

HENTAL ECTION 2201 Broadway, Suite 101 Oakland, CA 94612-3023 Tel. 510.740.5800 Fax. 510.663.3315

ROTE

November 17, 1999 [•] Project 791749

Mr. Paul Supple ARCO Products Company PO Box 6549 Moraga, California 94570

Re: Quarterly Groundwater Monitoring Report, Third Quarter 1999, for ARCO Service Station No. 0374, located at 6407 Telegraph Avenue, Oakland, California

Dear Mr. Supple:

Pinnacle Environmental Solutions, a member of The IT Group (Pinnacle), is submitting the attached report which presents the results of the third quarter 1999 groundwater monitoring program at ARCO Products Company (ARCO) Service Station No. 0374, located at 6407 Telegraph Avenue, Oakland, California. The monitoring program complies with the Regional Water Quality Control Board, San Francisco Bay Region, requirements regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, results should not be construed as a guarantee of the absence of such conditions at the site, but rather as the product of the scope and limitations of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

Pinnacle

Glen VanderVeen Project Manager

Dan Easter, R.G. Project Geologist

Attachment: Quarterly Groundwater Monitoring Report, Third Quarter 1999

cc: Ms. Susan Hugo, Alameda County Health Care Services Agency Mr. John Kaiser, Regional Water Quality Control Board - S.F. Bay Region à

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Facility N	o.: <u>0374</u>	Address:	6407 Telegraph Avenue, Oakland, California
	ARCO Environmenta	l Engineer:	Paul Supple
	Consulting Co./Conta	act Person:	Pinnacle Environmental Solutions/Glen VanderVeen
	Consultant F	roject No.:	791749
F	rimary Agency/Regulat	ory ID No.:	Regional Water Quality Control Board - S.F. Bay Region

WORK PERFORMED THIS QUARTER (THIRD - 1999):

- 1. Prepared and submitted quarterly groundwater monitoring report for second quarter 1999.
- 2. Performed quarterly groundwater monitoring and sampling for third quarter 1999.
- 3. Continued intrinsic bioremediation enhancement at wells MW-3 and MW-4 using oxygen release compound socks.

WORK PROPOSED FOR NEXT QUARTER (FOURTH - 1999):

- 1. Prepare and submit quarterly groundwater monitoring report for third quarter 1999.
- 2. Perform quarterly groundwater monitoring and sampling for fourth quarter 1999.
- 3. Continue intrinsic bioremediation enhancement at wells MW-3 and MW-4.

QUARTERLY MONITORING:

Current Phase of Project:	Monitoring/Remediation
Frequency of Groundwater Sampling:	Annual (2nd Quarter): MW-1, MW-2, MW-6
	Semi-annual (2nd/4th Quarter): MW-3, MW-4
	Quarterly: MW-5
Frequency of Groundwater Monitoring:	Quarterly
Is Free Product (FP) Present On-Site:	No
FP Recovered this Quarter:	None
Cumulative FP Recovered to Date:	None
Bulk Soil Removed This Quarter:	None
Bulk Soil Removed to Date:	None
Current Remediation Techniques:	Bioremediation Enhancement
Average Depth to Groundwater:	7.6 feet
Groundwater Flow Direction and Gradient	
(Average):	0.03 ft/ft toward southwest

3

DISCUSSION:

- Because annual and semi-annual samples were collected during the third quarter 1999, they will not be collected during the fourth quarter 1999.
- TPPH-g and benzene concentrations at downgradient perimeter Well MW-5 remained below detection limits this quarter.
- The occurrence of intrinsic bioremediation at the site was documented during third quarter 1996.
- Intrinsic bioremediation enhancement at the off-site wells MW-3 and MW-4 is in progress. Please refer to Attachment D for details.

ATTACHMENTS:

- Table 1 Groundwater Elevation and Analytical Data
- Table 2 Groundwater Flow Direction and Gradient
- Figure 1 Groundwater Analytical Summary Map
- Figure 2 Groundwater Elevation Contour Map
- Appendix A Sampling and Analysis Procedures
- Appendix B Certified Analytical Reports and Chain-of-Custody Documentation
- Appendix C Field Data Sheets
- Appendix D Remedial System Performance Summary

....

Table 1Groundwater Elevation and Analytical DataTotal Purgeable Petroleum Hydrocarbons(TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 0374 6407 Telegraph Avenue, Oakland, California

	Date	Well	Depth to	Groundwater	TPPH as		±	Ethyl-	Total		Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MW-1	01/31/96	158.91	6.34	152.57	Not Sampl	ed: Well Sai	mpled Annu	allv				
MW-1	04/10/96	158.91	5.82	153.09	•	ed: Well Sa	•	•				
MW-1	07/16/96	158.91	7.23	151.68	<50	<0.5	<0.5	•	< 0.5	340	NM	
MW-1	10/14/96	158.91	8.34	150.57	Not Samp	led: Well Sa	mpled Annu	ally				
MW-1	03/27/97	158.91	6.37	152.54		ed: Well Sa						
MW-1	05/27/97	158.91	7.30	151.61	-	led: Well Sa	-	-				
MW-1	08/12/97	158.91	8.22	150.69	<50	<0.5	<0.5	<0.5	<0.5	620	NM	
MW-1	11/17/97	158.91	7.98	150.93	Not Sampl	led: Well Sa	mpled Annu	ally				
MW-1	03/16/98	158.91	4.94	153.97	Not Sampl	led: Well Sa	mpled Annu	ally				
MW-1	05/12/98	158.91	5.28	153.63	Not Samp	led: Well Sa	mpled Annu	ally				
MW-1	07/27/98	158.91	6.84	152.07	<500	ර	<5	<5	<5	580	0.6	Р
MW-1	10/15/98	158.91	7.32	151.59	Not Sampl	led: Well Sa	mpled Annu	ally				
MW-1	02/18/99	158.91	6.28	152.63	Not Samp	led: Well Sa	mpled Annu	ally				
MW-1	05/24/99	158.91	6.45	152.46	<50	<0.5	<0.5		<0.5	1,300	2.0	NP
MW-1	08/27/99	158.91	7.86	151.05	<50	<0.5	<0.5	<0.5	<0.5	1,500	1.65	NP
MW-2	01/31/96	1 57.9 2	6.51	151.41	Not Samp	led: Well Sa	mpled Annu	ally				
MW-2	04/10/96	157.92	6.94	150.98		led: Well Sa						
MW-2	07/16/96	157.92	7.73	150.19	<50	1.2	^ <0.5		<0.5	33	NM	
MW-2	10/14/96	157.92	8.35	149.57	Not Samp	led: Well Sa	mpled Annu	ally				
MW-2	03/27/97	157.92	7.40	150.52		led: Well Sa						
MW-2	05/27/97	157.92	7.82	150.10	Not Samp	led: Well Sa	mpled Annu	ally				
MW-2	08/12/97	157.92	8.29	149.63	<50	<0.5	<0.5	<0.5	<0.5	23	NM	
MW-2	11/17/97	157.92	8.05	149.87	Not Samp	led: Well Sa	mpled Annu	ally				
MW-2	03/16/98	157.92	6.45	151.47		led: Well Sa						
MW-2	05/12/98	157.92	6,93	150.99	Not Samp	led: Well Sa	mpled Annu	ally				
MW-2	07/27/98	157.92	7.39	150.53	<50	<0.5	<0.5		<0.5	<3	0.85	NP
MW-2	10/15/98	157.92	7.67	150.25	Not Sampl	led: Well Sa	mpled Annu	ally				
MW-2	02/18/99	157.92	6.63	151.29	Not Samp	led: Well Sa	mpled Annu	ally				

OAK\S:\ARCO\0374\QTRLY\0374q399.xls\uh:i

-

L,

Table 1Groundwater Elevation and Analytical DataTotal Purgeable Petroleum Hydrocarbons(TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 0374 6407 Telegraph Avenue, Oakland, California

	Date	Well	Depth to	Groundwater	TPPH as			Ethyl-	Total		Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MW-2	05/24/99	157.92	7.43	150.49	<50	6.3	<0.5	0.7	<0.5	29	3.0	Р
MW-2	08/27/99	157.92	8.22	149.70	<50	<0.5	<0.5	<0.5	<0.5	<3	0.95	NP
MW-3*	01/31/96	153.64	7.02	146.62	140	20	0.87	11	14	NA	NM	
MW-3*	04/10/96	153.64	7.82	145.82	84	2.4	<0.5	1.9	1.1	NA	NM	
MW-3*	07/16/96	153.64	6.80	146.84	<50	2.2	<0.5	<0.5	<0.5	<2.5	NM	
MW-3*	10/14/96	153.64	7.67	145.97	<50	1.2	<0.5	<0.5	0.81	2.9	NM	
MW-3*	03/27/97	153.64	7.62	146.02	<50	0.94	<0.5	0.9	0.63	<2.5	NM	
MW-3*	05/27/97	153.64	6.72	146.92	Not Sampl	ed: Well Sai	npled Semia	nnually				
MW-3*	08/12/97	153.64	8.20	145.44	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NM	
MW-3*	11/17/97	153.64	7.64	146.00	Not Sampl	ed: Well Sai	npled Semia	nnually			12.0	
MW-3*	03/18/98	153.64	5.14	148.50	<50	<0.5	<0.5	<0.5	<0.5	<3	4.0	Р
MW-3*	05/12/98	153.64	5.53	148.11	Not Sampl	ed: Well Sai	npled Semia	nnually				
MW-3*	07/27/98	153.64	7.63	146.01	74	<0.5	<0.5	<0.5	<0.5	3	1.7	NP
MW-3*	10/15/98	153.64	7.46	146.18	Not Sampl	ed: Well Sa	npled Semia	nnually				
MW-3*	02/18/99	153.64	5.85	147.79	Not Sampl		-					
MW-3*	05/24/99	153.64	7.00	146.64	<50	<0.5	<0.5	<0.5	<0.5	4	6.0	NP
MW-3*	08/27/99	153.64	7.16	146.48	<50	<0.5	<0.5	<0.5	<0.5	3	16.57	NP
MW-4	01/31/96	156.53	5.64	150.89	230	23	2.2	3.7	32	NA	NM	
MW-4	04/10/96	156.53	5.66 6.66	149.87	7,300	1,600	350	350	830	NA	NM	
MW-4	07/16/96	156.53	7.73	149.87	7,300 5,600	1,100	160	240	520	150		
1							72		340	<62	NM	
MW-4	10/14/96	156.53	8.55	147.98	4,500	860		160				
MW-4	03/27/97	156.53	7.15	149.38	25,000	5,200	760	850	2,600	<250	NM	
MW-4	05/27/97	156.53	7.75	148.78	-	ed: Well Sai	-	•				
MW-4	08/12/97	156.53	8.46	148.07	4,800	950	40	140	210	170	NM	
MW-4	11/17/97	156.53	8.24	148.29	~	ed: Well Sai	-	-				
MW-4	03/16/98	156.53	5.32	151.21	<50	<0.5	<0.5	<0.5	<0.5	3	1.5	Р
MW-4	05/12/98	156.53	6.38	150.15	Not Sampl	ed: Well Sai	npled Semia	nnually				

OAK\S\ARCO\0374\QTRLY\0374q399.xls\uh:1

.

-

~

Table 1Groundwater Elevation and Analytical DataTotal Purgeable Petroleum Hydrocarbons(TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 0374 6407 Telegraph Avenue, Oakland, California

	Date	Well	Depth to	Groundwater	TPPH as			Ethyl-	Total		Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	_(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MW-4	07/27/98	156.53	7.36	149.17	21,000	6,100	390	810	1,600	<300	0.5	NP
MW-4	10/15/98	156.53	8.30	148.23	•	ed: Well Sar			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4000	0.2	
MW-4	02/18/99	156.53	4.39	152.14	Not Sampl		<u>F</u>					
MW-4	05/24/99	156.53	7.45	149.08	18,000	5,600	350	410	1,300	<300	1.0	NP
MW-4	08/27/99	156.53	8.07	148.46	12,000	3,200	170	490	810	65	1.32	NP
						-,				*-	1.02	
MW-5	01/31/96	151.33	8.64	142.69	<50	<0.5	<0.5	<0.5	<0.5	NA	NM	
MW-5	04/10/96	151.33	N/A		<50	<0.5	<0.5	<0.5	<0.5	NA	NM	
MW-5	07/16/96	151.33	8.15	143.18	<50	0.79	1.3	<0.5	< 0.5	<2.5	NM	
MW-5	10/14/96	151.33	7.92	143.41	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NM	
MW-5	03/27/97	151.33	7.75	143.58	<50	<0.5	<0.5	<0.5	<0.5	<2.5	NM	
MW-5	05/27/97	151.33	8.16	143.17	<50	<0.5	<0.5	<0.5	< 0.5	<2.5	NM	
MW-5	08/12/97	151.33				W	ell Inaccessi	ble				
MW-5	11/17/97	151.33	8.75	142.58	<50	<0.5	<0.5	<0.5	<0.5	<2.5	4.0	NP
MW-5	03/16/98	151.33	6.90	144.43	<50	<0.5	<0.5	<0.5	<0.5	<3	1.5	Р
MW-5	05/12/98	151.33	7.24	144.09	<50	<0.5	<0.5	<0.5	<0.5	<3	2.2	Р
MW-5	07/27/98	151.33	7.91	143.42	<50	<0.5	<0.5	<0.5	<0.5	<3	1.3	Р
MW-5	10/15/98	151.33	8.31	143.02	<50	<0.5	<0.5	<0.5	0.6	<3	3.0	Р
MW-5	02/18/99	151.33	7.25	144.08	<50	<0.5	<0.5	<0.5	<0.5	<3	2.0	Р
MW-5	05/24/99	151.33	7.52	143.81	<50	<0.5	<0.5	<0.5	<0.5	<3	2.0	NP
MW-5	08/27/99	151.33	8.31	143.02	<50	<0.5	<0.5	<0.5	<0.5	<3	2.28	Р
MW-6	01/31/96	153.84	5.15	148.69	-	ed: Well Sar	-	-				
MW-6	04/10/96	153.84	4.58	149.26	-	ed: Well Sar		-				
MW-6	07/16/96	153.84	4.96	148.88	<50	<0.5	<0.5	<0.5	<0.5	150	NM	
MW-6	10/14/96	153.84	6.15	147.69	Not Sampl	ed: Well Sar	npled Annua	ally				
MŴ-6	03/27/97	153.84	4.40	149.44	Not Sampl	ed: Well Sar	npled Annua	ally				
MW-6	05/27/97	153.84	4.90	148.94	Not Sampl	ed: Well Sar	npled Annua	ally				
MW-6	08/12/97	153.84	5.43	148.41	<50	<0.5	<0.5	<0.5	<0.5	39	NM	

.

ы

Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE)

ARCO Service Station 0374 6407 Telegraph Avenue, Oakland, California

	Date	Well	Depth to	Groundwater	TPPH as	- <u>-</u>		Ethyl-	Total		Dissolved	Purged/
Well	Gauged/	Elevation	Water	Elevation	Gasoline	Benzene	Toluene	benzene	Xylenes	MTBE	Oxygen	Not Purged
Number	Sampled	(feet, MSL)	(feet, TOC)	(feet, MSL)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppm)	(P/NP)
MW-6	11/17/97	153.84	5.87	147.97	Not Sampl	ed: Well Sa	mpled Annu	ally				
MŴ-6	03/16/98	153.84	4.52	149.32	Not Sampl	ed: Well Sa	mpled Annu	ally				
MW-6	05/12/98	153.84	4.42	149.42	Not Sampl	ed: Well Sa	- mpled Annu	ally				
MW-6	07/27/98	153.84	4.75	149.09	<50	<0.5	<0.5	<0.5	<0.5	18	0.9	Р
MW-6	10/15/98	153.84	5.75	148.09	Not Sampl	ed: Well Sa	mpled Annu	ally				
MW-6	02/18/99	153.84	3.93	149.91	Not Sampl	ed: Well Sa	mpled Annu	ally				
MW-6	05/24/99	153.84	4.32	149.52	·<50	<0.5	<0.5	<0.5	<0.5	6	2.0	NP
MW-6	08/27/99	153.84	5.72	148.12	<50	<0.5	<0.5	<0.5	<0.5	8	1.02	NP
TOC TPPH BTEX MTBE ppb ppm < NA	= Benzene, tols = Methyl tert -1 = Parts per bill = Parts per mil	g. ble petroleum hydr Jene, ethylbenzene Butyl Ether by EPJ ion. Jion. woratory detection l l.	e, xylenes by EPA A method 8020		015							
N/A	= Not available											
*	= ORCs install	ed in well beginnin	ng 11/14/95. Plea	se refer to Appendi	x D for details.							

Table 2Groundwater Flow Direction and Gradient

ARCO Service Station 0374 6407 Telegraph Avenue, Oakland, California

Date	Average	Average
Measured	Flow Direction	Hydraulic Gradient
•		
01-31-96	Southwest	0.04
04-10-96	Southwest	0.04
07-16-96	Southwest	0.03
10-14-96	Southwest	0.03
03-27-97	Southwest	0.04
05-27-97	Southwest	0.03
08-12-97	Southwest	0.04
11-17-97	Southwest	0.03
03-16-98	Southwest	0.03
05-12-98	Southwest	0.04
07-27-98	Southwest	0.04
10-15-98	Southwest	0.02
02-18-99	Southwest	0.05
05-24-99	Southwest	0.03
08-27-99	Southwest	0.03

3

.

SANJOSE/CADD: N:\DWG\PINACL\374\374CHEM.DWG Fri, 15/Oct/99 06:23pm kblock

۲

· (*)*

ELEVATION

Groundwater monitoring well

Tank pit groundwater monitoring well

Concentration of total petroleum hydrocarbons as gasoline (TPHG), benzene, and MTBE in groundwater (ug/L); samples collected 8/27/99

Not detected at or above the indicated laboratory detection limit

ARCO PRODUCTS COMPANY SERVICE STATION 374

FIGURE 1 GROUNDWATER ANALYTICAL SUMMARY THIRD QUARTER 1999 6407 TELEGRAPH AVENUE OAKLAND, CALIFORNIA

.

80.00

•

ARCO PRODUCTS COMPANY SERVICE STATION 374

Groundwater elevation contour (Ft.-MSL)

Approximate direction of groundwater

Groundwater elevation (Ft.-MSL);

- measured 8/27/99

- Tank pit groundwater monitoring well

flow showing gradient

Groundwater monitoring well

ELEVATION

APPENDIX A

SAMPLING AND ANALYSIS PROCEDURES

APPENDIX A

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved.

The following documents have been used as guidelines for developing these procedures:

- Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977
- Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, 3rd edition, November 1986
- Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982
- Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983
- Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989

Sample Collection

Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling.

Equipment Cleaning

Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with deionized water. During field sampling, equipment surfaces that were placed in the well or came into contact with groundwater during field sampling were steam cleaned with deionized water before the next well was purged or sampled.

Water Level, Floating Hydrocarbon, and Total Well Depth Measurements

Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness, and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline, and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated by being rinsed with deionized water or steam cleaned after each use. A bottom-filling, clear Teflon[®] bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water.

The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated by being rinsed with deionized water after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon.

Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form.

Well Purging

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol presented in Figure A-1. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

Groundwater purged from the monitoring wells was transported in a 500-gallon water trailer, 55-gallon drum, or a 325-gallon truck-mounted tank to IT's San Jose or Sacramento office location for temporary storage. IT arranged for transport and disposal of the purged groundwater through Integrated Waste Stream Management, Inc.

Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Figure A-2 shows an example of the water sample field data sheet on which field data are recorded. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed.

The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet.

Well Sampling

A Teflon bailer was the only equipment acceptable for well sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped.

When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the Teflon bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded.

Pinnacle

Sample Preservation and Handling

The following section specifies sample containers, preservation methods, and sample handling procedures.

Sample Containers and Preservation

Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested.

Sample Handling

Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs until received by the laboratory. At the time of sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory.

Samples that required overnight storage prior to shipping to the laboratory were kept $cool (4^{\circ}C)$ in a refrigerator. The refrigerator was kept in a warehouse, which was locked when not occupied by an IT employee. A sample/refrigerator log was kept to record the date and time that samples were placed into and removed from the refrigerator.

Samples were transferred from IT to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from IT to laboratories performing the selected analyses routinely occurred within 24 hours of sample collection.

Sample Documentation

The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following:

- Water sample field data sheets to document Chain-of-custody record sheets for • sampling activities in the field
- Labels to identify individual samples •
- documenting possession and transfer of samples
- Laboratory analysis request sheets for documenting analyses to be performed

Field Logbook

In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected:

- Project number
- Client's name
- Location
- Name of sampler
- Date and time
- Well accessibility and integrity
- Pertinent well data (e.g., casing diameter, depth to water, well depth)

- Calculated and actual purge volumes
- Purging equipment used
- Sampling equipment used
- Appearance of each sample (e.g., color, turbidity, sediment)
- Results of field analyses (temperature, pH, specific conductance)
- General comments

The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator.

Labels

Sample labels contained the following information:

- Project number
- Sample number (i.e., well designation)
- Sample depth

- Sampler's initials
- Date and time of collection
- Type of preservation used (if any)

Sampling and Analysis Chain-of-Custody Record

The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to IT with the analytical results.

Groundwater Sampling and Analysis Request Form

A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information:

• Date scheduled

.

• Well number

• Site-specific instructions

- Well specifications (expected total depth, depth of water, and product thickness)
- Specific analytical parameters

	WAT	FER SAMPL	E FIELD	DATA SH	EET	
				SAMPLE ID :		-
					······	1
	-					
TYPE:		Surface Water		Leachate	Other	
CASING	G DIAMETER (inches):	23	4	4.5	6 Other	
	ELEVATION (feet/MSL			DLUME IN CASING		
	DEPTH OF WELL (feet):		CULATED PURGE		
I	DEPTH OF WATER (feet):	AC1	FUAL PURGE VOL	(gal.) :	
	DATE PURGED :			END PURGE :		
:	DATE SAMPLED :		SAN	APLING TIME :		
TIME	VOLUME	рН	E.C.	TEMPERATURE	TURBIDITY	TIME
(2400 HI	(gal.)	(units) (J	µmhos/cm@25°c)	(°F)	(visual/NTU)	(2400 HR)
	······	<u></u>			<u></u>	
		<u> </u>				
				<u> </u>		<u></u>
, , , _						
OTHER:		<u> </u>	ODOR:	<u></u>	(COBALT 0-100)	(NTU 0-200)
	SAMPLES COLLECTE	TATTHS WELL (if	• FB-1 XDUP-1			
FIELD QU	SAMPLES COLLECTO	DAT THIS WEED (I.C				
	PURGING EQUIPMEN	<u>1T</u>		SAMPLIN	<u>G EQUIPMENT</u>	
24	Bladder Pump	Bailer (Teflon)		2" Bladder Pum	pBailer (Teflon)
<u>^</u> _	- taifu and Dumm	Bailer (PVC)		Bomb Sampler	Bailer (Stainless Steel)
	· · ·	Bailer (PVC)	_	Bomb Sampler		Stamless Steel) sible Pump
Su	omersible Pump	Bailer (Stainless Steel)		Dipper	Submer	sible Pump
Su	omersible Pump	Bailer (Stainless Steel)Dedicated		Dipper Well Wizard™	SubmerDedicat	sible Pump ed
Su	omersible Pump	Bailer (Stainless Steel)Dedicated		Dipper	SubmerDedicat	sible Pump ed
Su	omersible Pump	Bailer (Stainless Steel)Dedicated		Dipper Well Wizard™	Submer	sible Pump ed
Su We Other:	omersible Pump	Bailer (Stainless Steel)Dedicated	O	Dipper Well Wizard™ her:	Submer	sible Pump ed
Su Wo Other: /ELL INTEC	omersible Pump	Bailer (Stainless Steel) Dedicated	O	Dipper Well Wizard™ her:	Submer Dedicat	sible Pump ed
Su Wo Other: /ELL INTEC	omersible Pump ull Wizard™ RITY'	Bailer (Stainless Steel) Dedicated	O	Dipper Well Wizard™ her:	Submer Dedicat	sible Pump ed
Su Other: /ELL INTEC EMARKS	omersible Pump Ill Wizard™ GRITY·	Bailer (Stainless Steel)Dedicated	O	Dipper Well Wizard™ her:	Submer Dedicat	sible Pump ed
Su Wo Other: /ELL INTEC EMARKS: H, E C., Temp	mersible Pump SRITY· Meter Calibration: Da	Bailer (Stainless Steel)Dedicated	O(Dipper Well Wizard™ her: 	Submer Dedicat LOCK: ter Serial No.:	sible Pump ed
Su Other: /ELL INTEC EMARKS: H, E C., Temp .C. 1000	mersible Pump SRITY· Meter Calibration: Data de la construction de la co	Bailer (Stainless Steel)Dedicated	O(Dipper Well Wizard™ her: 	Submer Dedicat LOCK: ter Serial No.:	sible Pump ed
Su Other: /ELL INTEC EMARKS· H, E C., Temp .C. 1000 emperature °F	mersible Pump SRITY· Meter Calibration: Data de la construcción de la co	Bailer (Stainless Steel) Dedicated ate: pH 7/	O	Dipper Well Wizard™ her: Me 0/	Submer Dedicat LOCK: ter Serial No.: pH 4	sible Pump ed
Su Other: /ELL INTEC EMARKS· H, E C., Temp .C. 1000 emperature °F	mersible Pump SRITY· Meter Calibration: Data de la construction de la co	Bailer (Stainless Steel) Dedicated ate: pH 7/	O	Dipper Well Wizard™ her: Me 0/	Submer Dedicat LOCK: ter Serial No.: pH 4	sible Pump ed
Su Other: /ELL INTEC EMARKS· H, E C., Temp .C. 1000 emperature °F	mersible Pump SRITY· Meter Calibration: Data de la construcción de la co	Bailer (Stainless Steel) Dedicated ate: pH 7/	O	Dipper Well Wizard™ her: Me 0/	Submer Dedicat LOCK: ter Serial No.: pH 4	sible Pump ed
Su Other: /ELL INTEC EMARKS· H, E C., Temp .C. 1000 emperature °F	mersible Pump SRITY· Meter Calibration: Data de la construcción de la co	Bailer (Stainless Steel) Dedicated ate: pH 7/	O	Dipper Well Wizard™ her: Me 0/	Submer Dedicat LOCK: ter Serial No.: pH 4	sible Pump ed
Su Other: /ELL INTEC EMARKS· H, E C., Temp .C. 1000 emperature °F	mersible Pump SRITY· Meter Calibration: Data de la construcción de la co	Bailer (Stainless Steel) Dedicated ate: pH 7	O	Dipper Well Wizard™ her: Me 0/ VED BY:	Submer Dedicat LOCK: ter Serial No.: pH 4 _PAGE	sible Pump ed / OF FIGURI
Su Other: /ELL INTEC EMARKS· 	mersible Pump SRITY· Meter Calibration: Data de la construcción de la co	Bailer (Stainless Steel) Dedicated ate: pH 7	O	Dipper Well Wizard™ her: Me 0/	Submer Dedicat LOCK: ter Serial No.: pH 4 _PAGE	sible Pump ed

IT - SACRAMENTO GROUNDWATER SAMPLING AND ANALYSIS REQUEST FORM

PROJECT NAME :

,

SCHEDULED D	ATE :			
			Project	
SPECIAL INSTRUCTIONS / CONSID	ERATIONS :			
			EMCON Project No.:	
			OWT Project No.:	
			Task Code:	·····
			Originals To:	
		1	cc:	
				Well Lock
				Number (s)
l .				
CHECK BOX TO AUTHORIZE DA	TA ENTRY	Site Contact:		
			Name	Phone #
Well Casing Casin	ng Depth to			
Number or Diameter Leng		ANA	SES REQUESTED	
Source (inches) (fee				
	1			
Laboratory and Lab QC Istructions:				
1				
h			······································	· · · · · · · · · · · · · · · · · · ·
				FIGURE

SAMPLING AND ANALYSIS REQUEST FORM

A-3

APPENDIX B

CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY DOCUMENTATION

September 15, 1999

Service Request No.: S9902667

Mr. Glen Vanderveen IT/EMCON 2201 Broadway, Suite 101 Oakland, CA 94612

RE: TO#24118.00/RAT#8/374 OAKLAND

Dear Mr. Vanderveen:

Enclosed are the results of the sample(s) submitted to our laboratory on August 31, 1999. All analyses were performed in accordance with our laboratory's quality assurance program. Results are intended to be considered in their entirety and apply to the sample(s) analyzed. Columbia Analytical Services is not responsible for use of less than the complete report. Signature of this CAS Analytical Report confirms that pages 2 through 14, following, have been thoroughly reviewed and approved for release.

Columbia Analytical Services is certified for environmental analyses by the California Department of Health Services (certificate number: 1496, expiration: January 31, 2001).

If you have any questions, please call me at (408) 748-9700.

Respectfully submitted,

Columbia Analytical Services, Inc.

Germadette Inoncalis

Bernadette Troncales Project Chemist

] total

⊥ ∽ Greg Jordan Laboratory Director

SEP 1 7 1999 BY:

Acronyms

۰ ۱

	Acronyms
A2LA	American Association for Laboratory Accreditation
ASTM	American Society for Testing and Materials
BOD	Biochemical Oxygen Demand
BTEX	Benzene, Toluene, Ethylbenzene, Xylenes
CAM	California Assessment Metals
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
COD	Chemical Oxygen Demand
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DLCS	Duplicate Laboratory Control Sample
DMS	Duplicate Matrix Spike
DOE	Department of Ecology
рон	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
IC	Ion Chromatography
ICB	Initial Calibration Blank sample
	Inductively Coupled Plasma atomic emission spectrometry
ICP	Initial Calibration Verification sample
ICV	Estimated concentration. The value is less than the MRL, but greater than or equal to
J	Estimated concernitation. The value is less that the write, but greated that of equal to
	the MDL. If the value is equal to the MRL, the result is actually <mrl before="" rounding.<="" td=""></mrl>
LCS	Laboratory Control Sample
LUFT	Leaking Underground Fuel Tank
M	Modified
MBAS	Methylene Blue Active Substances
MCL	Maximum Contaminant Level. The highest permissible concentration of a
	substance allowed in drinking water as established by the U.S. EPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
MS	Matrix Spike
MTBE	Methyl tert-Butyl Ether
NA	Not Applicable
NAN	Not Analyzed
NC	Not Calculated
	National Council of the paper industry for Air and Stream Improvement
NCASI	Not Detected at or above the method reporting/detection limit (MRL/MDL)
ND	Not Detected at of above the method reporting/detection initia (write hole)
NIOSH	National Institute for Occupational Safety and Health
NTU	Nephelometric Turbidity Units
ppb	Parts Per Billion
ppm	Parts Per Million
PQL	Practical Quantitation Limit
QA/QC	Quality Assurance/Quality Control
RCRA	Resource Conservation and Recovery Act
RPD	Relative Percent Difference
SIM	Selected Ion Monitoring
SM	Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992
STLC	Solubility Threshold Limit Concentration
SW	Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,
	3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.
TCLP	Toxicity Characteristic Leaching Procedure
TDS	Total Dissolved Solids
трн	Total Petroleum Hydrocarbons
	Trace level. The concentration of an analyte that is less than the PQL but greater than or equal
tr	to the MDL. If the value is equal to the PQL, the result is actually <pql before="" rounding.<="" td=""></pql>
TODU	Total Recoverable Petroleum Hydrocarbons
TRPH	
TSS	Total Suspended Solids
TTLC	Total Threshold Limit Concentration Volatile Organic Analyte(s) Receipt ACRONLST.DOC 7/14/95
VOA	Volatile Organic Analyte(s) Page 2 ACRONLST.DOC 7/14/95

Analytical Report

Client:	ARCO Products Company	Service Request:	8/27/99
Project:	TO#24118.00/RAT#8/374 OAKLAND	Date Collected:	
Sample Matrix:	Water	Date Received:	

BTEX, MTBE and TPH as Gasoline

Sample Name: Lab Code: Test Notes:	MW-1(25) S9902667-001	Units: ug/L (ppb) Basis: NA
--	--------------------------	--------------------------------

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	9/10/99	ND	
Benzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	9/10/99	NÐ	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	5	NA	9/10/99	1500	

r

Approved By: Date: 04/15	199
--------------------------	-----

IS22/020597p

د م

Analytical Report

Client: Project: Sample Matrix:		ARCO Products Company TO#24118.00/RAT#8/374 OAKLAND Water					Service Request: Date Collected: Date Received:		
		BTEX, MI	BE and TPH	as Gasoline					
Sample Name: Lab Code: Test Notes:	MW-6(13) S9902667-002						Units: Basis:	ug/L (ppb) NA	
Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes	
TPH as Gasoline Benzene	EPA 5030 EPA 5030	CA/LUFT 8020	50 0.5	1	NA NA	9/10/99 9/10/99	ND ND		

0.5

0.5

0.5

3

1

1

1

1

NA

NA

NA

NA

8020

8020

8020

8020

EPA 5030

EPA 5030

EPA 5030

EPA 5030

Approved By: _

M

ND

ND

ND

8

÷.

9/10/99

9/10/99

9/10/99

9/10/99

IS22/020597p

.

Toluene

Ethylbenzene

Xylenes, Total

Methyl tert -Butyl Ether

Analytical Report

Client:	ARCO Products Company	Service Request: S9902667
Project:	TO#24118.00/RAT#8/374 OAKLAND	Date Collected: 8/27/99
Sample Matrix:	Water	Date Received: 8/31/99
• • •		

BTEX, MTBE and TPH as Gasoline

Sample Name: Lab Code: Test Notes:	MW-5(22) S9902667-003	Units: ug/L (ppb) Basis: NA
--	--------------------------	--------------------------------

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	9/10/99	ND	
Benzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	9/10/99	ND	

1

.

Date: 09/15/99 M Approved By: _____

1S22/020597p

.

.

Analytical Report

Client:ARCO Products CompanyService Request: 399020Project:TO#24118.00/RAT#8/374 OAKLANDDate Collected: 8/27/99Date Descined:8/21/00	57
Data Dapaired - 201/00	
Sample Matrix: Water Date Received: 8/31/99	

BTEX, MTBE and TPH as Gasoline

Sample Name: Lab Code: Test Notes:	MW-2(25) S9902667-004	Units: ug/L (ppb) Basis: NA
--	--------------------------	--------------------------------

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	9/10/99	ND	
Benzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	9/10/99	ND	

Date: <u>D9/15/99</u> M Approved By: _____

1522/020597p

.

.

Analytical Report

Client:	ARCO Products Company	Service Request: S9902667
Project:	TO#24118.00/RAT#8/374 OAKLAND	Date Collected: 8/27/99
Sample Matrix:	Water	Date Received: 8/31/99
Sumpro munitari		

BTEX, MTBE and TPH as Gasoline

Sample Name: Lab Code: Test Notes:	MW-3(25) S9902667-005	Units: ug/L (ppb) Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	9/10/99	ND	
Benzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	9/10/99	ND	

ł

Approved By: Date: D9/15/99	î
-----------------------------	---

.

IS22/020597p

•

.

٨

Analytical Report

Client:	ARCO Products Company	Service Request: S9902667
Proiect:	TO#24118.00/RAT#8/374 OAKLAND	Date Collected: 8/27/99
Sample Matrix:	Water	Date Received: 8/31/99

BTEX, MTBE and TPH as Gasoline

Sample Name:	MW-4(25)	Units: ug/L (ppb)
Lab Code:	S9902667-006	Basis: NA
Test Notes:		

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	20	NA	9/11/99	12000	
Benzene	EPA 5030	8020	0.5	20	NA	9/11/99	3200	
Toluene	EPA 5030	8020	0.5	20	NA	9/11/99	170	
Ethylbenzene	EPA 5030	8020	0.5	20	NA	9/11/99	490	
Xylenes, Total	EPA 5030	8020	0.5	20	NA	9/11/99	810	
Methyl tert -Butyl Ether	EPA 5030	8020	3	20	NA	9/11/99	65	

_____Date: <u>D9/15/99</u> m Approved By:

1**S22/020597**p

4

Analytical Report

Client:	ARCO Products Company	Service Request: \$9902667
Project:	TO#24118.00/RAT#8/374 OAKLAND	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Gample mad in		

BTEX, MTBE and TPH as Gasoline

Sample Name: Lab Code: Test Notes:	Method Blank S990909-WB2	Units: ug/L (ppb) Basis: NA
--	-----------------------------	--------------------------------

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	9/10/99	ND	
Benzenc	EPA 5030	8020	0.5	1	NA	9/10/99	ND,	
Toluene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	9/10/99	ND	

Approved By: _____

٩

_____ Date: D4/15/99

÷.

,

1

1S22/020597p

.

4

MT

.

Analytical Report

Client:	ARCO Products Company	Service Request: S9902667
Project:	TO#24118.00/RAT#8/374 OAKLAND	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
-		

BTEX, MTBE and TPH as Gasoline

Sample Name:Method BlankLab Code:S990910-WB1Test Notes:	Units: ug/L (ppb) Basis: NA
---	--------------------------------

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	9/10/99	ND	
Benzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Toluene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	9/10/99	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	9/10/99	ND	

.

,

Approved By: Date: 09/15/99	í
-----------------------------	---

1\$22/020597p

.

٠

د

.

QA/QC Report

Client:	ARCO Products Company
Project:	TO#24118.00/RAT#8/374 OAKLAND
Sample Matrix:	Water

Service Request: \$9902667 Date Collected: NA Date Received: NA Date Extracted: NA Date Analyzed: NA

Units: PERCENT

Basis: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:EPA 5030Analysis Method:8020CA/LUFT

,

Sample Name		Test	Percent	Recovery
Sample Name	Lab Code	Notes	4-Bromofluorobenzene	a,a,a-Trifluorotoluene
MW-1(25)	S9902667-001		93	102
MW-6(13)	S9902667-002		92	92
MW-5(22)	S9902667-003		91	83
MW-2(25)	S9902667-004		92	101
MW-3(25)	S9902667-005		93	94
MW-4(25)	S9902667-006		88	134
BATCH QC	S9902640-001MS		106	92
BATCH QC	S9902640-001DMS		108	91
BATCH QC	S9902640-002MS		82	131
BATCH QC	S9902640-002DMS	-	80	116
Method Blank	S990909-WB2		98	93
Method Blank	S990910-WB1		92	93

CAS Acceptance Limits:

ĥr

69-116

Date: 091/15/49

72-139

Approved By: _____

SUR2/020397p

QA/QC Report

•

,

•

Client: Project: Sample Matrix:	ARCO Products Company TO#24118.00/RAT#8/374 O. Water	AKLAND	Service Request: Date Collected: Date Received: Date Extracted: Date Analyzed:	NA NA NA
	r	Matrix Spike/Duplicate Matrix Spike Summary BTE		
Sample Name: Lab Code:	BATCH QC S9902640-001MS,	S9902640-001DMS	Units: Basis:	ug/L (ppb) NA

									Pero	cent	Recovery CAS	Relative
	Prep	Analysis		Spik	e Level	Sample	Spike	Result			Acceptance	Percent
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Benzene	EPA 5030	8020	0.5	25	25	ND	26	24	104	96	75-135	8
Toluenc	EPA 5030	8020	0.5	25	25	ND	24	22	96	88	73-136	9
Ethylbenzene	EPA 5030	8020	0.5	25	25	ND	25	23	100	92	69-142	8

-

Approved By:	MT	Date:	09/15/99
······································	,		

DMS/020597p

•

,

Test Notes:

QA/QC Report

Client:ARCO Products CompanyProject:TO#24118.00/RAT#8/374 OAKLANDSample Matrix:Water

.

Service Request:S9902667Date Collected:NADate Received:NADate Extracted:NADate Analyzed:9/10/99

Matrix Spike/Duplicate Matrix Spike Summary TPH as Gasoline

	BATCH QC S9902640-00	2MS,	S9902	640-0	02DMS							Units: ug/L (ppb) Basis: NA				
									Pere	cent	Recovery	/				
											CAS	Relative				
	Prep	Analysis		Spik	e Level	Sample	Spike	Result			Acceptance	Percent	Result			
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes			
Gasoline	EPA 5030	CA/LUFT	50	250	250	ND	204	225	82	90	75-135	10				

Approved By:	hā	Date:	09/15/99
	/ <u> </u>		

DMS/020597p

QA/QC Report

Client: Project:	ARCO Products TO#24118.00/R	Company AT#8/374 OAKLAN	\$	Service Request: Date Analyzed:			
			alibration Verific EX, MTBE and	• •	-		
Sample Name: Lab Code: Test Notes:	ICV ICV1					Units: Basis:	ug/L (ppb) NA
ICV Source: Analyte	Prep Method	Analysis Method	True Value	Result	CAS Percent Recover Acceptance Limits	y Percent Recovery	Result Notes
TPH as Gasoline Benzene Toluene	EPA 5030 EPA 5030 EPA 5030	CA/LUFT 8020 8020	250 25 25	223 28 25	85-115 85-115 85-115	89 112 100	

25

75

25

,

8020

8020

8020

EPA 5030

EPA 5030

EPA 5030

27

80

26

Approved By:

______D9/15/99

85-115

85-115

85-115

108

107

104

1

ICV/032196

,

Ethylbenzene

Xylenes, Total

Methyl tert -Butyl Ether

ARCO	D Pre	oduc of Atla	cts C	omp	oany	1		Т	ask Order N	10. Za	411	Г,	0	0		5	59	90	20	66	7	Chair	n of Custody	<u>'</u>
ARCO Fa	cility no	03	,74				lan	d																
ARCO en	gineer		015				Tele (AR	phone no. CO)		Teler (Con	phone isultan	no.(105)45	3-7	eco	Fax r (Con:	no. sultant	(40	$\mathcal{R})$	43	1-9520	C/4 S 2 Contract Number	-
Consultar	it name		1CO					Add (Co	ress nsultant)	20	IB	$(\mathcal{O}\mathcal{O})$	<i>idu</i>	Iau	1#	O	C	211	an	d	CA-	-94612		
				Matrix		Prese	rvation				HILE			1				Ð	0002/0	민공			Method of shipment	ļ
ó		0.									2010015	8015 M []	8 70	1503E	_		_	Semi ACI VO	EPA 60	1420/14			Sampler	
Sample I.D.	ö	Container no	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	UTPH in	Modified D Diese	Oil and Grease 413.1 [] 413.2 []	118.1/SN	EPA 601/8010	EPA 624/8240	EPA 625/8270		Metals E	Lead Org/DHSC Lead EPA 7420/7421C			will deliver	
Sam	Lab	Con						Samp	Samp	BTEX 602/E	BTEX	TPH I Gas (OI ar 413.1	TPH EPA,	EPA(EPA(EPA	TCLF	Ng Pi	Lead Lea			Special Detection	
MW-1	(5)	2	\bigcirc	\times		\times	HAL	8/21/99	1258		Х												Limit/reporting	
MW-6	1	2	0	\times		\times	Ha		1310		X												Lowest	
HW-5		2	3	X		×	HCL		1331		X												Possible	
MW-Z	1	2	Ø	X		X	HCL		1343		X												Special QA/QC	
MW-3	125	2	6	X		×	HCL		1352		X												As	
MW-4		7	(E)	X		X	HCL		1408		\times	· 、											Normal	
<u></u>	F	_																					Remarks	-
																							RATS	
			1	1		_																	- 2-40m11+0	/
		1	1	1	1																		VCAS	-
	1	1	1					1		Γ														
	1	1	-	1																			#791749	,
	1	1	1	+								<u> </u>											Lab Number	-
	+	1	1	<u>†</u>	1		1		1															
	1	1	1	1																			Turnaround Time.	
			-	†	1		1	1	1	1	1	1								ſ			Priority Rush	
	+		-			<u>†</u>	1	1					1	<u> </u>		1			1		1			
					+				1	1		\square			1	1	1						Rush 2 Business Days	
	<u> </u>		<u> </u>	<u> </u>	<u> </u>	L		<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		1							L	Expedited	-
Conditio				160	CC	<u>òle</u>				}	peratu	-							<u></u>	<u>H-</u> D	3			
Relingu	shed by	sample		X			BE	499	Timə 14:00		eived l	K	se fot	h H	ach	a d	o C	HS	83	1/99		845	Standard	
Relingui	shed by			<u>*</u>			Date		Time	Rec	eived I	py(U										10 Business Days	\mathbb{R}
Relingui	shed by	,				<u> </u>	Date		Time	Rec	eived	oy labo	oratory	<u></u>			Date			Time				

•

Distribution: White Copy - Laboratory: Canary Copy - ARCO Environmental Engineering: Pink Copy - Consultant
APPENDIX C FIELD DATA SHEETS

,

4

AF	PROJE	ECT # : ION # :						6407 Telegra			DATE : DAY :	8/27/99 Friday
DTW Order	WELL ID	Well Box Seal Condition	Type Of Well Lid	Gasket Present	Lock Number	Type Of Weil Cap	FIRST DEPTH TO WATER (feet)	SECOND DEPTH TO WATER (feet)	DEPTH TO FLOATING PRODUCT (feet)	FLOATING PRODUCT THICKNESS (feet)	WELL TOTAL DEPTH (feet)	COMMENTS DO = M5/L -
1	<u>MW-1</u>	σK	HEX	NO	ARCO	LWC	786	7.86	ND		26.8	1.65/194°-
2	MW-6	ok	15/16"	YES	ARCO	LWC	572	572			14.7	1.07 120.4
3	MW-5	OK	18/16	YES	ARCO	LWC	8.31	8.31			23.0	2 28 /21.40-
4	MW-2	CK	HEX	NO	ARCO	LWC	8.22	8.22			263	095/21.5%
5	MW-3	CK	HEX	NO	ARCO	LWC	7.16	7.16			26.8	16.57 / 20.0°C
6	MW-4	aK	3/4"	NO	ARCO	LWC	8.07	8.07	·/	L	266	1.32/14.3
				 ``								
			ļ	<u> </u>	SI	JRVE	 Y POINTS	ARE TOP () DF WELL (CASINGS		

RECEIVED SEP 0 7 1999 BY:_____

	WATER	SAMPLE	FIELD D	DATA SI	HEET	Rev. 1
PROJE PURG	ECT NO : GED BY : .ED BY ·	792252 B. Herdial	<u>e</u> CL	SAMPLE ID IENT NAME · LOCATION :	MW-1 (<i>2</i> 5 [']) ARCO #0374 Oakland, Califo	rnia
TYPE: Groundwat CASING DIAMETER	ter <u>X</u> (inches): 2	Surface Water3	Leac 4 <u>X</u>	hate 4 5	Other 6 Other	, <u></u>
ASING ELEVATION DEPTH OF W DEPTH OF WA	VELL (feet) :	N/A 26.8 7.86	CALCULA	ATED PURGE	(gai): <u>57, C</u>	·
DATE PURC	GED :	27/59 V	ENI SAMPLI	D PURGE : NG TIME :	NO purz. 1258	<u></u>
	OLUME	pH (umus) (µmho	E.C. TEM	(°F)	(visual)	(visual)
OTHER:	Dissolved Oxyg	en=	ODOR:		N/A (COBALT 0-160)	
FIELD QC SAMPLE	ES COLLECTER	AT THIS WELL	(1.e FB-1, XDU	JP-1)	N/A	
<u> </u>	Ba	uler (Teflon) nler (PVC) uler (Stainless Steel) edicated		2" Bladder Pum Bomb Sampler Dipper Well WizardÔ	Bailer	
WELL INTEGRITY	Goed Docu	, univer. belans to	sal p of so	creen;	LOCK	Arces yk
		6/27/99	Time 1250	D	er Senal No	; W 3 4 1

•

, ı

		ER SAMPLE				Re
Emcon	PROJECT NO : PURGED BY SAMPLED BY :	792252 B Hend	riler	SAMPLE ID CLIENT NAME LOCATION	. <u>MW-2 (Z 5)</u> · <u>ARCO #0374</u> : Oakland, Calif	ornia
TYPE, Gro	oundwater X	Surface Water2 3	1	Leachate	Other	
CASING ELEV DEPT DEPTH	ATION (feet/MSL `H OF WELL (feet OF WATER (feet): <u>N/A</u>): <u>26,3</u>): <u>8.22</u>	VOL CALC ACTU	UME IN CASINC ULATED PURGE AL PURGE VOL	G (gal) E (gal.) : (gal.) :	7 4 e
DAT	E PURGED ·	8/27/99 L	SAM	END PURGE PLING TIME	1343	<u></u>
	(gal)	рН (units) (µm 	hos/cm@25°c)	(°F)	(visual)	TURBIDI (visual)
·						
OTHER .	Dissolved	Oxygen=	odor: 1	Iene	N/A (COBALT 0-100)	N/A (NTU 0-20
_	AMPLES COLLE	CTED AT THIS WEL	L (1.e. FB-1,)		N/A	<u>.</u>
2" Blad	ider Pump	Bailer (Teflon) Bailer (PVC)		2" Bładder Pui Bomb Sampler	npBailer	(Stainless Ste
· · · · · · · · · · · · · · · · · · ·	rsible Pump Viz.ardÔ	Bailer (Stainless Stee Dedicated		Dipper Well WizardÔ ther: D	Dedu	
WELL INTEG	rit <u>y. <i>Coi</i></u>	9			Lock	· Arco
REMARKS:	<u>D</u>	D tw belaw	tep o	f Steer	y grab =	inde_
		· · · · · · · · · · · · · · · · · · ·				
	Meter Calibration Da	те <u>Бее Ми</u> -1 pH 71		Met		

x

.

.

	WATE	R SAMPL	E FIELI	D DATA S	SHEET	Rev. 1
Emcon s	AMPLED BY :	792252 B1 Hendr		CLIENT NAMI LOCATION	N : Oakland, Calif	
TYPE: Grou CASING DIAM	Indwater X ETER (Inches): 2	Surface Water3	4X	Leachate 4.5	Other 6 Othe	r
DEPTH		N/A 26.8 7.16	CALC	ULATED PURC	IG (gał) : <u>[2, *</u> IE (gal.) : <u>38 .</u> L. (gal.) : <u>-</u>	5
	PURGED :	3 2-7 44 J		END PURGE : _	Ne pure 1352	e
TIME (2400 HR) 35[(units) (µ	mhos/cm@25°c)	(°F)	E COLOR (visual) 	(visual)
		xygen= red at this we			<u>N/A</u> (COBALT 0-100) N/A	(NTU 0-200)
-	JING EQUIPMEN				NG EQUIPMENT	· · · · · · · · · · · · · · · · · · ·
Centrafug	ible Pump	Bailer (Teflon) Bailer (PVC) Bailer (Stainless Ste Dedicated	-	2" Bladder Po Bomb Sampl Dipper Well Wizard0 ther:	erBailer Subm	
VELL INTEGR	Drut		1	of Serv en instal	ion, greb	: Avco example is well
E.C. 1000 Lemperature "F	1	<u>Sce Mw-1</u> pH7/ BH	pH I	10 <u>/</u> /	eter Senal No pH 4 PAGE	

·

•

PROJECT NO	B. Henricker	SAMPLE ID	MW-4(25)	Anton
PURGED BY	B. Henricker	CLIENT NAME		
NCON SAMPLED BY	:d	LOCATION	Oakland, Calif	ornia
YPE Groundwater X SING DIAMETER (inches)	Surface Water : 2 3	Leachate 4 _ X _ 4 5	Other 6 Othe	:r
SING ELEVATION (feet/MS DEPTH OF WELL (fe DEPTH OF WATER (fe	SL): N/A eet $ZCCeet$: 5.07	VOLUME IN CASING CALCULATED PURGE ACTUAL PURGE VOL.	(gal.): 17. (gal.): 30. (gal.):	0 .3
	8/27/99	END PURGE : SAMPLING TIME :	no pr 1408	NGR
TIME VOLUME	pH E.C	TEMPERATURE	COLOR	TURBIDITY
(2400 HR) (gal)	(units) (µmhos/cm			
1406 -	7.09 146	4 76.5	clar	-land
	<u> </u>			
	<u> </u>		. <u></u>	·
DTHER: Dissolve	ed Oxygen= OI	DOR: Strong	N/A	N/A
	ed Oxygen= OI LECTED AT THIS WELL (1 e		(COBALT 0-100)	(NTU 0-200)
	LECTED AT THIS WELL (1 e	. FB-1, XDUP-1)	(COBALT 0-100)	(NTU 0-200)
TELD QC SAMPLES COLL	LECTED AT THIS WELL (1 e	. FB-1, XDUP-1)	(COBALT 0-100) N/A G EQUIPMENT	(NTU 0-200)
TELD QC SAMPLES COLL	LECTED AT THIS WELL (1 e MENT	. FB-1, XDUP-1)	(COBALT 0-100) N/A G EQUIPMENT np Baile	(NTU 0-200) Tr (Teflon) Tr (Stainless Steel)
TELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump	LECTED AT THIS WELL (1 e MENT Bailer (Teflon)	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dipper	(COBALT 0-100) N/A G EQUIPMENT np Batle Subm	(NTU 0-200) rr (Teflon) rr (Stainless Steel hersible Pump
FIELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizargio	LECTED AT THIS WELL (1 e MENT Bailer (Teflon) Bailer (PVC)	. FB-1, XDUP-1)	(COBALT 0-100) N/A G EQUIPMENT np Baile Baile Subm Deduc	(NTU 0-200) r (Teflon) r (Stainless Steel) hersible Pump cated
IELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizargio	LECTED AT THIS WELL (1 e MENT Bailer (Teflon) Bailer (PVC) Bailer (Stamless Steel)	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Welł WizardÔ	(COBALT 0-100) N/A G EQUIPMENT np Batle Subm	(NTU 0-200) r (Teflon) r (Stainless Steel) hersible Pump cated
PURGING EQUIPM 2" Bladder Pump 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard	LECTED AT THIS WELL (1 e MENT Bailer (Teflon) Bailer (PVC) Bailer (Stainless Steel) Dedicated	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Well WizardÔ Other <u>Di</u>	(COBALT 0-100) N/A G EQUIPMENT np Batle Batle Batle Deduc isposable Teflon B	(NTU 0-200) r (Teflon) r (Stainless Steel) persible Pump cated Bailer
PURGING EQUIPM 2" Bladder Pump 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard	LECTED AT THIS WELL (1 e MENT Bailer (Teflon) Bailer (PVC) Bailer (Stamless Steel)	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Well WizardÔ Other <u>Di</u>	(COBALT 0-100) N/A G EQUIPMENT np Batle Batle Batle Deduc isposable Teflon B	(NTU 0-200) r (Teflon) r (Stainless Steel) persible Pump cated Bailer
PIELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard Dther ELL INTEGRITY:	LECTED AT THIS WELL (1 e MENT Bailer (Teflon) Bailer (PVC) Bailer (Stainless Steel) Dedicated	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Weil WizardÔ Other <u>Di</u>	(COBALT 0-100) N/A G EQUIPMENT npBaileSubmDeduc isposable Teflon BLOCH	(NTU 0-200) r (Teflon) r (Stainless Steel) persible Pump cated Bailer
PIELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard	LECTED AT THIS WELL () e MENT Bailer (Teflon) Bailer (PVC) Batler (Stainless Steel) Dedicated	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Weil WizardÔ Other <u>Di</u>	(COBALT 0-100) N/A G EQUIPMENT npBaileSubmDeduc isposable Teflon BLOCH	(NTU 0-200) r (Teflon) r (Stainless Steel) persible Pump cated Bailer
PIELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard Dther ELL INTEGRITY:	LECTED AT THIS WELL () e MENT Bailer (Teflon) Bailer (PVC) Batler (Stainless Steel) Dedicated	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Weil WizardÔ Other <u>Di</u>	(COBALT 0-100) N/A G EQUIPMENT npBaileSubmDeduc isposable Teflon BLOCH	(NTU 0-200) r (Teflon) r (Stainless Steel) persible Pump cated Bailer
PIELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard	LECTED AT THIS WELL () e MENT Bailer (Teflon) Bailer (PVC) Batler (Stainless Steel) Dedicated	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Weil WizardÔ Other <u>Di</u>	(COBALT 0-100) N/A G EQUIPMENT npBaileSubmDeduc isposable Teflon BLOCH	(NTU 0-200) r (Teflon) r (Stainless Steel) persible Pump cated Bailer
IELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizarge Dther ELL INTEGRITY:	LECTED AT THIS WELL () e MENT Bailer (Teflon) Bailer (PVC) Bailer (Stainless Steel) Dedicated	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Well WizardÔ Other Di L	(COBALT 0-100) N/A G EQUIPMENT np Batle Batle Subm Dedu isposable Teflon B LOCH	(NTU 0-200) rr (Teflon) rr (Stainless Steel) rersible Pump cated bailer
PIELD QC SAMPLES COLL PURGING EQUIPM 2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard	LECTED AT THIS WELL () e MENT Bailer (Teflon) Bailer (PVC) Bailer (Stainless Steel) Deducated SxxX 3/4" Vaul SxxX 7/4" Vaul	. FB-1, XDUP-1) <u>.</u> <u>SAMPLIN</u> 2" Bladder Pun Bomb Sampler Dippei Well WizardÔ Other Di L	(COBALT 0-100) N/A G EQUIPMENT npBatle Batle Deduc isposable Teflon B LOCk	(NTU 0-200) rr (Teflon) rr (Stainless Steel) bersible Pump cated bailer

·

. .

•

WATER SAMPLE FIELD DATA SHEET Rev.	1/9
PROJECT NO: 192252 SAMPLE ID: $MW-5(22)$ PURGED BY: $B.H.D.Archs$ CLIENT NAME: $Arco 374$ OWTSAMPLED BY: I L LOCATION: $Chillend, CA$ TYPE:GroundwaterSurface WaterLeachateOtherCASING DIAMETER (inches): 2 3 4 4.5 6	-
CASING ELEVATION (feet/MSL) N/A VOLUME IN CASING (gal.): 9.5 DEPTH OF WELL (feet): 230 CALCULATED PURGE (gal.): 28.8 DEPTH TO WATER (feet): 8.31 ACTUAL PURGE VOL. (gal.): 29.0	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Other: Other. Dispo baco WELL INTEGRITY: Good LOCK: REMARKS:	-
pH, E.C., Temp, Meter Calibration: Date: See Mw / Time: Meter Serial No E.C. 1000 1 pH 7 1 pH 10 1 pH 4 1 Temperature °F	-

	WATE	R SAMPL	EFIEL	D DATA S	SHEET	Rev. 1
EMCON SA	MPLED BY	Surface Water		SAMPLE IE CLIENT NAME LOCATION Leachate 4 5	• Oakland, Califo Other	
DEPTH	OF WELL (feet) .	14.7_	CAL	OLUME IN CASIN CULATED PURG 'UAL PURGE VOI	E(gal.): [] / / / / / / / / / / / / / / / / / /	<u></u>
		pH (units) (H	E.C. mhos/cm@25°c	TEMPERATURE (°F) 73.0	E COLOR (visual)	TURBIDITY (visual)
		xygen= TED AT THIS WE	ODOR:	Neu	<u>N/A</u> (COBALT 0-100) N/A	(NTU 0-200)
2" Bladde	al Pump	T _Bailer (Teflon) _Bailer (PVC) _Bailer (Stamless Ste _Dedicated	set)	2" Bladder Pr Bomb Sampl Dipper Well Wizard	Submo	(Stainless Steel) ersible Pump ated
WELL INTEGRI REMARKS <u>:</u>	~~~) 15/((" N kelen	İap	of screw		: Arco 3 ample
-			p			1

-

•

EMCON /	Associates -	Field Service	es			His	oring Well Data	
1921 Ring	jwood Avenu	le		1999				ARCO 0374
San Jose.	California							#792252
Well ID	Quarter	Date	Purge Volume (gallons)	Did well dry	Well Contained Product	First Second Third Fourth	Gallons 23.00 31.00 29.00 0.00	
MW-1	First	02/18/99	0.00	NA	NO			· • • • • • • • • • •
	Second Third Fourth	05/24/99 08/27/99	0.00 0.00	GRAB GRAB	NO NO			
MW-2	First	02/18/99	0.00	NA	NO			
	Second Third Fourth	05/24/99 08/27/99	31.00 0.00	NO GRAB	NO NO			
MW-3	First	02/18/99	0.00	NA	NO			
	Second Third	05/24/99 08/27/99	0.00 0.00	GRAB GRAB	NO NO			
	Fourth	02/18/99	0.00	NA	NO			
MW-4	First Second Third Fourth	05/24/99 08/27/99	0.00	GRAB GRAB	NO NO			
MW-5	First	02/18/99	23.00	YES	NO			
	Second Third Fourth	05/24/99 08/27/99	0.00 29.00	GRAB NO	NO NO			
MW-6	First	02/18/99	0.00	NA	NO			
	Second Third Fourth	05/24/99 08/27/99	0.00 0.00	GRAB GRAB	NO NO		,	
	First Second Third Fourth							
	First Second Third Fourth							
	First Second Third							
	Fourth First Second Third				s	team water (gal)		
	Fourth							

٠

.

٠

ARCO	Divesion				pany	,		·	Task Order N	o. <i>·</i>					<u> </u>					_	(Cha	ain	of Custod	ly
ARCO Fa			- i		City (Facility							nager t)				,				;		· · · · · · · · · · · · · · · · · · ·		Laboratory Name	
ARCO en	gineer	,	*	 •	<u>11 aointy</u>	<u>/</u>	Tele	phone no. CO)		Teler (Con	sultan	no. t)					Fax ((Con	no. sultant). , ,	· .				Contract Number	
Consultar	nt name						<u> </u>	Ac	dress onsultant)	· / .	. ,	<u>·</u>						:							
				Matrix		Prese	ervation				÷.			щ		:		VoAD	6010/7000	074210				Method of shipment	
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lcə	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH// EPA M602/802018	TPH Modified 801 Gas () Diesel ()	Oil and Grease 413.1 [] 413.2 []	TPH EPA 418.1/SM 50	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Se Metalsc) VOAD	CAM Metals EPA TTLCC STLCC	Lead Org/DHSCI Lead EPA 7420/7421CI				Special Detection	
· · ·	<u> </u>	<u> </u>		X		×	N	1			X						1							Limit/reporting	
•	+			\times	+	X		:			\times														
1	+			<u>></u>	1	`~	14				X						ļ						_		
· · ·	+	1	1			~	•	č	e de la		×_													Special QA/QC	
·	1					~	4]	
				-		,					٠.	<u> </u>			 			ļ	L					ļ	
											_		<u> </u>			<u> </u>				_				Remarks	
ļ		\				 					_				<u> </u>	-				+		╞──┨		1	
		<u> </u>				<u> </u>		┾		<u> </u>									1				— <u>r</u>		
		<u> </u>	+							1	╂	╂───	}	}	┼──	┼──	+	╉━╍	╂	┨────		$\left \right $	······	-	
		<u> </u>				┨────		+		+	╂──	<u> </u>				$\left - \right $	+	+				┼──┨	·-··-	-	
							+	╂───						 	┢──					+					
ļ					+						┼──		+	+	┼──			+	+	+				Lab Number	
						<u> </u>		+			+	+	+		╋╌╌	1-		+	1	+	<u>├</u> ─		— —	Tumaround Time	
							+	1		1	1			1			1			1				Priority Rush	
	-	1			1									[1 Business Day	
					-			1			Τ			Γ			T							Rush 2 Business Days	Π
Conditio	on of sa	nple:	. ł			<u> </u>	<u> </u>		1	Tem	peratu	re rec	eived:	L	•	1	<u>. I</u>			- I	·		L	Expedited 5 Business Days	
Relingu	ished by	sampl	ør	<u> </u>			Date		Time	Rec	eived	oy								_				Standard	<u> </u>
Relingu	ished by		<u>'</u>				Date		Time	Rec	eived	бу			······································					·	····			10 Business Days	
Relingu	iished by	(<u>.</u>	_			Date		Time	Rec	eived	oy lab	oratory				Date			Time)			1	

Distribution: White Copy - Laboratory. Canary Copy - ARCO Environmental Engineering: Pink Copy - Consultant

APPENDIX D

•

۰.

з.,

REMEDIAL SYSTEM PERFORMANCE SUMMARY

APPENDIX D

REMEDIAL SYSTEM PERFORMANCE SUMMARY

GWE System

Groundwater extraction (GWE) was conducted between December 21, 1993, and October 13, 1995. No evidence of additional plume migration has been observed since system deactivation. The GWE system was comprised of a pneumatic pump in Well W-2 and three 200-pound granular activated carbon vessels arranged in series to treat the extracted groundwater. Extracted and treated groundwater was discharged into the East Bay Municipal Utility District (EBMUD) Permit Account Number 502-85611. Based on verbal approval from the ACHCSA, indicating that GWE would no longer be required at the site, the EBMUD permit was relinquished on June 14, 1996. Overall, approximately 0.1 million gallons of groundwater were extracted and less than 0.05 gallon of benzene was removed.

Please refer to the Second Quarter 1997 Groundwater Monitoring Report, for historical GWE system performance and analytical data.

Intrinsic Bioremediation Evaluation

Intrinsic bioremediation indicator parameters (bioparameters) were monitored during the third quarter 1996 groundwater monitoring event. Groundwater samples from Wells MW-3, MW-4, and MW-5 were analyzed for total alkalinity, dissolved oxygen (DO), ferrous iron, nitrate, sulfate, methane, biological oxygen demand (BOD), chemical oxygen demand (COD), and carbon dioxide (CO₂). Intrinsic bioremediation evaluation data are presented in Table D-1.

It is generally accepted that depleted concentrations of electron acceptors (DO, nitrate, and sulfate), and elevated concentrations of bioremediation byproducts (CO_2 , methane, and ferrous iron) within the hydrocarbon-impacted plume compared to background levels indicate that intrinsic bioremediation is occurring. Collected data follow a trend that indicates the occurrence of intrinsic bioremediation.

Bioremediation Enhancement Program

On November 14, 1995, at the request of ARCO, twelve oxygen releasing compound (ORC) socks manufactured by Regenesis Bioremediation Products, Inc. were installed below the groundwater surface in Well MW-3. ORC is a formulation of very fine, insoluble magnesium peroxide that releases oxygen at a slow, controlled rate when hydrated. ORC product literature was presented in PEG's fourth quarter 1995 report.

Data collected from Well MW-3 indicate that concentrations of TPPH-g and benzene have declined since ORC units were installed. On September 29, 1998 ORC socks were also installed in Well MW-4. ORC units are changed when dissolved oxygen data indicate that they have been depleted.

Conclusions

As indicated above, GWE at the site has been terminated with verbal approval from ACHCSA. Bioremediation enhancement program will continue.

Attachments: Table D-1 - Intrinsic Bioremediation Evaluation Data

Page 1 of 2

ے ج

+

Table D-1 Intrinsic Bioremediation Evaluation and Enhancement Data

Well Sar MW-3 11/ 06/ 07/ 01/ 08/	5/06/96 7/16/96 1/21/97	** ** **	Groundwater Temperature (deg F) 65.5* 66.2 67.8	pH (units) 6.76* 7.38	Conductivity (µmhos) 508*	D.O. (mg/L) 7.17	Ferrous Iron (mg/L)	Total Alkalinity (mg CaCO3/L)	B.O.D.	Carbon Dioxide	C.O.D.	Mathana	Nitrate as	Nitrite as	Q-16-4-	TPH as Gasoline	Total BTEX
Well Sar MW-3 11/ 06/ 07/ 01/ 08/	ampled 1/14/95 5/06/96 7/16/96 1/21/97	**	Temperature (deg F) 65.5* 66.2	(units) 6.76*	(µmhos) 508*	(mg/L)	Iron	Alkalinity	B.O.D.		COD	Mathema	-		016		
Well Sar MW-3 11/ 06/ 07/ 01/ 08/	ampled 1/14/95 5/06/96 7/16/96 1/21/97	**	(deg F) 65.5* 66.2	(units) 6.76*	(µmhos) 508*	(mg/L)		-	B.O.D.	Dioxide	COD	Mathema	A 71	BT:	C 16	Cocolina	BTEV
MW-3 11/ 06/ 07/ 01/ 08/	1/14/95 5/06/96 7/16/96 1/21/97	**	65.5* 66.2	6.76*	508*		(mg/L)	(mg CaCO3/L)		DIONIGO	Ç.Q.D.	Methane	Nitrate	Nitrite	Sulfate	Gasonne	DICA
06/ 07/ 01/ 08/	5/06/96 7/16/96 1/21/97	**	66.2			7 17		(Ing CLCCS/L)	(mg/L)	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)
07/ 01/ 08/	7/16/96 1/21/97			7.38		/.1/	N/A	NS	NS	NS	NS	NS	6.6	<1.0	NS	140	46
01/ 08/	1/21/97	**	67.8		700	12.28	N/A	NS	NS	NS	NS	NS	NS	NS	NS	84†	5.4†
08/		**		7.08	1,010	8.73	0.0	280	1.8	270	44	< 0.020	<1.0	NS	78	<50	2.2
	8/12/97		59	N/A	N/A	11.15	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		**	74.4	6.65	600	6.7	1.6	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
11/	1/17/97		N/A	N/A	N/A	12.0	0.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
03/	3/16/98		68.5	7.75	806	4.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND
05/	5/12/98		NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/	7/27/98		68.1	6.81	904	1.7	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	74	ND
09/	9/29/98	**	ORC installed														
10/	0/15/98		NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
02/	2/18/99		NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/	5/24/99		66.2	7.24	799	6.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND
07/	7/26/99	**	ORC installed					**********************									
08/	8/27/99		69.0	7.97	782	16.57	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND
MW-4 07/	7/16/96		69.5	6.72	1,370	3.20	4.20	420	NS	470	NS	0.11	<1.0	NS	18	5,600	2,020
03/	3/16/98		66.2	6.89	1,411	1.50	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND
05/	5/12/98		NM	NM	NM	NM	N/A	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
07/	7/27/98		70.5	6.34	1,434	0.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	21,000	8,900
09/	9/29/98	**	ORC installed														
10/	0/15/98		NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
02/	2/18/99		NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
05/	5/24/99		67.6	6.72	1,509	1.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	18,000	7,660
07/	7/26/99	**	ORC installed														
08/	8/27/99		70.5	7.09	1,469	1.32	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	12,000	4,670

ARCO Service Station 0374 6407 Telegraph Avenue, Oakland, California

4

Table D-1 Intrinsic Bioremediation Evaluation and Enhancement Data

			F	ield Analyses						Labo	ratory An	alyses											
												Nitrate	Nitrite										
		Groundwater				Ferrous	Total		Carbon			as	as		TPH as	Total							
	Date	Temperature	pН	Conductivity	D.O.	Iron	Alkalinity	B.O.D.	Dioxide	C.O.D.	Methane	Nitrate	Nitrite	Sulfate	Gasoline	BTEX							
Well	Sampled	(deg F)	(units)	(µmhos)	(mg/L)	(mg/L)_	(mg CaCO3/L)	(mg/L)	(mg/L)	(mg/L)	(%)	(mg/L)	(mg/L)	(mg/L)	(µg/L)	(µg/L)							
MW-5	07/16/96	70.4	6.85	690	6.80	0.0	170	NS	180	NS	<0.020	<1.0	NS	35	<50	1.1							
	03/16/98	69.5	7.19	584	1.5	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
	05/12/98	65.9	7.04	619	2.2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
	07/27/98	73.6	7.39	569	1.3	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
	10/15/98	65.8	6.88	626	3.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	0.6							
	02/18/99	63.4	6.98	616	2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
	05/24/99	66.7	6.70	591	2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
	08/27/99	72.6	7.10	624	2.28	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
MW-6	06/06/96	N/A	N/A	N/A	3.47	N/A	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	03/16/98	N/A	N/A	N/A	N/A	N/A	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	05/12/98	NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	07/27/98	70.3	6.67	638	0.9	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
	10/15/98	NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	02/18/99	NM	NM	NM	NM	NM	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS							
	05/24/99	65.5	6.62	713	2.0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
	08/27/99	73.0	7.12	589	1.02	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	ND	ND							
D.O.	= Dissolved oxy						μg/L	-	rams per liter		·												
B.O.D	= Biochemical o						NM	= not mea															
C.O.D TPPH		hemical oxygen demand otal purgeable petroleum hydrocarbons									Chemical oxygen demand NS Total purgeable petroleum hydrocarbons ND												
BTEX		ene, ethylbenzene, a	S	N/A	= Not ava																		
deg F	= Degrees Fahre						*	Field measurements collected on November 2, 1995.															
µmhos	= Micromhos							 ** ORC installed † From April 10, 1996 groundwater monitoring event. 															
mg/L	= Milligrams per	= Milligrams per liter						From Apr	il 10, 1996 g	roundwater	monitoring e	vent.											

.

ARCO Service Station 0374 6407 Telegraph Avenue, Oakland, California