOGGING	G. SUBSURFACE C	NO: 1	IFFER AT OTHER LO	CATIONS AND	TED GROUNDWATEF	DEF	PTH: <u>NA</u>

C		DBENT					OGIC AND MONITOR WELL C		ICTION LOG
							DRESS: <u>6407 Telegraph Avenue, Oakland</u>		
		IMBER:06-88-602 Lu Damerell							
							Y ID OR WAIVER: N		
	E: <u>12/4/20</u>						IG METHOD: Hand Auger SAMPLE		
	L ID: <u>B-1A</u>	31	PID						
(FEET)	BORING DIAMETER: <u>3.5</u> "	SAMPLE ID	(ppm)	MOISTL	RE COLOR	CONSIE	GRAIN SIZE	CLASSIFICATION	ODORS & BLOW COUNT
 1				Slightly Moist	Gray	Stiff	10.5" Asphalt Clay	CL	Mild
2 —							Clay with Trace Fine Sand	CL	
3 —		B-1A-141204 @3'-3.5'	78 <u>.</u> 3				Clay with Trace Fine Sand and 5% 1" Diameter Gravels	CL	Strong Hydrocarbon Odor
4 —	GROUT				Green/ Dark			— — — — ML	·
5 —	-				Gray Green/ Gray		Silt (85%), Sand (10%), with Trace Masonry Brick	ML	
6 —					City		Refusal at 6'		
7 —									
8 —	-								
-	-								
9 —	-								
10 —	-								
 11	1								
-	-								
13 —	-								
14 —	-								
 15	-								
16									
16 —]								
17 —									
18 —	-								
 19									
20									
	1								
THIS SU	AL BORING DE MMARY APPLIES ONLY AT TI ANGE AT THIS LOCATION WI	HIS LOCATION AND AT THE	TIME OF LOGGIN THE DATA PRES	G. SUBSURFACE C	NO: 1	IFFER AT OTHER L	1 ESTIMATED GROUI	NDWATER DE	PTH: <u>NA</u>

	OBENT					GIC AND MONITOR WELL			
PROJECT NAME: _						DRESS: <u>6407 Telegraph Avenue, Oakl</u>			
PROJECT NUMBER					LEGAL DESC: APN:				
LOGGED BY:						Y ID OR WAIVER:		NUMBER:	
DATE:1/16/20	15 STAF	RT: <u>08</u> 4	40			DRILLING COMPANY: Gregg	DRILLER:	_Lu	I Menjivar
WELL ID: <u>B-1B</u>	STO	P:10'	15			RILLING METHOD: Geoprobe			
DEPTH BORING (FEET) DIAMETER: <u>3.5"</u>	SAMPLE ID	PID (ppm)	MOISTU	RE COLOR	CONSIE	GRAIN SIZE	CLASSIFICATION		REMARKS, ODORS & BLOW COUNT
						12" Asphalt			
1 — 2 —			Slightly Moist	Gray	Stiff	Clay, High Plasticity (100,0,0,0)		CL	None
3 — 		8.0	Moist	Gray	Stiff	Clay with Trace Gravel and Sil (95,4,<1,0)	t	CL	Slight Hydrocarbon Odor
4 — CONT 5 — CROUT		9	Slightly Moist	Greenish Gray	Stiff	Silty Clay with Trace Sand and Gr (85,10,1,<4)	avel	CL	Moderate Hydrocarbon Odor
6 — 7 — 8 —			Slightly Moist	Greenish Brown	Stiff	Silty Clay with Trace Sand and Gr (85,10,1,<4)	avel		
9 — 10 — 11 —		51.6 S	Slightly Moist	Greenish Brown	Stiff	Silty Clay with Trace Sand and Trace Sub angular and Sub rounded (85,10,1,<4)	l Gravel	CL	Moderate Hydrocarbon Odor
12 —			Slightly Moist	Greenish Brown	Stiff	Silty Clay with Trace Sand and Gr (85,10,1,4) Clay, Medium to High Plasticity		CL	Moderate Hydrocarbon Odor
13 —		549	Moist	Light Brown	Firm	with Some Gravel and Sand (95,0,0,<5)		CL	None
14 —			Moist	Light Brown	Soft	Sandy Clay, Medium Plasticity (85,0,0,15)		CL	None
15			Moist	Light Brown	Stiff	Clay, High Plasticity (100,0,0,0)		CL	None
-									
16 —									
17 —									
-									
19 —									
20									
TOTAL BORING DE	PTH: 15'			NO: 1	OF	1 ESTIMATED GRO			PTH: 13.5
TOTAL BORING DE THIS SUMMARY APPLIES ONLY AT TI MAY CHANGE AT THIS LOCATION WI	HIS LOCATION AND AT THE TIM	/E OF LOGGING. SU HE DATA PRESENTE	JBSURFACE CO	NO: 1 DNDITIONS MAY DIF	FER AT OTHER LO	OCATIONS AND		DEP	III. <u>13.3</u>

0	BROAL	DBENT			LIT	THOLOG	GIC AND MONITOR	WELL CONST	RU	CTION LOG
PRO	JECT NAME: _	BP 374				SITE ADDF	RESS: _ 6407 Telegraph Avenu	ue, Oakland, California		
PRO	JECT NUMBER	R: <u>06-88-602</u>	2			LEGAL DESC: APN:				
LOG	GED BY:	u Damerell				FACILITY I	D OR WAIVER:	NOI NUMBE	ER: _	
DATE	E: <u>12/4/20</u>	<u>14</u> ST/	ART:	0900		DRILLING COMPANY: <u>Gregg</u> DRILLER: <u>John H</u>		in Ha	ncock	
WEL	L ID: <u>B-2</u>	STOP:	1130			DRILLING METHOD: Hand Auger SAMPLE METHOD: Ha				
DEPTH (FEET)	BORING DIAMETER: <u>3.5"</u>	SAMPLE ID	PID (ppm)	MOIST	JRE COLOR	CONSISTEN	GRAIN SIZE	CLASSIFICA	TION	REMARKS, ODORS & BLOW COUNT
1 —			1 <u>.</u> 3	Moist	Gray	Stiff	9" Asphalt Clay		CL	Mild Hydrocarbon Odor
2 —			1.3	Moist	Gray	Stiff	Clay with 15% <u>1</u> " Diameter Angul	ar Gravel	CL	
3 —		B-2-141204	<u>2.</u> 3			-				
4 —	GROUT	@3'-3.5'	2.1	Moist	Gray	Stiff	25% ¹ / ₄ " Diameter, Gravel Light Green Mott	10% Sand	ML	Musty Odor
5 —			2.0		Greenish Gray		Clay		CL	
6 —			2.1		Light Greenish Gray	_	80% Silt with 20% Fir	 ne Sand	ML	
7 —			3 <u>.</u> 1				75% Silt with 20% Fir and 5% Gravel 2" Dia		ML	
8 —		B-2-141204 @8'-8.5'	8.2				55% Silt with 20% Fir and 25% Gravel 1.5" [ML	
9 <u> </u>			71							
10			686	Wet		Dense	80% 1.5" Diameter (with 15% Sand and s		GP	Strong Hydrocarbon Odor
11 —										
12 —										
13 —										
14 —										
15 —										
16 —										
17 —										
 18										
 19										
20										
THIS SUN	AL BORING DE MMARY APPLIES ONLY AT TH NGE AT THIS LOCATION WI	EPTH: 10.5 HIS LOCATION AND AT THE TH THE PASSAGE OF TIME.	TIME OF LOGGIN	PAGE G. SUBSURFACE C ENTED IS A SIMPLI	CONDITIONS MAY DI	OF 1	IONS AND	ED GROUNDWATER	DEF	PTH: <u>9.5</u>

	ROAI	DBENT			Lľ	THOLC	GIC AND MONITOR	WELL CONS	TRUC	TION LOG
PROJEC	T NAME: _	BP 374				SITE AD	DRESS: 6407 Telegraph Ave	nue, Oakland, Califo	nia	
PROJEC		R: 06-88-602	2			LEGAL I	DESC:	APN:		_
LOGGED) BY: <u>L</u>	u Damerell				FACILIT	Y ID OR WAIVER:		1BER:	
DATE:	12/10/2	<u>.014</u> ST	ART:	0900		DRILL	ING COMPANY: Gregg	DRILLER:	Rob	
WELL ID	: <u>B-3</u>	STOP:	1100				G METHOD: Hand Auger			nd Auger
DEPTH (FEET) DIAM	BORING METER: <u>3.5"</u>	SAMPLE ID	PID (ppm)	MOISTI	JRE COLOR	CONELE	TENCY GRAIN SIZE	CLASSI	ication	REMARKS, ODORS & BLOW COUNT
 1			<u> </u>	Slightly Moist	Brown	Soft	8" Concret 85% Silt, 15% with Trace Fine	Clay	ML	No Odor
2 — 3 —		B-3-141210	5.0		Yellowish Brown	Medium Stiff	40% Fine Sa 40% 1.5" Diameter 15% Silt and 5%	Gravels,	sw	No Odor
4	GROUT	@3'-3.5'	8.1 5.3	Moist		Soft				
5		B-3-141210 @5'-5.5'	10.3	Wet		Very Soft				No Odor
7 —										
8 —										
9 —										
10 —										
11										
12 —										
13 —										
14 —										
15 —										
16 —										
 17										
 19										
20										
THIS SUMMARY	BORING DE APPLIES ONLY AT T T THIS LOCATION WI	HIS LOCATION AND AT THE THT THE PASSAGE OF TIME.	TIME OF LOGGING THE DATA PRESI	G. SUBSURFACE C	NO: 1	FFER AT OTHER LO	- CATIONS AND	ATED GROUNDWAT	ER DEPT	ſH: <u>5'8"</u>

PROJECT NAME: BP 374		THOLOGIC AND M			TON LOG
		LEGAL DESC:			
LOGGED BY: Lu Damerell					
DATE: <u>12/10/2014</u> START: <u>09</u>	00	DRILLING COMPAN	Y: Gregg	DRILLER: Rob	
WELL ID: <u>SG-2A/B</u> STOP: <u>13</u>	300	DRILLING METHOD:	Hand Auger	SAMPLE METH	IOD: <u>N/A</u>
DEPTH (FEET) VAPOR POINT CONSTRUCTION DIAMETER: 0.25" SAMPLE ID PID	NOISTURE COLOR	CONSISTENCY	GRAIN SIZE	CLASSIFICATION	REMARKS & ODORS
S BENTONITE		A	3" Concrete 40% Fine Sand, ¹ 2" Diameter Gravel, 5% Silt, 5% Clay	SW	None
2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3					
а страна в в в в в в в в в в в в в в в в в в					
ONVS 					
TOTAL BORING DEPTH: 5.0' THIS SUMMARY APPLIES ONLY AT THIS LOCATION AND AT THE TIME OF LOGGING, SL MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME, THE DATA PRESENTE	PAGE NO: 1 UBSURFACE CONDITIONS MAY DIP ED IS A SIMPLIFICATION OF ACTUA	FFER AT OTHER LOCATIONS AND	ESTIMATED GRO		I: <u>NA</u>

PROJECT NAME: BP 374					OGIC AND MONITOR WELL DRESS: 6407 Telegraph Avenue, Oakl		ICTION LOG
PROJECT NUMBER:06-88-602	_				DESC:		
LOGGED BY: Lu Dame	ell				Y ID OR WAIVER:		
DATE: <u>12/10/2014</u> ST	ART:	0900		D	RILLING COMPANY: Gregg	DRILLER: <u>Ro</u>	b
WELL ID: <u>SG-3</u> ST	OP:	1300			RILLING METHOD: Hand Auger		ETHOD: <u>N/A</u>
DEPTH (FEET) VAPOR POINT CONSTRUCTION DIAMETER: 0.25"	PID	MOISTU	RE COLOR	CONSIE	STENCY GRAIN SIZE	CLASSIFICATION	REMARKS & ODORS
L C C C C C C C C C C C C C C C C C C C	11.2	Slightly Moist	Brown	Soft	3" Concrete Silt (85%), Clay (15%) with Trace Fine Sand	ML	
	12.7	Slightly _ <u>Moi</u> st	Light _ <u>Brown</u> _	Medium <u>St</u> iff	Silt (85%), Clay (15%) with Trace Fine Sand	ML	None
#2/12 SAND	7.4	Slightly Moist	Yellow Brown	Medium Stiff	Fine Sand (40%), 1.5" Diameter Gravel (40%) Silt (15%), Clay (5%), with Trace Roots	sw	/ None
4B	6.4						
	5.8	Moist		OF	1 ESTIMATED GR		PTH: NA
TOTAL BORING DEPTH: 5.0 THIS SUMMARY APPLIES ONLY AT THIS LOCATION AND AT THE MAY CHANGE AT THIS LOCATION WITH THE PASSAGE OF TIME.	TIME OF LOGGIN	G. SUBSURFACE C	ONDITIONS MAY D	OF	- OCATIONS AND	DUNDWATER DE	PTH: <u>NA</u>

APPENDIX E

Soil Vapor Sampler Notes

BROADBENT	DAILY REPORT Page of
Project: <u>BP 374</u> Project No.: <u>Olo</u>	
Field Representative(s): James R/dessica C. Day: Wednesda	y Date: 2/25/15
Time Onsite: From: <u>1230</u> To: <u>320</u> ; From: To:	_; From: To:
≻ Signed HASPŁ Safety Glasses^ Hard Hat → Steel	Toe Boots 🛛 🗶 Safety Vest
Y UST Emergency System Shut-off Switches Located _∠ Prop	er Gloves
Proper Level of Barricading Other PPE (describe)	
Weather: Shny	
Equipment In Use: <u>heliven detector</u>	
Visitors:	
TIME: WORK DESCRIPTION:	
1230 - Arrived onsite; periencel safer du	ES, TIRIA
1245 - Set up at 56-3 (at apartment	t complex dreive way)
opened well box and noniced we	
dia at top of asing instead of dru	1 concrete.
Started to purge 54-3B (deep) the	
encontered water at first suction	•
Started to purgee SG-3 A (shallow)tube	tirst and encounterce
uater as first pump. Stopped.	
1370 - fet up at 56-2.	+ the Acadies at wall
Well Box had wet bentonite a	
1345 - Jampled from shallow tube (sg-	2 A)
1355 - Started to purge deep cusing tube a	of anomerod
	a-28)
1410 - measured DTW @MW-4 on site	
1470 fet up @ 5G-1A on site	
1450 Sampled SG-1A	
330 left ste	
Signature:	Revision: 1/24/2012
\cup \subseteq	

BROADBENT

SOIL VAPOR SAMPLING DATA SHEET

Date: 2-25-15 Personnel: JPLC			Site Name: BP 374	
Personnel: JELC			Site Name: BP 374 Project No.: 06-88-002	
Weather:	Netrast/Sunn			
Well ID:	S-15 PLC Artast/Sunny SG-JA (cu	wr+)	Flow Ocertailles # 7405	
Canister #:	<u>A0811</u>		Flow Controller #: <u>7445</u>	
Time	Helium Concentration (%)	Summa Canister Pressure (in.Hg)	Comments	
1346	277	- 30	- held for Smars w/15in Hg -purged 3 casi- volumes	
1348	28.4	-24	-purged 3 casi- volumes	
1349	29.4	-18		
1350	27.1	-11		
135	28.3	-5		
,				
			· · · · · · · · · · · · · · · · · · ·	
			X	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

SOIL VAPOR SAMPLING DATA SHEET

Date: 2/25/13			Site Name: BP 374 Project No.: 06-58-602
Personnel: SND KNC			Project No.: 06-58-602
Weather:	SUNIM	<u>.</u>	
Well ID:	SG-IA	*iano*	
Canister #:	<u> </u>		Flow Controller #: 7279
Time	Helium Concentration (%)	Summa Canister Pressure (in.Hg)	Comments
1452	20.8	-29	-held at 15 intig for 5 min - purged 3 casing volumes
1453	23.2	- 24	- purged 3 casing volumes
1454	23.7	- 18	0
1455	23.6	-11	
1456	23.1	-6	
		I	
		13.147 State	

APPENDIX F

Laboratory Analytical Reports
<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-95772-1 Client Project/Site: ARCO 0374, Oakland

For: Broadbent & Associates, Inc. 4820 Business Center Drive #110 Fairfield, California 94534

Attn: Kristene Tidwell

tathley &

Authorized for release by: 12/19/2014 12:01:28 PM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	8
Lab Chronicle	9
QC Sample Results	10
QC Association Summary	16
Definitions/Glossary	17
Certification Summary	18
Chain of Custody	19
Receipt Checklists	20

Sample Summary

Matrix

Solid

Solid

Water

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Client Sample ID

B-2-141204@3'-3.5'

B-2-141204@8'-8.5'

B-2-141204

Lab Sample ID

440-95772-3

440-95772-4

440-95772-5

TestAmerica Job ID: 440-95772-1

12/04/14 10:26 12/08/14 10:50

Received

12/08/14 10:50

12/08/14 10:50

Collected

12/04/14 10:59

12/04/14 12:15

3
5
8
9

TestAmerica Irvine

Job ID: 440-95772-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-95772-1

Comments

No additional comments.

Receipt

The samples were received on 12/8/2014 10:50 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.6° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client Sample ID: B-2-141204@3'-3.5' Date Collected: 12/04/14 10:26 Date Received: 12/08/14 10:50

Lab Sample ID: 440-95772-3

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/09/14 13:28	
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/09/14 13:28	
Benzene	ND		0.0010	mg/Kg			12/09/14 13:28	
Ethanol	ND		0.20	mg/Kg			12/09/14 13:28	
Ethylbenzene	ND		0.0010	mg/Kg			12/09/14 13:28	
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/09/14 13:28	
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/09/14 13:28	
m,p-Xylene	ND		0.0020	mg/Kg			12/09/14 13:28	
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/09/14 13:28	
Naphthalene	ND		0.0020	mg/Kg			12/09/14 13:28	
o-Xylene	ND		0.0010	mg/Kg			12/09/14 13:28	
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/09/14 13:28	
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/09/14 13:28	
Toluene	ND		0.0010	mg/Kg			12/09/14 13:28	
Xylenes, Total	ND		0.0020	mg/Kg			12/09/14 13:28	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		79 - 120		-		12/09/14 13:28	
Dibromofluoromethane (Surr)	91		60 - 120				12/09/14 13:28	
Toluene-d8 (Surr)	107		79 - 123				12/09/14 13:28	
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
GRO (C6-C12)	ND		0.39	mg/Kg			12/17/14 01:55	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	84		65 - 140		-		12/17/14 01:55	

RL

0.0010

0.0010

0.0010

0.0010

0.0020

0.0020

0.0020

0.0020

0.0020

0.0010

0.0020

0.050

0.0010

0.0020

Limits

79 - 120

60 - 120

79 - 123

0.20

Unit

mg/Kg

D

Prepared

Prepared

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

Naphthalene

o-Xylene

Toluene

Surrogate

Xylenes, Total

Toluene-d8 (Surr)

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

tert-Butyl alcohol (TBA)

Isopropyl Ether (DIPE)

1,2-Dichloroethane

Client Sample ID: B-2-141204@8'-8.5' Date Collected: 12/04/14 10:59 Date Received: 12/08/14 10:50

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

100

91

102

Qualifier

%Recovery

TestAmerica	Job	ID:	440-957	772-1

Lab Sample ID: 440-95772-4

Analyzed

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

Analyzed

12/09/14 13:57

12/09/14 13:57

12/09/14 13:57

5

8
9

8
9

Matri	x: Solid	
ed	Dil Fac	

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

Analyte GRO (C6-C12)	Result	Qualifier	RL 0.38	Unit mg/Kg	D	Prepared	Analyzed 12/17/14 03:22	Dil Fac
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		65 - 140		-	· ·	12/17/14 03:22	1

Client Sample ID: B-2-141204

Date Collected: 12/04/14 12:15

Date Received: 12/08/14 10:50

Lab Sample ID: 440-95772-5

2 3 4 5 6 7 8

Matrix: Water

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		50	ug/L			12/14/14 20:23	100
1,2-Dichloroethane	ND		50	ug/L			12/14/14 20:23	100
Benzene	3900		50	ug/L			12/14/14 20:23	100
Ethanol	ND		15000	ug/L			12/14/14 20:23	100
Ethylbenzene	3600		50	ug/L			12/14/14 20:23	100
Ethyl-t-butyl ether (ETBE)	ND		50	ug/L			12/14/14 20:23	100
Isopropyl Ether (DIPE)	ND		50	ug/L			12/14/14 20:23	100
m,p-Xylene	990		100	ug/L			12/14/14 20:23	100
Methyl-t-Butyl Ether (MTBE)	ND		50	ug/L			12/14/14 20:23	100
Naphthalene	1900		100	ug/L			12/14/14 20:23	100
o-Xylene	280		50	ug/L			12/14/14 20:23	100
Tert-amyl-methyl ether (TAME)	ND		50	ug/L			12/14/14 20:23	100
tert-Butyl alcohol (TBA)	ND		1000	ug/L			12/14/14 20:23	100
Toluene	380		50	ug/L			12/14/14 20:23	100
Xylenes, Total	1300		100	ug/L			12/14/14 20:23	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		80 - 120		-		12/14/14 20:23	100
Dibromofluoromethane (Surr)	91		76 - 132				12/14/14 20:23	100
Toluene-d8 (Surr)	102		80 - 128				12/14/14 20:23	100
_ Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	24000		5000	ug/L			12/15/14 17:28	100
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			65 - 140		-		12/15/14 17:28	100

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Method Description

Volatile Organic Compounds (GC/MS)

Gasoline Range Organics (GC)

Method

8260B/5030B

8015B/5030B

Protocol References:

Laboratory References:

Laboratory

TAL IRV

TAL IRV

Protocol

SW846

SW846

5
6
8
9

Initial

Amount

4.97 g

5.17 g

Batch

Number

223344

225092

Final

Amount

10 mL

10 mL

Dil

1

1

Factor

Run

Date Collected: 12/04/14 10:26

Date Received: 12/08/14 10:50

Date Collected: 12/04/14 10:59

Date Received: 12/08/14 10:50

Prep Type

Total/NA

Total/NA

Client Sample ID: B-2-141204@3'-3.5'

Batch

Туре

Analysis

Analysis

Client Sample ID: B-2-141204@8'-8.5'

Batch

Method

8260B/5030B

8015B/5030B

Lab Sample ID: 440-95772-3

Analyst

ΥK

IM

Prepared

or Analyzed

12/09/14 13:28

12/17/14 01:55

Matrix: Solid

Lab

TAL IRV

TAL IRV

Matrix: Water

2 3 4 5 6 7 8 9

Lab Sample ID: 440-95772-4 Matrix: Solid

Lab Sample ID: 440-95772-5

Γ	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	4.96 g	10 mL	223344	12/09/14 13:57	YK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	5.2 g	10 mL	225092	12/17/14 03:22	IM	TAL IRV

Client Sample ID: B-2-141204 Date Collected: 12/04/14 12:15 Date Received: 12/08/14 10:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		100	10 mL	10 mL	224567	12/14/14 20:23	TN	TAL IRV
Total/NA	Analysis	8015B/5030B		100	10 mL	10 mL	224635	12/15/14 17:28	IM	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

TestAmerica Irvine

5

8

Client Sample ID: Method Blank

Lab Sample ID: MB 440-223344/3

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Matrix: Solid							Prep Type: 1	otal/NA
Analysis Batch: 223344								
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/09/14 07:58	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/09/14 07:58	1
Benzene	ND		0.0010	mg/Kg			12/09/14 07:58	1
Ethanol	ND		0.20	mg/Kg			12/09/14 07:58	1
Ethylbenzene	ND		0.0010	mg/Kg			12/09/14 07:58	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/09/14 07:58	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/09/14 07:58	1
m,p-Xylene	ND		0.0020	mg/Kg			12/09/14 07:58	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/09/14 07:58	1
Naphthalene	ND		0.0020	mg/Kg			12/09/14 07:58	1
o-Xylene	ND		0.0010	mg/Kg			12/09/14 07:58	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/09/14 07:58	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/09/14 07:58	1
Toluene	ND		0.0010	mg/Kg			12/09/14 07:58	1
Xylenes, Total	ND		0.0020	mg/Kg			12/09/14 07:58	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		79 - 120	12/09/14 07:58	1
Dibromofluoromethane (Surr)	95		60 - 120	12/09/14 07:58	1
Toluene-d8 (Surr)	102		79 - 123	12/09/14 07:58	1

Lab Sample ID: LCS 440-223344/4 Matrix: Solid

Analysis Batch: 223344

Client Sample ID: Lab Control Sample Prep Type: Total/NA

-	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	0.0500	0.0492		mg/Kg		98	70 - 130	
1,2-Dichloroethane	0.0500	0.0454		mg/Kg		91	60 - 140	
Benzene	0.0500	0.0449		mg/Kg		90	65 - 120	
Ethanol	2.50	2.26		mg/Kg		90	35 - 160	
Ethylbenzene	0.0500	0.0461		mg/Kg		92	70 - 125	
Ethyl-t-butyl ether (ETBE)	0.0500	0.0480		mg/Kg		96	60 - 140	
Isopropyl Ether (DIPE)	0.0500	0.0460		mg/Kg		92	60 - 140	
m,p-Xylene	0.0500	0.0494		mg/Kg		99	70 - 125	
Methyl-t-Butyl Ether (MTBE)	0.0500	0.0479		mg/Kg		96	60 _ 140	
Naphthalene	0.0500	0.0500		mg/Kg		100	55 - 135	
o-Xylene	0.0500	0.0477		mg/Kg		95	70 - 125	
Tert-amyl-methyl ether (TAME)	0.0500	0.0488		mg/Kg		98	60 _ 145	
tert-Butyl alcohol (TBA)	0.500	0.481		mg/Kg		96	70 - 135	
Toluene	0.0500	0.0451		mg/Kg		90	70 - 125	
LCS	LCS							

	LU3 LU3	
Surrogate	%Recovery Quali	fier Limits
4-Bromofluorobenzene (Surr)	96	79 - 120
Dibromofluoromethane (Surr)	94	60 - 120
Toluene-d8 (Surr)	99	79 - 123

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-95478-A-4 MS **Client Sample ID: Matrix Spike** Matrix: Solid Prep Type: Total/NA Analysis Batch: 223344 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Result Qualifier Added %Rec Limits Unit D 0.0497 1,2-Dibromoethane (EDB) ND 0.0481 mg/Kg 97 65 - 140 ND 1,2-Dichloroethane 0.0497 0.0442 mg/Kg 89 60 - 150 ND 0.0497 0.0454 90 Benzene mg/Kg 65 - 130 Ethanol ND 90 2.49 2.23 mg/Kg 30 - 165 Ethylbenzene ND 0.0497 0.0453 mg/Kg 91 70 - 135 Ethyl-t-butyl ether (ETBE) ND 0.0497 0.0491 mg/Kg 99 60 - 145 95 Isopropyl Ether (DIPE) ND 0.0497 0.0472 60 - 150 mg/Kg 0.0474 95 70 - 130 m,p-Xylene ND 0.0497 mg/Kg ND 0.0497 0.0480 94 55 - 155 Methyl-t-Butyl Ether (MTBE) mg/Kg 79 Naphthalene ND 0.0497 0.0393 mg/Kg 40 - 150 o-Xylene ND 0.0497 0.0456 mg/Kg 92 65 - 130 Tert-amyl-methyl ether (TAME) ND 0.0497 0.0487 mg/Kg 98 60 - 150 tert-Butyl alcohol (TBA) ND 0.497 0.461 mg/Kg 93 65 - 145 Toluene ND 0.0497 0.0455 mg/Kg 92 70 - 130 MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	101		79 _ 120
Dibromofluoromethane (Surr)	95		60 - 120
Toluene-d8 (Surr)	104		79 - 123

Lab Sample ID: 440-95478-A-4 MSD Matrix: Solid

Analysis Batch: 223344

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		0.0499	0.0523		mg/Kg		105	65 _ 140	8	25
1,2-Dichloroethane	ND		0.0499	0.0463		mg/Kg		93	60 - 150	5	25
Benzene	ND		0.0499	0.0463		mg/Kg		92	65 _ 130	2	20
Ethanol	ND		2.50	2.32		mg/Kg		93	30 - 165	4	40
Ethylbenzene	ND		0.0499	0.0462		mg/Kg		93	70 _ 135	2	25
Ethyl-t-butyl ether (ETBE)	ND		0.0499	0.0510		mg/Kg		102	60 ₋ 145	4	30
Isopropyl Ether (DIPE)	ND		0.0499	0.0495		mg/Kg		99	60 _ 150	5	25
m,p-Xylene	ND		0.0499	0.0491		mg/Kg		98	70 - 130	3	25
Methyl-t-Butyl Ether (MTBE)	ND		0.0499	0.0511		mg/Kg		100	55 _ 155	6	35
Naphthalene	ND		0.0499	0.0408		mg/Kg		82	40 - 150	4	40
o-Xylene	ND		0.0499	0.0472		mg/Kg		95	65 _ 130	3	25
Tert-amyl-methyl ether (TAME)	ND		0.0499	0.0517		mg/Kg		104	60 - 150	6	25
tert-Butyl alcohol (TBA)	ND		0.499	0.475		mg/Kg		95	65 - 145	3	30
Toluene	ND		0.0499	0.0477		mg/Kg		96	70 - 130	5	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		79 - 120
Dibromofluoromethane (Surr)	94		60 - 120
Toluene-d8 (Surr)	108		79 - 123

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

TestAmerica Irvine

8

RL

0.50

0.50

0.50

150

0.50

0.50

0.50

1.0

0.50

1.0

0.50

0.50

0.50

1.0

10

Unit

ug/L

D

Prepared

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

ND

MD MD

Result Qualifier

Lab Sample ID: MB 440-224567/4

Matrix: Water

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

Naphthalene

o-Xylene

Toluene

Xylenes, Total

Analysis Batch: 224567

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

tert-Butyl alcohol (TBA)

Isopropyl Ether (DIPE)

1,2-Dichloroethane

Client Sample ID: Method Blank

Analyzed

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58 12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

12/14/14 11:58

Prep Type: Total/NA

5

Dil F	ac	
	1	
	1	
	1	
	1	
	1	8
	1	
	1	9
	1	
	1	
	1	
	1	
	1	
	1	

I		NIB	NIB				
	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	97		80 - 120		12/14/14 11:58	1
	Dibromofluoromethane (Surr)	90		76 - 132		12/14/14 11:58	1
I	Toluene-d8 (Surr)	101		80 - 128		12/14/14 11:58	1

Lab Sample ID: LCS 440-224567/5 Matrix: Water

Analysis Batch: 224567

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	25.0	21.5		ug/L		86	70 - 130	
1,2-Dichloroethane	25.0	19.9		ug/L		80	57 ₋ 138	
Benzene	25.0	21.6		ug/L		86	68 - 130	
Ethanol	1250	1140		ug/L		91	50 ₋ 149	
Ethylbenzene	25.0	20.6		ug/L		82	70 - 130	
Ethyl-t-butyl ether (ETBE)	25.0	22.9		ug/L		91	60 - 136	
Isopropyl Ether (DIPE)	25.0	23.1		ug/L		93	58 ₋ 139	
m,p-Xylene	25.0	21.8		ug/L		87	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	21.0		ug/L		84	63 ₋ 131	
Naphthalene	25.0	21.2		ug/L		85	60 - 140	
o-Xylene	25.0	21.4		ug/L		86	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	22.2		ug/L		89	57 ₋ 139	
tert-Butyl alcohol (TBA)	250	224		ug/L		90	70 - 130	
Toluene	25.0	20.4		ug/L		82	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	90		76 - 132
Toluene-d8 (Surr)	97		80 - 128

4 5

8

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

 Lab Sample ID: 440-96534-C-3 Matrix: Water Analysis Batch: 224567								Client Sample ID: Matrix Spike Prep Type: Total/NA		
-	Sample Sample	Spike	MS	MS				%Rec.		
Analyte	Result Qualifie	er Added	Result	Qualifier	Unit	D	%Rec	Limits		
1,2-Dibromoethane (EDB)	2.7	25.0	27.6		ug/L		99	70 - 131		
1,2-Dichloroethane	0.65	25.0	23.4		ug/L		91	56 - 146		
Benzene	ND	25.0	24.6		ug/L		99	66 - 130		
Ethanol	ND	1250	1310		ug/L		105	54 - 150		
Ethylbenzene	ND	25.0	24.5		ug/L		98	70 - 130		
Ethyl-t-butyl ether (ETBE)	ND	25.0	25.8		ug/L		103	70 - 130		
Isopropyl Ether (DIPE)	ND	25.0	26.1		ug/L		104	64 - 138		
m,p-Xylene	ND	25.0	26.4		ug/L		106	70 - 133		
Methyl-t-Butyl Ether (MTBE)	ND	25.0	24.1		ug/L		96	70 - 130		
Naphthalene	ND	25.0	25.0		ug/L		100	60 - 140		
o-Xylene	ND	25.0	25.1		ug/L		100	70 - 133		
Tert-amyl-methyl ether (TAME)	ND	25.0	24.9		ug/L		100	68 - 133		
tert-Butyl alcohol (TBA)	22	250	282		ug/L		104	70 - 130		
Toluene	ND	25.0	24.5		ug/L		98	70 - 130		
	MS MS									

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	92		80 - 120
Dibromofluoromethane (Surr)	87		76 - 132
Toluene-d8 (Surr)	100		80 - 128

Lab Sample ID: 440-96534-C-3 MSD

Matrix: Water Analysis Batch: 224567

· · · · · · · · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	2.7		25.0	28.8		ug/L		104	70 - 131	4	25
1,2-Dichloroethane	0.65		25.0	23.4		ug/L		91	56 - 146	0	20
Benzene	ND		25.0	24.9		ug/L		99	66 - 130	1	20
Ethanol	ND		1250	1300		ug/L		104	54 - 150	0	30
Ethylbenzene	ND		25.0	25.4		ug/L		102	70 - 130	4	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	25.8		ug/L		103	70 - 130	0	25
Isopropyl Ether (DIPE)	ND		25.0	26.6		ug/L		106	64 - 138	2	25
m,p-Xylene	ND		25.0	27.0		ug/L		108	70 - 133	2	25
Methyl-t-Butyl Ether (MTBE)	ND		25.0	23.9		ug/L		96	70 - 130	1	25
Naphthalene	ND		25.0	25.3		ug/L		101	60 - 140	1	30
o-Xylene	ND		25.0	25.1		ug/L		100	70 ₋ 133	0	20
Tert-amyl-methyl ether (TAME)	ND		25.0	25.4		ug/L		102	68 - 133	2	30
tert-Butyl alcohol (TBA)	22		250	286		ug/L		105	70 - 130	1	25
Toluene	ND		25.0	24.8		ug/L		99	70 - 130	1	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		80 - 120
Dibromofluoromethane (Surr)	88		76 - 132
Toluene-d8 (Surr)	101		80 - 128

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

TestAmerica Irvine

TestAmerica Job ID: 440-95772-1

Method: 8015B/5030B - Gasoline Range Organics (GC)

										Client S	Sample ID: I		
											Prep T	/pe: i d	otal/N/
		MB											
R		Qualifier		RL		Unit		_ D	P	repared	Analyz		Dil Fa
	ND		:	50		ug/L					12/15/14 (9:58	
	ΜВ	МВ											
%Reco	very	Qualifier	Limits						P	repared	Analyz	ed	Dil Fa
	98		65 - 140	0				-			12/15/14 (9:58	
35/4								CI	ient	Sample) ID: Lab Co	ontrol S	Sampl
													-
												•	
			Spike		LCS	LCS					%Rec.		
			Added		Result	Qualifier	Unit		D	%Rec	Limits		
			800		825		ug/L		_	103	80 - 120		
	Qua	lifier											
96			65 - 140										
3 MS										Client	Sample ID:	Matrix	c Spik
											Prep T	/pe: To	otal/N
Sample	Sam	ple	Spike		MS	MS					%Rec.		
Result	Qual	ifier	Added		Result	Qualifier	Unit		D	%Rec	Limits		
160			800		905		ug/L		_	93	65 - 140		
MS	мs												
%Recovery	Qua	lifier	Limits										
100			65 - 140										
								Clien	nt Sa	amole IC): Matrix Sn	ike Du	plicat
											-		-
Sample	Sam	ple	Spike		MSD	MSD					%Rec.		RP
Result	Qual	ifier	Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Lim
160			800		927		ug/L		_	95	65 _ 140	2	2
MSD %Recovery			Limits										
	35/4 LCS %Recovery 96 3 MS Sample Result 160 MS %Recovery 100 3 MSD Sample Result	MB %Recovery 98 35/4 LCS LCS %Recovery Qual 96 3 MS Sample Sam %Recovery Qual 160 MS MS %Recovery Qual 100 %Recovery Provery Prover %Recovery Prover %Recovery Prover %Recovery Prover %Recovery Prover %Recovery Prover %Recovery Prover %Recovery Prover %Recover	MB MB %Recovery Qualifier 98 35/4 LCS LCS %Recovery Qualifier 96 96 3 MS Sample Result Qualifier 160 MS %Recovery Qualifier 160 MS %Recovery Qualifier 100 3 Sample Sample Sample Sample MSD Sample Sample Sample Qualifier 00	MB MB %Recovery Qualifier Limits 98 65-144 35/4 Spike Added 800 LCS LCS %Recovery Qualifier 96 65-140 8MS Sample Sample Sample MS MS %Recovery Qualifier 160 800 MS MS %Recovery Qualifier 160 800 MS MS %Recovery Qualifier 100 65-140 MSD Sample Sample Sample Sample Spike Result Qualifier Limits 65-140 MSD Spike Sample Sample Spike Result Qualifier Limits 40ded 65-140 5	MB MB 98 Limits 98 65-140 35/4 Spike Added 800 LCS LCS %Recovery Qualifier 96 65-140 3600 LCS %Recovery Qualifier 96 65-140 36 MS Sample Sample Sample MS MS %Recovery Qualifier 160 800 MS MS %Recovery Qualifier 100 65-140 36 MSD Sample Sample Sample Sample Sample Sample Sample Sample Sample Sample Spike Added	MB MB %Recovery Qualifier Limits 35/4 65 - 140 35/4 Spike LCS	MB MB Limits 98 Qualifier Limits 35/4 Spike LCS LCS Added Result Qualifier 800 825 825 LCS LCS MS %Recovery Qualifier Limits 96 Good 65-140 8 MS Sample Sample Spike MS MS MS MS MS MS MS MS 905 Qualifier MS MS MS 905 MS MS MS MS MS 905 MS %Recovery Qualifier Limits 00 905 MS MS MS %S MS MS %Recovery Qualifier Limits 65-140 MSD MSD MSD MSD Sample Sample Spike MSD MSD	MB MB MB	MB MB %Recovery Qualifier Limits 35/4 Cl 35/4 Cl	MB MB MB %Recovery Qualifier Limits 35/4 Client 35/4 Client	MB MB MB Limits Prepared 35/4 Client Sample Spike LCS LCS Added Result Qualifier Unit D %Rec LCS LCS LCS MS Qualifier Unit D %Rec %Recovery Qualifier Limits 65 - 140 Stample Stample Stample Stample Stample MS Client Sample Sample Spike MS MS MS MS Stample Stample Spike MS MS MS MS Stample Spike MSD Client Sample Spike MSD Stample Spike MSD Stample Stample Stample Stample Stample Stample Stample Stample Stample	MB MB %Recovery Qualifier Limits 98 65-140 Prepared Analyza 35/4 Client Sample ID: Lab Coperents Prepared MRec. 235/4 Spike LCS LCS Prepared Analyza 235/4 Spike LCS LCS Prepared Analyza 235/4 Spike LCS LCS Prepared Analyza 235/4 Spike LCS LCS Spike Nec. 235/4 Added Result Qualifier Unit D %Rec. 235/4 LCS LCS Added Result Qualifier Unit D %Rec. 240 MS Sample Sample Spike MS MS Spike MS MS 35/4 MS Sample Spike MS MS MS Spike MS MS Spike Spike MS MS Spike MS Spike Spike MS MS Spike MSD Spike MSD MSD	MB MB %Recovery Qualifier Limits 35/4 Client Sample ID: Lab Control S 35/4 Spike LCS LCS LCS LCS Added Result Qualifier Unit D %Rec. LCS LCS LCS LCS LCS LCS %Recovery Qualifier Limits 0 %Rec. Limits %Recovery Qualifier Added Result Qualifier Unit D %Rec. MS MS MS 905 905 Unit D %Rec. Limits %Recovery Qualifier Limits 0 65 - 140 0 0 MS MS MS S S 0 0 0 0 0 0 0

TestAmerica Irvine

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: LCS 440-225	092/33						Client	Sample	D: Lab C		
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 225092											
			Spike		LCS				%Rec.		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
GRO (C4-C12)			1.60	1.53		mg/Kg		96	70 - 135		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	84		65 - 140								
Lab Sample ID: LCSD 440-22	25092/34					Clie	nt San	ple ID:	Lab Contro	ol Sampl	e Du
Matrix: Solid								•		ype: To	
Analysis Batch: 225092									•		
-			Spike	LCSD	LCSD				%Rec.		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
GRO (C4-C12)			1.60	1.55		mg/Kg		97	70 - 135	1	2
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	89		65 - 140								
Lab Sample ID: 440-95772-3	MS						Clier	nt Samp	e ID: B-2-1	41204@	3'-3.5
Matrix: Solid	-							•		ype: To	
Analysis Batch: 225092									-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
GRO (C4-C12)	ND		1.58	1.41		mg/Kg		89	60 - 140		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	90		65 - 140								
-	MSD						Clier	nt Samol	e ID: B-2-1	41204@	3'-3.5
Lab Sample ID: 440-95772-3										ype: To	
Lab Sample ID: 440-95772-3 Matrix: Solid	MOD									2 P	
Matrix: Solid											
Matrix: Solid		Sample	Spike	MSD	MSD				%Rec.		RPI
Matrix: Solid Analysis Batch: 225092	Sample	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec. Limits	RPD	
Lab Sample ID: 440-95772-3 Matrix: Solid Analysis Batch: 225092 Analyte GRO (C4-C12)	Sample	•				Unit mg/Kg	D	%Rec 88		RPD	Limi
Matrix: Solid Analysis Batch: 225092 ^{Analyte}	Sample ND	•	Added	Result			D		Limits		RPI Limi 30

 4-Bromofluorobenzene (Surr)
 85
 65 - 140

GC/MS VOA

440-95772-4

LCS 440-225092/33

MB 440-225092/35

LCSD 440-225092/34

B-2-141204@8'-8.5'

Lab Control Sample

Method Blank

Lab Control Sample Dup

Analy	vsis	Batch:	223344
Analy	1313	Duton.	220044

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-95478-A-4 MS	Matrix Spike	Total/NA	Solid	8260B/5030B	
440-95478-A-4 MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B/5030B	
440-95772-3	B-2-141204@3'-3.5'	Total/NA	Solid	8260B/5030B	
440-95772-4	B-2-141204@8'-8.5'	Total/NA	Solid	8260B/5030B	
LCS 440-223344/4	Lab Control Sample	Total/NA	Solid	8260B/5030B	
MB 440-223344/3	Method Blank	Total/NA	Solid	8260B/5030B	
nalysis Batch: 22456	37				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
440-95772-5	B-2-141204	Total/NA	Water	8260B/5030B	
440-96534-C-3 MS	Matrix Spike	Total/NA	Water	8260B/5030B	
440-96534-C-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/5030B	
LCS 440-224567/5	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-224567/4	Method Blank	Total/NA	Water	8260B/5030B	
GC VOA		Total/NA	Water	8260B/5030B	
C VOA nalysis Batch: 22463	35				Pren Bato
i C VOA nalysis Batch: 22463 Lab Sample ID		Total/NA Prep Type Total/NA	Water Matrix Water	8260B/5030B	Prep Bato
iC VOA nalysis Batch: 22463 Lab Sample ID 440-95772-5	5 Client Sample ID	Prep Type	Matrix	Method	Prep Bato
iC VOA nalysis Batch: 22463 Lab Sample ID 440-95772-5 440-96208-B-3 MS	25 Client Sample ID B-2-141204	Prep Type Total/NA	Matrix Water	Method 8015B/5030B	Prep Bato
C VOA nalysis Batch: 22463 Lab Sample ID 440-95772-5 440-96208-B-3 MS 440-96208-B-3 MSD	25 Client Sample ID B-2-141204 Matrix Spike	Prep Type Total/NA Total/NA	Matrix Water Water	Method 8015B/5030B 8015B/5030B	Prep Bato
	25 Client Sample ID B-2-141204 Matrix Spike Matrix Spike Duplicate	Prep Type Total/NA Total/NA Total/NA	Matrix Water Water Water	Method 8015B/5030B 8015B/5030B 8015B/5030B	Prep Bato
C VOA nalysis Batch: 22463 Lab Sample ID 440-95772-5 440-96208-B-3 MS 440-96208-B-3 MSD LCS 440-224635/4	25 Client Sample ID B-2-141204 Matrix Spike Matrix Spike Duplicate Lab Control Sample Method Blank	Prep Type Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Water Water	Method 8015B/5030B 8015B/5030B 8015B/5030B 8015B/5030B	Prep Batc
C VOA nalysis Batch: 22463 Lab Sample ID 440-95772-5 440-96208-B-3 MS 440-96208-B-3 MSD LCS 440-224635/4 MB 440-224635/5	25 Client Sample ID B-2-141204 Matrix Spike Matrix Spike Duplicate Lab Control Sample Method Blank	Prep Type Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Water Water	Method 8015B/5030B 8015B/5030B 8015B/5030B 8015B/5030B	Prep Bato
C VOA nalysis Batch: 22463 Lab Sample ID 440-95772-5 440-96208-B-3 MS 440-96208-B-3 MSD LCS 440-224635/4 MB 440-224635/5 nalysis Batch: 22509 Lab Sample ID	25 Client Sample ID B-2-141204 Matrix Spike Matrix Spike Duplicate Lab Control Sample Method Blank	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA	Matrix Water Water Water Water Water	Method 8015B/5030B 8015B/5030B 8015B/5030B 8015B/5030B 8015B/5030B	
C VOA nalysis Batch: 22463 Lab Sample ID 440-95772-5 440-96208-B-3 MS 440-96208-B-3 MSD LCS 440-224635/4 MB 440-224635/5 nalysis Batch: 22509	25 Client Sample ID B-2-141204 Matrix Spike Matrix Spike Duplicate Lab Control Sample Method Blank 12 Client Sample ID	Prep Type Total/NA Total/NA Total/NA Total/NA Total/NA Prep Type	Matrix Water Water Water Water Water Water	Method 8015B/5030B 8015B/5030B 8015B/5030B 8015B/5030B 8015B/5030B 8015B/5030B	

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

8015B/5030B

8015B/5030B

8015B/5030B

8015B/5030B

Definitions/Glossary

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Glossary

	ent & Associates, Inc. TestAmerica Job ID: 440-95772-1 RCO 0374, Oakland	2
Glossary		- 3
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	-
%R	Percent Recovery	5
CFL	Contains Free Liquid	3
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	
MDA	Minimum detectable activity	8
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	9
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	10
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-15
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-15
Hawaii	State Program	9	N/A	01-29-15 *
Nevada	State Program	9	CA015312007A	07-31-15
New Mexico	State Program	6	N/A	01-29-15
Northern Mariana Islands	State Program	9	MP0002	01-29-15
Dregon	NELAP	10	4005	01-29-15
JSDA	Federal		P330-09-00080	06-06-15
USEPA UCMR	Federal	1	CA01531	01-31-15

* Certification renewal pending - certification considered valid.

TestAmerica Irvine

			e Node Path: P Facility No:)2													_		Rush	TAT: Yes	No
Lab Na	me: Test America	·		Faci	lity A	ddres	SS.	6407	Teleg	raph A	venue	e 		-		_		_	Cons	sultant/	Contra	ictor:	Br	road	bent and Associate	s, Inc.	
Lab Ad	dress: 17461 Derian Avenue Suite #1	100, îrvine, CA 9	2641	City,	Stat	e, Zli	P Coo	le		Oakia	nd, C	A			Consultant/Contractor Project No 06-88							06-88-602					
Lab PM	M. Kathleen Robb			Lead	Lead Regulatory Agency ACEH										Address. 4820 Business						Busines	s Cen	ter D	Drive, Suite 110, Fa	irfield, CA 94534		
Lab Ph	one 949-261-1022			Calif	fornia	Giol	ai iD	No '		T0600	1001	06				_			Cons	sultant/	Contra	actor Pl	Л: KI	riste	ne Tidwell		
Lab Sh	ipping Accent: 1103-6633-7			Enfo	os Pro	oposa	aí No.				_								F	Phone:	707-4	55-729	0		Fax: 70	7-455-7295	
Lab Bo	ttle Order No:			Acco	ountir	ng Mo	ode.		Pro	งเรเจก	x	000	С-ВО		00	C-RM		-	Ета	ul EDD	To:	ktidv	veli(@)b	oroad	bentinc com ar	nd to <u>lab enfosdoo</u>	@bp.com
Other I	nfo.			Stag	je	Exe	cute (40)		Activit	λ .	Projec	rt Spe	nd (8	0)				Invo	ice To:				x	Cor	ntractor	_
BP Pro	ject Manager (PM) Chuck Carmel				Ma	trix		No	. Co	ntaine	rs /	Prese	ervati	ve			ا ء		leste	d Ana	lyses	;	1011	n in	TELEVISION AND A CONTRACTOR		1
BP PM	Phone: 925-275-3804															8	60	3		Ι							1
BP PM	Email. <u>chuck.carmel@bp.com</u>			1	ļ			Container					ļ		Ι.	8260	8260	22102								l ((fa china chi China china chi	}
JLab No.	Sample Description	Date	Tìme	Soil / Solid	Water / Liquid	Air / Vapor	Is this location a well?	Total Number of Co	Unpreserved	H2SO4	HN03	НĊ	Melhanoł	ICE	GRO by 8015M	BTEX/5 FO & EDB by	1,2-DCA & Ethanol by					Ī	440-		72 Chain of Cu Note: If sample not co Sample" in comment and initial any preprin	Comments	ut
	B-1-1412010-3'-3.5'	12-14-14	1328	1~					X					X	X	¥	¥	X	l						HOUD		
	B-1A-1412040-3'-3.5'			K					X					Y	$\left \boldsymbol{\chi} \right $	¥	×	4							HOLD	<u>></u>	
	B2-14120483'-3,5'	12-4-14	1026	×.		Γ			X					K	¥	¥	¥	\star									
	B-2-14120408-8.5'	12-4-14	1059	X		Γ			X				_	χ	×	×	¥	¥									
	B-2-141204	12-4-14	1215		×					_	_	X	-		¥	Y	x	4		-		-		╡			
																										On Hold	
										 										}				╡			
			<u>l_</u>	╂─		Ļ				 3y / Af						ate	T 72	me		<u> </u>	Ļ	CCAP*	ed By		ffiliation	Date	Time
	er's Name. <u>Luc</u> <u>4) AM</u> er's Company: Broadbent and As	ERELL		┝╤	Ā					<u> </u>			. <u> </u>		12/5			S		055			-		BAI	n/s/	
Shipme	ent Method. Fed Ex SAT	Ship Date		4	R			Æ				H						~	4		<u></u>	Z	/		TAZ_		[0]5
	ant Tracking No: 703780 al Instructions:	50 Jil	7														L .					-				1	1
<u> </u>	THIS LINE - LAB USE ONLY, C mediation Management COC - Effective	ustody Seals In	Place: Yes/ No	•	T	emp	Blan	< Yes	/100		Coo	ler Ter	πp on	Rece	əipt: _	3,6			ĺ	_		Yes (N 3 : L	<u> </u>	N	IS/MSD Sample Su	ubmitted; Yes / No LaMP COC Rev. 7,	

13 10 9 8 7 6 5 4 3 2 1

Client: Broadbent & Associates, Inc.

Login Number: 95772 List Number: 1

Creator: Kim, Will

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Missing Enfos Proposal No.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

List Source: TestAmerica Irvine

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-96461-1 Client Project/Site: ARCO 0374, Oakland

For: Broadbent & Associates, Inc. 4820 Business Center Drive #110 Fairfield, California 94534

Attn: Kristene Tidwell

Dathlein &

Authorized for release by: 12/19/2014 12:41:24 PM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	8
Lab Chronicle	9
QC Sample Results	10
QC Association Summary	16
Definitions/Glossary	17
Certification Summary	18
Chain of Custody	19
Receipt Checklists	20

Sample Summary

Matrix

Solid

Solid

Water

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Client Sample ID

B-3-141210@3'-3.5'

B-3-141210@5'-5.5'

B-3-141210

Lab Sample ID

440-96461-1

440-96461-2

440-96461-3

TestAmerica Job ID: 440-96461-1

Collected

12/10/14 10:00

12/10/14 10:25

12/10/14 10:45

440-96461-1	
Received	3
12/11/14 10:30 12/11/14 10:30	
12/11/14 10:30	5
	8
	9
	13

TestAmerica Irvine

Job ID: 440-96461-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-96461-1

Comments

No additional comments.

Receipt

The samples were received on 12/11/2014 10:30 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 3.9° C.

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 224809 recovered above the outside control limit for Ethanol, Tert-butyl ethyl ether and Tert-amyl methyl ether. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The following samples are impacted: (CCVIS 440-224809/2), B-3-141210 (440-96461-3). Calibration verification recovery for this analyte is outside of limits as stated in BP-LaMP Technical Requirements.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC VOA

Method(s) 8015B: Sample contained 25% soil and 75% water. Only the water portion was used for testing. B-3-141210 (440-96461-3)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

RL

0.0010

0.0010

0.0010

0.0010

0.0020

0.0020

0.0020

0.0020

0.0020

0.0010

0.0020

0.050

0.0010

0.0020

0.20

Unit

mg/Kg

Analyte

Benzene

Ethanol

Ethylbenzene

m,p-Xylene

Naphthalene

o-Xylene

Toluene

Xylenes, Total

1,2-Dibromoethane (EDB)

Ethyl-t-butyl ether (ETBE)

Methyl-t-Butyl Ether (MTBE)

Tert-amyl-methyl ether (TAME)

4-Bromofluorobenzene (Surr)

tert-Butyl alcohol (TBA)

Isopropyl Ether (DIPE)

1,2-Dichloroethane

Client Sample ID: B-3-141210@3'-3.5' Date Collected: 12/10/14 10:00 Date Received: 12/11/14 10:30

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Result Qualifier

ND

77

TestAmerica	Job ID): 440-96	461-1

Lab Sample ID: 440-96461-1

7 8 9 10 11	
0	
0	
9 10 11 12	
9 10 11 12	
	9

1

1

1

1

1

		Matri	x: Solid
D	Prepared	Analyzed	Dil Fac
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1
		12/15/14 17:05	1

12/15/14 17:05

12/15/14 17:05

12/15/14 17:05

12/15/14 17:05

12/17/14 12:41

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		79 _ 120		-		12/15/14 17:05	1
Dibromofluoromethane (Surr)	103		60 - 120				12/15/14 17:05	1
Toluene-d8 (Surr)	104		79 - 123				12/15/14 17:05	1
Method: 8015B/5030B - Gasoline R Analyte GR0 (C6-C12)		ics (GC) Qualifier		Unit mg/Kg	D	Prepared	Analyzed	Dil Fac
GRU (C0-C12)	ND		0.40	mg/Kg			12/17/14 12.41	I
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

65 - 140

Client Sample ID: B-3-141210@5'-5.5' Date Collected: 12/10/14 10:25 Date Received: 12/11/14 10:30

Lab Sample ID: 440-96461-2

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			12/15/14 17:34	1
1,2-Dichloroethane	ND		0.0010	mg/Kg			12/15/14 17:34	1
Benzene	ND		0.0010	mg/Kg			12/15/14 17:34	1
Ethanol	ND		0.20	mg/Kg			12/15/14 17:34	
Ethylbenzene	ND		0.0010	mg/Kg			12/15/14 17:34	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			12/15/14 17:34	1
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			12/15/14 17:34	
m,p-Xylene	ND		0.0020	mg/Kg			12/15/14 17:34	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			12/15/14 17:34	1
Naphthalene	ND		0.0020	mg/Kg			12/15/14 17:34	1
o-Xylene	ND		0.0010	mg/Kg			12/15/14 17:34	1
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			12/15/14 17:34	1
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			12/15/14 17:34	1
Toluene	ND		0.0010	mg/Kg			12/15/14 17:34	1
Xylenes, Total	ND		0.0020	mg/Kg			12/15/14 17:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		79 - 120		-		12/15/14 17:34	1
Dibromofluoromethane (Surr)	106		60 - 120				12/15/14 17:34	1
Toluene-d8 (Surr)	106		79 - 123				12/15/14 17:34	1
Method: 8015B/5030B - Gasoli	ne Range Organi	ics (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			12/17/14 13:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	74		65 - 140		-		12/17/14 13:11	1

Client Sample ID: B-3-141210

2 3 4 5 6 7 8

Lab Sample ID: 440-96461-3 Matrix: Water

Date Collected: 12/10/14 10:45 Date Received: 12/11/14 10:30

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			12/16/14 01:46	1
1,2-Dichloroethane	ND		0.50	ug/L			12/16/14 01:46	1
Benzene	ND		0.50	ug/L			12/16/14 01:46	1
Ethanol	ND		150	ug/L			12/16/14 01:46	1
Ethylbenzene	ND		0.50	ug/L			12/16/14 01:46	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			12/16/14 01:46	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			12/16/14 01:46	1
m,p-Xylene	ND		1.0	ug/L			12/16/14 01:46	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			12/16/14 01:46	1
Naphthalene	ND		1.0	ug/L			12/16/14 01:46	1
o-Xylene	ND		0.50	ug/L			12/16/14 01:46	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			12/16/14 01:46	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			12/16/14 01:46	1
Toluene	ND		0.50	ug/L			12/16/14 01:46	1
Xylenes, Total	ND		1.0	ug/L			12/16/14 01:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		80 - 120		-		12/16/14 01:46	1
Dibromofluoromethane (Surr)	104		76 - 132				12/16/14 01:46	1
Toluene-d8 (Surr)	102		80 - 128				12/16/14 01:46	1
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		50	ug/L			12/14/14 07:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	79		65 - 140		-		12/14/14 07:46	1

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

5	
6	
8	
9	

TestAmerica Irvine

Method	Method Description	Protocol	Laboratory
8260B/5030B	Volatile Organic Compounds (GC/MS)	SW846	TAL IRV
8015B/5030B	Gasoline Range Organics (GC)	SW846	TAL IRV

Protocol References:

_

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Date Collected: 12/10/14 10:00

Date Received: 12/11/14 10:30

Client Sample ID: B-3-141210@3'-3.5'

Lab Sample ID: 440-96461-1

Lab Sample ID: 440-96461-3

2 3 4 5 6 7 8 9

440-96461-2 Matrix: Solid

Matrix: Water

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	5.02 g	10 mL	224612	12/15/14 17:05	HR	TAL IRV
Total/NA	Analysis	8015B/5030B		1	5.04 g	10 mL	225092	12/17/14 12:41	IM	TAL IRV
Client Samp	le ID: B-3-14	41210@5'-5.5'						Lab Samp	ole ID: 44	40-96461-

Date Collected: 12/10/14 10:25 Date Received: 12/11/14 10:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	5.02 g	10 mL	224612	12/15/14 17:34	HR	TAL IRV
Total/NA	Analysis	8015B/5030B		1	5.06 g	10 mL	225092	12/17/14 13:11	IM	TAL IRV

Client Sample ID: B-3-141210 Date Collected: 12/10/14 10:45 Date Received: 12/11/14 10:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	10 mL	10 mL	224809	12/16/14 01:46	WK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	10 mL	10 mL	224543	12/14/14 07:46	TL	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

5

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-224612/4 Matrix: Solid								(Client S	ample ID: Metho Prep Type: 1	
										тертуре. і	
Analysis Batch: 224612	мв	МВ									
Analyte	Result		RL		Unit		D	Pr	epared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.0010		mg/Kg	1				12/15/14 08:38	
1,2-Dichloroethane	ND		0.0010		mg/Kg					12/15/14 08:38	
Benzene	ND		0.0010		mg/Kg					12/15/14 08:38	
Ethanol	ND		0.20		mg/Kg					12/15/14 08:38	
Ethylbenzene	ND		0.0010		mg/Kg					12/15/14 08:38	
Ethyl-t-butyl ether (ETBE)	ND		0.0020		mg/Kg					12/15/14 08:38	
Isopropyl Ether (DIPE)	ND		0.0020		mg/Kg					12/15/14 08:38	
m,p-Xylene	ND		0.0020		mg/Kg					12/15/14 08:38	
Methyl-t-Butyl Ether (MTBE)	ND		0.0020		mg/Kg					12/15/14 08:38	
Naphthalene	ND		0.0020		mg/Kg					12/15/14 08:38	
o-Xylene	ND		0.0010		mg/Kg					12/15/14 08:38	
Tert-amyl-methyl ether (TAME)	ND		0.0020		mg/Kg					12/15/14 08:38	
tert-Butyl alcohol (TBA)	ND		0.050		mg/Kg					12/15/14 08:38	
Toluene	ND		0.0010		mg/Kg					12/15/14 08:38	
Xylenes, Total	ND		0.0020		mg/Kg					12/15/14 08:38	
	NB		0.0020		ing/its	,				12,10,11,00.00	
	MB	MB									
Surrogate	%Recovery	Qualifier	Limits					Pr	epared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		79 - 120							12/15/14 08:38	
Dibromofluoromethane (Surr)	102		60 - 120							12/15/14 08:38	
Toluene-d8 (Surr)	106		79 - 123							12/15/14 08:38	
Lab Sample ID: LCS 440-224612/5							Cli	ent	Sample	ID: Lab Control	Sample
Matrix: Solid										Prep Type: T	otal/NA
Analysis Ratch: 224642											
Analysis Daton. 224012											
Analysis Dalun. 224012			Spike	LCS	LCS					%Rec.	
-			Spike Added		LCS Qualifier	Unit		D	%Rec	%Rec. Limits	
Analyte			-			Unit mg/Kg		D 	%Rec 103		
Analyte 1,2-Dibromoethane (EDB)			Added	Result				<u>D</u>		Limits	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane			Added	Result 0.0515		mg/Kg		<u>D</u>	103	Limits	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene			Added 0.0500 0.0500	Result 0.0515 0.0547		mg/Kg mg/Kg		<u>D</u> -	103 109	Limits 70 - 130 60 - 140	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol			Added 0.0500 0.0500 0.0500	Result 0.0515 0.0547 0.0512		mg/Kg mg/Kg mg/Kg		<u>D</u>	103 109 102	Limits 70 - 130 60 - 140 65 - 120	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene			Added 0.0500 0.0500 0.0500 2.50	Result 0.0515 0.0547 0.0512 3.08		mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u>	103 109 102 123	Limits 70 - 130 60 - 140 65 - 120 35 - 160	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE)			Added 0.0500 0.0500 0.0500 2.50 0.0500	Result 0.0515 0.0547 0.0512 3.08 0.0518		mg/Kg mg/Kg mg/Kg mg/Kg		D	103 109 102 123 104	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE)			Added 0.0500 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0515 0.0547 0.0512 3.08 0.0518 0.0524		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		D	103 109 102 123 104 105	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene			Added 0.0500 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0515 0.0547 0.0512 3.08 0.0518 0.0524 0.0592		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		D	103 109 102 123 104 105 118	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE)			Added 0.0500 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0515 0.0547 0.0512 3.08 0.0518 0.0524 0.0592 0.0531		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u> -	103 109 102 123 104 105 118 106	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) Naphthalene			Added 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0515 0.0547 0.0512 3.08 0.0518 0.0524 0.0524 0.0531 0.0525		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u>	103 109 102 123 104 105 118 106 105	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125 60 - 140	
Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) Naphthalene o-Xylene			Added 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0515 0.0547 0.0512 3.08 0.0518 0.0524 0.0524 0.0531 0.0525 0.0472		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		<u>D</u>	103 109 102 123 104 105 118 106 105 94	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125 60 - 140 55 - 135	
Analysis Batch: 224612 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) Naphthalene o-Xylene Tert-amyl-methyl ether (TAME) tert-Butyl alcohol (TBA)			Added 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0515 0.0547 0.0512 3.08 0.0518 0.0524 0.0522 0.0531 0.0525 0.0472 0.0559		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	·	<u>D</u>	103 109 102 123 104 105 118 106 105 94 112 112	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 70 - 125 60 - 140 70 - 125 60 - 140 55 - 135 70 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		79 - 120
Dibromofluoromethane (Surr)	103		60 - 120
Toluene-d8 (Surr)	99		79 - 123

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-96339-A Matrix: Solid Analysis Batch: 224612	-1 MS						Client	Sample ID: Ma Prep Type	atrix Spike : Total/NA
	Sample Sample	Spike	MS	MS				%Rec.	
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND	0.0497	0.0529		mg/Kg		107	65 - 140	
1,2-Dichloroethane	ND	0.0497	0.0550		mg/Kg		111	60 ₋ 150	
Benzene	ND	0.0497	0.0510		mg/Kg		103	65 ₋ 130	
Ethanol	ND	2.49	2.68		mg/Kg		108	30 - 165	
Ethylbenzene	ND	0.0497	0.0520		mg/Kg		105	70 - 135	
Ethyl-t-butyl ether (ETBE)	ND	0.0497	0.0539		mg/Kg		109	60 ₋ 145	
Isopropyl Ether (DIPE)	ND	0.0497	0.0577		mg/Kg		116	60 - 150	
m,p-Xylene	ND	0.0497	0.0537		mg/Kg		108	70 ₋ 130	
Methyl-t-Butyl Ether (MTBE)	ND	0.0497	0.0540		mg/Kg		109	55 ₋ 155	
Naphthalene	ND	0.0497	0.0511		mg/Kg		103	40 - 150	
o-Xylene	ND	0.0497	0.0564		mg/Kg		113	65 ₋ 130	
Tert-amyl-methyl ether (TAME)	ND	0.0497	0.0510		mg/Kg		103	60 ₋ 150	
tert-Butyl alcohol (TBA)	ND	0.497	0.525		mg/Kg		106	65 - 145	
Toluene	ND	0.0497	0.0513		mg/Kg		103	70 - 130	
	MS MS								
Surrogate	%Recovery Qualifie	r Limits							

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		79 - 120
Dibromofluoromethane (Surr)	105		60 - 120
Toluene-d8 (Surr)	99		79 - 123

Lab Sample ID: 440-96339-A-1 MSD Matrix: Solid

Analysis Batch: 224612

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		0.0498	0.0558		mg/Kg		112	65 - 140	5	25
1,2-Dichloroethane	ND		0.0498	0.0532		mg/Kg		107	60 - 150	3	25
Benzene	ND		0.0498	0.0511		mg/Kg		103	65 _ 130	0	20
Ethanol	ND		2.49	2.76		mg/Kg		111	30 - 165	3	40
Ethylbenzene	ND		0.0498	0.0551		mg/Kg		111	70 ₋ 135	6	25
Ethyl-t-butyl ether (ETBE)	ND		0.0498	0.0535		mg/Kg		107	60 _ 145	1	30
Isopropyl Ether (DIPE)	ND		0.0498	0.0588		mg/Kg		118	60 _ 150	2	25
m,p-Xylene	ND		0.0498	0.0567		mg/Kg		114	70 - 130	5	25
Methyl-t-Butyl Ether (MTBE)	ND		0.0498	0.0537		mg/Kg		108	55 ₋ 155	1	35
Naphthalene	ND		0.0498	0.0509		mg/Kg		102	40 - 150	0	40
o-Xylene	ND		0.0498	0.0596		mg/Kg		120	65 _ 130	6	25
Tert-amyl-methyl ether (TAME)	ND		0.0498	0.0513		mg/Kg		103	60 - 150	1	25
tert-Butyl alcohol (TBA)	ND		0.498	0.532		mg/Kg		107	65 _ 145	1	30
Toluene	ND		0.0498	0.0547		mg/Kg		110	70 - 130	7	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	101		79 _ 120
Dibromofluoromethane (Surr)	103		60 - 120
Toluene-d8 (Surr)	106		79 - 123

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

TestAmerica Irvine

Lab Sample ID: MB 440-224809/4

Client Sample ID: Method Blank

2 3 4 5

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Water							Prep Type: 1	otal/NA
Analysis Batch: 224809								
	MB	МВ						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			12/15/14 19:35	1
1,2-Dichloroethane	ND		0.50	ug/L			12/15/14 19:35	1
Benzene	ND		0.50	ug/L			12/15/14 19:35	1
Ethanol	ND		150	ug/L			12/15/14 19:35	1
Ethylbenzene	ND		0.50	ug/L			12/15/14 19:35	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			12/15/14 19:35	1
Isopropyl Ether (DIPE)	ND		0.50	ug/L			12/15/14 19:35	1
m,p-Xylene	ND		1.0	ug/L			12/15/14 19:35	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			12/15/14 19:35	1
Naphthalene	ND		1.0	ug/L			12/15/14 19:35	1
o-Xylene	ND		0.50	ug/L			12/15/14 19:35	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			12/15/14 19:35	1
tert-Butyl alcohol (TBA)	ND		10	ug/L			12/15/14 19:35	1
Toluene	ND		0.50	ug/L			12/15/14 19:35	1
Xylenes, Total	ND		1.0	ug/L			12/15/14 19:35	1
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	120		80 - 120		-		12/15/14 19:35	1
Dibromofluoromethane (Surr)	101		76 - 132				12/15/14 19:35	1
Toluene-d8 (Surr)	101		80 - 128				12/15/14 19:35	1

Lab Sample ID: LCS 440-224809/5 Matrix: Water

Analysis Batch: 224809

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	25.0	27.4		ug/L		110	70 - 130	
1,2-Dichloroethane	25.0	30.8		ug/L		123	57 _ 138	
Benzene	25.0	23.3		ug/L		93	68 - 130	
Ethanol	1250	945		ug/L		76	50 ₋ 149	
Ethylbenzene	25.0	27.4		ug/L		110	70 - 130	
Ethyl-t-butyl ether (ETBE)	25.0	32.9		ug/L		132	60 - 136	
Isopropyl Ether (DIPE)	25.0	27.2		ug/L		109	58 _ 139	
m,p-Xylene	25.0	27.3		ug/L		109	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	32.1		ug/L		128	63 _ 131	
Naphthalene	25.0	25.1		ug/L		100	60 - 140	
o-Xylene	25.0	27.2		ug/L		109	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	32.6		ug/L		130	57 ₋ 139	
tert-Butyl alcohol (TBA)	250	284		ug/L		114	70 - 130	
Toluene	25.0	25.8		ug/L		103	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		80 - 120
Dibromofluoromethane (Surr)	101		76 - 132
Toluene-d8 (Surr)	100		80 - 128

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-96214-F-5 Matrix: Water Analysis Batch: 224809	MS						Client	Sample ID: Mat Prep Type:	-
	Sample Sample	Spike	MS	MS				%Rec.	
Analyte	Result Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND	25.0	28.3		ug/L		113	70 _ 131	
1,2-Dichloroethane	ND	25.0	30.7		ug/L		123	56 - 146	
Benzene	9.9	25.0	32.9		ug/L		92	66 - 130	
Ethanol	ND	1250	1010		ug/L		81	54 _ 150	
Ethylbenzene	ND	25.0	27.4		ug/L		109	70 - 130	
Ethyl-t-butyl ether (ETBE)	ND	25.0	33.2	LM	ug/L		133	70 _ 130	
Isopropyl Ether (DIPE)	ND	25.0	27.0		ug/L		107	64 - 138	
m,p-Xylene	ND	25.0	27.4		ug/L		110	70 _ 133	
Methyl-t-Butyl Ether (MTBE)	5.7	25.0	39.5	LM	ug/L		135	70 - 130	
Naphthalene	4.6	25.0	33.9		ug/L		117	60 - 140	
o-Xylene	ND	25.0	26.5		ug/L		106	70 ₋ 133	
Tert-amyl-methyl ether (TAME)	ND	25.0	32.9		ug/L		132	68 - 133	
tert-Butyl alcohol (TBA)	32	250	313		ug/L		112	70 ₋ 130	
Toluene	ND	25.0	25.2		ug/L		101	70 - 130	
	MS MS								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		80 - 120
Dibromofluoromethane (Surr)	101		76 - 132
Toluene-d8 (Surr)	97		80 - 128

Lab Sample ID: 440-96214-F-5 MSD

Matrix: Water Analysis Batch: 224809

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	27.1		ug/L		108	70 _ 131	4	25
1,2-Dichloroethane	ND		25.0	28.9		ug/L		116	56 - 146	6	20
Benzene	9.9		25.0	32.6		ug/L		91	66 - 130	1	20
Ethanol	ND		1250	973		ug/L		78	54 - 150	4	30
Ethylbenzene	ND		25.0	26.8		ug/L		107	70 - 130	2	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	32.9	LM	ug/L		132	70 - 130	1	25
Isopropyl Ether (DIPE)	ND		25.0	27.3		ug/L		108	64 - 138	1	25
m,p-Xylene	ND		25.0	27.0		ug/L		108	70 - 133	2	25
Methyl-t-Butyl Ether (MTBE)	5.7		25.0	38.6	LM	ug/L		131	70 - 130	2	25
Naphthalene	4.6		25.0	34.7		ug/L		120	60 - 140	2	30
o-Xylene	ND		25.0	26.0		ug/L		104	70 - 133	2	20
Tert-amyl-methyl ether (TAME)	ND		25.0	32.4		ug/L		130	68 - 133	2	30
tert-Butyl alcohol (TBA)	32		250	318		ug/L		114	70 - 130	2	25
Toluene	ND		25.0	25.0		ug/L		100	70 - 130	1	20
	MSD	MSD									

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		80 - 120
Dibromofluoromethane (Surr)	97		76 - 132
Toluene-d8 (Surr)	96		80 - 128

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Lab Sample ID: MB 440-224543/31

Matrix: Water

Method: 8015B/5030B - Gasoline Range Organics (GC)

TestAmerica Job ID: 440-96461-1

•		
		5
Analyzed	Dil Fac	
12/14/14 04:52	1	
Analyzod	Dil Esc	
,		8
	-	9
%Rec.		
Limits		
80 - 120		
		1
•	•	
	Analyzed 12/14/14 04:52 Analyzed 12/14/14 04:52 Analyzed 12/14/14 04:52 ID: Lab Contro Prep Type: %Rec. Limits 80 - 120	Image: Analyzed Dil Fac 12/14/14 04:52 1 12/14/14 04:52 1 ID: Lab Control Sample 1 Prep Type: Total/NA %Rec. Limits

		MB MB										
Analyte	Re	sult Qualifier	RL		Unit		D	P	repared	Analyzed		Dil Fa
GRO (C6-C12)		ND	50		ug/L					12/14/14 04:	52	
		MB MB										
Surrogate	%Recov		Limits					P	repared	Analyzed		Dil Fa
4-Bromofluorobenzene (Surr)		91	65 - 140				_			12/14/14 04:	52 _	
												
Lab Sample ID: LCS 440-224	543/30						Cli	ent	Sample	Drew Town		-
Matrix: Water										Prep Тур	e: 10	
Analysis Batch: 224543			Spike	LCS	LCS					%Rec.		
Analyte			Added		Qualifier	Unit		D	%Rec	Limits		
GRO (C4-C12)			800	801		ug/L		_	100	80 - 120		
						0						
	LCS											
Surrogate	-	Qualifier	Limits									
4-Bromofluorobenzene (Surr)	99		65 - 140									
Lab Sample ID: 440-96455-A-	2 MS								Client	Sample ID: M	atrix	Snike
Matrix: Water	2 1110								onent	Prep Typ		-
Analysis Batch: 224543										1100 130	0.10	
·	Sample	Sample	Spike	MS	MS					%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
GRO (C4-C12)	ND		800	618		ug/L		_	74	65 _ 140		
	MS	MS										
Surrogate	%Recovery		Limits									
4-Bromofluorobenzene (Surr)	71		65 - 140									
-												
Lab Sample ID: 440-96455-A-	2 MSD						Client	t Sa	ample ID	: Matrix Spik	-	
Matrix: Water										Prep Тур	e: To	tal/N/
Analysis Batch: 224543	0.1							0/ D		RPI
Analysis Batch: 224543	Sample	-	Spike	MSD		11 14		_	0/ D	%Rec.		
Analyte	Result	Sample Qualifier	Added	Result	MSD Qualifier			D	%Rec	Limits		Lim
Analyte	-	-	-			Unit ug/L		D	%Rec 77		RPD 3	Limi 2
Analyte	Result ND	-	Added	Result				D 		Limits		
Analyte GRO (C4-C12) Surrogate	Result ND MSD %Recovery	Qualifier	Added 800	Result				<u>D</u>		Limits		
Analyte GRO (C4-C12)	Result ND MSD	Qualifier	Added 800	Result				<u>D</u>		Limits		
Analyte GRO (C4-C12) Surrogate 4-Bromofluorobenzene (Surr)	Result ND MSD %Recovery 76	Qualifier	Added 800	Result				_	77	Limits	3	2
Analyte GRO (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: MB 440-22509	Result ND MSD %Recovery 76	Qualifier	Added 800	Result				_	77	Limits 65 - 140	3 thod	2 Blanl
Analyte GRO (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: MB 440-22509 Matrix: Solid	Result ND MSD %Recovery 76	Qualifier	Added 800	Result				_	77	Limits	3 thod	2 Blanl
Analyte GRO (C4-C12) Surrogate 4-Bromofluorobenzene (Surr) Lab Sample ID: MB 440-22509	Result ND MSD %Recovery 76	Qualifier	Added 800	Result				_	77	Limits 65 - 140	3 thod	2 Blanl

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	ND		0.40	mg/Kg			12/17/14 01:26	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		65 - 140				12/17/14 01:26	1

TestAmerica Irvine

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Analysis Batch: 225092 Spike LCS LCS WRec. Analyte Added Added Result Qualifier Unit D %Rec. GRO (C4-C12)	Lab Sample ID: LCS 440-22	5092/33						Client	t Sample	e ID: Lab C		
Spike LCS LCS US LCS US LCS US LCS US Use Hints GRO (C4-C12)	Matrix: Solid									Prep T	ype: To	tal/NA
Analyte Added Result Qualifier Unit D %Rec Limits GRO (C4-C12) LCS LCS LCS Limits 65.7140 70.135	Analysis Batch: 225092											
GRO (C4-C12) LCS LCS LCS LCS Surrogate %Recovery Qualifier Limits 65.140 Lab Sample ID: LCSD 440-225092/34 Matrix: Solid Client Sample ID: Lab Control Sample Dup Analyte Spike LCSD LCSD Kecovery Analyte Added Result Qualifier Unit D %Rec. RPI Analyte LCSD LCSD LCSD LCSD LCSD Kecovery Walifier Tot its RPO Limits RPD Limits Recovery Recovery Recovery Qualifier Limits Recovery				Spike	LCS	LCS				%Rec.		
LCS LCS LCS Limits 4-Biromofluorobenzene (Surr) 84 65-140 Lab Sample ID: LCSD 440-225092/34 Matrix: Solid Analysis Batch: 225092 Client Sample ID: Lab Control Sample Du Prep Type: Total/NJ Analysis Batch: 225092 Analyte GRO (C4-C12) CSD CSD LCSD LCSD LCSD Surrogate Matrix: Solid Analytis Neecovery Surrogate Matrix: Solid Analytis LCSD Surrogate %Recovery Qualifier 4-Biromofluorobenzene (Surr) 89 65:140 Elimits Lab Sample ID: 440-95772-A-3 MS Matrix: Solid Analytis Batch: 225092 Sample Surrogate Sample Maulifier Added Maulifier Unit D Maulifier MS MS MS Surrogate %Recovery Maulifier Limits Surrogate %Recovery Matrix: Solid Analytis Batch: 225092 MS Analytis Batch: 225092 Sample Matrix: Solid Analytis Batch: 225092 Sample Matrix: Solid Analyter Sample Sample	Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 84 65 - 140 Lab Sample ID: LCSD 440-225092/34 Matrix: Solid Client Sample ID: Lab Control Sample Du Prep Type: Total/NJ Analysis Batch: 225092 Analyte Added Result Qualifier Unit 0 %Rec. RPD Lim RPD Lim Prep Type: Total/NJ Surrogate %Recovery Qualifier Limits 65 - 140 Client Sample ID: Matrix Spike RPD Lim RPD RPD Lim RPD Lim RPD Lim RPD Lim RPD Lim RPD RPD Lim RPD Lim RPD Lim RPD RPD Lim RPD Lim RPD RPD Lim RPD RPD Lim RPD RPD RPD Lim RPD	GRO (C4-C12)			1.60	1.53		mg/Kg		96	70 - 135		
4-Bromofluorobenzene (Surr) 04 65.140 Lab Sample ID: LCSD 440-225092/34 Matrix: Solid Analysis Batch: 225092 Client Sample ID: Lab Control Sample Du Prep Type: Total/N/ Analysis Batch: 225092 Analyte Added Result Qualifier Unit 0 %Rec. RPD Lim GRO (C4-C12) LCSD LCSD LCSD LCSD LCSD LCSD LImits 89 65.140 Jurrogate %Recovery Qualifier Limits 65.140 Client Sample ID: Matrix Spike RPD Lim Analyte Result Qualifier Limits 65.140 Client Sample ID: Matrix Spike Result Prep Type: Total/N/ Analyte Result Qualifier Limits 65.140 Client Sample ID: Matrix Spike Rec. Analyte Result Qualifier Added Result Qualifier Imits GRO (C4-C12) ND MS MS MS Spike MS MS Analyte Result Qualifier Limits 65.140 Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ Lab Sample ID: 440-95772-A-3 MSD MSD <td></td> <td>LCS</td> <td>LCS</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		LCS	LCS									
Lab Sample ID: LCSD 440-225092/34 Matrix: Solid Analysis Batch: 225092 Spike LCSD LCSD LCSD LCSD Watrix Qualifier Unit D %Rec. RPI Limits GRO (04-C12) LCSD LCSD LCSD LCSD LCSD LCSD Watrix: Solid ND 1.60 1.55 mg/Kg D %Rec Limits RPD Limits 4-Bromofluorobenzene (Surr) 89 65-140 Limits Client Sample ID: Hatrix Spike Kec. RPI Limits Analysis Batch: 225092 Sample Sample Sample Sample Added Spike Added MS MS MS Kec. MS Kec. RPD Limits MRec. MRec	Surrogate	%Recovery	Qualifier	Limits								
Matrix: Solid Analysis Batch: 225092 Prep Type: Total/N/ Analysis Batch: 225092 Analyte GRO (C4-C12) Added Result Qualifier Unit D %Rec. RPD Limits Surrogate %Recovery Qualifier Limits 65.140 Lab Sample ID: 440-95772-A-3 MS Matrix: Solid Analyte Sample Sample Spike MS MS Client Sample ID: Matrix Spike Analyte Result Qualifier 1.58 MS MS %Rec. Limits Surrogate %Rec. Qualifier Added Result Qualifier Unit D %Rec. ND Analyte Result Qualifier 1.58 MS MS MS MS MRec. Surrogate %Recovery Qualifier Limits 65-140 ND Prep Type: Total/N/ Surrogate %Recovery Qualifier Limits 65-140 ND MSD MSD MSD Lab Sample ID: 440-95772-A-3 MSD MSD MSD MSD MSD MSD MSD MSD Surrogate %Recovery Qualifier Limits 65-140 Startal/N/ ND ND ND ND ND	4-Bromofluorobenzene (Surr)	84		65 - 140								
Matrix: Solid Analysis Batch: 225092 Prep Type: Total/N/ Analysis Batch: 225092 Analyte GRO (C4-C12) Added Result Qualifier Unit D %Rec. RPD Limits Surrogate %Recovery Qualifier Limits 65.140 Lab Sample ID: 440-95772-A-3 MS Matrix: Solid Analyte Sample Sample Spike MS MS Client Sample ID: Matrix Spike Analyte Result Qualifier 1.58 MS MS %Rec. Limits Surrogate %Rec. Qualifier Added Result Qualifier Unit D %Rec. ND Analyte Result Qualifier 1.58 MS MS MS MS MRec. Surrogate %Recovery Qualifier Limits 65-140 ND Prep Type: Total/N/ Surrogate %Recovery Qualifier Limits 65-140 ND MSD MSD MSD Lab Sample ID: 440-95772-A-3 MSD MSD MSD MSD MSD MSD MSD MSD Surrogate %Recovery Qualifier Limits 65-140 Startal/N/ ND ND ND ND ND	Lab Sample ID: LCSD 440-2	25092/34					Clier	nt San	nple ID:	Lab Contro	l Sampl	e Duj
Analysis Batch: 225092 Spike LCSD Limits Protein Linits Protein L	Matrix: Solid								•		-	-
AnalyteSpikeLCSDLCSDWRec.RPJAnalyteAddedResultQualifierUnitD%RecLimitsRPDLimGRO (C4-C12)LCSDLCSDLCSDLCSDAddedResultQualifierUnitD%RecLimitsRPDLimSurrogate%RecoveryQualifierLimitsESince<	Analysis Batch: 225092									•		
GRO (C4-C12) LCSD LCSD LCSD LCSD LCSD LImits 4-Bromofluorobenzene (Surr) 89 Ges - 140 65 - 140 Client Sample ID: Matrix Spike Prep Type: Total/N/ Lab Sample ID: 440-95772-A-3 MS Sample Sample Spike MS MS Prep Type: Total/N/ Analyte Result Qualifier Limits 1.41 Mrec Mrec. Surrogate %Recovery Qualifier Added Result Qualifier Unit mg/Kg D %Rec. Analyte Result Qualifier 1.58 1.41 mg/Kg D %Rec. Surrogate %Recovery Qualifier Limits 65 - 140 Entits	2			Spike	LCSD	LCSD				%Rec.		RP
LCSD LCSD LCSD Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 89 65 - 140 Lab Sample ID: 440-95772-A-3 MS Client Sample ID: Matrix Spike Matrix: Solid Analysis Batch: 225092 Analyte Result Qualifier Added Result Qualifier MS MS %Rec. Surrogate %Recovery Qualifier MS MS 1.41 mg/Kg 9 60 - 140 MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 90 65 - 140 Client Sample ID: Matrix Spike Duplicate Matrix: Solid MS MS Surrogate %Recovery Qualifier Limits Analysis Batch: 225092 Sample Spike MSD MSD MSD MSD Matrix: Solid Analysis Batch: 225092 Sample Spike MSD MSD MSD MSD MSD MSD %Rec. RPI Limits Prep Type: Total/N/ MSD MSD <td>Analyte</td> <td></td> <td></td> <td>Added</td> <td>Result</td> <td>Qualifier</td> <td>Unit</td> <td>D</td> <td>%Rec</td> <td>Limits</td> <td>RPD</td> <td>Limi</td>	Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 89 Qualifier Limits Absomption 65 - 140 Client Sample ID: Matrix Spike Lab Sample ID: 440-95772-A-3 MS Client Sample ID: Matrix Spike Matrix: Solid Sample Spike MS MS Prep Type: Total/N/ Analyte Result Qualifier Added Result Qualifier Unit D %Rec. GRO (C4-C12) ND MS MS 1.41 mg/Kg D %Rec. Limits Surrogate %Recovery Qualifier Limits 65 - 140 Client Sample ID: Matrix Spike Duplicate Absomptionobenzene (Surr) 90 Ge5 - 140 Client Sample ID: Matrix Spike Duplicate Matrix: Solid Matrix: Solid Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ Analyte Sample Sample Spike MSD MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPI MSD MSD MSD <td>GRO (C4-C12)</td> <td></td> <td></td> <td>1.60</td> <td>1.55</td> <td></td> <td>mg/Kg</td> <td></td> <td>97</td> <td>70 - 135</td> <td>1</td> <td>2</td>	GRO (C4-C12)			1.60	1.55		mg/Kg		97	70 - 135	1	2
4-Bromofluorobenzene (Surr) 89 65 - 140 Lab Sample ID: 440-95772-A-3 MS Matrix: Solid Analysis Batch: 225092 Sample Result Sample Qualifier Spike Added MS MS Client Sample ID: Matrix Spike Prep Type: Total/N/ Analysis Analyte Result Qualifier Added Result Qualifier Unit D %Rec. 89 Limits GRO (C4-C12) ND 1.58 1.41 mg/Kg D %Rec. 89 60 - 140 - Surrogate %Recovery Qualifier Limits 65 - 140 - - - Lab Sample ID: 440-95772-A-3 MSD Matrix: Solid MS MS Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ Analysis Batch: 225092 Sample Sample Spike MSD MSD - <td></td> <td>LCSD</td> <td>LCSD</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		LCSD	LCSD									
Lab Sample ID: 440-95772-A-3 MS Client Sample ID: Matrix Spike Matrix: Solid Analysis Batch: 225092 Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits - Analyte ND 1.58 1.41 Qualifier Unit D %Rec. Limits -	Surrogate	%Recovery	Qualifier	Limits								
Matrix: Solid Analysis Batch: 225092 Sample Result Sample Qualifier Spike Added MS MS Prep Type: Total/N/ Analyte Analyte Result Qualifier Added Result Qualifier Unit D %Rec. GRO (C4-C12) ND 1.58 1.41 Qualifier Unit D %Rec. Surrogate %Recovery Qualifier Limits 60 - 140 - 4-Bromofluorobenzene (Surr) 90 65 - 140 - - Lab Sample ID: 440-95772-A-3 MSD Matrix: Solid Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ Analysis Batch: 225092 Analyte Sample Sample Spike Analyte Result Qualifier MSD GRO (C4-C12) ND Qualifier Added MSD MSD MSD -	4-Bromofluorobenzene (Surr)			65 - 140								
Matrix: Solid Analysis Batch: 225092 Sample Result Sample Qualifier Spike Added MS MS Prep Type: Total/N/ Analyte Analyte Result Qualifier Added Result Qualifier Unit D %Rec. GRO (C4-C12) ND 1.58 1.41 Qualifier Unit D %Rec. Surrogate %Recovery Qualifier Limits 60 - 140 - 4-Bromofluorobenzene (Surr) 90 65 - 140 - - Lab Sample ID: 440-95772-A-3 MSD Matrix: Solid Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ Analysis Batch: 225092 Analyte Sample Sample Spike Analyte Result Qualifier MSD GRO (C4-C12) ND Qualifier Added MSD MSD MSD -	I ah Samnle ID: 440-95772-/	1-3 MS							Client	Sample ID	· Matrix	Snik
Analysis Batch: 225092 Sample Sample Spike MS MS MS %Rec. Analyse Result Qualifier Added Result Qualifier Unit D %Rec. Limits GRO (C4-C12) ND MS MS 1.58 1.41 Qualifier Unit D %Rec. Limits Surrogate %Recovery Qualifier Limits Limits Client Sample ID: Matrix Spike Duplicate 4-Bromofluorobenzene (Surr) 90 65 - 140 Kec. Prep Type: Total/N/ Lab Sample ID: 440-95772-A-3 MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ Matrix: Solid Analysis Batch: 225092 Sample Spike MSD MSD MSD %Rec. RPD Limits GRO (C4-C12) ND Qualifier Added Result Qualifier Unit D %Rec. RPD Lim MSD MSD MSD MSD MSD 1.41 mg/Kg D %Rec. RPD Lim MSD MSD MSD MSD									onem	-		-
Sample AnalyteSample QualifierSpike AddedMS ResultMS Qualifier%Rec. LimitsAnalyteResult MSQualifierAdded 1.58Result 1.41Qualifier mg/KgUnit mg/KgD %Rec 89%Rec. Limits 60 - 140MS MS MS 4-Bromofiluorobenzene (Surr)MS 90MS MSLimits 65 - 140Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ Prep Type: Total/N/ Analysis Batch: 225092Analyte GRO (C4-C12)Sample NDSample QualifierSpike Added 1.60MSD 1.41MSD mg/KgMSD mg/Kg%Rec. %Rec.RPD Limits mg/KgMSD MSDMSDMSDMSDMSDMSD mg/KgMSD mg/Kg%Rec. mg/KgRPD mg/KgLimits mg/KgRPD mg/KgLimits mg/Kg										i icp i	ypc. 10	
AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsGRO (C4-C12)NDMSMSSurrogate%RecoveryQualifierLimits4-Bromofluorobenzene (Surr)9065 - 140Lab Sample ID: 440-95772-A-3 MSD Matrix: Solid Analysis Batch: 225092Client Sample ID: Matrix Spike Duplicate Prep Type: Total/N/ AnalyteAnalyteSampleSample Result QualifierSpike AnalyteMSD Result Qualifier%Rec.RPI Limits RPD Lim mg/KgMSDMSDMSD%Rec.RPI Limits RPD Lim mg/Kg%RecLimits RPD Lim mg/KgNe		Sample	Sample	Spike	MS	MS				%Rec.		
MS MS Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 90 65 - 140 Lab Sample ID: 440-95772-A-3 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Solid Prep Type: Total/N/A Analysis Batch: 225092 Sample Spike MSD MSD MSD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD GRO (C4-C12) ND ND 1.60 1.41 mg/Kg D %Rec Limits RPD Lim MSD MSD MSD MSD 1.41 mg/Kg D %Rec RPD Lim	Analyte	-	-	-	Result	Qualifier	Unit	D	%Rec	Limits		
Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 90 65 - 140 Lab Sample ID: 440-95772-A-3 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Solid Prep Type: Total/NA Analysis Batch: 225092 Sample Spike MSD MSD %Rec. RPI Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Limits GRO (C4-C12) ND 1.60 1.41 mg/Kg B 60 - 140 0 3	GRO (C4-C12)	ND		1.58	1.41		mg/Kg		89	60 - 140		
4-Bromofluorobenzene (Surr) 90 65 - 140 Lab Sample ID: 440-95772-A-3 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Solid Prep Type: Total/N/ Analysis Batch: 225092 Sample Spike MSD MSD %Rec. RPI Analyte Result Qualifier Added Result Qualifier Unit D %Rec RPD Lim GRO (C4-C12) ND ND 1.60 1.41 mg/Kg D %88 60 - 140 0 3		MS	MS									
4-Bromofluorobenzene (Surr) 90 65 - 140 Lab Sample ID: 440-95772-A-3 MSD Client Sample ID: Matrix Spike Duplicate Matrix: Solid Prep Type: Total/N/ Analysis Batch: 225092 Sample Spike MSD MSD %Rec. RPI Analyte Result Qualifier Added Result Qualifier Unit D %Rec RPD Lim GRO (C4-C12) ND ND 1.60 1.41 mg/Kg D %88 60 - 140 0 3	Surrogate	%Recovery	Qualifier	Limits								
Matrix: Solid Prep Type: Total/N/ Analysis Batch: 225092 Sample Spike MSD %Rec. RPI Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD GRO (C4-C12) ND 1.60 1.41 mg/Kg 88 60 - 140 0 3	4-Bromofluorobenzene (Surr)	90		65 - 140								
Matrix: Solid Prep Type: Total/N/ Analysis Batch: 225092 Sample Spike MSD %Rec. RPI Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD GRO (C4-C12) ND 1.60 1.41 mg/Kg 88 60 - 140 0 3	I ah Samnle ID: 440-95772-4	1-3 MSD					CI	iont S	amnia Iľ)· Matrix S	niko Dur	hlicati
Analysis Batch: 225092 Sample Spike MSD %Rec. RPI Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD GRO (C4-C12) ND 1.60 1.41 mg/Kg 88 60 - 140 0 3	Matrix: Solid							ient S			-	
Sample Sample Spike MSD MSD %Rec. RPI Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Lim GRO (C4-C12) ND 1.60 1.41 mg/Kg 88 60 - 140 0 3											,	
GRO (C4-C12) ND 1.60 1.41 mg/Kg 88 60 - 140 0 3 MSD <	• · · · · · · · · · · · ·	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
MSD MSD	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
	GRO (C4-C12)	ND		1.60	1.41		mg/Kg		88	60 - 140	0	3
		MSD	MSD									
	Surrogate	%Recoverv	Qualifier	Limits								

 4-Bromofluorobenzene (Surr)
 85
 65 - 140

GC/MS VOA

Analysis Batch: 224612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-96339-A-1 MS	Matrix Spike	Total/NA	Solid	8260B/5030B	
440-96339-A-1 MSD	Matrix Spike Duplicate	Total/NA	Solid	8260B/5030B	
440-96461-1	B-3-141210@3'-3.5'	Total/NA	Solid	8260B/5030B	
440-96461-2	B-3-141210@5'-5.5'	Total/NA	Solid	8260B/5030B	
LCS 440-224612/5	Lab Control Sample	Total/NA	Solid	8260B/5030B	
MB 440-224612/4	Method Blank	Total/NA	Solid	8260B/5030B	
analysis Batch: 22480	99				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batcl
440-96214-F-5 MS	Matrix Spike	Total/NA	Water	8260B/5030B	
440-96214-F-5 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/5030B	
440-96461-3	B-3-141210	Total/NA	Water	8260B/5030B	
LCS 440-224809/5	Lab Control Sample	Total/NA	Water	8260B/5030B	
MB 440-224809/4	Method Blank	Total/NA	Water	8260B/5030B	
GC VOA					
Analysis Batch: 22454	13				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
440-96455-A-2 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-96455-A-2 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-96461-3	B-3-141210	Total/NA	Water	8015B/5030B	
LCS 440-224543/30	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-224543/31	Method Blank	Total/NA	Water	8015B/5030B	
nalysis Batch: 22509	02				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-95772-A-3 MS	Matrix Spike	Total/NA	Solid	8015B/5030B	
440-95772-A-3 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B/5030B	

440-95772-A-3 MS	Matrix Spike	Total/NA	Solid	8015B/5030B
440-95772-A-3 MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B/5030B
440-96461-1	B-3-141210@3'-3.5'	Total/NA	Solid	8015B/5030B
440-96461-2	B-3-141210@5'-5.5'	Total/NA	Solid	8015B/5030B
LCS 440-225092/33	Lab Control Sample	Total/NA	Solid	8015B/5030B
LCSD 440-225092/34	Lab Control Sample Dup	Total/NA	Solid	8015B/5030B
MB 440-225092/35	Method Blank	Total/NA	Solid	8015B/5030B
Qualifiers

GC/MS VOA

Qualifier	Qualifier Description	
LM	MS and/or MSD above acceptance limits. See Blank Spike (LCS)	5

Glossary

GC/MS VOA		
Qualifier	Qualifier Description	
LM	MS and/or MSD above acceptance limits. See Blank Spike (LCS)	5
Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	10
DLC	Decision level concentration	
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	12
NC	Not Calculated	13
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-15
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-15
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-15
Hawaii	State Program	9	N/A	01-29-15 *
Nevada	State Program	9	CA015312007A	07-31-15
New Mexico	State Program	6	N/A	01-29-15
Northern Mariana Islands	State Program	9	MP0002	01-29-15
Dregon	NELAP	10	4005	01-29-15
JSDA	Federal		P330-09-00080	06-06-15
USEPA UCMR	Federal	1	CA01531	01-31-15

* Certification renewal pending - certification considered valid.

TestAmerica Irvine

	£	BP Site Node I										-							-			_	Rush TA	T: Yes	No
ab Address 17461 Demin Avenue Same #100, Ivine, CA 20541 Cay, State, DP Coder CaleAddress CareautandContractor Project Nor 0484602 Lab PM Kithboen Robb Las PL CaleAddress 4202 Bunness Conner Drov, State 110, Fairfield, CA 54553 Lab PM Kithboen Robb Las PL CaleAddress 4202 Bunness Conner Drov, State 110, Fairfield, CA 54553 Lab Phone, Social T120405337 Enter Proposal NO Provemary, COC-841 Coceastant/Contractor PA: Nonerritavial Lab Brown, Karob File Proposal NO Provemary, COC-841 Coceastant, Contractor PA: Nonerritavial Lab Brown, Karob File Scott State Proposal NO Provemary, COC-841 Coceastant, Contractor PA: Nonerritavial BP Rote Manager (PM; Chuck Carriel Marger (PM; Chuck Carriel Marger (PM; Chuck Carriel Marger, PM; Coceastant) Accord Proposal NO Provemary, Coceastant, Contractor PA: Nonerritavial BP Rote Manager (PM; Chuck Carriel Marger (PM; Chuck Carriel Marger PM; PM; Coceastant) No. Contrainers / Prosovative Requested Analyzes Requested Analyzes Requested Analyzes BP Rote Marger Chuck Carriel Marger PM;		BP Facility													ab W	OFK C	Jraer								
Lab PM Kritheen Robo Led Regulatory Agency. ACEH Address 420 Business Center Dave, Suite 110, Fairfield, CA M634 Lab Phone, 94-261-1022 Califorma Gold. Donot More Total Society Consultant/Contractor PAC. Krithere Tiderell Lab State Order Nor 102-8838-7 Entos Prosocial Nor Provision OCC-RU Entos Prosocial Nor Fau. 707-455-7265 Fau. 707-455-7265 Defer Info: Stage: State Order Nor More Total Society Entos Prosocial Nor Provision OCC-RU Ental EDD To: Modelliking addressocial more total society Entos Prosocial Nor Entos Prosocial	Lab Name Test America		F	acilit	y Addre	ess.	6407	Tele									_							c	
Lab Prove: 646/261-1022 Califorma Good (D. No: T0000100166 Contralturt/Contractor PM: Xnaoro Tokeell Lab Shipping Acott: 1102-65337 Ende Propeoal No: Prover TV-55-7280 Faz. 707-455-7285 Lab Shipping Acott: Accounting Made: Provers	ab Address 17461 Derian Avenue Suite #10	6, Irvine, CA 92641		Xty, S	State, 2	IP Co	de'		Oakla	ind, C	A 				_			Consultant/Contractor Project No 06-88-602							
Lab. Stepping Acct. 1109-6833.7 Ender Proposal Nov Phone TOT-455-7260 Fax. 707-455-7265 Lab. Bottle Order Nov Accounting Mode. Provision	_ab PM Kathleen Robb		L	ead	Regula	tory A	gency	·.	ACE	4			_					Addres	s [.] 482	0 Busir	ness Cer	nter I	Drive, Suite 110, Fairfiel	1, CA 94534	
Lab Bottle Criter Nor Accounting Mode. ProvisionOOC-80EmailEDD_to EmailEDD_to Matchedlikiticadaterining.com and to table entropy of control of co	_ab Phone. 949-261-1022		C	Califo	mia Glo	ba! I	D No :	_	T060	01001	06							Consu	tant/Con	tractor	PM: K	(riste	ene Tidwell		
Stage: Seque: Seque: Seque: Project Spard (80) Invoice To BP Contractor BP Project Manager (PM): Chuck Carmel Matrix No. Containers / Preservative Report Yape & QC Level Standard Full Data Package	ab Shipping Accnt: 1103-6633-7		E	Infos	Propos	sal No	».						_				_	Ph	one 707	-455-72	290		Fax. 707-45	5-7295	
BP Propid: (Manager (PM): Chuck Carmel Matrix No. Containers / Preservative Requested Analyses Report Type & QC Level BP Phone: 925-273-3804 Sample Description Date Time Sample Description Date Time Public (Luck Carmel@bb.com) Full Date Package Intel Chuck Carmel@bb.com Time Time Time Sample Description Date Time Comments No. Sample Description Date Time Time Sample Description Date Time Comments No. Sample Description Date Time Sample Desc	ab Bottle Order No		A	VCCOL	inting N	lode.		- Pr	ovision	<u>x</u>	00	C-8U		_00	C-RM			Email I	EDD To	<u>kt</u>	idwell@j	<u>broa</u>	adbentinc.com and to	lab enfosdoci	@bp
BP PM Proces 92-25-275-864 Standard BP PM Email: chuck.carmel@bp.com 000000000000000000000000000000000000	Other Info:		s	Stage	: 50	ecute	(40)		Activi	ty	Proje	ct Spe	end (8	0}				Invoice	To [.]		BP_	x	Contrac	tor	
Lab Sample Description Date Time Time Time No. Somple of the second of	3P Project Manager (PM): Chuck Carmel				Matrix	τ	N	o. Co	ontain	ers /	Prese	ervati	ive				-	ested	Analys	es			Report Typ	e & QC Lev	/el
Lab Sample Description Date Time Time Time No. Somple of the second of	BP PM Phone, 925-275-3804		-			Τ		Г							608	260B	В							Standard _x	-
Lab Sample Description Date Time Time Time No. Somple of the second of	BP PM Email: chuck.carmel@bp.com						ters								A 82	PA 82	8260						Full Data	Package	-
B-3-1+1210e5-55 12-1044 1045 X </th <th>No. Sample Description</th> <th>QE 4101-51</th> <th>~</th> <th>_</th> <th>Water / Liquid Air / Vanor</th> <th><u>j</u></th> <th>1 8</th> <th>Unneserved</th> <th></th> <th>HNO3</th> <th>HCI</th> <th>Methanol</th> <th></th> <th></th> <th>-</th> <th></th> <th>NAPHTHALENE</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Note: If sample not collect Sample" in comments and</th> <th>ted, indicate "No single-strike ou</th> <th>ut</th>	No. Sample Description	QE 4101-51	~	_	Water / Liquid Air / Vanor	<u>j</u>	1 8	Unneserved		HNO3	HCI	Methanol			-		NAPHTHALENE						Note: If sample not collect Sample" in comments and	ted, indicate "No single-strike ou	ut
B3-141210 124044 1045 X	Z. 3-Hi2loe3-35																		_	<u> </u>					
Sampler's Name: Ly DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Ly DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Ly DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Company Broadbent and Associates DAMERELL Relinquished By / Affiliation Date T T I I// 0 I// 0 <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>L_</td> <td>\geq</td> <td>۲ </td> <td></td> <td>$\downarrow \downarrow$</td> <td></td> <td></td> <td></td> <td></td>				_			L_	\geq	۲ 												$ \downarrow \downarrow$				
Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij Damerell Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Company: Broadbent and Associates Damerell Beo ADRSENT 240-14/1530 V n Baul TAI 12/11/0 10 Shipment Method: Fed Ex Ship Date 2-10-14 I	B3-141210	1210-14 104	5		<u>×</u>						Х		X	\geq	レン	\times	\ge			4	┦				
Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij Date Time Accepted By / Affiliation Date T Sampler's Company: Broadbent and Associates Damerell BeziADSSENT 240-14/1530 V N BAUL 7AL 12/11/0 10 Shipment Method: Fed Ex Ship Date Date T Fed. 8007 0583 4080 T Special Instructions: Fed. 8007 0583 4080 T T													_												<u></u>
Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Company: Broadbent and Associates Dament// Bec/ADSENT 24044 1530 V n Baul TAL 12/11/0 10 Shipment Method: Fed Ex Ship Date Date T Fed. 8067 0583 4080 T Special Instructions: Fed. 8067 0583 4080			_					-											_ _		╞╴╎╸			<u></u>	
Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij Date Time Accepted By / Affiliation Date T Sampler's Company: Broadbent and Associates Damerell BeziADSSENT 240-14/1530 V N BAUL 7AL 12/11/0 10 Shipment Method: Fed Ex Ship Date Date T Fed. 8007 0583 4080 T Special Instructions: Fed. 8007 0583 4080 T T																			_						
Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Company: Broadbent and Associates Dament// Bec/ADSENT 24044 1530 V n Baul TAL 12/11/0 10 Shipment Method: Fed Ex Ship Date Date T Fed. 8067 0583 4080 T Special Instructions: Fed. 8067 0583 4080								_		_		_ `	1	- 	It di kih d	It uli du li		I I I I I I I I I I I I I I I I I I I	I I I I I I I I I I I I I I I I I I I		-	_			
Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Name: Lij Date Time Accepted By / Affiliation Date T Sampler's Company: Broadbent and Associates Damerell BeziADSSENT 240-14/1530 V N BAUL 7AL 12/11/0 10 Shipment Method: Fed Ex Ship Date Date T Fed. 8007 0583 4080 T Special Instructions: Fed. 8007 0583 4080 T T																						_			
Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Company Broadbent and Associates Damerell Becardon Becard B												L										~	On	Hold	
Sampler's Name: Li DAMERELL Relinquished By / Affiliation Date Time Accepted By / Affiliation Date T Sampler's Company: Broadbent and Associates Damerell Becardsent 240-14 1530 Vn BAWL 77AL 12/11/0 10 Shipment Method: Fed Ex Ship Date 2-10-14 Shipment Tracking No: BOOF 0583 4080 Special Instructions: Fed, 8007 0583 4080													11 44	10-96	461 (Chair	n of C	ustod	INN LINEN V					<u> </u>	
Sampler's Company Broadbent and Associates DameNell/BeoADBENT 240-14 1530 N Bandl 7.4 I 1/1/0 10 Shipment Method: Fed Ex Ship Date 2 0 7.4 I 12/11/0 10 Shipment Tracking No: BOOT 0583 4080 Image: Company Fed, 8007 0583 4080												_			-										
Sampler's Company Broadbent and Associates DameNU/BEDADBENT 240-14 1530 N Banul 7.4 I 1/1/0 10 Shipment Method Fed Ex Ship Date 2.10-14 1530 N Banul 7.4 I 1/1/0 10 Shipment Method Fed Ex Ship Date 2.10-14 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Sampler's Name Ly Day	ERELL		$\overline{\mathbf{n}}$		Reli	nquis	hød	ву / А	ffilia	tion	-				(Т
Shipment Tracking No: 8007 0583 4080 Fed. 8007 0583 4080	Sampler's Company Broadbent and Ass	ociates		T	Jan	m	vrel	X_	B	200	03	<u>en</u>	Τ	21	0-14	15	\mathfrak{D}	$\overline{\nabla}$	<u>~[</u>	SA	<u>ull</u>	[TAL	2/11/10	10
Special Instructions: Fed. 8007 0583 4080	Shipment Method Fed Ex	Ship Date 2-10-1	4					t																	
Special Instructions: Fed. 8007 0583 4080	Shipment Tracking No: 8007 05	83 4080																							
THIS LINE - LAB USE ONLY. Custody Seals in Place. Yes No / Temp Blank: Yes / No / Cooler Temp on Receipt 4.7/34 °F/C / Trip Blank: Yes / No / MS/MSD Sample Submitted. Yes / No			~															Fed	8	907	05	8	3 4080		
	THIS LINE - LAB USE ONLY. Cu	stody Seals In Place. Ye	s NO	1	Tem	p Bla	nk: Ye:	s / No		Coo	ler Te	mp on	Rece	eipt 5	47/	34	F/C) _	rıp Blank	: Yes (No 1		MS/MSD Sample Subm	tted. Yes No	5

.

Client: Broadbent & Associates, Inc.

Login Number: 96461 List Number: 1

Creator: Freitag, Kevin R

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

13

List Source: TestAmerica Irvine

Job Number: 440-96461-1

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc. TestAmerica Irvine 17461 Derian Ave Suite 100 Irvine, CA 92614-5817 Tel: (949)261-1022

TestAmerica Job ID: 440-99248-1 Client Project/Site: ARCO 0374, Oakland

For: Broadbent & Associates, Inc. 4820 Business Center Drive #110 Fairfield, California 94534

Attn: Kristene Tidwell

Deethleen &

Authorized for release by: 1/30/2015 9:32:05 AM

Kathleen Robb, Project Manager II (949)261-1022 kathleen.robb@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

The test results in this report meet all 2003 NELAC and 2009 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Table of Contents

Cover Page	1
Table of Contents	2
Sample Summary	3
Case Narrative	4
Client Sample Results	5
Method Summary	8
Lab Chronicle	9
QC Sample Results	10
QC Association Summary	16
Definitions/Glossary	17
Certification Summary	18
Chain of Custody	19
Receipt Checklists	20

Sample Summary

Matrix

Water

Solid

Solid

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Client Sample ID

B-1b

B-1b-3

B-1-B-7

Lab Sample ID

440-99248-1

440-99248-2

440-99248-3

TestAmerica Job ID: 440-99248-1

01/16/15 11:20 01/17/15 16:31

Received

01/17/15 16:31

01/17/15 16:31

Collected

01/16/15 08:55

01/16/15 09:45

3
5
8
9

TestAmerica Irvine

Job ID: 440-99248-1

Laboratory: TestAmerica Irvine

Narrative

Job Narrative 440-99248-1

Comments

No additional comments.

Receipt

The samples were received on 1/17/2015 10:40 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was 1.0° C.

GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC VOA

Method(s) 8015B: No results were reported for the MS/MSD associated with batch 231451. The samples were not spiked with TPH standard. The batch was accepted based on LCS recovery. LCS was performed in duplicate to provide precision data for this batch. (LCS 440-231451/4)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland TestAmerica Job ID: 440-99248-1

Lab Sample ID: 440-99248-1

Matrix: Water

9

12

Client Sample ID: B-1b Date Collected: 01/16/15 11:20 Date Received: 01/17/15 16:31

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		10	ug/L			01/22/15 06:11	20
1,2-Dichloroethane	ND		10	ug/L			01/22/15 06:11	20
Benzene	690		10	ug/L			01/22/15 06:11	20
Ethanol	ND		3000	ug/L			01/22/15 06:11	20
Ethylbenzene	630		10	ug/L			01/22/15 06:11	20
Ethyl-t-butyl ether (ETBE)	ND		10	ug/L			01/22/15 06:11	20
Isopropyl Ether (DIPE)	ND		10	ug/L			01/22/15 06:11	20
m,p-Xylene	970		20	ug/L			01/22/15 06:11	20
Methyl-t-Butyl Ether (MTBE)	ND		10	ug/L			01/22/15 06:11	20
Naphthalene	52		20	ug/L			01/22/15 06:11	20
o-Xylene	250		10	ug/L			01/22/15 06:11	20
Tert-amyl-methyl ether (TAME)	ND		10	ug/L			01/22/15 06:11	20
tert-Butyl alcohol (TBA)	ND		200	ug/L			01/22/15 06:11	20
Toluene	170		10	ug/L			01/22/15 06:11	20
Xylenes, Total	1200		20	ug/L			01/22/15 06:11	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		80 - 120		-		01/22/15 06:11	20
Dibromofluoromethane (Surr)	92		76 - 132				01/22/15 06:11	20
Toluene-d8 (Surr)	103		80 - 128				01/22/15 06:11	20
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
GRO (C6-C12)	8800		1000	ug/L			01/27/15 14:49	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		65 - 140		-		01/27/15 14:49	20

Client Sample ID: B-1b-3

Lab Sample ID: 440-99248-2

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Date Received: 01/17/15 16:31							
Method: 8260B/5030B - Volatile	Organic Compo	ounds (GC/	MS)				
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			01/19/15 21:0
1,2-Dichloroethane	ND		0.0010	mg/Kg			01/19/15 21:0
Benzene	0.0043		0.0010	mg/Kg			01/19/15 21:0
Ethanol	ND		0.20	mg/Kg			01/19/15 21:0
Ethylbenzene	0.0020		0.0010	mg/Kg			01/19/15 21:0
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			01/19/15 21:0
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			01/19/15 21:0
m,p-Xylene	0.0038		0.0020	mg/Kg			01/19/15 21:0
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			01/19/15 21:0
Naphthalene	0.050		0.0020	mg/Kg			01/19/15 21:0
o-Xylene	0.0012		0.0010	mg/Kg			01/19/15 21:0
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			01/19/15 21:0
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			01/19/15 21:0
Toluene	ND		0.0010	mg/Kg			01/19/15 21:0
Xylenes, Total	0.0050		0.0020	mg/Kg			01/19/15 21:0
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed
4-Bromofluorobenzene (Surr)	99		79 _ 120		-		01/19/15 21:0
Dibromofluoromethane (Surr)	104		60 - 120				01/19/15 21:0
Toluene-d8 (Surr)	107		79 - 123				01/19/15 21:0
- Method: 8015B/5030B - Gasolin	e Range Organi	ics (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed
GRO (C6-C12)	1.6		0.40	mg/Kg			01/23/15 08:3

GRO (C6-C12)	1.6	0.40	mg/Kg		01/23/15 08:31	1
Surrogate 4-Bromofluorobenzene (Surr)	97 Qualifier	Limits 65 - 140		Prepared	Analyzed 01/23/15 08:31	Dil Fac

2 3 4 5 6 7 8

Client Sample ID: B-1-B-7 Date Collected: 01/16/15 09:45 Date Received: 01/17/15 16:31

Lab Sample ID: 440-99248-3

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
1,2-Dibromoethane (EDB)	ND		0.0010	mg/Kg			01/19/15 22:37	
1,2-Dichloroethane	ND		0.0010	mg/Kg			01/19/15 22:37	
Benzene	ND		0.0010	mg/Kg			01/19/15 22:37	
Ethanol	ND		0.20	mg/Kg			01/19/15 22:37	
Ethylbenzene	ND		0.0010	mg/Kg			01/19/15 22:37	
Ethyl-t-butyl ether (ETBE)	ND		0.0020	mg/Kg			01/19/15 22:37	
Isopropyl Ether (DIPE)	ND		0.0020	mg/Kg			01/19/15 22:37	
m,p-Xylene	ND		0.0020	mg/Kg			01/19/15 22:37	
Methyl-t-Butyl Ether (MTBE)	ND		0.0020	mg/Kg			01/19/15 22:37	
Naphthalene	ND		0.0020	mg/Kg			01/19/15 22:37	
o-Xylene	ND		0.0010	mg/Kg			01/19/15 22:37	
Tert-amyl-methyl ether (TAME)	ND		0.0020	mg/Kg			01/19/15 22:37	
tert-Butyl alcohol (TBA)	ND		0.050	mg/Kg			01/19/15 22:37	
Toluene	ND		0.0010	mg/Kg			01/19/15 22:37	
Xylenes, Total	ND		0.0020	mg/Kg			01/19/15 22:37	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	103		79 - 120		-		01/19/15 22:37	
Dibromofluoromethane (Surr)	105		60 - 120				01/19/15 22:37	
Toluene-d8 (Surr)	113		79 - 123				01/19/15 22:37	
Method: 8015B/5030B - Gasoli	ne Range Organi	cs (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
GRO (C6-C12)	0.95		0.40	mg/Kg			01/23/15 09:00	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	123		65 - 140		-		01/23/15 09:00	

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Method Description

Volatile Organic Compounds (GC/MS)

Gasoline Range Organics (GC)

Method

8260B/5030B

8015B/5030B

Protocol References:

Laboratory References:

Laboratory

TAL IRV

TAL IRV

Protocol

SW846

SW846

5
6
8
9

Initial

Amount

10 mL

10 mL

Initial

Amount

5 g

5.02 g

Final

Amount

10 mL

10 mL

Final

Amount

10 mL

10 mL

Batch

Number

231144

232213

Batch

Number

230645

231451

Dil

20

20

Dil

1

1

Factor

Factor

Run

Run

Client Sample ID: B-1b

Date Collected: 01/16/15 11:20

Date Received: 01/17/15 16:31

Client Sample ID: B-1b-3

Date Collected: 01/16/15 08:55

Date Received: 01/17/15 16:31

Prep Type

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Batch

Туре

Analysis

Analysis

Batch

Туре

Analysis

Analysis

Batch

Method

Batch

Method

8260B/5030B

8015B/5030B

8260B/5030B

8015B/5030B

Lab Sample ID: 440-99248-1

Analyst

Lab Sample ID: 440-99248-2

Analyst

Lab Sample ID: 440-99248-3

WK

AK

WK

IM

Prepared

or Analyzed

01/22/15 06:11

01/27/15 14:49

Prepared

or Analyzed

01/19/15 21:06

01/23/15 08:31

2 3 4 5 6 7 8 9

Lab TAL IRV

TAL IRV

Matrix: Solid

Matrix: Water

Lab

TAL IRV

TAL IRV

Matrix: Solid

Client Sample ID: B-1-B-7 Date Collected: 01/16/15 09:45 Date Received: 01/17/15 16:31

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B/5030B		1	4.96 g	10 mL	230645	01/19/15 22:37	WK	TAL IRV
Total/NA	Analysis	8015B/5030B		1	5 g	10 mL	231451	01/23/15 09:00	AK	TAL IRV

Laboratory References:

TAL IRV = TestAmerica Irvine, 17461 Derian Ave, Suite 100, Irvine, CA 92614-5817, TEL (949)261-1022

5

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 440-230645/4								Client S	Sample ID: Metho	
Matrix: Solid									Prep Type: T	otal/NA
Analysis Batch: 230645										
		MB						_		
Analyte	Result	Qualifier	RL		Unit		D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.0010		mg/Kg	-			01/19/15 19:36	1
1,2-Dichloroethane	ND		0.0010		mg/Ko	3			01/19/15 19:36	1
Benzene	ND		0.0010		mg/Kg	9			01/19/15 19:36	1
Ethanol	ND		0.20		mg/Kg	3			01/19/15 19:36	1
Ethylbenzene	ND		0.0010		mg/Kg	J			01/19/15 19:36	1
Ethyl-t-butyl ether (ETBE)	ND		0.0020		mg/Kg	J			01/19/15 19:36	1
Isopropyl Ether (DIPE)	ND		0.0020		mg/Kg	,			01/19/15 19:36	1
m,p-Xylene	ND		0.0020		mg/Kg	J			01/19/15 19:36	1
Methyl-t-Butyl Ether (MTBE)	ND		0.0020		mg/Kg	J			01/19/15 19:36	1
Naphthalene	ND		0.0020		mg/Kg	}			01/19/15 19:36	1
o-Xylene	ND		0.0010		mg/Kg)			01/19/15 19:36	1
Tert-amyl-methyl ether (TAME)	ND		0.0020		mg/Kg	J			01/19/15 19:36	1
tert-Butyl alcohol (TBA)	ND		0.050		mg/Kg	 1			01/19/15 19:36	1
Toluene	ND		0.0010		mg/Kg				01/19/15 19:36	1
Xylenes, Total	ND		0.0020		mg/Kg	-			01/19/15 19:36	1
		MD	0.0020			,				
Surrogate	MB %Recovery	MB Qualifier	Limits					Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		79 - 120					•	01/19/15 19:36	1
Dibromofluoromethane (Surr)	102		60 - 120						01/19/15 19:36	1
Toluene-d8 (Surr)	106		79 - 123						01/19/15 19:36	1
Lab Sample ID: LCS 440-230645/5							Clie	ent Sample	D: Lab Control	Sample
Matrix: Solid									Prep Type: T	otal/NA
			Spike	LCS	LCS				%Rec.	
Analysis Batch: 230645			Spike Added		LCS Qualifier	Unit		D %Rec	%Rec. Limits	
Analysis Batch: 230645			-			Unit mg/Kg		D %Rec 112		
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB)			Added	Result					Limits	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane			Added	Result 0.0558		mg/Kg mg/Kg		112	Limits	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene			Added 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498		mg/Kg mg/Kg mg/Kg		112 93 100	Limits 70 - 130 60 - 140 65 - 120	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol			Added 0.0500 0.0500 0.0500 2.50	Result 0.0558 0.0466 0.0498 2.44		mg/Kg mg/Kg mg/Kg mg/Kg		112 93 100 97	Limits 70 - 130 60 - 140 65 - 120 35 - 160	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene			Added 0.0500 0.0500 0.0500 2.50 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517		mg/Kg mg/Kg mg/Kg mg/Kg		- 112 93 100 97 103	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE)			Added 0.0500 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	· ·	- 112 93 100 97 103 102	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE)			Added 0.0500 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509 0.0505		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		112 93 100 97 103 102 101	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene			Added 0.0500 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509 0.0505 0.0560		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		- 112 93 100 97 103 102 101 112	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE)			Added 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509 0.0505 0.0560 0.0521		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	· ·	112 93 100 97 103 102 101 112 104	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125 60 - 140	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) Naphthalene			Added 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509 0.0505 0.0560 0.0521 0.0530		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		112 93 100 97 103 102 101 112 104 106	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125 60 - 140 55 - 135	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) Naphthalene p-Xylene			Added 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509 0.0505 0.0560 0.0521 0.0530 0.0552		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		112 93 100 97 103 102 101 112 104 106 110	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125 60 - 140 55 - 135 70 - 125	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) Naphthalene o-Xylene Tert-amyl-methyl ether (TAME)			Added 0.0500 0.0500 2.50 0.050	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509 0.0505 0.0560 0.0521 0.0530 0.0552 0.0538		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		112 93 100 97 103 102 101 112 104 106 110 108	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125 60 - 140 55 - 135 70 - 125 60 - 145	
Analysis Batch: 230645 Analyte 1,2-Dibromoethane (EDB) 1,2-Dichloroethane Benzene Ethanol Ethylbenzene Ethyl-t-butyl ether (ETBE) Isopropyl Ether (DIPE) m,p-Xylene Methyl-t-Butyl Ether (MTBE) Naphthalene o-Xylene Tert-amyl-methyl ether (TAME) tert-Butyl alcohol (TBA) Toluene			Added 0.0500 0.0500 2.50 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500	Result 0.0558 0.0466 0.0498 2.44 0.0517 0.0509 0.0505 0.0560 0.0521 0.0530 0.0552		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		112 93 100 97 103 102 101 112 104 106 110	Limits 70 - 130 60 - 140 65 - 120 35 - 160 70 - 125 60 - 140 60 - 140 70 - 125 60 - 140 55 - 135 70 - 125	

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		79 - 120
Dibromofluoromethane (Surr)	104		60 - 120
Toluene-d8 (Surr)	105		79 - 123

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

105

104

Lab Sample ID: 440-99248-2 MS Matrix: Solid Analysis Batch: 230645									Client Sample ID: B-1 Prep Type: Total/	
Analysis Baten. 200040	Sample	Sample	Spike	MS	MS				%Rec.	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)	ND		0.0498	0.0608		mg/Kg		122	65 - 140	
1,2-Dichloroethane	ND		0.0498	0.0469		mg/Kg		94	60 - 150	
Benzene	0.0043		0.0498	0.0548		mg/Kg		101	65 - 130	
Ethanol	ND		2.49	2.44		mg/Kg		98	30 - 165	
Ethylbenzene	0.0020		0.0498	0.0548		mg/Kg		106	70 - 135	
Ethyl-t-butyl ether (ETBE)	ND		0.0498	0.0526		mg/Kg		106	60 - 145	
Isopropyl Ether (DIPE)	ND		0.0498	0.0513		mg/Kg		103	60 - 150	
m,p-Xylene	0.0038		0.0498	0.0619		mg/Kg		117	70 - 130	
Methyl-t-Butyl Ether (MTBE)	ND		0.0498	0.0558		mg/Kg		112	55 - 155	
Naphthalene	0.050		0.0498	0.113	EY	mg/Kg		127	40 - 150	
o-Xylene	0.0012		0.0498	0.0565		mg/Kg		111	65 - 130	
Tert-amyl-methyl ether (TAME)	ND		0.0498	0.0576		mg/Kg		116	60 - 150	
tert-Butyl alcohol (TBA)	ND		0.498	0.535		mg/Kg		107	65 - 145	• •
Toluene	ND		0.0498	0.0530		mg/Kg		105	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	102		79 _ 120							

Lab Sample ID: 440-99248-2 MSD

Matrix: Solid Analysis Batch: 230645

Toluene-d8 (Surr)

Dibromofluoromethane (Surr)

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		0.0503	0.0623		mg/Kg		124	65 _ 140	3	25
1,2-Dichloroethane	ND		0.0503	0.0484		mg/Kg		96	60 - 150	3	25
Benzene	0.0043		0.0503	0.0561		mg/Kg		103	65 _ 130	2	20
Ethanol	ND		2.52	2.30		mg/Kg		92	30 - 165	6	40
Ethylbenzene	0.0020		0.0503	0.0545		mg/Kg		104	70 ₋ 135	1	25
Ethyl-t-butyl ether (ETBE)	ND		0.0503	0.0556		mg/Kg		111	60 ₋ 145	6	30
Isopropyl Ether (DIPE)	ND		0.0503	0.0532		mg/Kg		106	60 - 150	4	25
m,p-Xylene	0.0038		0.0503	0.0624		mg/Kg		116	70 - 130	1	25
Methyl-t-Butyl Ether (MTBE)	ND		0.0503	0.0594		mg/Kg		118	55 ₋ 155	6	35
Naphthalene	0.050		0.0503	0.118	EY	mg/Kg		135	40 - 150	4	40
o-Xylene	0.0012		0.0503	0.0572		mg/Kg		111	65 _ 130	1	25
Tert-amyl-methyl ether (TAME)	ND		0.0503	0.0611		mg/Kg		122	60 - 150	6	25
tert-Butyl alcohol (TBA)	ND		0.503	0.522		mg/Kg		104	65 - 145	2	30
Toluene	ND		0.0503	0.0533		mg/Kg		104	70 - 130	1	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

60 - 120

79 - 123

Surrogate	%Recovery Q	ualifier	Limits
4-Bromofluorobenzene (Surr)	101		79 - 120
Dibromofluoromethane (Surr)	104		60 - 120
Toluene-d8 (Surr)	104		79 - 123

Client Sample ID: B-1b-3

Prep Type: Total/NA

Lab Sample ID: MB 440-231144/5

Client Sample ID: Method Blank

5	
8	3
Ĉ	

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

	MB							
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,2-Dibromoethane (EDB)	ND		0.50	ug/L			01/21/15 20:22	1
1,2-Dichloroethane	ND		0.50	ug/L			01/21/15 20:22	1
Benzene	ND		0.50	ug/L			01/21/15 20:22	1
Ethanol	ND		150	ug/L			01/21/15 20:22	1
Ethylbenzene	ND		0.50	ug/L			01/21/15 20:22	1
Ethyl-t-butyl ether (ETBE)	ND		0.50	ug/L			01/21/15 20:22	1
sopropyl Ether (DIPE)	ND		0.50	ug/L			01/21/15 20:22	1
n,p-Xylene	ND		1.0	ug/L			01/21/15 20:22	1
Methyl-t-Butyl Ether (MTBE)	ND		0.50	ug/L			01/21/15 20:22	1
Naphthalene	ND		1.0	ug/L			01/21/15 20:22	1
o-Xylene	ND		0.50	ug/L			01/21/15 20:22	1
Tert-amyl-methyl ether (TAME)	ND		0.50	ug/L			01/21/15 20:22	1
ert-Butyl alcohol (TBA)	ND		10	ug/L			01/21/15 20:22	1
Toluene	ND		0.50	ug/L			01/21/15 20:22	1
Xylenes, Total	ND		1.0	ug/L			01/21/15 20:22	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		80 - 120		-		01/21/15 20:22	1
Dibromofluoromethane (Surr)	98		76 - 132				01/21/15 20:22	1
Toluene-d8 (Surr)	103		80 - 128				01/21/15 20:22	1
Lab Sample ID: LCS 440-23114							ID: Lab Control	

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,2-Dibromoethane (EDB)		25.7		ug/L		103	70 - 130	
1,2-Dichloroethane	25.0	24.8		ug/L		99	57 _ 138	
Benzene	25.0	25.3		ug/L		101	68 - 130	
Ethanol	1250	1150		ug/L		92	50 ₋ 149	
Ethylbenzene	25.0	24.1		ug/L		96	70 - 130	
Ethyl-t-butyl ether (ETBE)	25.0	26.8		ug/L		107	60 - 136	
Isopropyl Ether (DIPE)	25.0	25.9		ug/L		104	58 ₋ 139	
m,p-Xylene	25.0	25.2		ug/L		101	70 - 130	
Methyl-t-Butyl Ether (MTBE)	25.0	28.2		ug/L		113	63 ₋ 131	
Naphthalene	25.0	25.9		ug/L		104	60 _ 140	
o-Xylene	25.0	24.9		ug/L		100	70 - 130	
Tert-amyl-methyl ether (TAME)	25.0	27.0		ug/L		108	57 _ 139	
tert-Butyl alcohol (TBA)	250	259		ug/L		103	70 - 130	
Toluene	25.0	24.3		ug/L		97	70 ₋ 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		80 - 120
Dibromofluoromethane (Surr)	99		76 - 132
Toluene-d8 (Surr)	98		80 - 128

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Method: 8260B/5030B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 440-99401-B-6 MS Matrix: Water Analysis Batch: 231144								Client	Sample ID: Matrix Spike Prep Type: Total/NA
· ······	Sample	Sample	Spike	MS	MS				%Rec.
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2-Dibromoethane (EDB)	ND		25.0	26.4		ug/L		106	70 - 131
1,2-Dichloroethane	ND		25.0	25.4		ug/L		102	56 - 146
Benzene	ND		25.0	24.2		ug/L		97	66 - 130
Ethanol	ND		1250	1210		ug/L		97	54 ₋ 150
Ethylbenzene	ND		25.0	25.8		ug/L		103	70 - 130
Ethyl-t-butyl ether (ETBE)	ND		25.0	25.6		ug/L		102	70 - 130
Isopropyl Ether (DIPE)	ND		25.0	25.0		ug/L		100	64 - 138
m,p-Xylene	ND		25.0	26.1		ug/L		104	70 - 133
Methyl-t-Butyl Ether (MTBE)	ND		25.0	26.1		ug/L		105	70 - 130
Naphthalene	ND		25.0	26.8		ug/L		107	60 - 140
o-Xylene	ND		25.0	26.3		ug/L		105	70 - 133
Tert-amyl-methyl ether (TAME)	ND		25.0	26.5		ug/L		106	68 ₋ 133
tert-Butyl alcohol (TBA)	35		250	281		ug/L		98	70 - 130
Toluene	ND		25.0	24.8		ug/L		99	70 - 130
	MS	MS							

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	98		76 - 132
Toluene-d8 (Surr)	99		80 - 128

Lab Sample ID: 440-99401-B-6 MSD Matrix: Water

Analysis Batch: 231144

	Sample	Sample	Spike	MSD	MSD				%Rec.		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2-Dibromoethane (EDB)	ND		25.0	25.5		ug/L		102	70 _ 131	3	25
1,2-Dichloroethane	ND		25.0	25.2		ug/L		101	56 - 146	1	20
Benzene	ND		25.0	23.9		ug/L		96	66 - 130	1	20
Ethanol	ND		1250	1220		ug/L		97	54 - 150	0	30
Ethylbenzene	ND		25.0	25.0		ug/L		100	70 - 130	3	20
Ethyl-t-butyl ether (ETBE)	ND		25.0	25.9		ug/L		104	70 - 130	1	25
Isopropyl Ether (DIPE)	ND		25.0	25.1		ug/L		100	64 - 138	1	25
m,p-Xylene	ND		25.0	25.2		ug/L		101	70 - 133	4	25
Methyl-t-Butyl Ether (MTBE)	ND		25.0	26.6		ug/L		106	70 - 130	2	25
Naphthalene	ND		25.0	25.9		ug/L		104	60 - 140	3	30
o-Xylene	ND		25.0	25.1		ug/L		101	70 - 133	4	20
Tert-amyl-methyl ether (TAME)	ND		25.0	26.2		ug/L		105	68 - 133	1	30
tert-Butyl alcohol (TBA)	35		250	273		ug/L		95	70 - 130	3	25
Toluene	ND		25.0	24.0		ug/L		96	70 - 130	3	20
	MSD	MSD									
Surrogate	%Pecoverv	Qualifier	Limite								

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		80 - 120
Dibromofluoromethane (Surr)	101		76 - 132
Toluene-d8 (Surr)	98		80 - 128

Method: 8015B/5030B - Gasoline Range Organics (GC)

Lab Sample ID: MB 440-23145 Matrix: Solid	1/6									Client S	Sample ID: Meti Prep Type		
Analysis Batch: 231451													
	_							_	_	_			
Analyte	Re	sult	Qualifier			Unit		D	P	repared	Analyzed		Dil Fa
GRO (C6-C12)		ND		0.40)	mg/K	g				01/23/15 01:52	-	
		MВ	МВ										
Surrogate	%Reco	very	Qualifier	Limits					P	repared	Analyzed		Dil Fa
4-Bromofluorobenzene (Surr)		77		65 - 140	-						01/23/15 01:52	2	
Lab Sample ID: LCS 440-23145	51/4							с	lient	t Sample	e ID: Lab Contr	ol Sa	mple
Matrix: Solid											Prep Type	: Tot	al/NA
Analysis Batch: 231451													
				Spike	LCS	LCS					%Rec.		
Analyte				Added		Qualifier	Unit		D	%Rec	Limits		
GRO (C4-C12)				1.60	1.70		mg/Kg			106	70 - 135		
	LCS	LCS											
Surrogate	%Recovery			Limits									
4-Bromofluorobenzene (Surr)	81			65 - 140									
-													
Lab Sample ID: LCSD 440-2314	451/5						CI	ient	San	nple ID:	Lab Control Sa	mple	e Dup
Matrix: Solid											Prep Type	: Tot	al/NA
Analysis Batch: 231451													
				Spike		LCSD					%Rec.		RPI
Analyte				Added		Qualifier	Unit		D	%Rec		PD	Limi
GRO (C4-C12)				1.60	1.70		mg/Kg			106	70 - 135	0	20
	LCSD	LCS	D										
Surrogate	%Recovery	Qua	lifier	Limits									
4-Bromofluorobenzene (Surr)	82			65 - 140									
_ Lab Sample ID: MB 440-232213	7/7									Client	Sample ID: Meti	hod	Plant
Matrix: Water										Chent	Prep Type		
Analysis Batch: 232213													ai/14/
Analysis Baton: 202210		ΜВ	МВ										
Analyte	Re	sult	Qualifier	RL	_	Unit		D	Р	repared	Analyzed		Dil Fa
GRO (C6-C12)		ND		50	0	ug/L		-		•	01/27/15 12:40) —	
			MB						_				
Surrogate	%Reco	-	Qualifier	Limits	-				P	repared	Analyzed		Dil Fa
4-Bromofluorobenzene (Surr)		93		65 - 140							01/27/15 12:40	,	
Lab Sample ID: LCS 440-23221	3/6							c	lioni	Sample	e ID: Lab Contr	01 84	mnle
Matrix: Water	15/0							Ŭ		Jampie	Prep Type		-
Analysis Batch: 232213													
Analysis Batch. 202210				Spike	LCS	LCS					%Rec.		
Analyte				Added		Qualifier	Unit		D	%Rec	Limits		
GRO (C4-C12)				800	781		ug/L		_	98	80 - 120		
							-						
0	LCS			1									
Surrogate	%Recovery	Qua	litier	Limits									
4-Bromofluorobenzene (Surr)	99			65 - 140									

Method: 8015B/5030B - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: 440-99160-E Matrix: Water	E-3 MS							Client	Sample ID: Prep T	: Matrix ype: Tot	•
Analysis Batch: 232213	• "						~-		
		Sample	Spike	MS	MS				%Rec.		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
GRO (C4-C12)	ND		800	758		ug/L		95	65 - 140		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			65 - 140								
			00 - 140			c	liont Sa		· Matrix Sr	niko Dun	licato
Lab Sample ID: 440-99160-E Matrix: Water			00 - 140			с	lient Sa	imple ID	: Matrix Sp Prep T	oike Dup ype: Tot	
Lab Sample ID: 440-99160-E Matrix: Water	E-3 MSD	Sample	Spike	MSD	MSD	С	lient Sa	ample ID	-	-	
Lab Sample ID: 440-99160-E Matrix: Water Analysis Batch: 232213	E-3 MSD Sample	Sample Qualifier			MSD Qualifier	C Unit	lient Sa D	mple ID %Rec	Prep T	-	tal/NA
Lab Sample ID: 440-99160-E Matrix: Water Analysis Batch: 232213 _{Analyte}	E-3 MSD Sample	-	Spike					-	Prep T	ype: Tot	tal/NA RPD
Lab Sample ID: 440-99160-E Matrix: Water Analysis Batch: 232213 _{Analyte}	E-3 MSD Sample Result	Qualifier	Spike Added	Result		Unit		%Rec	Prep T %Rec. Limits	ype: Tot	tal/NA RPD Limit
Lab Sample ID: 440-99160-E Matrix: Water Analysis Batch: 232213 Analyte GRO (C4-C12) Surrogate	E-3 MSD Sample Result ND	Qualifier MSD	Spike Added	Result		Unit		%Rec	Prep T %Rec. Limits	ype: Tot	tal/NA RPD Limit

TestAmerica Irvine

GC/MS VOA

Analysis Batch: 230645

ab Sample ID.	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
40-99248-2	B-1b-3	Total/NA	Solid	8260B/5030B	-
40-99248-2 MS	B-1b-3	Total/NA	Solid	8260B/5030B	
40-99248-2 MSD	B-1b-3	Total/NA	Solid	8260B/5030B	
40-99248-3	B-1-B-7	Total/NA	Solid	8260B/5030B	
CS 440-230645/5	Lab Control Sample	Total/NA	Solid	8260B/5030B	
/IB 440-230645/4	Method Blank	Total/NA	Solid	8260B/5030B	
alysis Batch: 23114	4				
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
40-99248-1	B-1b	Total/NA	Water	8260B/5030B	
40-99401-B-6 MS	Matrix Spike	Total/NA	Water	8260B/5030B	
40-99401-B-6 MSD	Matrix Spike Duplicate	Total/NA	Water	8260B/5030B	
.CS 440-231144/4	Lab Control Sample	Total/NA	Water	8260B/5030B	
/IB 440-231144/5	Method Blank	Total/NA	Water	8260B/5030B	
C VOA					

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-99248-2	B-1b-3	Total/NA	Solid	8015B/5030B	
440-99248-3	B-1-B-7	Total/NA	Solid	8015B/5030B	
LCS 440-231451/4	Lab Control Sample	Total/NA	Solid	8015B/5030B	
LCSD 440-231451/5	Lab Control Sample Dup	Total/NA	Solid	8015B/5030B	
MB 440-231451/6	Method Blank	Total/NA	Solid	8015B/5030B	

Analysis Batch: 232213

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
440-99160-E-3 MS	Matrix Spike	Total/NA	Water	8015B/5030B	
440-99160-E-3 MSD	Matrix Spike Duplicate	Total/NA	Water	8015B/5030B	
440-99248-1	B-1b	Total/NA	Water	8015B/5030B	
LCS 440-232213/6	Lab Control Sample	Total/NA	Water	8015B/5030B	
MB 440-232213/7	Method Blank	Total/NA	Water	8015B/5030B	

Client: Broadbent & Associates, Inc. Project/Site: ARCO 0374, Oakland

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description	
EY	Result exceeds normal dynamic range; reported as a min. est.	5

Glossary

Glossary		6
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	9
Dil Fac	Dilution Factor	_
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	10
DLC	Decision level concentration	_
MDA	Minimum detectable activity	
EDL	Estimated Detection Limit	
MDC	Minimum detectable concentration	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	13
NC	Not Calculated	
ND	Not detected at the reporting limit (or MDL or EDL if shown)	
PQL	Practical Quantitation Limit	
QC	Quality Control	
RER	Relative error ratio	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	

TEQ Toxicity Equivalent Quotient (Dioxin)

Laboratory: TestAmerica Irvine

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Authority	Program	EPA Region	Certification ID	Expiration Date
Alaska	State Program	10	CA01531	06-30-15
Arizona	State Program	9	AZ0671	10-13-15
California	LA Cty Sanitation Districts	9	10256	01-31-16 *
California	State Program	9	2706	06-30-16
Guam	State Program	9	Cert. No. 12.002r	01-23-15 *
Hawaii	State Program	9	N/A	01-29-16
Nevada	State Program	9	CA015312007A	07-31-15
New Mexico	State Program	6	N/A	01-29-15 *
Northern Mariana Islands	State Program	9	MP0002	01-29-15 *
Oregon	NELAP	10	4005	01-29-16
USDA	Federal		P330-09-00080	06-06-15
USEPA UCMR	Federal	1	CA01531	01-31-15

* Certification renewal pending - certification considered valid.

TestAmerica Irvine

			e Node Path P Facility No											-						d/yy):_ mber:_						Rush TA	AT: Yes		f <u>\</u> No <u>X</u>	
ab N	Name: Test America			Fac	ility A	ddres	s:	6407	Teleg	raph A	Avenu	e							Con	sultant/0	Contra	octor:		Вгоас	Ibent and Ass	ociates, Ir	nc.			1
ib A	Address: 17461 Derian Avenue Suite #10	00, Irvine, CA 9	2614	City	, Stat	te, ZIF	, Coc	e:		Oakla	and, C	A						·	Con	sultant/0	Contra	ictor Pi	roject	No:	06-88-60	2				1
bP	PM: Kathleen Robb			Lea	d Re	gulato	ry Ag	ency:		Alam	eda C	County	Publi	c Worl	ks Ag	ency			Add	ress: ·	4820	Busine	ss Ce	enter l	Drive, Suite 11	10, Fairfiel	ld, CA 945	534		
b F	Phone: 949-261-1022		· · · · ·	Cali	fornia	a Glob	al ID	No.:		T060	01001	06							Consultant/Contractor PM: Kristene Tidwell									1		
b S	Shipping Acont: 1103-6633-7			Enfo	os Pr	oposa	l No:		0085	L-0010	o / wi	R2865	09	9						Phone: 707-455-7290 Fax: 707-863-9046										1
bΕ	Bottle Order No:			Acc	ountii	ng Mo	de:		Pro	vision	х	00	ООС-ВИ ООС-RМ						Ema	ail EDD '	Го:	ktid	well@)broa	dbentinc.com	and to	b lab.enfos	sdoc@b	p.com	
her	r Info:			Stag	je:	Exec	ute (10)						end (8					invo	ice To:			BP_	x		Contrac	ctor			1
Pr	roject Manager (PM): Chuck Carmel				Ма	ıtrix		No	. Coi	ntain	ers /	Prese	ervat	tive				Requ	este	d Anal	yses				Re		be & QC	Level		1
P	M Phone: 925-275-3804													1		S0B	6										Standard	_x_		1
P	M Email: charles.carmel@bp.com			1				Containers								3y 82(8260	ol by								Full Data	Package			
.ab No. J	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor	is this location a well?	Total Number of Cont	Unpreserved	H2SO4	HNO3	HC	Methanol	1	GRO by 8015M	BTEX, MTBE & ETBE by 8260B		1,2-DCA, EDB & Ethanol by 8260B	Naphthalene by 8260B						Note: If samp Sample" in co and initial any	ole not colle omments a	and single-s	trike out		
	B-1b	1/16/2015	1120		x		n	6				x	1		x	×	×	x	x											1
	· · · · · · · · · · · · · · · · · · ·																													
	B-1b-3	1/16/2015	0855	×			n	1	x						×	×	x	×	x											1
	B-1-B-7	1/16/2015	0945	x			n	1	x						x	x	x	x	×											1
																			 	++										
	TB-374-01162015				x		n	1				1														Or	n Hold			
																· ·		İ												-
	· · · · · · · · · · · · · · · · · · ·															1														
																1								• •						
																								-	110010001000					4
																								The second second						
						·																								
																									440-992					II.
																										-o onen	, or ous	rouy		
mp	ler's Name: Alex Martinez					R	elino	uish	ed B	y / A1	ffiliat	ion			D	ate	Ti	me			A	ccept	ed B	y/A	ffiliation		Dat	te	Time	
	ler's Company: Broadbent & Assoc	iates, Inc.			a	L.	<u>د</u>	20		Z	2		87	ĄI	1/11	115	17	00	6	ne	1	1	~	TK	Twine		1/A	10 -	1700	-10:40
ipm ipm	ent Tracking No: 8037 8050 3044	Ship Date:	1/16/2015																	-/							′′			•
pec	ial Instructions: Fed	Ex S			7	8	Ō	O	31	24	9		î.							-										
·	THIS LINE - LAB USE ONLY: Cu	stody Seals In				emp			~		Con	ler Te		n Roce	aint-	1.8/	0.	E/C	1	Trip Bla	nk Y	NIC		M	IS/MSD Samp	le Submit	ted: Yes	No		

N

Client: Broadbent & Associates, Inc.

Login Number: 99248

List Number: 1 Creator: Kim, Guerry

Answer	Comment
True	
N/A	
True	
True	
True	
True	
N/A	
	True True True True True True True True

Job Number: 440-99248-1

List Source: TestAmerica Irvine

APPENDIX G

Soil Vapor Analytical Results – December 18, 2013

Table 2 Soil Vapor Analytical Results December 18, 2013 ARC Station No. 374 6407 Telegraph Avenue, Oakland, California

Soil Vapor Probe Identification	Probe Sample Depth (feet bgs)	Date Collected	GRO (µg/m³)	Benzene (µg/m³)	Toluene (μg/m³)	Ethylbenzene (μg/m3)	Total Xylenes* (μg/m³)	MTBE (µg/m ³)	Naphthalene (µg/m ³)	Carbon Dioxide (%)	Methane (%)	Oxygen (%)
SG-1A	2.5-3.0	12/18/2013	ND<8,500	ND<13	ND<15	ND<17	ND<17	ND<14	ND<21	3.1	<0.00021	18.0
ESLs			2,500,000	420.0	1,300,000	4,900	440,000	47,000	360	NA	NA	NA

Notes:

feet bgs = feet below ground surface μ g/m³ = micrograms per cubic meter GRO = gasoline range organics (C6-C12) MTBE = methyl tert-butyl ether ND<X.XX = not detected above reporting limit of X.XX μ g/m³

NA = not analyzed

ESLs - Tier 1 Environmental Screening Levels, Screening for Environmental Concerns at Sites with Contaminated Soil and Groundwater, California Regional Water Quality Control Board (CRWQCB), Interim Final, December 2013. Commercial/Industrical exposure scenario; Table E-2