Atlantic Richfield Company

Chuck Carmel

Environmental Business Manager

RECEIVED

4:12 pm, Apr 30, 2010

Alameda County Environmental Health PO Box 1257 San Ramon, CA 94583 Phone: (925) 275-3803 Fax: (925) 275-3815 E-Mail: charles.carmel@bp.com

30 April 2010

Re: First Quarter 2010 Semi-Annual Ground-Water Monitoring Report

Atlantic Richfield Company Station #374 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached document are true and correct.

Submitted by,

Chuck Carmel Environmental Business Manager

Attachment:

First Quarter 2010 Semi-Annual Ground-Water Monitoring Report

Atlantic Richfield Company Station #374 6407 Telegraph Avenue, Oakland, California ACEH Case #RO0000078

Prepared for

Mr. Chuck Carmel Environmental Business Manager Atlantic Richfield Company P.O. Box 1257 San Ramon, California 94583

Prepared by

1324 Mangrove Avenue, Suite 212 Chico, California 95926 (530) 566-1400 www.broadbentinc.com

30 April 2010

Project No. 06-88-602

30 April 2010

Project No. 06-88-602

Atlantic Richfield Company P.O. Box 1257 San Ramon, CA 94583 Submitted via ENFOS

Attn.: Mr. Chuck Carmel

Re: First Quarter 2010 Semi-Annual Ground-Water Monitoring Report, Atlantic Richfield

Company Station #374, 6407 Telegraph Avenue, Oakland, Alameda County, California

ACEH Case #RO0000078

Dear Mr. Carmel:

Attached is the *First Quarter 2010 Semi-Annual Ground-Water Monitoring Report* for Atlantic Richfield Company (a BP affiliated company) Station #374 located at 6407 Telegraph Avenue, Oakland, California (Site). This report presents results of ground-water monitoring conducted at the Site during the First Quarter of 2010.

Should you have questions regarding the work performed or results obtained, please do not hesitate to contact us at (530) 566-1400.

Sincerely,

BROADBENT & ASSOCIATES, INC.

Thomas A. Venus, P.E.

Senior Engineer

Enclosures

cc: Mr. Paresh Khatri, Alameda County Environmental Health (Submitted via ACEH ftp site)

Electronic copy uploaded to GeoTracker

NEVADA

ARIZONA

CALIFORNIA

TEXAS

STATION #374 GROUND-WATER MONITORING REPORT

Facility: #374 Address: 6407 Telegraph Avenue, Oakland, California

Environmental Business Manager: Mr. Chuck Carmel

Consulting Co./Contact Persons: Broadbent & Associates, Inc.(BAI)/Mr. Tom Venus, PE
(530) 566-1400

Consultant Project No.: 06-88-602

Primary Agency/Regulatory ID No.: Alameda County Environmental Health (ACEH)

ACEH Case #RO0000078

Facility Permits/Permitting Agency: NA

WORK PERFORMED THIS QUARTER (First Quarter 2010):

- 1. Prepared and submitted Fourth Quarter 2009 Status Report (BAI, 01/22/2010).
- 2. Conducted ground-water monitoring/sampling for First Quarter 2010. Work performed on 19 February 2010 by BAI.

WORK PROPOSED FOR NEXT QUARTER (Second Quarter 2010):

- 1. Prepare and submit this *First Quarter 2010 Semi-Annual Ground-Water Monitoring Report* (contained herein).
- 2. Prepare and submit Soil & Ground-Water Investigation Work Plan to ACEH by 5 May 2010.
- 3. No environmental field work is presently scheduled at the Site for Second Quarter 2010.

RESULTS SUMMARY:

Current phase of project: Ground-water monitoring/sampling/characterization Semi-Annually: MW-1, MW-2, MW-3, MW-4, MW-5, Frequency of ground-water monitoring: **MW-6** Semi-Annually (1Q and 3Q): MW-1, MW-2 and MW-4 Frequency of ground-water sampling: Annually (3Q): MW-3, MW-5, and MW-6 Is free product (FP) present on-site: No Current remediation techniques: NA Depth to ground water (below TOC): 5.31 ft (MW-3) to 7.36 ft (MW-2) General ground-water flow direction: West-Southwest Approximate hydraulic gradient: 0.05 ft/ft

DISCUSSION:

First quarter 2010 ground-water monitoring and sampling was conducted at Station #374 on 19 February 2010 by BAI. Water levels were gauged in five of the six wells at the Site. Well MW-5 was inaccessible due to a parked car. No other irregularities were noted in the field during this quarter's water level gauging. Depth-to-water measurements ranged from 5.31 ft at MW-3 to 7.36 ft at MW-2. Resulting ground-water surface elevations ranged from 158.50 ft above datum in well MW-1 to 152.13 ft at well MW-6. Water level elevations are summarized in Table 1. Water level elevations yielded a potentiometric ground-water flow direction and gradient to the west-southwest at approximately 0.05 ft/ft. Ground-water monitoring field data sheets are provided within Appendix A. Measured depths to ground water and respective ground-water elevations are summarized in Table 1. Current and historic ground-water flow directions and gradients are provided in Table 3. A Site Location Map is provided as Drawing 1. Potentiometric ground-water elevation contours are presented in Drawing 2.

Page 2

Consistent with the current ground-water sampling schedule, water samples were collected from wells MW-1, MW-2, and MW-4 at the Site. No irregularities were reported during sampling. Samples were submitted under chain-of-custody protocol to Calscience Environmental Laboratories, Inc. (Garden Grove, California), for analysis of Gasoline Range Organics (GRO, C6-12) by EPA Method 8015B; for Benzene, Toluene, Ethylbenzene, and Total Xylenes (BTEX) by EPA Method 8260B; and Methyl Tert-Butyl Ether (MTBE), Ethyl Tert-Butyl Ether (ETBE), Tert-Amyl Methyl Ether (TAME), Di-Isopropyl ether (DIPE), Tert-Butyl Alcohol (TBA), 1,2-Dibromomethane (EDB), 1,2-Dichloroethane (1,2-DCA), and Ethanol by EPA Method 8260B. No significant irregularities were noted during laboratory analysis of the samples. Ground-water sampling field data sheets and the laboratory analytical report, including chain-of-custody documentation, are provided in Appendix A.

GRO was detected above the laboratory reporting limits in well MW-4 at concentrations of 12,000 micrograms per liter (μ g/L). Benzene, Ethylbenzene, Toluene, and Total Xylenes were detected above the laboratory reporting limit in well MW-4 at concentrations of 1,200 μ g/L, 230 μ g/L, 120 μ g/L and 390 μ g/L, respectively. MTBE was detected above the laboratory reporting limits in two of the three wells sampled at concentrations up to 170 μ g/L in well MW-1. TAME was detected above the laboratory reporting limits in one of the three wells sampled at concentrations of 1.2 μ g/L in well MW-1. The remaining fuel constituents were not detected above their laboratory reporting limits in the three wells sampled this quarter. Historic laboratory analytical results are summarized in Table 1 and Table 2. The most recent GRO, Benzene, and MTBE concentrations are also presented in Drawing 2. Ground-water monitoring data (GEO_WELL) and laboratory analytical results (EDF) were uploaded to the GeoTracker AB2886 database. Upload confirmation receipts are provided in Appendix B.

CONCLUSIONS AND RECOMMENDATIONS:

Water level elevations were within historical minimum and maximum ranges in each well with the exception of a historic maximum level observed in well MW-3. The potentiometric ground-water flow direction and gradient was generally consistent with historical data. Detected analyte concentrations were within the historic minimum and maximum ranges recorded for each well with the exception of a historic minimum MTBE concentration observed in well MW-4. Hydrocarbon concentrations remained relatively stable in comparison to recent sampling events. Concentrations of GRO, Benzene, and MTBE are significant, justifying current efforts to characterize the contaminated soil and ground water at the Site. A Soil & Ground-Water Investigation Work Plan is in preparation for submittal by 11 May 2010, with the goal of gathering the information necessary to prepare a Feasibility Study and/or Corrective Action Plan by 12 August 2010. The next ground-water monitoring and sampling event will be conducted during the Third Quarter of 2010.

CLOSURE:

The findings presented in this report are based upon: observations of BAI field personnel (see Appendix A), the points investigated, and results of laboratory tests performed by Calscience Environmental Laboratories, Inc. (Garden Grove, California). Our services were performed in accordance with the generally accepted standard of practice at the time this report was written. No other warranty, expressed or implied was made. This report has been prepared for the exclusive use of Atlantic Richfield Company. It is possible that variations in soil or ground-water conditions could exist beyond points explored in this investigation. Also, changes in site conditions could occur in the future due to variations in rainfall, temperature, regional water usage, or other factors.

Page 3

ATTACHMENTS:

- Drawing 1. Site Location Map, Station #374, 6407 Telegraph Avenue, Oakland, California
- Drawing 2. Ground-Water Elevation Contours and Analytical Summary Map, 19 February 2010, Station #374, 6407 Telegraph Avenue, Oakland, California
- Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses, Station #374, 6407 Telegraph Ave., Oakland, California
- Table 2. Summary of Fuel Additives Analytical Data, Station #374, 6407 Telegraph Ave., Oakland, California
- Table 3. Historical Ground-Water Flow Direction and Gradient, Station #374, 6407 Telegraph Ave., Oakland, California
- Appendix A. BAI Ground-Water Sampling Data Package (Includes Field Data Sheets, Non-Hazardous Waste Data Form, Laboratory Analytical Report with Chain-of-Custody Documentation, and Field Procedures)
- Appendix B. GeoTracker Upload Confirmation Receipts

BROADBENT & ASSOCIATES, INC.

ENGINEERING, WATER RESOURCES & ENVIRONMENTAL 1324 Mangrove Ave. Suite 212, Chico, California
Project No.: 06-88-602 Date: 03/24/10

Station #374 6407 Telegraph Ave. Oakland, California Ground-Water Elevation Contours and Analytical Summary Map 19 February 2010 Drawing

2

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

				Top of	Bottom of		Water Level			Concentra	tions in (µ	g/L)			
Well and			TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН
MW-1															
6/20/2000			158.91	7.00	27.0	6.86	152.05								
9/28/2000			158.91	7.00	27.0	7.50	151.41								
12/17/2000			158.91	7.00	27.0	7.49	151.42								
3/23/2001			158.91	7.00	27.0	5.90	153.01	<50	< 0.5	< 0.5	< 0.5	< 0.5	2,710		
6/21/2001			158.91	7.00	27.0	7.45	151.46								
9/23/2001			158.91	7.00	27.0	8.46	150.45								
12/31/2001			158.91	7.00	27.0	5.50	153.41								
3/21/2002			158.91	7.00	27.0	4.71	154.20	<5,000	< 50	< 50	< 50	<50	2,000		
4/17/2002			158.91	7.00	27.0	5.54	153.37								
8/12/2002			158.91	7.00	27.0	7.77	151.14								
12/6/2002			158.91	7.00	27.0	7.65	151.26								
1/29/2003		ь	158.91	7.00	27.0	5.88	153.03								
5/23/2003			158.91	7.00	27.0	5.62	153.29	<10,000	<100	<100	<100	<100	1,600	1.3	7.1
9/4/2003			158.91	7.00	27.0	7.85	151.06								
11/20/2003	P		158.91	7.00	27.0	8.17	150.74	1,600	<10	<10	<10	<10	1,500	1.7	6.7
02/02/2004	P	f	164.57	7.00	27.0	6.71	157.86							1.0	
05/14/2004	P		164.57	7.00	27.0	7.08	157.49	<2,500	<25	<25	<25	<25	1,200	1.4	6.6
09/02/2004	P		164.57	7.00	27.0	8.12	156.45	580	<5.0	<5.0	< 5.0	< 5.0	660	3.8	6.7
11/04/2004	P		164.57	7.00	27.0	7.38	157.19	1,700	<10	<10	<10	<10	580	6.0	6.5
02/08/2005	P		164.57	7.00	27.0	6.60	157.97	<1,000	<10	<10	<10	<10	610	0.71	6.5
05/09/2005	P	e	164.57	7.00	27.0	6.84	157.73	540	<5.0	<5.0	<5.0	5.5	620	3.12	6.6
08/11/2005	P		164.57	7.00	27.0	7.36	157.21	540	<2.5	<2.5	<2.5	4.0	390	0.8	6.6
11/18/2005	P	e	164.57	7.00	27.0	8.02	156.55	350	<2.5	<2.5	<2.5	<2.5	340	2.6	6.7
02/16/2006	P	e	164.57	7.00	27.0	6.44	158.13	350	<2.5	<2.5	<2.5	<2.5	340	1.6	6.7
5/30/2006	P		164.57	7.00	27.0	6.87	157.70	270	<2.5	<2.5	<2.5	<2.5	420	4.73	6.4
8/24/2006	P		164.57	7.00	27.0	7.75	156.82	95	<5.0	<5.0	<5.0	< 5.0	180	0.65	6.9
11/1/2006	P		164.57	7.00	27.0	8.28	156.29	120	<5.0	<5.0	<5.0	<5.0	220	1.65	7.07
2/7/2007	NP	e	164.57	7.00	27.0	7.40	157.17	120	<5.0	< 5.0	<5.0	< 5.0	190	1.88	7.45
5/8/2007	P		164.57	7.00	27.0	6.50	158.07	< 500	<5.0	<5.0	<5.0	<5.0	420	1.21	6.94
8/8/2007	NP	e	164.57	7.00	27.0	8.17	156.40	82	< 0.50	< 0.50	< 0.50	< 0.50	110	1.16	7.00
11/14/2007	NP		164.57	7.00	27.0	8.01	156.56	170	<2.5	<2.5	<2.5	<2.5	210	1.92	6.49

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

				Top of	Bottom of		Water Level			Concentra	tions in (µ;	g/L.)			
Well and			TOC	Screen	Screen	DTW	Elevation	GRO/		Concentra	Ethyl-	Total		DO	l
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН
MW-1 Cont.															
2/22/2008	P		164.57	7.00	27.0	6.00	158.57	<50	< 0.50	< 0.50	< 0.50	< 0.50	250	2.57	6.65
5/24/2008	NP		164.57	7.00	27.0	7.58	156.99	< 50	< 5.0	< 5.0	<5.0	< 5.0	380	2.28	6.81
8/21/2008	NP		164.57	7.00	27.0	8.60	155.97	< 50	<2.5	<2.5	<2.5	<2.5	170	2.16	6.98
11/19/2008	NP		164.57	7.00	27.0	8.88	155.69	<50	< 0.50	< 0.50	< 0.50	< 0.50	30	2.12	7.27
2/23/2009	P		164.57	7.00	27.0	6.40	158.17	78	<2.5	<2.5	<2.5	<2.5	240	2.19	6.03
5/14/2009	P		164.57	7.00	27.0	6.67	157.90	53	< 0.50	< 0.50	< 0.50	< 0.50	200	1.75	6.69
8/20/2009	NP	i (GRO)	164.57	7.00	27.0	8.25	156.32	150	<2.0	<2.0	<2.0	<2.0	170	2.14	6.25
2/19/2010	P		164.57	7.00	27.0	6.07	158.50	<50	< 0.50	< 0.50	<0.50	<0.50	170	0.92	6.66
MW-2															
6/20/2000			157.92	7.00	27.0	7.67	150.25								
9/28/2000			157.92	7.00	27.0	8.51	149.41								
12/17/2000			157.92	7.00	27.0	8.14	149.78								
3/23/2001			157.92	7.00	27.0	7.21	150.71	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
6/21/2001			157.92	7.00	27.0	7.99	149.93								
9/23/2001			157.92	7.00	27.0	8.52	149.40								
12/31/2001			157.92	7.00	27.0	6.01	151.91								
3/21/2002			157.92	7.00	27.0	5.95	151.97	< 50	< 0.5	< 0.5	< 0.5	< 0.5	45		
4/17/2002			157.92	7.00	27.0	6.45	151.47								
8/12/2002			157.92	7.00	27.0	8.08	149.84								
12/6/2002			157.92	7.00	27.0	8.29	149.63								
1/29/2003		b	157.92	7.00	27.0	7.22	150.70								
5/23/2003			157.92	7.00	27.0	6.85	151.07	< 50	< 0.50	< 0.50	< 0.50	< 0.50	55	1.4	7.2
9/4/2003			157.92	7.00	27.0	7.94	149.98								
11/20/2003			157.92	7.00	27.0	8.05	149.87								
02/02/2004	P	f	163.46	7.00	27.0	7.00	156.46	74	< 0.50	< 0.50	< 0.50	< 0.50	37	1.1	8.9
05/14/2004			163.46	7.00	27.0	7.97	155.49								
09/02/2004	P		163.46	7.00	27.0	8.19	155.27	<250	<2.5	<2.5	<2.5	<2.5	67	2.7	6.9
11/04/2004			163.46	7.00	27.0	7.54	155.92								
02/08/2005	P		163.46	7.00	27.0	6.72	156.74	< 50	< 0.50	< 0.50	< 0.50	< 0.50	30	0.86	6.7
05/09/2005			163.46	7.00	27.0	7.16	156.30								

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

Well and			TOC	Top of Screen	Bottom of Screen	DTW	Water Level Elevation	GRO/		Concentra	tions in (µ; Ethyl-	g/L) Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	МТВЕ	(mg/L)	pН
•	1/111	Comments	(Icct)	(It bgs)	(It bgs)	(Icct)	(ICCL)	11116	Denzene	Toruciic	Delizene	Ayrenes	WIIDE	(IIIg/L)	PII
MW-2 Cont.															
08/11/2005	P		163.46	7.00	27.0	7.85	155.61	< 50	< 0.50	< 0.50	< 0.50	< 0.50	35	1.0	6.6
11/18/2005			163.46	7.00	27.0	8.23	155.23								
02/16/2006	P		163.46	7.00	27.0	6.82	156.64	<50	< 0.50	< 0.50	< 0.50	< 0.50	39	1.3	7.0
5/30/2006			163.46	7.00	27.0	7.23	156.23								
8/24/2006	P		163.46	7.00	27.0	8.00	155.46	60	< 0.50	< 0.50	< 0.50	< 0.50	25	0.90	6.8
11/1/2006			163.46	7.00	27.0	8.38	155.08								
2/7/2007	NP		163.46	7.00	27.0	7.88	155.58	< 50	0.50	< 0.50	< 0.50	< 0.50	7.2	0.94	7.39
5/8/2007			163.46	7.00	27.0	7.28	156.18								
8/8/2007	NP		163.46	7.00	27.0	8.38	155.08	88	3.2	< 0.50	< 0.50	< 0.50	7.2	0.94	7.75
11/14/2007			163.46	7.00	27.0	8.10	155.36								
2/22/2008	P		163.46	7.00	27.0	6.75	156.71	<50	< 0.50	< 0.50	< 0.50	< 0.50	24	2.18	7.02
5/24/2008			163.46	7.00	27.0	7.98	155.48								
8/21/2008	NP		163.46	7.00	27.0	8.58	154.88	<50	2.6	< 0.50	< 0.50	< 0.50	4.9	2.20	7.11
11/19/2008			163.46	7.00	27.0	8.66	154.80								
2/23/2009	P		163.46	7.00	27.0	6.67	156.79	74	1.0	< 0.50	< 0.50	< 0.50	24	2.25	6.16
5/14/2009			163.46	7.00	27.0	7.02	156.44								
8/20/2009	NP		163.46	7.00	27.0	8.41	155.05	82	2.4	< 0.50	< 0.50	< 0.50	8.4	2.19	6.37
2/19/2010	NP		163.46	7.00	27.0	7.36	156.10	<50	<0.50	<0.50	<0.50	<0.50	22	0.81	6.90
MW-3															
6/20/2000			153.64	7.00	27.0	6.42	147.22	<50	<0.5	<0.5	<0.5	<1.0	<10		
9/28/2000			153.64	7.00	27.0	7.31	146.33								
12/17/2000			153.64	7.00	27.0	6.45	147.19	<50	<0.5	< 0.5	<0.5	< 0.5	<2.5		
3/23/2001			153.64	7.00	27.0	6.01	147.63								
6/21/2001			153.64	7.00	27.0	6.80	146.84	110	5.5	< 0.5	5.4	4.1	2.5		
9/23/2001			153.64	7.00	27.0	7.32	146.32								
12/31/2001			153.64	7.00	27.0	4.48	149.16	<50	<0.5	< 0.5	< 0.5	<0.5	4.9		
3/21/2002			153.64	7.00	27.0	4.36	149.28								
4/17/2002			153.64	7.00	27.0	5.31	148.33	<50	<0.5	< 0.5	< 0.5	<0.5	8.7		
8/12/2002			153.64	7.00	27.0	7.00	146.64								
12/6/2002			153.64	7.00	27.0	7.32	146.32	<50	<0.5	< 0.5	<0.5	<0.5	6.2	1.4	6.7

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

				Top of	Bottom of		Water Level			Concentra	tions in (µ	g/L)			
Well and			TOC	Screen	Screen	DTW	Elevation	GRO/			Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН
MW-3 Cont.															
1/29/2003		b	153.64	7.00	27.0	6.07	147.57								
5/23/2003			153.64	7.00	27.0	6.45	147.19	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.6	0.9	7.7
9/4/2003		С	153.64	7.00	27.0	6.93	146.71								
11/20/2003		С	153.64	7.00	27.0	7.04	146.60								
02/02/2004		f	159.21	7.00	27.0	5.92	153.29								
05/14/2004			159.21	7.00	27.0	7.52	151.69								
09/02/2004	P		159.21	7.00	27.0	7.19	152.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	6.5	9.3	8.9
11/04/2004			159.21	7.00	27.0	6.40	152.81								
02/08/2005			159.21	7.00	27.0	6.01	153.20								
05/09/2005			159.21	7.00	27.0	6.74	152.47								
08/11/2005	P		159.21	7.00	27.0	6.77	152.44	<50	< 0.50	< 0.50	< 0.50	< 0.50	11	1.9	6.5
11/18/2005			159.21	7.00	27.0	7.83	151.38								
02/16/2006			159.21	7.00	27.0	7.26	151.95								
5/30/2006			159.21	7.00	27.0	5.82	153.39								
8/24/2006	P		159.21	7.00	27.0	7.00	152.21	<50	< 0.50	< 0.50	< 0.50	< 0.50	7.6	1.15	6.4
11/1/2006			159.21	7.00	27.0	7.50	151.71								
2/7/2007			159.21	7.00	27.0	6.90	152.31								
5/8/2007			159.21	7.00	27.0	5.95	153.26								
8/8/2007	NP		159.21	7.00	27.0	7.47	151.74	<50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	1.21	6.93
11/14/2007			159.21	7.00	27.0	7.05	152.16								
2/22/2008			159.21	7.00	27.0	5.50	153.71								
5/24/2008			159.21	7.00	27.0	7.03	152.18								
8/21/2008	NP		159.21	7.00	27.0	7.80	151.41	<50	< 0.50	< 0.50	< 0.50	< 0.50	3.1	2.11	6.84
11/19/2008			159.21	7.00	27.0	7.69	151.52								
2/23/2009			159.21	7.00	27.0	7.28	151.93								
5/14/2009			159.21	7.00	27.0	6.17	153.04								
8/20/2009	NP		159.21	7.00	27.0	7.38	151.83	<50	< 0.50	< 0.50	< 0.50	< 0.50	2.2	2.05	7.01
2/19/2010			159.21	7.00	27.0	5.31	153.90			-					
MW-4															
6/20/2000		С	156.53	7.00	27.0	7.50	149.03	20,000	5,100	440	1,000	1,700	<250		

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

				Top of	Bottom of		Water Level			Concentre	tions in (µ	п/І)			
Well and			тос	Screen	Screen	DTW	Elevation	GRO/		Concentra	Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene		Xylenes	MTBE	(mg/L)	pН
MW-4 Cont.															
9/28/2000			156.53	7.00	27.0	8.20	148.33								
12/17/2000			156.53	7.00	27.0	8.11	148.42	4,320	1,240	<20	27.2	249	<100		
3/23/2001			156.53	7.00	27.0	6.69	149.84								
6/21/2001			156.53	7.00	27.0	8.01	148.52	2,800	470	16	19	160	130		
9/23/2001			156.53	7.00	27.0	8.91	147.62								
12/31/2001			156.53	7.00	27.0	4.42	152.11	4,600	1,500	100	160	210	160		
3/21/2002			156.53	7.00	27.0	4.98	151.55								
4/17/2002			156.53	7.00	27.0	6.23	150.30	7,100	2,200	110	290	450	<250		
8/12/2002			156.53	7.00	27.0	8.24	148.29								
12/6/2002		a	156.53	7.00	27.0	8.42	148.11	1,500	410	6.8	20	29	43	1.1	6.7
1/29/2003		b	156.53	7.00	27.0	7.20	149.33								
5/23/2003			156.53	7.00	27.0	7.18	149.35	<5,000	1,300	89	210	260	< 50	1.4	6.9
9/4/2003		С	156.53	7.00	27.0	8.15	148.38								
11/20/2003		с	156.53	7.00	27.0	8.73	147.80								
02/02/2004	P	c, f, g	163.25	7.00	27.0	6.25	157.00	980	280	21	29	38	29	1.4	10.6
05/14/2004		g	163.25	7.00	27.0	8.38	154.87								
09/02/2004	P	g	163.25	7.00	27.0	8.36	154.89	260	11	<1.0	5.5	14	28	2.4	7.4
11/04/2004		c, g	163.25	7.00	27.0	7.71	155.54								
02/08/2005	P	g	163.25	7.00	27.0	6.27	156.98	7,500	1,700	320	480	920	45	0.65	6.5
05/09/2005		g	163.25	7.00	27.0	5.90	157.35								
08/11/2005	P	g	163.25	7.00	27.0	7.96	155.29	3,100	1,100	41	160	110	32	0.6	6.5
11/18/2005		g	163.25	7.00	27.0	8.57	154.68								
02/16/2006	P	g	163.25	7.00	27.0	6.28	156.97	9,400	1,800	130	600	420	35	0.5	6.8
5/30/2006		g	162.47	7.00	27.0	7.02	155.45								
8/24/2006	P		162.47	7.00	27.0	8.26	154.21	3,600	1,400	21	110	70	39	1.00	6.8
11/1/2006			162.47	7.00	27.0	8.67	153.80								
2/7/2007	NP		162.47	7.00	27.0	8.02	154.45	3,100	570	17	170	110	67	0.95	7.07
5/8/2007			162.47	7.00	27.0	7.03	155.44								
8/8/2007	NP		162.47	7.00	27.0	8.60	153.87	2,900	630	22	67	57	72	0.93	6.79
11/14/2007			162.47	7.00	27.0	8.53	153.94								
2/22/2008	P		162.47	7.00	27.0	6.25	156.22	3,900	880	39	180	92	70	2.31	6.87

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

				Top of	Bottom of		Water Level			Concentra	tions in (µ	g/I)			
Well and			TOC	Screen	Screen	DTW	Elevation	GRO/		concenti a	Ethyl-	Total		DO	
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MTBE	(mg/L)	pН
MW-4 Cont.															
5/24/2008		d	162.47	7.00	27.0										
8/21/2008	NP		162.47	7.00	27.0	8.96	153.51	3,700	1,100	26	85	130	53	2.26	6.80
11/19/2008			162.47	7.00	27.0	9.20	153.27								
2/23/2009	P		162.47	7.00	27.0	6.35	156.12	3,000	220	9.1	23	19	39	2.21	6.51
5/14/2009			162.47	7.00	27.0	7.00	155.47								
8/20/2009	NP		162.47	7.00	27.0	8.05	154.42	5,700	1,100	35	110	100	23	2.17	6.81
2/19/2010	P	i	162.47	7.00	27.0	5.71	156.76	12,000	1,200	120	230	390	<5.0	0.81	6.70
MW-5															
6/20/2000			151.33	10.00	23.0	7.84	143.49	< 50	< 0.5	< 0.5	< 0.5	<1.0	<10		
9/28/2000			151.33	10.00	23.0	8.37	142.96	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
12/17/2000			151.33	10.00	23.0	8.36	142.97	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
3/23/2001			151.33	10.00	23.0	7.55	143.78	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
6/21/2001			151.33	10.00	23.0	8.20	143.13	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
9/23/2001			151.33	10.00	23.0	8.68	142.65	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
12/31/2001			151.33	10.00	23.0	7.57	143.76	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
3/21/2002			151.33	10.00	23.0	6.12	145.21	<50	< 0.5	< 0.5	< 0.5	< 0.5	3.2		
4/17/2002			151.33	10.00	23.0	6.61	144.72	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
8/12/2002			151.33	10.00	23.0	8.14	143.19	< 50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5	4.1	7.6
12/6/2002			151.33	10.00	23.0	8.65	142.68	<50	< 0.5	< 0.5	<0.5	<0.5	<2.5	1.1	6.8
1/29/2003		b	151.33	10.00	23.0	7.22	144.11	< 50	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	1	6.6
5/23/2003			151.33	10.00	23.0	7.31	144.02	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.1	6.6
9/4/2003			151.33	10.00	23.0	9.50	141.83	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.2	6.7
11/20/2003			151.33	10.00	23.0	8.31	143.02								
02/02/2004		c, f, h	151.33	10.00	23.0	6.92	144.41								
05/14/2004		h	151.33	10.00	23.0	8.56	142.77								
09/02/2004	P	h	151.33	10.00	23.0	8.79	142.54	< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.5	6.8
11/04/2004		c, h	151.33	10.00	23.0	8.33	143.00								
02/08/2005		h	151.33	10.00	23.0	7.28	144.05								
05/09/2005		h	151.33	10.00	23.0	8.19	143.14								
08/11/2005	P	h	151.33	10.00	23.0	8.39	142.94	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	1.2	6.6

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

					1011 110 11, 0 10										
			mo a	Top of	Bottom of		Water Level	ano.	I	Concentra	tions in (µ	,			
Well and	P/NP	G	TOC	Screen	Screen	DTW	Elevation	GRO/ TPHg	D	Т-1	Ethyl-	Total	МТВЕ	DO (m=/T)	11
Sample Date	P/NP	Comments	(feet)	(ft bgs)	(ft bgs)	(feet)	(feet)	TPHg	Benzene	Toluene	Benzene	Xylenes	MIBE	(mg/L)	pН
MW-5 Cont.															
11/18/2005		h	151.33	10.00	23.0	11.25	140.08								
02/16/2006		h	151.33	10.00	23.0	9.22	142.11								
5/30/2006		h		10.00	23.0	7.52									
8/24/2006	P			10.00	23.0	7.95		< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.60	6.6
11/1/2006				10.00	23.0	8.32									
2/7/2007				10.00	23.0	8.25									
5/8/2007				10.00	23.0	7.60									
8/8/2007	P			10.00	23.0	8.12		< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	3.26	7.31
11/14/2007				10.00	23.0	9.10									
2/22/2008				10.00	23.0	7.48									
5/24/2008				10.00	23.0	8.12									
8/21/2008	P			10.00	23.0	8.65		< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.14	6.54
11/19/2008				10.00	23.0	11.86									
2/23/2009				10.00	23.0	10.20									
5/14/2009				10.00	23.0	9.63									
8/20/2009	P			10.00	23.0	8.52		< 50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	2.01	6.47
2/19/2010		d		10.00	23.0										
MW-6															
6/20/2000			153.84	5.00	15.0	4.79	149.05								
9/28/2000			153.84	5.00	15.0	5.39	148.45								
12/17/2000			153.84	5.00	15.0	4.71	149.13								
3/23/2001			153.84	5.00	15.0	4.69	149.15	<50	< 0.5	< 0.5	< 0.5	< 0.5	<2.5		
6/21/2001			153.84	5.00	15.0	5.22	148.62								
9/23/2001			153.84	5.00	15.0	5.40	148.44								
12/31/2001			153.84	5.00	15.0	3.95	149.89								
3/21/2002			153.84	5.00	15.0	2.94	150.90	<50	< 0.5	< 0.5	< 0.5	< 0.5	5.2		
4/17/2002			153.84	5.00	15.0	5.11	148.73								
8/12/2002			153.84	5.00	15.0	5.23	148.61								
12/6/2002			153.84	5.00	15.0	5.29	148.55								
1/29/2003		b	153.84	5.00	15.0	4.79	149.05								
	1	1	T.	l .	I .	1	1	1	1	I .	1	1 1		1	1

Table 1. Summary of Ground-Water Monitoring Data: Relative Water Elevations and Laboratory Analyses
Station #374, 6407 Telegraph Ave., Oakland, CA

				Top of	Bottom of		Water Level			Concentra	tions in (µ;	g/L)			
Well and Sample Date	P/NP	Comments	TOC (feet)	Screen (ft bgs)	Screen (ft bgs)	DTW (feet)	Elevation (feet)	GRO/ TPHg	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	МТВЕ	DO (mg/L)	pН
MW-6 Cont.															
5/23/2003			153.84	5.00	15.0	4.31	149.53	< 50	< 0.50	< 0.50	< 0.50	< 0.50	9.4	1	6.7
09/04/03		d	153.84	5.00	15.0										
11/20/2003			153.84	5.00	15.0	6.31	147.53								
02/02/2004		f	159.41	5.00	15.0	4.78	154.63								
05/14/2004			159.41	5.00	15.0	6.29	153.12								
09/02/2004		d	159.41	5.00	15.0	5.79	153.62								
11/04/2004		d	159.41	5.00	15.0										
02/08/2005			159.41	5.00	15.0	5.13	154.28								
05/09/2005			159.41	5.00	15.0	4.52	154.89								
08/11/2005	P		159.41	5.00	15.0	5.02	154.39	< 50	< 0.50	< 0.50	< 0.50	< 0.50	7.9	2.1	6.6
11/18/2005			159.41	5.00	15.0	6.31	153.10								
02/16/2006			159.41	5.00	15.0	4.24	155.17								
5/30/2006			159.41	5.00	15.0	4.45	154.96								
8/24/2006	P		159.41	5.00	15.0	5.18	154.23	< 50	< 0.50	< 0.50	< 0.50	< 0.50	12	3.4	6.8
11/1/2006			159.41	5.00	15.0	6.05	153.36								
2/7/2007			159.41	5.00	15.0	5.00	154.41								
5/8/2007			159.41	5.00	15.0	4.30	155.11								
8/8/2007	NP		159.41	5.00	15.0	5.51	153.90	< 50	< 0.50	< 0.50	< 0.50	< 0.50	0.57	2.94	6.87
11/14/2007			159.41	5.00	15.0	5.38	154.03								
2/22/2008			159.41	5.00	15.0	4.70	154.71								
5/24/2008			159.41	5.00	15.0	5.25	154.16								
8/21/2008	NP		159.41	5.00	15.0	6.14	153.27	< 50	< 0.50	< 0.50	< 0.50	< 0.50	1.9	1.99	7.13
11/19/2008			159.41	5.00	15.0	5.94	153.47								
2/23/2009			159.41	5.00	15.0	5.00	154.41								
5/14/2009			159.41	5.00	15.0	4.60	154.81								
8/20/2009	NP		159.41	5.00	15.0	5.65	153.76	< 50	< 0.50	< 0.50	< 0.50	< 0.50	2.0	1.98	6.81
2/19/2010			159.41	5.00	15.0	7.28	152.13								

SYMBOLS AND ABBREVIATIONS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above laboratory reporting limit

DO = Dissolved oxygen

DTW = Depth to water in ft below TOC

ft bgs = Feet below ground surface

GRO = Gasoline range organics

GWE = Groundwater elevation measured in ft

mg/L = Milligrams per liter

MTBE = Methyl tert-butyl ether

NP = Well was not purged prior to sampling

P = Well was purged prior to sampling

TOC = Top of casing measured in ft

TPH-g = Total petroleum hydrocarbons as gasoline

 $\mu g/L = Micrograms per liter$

BTEX = Benzene, toluene, ethylbenzene and xylenes

FOOTNOTES:

- a = Chromatogram pattern: Gasoline C6-C10 for GRO/TPH-g.
- b = Beginning this quarter, groundwater samples were analyzed by EPA method 8260B for TPH-g, BTEX, and fuel oxygenates.
- c = Wells gauged with ORC sock in well.
- d = Well inaccessible
- e = The hydrocarbon result for GRO was partly due to individual peaks in the quantitative range.
- f = Well resurveyed on 1/27/2004 to NAVD88
- g = Upon review of survey data (1/27/2004), TOC elevation for MW-4 is actually 162.47 ft.
- h = Upon review of survey data (1/27/2004), MW-5 was not surveyed from the TOC. MW-5 was surveyed from the pavement due to inaccessibility to the TOC. Therefore, survey data for MW-5 from the TOC is unavailable. Historic data prior to 5/30/2006 (change in consultant) not modified.
- i = Quantitation of unknown hydrocarbon(s) in sample based on gasoline.

NOTES:

Beginning in the fourth quarter 2003, the laboratory modified the reported analyte list. TPH-g was changed to GRO. The resulting data may be impacted by the potential of non-TPH-g analytes within the requested fuel range resulting in a higher concentration being reported.

Beginning in the second quarter 2004, the carbon range for GRO was changed from C6-C10 to C4-C12.

Values for DO and pH were obtained through field measurements.

The DTW's and TOC's for wells MW-5 and MW-6 were taken from Delta Environmental sampling sheets because the well logs were not available.

GRO analysis was completed by EPA method 8260B (C4-C12) for samples collected from the time period April 2006 through February 4, 2008. The analysis for GRO was changed to EPA method 8015B (C6-C12) for samples collected from the time period February 5, 2008 through the present.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 2. Summary of Fuel Additives Analytical Data Station #374, 6407 Telegraph Ave., Oakland, CA

Well and				Concentrati	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-1									
5/22/2002	-20,000	z4 000	1.600	100	100	100			
5/23/2003	<20,000	<4,000	1,600	<100	<100	<100			
11/20/2003	<2,000	<400	1,500	<10	<10	<10			a
05/14/2004	<5,000	<1,000	1,200	<25	<25	<25	<25	<25	
09/02/2004	<1,000	<200	660	<5.0	<5.0	<5.0	<5.0	<5.0	
11/04/2004	<2,000	<400	580	<10	<10	<10	<10	<10	
02/08/2005	<2,000	<400	610	<10	<10	<10	<10	<10	
05/09/2005	<1,000	<200	620	<5.0	<5.0	<5.0	<5.0	<5.0	a
08/11/2005	<500	250	390	<2.5	<2.5	2.6	<2.5	<2.5	a
11/18/2005	< 500	<100	340	<2.5	<2.5	<2.5	<2.5	<2.5	a
02/16/2006	<1,500	<100	340	<2.5	<2.5	<2.5	<2.5	<2.5	
5/30/2006	<1,500	<100	420	<2.5	<2.5	<2.5	<2.5	<2.5	a
8/24/2006	<3,000	<200	180	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
11/1/2006	<3,000	<200	220	<5.0	<5.0	<5.0	<5.0	< 5.0	a
2/7/2007	<3,000	<200	190	< 5.0	< 5.0	<5.0	< 5.0	< 5.0	
5/8/2007	<3,000	<200	420	<5.0	<5.0	<5.0	<5.0	< 5.0	
8/8/2007	<300	<20	110	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
11/14/2007	<1,500	<100	210	<2.5	<2.5	<2.5	<2.5	<2.5	
2/22/2008	<300	<10	250	< 0.50	< 0.50	1.5	< 0.50	< 0.50	
5/24/2008	<3,000	<100	380	<5.0	<5.0	<5.0	< 5.0	< 5.0	
8/21/2008	<1,500	< 50	170	<2.5	<2.5	<2.5	<2.5	<2.5	
10/19/2008	<300	<10	30	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/23/2009	<1,500	< 50	240	<2.5	<2.5	<2.5	<2.5	<2.5	
5/14/2009	<300	<10	200	< 0.50	< 0.50	1.3	< 0.50	< 0.50	
8/20/2009	<1,200	<40	170	<2.0	<2.0	<2.0	<2.0	<2.0	
2/19/2010	<300	<10	170	<0.50	<0.50	1.2	< 0.50	< 0.50	
MW-2									
5/23/2003	<100	<20	55	< 0.50	< 0.50	0.53			
02/02/2004	<100	<20	37	<0.50	<0.50	<0.50	< 0.50	< 0.50	
09/02/2004	<500	<100	67	<2.5	<2.5	<2.5	<2.5	<2.5	
02/08/2005	<100	<20	30	<0.50	<0.50	<0.50	<0.50	<0.50	
08/11/2005	<100	<20	35	<0.50	<0.50	<0.50	<0.50	<0.50	a
06/11/2003	<100	<20	33	<0.50	<0.50	<0.50	<0.50	<0.50	a

Table 2. Summary of Fuel Additives Analytical Data Station #374, 6407 Telegraph Ave., Oakland, CA

Well and				Concentrati	ons in (μg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-2 Cont.									
02/16/2006	<300	<20	39	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/24/2006	<300	<20	25	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/7/2007	<300	<20	7.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	7.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/22/2008	<300	<10	24	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	4.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/23/2009	<300	<10	24	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	8.4	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
2/19/2010	<300	<10	22	<0.50	<0.50	<0.50	<0.50	<0.50	
MW-3									
5/23/2003	<100	<20	1.6	< 0.50	< 0.50	< 0.50			
09/02/2004	<100	<20	6.5	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	11	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
8/24/2006	<300	<20	7.6	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	1.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	3.1	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	2.2	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-4									
5/23/2003	<10,000	<2,000	<50	< 50	<50	<50			
02/02/2004	< 500	<100	29	<2.5	<2.5	2.6	<2.5	<2.5	
09/02/2004	<200	<40	28	<1.0	<1.0	<1.0	<1.0	<1.0	
02/08/2005	<5,000	<1,000	45	<25	<25	<25	<25	<25	
08/11/2005	<2,000	<400	32	<10	<10	<10	<10	<10	
02/16/2006	<6,000	<400	35	<10	<10	<10	<10	<10	
8/24/2006	<1,500	<100	39	<2.5	<2.5	<2.5	<2.5	<2.5	
2/7/2007	<6,000	<400	67	<10	<10	<10	<10	<10	
8/8/2007	<6,000	<400	72	<10	<10	<10	<10	<10	
2/22/2008	<6,000	<200	70	<10	<10	<10	<10	<10	
8/21/2008	<12,000	<400	53	<20	<20	<20	<20	<20	
2/23/2009	<3,000	<100	39	<5.0	<5.0	<5.0	<5.0	< 5.0	

Table 2. Summary of Fuel Additives Analytical Data Station #374, 6407 Telegraph Ave., Oakland, CA

Well and				Concentration	ons in (µg/L)				
Sample Date	Ethanol	TBA	MTBE	DIPE	ETBE	TAME	1,2-DCA	EDB	Comments
MW-4 Cont.									
8/20/2009	<12,000	<400	23	<20	<20	<20	<20	<20	
2/19/2010	<3,000	<100	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	
MW-5									
1/29/2003	<40	<20	< 0.50	< 0.50	< 0.50	< 0.50			
5/23/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50			
9/4/2003	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
09/02/2004	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
08/11/2005	<100	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/24/2006	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
MW-6									
5/23/2003	<100	<20	9.4	< 0.50	< 0.50	< 0.50			
08/11/2005	<100	<20	7.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	a
8/24/2006	<300	<20	12	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/8/2007	<300	<20	0.57	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/21/2008	<300	<10	1.9	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
8/20/2009	<300	<10	2.0	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	

SYMBOLS AND ABBREVIATIONS:

- -- = Not analyzed/applicable/measured/available
- < = Not detected at or above the laboratory reporting limi

1,2-DCA = 1,2-Dichloroethane

DIPE = Di-isopropyl ether

EDB = 1,2-Dibromoethane

 $ETBE = Ethyl \ tert-butyl \ ether$

MTBE = Methyl tert-butyl ether

TAME = tert-Amyl methyl ether

TBA = tert-Butyl alcohol

 $\mu g/L = Micrograms per Liter$

FOOTNOTES:

a = The continuing calibration verification for ethanol was outside of client contractual limits, however, it was within method acceptance limits. The data should still be useful for its intended purpose.

NOTES:

All volatile organic compounds analyzed using EPA Method 8260B.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

Table 3. Historical Ground-Water Flow Direction and Gradient Station #374, 6407 Telegraph Ave., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
1/31/1996	Southwest	0.04
4/10/1996	Southwest	0.04
7/16/1996	Southwest	0.03
10/14/1996	Southwest	0.03
3/27/1997	Southwest	0.04
5/27/1997	Southwest	0.03
8/12/1997	Southwest	0.04
11/17/1997	Southwest	0.03
3/16/1998	Southwest	0.03
5/12/1998	Southwest	0.04
7/27/1998	Southwest	0.04
10/15/1998	Southwest	0.02
2/18/1999	Southwest	0.05
5/24/1999	Southwest	0.03
8/27/1999	Southwest	0.03
10/26/1999	Southwest	0.03
2/3/2000	Southwest	0.047
6/20/2000	Southwest	0.035
9/28/2000	Southwest	0.034
12/17/2000	Southwest	0.032
3/23/2001	Southwest	0.034
6/21/2001	Southwest	0.032
9/23/2001	Southwest	0.029
12/31/2001	Southwest	0.043
3/21/2002	Southwest	0.038
4/17/2002	Southwest	0.031
8/12/2002	Southwest	0.032
12/6/2002	Southwest	0.020
1/29/2003	Southwest	0.027
5/23/2003	Southwest	0.039
9/4/2003	Southwest	0.033
11/20/2003	Southwest	0.029
2/2/2004	Southwest	0.043 (a)
5/14/2004	Southwest	0.037 (a)
9/2/2004	Southwest	0.027 (a)
11/4/2004	Southwest	0.034 (a)
2/8/2005	Southwest	0.061 (a)
5/9/2005	Southwest	0.08 (a)
8/11/2005	Southwest	0.06 (a)
11/18/2005	Southwest	0.07 (a)
2/16/2006	Southwest	0.09 (a)
5/30/2006	Southwest	0.06 (a)

Table 3. Historical Ground-Water Flow Direction and Gradient Station #374, 6407 Telegraph Ave., Oakland, CA

Date Sampled	Approximate Flow Direction	Approximate Hydraulic Gradient
8/24/2006	Southwest	0.03
11/1/2006	Southwest	0.02
2/7/2007	Southwest	0.03
5/8/2007	Southwest	0.03
8/8/2007	Southwest	0.03
11/14/2007	Southwest	0.03
2/22/2008	Southwest	0.03
5/24/2008	Southwest	0.03
8/21/2008	Southwest	0.03
11/19/2008	Southwest	0.03
2/23/2009	Southwest	0.04
5/14/2009	Southwest	0.03
8/20/2009	Southwest	0.03
2/19/2010	West-Southwest	0.05

a = Gradients potentially suspect due to error in MW-4 and MW-5 TOC measuring point elevations discovered third quarter 2006.

Note: The data within this table collected prior to April 2006 was provided to Broadbent & Associates, Inc. by Atlantic Richfield Company and their previous consultants. Broadbent & Associates, Inc. has not verified the accuracy of this information.

APPENDIX A

BAI GROUND-WATER SAMPLING DATA PACKAGE

(Includes Field Data Sheets, Non-Hazardous Waste Data Form, Laboratory Analytical Report with Chain-Of-Custody Documentation, and Field Procedures)

Page of

Project: BP 374	Project No.: 06	88.602	,
Field Representative(s): E. Faster T. Geddes	Day: Fr. de y	Date: 3//9//	d
Time Onsite: From: To:; From: _			
Signed HASP Safety Glasses IN	cated $\underline{\hspace{1cm} \hspace{1cm} \hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace{1cm}\hspace$		Safety Vest
Weather: Ovicest, 50's Equipment In Use: Same truch, 3 bails PH probe Visitors:	s, DTW p	zbe, Pomt	
O815 Ongile BP374 WORKD	DESCRIPTION:		
	15,	gal pump Air	nsewater
		19	
Signature: An 2			

PERSO	NNEL: 64	5,0	4 ar C	FORM TO	Geddis	COMMI									
VEATH	ER: 6 5	, ove	rast	•		Equip:	Geosquirt	Tubing	Bailers	DO	wli	Ec/pH	 		
Well ID	Time	MEAS PO	URING INT	DTW (FT)	PRODUCT THICKNESS	pН	Cond. (X100)	Temp. (C/F)	DO (mg/l)	Redox (mV)	Iron (mg/l)	Alk. (mg/l)	WELL HEAD CONDITION: VAULT, BOLTS, CAP, LOCK, ETC		
nn-1	0836	100	2	6.07											
nr-2	0850			7.36											
m.3	0911			5,31											
14.4	1344			5.71							<u> </u>				
mw-S											ļ .		unable to collect due to parked		
NW-G	0915	4		7,29						ļ					
								ļ		<u> </u>					
							ļ	ļ		ļ ·	ļ		· · · · · · · · · · · · · · · · · · ·		
								ļ			-				
					:	<u> </u>				<u> </u>					
	-	ļ						<u> </u>		<u> </u>	-				
		ļ					-	ļ			-				
								-		<u> </u>	-				
								<u> </u>			-				
										-	-				
							-	ļ		-					
		<u> </u>								-	-	<u> </u>			
		-			ļ	ļ	-		1		-	<u> </u>			
						 				-	-				
		-				ļ	-	-	1	-	-				
		 						-	-	-	+				
		<u> </u>								-	+				

Groundwater Sampling Data Sheet

Well I.D.:			Mw-	1					验			
Project Na	me/Loc	ation:	BP37				1 4.		4:06-58-602			
Sampler's			C. Fall	'~	T. Ce	Ad 15		Date: ೨	1)19110			
Purging Ed		nt:	Pump			1						
Sampling	-		Bule			Vi alianata i a a a a a a						
Casing Ty						Ž.						
Casing Dia			3.3	4		inch		*UNIT CASING VOLUMES				
Total Well	Depth:			<u> 36</u>	·67_	feet		,	= 0.16 gal/lin ft.			
Depth to	Water:			- 6,0		feet			= 0.37 gal/lin ft.			
Water Col	umn Thi	ickness:		= 20		feet			= 0.65 gal/lin ft.			
Unit Casin	ig Volum	ne*:		x 0.6	5	gallon / fo	oot	6"	= 1.47 gal/lin ft.			
Casing Wa	ater Volu	ume:		= _13.	<u> </u>	gailons						
Casing Vo	lume:		w.	×	3	each	89					
Estimated	Purge \	Volume:		= 40.	17	gallons						
Free prod	uct mea	sureme	nt (if pr	esent):								
Purged (gallons)	Time (24:00)	DO	ORP (mV)	Fe	Cor	iductance (μS)	Temperature (Fahrenheit)	pН	Observations			
0 0	127	0.92	64.		8	28,9	61.5	622				
10	6930	х	Х	х	80	11.9	61.6	6.72				
20	0933	х	×	X	88	8,3	61.6	6.66				
25	0935	х	х	X	88	7.4	61.4	6.65				
30	0937	X	х	Х	84	41.5	62.3	6.65				
34	0939	0.57	×	×	84	6,4	62.7	6.66				
) Part of the second of the se	Х	X	х				ř.				
		х	х	×								
Total Wat	er Volur	ne Purg	ed:			34	gallons	_				
Depth to	Water a	t Sampl	e Collec	tion:		198	řeet	•				
Sample (00	45		Pur	ged Dry?(Y(N)			
Comment	1	\mathcal{O}	16.8									
		· · · · · · · · · · · · · · · · · · ·										

Groundwater Sampling Data Sheet

Well I.D.:			MW.						- A-2		
Project Na	me/Loc	ation:	BP 3.	7 <u>Y</u>				Project #: 00.88.602			
Sampler's	Name:		E. fac	14/	1. 60	<u>oddes</u>		Date: 🧎	114/10		
Purging Ed	quipmer	nt:									
Sampling	Equipmo	ent:									
Casing Ty	pe: PVC			1 1							
Casing Dia	meter:			4	_	inch		*UNIT CASING VOLUMES			
Total Well	Depth:			56,3		feet			= 0.16 gal/lin ft.		
Depth to Water: - 7,						feet		•	= 0.37 gal/lin ft.		
Water Column Thickness: =						feet			= 0.65 gal/lin ft.		
Unit Casin	g Volun	ne*:		x 0,6	5	gallon / fo	oot	6"	= 1.47 gal/lin ft.		
Casing Wa	ater Volu	ıme:		=		gailons					
Casing Vo	lume:		·		3	each					
Estimated	Purge \	/olume:	·····	=		gallons					
Free prod	uct mea	sureme	nt (if pr	esent):							
Purged	Time	DO	ORP	Fe	C	onductance	Temperature	pН	Observations		
(gallons)	(24:00)		(mV)		\vdash	(μS)	(Fahrenheit)	6.00			
0	0900	0.81	79		6	12.9	65.2	6.90			
		Х	х	х							
	1.	Х	Х	×				·			
		Х	х	х							
		Х	Х	Х	*						
		×	×	×							
		х	х	х					·		
		×	×	×							
Total Wat	er Volun	ne Pura	ed:			0	gallons				
Depth to \				tion:		7.36	řeet	_			
Sample (Ogcu	. 103	Pur	ged Dry? (Y/N)		
Comment		[a	Pura			71		-			
Commend	3. /·	<u>v</u> 0	<u> </u>								
	1) 1	15 2	6.38								
				······································							

Groundwater Sampling Data Sheet

Well I.D.:		<u>.</u>	MW-	H					•		
Project Na	ame/Loc	ation:	BP	<u> 374</u>				: 06.88.602	•		
Sampler's			E. fo,,	w T.6	ordd es		Date: 3	119110			
Purging E		it:	Pnn	$\rho_{}$							
Sampling			Bail	~					•		
Casing Ty											
Casing Dia				<u> </u>	inch			CASING VOLUMES			
Total Well	Depth:			<u> 36.</u>	%feet			= 0.16 gal/lin ft.			
Depth to	Water:			- <u>S.</u>				= 0.37 gal/lin ft.			
Water Col	lumn Thi	ckness:		= 21.24 feet 4" = 0.65 gal/lin ft.							
Unit Casir	ng Volun	ne*:		x 0.6	5gallon / f	oot	6"	= 1.47 gal/lin ft.			
Casing W	ater Volu	ıme:		= 13,9	gallons						
Casing Vo	olume:				3 each						
Estimated	l Purge \	/olume:		= 41	, 니 gallons						
Free prod	luct mea	sureme	nt (if pr	esent):					-		
Purged (gallons)	Time (24:00)	DO	ORP (mV)	Fe	Conductance (μS)	Temperature (Fahrenheit)	pН	Observations			
O		0.81	-110		199	63.9	6.73	, Vita]]]		
15	Toos	Х	х	Х	1172	63,0	6.67				
33	1010	ast	X	Х	109	63,4	6.70				
		х	X	X							
		х	X	Х							
		х	Х	×							
		X	Х	х	·						
	A CONTRACTOR	X	X	X							
Total Wat	er Volur	ne Purg	ed:		33	gallons					
Depth to				tion:	17.20	feet					
Sample					1020		Pur	ged Dry?(Y/🗗)			
Comment			DT	3	26.98						
									-		
									_		

NON-HAZARDOUS WASTE DATA FORM

			1. BESI #					
	2. Generator's Name and Mailing Address BP WEST COAST PRODUCTS, LLC P.O. BOX 80249 RANCHO SANTA MARGARITA, CA 92688	Generator's Site Addres BP 374 6407 To Oakland,			ע			
	Generator's Phone: (949) 460-5200	24-HOUR		NCY PHON		19) 699-3	706	
	3. Transporter 1 Company Name Propadhent 8. Associates Inc.		· ·	Phone # (530) 566	-1400			
	Broadbent & Associates, Inc. 4. Transporter 2 Company Name			Phone #		· · · · · · · · · · · · · · · · · · ·		
	Gomes Excavating 5. Designated Facility Name and Site Address			(707) 374- Phone #	-2881			
v ^d	INTRAT, INC. 1105 AIRPORT RD #C RIO VISTA, CA 94571			(530) 753	-1829			
		· . 1	7. Containers	8. Total	9. Unit			.:
H	Waste Shipping Name and Description A.		No. Type	Quantity	Wt/Vol	10. Pr	ofile No.	
GENERATOR	NON-HAZARDOUS WATER		1 T	62	G			-
GENE	B.							
	C							
	D.							
	11. Special Handling Instructions and Additional Information WEAR ALL APPROPRIATE PROTECTIVE CLOTHING WELL PURGING / DECON WATER							
	12. GENERATOR'S CERTIFICATION: I certify the materials described above on this data form are	e non-hazardous.				Month	Day	Year
	Generator's/Offeror's Printed/Typed Name Signature File Fart Signature	= 7				2	19	10
<u>ш</u>	13. Transporter Acknowledgment of Receipt of Materials					and the second second		
ORTE	Transporter 1 Printed/Typed Name Signature Transporter 2 Printed/Typed Name Signature	ニー				Month Q Month	Day Day	Year IO Year
FACILITY TRANSPORTE								
FACILITY	14. Designated Facility Owner or Operator: Certification of receipt of materials covered by this da Printed/Typed Name Signature	ata form.				Month	Day	Year

March 10, 2010

Tom Venus Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642

Subject: **Calscience Work Order No.:** 10-02-1916

> Client Reference: **ARCO 374**

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 2/24/2010 and analyzed in accordance with the attached chain-of-custody.

Unless otherwise noted, all analytical testing was accomplished in accordance with the guidelines established in our Quality Systems Manual, applicable standard operating procedures, and other related documentation. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Calscience Environmental

Laboratories, Inc.

Richard Villafania

Richard Veller

Project Manager

NELAP ID: 03220CA

CSDLAC ID: 10109

SCAQMD ID: 93LA0830

7440 Lincoln Way, Garden Grove, CA 92841-1427 ·

TEL:(714) 895-5494 ·

FAX: (714) 894-7501

Analytical Report

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method:

10-02-1916 EPA 5030B EPA 8015B (M)

02/24/10

Project: ARCO 374

Page 1 of 1

Project: ARCO 374							Pa	ge 1 of 1
Client Sample Number		Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
MW-1		10-02-1916-1-E	02/19/10 09:45	Aqueous	GC 11	02/25/10	02/26/10 02:34	100225B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	90	38-134						
MW-2		10-02-1916-2-E	02/19/10 09:00	Aqueous	GC 11	02/25/10	02/26/10 03:08	100225B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	95	38-134						
MW-4		10-02-1916-3-E	02/19/10 10:20	Aqueous	GC 11	02/25/10	02/26/10 03:42	100225B01
Comment(s): -LW = Quantitated again	ū	Di	DE	Overal	11.26			
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	12000	250	5		ug/L			
Surrogates:	REC (%)	Control Limits		<u>Qual</u>				
1,4-Bromofluorobenzene	122	38-134						
Method Blank		099-12-695-763	N/A	Aqueous	GC 11	02/25/10	02/25/10 19:15	100225B01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
Gasoline Range Organics (C6-C12)	ND	50	1		ug/L			
Surrogates:	REC (%)	Control Limits		Qual				
1,4-Bromofluorobenzene	90	38-134						

DF - Dilution Factor ,

Qual - Qualifiers

Analytical Report

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received:
Work Order No:
Preparation:
Method:
Units:

10-02-1916 EPA 5030B EPA 8260B ug/L

02/24/10

Project: ARCO 374

Page 1 of 2

											90 1 01 2
Client Sample Number				Sample lumber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/ Analy		QC Batch ID
MW-1			10-02-1	916-1-A	02/19/10 09:45	Aqueous	GC/MS BB	02/27/10	02/27 16:		100227L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTB	E)	170	5.0	10	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Ald	`	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	•	,	1.2	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol	, , ,	,	ND	300	1	
Surrogates:	REC (%)	Control	Qua	[Surrogates:			REC (%)	Control	-	<u>Qual</u>
1,2-Dichloroethane-d4		<u>Limits</u> 80-128			Dibromofluor	omethane		88	<u>Limits</u> 80-127		
Toluene-d8		80-120			1,4-Bromoflu			93	68-120		
MW-2			10-02-1	916-2-A	02/19/10 09:00	Aqueous	GC/MS BB	02/27/10	02/27 16:		100227L01
Parameter	Result	RL	<u>DF</u>	Qual	Parameter			Result	RL	DF	Qual
			·	Quui		I E45 a /NATD	· - \				<u>Quai</u>
Benzene	ND ND	0.50	1		Methyl-t-Buty	,)E)	22 ND	0.50	1	
1,2-Dibromoethane	ND ND	0.50	1		Tert-Butyl Ald Diisopropyl E	, ,		ND ND	10	1	
1,2-Dichloroethane	ND ND	0.50	1 1		Ethyl-t-Butyl I	` ,	`	ND	0.50	1 1	
Ethylbenzene Toluene	ND ND	0.50 0.50	1		Tert-Amyl-Me	•	,	ND	0.50 0.50	1	
Xylenes (total)	ND ND	0.50	1		Ethanol	euryi Eurei (i	AIVIL)	ND	300	1	
, ,		Control	ı Qua	I	Surrogates:			REC (%)	Control	-	<u>)ual</u>
Surrogates:		Limits	Qua		<u>Surrogates.</u>			<u>IXLO (70)</u>	<u>Limits</u>	<u> </u>	<u>ruai</u>
1,2-Dichloroethane-d4	95	80-128			Dibromofluor	omethane		93	80-127		
Toluene-d8	94	80-120			1,4-Bromoflu	orobenzene		91	68-120		
MW-4			10-02-1	916-3-A	02/19/10 10:20	Aqueous	GC/MS BB	02/27/10	02/27 17:		100227L01
Parameter_	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	<u>RL</u>	DF	Qual
	1200	50	100		Methyl-t-Buty	l Ether (MTR	E)	ND	5.0	10	
1,2-Dibromoethane	ND	5.0	100		Tert-Butyl Ald	`	,	ND	100	10	
1,2-Dichloroethane	ND	5.0	10		Diisopropyl E			ND	5.0	10	
Ethylbenzene	230	5.0	10		Ethyl-t-Butyl I)	ND	5.0	10	
Foluene	120	5.0	10		Tert-Amyl-Me	•	,	ND	5.0	10	
Xylenes (total)	390	5.0	10		Ethanol	, (.	,	ND	3000	10	
Surrogates:	REC (%)	Control Limits	Qua	!	Surrogates:			REC (%)	Control Limits	-	<u>lual</u>
1,2-Dichloroethane-d4		80-128			Dibromofluor	omethono		95	80-127		
•								103			
Toluene-d8	107	80-120			1,4-Bromoflu	oropenzene		103	68-120		

Analytical Report

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: Units: 02/24/10 10-02-1916 EPA 5030B EPA 8260B ug/L

Project: ARCO 374

Page 2 of 2

											- -
Client Sample Number				b Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/\ Analy		QC Batch II
Method Blank			099-12-	-703-1,244	N/A	Aqueous	GC/MS BB	02/27/10	02/27 12:0		100227L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>	<u>Parameter</u>			Result	<u>RL</u>	<u>DF</u>	<u>Qual</u>
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTE	BE)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Ald	ohol (TBA)		ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
1,2-Dichloroethane-d4	94	80-128			Dibromofluor	omethane		99	80-127		
Toluene-d8	95	80-120			1,4-Bromoflu	orobenzene		90	68-120		
Method Blank			099-12-	-703-1,247	N/A	Aqueous	GC/MS BB	02/28/10	02/28 12:2		100228L01
<u>Parameter</u>	Result	<u>RL</u>	<u>DF</u>	Qual	<u>Parameter</u>			Result	RL	<u>DF</u>	Qual
Benzene	ND	0.50	1		Methyl-t-Buty	l Ether (MTE	BE)	ND	0.50	1	
1,2-Dibromoethane	ND	0.50	1		Tert-Butyl Alc	ohol (TBA)	,	ND	10	1	
1,2-Dichloroethane	ND	0.50	1		Diisopropyl E	ther (DIPE)		ND	0.50	1	
Ethylbenzene	ND	0.50	1		Ethyl-t-Butyl I	Ether (ETBE)	ND	0.50	1	
Toluene	ND	0.50	1		Tert-Amyl-Me	ethyl Ether (T	AME)	ND	0.50	1	
Xylenes (total)	ND	0.50	1		Ethanol			ND	300	1	
Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qua</u>	<u>l</u>	Surrogates:			REC (%)	Control Limits	<u>(</u>	<u>Qual</u>
1,2-Dichloroethane-d4	89	80-128			Dibromofluor	omethane		96	80-127		
Toluene-d8	95	80-120			1,4-Bromoflu	orobenzene		89	68-120		

Mulha

Quality Control - Spike/Spike Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: 02/24/10 10-02-1916 EPA 5030B EPA 8015B (M)

Project ARCO 374

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-02-1922-3	Aqueous	GC 11	02/25/10		02/25/10	100225\$02
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
Gasoline Range Organics (C6-C12)	101	103	38-134	2	0-25	

MMM_

RPD - Relative Percent Difference , CL - Control Limit

Quality Control - Spike/Spike Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: 02/24/10 10-02-1916 EPA 5030B EPA 8260B

Project ARCO 374

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number	
10-02-2258-4	Aqueous	GC/MS BB	02/27/10	02/27/10		100227S01	
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers	
Benzene	94	91	76-124	4	0-20		
Carbon Tetrachloride	92	93	74-134	2	0-20		
Chlorobenzene	94	94	80-120	0	0-20		
1,2-Dibromoethane	88	88	80-120	1	0-20		
1,2-Dichlorobenzene	96	91	80-120	5	0-20		
1,1-Dichloroethene	90	87	73-127	3	0-20		
Ethylbenzene	98	99	78-126	1	0-20		
Toluene	99	97	80-120	2	0-20		
Trichloroethene	94	92	77-120	2	0-20		
Vinyl Chloride	43	97	72-126	77	0-20		
Methyl-t-Butyl Ether (MTBE)	85	89	67-121	5	0-49		
Tert-Butyl Alcohol (TBA)	100	93	36-162	4	0-30		
Diisopropyl Ether (DIPE)	92	93	60-138	1	0-45		
Ethyl-t-Butyl Ether (ETBE)	89	89	69-123	0	0-30		
Tert-Amyl-Methyl Ether (TAME)	96	95	65-120	1	0-20		
Ethanol	68	90	30-180	28	0-72		

Mulling.

Quality Control - Spike/Spike Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: 02/24/10 10-02-1916 EPA 5030B EPA 8260B

Project ARCO 374

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-02-1742-4	Aqueous	GC/MS BB	02/28/10		02/28/10	100228\$01
<u>Parameter</u>	MS %REC	MSD %REC	%REC CL	RPD	RPD CL	Qualifiers
Benzene	97	99	76-124	2	0-20	
Carbon Tetrachloride	94	95	74-134	1	0-20	
Chlorobenzene	95	97	80-120	2	0-20	
1,2-Dibromoethane	90	90	80-120	0	0-20	
1,2-Dichlorobenzene	99	104	80-120	5	0-20	
1,1-Dichloroethene	83	85	73-127	3	0-20	
Ethylbenzene	92	99	78-126	6	0-20	
Toluene	99	103	80-120	4	0-20	
Trichloroethene	97	99	77-120	2	0-20	
Vinyl Chloride	98	96	72-126	3	0-20	
Methyl-t-Butyl Ether (MTBE)	101	96	67-121	4	0-49	
Tert-Butyl Alcohol (TBA)	89	98	36-162	9	0-30	
Diisopropyl Ether (DIPE)	102	95	60-138	6	0-45	
Ethyl-t-Butyl Ether (ETBE)	102	97	69-123	6	0-30	
Tert-Amyl-Methyl Ether (TAME)	101	100	65-120	0	0-20	
Ethanol	84	88	30-180	4	0-72	

Mulling.

Quality Control - LCS/LCS Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method:

10-02-1916 EPA 5030B EPA 8015B (M)

N/A

Project: ARCO 374

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Dat Analy:		LCS/LCSD Batc Number	h
099-12-695-763	Aqueous	GC 11	02/25/10	02/25/	10	100225B01	
<u>Parameter</u>	LCS %	REC LCSD	%REC %	6REC CL	RPD	RPD CL	Qualifiers
Gasoline Range Organics (C6-C12)	103	104		78-120	1	0-20	

Mullina_

Quality Control - LCS/LCS Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: N/A 10-02-1916 EPA 5030B EPA 8260B

Project: ARCO 374

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD Batch Number			
099-12-703-1,244	Aqueous	GC/MS BB	02/27/10	02/27	/10	100227L	01		
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>		
Benzene	89	94	80-120	73-127	6	0-20			
Carbon Tetrachloride	91	95	74-134	64-144	4	0-20			
Chlorobenzene	94	93	80-120	73-127	2	0-20			
1,2-Dibromoethane	89	84	79-121	72-128	5	0-20			
1,2-Dichlorobenzene	92	93	80-120	73-127	2	0-20			
1,1-Dichloroethene	89	88	78-126	70-134	1	0-28			
Ethylbenzene	99	98	80-120	73-127	1	0-20			
Toluene	93	97	80-120	73-127	4	0-20			
Trichloroethene	87	93	79-127	71-135	7	0-20			
Vinyl Chloride	93	96	72-132	62-142	3	0-20			
Methyl-t-Butyl Ether (MTBE)	87	88	69-123	60-132	2	0-20			
Tert-Butyl Alcohol (TBA)	85	86	63-123	53-133	2	0-20			
Diisopropyl Ether (DIPE)	91	91	59-137	46-150	0	0-37			
Ethyl-t-Butyl Ether (ETBE)	91	91	69-123	60-132	1	0-20			
Tert-Amyl-Methyl Ether (TAME)	92	93	70-120	62-128	1	0-20			
Ethanol	101	102	28-160	6-182	0	0-57			

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: LCS ME CL validation result: Pass

Mha

Quality Control - LCS/LCS Duplicate

Broadbent & Associates, Inc. 1324 Mangrove Ave, Ste 212 Chico, CA 95926-2642 Date Received: Work Order No: Preparation: Method: N/A 10-02-1916 EPA 5030B EPA 8260B

Project: ARCO 374

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD Batch Number			
099-12-703-1,247	Aqueous	GC/MS BB	02/28/10	02/28	/10	100228L0)1		
<u>Parameter</u>	LCS %REC	LCSD %REC	%REC CL	ME CL	RPD	RPD CL	Qualifiers		
Benzene	91	88	80-120	73-127	4	0-20			
Carbon Tetrachloride	92	91	74-134	64-144	1	0-20			
Chlorobenzene	92	93	80-120	73-127	2	0-20			
1,2-Dibromoethane	88	88	79-121	72-128	0	0-20			
1,2-Dichlorobenzene	93	96	80-120	73-127	3	0-20			
1,1-Dichloroethene	84	84	78-126	70-134	0	0-28			
Ethylbenzene	96	97	80-120	73-127	1	0-20			
Toluene	94	93	80-120	73-127	1	0-20			
Trichloroethene	88	92	79-127	71-135	4	0-20			
Vinyl Chloride	89	89	72-132	62-142	0	0-20			
Methyl-t-Butyl Ether (MTBE)	85	88	69-123	60-132	4	0-20			
Tert-Butyl Alcohol (TBA)	93	87	63-123	53-133	7	0-20			
Diisopropyl Ether (DIPE)	88	87	59-137	46-150	1	0-37			
Ethyl-t-Butyl Ether (ETBE)	88	89	69-123	60-132	1	0-20			
Tert-Amyl-Methyl Ether (TAME)	96	93	70-120	62-128	3	0-20			
Ethanol	84	90	28-160	6-182	7	0-57			

Total number of LCS compounds: 16

Total number of ME compounds: 0

Total number of ME compounds allowed: 1

LCS ME CL validation result: Pass

Glossary of Terms and Qualifiers

Work Order Number: 10-02-1916

<u>Qualifier</u> AX	<u>Definition</u> Sample too dilute to quantify surrogate.
ВА	Relative percent difference out of control.
BA,AY	BA = Relative percent difference out of control. AY = Matrix interference suspected.
ВВ	Sample > 4x spike concentration.
BF	Reporting limits raised due to high hydrocarbon background.
ВН	Reporting limits raised due to high level of non-target analytes.
BU	Sample analyzed after holding time expired.
BV	Sample received after holding time expired.
BY	Sample received at improper temperature.
BZ	Sample preserved improperly.
CL	Initial analysis within holding time but required dilution.
CQ	Analyte concentration greater than 10 times the blank concentration.
CU	Surrogate concentration diluted to not detectable during analysis.
DF	Reporting limits elevated due to matrix interferences.
DU	Insufficient sample quantity for matrix spike/dup matrix spike.
ET	Sample was extracted past end of recommended max. holding time.
EY	Result exceeds normal dynamic range; reported as a min est.
GR	Internal standard recovery is outside method recovery limit.
IB	CCV recovery abovelimit; analyte not detected.
IH	Calibrtn. verif. recov. below method CL for this analyte.
IJ	Calibrtn. verif. recov. above method CL for this analyte.
J,DX	J=EPA Flag -Estimated value; DX= Value < lowest standard (MQL), but > than MDL.
LA	Confirmatory analysis was past holding time.
LG,AY	LG= Surrogate recovery below the acceptance limit. AY= Matrix interference suspected.
LH,AY	LH= Surrogate recovery above the acceptance limit. AY= Matrix interference suspected.
LM,AY	LM= MS and/or MSD above acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LN,AY	LN= MS and/or MSD below acceptance limits. See Blank Spike (LCS). AY= Matrix interference suspected.
LQ	LCS recovery above method control limits.
LR	LCS recovery below method control limits.

Work Order Number: 10-02-1916

Qualifier LW	<u>Definition</u> Quantitation of unknown hydrocarbon(s) in sample based on gasoline.
LX	Quantitation of unknown hydrocarbon(s) in sample based on diesel.
MB	Analyte present in the method blank.
PC	Sample taken from VOA vial with air bubble > 6mm diameter.
PI	Primary and confirm results varied by > than 40% RPD.
RB	RPD exceeded method control limit; % recoveries within limits.
SG	A silica gel cleanup procedure was performed.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Laboratory Management Program LaMP Chain of Custody Record

Page _1 BP/ARC Project Name: ARCO 374 Req Due Date (mm/dd/yy): STD-TAT Rush TAT: Yes **BP/ARC Facility No:** 374 Lab Work Order Number:

																				• •							
Lab N	lame: Cal Science			BP/	BP/ARC Facility Address: 6407 Telegraph Avenue Consultant/Contractor: Broadbent & Associates, Inc.											Consultant/Contractor: Broadbent & Associates, Inc.											
Lab A	ddress: 7440 Lincoln Way	-		City	City, State, ZIP Code: Oakland, CA 94609 Consultant/Contractor Project No: 06-88-602-5-822								Consultant/Contractor Project No: 06-88-602-5-822														
Lab P	M: Richard Villafania			Lea	Lead Regulatory Agency: ACEH Address: 1324 Mangrove Ave. Ste. 212, Chico, CA 95926									4 95926													
Lab P	hone: 714-895-5494 / 714-895-7501	(fax)		Cali	forni	a Glob	al ID	No.:		T060	00100	106							Const	ultant/	Contra	actor	PM:	Tom	Venus		
Lab S	hipping Acent: 9255			Enfo	os Pr	oposa	l No:	:		(000	(K-001	11							Phone	ə:	530-5	66-14	100 / 5	530-56	66-1401 (fax)		
Lab B	ottle Order No:			Acc	ounti	ng Mo	de:		Pro	vision	X	00	C-BU		00	C-RM			Email	EDD	To:	tvenu	ıs@br	oadbe	entinc.com		
Other	Info:			Stag	ge:	Oper	rate ((5)	A	ctivity:	Mor	itorii	ng/MN	VA (822)				Invoic	e To:	_	BP	/ARC		Contracto	 or	
BP/AF	RC EBM: Chuck Carmel				Ma	trix		No	o. Co	ntain	ers /	Pres	ervati	ve				Requ	ested	Ana	lyses	;			Report Ty	/pe & QC L	_evel
EBM I	Phone: 925-275-3803																								St	andard _X	
EBM I	Email: charles.carmel@bp.com				:			iners	i									ŀ		ŀ				i	Full Data Pa		
Lab No.	Sample Description	Date	Time	Soil / Solid	Water / Liquid	Air / Vapor		Total Number of Containers	Unpreserved	H ₂ SO₄	HNO ₃	НСІ	Methanol		GRO (8015M)	BTEX / 5 Oxys (8260)	EDB / 1,2-DCA (8260)	EtOH (8260)								mments collected, indicates and single-	cate "No strike out
	MW-1	2/19/10	0945		Х			6				х			х	Х	х	х									
2	MW-2		0900		х			6				Х			х	х	х	х		Ť							
3	MW-4	\downarrow	1020		х			6				Х			х	х	х	Х			\neg						
																				1							
																					\neg						
	,																										<u> </u>
																					\neg	1	\neg				
																	.										
																						j					
4	TB-374- 10U219				Х			2				х							ĺ						ON HOLD		
	er's Name: Trail balaes						_			By / A	ffiliat	ion			Da	te	Tin	ne	-		Acce	pted	By /	Affil	iation	Date	Time ^ຈ
Sampl	er's Company: BAI				<u> D.</u>	70		//	3/1	7					2/2	3/10	160	טנ	<u> </u>	Me	Cer	1	۲.	a	 2	2/24/10	ω
	ent Method: 640	Ship Date: 2	123/10			_0	/												1			-				<u> </u>	740
	ent Tracking No: 10619365																										13 of
Speci	al Instructions: Please cc results to																6	50				_					15
	THIS LINE - LAB USE ONLY: Custody	y Seals In Place	e: Yes / No	T	emp	Blank	c: Ye	s/No		Co	oler T	emp o	n Rec	eipt:			_°F/C		Trip	Blank	: Yes	/ No		MS	/MSD Sample Subr	mitted: Yes /	
											_	_						_ <u>-</u> _									

1 DATE A COMPANY BAT		SHIPPING AIR BILL PACKAGE INFORMATION SHIPPING AIR BILL PACKAGE INFORMATION LETTER (MAX 8 OZ)	
F ADDRESS Co	THINK IN THE STATE OF THE STATE	PACKAGE (WT)	$\left(\right)$
R ADDRESS	, sie \mathcal{F} , hoom \mathcal{F} ,	1-800-322-5555	Υ .
MORYPELLIFE	ZIP CODE JUZY	WWW.GSO.COM COD AMOUNT \$	1 NA 164 191
	PHONE 775-247-796/	5 DELIVERY PRIORITY EARLY SATURDAY DELIVERY BY 10:30 AM BY 8:00 AM	HAH
2 CAPANY CIENCE		*DELIVERY TIMES MAY BE LATER IN SOME AREAS • CONSULT YOUR SERVICE GUIDE OR CALL GOLDEN STATE OVERNIGHT. RELEASE SIGNATURE	
NAME	PHONE 714-895-5494	SIGNATURE SIGN TO AUTHORIZE DELIVERY WITHOUT OBTAINING SIGNATURE	A:
T ATTACES LINCOLN WATER	4.0		
CGARDEN GROVE	STE/ ROOM 7/P stylen a.e.	8 PICK UP INFORMATION	
3 YOUR INTERNAL BILLING PREFERENCE WILL APPEAR ON YOUR INVOICE	ZIP CODE 284	106193650 PEEL OFF NERE NERE NERE NERE NERE NERE NERE NE	
SPECIAL		9 GSO TRACKING NUMBER 106193650	Ď.
UNSTRUCTIONS			HIT

(91h)

PLEASE PRESS TRMU

Page 14 of 15

WORK ORDER #: 10-02- 1 9 0 0

SAMPLE RECEIPT FORM

Cooler / of /

CLIENT: BROADBENT 4 ASSOCIATES	DATE.	02/2	4/10								
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C − 6.0 °C, not frozen) Temperature 2 0 °C + 0.5 °C (CF) = 2 0 °C Blank Sample Sample(s) outside temperature criteria (PM/APM contacted by:). Sample(s) outside temperature criteria but received on ice/chilled on same day of sampling. Received at ambient temperature, placed on ice for transport by Courier.											
Ambient Temperature: Ambient Temperature: Air Filter Metals Only PCBs Only Initial:											
CUSTODY SEALS INTACT: ☐ Cooler ☐ ☐ No (Not Intact) ☐ Not Present ☐ Sample ☐ ☐ No (Not Intact) ☐ Not Present			al: <u>f</u> S al: <u>Ae</u>								
SAMPLE CONDITION:	Yes	No	N/A								
Chain-Of-Custody (COC) document(s) received with samples											
COC document(s) received complete	🖵										
\square Collection date/time, matrix, and/or # of containers logged in based on sample label	S.										
\square No analysis requested. \square Not relinquished. \square No date/time relinquished.	,										
Sampler's name indicated on COC	🗾										
Sample container label(s) consistent with COC	🗾										
Sample container(s) intact and good condition	🗹 🖊										
Proper containers and sufficient volume for analyses requested	🗹										
Analyses received within holding time											
Proper preservation noted on COC or sample container	🗹										
☐ Unpreserved vials received for Volatiles analysis											
Volatile analysis container(s) free of headspace	🗹										
Tedlar bag(s) free of condensation	🗆										
CONTAINER TYPE:											
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCor	es [®] □Terra	ıCores [®] □									
Water: □VOA ☑VOAh □VOAna₂ □125AGB □125AGBh □125AGB	p □1AGB	□1AGB na ₂	□1AGB s								
□500AGB □500AGJ □500AGJs □250AGB □250CGB □250CGE	Bs □1PB	□500PB □	500PB na								
□250PB □250PBn □125PB □125PB znna □100PJ □100PJ na₂ □_]								
Air: Tedlar® Summa® Other: Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag	E: Envelope	Checked by Reviewed by	y: Μς								
□250PB □250PBn □125PB □125PB z nna □100PJ □100PJ na₂ □_ Air: □Tedlar [®] □Summa [®] Other: □ Trip Blank Lot# : <u>[</u> ② ?		Checked by	y: <u>Ac</u> y: <u>WS</u>								

SOP T100_090 (07/16/09)

BROADBENT & ASSOCIATES INC. FIELD PROCEDURES

A.1 QUALITY ASSURANCE/QUALITY CONTROL FIELD PROTOCOLS

Field protocols have been implemented to enhance the accuracy and reliability of data collection, ground-water sample collection, transportation and laboratory analysis. Discussion of these protocols is provided below.

A.1.1 Water Level & Free-Product Measurement

Prior to ground-water sample collection from each monitoring well, the presence of separate-phase hydrocarbons (SPH or free product, FP) and depth to ground water shall be measured. Depth to ground water will be measured with a standard water level indicator that has been decontaminated prior to its use in accordance with procedures discussed below. Depth to groundwater will be gauged from a saw cut notch at the top of the well casing on each well head. Where FP is suspected, the initial gauging will be done with an oil-water interface probe. Once depth to water has been measured, the first retrieval of a new disposable bailer will be scrutinized for the presence of SPH/FP.

A.1.2 Monitoring Well Purging

Subsequent to measuring depth to ground water and prior to the collection of ground-water samples, purging of standing water within the monitoring will be performed if called for. Consistent with the American Society for Testing and Materials (ASTM) Standard D6452-99, Section 7.1, the well will be purged of approximately three wetted-casing volumes of water, or until the well is dewatered, or until monitored field parameters indicate stabilization. The well will be purged using a pre-cleaned disposable bailer or submersible pump and disposable plastic tubing dedicated to each individual well. The well will be purged at a low flow rate to minimize the possibility of purging the well dry. So that the sample collected is representative of formation water, several field parameters will be monitored during the purging process. The sample will not be collected until these parameters (i.e. temperature, pH, and conductivity) have stabilized to within 10% of the previously measured value. If a well is purged dry, the sample should not be collected until the well has recovered to a minimum 50% of its initial volume.

A.1.3 Ground-Water Sample Collection

Once the wells are satisfactorily purged, water samples will be collected from each well. Water samples for organic analyses will be collected using a pre-cleaned, new, disposable bailer and transferred into the appropriate, new, laboratory-prepared containers such that no head space or air bubbles are present in the sample container (if appropriate to the analysis). The samples will be properly labeled (i.e. sample identification, sampler initials, date/time of collection, site location, requested analyses), placed in an ice chest with bagged ice or ice substitute, and delivered to the contracted analytical laboratory.

A.1.4 Surface Water Sample Collection

Unless specified otherwise, surface water samples will be collected from mid-depth in the central area of the associated surface water body. Water samples will be collected into appropriate, new, laboratory-prepared containers by dipping the container into the surface water unless the container has a preservative present. If a sample preservative is present, a new, cleaned non-preserved surrogate container will be used to obtain the sample which will then be directly transferred into a new, laboratory-provided, preserved container. Samples will be properly labeled and transported as described above.

A.1.5 Decontamination Protocol

Prior to use in each well, re-usable ground-water sampling equipment (e.g., water level indicator, oil-interface probe, purge pump, etc.) will be decontaminated. Decontamination protocol will include thoroughly cleaning with a solution of Liquinox, rinsing with clean water, and final rinsing with control water (potable water of known quality, distilled, or de-ionized water). Pre-cleaned new disposable bailers and disposable plastic tubing will be dedicated to each individual well.

A.1.6 Chain of Custody Procedures

Sample identification documents will be carefully prepared so identification and chain of custody can be maintained and sample disposition can be controlled. The sample identification documents include Chain-of-Custody (COC) records and Daily Field Report forms. Chain of custody procedures are outlined below.

Field Custody Procedures

The field sampler is individually responsible for the care and custody of the samples collected until they are properly transferred.

Samples will have unique labels. The information on these labels will correspond to the COC which shows the identification of individual samples and the contents of the shipping container. The original COC will accompany the shipment and a copy will be retained by the field sampler.

Transfer of Custody and Shipment

A COC will accompany samples during transfer and shipment. When transferring samples, the individual relinquishing and the individual receiving the samples will each sign, date, and note the time on the COC. This documents the sample custody transfer.

Samples will be packaged properly for shipment and dispatched to the appropriate laboratory for analysis, with a separate COC accompanying each shipment. Shipments will be accompanied by the original COC. Samples will be delivered by BAI personnel to the laboratory, or shipped by responsible courier. When a shipping courier is utilized, the sample shipment number will be identified on the COC.

A.1.7 Field Records

In addition to sample identification numbers and COC records, Daily Field Report records will be maintained by field staff to provide daily records of significant events, observations, and measurements during field investigations. These documents will contain observed information such as: the personnel present, site conditions, sampling procedures, measurement procedures, calibration records, equipment used, supplies used, etc. Field measurements will be recorded on the appropriate forms. Entries on the data forms will be signed and dated. The data forms will be kept as permanent file records.

APPENDIX B

GEOTRACKER UPLOAD CONFIRMATION RECEIPTS

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A GEO_WELL FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: GEO_WELL

Submittal Title: 1Q10 GEO_WELL 374

Facility Global ID: T0600100106
Facility Name: ARCO #0374
File Name: GEO_WELL.zip

Organization Name: Broadbent & Associates, Inc.

<u>Username:</u> BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 3/19/2010 2:07:20 PM

Confirmation Number: 4924874842

Copyright © 2008 State of California

STATE WATER RESOURCES CONTROL BOARD

GEOTRACKER ESI

UPLOADING A EDF FILE

SUCCESS

Processing is complete. No errors were found! Your file has been successfully submitted!

Submittal Type: EDF - Monitoring Report - Quarterly

Submittal Title: 1Q10 GW Monitoring

 Facility Global ID:
 T0600100106

 Facility Name:
 ARCO #0374

 File Name:
 10021916.zip

Organization Name: Broadbent & Associates, Inc.

<u>Username:</u> BROADBENT-C IP Address: 67.118.40.90

Submittal Date/Time: 3/19/2010 2:08:10 PM

Confirmation Number: 7403939783

VIEW QC REPORT

VIEW DETECTIONS REPORT

Copyright © 2008 State of California