ports April 22, 1999 Project 20805-190.002 Mr. Paul Supple ARCO Products Company PO Box 6549 Moraga, California 94570 Re: Quarterly Groundwater Monitoring Report, First Quarter 1999, for ARCO Service Station No. 0374, located at 6407 Telegraph Avenue, Oakland, California Dear Mr. Supple: Pinnacle Environmental Solutions, a division of EMCON (Pinnacle), is submitting the attached report which presents the results of the first quarter 1999 groundwater monitoring program at ARCO Products Company (ARCO) Service Station No. 0374, located at 6407 Telegraph Avenue, Oakland, California. The monitoring program complies with the Regional Water Quality Control Board, San Francisco Bay Region, requirements regarding underground tank investigations. ### LIMITATIONS No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, results should not be construed as a guarantee of the absence of such conditions at the site, but rather as the product of the scope and limitations of work performed during the monitoring event. Please call if you have questions. Sincerely, Pinnacle Glen VanderVeen Project Manager Jay R. Johnson, R.G. Senior Project Supervisor Attachment: Quarterly Groundwater Monitoring Report, First Quarter 1999 cc: Ms. Susan Hugo, Alameda County Health Care Services Agency Mr. John Kaiser, Regional Water Quality Control Board - S.F. Bay Region OAK\S:\ARCO\0374\QTRLY\0374Q199 DOC\uh:1 | Date: | April 22, 1999 | |-------|----------------| |-------|----------------| ## ARCO QUARTERLY GROUNDWATER MONITORING REPORT | Facility No | o.: 0374 | Address: | 6407 Telegraph Avenue, Oakland, California | |-------------|-------------------------|------------|--| | - | ARCO Environmental | Engineer: | Paul Supple | | | Consulting Co./Contac | t Person: | Pinnacle Environmental Solutions/Glen VanderVeen | | | Consultant Pro | oject No.: | 20805-190.002 | | Р | rimary Agency/Regulator | ry ID No.: | Regional Water Quality Control Board - S.F. Bay Region | ### WORK PERFORMED THIS QUARTER (FIRST - 1999): - 1. Prepared and submitted quarterly groundwater monitoring report for fourth quarter 1998. - 2. Performed quarterly groundwater monitoring and sampling for first quarter 1999. - 3. Continued intrinsic bioremediation enhancement at wells MW-3 and MW-4 using oxygen release compound socks. ### WORK PROPOSED FOR NEXT QUARTER (SECOND - 1999): - 1. Prepare and submit quarterly groundwater monitoring report for first quarter 1999. - 2. Perform quarterly groundwater monitoring and sampling for second quarter 1999. - 3. Continue intrinsic bioremediation enhancement at wells MW-3 and MW-4. ### **QUARTERLY MONITORING:** | Current Phase of Project: | Monitoring/Remediation | |---|---| | Frequency of Groundwater Sampling: | Annual (3rd Quarter): MW-1, MW-2, MW-6 | | | Semi-annual (2nd/4th Quarter): MW-3, MW-4 | | | Quarterly: MW-5 | | Frequency of Groundwater Monitoring: | Quarterly | | Is Free Product (FP) Present On-Site: | No | | FP Recovered this Quarter: | None | | Cumulative FP Recovered to Date: | None | | Bulk Soil Removed This Quarter: | None | | Bulk Soil Removed to Date: | None | | Current Remediation Techniques: | Bioremediation enhancement | | Average Depth to Groundwater: | 5.7 feet | | Groundwater Flow Direction and Gradient | | | (Average): | 0.05 ft/ft toward southwest | | | | ### **DISCUSSION:** - TPPH-g and benzene concentrations at downgradient perimeter Well MW-5 remained below detection limits this quarter. - The occurrence of intrinsic bioremediation at the site was documented during third quarter 1996. - Intrinsic bioremediation enhancement at the off-site wells MW-3 and MW-4 is in progress. Please refer to Attachment D for details. ### **ATTACHMENTS:** - Table 1 Groundwater Elevation and Analytical Data - Figure 1 Groundwater Analytical Summary Map - Figure 2 Groundwater Elevation Contour Map - Appendix A Sampling and Analysis Procedures - Appendix B Certified Analytical Reports and Chain-of-Custody Documentation - · Appendix C Field Data Sheets - Appendix D Remedial System Performance Summary Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE) | Well | Date
Gauged/ | Well
Elevation | Depth to
Water | Groundwater
Elevation | TPPH as
Gasoline | Benzene | Toluene | Ethyl-
benzene | Xylenes | MTBE | Dissolved
Oxygen | Purged/
Not Purged | |------------|-----------------|-------------------|-------------------|--------------------------|---------------------|---------|---------|-------------------|----------|-------|---------------------|-----------------------| | Number | Sampled | (feet, MSL) | (feet, TOC)_ | (feet, MSL) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppm) | (P/NP)_ | | MW-1 | 01/31/96 | 158.91 | 6.34 | 152.57 | | | We | ll Sampled | Annually | | | | | 141 44 - 7 | 04/10/96 | 150.51 | 5.82 | 153.09 | | | | | Annually | | | | | | 07/16/96 | | 7.23 | 151.68 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | 340 | NM | | | | 10/14/96 | | 8,34 | 150.57 | | | We | ll Sampled. | Annually | | | | | | 03/27/97 | | 6.37 | 152.54 | | | We | ell Sampled. | Annually | | | | | | 05/27/97 | | 7.30 | 151.61 | | | We | ell Sampled. | Annually | | | | | | 08/12/97 | | 8.22 | 150.69 | <50 | <0.5 | <0.5 | <0.5 | < 0.5 | 620 | NM | | | | 11/17/97 | | 7.98 | 150.93 | | | We | ell Sampled | Annually | | | | | | 03/16/98 | | 4.94 | 153.97 | | | We | ell Sampled | Annually | | | | | | 05/12/98 | | 5.28 | 153.63 | | | We | ell Sampled | Annually | | | | | | 07/27/98 | | 6.84 | 152.07 | <500 | | | | | 580 | | P | | | 10/15/98 | | 7.32 | 151.59 | | | W | ell Sampled | Annually | , | | | | | 02/18/99 | | 6.28 | 152.63 | | , | W | ell Sampled | Annually | | | | | MW-2 | 01/31/96 | 157.92 | 6.51 | 151.41 | | | W | ell Sampled | Annually | | | | | 141 2 | 04/10/96 | 122 | 6.94 | 150.98 | | | W | ell Sampled | Annually | | | | | | 07/16/96 | | 7.73 | 150.19 | <50 | 1.2 | <0.5 | <0.5 | < 0.5 | 33 | NM | | | | 10/14/96 | | 8.35 | 149.57 | | | W | ell Sampled | Annually | | | | | | 03/27/97 | | 7.40 | 150.52 | | | W | ell Sampled | Annually | | | | | | 05/27/97 | | 7.82 | 150.10 | | | W | eli Sampled | Annually | | | • | | | 08/12/97 | | 8.29 | 149.63 | <50 | < 0.5 | <0.5 | 5 <0.5 | 5 <0.5 | 23 | 8 NM | | | | 11/17/97 | | 8.05 | 149.87 | | | W | ell Sampled | Annually | | | | | | 03/16/98 | | 6.45 | 151.47 | | | W | ell Sampled | Annually | | | • | | | 05/12/98 | | 6.93 | 150.99 | | | W | eli Sampled | Annually | | | • | | | 07/27/98 | | 7.39 | 150.53 | <50 | <0.5 | <0 | 5 <0.: | 5 - <0.5 | < | 3 0.85 | NP | | | 10/15/98 | | 7.67 | 150.25 | | | W | ell Sampled | Annually | | | • | | | 02/18/99 | | 6.63 | 151.29 | _, | | W | ell Sampled | Annually | | | _ | Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE) | | Date | Well | Depth to | Groundwater | TPPH as | | | Ethyl- | | | Dissolved | Purged/ | |-----------|----------|-------------|-------------|-------------|----------|---------|---------|--------------|---------------|-------|-----------|------------| | Well | Gauged/ | Elevation | Water | Elevation | Gasoline | Benzene | Toluene | benzene | Xylenes | MTBE | Oxygen | Not Purged | | Number | Sampled | (feet, MSL) | (feet, TOC) | (feet, MSL) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppm) | (P/NP) | |
ИW-3* | 01/31/96 | 153.64 | 7.02 | 146.62 | 140 | 20 | 0.87 | 11 | 14 | NA | NM | | | | 04/10/96 | | 7.82 | 145.82 | 84 | 2.4 | <0.5 | 1.9 | 1.1 | NA | NM | | | | 07/16/96 | | 6.80 | 146.84 | <50 | 2.2 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 10/14/96 | | 7.67 | 145.97 | <50 | 1.2 | <0.5 | <0.5 | 0.81 | 2.9 | NM | | | | 03/27/97 | | 7.62 | 146.02 | <50 | 0.94 | <0.5 | 0.9 | 0.63 | <2.5 | NM | | | | 05/27/97 | | 6.72 | 146.92 | | | Well | Sampled Se | miannually - | | | | | | 08/12/97 | | 8.20 | 145.44 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 11/17/97 | | 7.64 | 146.00 | | | Well | Sampled Se | miannually - | | 12.0 | | | | 03/18/98 | | 5.14 | 148.50 | <50 | | | | <0.5 | | 4.0 | P | | | 05/12/98 | | 5.53 | 148.11 | | | Well | Sampled So | emiannually : | | | | | | 07/27/98 | | 7.63 | 146.01 | 74 | | | | <0.5 | <3 | | NP | | | 10/15/98 | | 7.46 | 146.18 | | | Well | Sampled Se | emiannually | | ***** | | | | 02/18/99 | | 5.85 | 147.79 | | | W | ell Not Sam | pled | | | | | MW-4 | 01/31/96 | 156.53 | 5.64 | 150.89 | 230 | 23 | 2.2 | 3.7 | 32 | NA | NM | | | | 04/10/96 | | 6.66 | 149.87 | 7,300 | 1,600 | 350 | 350 | 830 | NA | NM | | | | 07/16/96 | | 7.73 | 148.80 | 5,600 | 1,100 | 160 | 240 | 520 | 150 | NM | | | | 10/14/96 | | 8.55 | 147.98 | 4,500 | 860 | 72 | 160 | 340 | <62 | NM | | | | 03/27/97 | | 7.15 | 149.38 | 25,000 | 5,200 | 760 | 850 | 2,600 | <250 | NM | | | | 05/27/97 | | 7.75 | 148.78 | | | Wel | I Sampled S | emiannually | ***** | | | | | 08/12/97 | | 8.46 | 148.07 | 4,800 | 950 | 40 | 140 | 210 | 170 | NM | • | | | 11/17/97 | | 8.24 | 148.29 | | | Wel | l Sampled S | emiannually | | | • | | | 03/16/98 | | 5.32 | 151.21 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <3 | 1.5 | P | | | 05/12/98 | | 6.38 | 150.15 | | | Wel | II Sampled S | emiannually | | | - | | | 07/27/98 | | 7.36 | 149.17 | 21,000 | , | | | - | | | | | | 10/15/98 | | 8.30 | 148.23 | | | | | emiannually | | | | | | 02/18/99 | | 4.39 | 152.14 | | | V | Vell Not Sar | npled | | | - | Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE) | | Date | Well | Depth to | Groundwater | TPPH as | | | Ethyl- | | | Dissolved | Purged/ | |--------|----------|-------------|-------------|-------------|----------|---------|---------------
--------------|----------|-------|-----------|------------| | Well | Gauged/ | Elevation | Water | Elevation | Gasoline | Benzene | Toluene | benzene | Xylenes | MTBE | Oxygen | Not Purged | | Number | Sampled | (feet, MSL) | (feet, TOC) | (feet, MSL) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppm) | (P/NP) | | MW-5 | 01/31/96 | 151.33 | 8.64 | 142.69 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | NA | NM | | | MI W | 04/10/96 | 10100 | N/A | | <50 | < 0.5 | <0.5 | <0.5 | <0.5 | NA | NM | | | | 07/16/96 | | 8.15 | 143.18 | <50 | 0.79 | 1.3 | <0.5 | <0.5 | <2.5 | NM | | | | 10/14/96 | | 7.92 | 143.41 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 03/27/97 | | 7.75 | 143.58 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 05/27/97 | | 8.16 | 143.17 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 08/12/97 | | | | | W | ell Inaccessi | ible | | | | | | | 11/17/97 | | 8.75 | 142.58 | <50 | <0.5 | < 0.5 | < 0.5 | <0.5 | <2.5 | 4.0 | NP | | | 03/16/98 | | 6.90 | 144.43 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <3 | 1.5 | P | | | 05/12/98 | | 7.24 | 144.09 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <3 | | P | | | 07/27/98 | | 7.91 | 143.42 | <50 | <0.5 | <0.5 | <0.5 | | <3 | | P | | | 10/15/98 | | 8.31 | 143.02 | <50 | <0.5 | <0.5 | | 0.6 | <3 | 3.0 | P | | | 02/18/99 | | 7.25 | 144.08 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <3 | 2.0 | P | | MW-6 | 01/31/96 | 153.84 | 5.15 | 148.69 | **** | | We | ell Sampled | Annually | | | | | 141 11 | 04/10/96 | 100101 | 4.58 | 149.26 | | | We | ell Sampled | Annually | | | | | | 07/16/96 | | 4.96 | 148.88 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | 150 | NM | | | | 10/14/96 | | 6.15 | 147.69 | | | W | ell Sampled | Annually | | | | | | 03/27/97 | | 4.40 | 149.44 | | | W | ell Sampled. | Annually | | | | | 1 | 05/27/97 | | 4.90 | 148.94 | | | W | ell Sampled | Annually | | | | | | 08/12/97 | | 5.43 | 148.41 | <50 | | | | | | | | | | 11/17/97 | | 5.87 | 147.97 | | | W | eil Sampled | Annually | | | • | | | 03/16/98 | | 4.52 | 149.32 | | | | | Annually | | | | | | 05/12/98 | | 4.42 | 149.42 | | | W | ell Sampled | Annually | | | • | | | 07/27/98 | | 4.75 | 149.09 | <50 | | | | - | | | | | | 10/15/98 | | 5.75 | 148.09 | | | | | Annually | | | | | | 02/18/99 | | 3.93 | 149.91 | | | W | ell Sampled | Annually | · | | - | ### Table 1 # Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE) | | Date | Well | Depth to | Groundwater | TPPH as | | | Ethyl- | | | Dissolved | Purged/ | |--------|-----------------|---------------------|---------------------|---------------------|------------------|---------|---------|---------|---------|-------|-----------|------------| | Weil | Gauged/ | Elevation | Water | Elevation | Gasoline | Benzene | Toluene | benzene | Xylenes | MTBE | Oxygen | Not Purged | | Number | Sampled | (feet, MSL) | (feet, TOC) | (feet, MSL) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppm) | (P/NP) | | | | | | | | | | | | | | | | MTBE | = Methyl tert-l | outyl ether. | | | | | | | | | | | | MSL | = Mean sea le | vel. | | | | | | | | | | | | TOC | = Top of casin | g. | | | | | | | | | | | | ppb | = Parts per bil | lion. | | | | | | | | | | | | ppm | = Parts per mi | llion. | | | | | | | | | | | | | = Less than lai | boratory detection | limit stated to the | right. | | | | | | | | | | NA | = Not analyze | d. | | | | | | | | | | | | NM | = Not measure | ed. | | | | | | | | | | | | N/A | = Not availabl | | | | | | | | | | | | | * | = ORCs instal | led in well beginni | ng 11/14/95. Plea | se refer to Appendi | x D for details. | # APPENDIX A SAMPLING AND ANALYSIS PROCEDURES ### APPENDIX A ### SAMPLING AND ANALYSIS PROCEDURES The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved. The following documents have been used as guidelines for developing these procedures: - Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977 - Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986 - Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, 3rd edition, November 1986 - Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982 - Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983 - Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989 ## **Sample Collection** Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling. ### **Equipment Cleaning** Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with deionized water. During field sampling, equipment surfaces that were placed in the well or came into contact with groundwater during field sampling were steam cleaned with deionized water before the next well was purged or sampled. ## Water Level, Floating Hydrocarbon, and Total Well Depth Measurements Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness, and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline, and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated by being rinsed with deionized water or steam cleaned after each use. A bottom-filling, clear Teflon bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water. The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated by being rinsed with deionized water after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon. Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form. ### **Well Purging** If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol presented in Figure A-1. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event. Groundwater purged from the monitoring wells was transported in a 500-gallon water trailer, 55-gallon drum, or a 325-gallon truck-mounted tank to EMCON's San Jose or Sacramento office location for temporary storage. EMCON arranged for transport and disposal of the purged groundwater through Integrated Waste Stream Management, Inc. Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Figure A-2 shows an example of the water sample field data sheet on which field data are recorded. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed. The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet. ### **Well Sampling** A Teflon bailer was the only equipment acceptable for well
sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped. When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the Teflon bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded. ## Sample Preservation and Handling The following section specifies sample containers, preservation methods, and sample handling procedures. ### Sample Containers and Preservation Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested. ### Sample Handling Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs until received by the laboratory. At the time of sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory. Samples that required overnight storage prior to shipping to the laboratory were kept cool (4° C) in a refrigerator. The refrigerator was kept in a warehouse, which was locked when not occupied by an EMCON employee. A sample/refrigerator log was kept to record the date and time that samples were placed into and removed from the refrigerator. Samples were transferred from EMCON to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from EMCON to laboratories performing the selected analyses routinely occurred within 24 hours of sample collection. ## **Sample Documentation** The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following: - Water sample field data sheets to document sampling activities in the field - Labels to identify individual samples - Chain-of-custody record sheets for documenting possession and transfer of samples - Laboratory analysis request sheets for documenting analyses to be performed ### Field Logbook In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected: - · Project number - · Client's name - Location - Name of sampler - · Date and time - · Well accessibility and integrity - Pertinent well data (e.g., casing diameter, depth to water, well depth) - Calculated and actual purge volumes - · Purging equipment used - · Sampling equipment used - Appearance of each sample (e.g., color, turbidity, sediment) - Results of field analyses (temperature, pH, specific conductance) - General comments The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator. ### Labels Sample labels contained the following information: - Project number - Sample number (i.e., well designation) - Sample depth - Sampler's initials - Date and time of collection - Type of preservation used (if any) ## Sampling and Analysis Chain-of-Custody Record The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to EMCON with the analytical results. ## **Groundwater Sampling and Analysis Request Form** A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information: - · Date scheduled - Site-specific instructions - Specific analytical parameters - Well number - Well specifications (expected total depth, depth of water, and product thickness) #### WATER SAMPLE FIELD DATA SHEET Rev. 5/96 SAMPLE ID: PROJECT NO: CLIENT NAME : PURGED BY : LOCATION: SAMPLED BY: Leachate Other Groundwater Surface Water _____ TYPE: 4.5 ____ 6 ___ Other ____ CASING DIAMETER (inches): 2 3 4 VOLUME IN CASING (gal.): CASING ELEVATION (feet/MSL): CALCULATED PURGE (gal.): DEPTH OF WELL (feet): ACTUAL PURGE VOL. (gal.): DEPTH OF WATER (feet): END PURGE : DATE PURGED : SAMPLING TIME: DATE SAMPLED: TIME TEMPERATURE TURBIDITY E.C. VOLUME pН TIME (2400 HR) (units) (µmhos/cm@25°e) (°F) (visual/NTU) (2400 HR) (gal.) ODOR: OTHER: (COBALT 0-100) (NTU 0-200) FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1): SAMPLING EQUIPMENT PURGING EQUIPMENT 2" Bladder Pump Bailer (Teflon) Bailer (Teflon) 2" Bladder Pump Bailer (Stainless Steel) Bailer (PVC) Bomb Sampler Centrifugal Pump ____Submersible Pump Dipper Bailer (Stainless Steel) Submersible Pump Well Wizard™ Dedicated Dedicated Well Wizard™ Other: Other: WELL INTEGRITY: LOCK: _____ REMARKS: Time: ____ Meter Serial No pH, E.C., Temp Meter Calibration: Date: E.C. 1000 / pH 7 / pH 10 / pH 4 / Temperature °F REVIEWED BY: PAGE OF SIGNATURE: WATER SAMPLE FIELD DATA SHEET **FIGURE** **A-2** ### EMCON - SACRAMENTO GROUNDWATER SAMPLING AND ANALYSIS REQUEST FORM PROJECT NAME: | SCHEDULED I | DATE | : | |-------------|------|---| |-------------|------|---| | SPECIAL INST | | CONSIDERA | TIONS: | | Projec
Authorization
EMCON Project No.
OWT Project No.
Task Code
Originals To | | |-----------------------|--------------------------|----------------------------|-----------------------|---------------|--|---------| | CHECK BO | X TO AUTHOR | IZE DATA EN | TTRY | Site Contact: | Name | Phone # | | Well Number or Source | Casing Diameter (inches) | Casing
Length
(feet) | Depth to Water (feet) | ANA | YSES REQUESTED | | | Laboratory and | Lab QC Istruction | ons: | | | | | **EMCON** SAMPLING AND ANALYSIS REQUEST FORM FIGURE **A-3** ### **APPENDIX B** ## CERTIFIED ANALYTICAL REPORTS, AND CHAIN-OF-CUSTODY DOCUMENTATION March 2, 1999 Service Request No.: \$9900590 Mr. Glen Vanderveen PINNACLE 144 A Mayhew Wy. Walnut Creek, CA 94596 MAR 0 1999 JBS : _____ RE: 20805-190.005/TO#24118.00/RAT8/374 Oakland Dear Mr. Vanderveen: The following pages contain analytical results for sample(s) received by the laboratory on February 19, 1999. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory. Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 8, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3. Please feel welcome to contact me should you have questions or further needs. Birnadette I. Cx Sincerely, Bernadette T. Cox **Project Chemist** Regional QA Coordinator **Acronyms** A2LA American Association for Laboratory Accreditation ASTM American Society for Testing and Materials BOD Biochemical Oxygen Demand BTEX Benzene, Toluene, Ethylbenzene, Xylenes CAM California Assessment Metals CARB California Air Resources Board CAS Number Chemical Abstract Service registry Number CFC Chlorofluorocarbon CFU Colony-Forming Unit COD Chemical Oxygen Demand DEC Department of Environmental Conservation DEQ Department of Environmental Quality DHS Department of Health Services DLCS Duplicate Laboratory Control Sample DMS Duplicate Matrix Spike DOE Department of Ecology DOH Department of Health EPA U. S. Environmental Protection Agency ELAP Environmental Laboratory Accreditation Program GC Gas Chromatography GC/MS Gas Chromatography/Mass Spectrometry IC Ion Chromatography ICB Initial Calibration Blank sample Inductively Coupled Plasma atomic emission spectrometry ICV Initial Calibration Verification sample J Estimated concentration. The value is less than the MRL, but greater than or equal to the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding. LUFT Laboratory Control Sample Leaking Underground Fuel Tank M Modified MBAS Methylene Blue Active Substances MCL Maximum Contaminant Level. The highest permissible concentration of a substance allowed in drinking water as established by the U. S. EPA. MDL Method Detection Limit MPN Most Probable Number MRL Method Reporting Limit MS Matrix Spike MTBE Methyl tert-Butyl Ether NA Not Applicable NAN Not Analyzed NC Not Calculated NCASI National Council of the paper industry for Air and Stream Improvement ND Not Detected at or above the method reporting/detection limit (MRL/MDL) NIOSH National Institute
for Occupational Safety and Health NTU Nephelometric Turbidity Units NTU Nephelometric T ppb Parts Per Billion ppm Parts Per Million PQL Practical Quantitation Limit QA/QC Quality Assurance/Quality Control RCRA Resource Conservation and Recovery Act RPD Relative Percent Difference SIM Selected Ion Monitoring SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 STLC Solubility Threshold Limit Concentration SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB. TCLP Toxicity Characteristic Leaching Procedure TDS Total Dissolved Solids TPH Total Petroleum Hydrocarbons tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding. TRPH Total Recoverable Petroleum Hydrocarbons TSS Total Suspended Solids TTLC Total Threshold Limit Concentration VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95 ### Analytical Report Client: **ARCO Products Company** Project: 20805-190.005/TO#24118.00/374 Oakland Service Request: S9900590 Date Collected: 2/18/99 Sample Matrix: Water Date Received: 2/19/99 ### BTEX, MTBE and TPH as Gasoline Sample Name: MW-5(20) Units: ug/L (ppb) Basis NA Lab Code: S9900590-001 Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 2/22/99 | ND | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 2/22/99 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 2/22/99 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 2/22/99 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 1 | NA | 2/22/99 | ND | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 2/22/99 | ND | | ### **Analytical Report** Client: ARCO Products Company Project: 20805-190.005/TO#24118.00/374 Oakland Date Collected: NA Sample Matrix: Water Date Received: NA Service Request: S9900590 ### BTEX, MTBE and TPH as Gasoline Sample Name: Method Blank Lab Code: S990222-WB2 Units: ug/L (ppb) Basis: NA Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 2/22/99 | ND | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 2/22/99 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 2/22/99 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 2/22/99 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | ì | NA | 2/22/99 | ND | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 2/22/99 | ND | | ### APPENDIX A ### QA/QC Report Client: **ARCO Products Company** **CA/LUFT** Project: 20805-190.005/TO#24118.00/374 Oakland Sample Matrix: Water Service Request: S9900590 Date Collected: NA Date Received: NA Date Extracted: NA Date Analyzed: NA Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline Prep Method: Analysis Method: 8020 EPA 5030 **2121,** 1:**1.22 w**--- = = = = ::: Units: PERCENT Basis: NA | | | Test | Percent | Recovery | |--------------------|--------------|-------|----------------------|------------------------| | Sample Name | Lab Code | Notes | 4-Bromofluorobenzene | a,a,a-Trifluorotoluene | | MW-5(20) | 89900590-001 | | 103 | 93 | | Lab Control Sample | S990222-LCS | | 114 | 89 | | Lab Control Sample | S990222-DLCS | | 113 | 92 | | Method Blank | S990222-WB2 | | 102 | 89 | CAS Acceptance Limits: 69-116 69-116 ### QA/QC Report Client: **ARCO Products Company** Project: 20805-190.005/TO#24118.00/374 Oakland Sample Matrix: Water Service Request: S9900590 Date Collected: NA Date Received: NA Date Extracted: NA Date Analyzed: 2/22/99 Laboratory Control Sample/Duplicate Laboratory Control Sample Summary BTE Sample Name: Lab Control Sample Units: ug/L (ppb) Lab Code: S990222-LCS, S990222-DLCS Basis: NA Test Notes: Percent Recovery | | Prep | Analysis | | Spik | e Level | Sample | Spike | Result | | | CAS
Acceptance | Relative
Percent | |--------------|----------|----------|-----|------|---------|--------|-------|--------|-----|------|-------------------|---------------------| | Analyte | Method | Method | MRL | LCS | DLCS | Result | LCS | DLCS | LCS | DLCS | Limits | Difference | | Benzene | EPA 5030 | 8020 | 0.5 | 25 | 25 | ND | 24 | 24 | 96 | 96 | 75-135 | <1 | | Toluene | EPA 5030 | 8020 | 0.5 | 25 | 25 | ND | 23 | 22 | 92 | 88 | 73-136 | 4 | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 25 | 25 | ND | 22 | 23 | 88 | 92 | 69-142 | 4 | QA/QC Report Client: ARCO Products Company Project: 20805-190,005/TO#24118.00/374 Oakland Service Request: S9900590 Date Analyzed: 2/22/99 Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline Sample Name: ICV Units: ug/L (ppb) Lab Code: ICV1 Basis: NA Test Notes: | ICV Source: | | | | | CAS | | | |--------------------------|----------|----------|-------|--------|------------------|----------|--------| | | | | | | Percent Recovery | | | | | Prep | Analysis | True | | Acceptance | Percent | Result | | Analyte | Method | Method | Value | Result | Limits | Recovery | Notes | | TPH as Gasoline | EPA 5030 | CA/LUFT | 250 | 250 | 90-110 | 100 | | | Benzene | EPA 5030 | 8020 | 25 | 24 | 85-115 | 96 | | | Toluene | EPA 5030 | 8020 | 25 | 23 | 85-115 | 92 | | | Ethylbenzene | EPA 5030 | 8020 | 25 | 23 | 85-115 | 92 | | | Xylenes, Total | EPA 5030 | 8020 | 75 | 73 | 85-115 | 97 | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 25 | 23 | 85-115 | 92 | | ICV/032196 ### QA/QC Report Client: ARCO Products Company Project: 20805-190.005/TO#24118.00/374 Oakland Sample Matrix: Water Service Request: S9900590 Date Collected: NA Date Received: NA Date Extracted: NA Date Analyzed: 2/22/99 **Laboratory Control Sample Summary** BTE Sample Name: Lab Control Sample Units: ug/L (ppb) Lab Code: S990222-LCS Basis: NA Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Spike
Level | Sample
Result | Spiked
Sample
Result | Percent
Recovery | CAS Percent Recovery Acceptance Limits | Result
Notes | |--------------|----------------|--------------------|-----|----------------|------------------|----------------------------|---------------------|--|-----------------| | Benzene | EPA 5030 | 8020 | 0.5 | 25 | ND | 24 | 96 | 75-135 | | | Toluene | EPA 5030 | 8020 | 0.5 | 25 | ND | 23 | 92 | 73-136 | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 25 | ND | 22 | 88 | 69-142 | | | ARCO |) Pro
Division | oduc
of Atla | ots C
Intic/Ric | COM
Online of the online | pany
ompany | 590 | 1005 | 590 1 | ask Order I | vo. 2 | 41 | 18 | . (| 20 | <u> </u> | | | | | | Chai | n of Custody | |------------|-------------------|-----------------|--------------------|---|-------------------|----------------|-------------|------------------|--------------------|----------------------|-----------------|-----------------|-----------------------------------|-------------|---------------------|--------------|--|----------------|------------------|----------------------------------|---------------|---| | ARCO Fa | cility no. | ·07 | 274 | | City
(Facility | 00 | ikla | nol | | | | | Œ | 10 | n l | 1a | nO | 10 | rV | cer | 7 | Laboratory Name | | ARCO en | gineer | Pa | 101 | 50,1 | אותו | | Tele
(AR | phone no.
CO) | | Tele
(Cor | phone
sultar | no. | ICF |
)44 | 3-7 | ζ// | Fax I | no.
sultant | 0(4 | 08)4 | 27-90 | Contract Number | | Consultan | t name | [=/L | 100 | 1 | 7 | | | | iress
nsultant) | 44-1 | 41 | 1ai | ihe | u/l | 1/01 | 14 | 10 | ni | + (| 100 | C, CA | - | | | | | | Matrix | | Prese | rvation | | | | ZU) | 1 | | | 1 | 1 | | Ģ | 0/7000 | <u> </u> | | Method of shipment | | Ö. | | r no. | | | | · - | T | _ | _ | | 20015 | 8015
C | e
12 D | (503E | | | _ | Semi
ACI VO | PA 601 | 7420/74 | | Sampler | | Sample I.D | no. | Container no | Soil | Water | Other | lce | Acid | Sampling date | Sampling time | BTEX
602/EPA 8020 | JTPH / | Modified
Des | Oil and Grease
413.1 © 413.2 © | 118,1/51 | EPA 601/8010 | EPA 624/8240 | EPA 625/8270 | OV Os | Metals F
XOST | Lead OrgOHSO Lead EPA 7420/74210 | | Sampler
Will
deliver | | San | Lab | | | | | | | Samp | Samp | BTEX
602/E | BTEX
EPA) | TPH
Gas [| Ol ar
413.1 | TPH
EPA2 | EPA | EPA | EPA (| TCLP
Metal | CAM | Lead | | Special Detection | | HW-5 | (20) | Z | (1) | X | | \times | HCL | 2/18/99 | 0945 | | X | | | | | | | | | | | Limit/reporting Lowest | Possible | | | | | | <u> </u> | <u> </u> | | <u> </u> | | | | | <u> </u> | | | | | | | | | | | | | Special QA/QC | | | | <u> </u> | | | | | | | | | | | | | | | | | | | _ | A5 | | | ···· | | | | | | ļ | | | | | | | | | | | | | | | Normal | | | | | | | | | | | <u> </u> | ļ | | <u> </u> | | | | | <u> </u> | | | | <u> </u> | Remarks | | | · | - RATS | | | | | | | | | | | | ļ | | | | | | | | | | | | 2-40nil Ha
VCAS
190
#20805-129.0 | VCAS | | | | | | <u> </u> | | | | | | ļ | | | | | | | | | | | | H7CRC5-129 | | | | · | | | | | | | | | | ļ | | | | | | <u> </u> | | | | Lab Number | | | | | <u> </u> | ļ | | | <u> </u> | | | | _ | | | | | | | | | | | | | | | | ļ | <u> </u> | | | ļ | | ļ | | | | <u> </u> | | | | | <u> </u> | | | \bot | Turnaround Time: | | | | ļ | <u> </u> | ļ | | | <u> </u> | | | <u> </u> | | | | | | | | <u> </u> | | | _ | Priority Rush 1 Business Day | | ~~~ | | <u> </u> | <u> </u> | | | | | | | <u> </u> | | ļ | | | | | <u> </u> | <u> </u> | | | | Rush | | | | | | ŀ | | | | | | | | | | | | | | | | | | 2 Business Days | | Condition | | | | | | | | | _ | 1 | Λ. | e rece | ived: | | Di | نو′ | 3 | Sq | 7 | Rul | D3 | Expedited 5 Business Days | | Relinguis | | | r | | | | Date 3/19/ | 99 19 | | Rece | ived b | Z 2 | | _ | ∓ , <i>G</i> | 3(K. | 5 | CAS | 3 7 | 1/19 | 7 1500 | | | Relinguis | | | | | | | Date | · · | | Rece | ved b | у | - | • | <u> </u> | | | - | | | | 10 Business Days | | Relinguis | hed by | | | | | | Date | | Time | Rece | ived b | y laboi | ratory | | | | Date | | | Time | | | # APPENDIX C FIELD DATA SHEETS ## FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY PROJECT #: 21775-261.004 STATION ADDRESS: 6407 Telegraph Ave, Oakland, CA DATE: 2/18/99 ARCO STATION #: 374 FIELD TECHNICIAN : Mike Ross/ Manuel Gallegos DAY : Thursday | | | 1 | r i | · | <u> </u> | | 515.AT | 0500115 | 5.50711.70 | E1 0 4 E1110 | 141514 | T | |-------|------|------|-----------------|---------|----------|--|----------|--|------------|--------------|--------|--------------------------| | | | Well | Туре | ļ | | Туре | FIRST | SECOND | DEPTH TO | FLOATING | WELL | | | DTW | WELL | Box | Of Well | Gasket | Lock | Of Well | DEPTH TO | DEPTH TO | FLOATING | PRODUCT | TOTAL | | | Order | ID | Seal | Lid | Present | Number | Cap | WATER | WATER | PRODUCT | THICKNESS | | COMMENTS | | | | | | | | | (feet) | (feet) | (feet) | (feet)_ | (feet) | | | 1 | MW-1 | ove | HEX | ИО | ARCO | LWC | 6.28 | 62 | NR | NR | 27.8 | UNDER PONSERVE NO BUSSIN | | 2 | MW-6 | OK | 15/1 è " | YES | ARCO | LWC | 3,93 | 3,93 | NR | NR | 14,6 | UNDER PLOISE TO OF CA | | 3 | MW-5 | oK_ | 地 | YES | ARCO | LWC | 7.35 | (feet)
6:26
3.93
7.25
6.63
5.85
4.39 | NR | NP | 23.1 | | | 4 | MW-2 | ove | HEX | NO | ARCO | LWC | 6.63 | 4.63 | NR | NR | 26.3 | | | 5 | мw-з | OK | HĒX | NO | ARCO | LWC | 5.85 | 5.85 | NR | NR | 26.8 | ORC SOIR (10 well | | 6 | MW-4 | oic | NEX. | NO | ARCO | LWC | 4.31 | 4.39 | NIP | NR | スフィン | | | | | | | | | | | | | | | | | | _ | L | | | 1 | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | _ | | | | | . , , , <u>, , , , , , , , , , , , , , , ,</u> | | | | | | | | | 1 | SURVEY POINTS ARE TOP OF WELL CASINGS ### WATER SAMPLE FIELD DATA SHEET SAMPLE 10 MW-5 (20) PROJECT NO 21775-261, 004 PURGED BY M. Ross CLIENT NAME ARCO 0374 LOCATION Parind, Ca SAMPLED BY M. ROSS Groundwater ____ Surface Water ____ Leachate _____ 6 Other___ CASING DIAMETER (inches) 2 3 VOLUME IN CASING (gal) 10.35 CASING ELEVATION (feet/MSL) CALCULATED PURGE (gal.) 31.06 DEPTH OF WELL (feet) 33./ ACTUAL PURGE VOL (gal) 23.0 DEPTH OF WATER (feet) END PURGE 0936 DATE PURGED: 2/18/99 SAMPLING TIME 0945 DATE SAMPLED 2 / 18/99 TURBIDITY TEMPERATURE COLOR E.C VOLUME TIME (µmhos/cm@25°c) (2400 HR) OTHER: D.O._ FIELD QC SAMPLES COLLECTED AT THIS WELL (i.e. FB-1, XDUP-1). SAMPLING EQUIPMENT PURGING EQUIPMENT 2" Bladder Pump // Bailer (Teflon) Bailer (Teflon) 2" Bladder Pump Bailer (Stamless Steel) Bomb Sampler Bailer (PVC) Centrifugal Pump Submersible Pump Dipper Bailer (Stainless Steel) Submersible Pump Well Wizard™ Dedicated Dedicated Well Wizard 14 Other: LOCK. AOO WELL INTEGRITY: OF-REMARKS: pH, E.C., Temp. Meter Calibration Date 2 18 99 Time. 09 20 Meter Serial No. 606 235 E.C. 1000 000 1 0 22 pH 7 700 1 0 92 pH 10 1000 1 1003 pH 4 400 1 319 Temperature *F (0) : SIGNATURE: Mile PAGE OF DE | EMCON A | Associates - I | Field Service | es | | | Hist | orical Mor | itoring Well Data | |-----------|-----------------|---------------|------------------------------|--------------------|------------------------------|------------------------------------|------------|---------------------------------------| | 1921 Ring | gwood Avenu | ie | | 1999 | | | | ARCO 0374 | | _ | California | | | | | | | 21775-261.004 | | Well ID | Quarter | Date | Purge
Volume
(gallons) | Did
well
dry | Well
Contained
Product | First
Second
Third
Fourth | | | | MW-1 | First | 02/18/99 | 0.00 | NA NA | NO | ···· | | | | 19199-1 | Second | 05/12/98 | 0.00 | NA NA | NO | | | | | | Third | 07/27/98 | 40.50 | NO | NO | | | | | ţ | Fourth | 10/15/98 | 0.00 | NA | NO | | | | | MW-2 | First | 02/18/99 | 0.00 | NA | NO | | | | | | Second | 05/12/98 | 0.00 | NA | NO | | | | | | Third | 07/27/98 | 0.00 | GRAB | NO | | | | | | Fourth | 10/15/98 | 0.00 | NA | NO | | | | | MW-3 | First | 02/18/99 | 0.00 | NA | NO | | | · · · · · · · · · · · · · · · · · · · | | | Second | 05/12/98 | 0.00 | NA | NO | | | | | , | Third | 07/27/98 | 0.00 | GRAB | NO | | | | | 1 | Fourth | 10/15/98 | 0.00 | NA | NO | | | | | MW-4 | First | 02/18/99 | 0.00 | NA | NO | | | | | | Second | 05/12/98 | 0.00 | NA | NO | | | | | | Third | 07/27/98 | 0.00 | GRAB | NO | | | | | | Fourth | 10/15/98 | 0.00 | NA | NO | | | | | MW-5 | First | 02/18/99 | 23.00 | YES | NO | | | | | | Second | 05/12/98 | 25.00 | YES | NO | | | | | | Third | 07/27/98 | 30.00 | YES | NO | | | | | | Fourth | 10/15/98_ | 26.00 | YES | NO | | | | | MW-6 | First | 02/18/99 | 0.00 | NA | NO | | | | | ŀ | Second | 05/12/98 | 0.00 | NA | NO | | | | | | Third | 07/27/98 | 19.50 | NO | NO | | | | | | Fourth | 10/15/98 | 0.00 | NA | NO | | | | | | First | | | | | | | | | | Second | | | | | | | | | | Third | 1 | | ì | 1 | | | | | | Fourth | | | <u> </u> | - | | | | | | First | | | | | | | | | | Second | | | | | | | | | | Third | | | - | - | | | | | | Fourth | | ļ | <u> </u> | | | | | | | First | | | | | | | | | | Second | | | | | | | | | | Third | | | | | | | | | | Fourth | - | | 1 | - | I
Steam water (gal) | | | | | First | | | | | l | | | | | Second
Third | | | | | | | | | | Fourth | | | | | | | | | ł | prountil | | 11 | 1 | | L | | | | ARCC | Division | of Atla | ntic/Ric | hfield C | ompany | | | Т | ask Order N | lo. ' | 41 | K | . (| \mathcal{I} | · · · | | | | | | | | | of Custody | |------------|-------------------|----------------|----------|----------------|-------------------|-------------|------------|---------------|----------------------|----------------------|-----------------|----------------------|---|---------------|--------------|----------------|----------|------------|-----------------|--|---------|----------|-----------|-----------------------------------| | ARCO Fac | ality no. | 1 | -// | ; T | City
(Facility | 600 | ikla | rct | | Proje
(Con | ct ma | nager
t) | | 10 | <i>ξ</i>) | 10 | 1./ | 1,- | 11. | 1 - 6 | . 1/1 | | | Laboratory Name | | ARCO eng | | | | 11 | | <u> </u> | Tele | phone no. | | Teler | hone | no.// | 16 | 111 | 7. 7 | 7:// | Fax I | no. | 11 | <u>, </u> | 1/1/ | 7.6 | ·
/- / | Laboratory Name | | Consultan | t name | 1- 1 | 10 | 7 | // / | | I (Arts | Add | lress
nsultant)// | 14 / | 14 K | 101 | 1/1/ | 111 | 10 | لادار.
دارر | 10 | 121 | <i>† (</i> | 11: | cle | <u> </u> | /1 | ma . | | | | | | | | | | 1,00 | HSUILLETTO; | 1 | 11/1/2 | | ,,,, | | 1// | 1 | | / _ | 88 | | | <u> </u> | | Method of shipment | | | | ė | | Matrix | | Prese | rvation | | | | 7.7.4.
8015 | 윤 | 0 | 35
F | | | | . NOA | \ 6010/ | 207742 | | | | Conper. | | e I.D | . | nerı | Soil | Water | Other | lce | Acid | date
e | рше | 8020 | H // C | ified 80
Diesel (| rease
413.2 | 1/31/5 | 3010 | 8240 | 8270 | S S | als EPA
STLC | PDHSC 4 | | | | 14.11 | | Sample I.D | Lab no. | Container no.
| | | | | | Sampling date | Sampling time | BTEX
602/EPA 8020 | TEXTP
PA M60 | PH.Mod | iand G
13.1 D | PH
PA 418. | PA 601/ | PA 624 | PA 625/ | | AN Me | Lead Org/DHSCI
Lead EPA 7420/7421CI | | | | Special Detection | | | | | | _ | ļ | | 1100 | | | B 98 | | ± Ø | 0 14 | | ⊞ | E | <u> </u> | ×× | 3 - | | | | | Special Detection Limit/reporting | | HUNC | (₄ 2) | 7 | <u> </u> | \times | ļ | × | 461 | 2/ 4/114 | 0945 | | X | | | | | | | <u> </u> | | - | | \dashv | | COURST | | | | | | | | | | <u> </u> | | | | | | | | | <u> </u> | <u> </u> | <u> </u> | <u> </u> | | \dashv | | 10==11/6 | | | | | | <u> </u> | | | <u> </u> | | | | | | | | | | | <u> </u> | <u> </u> | <u> </u> | | | | Special QA/QC | | | | | | | | | ļ | | | | | | | | | | | <u> </u> | ļ | | | | | 1 | | | | | | | | | | , | | | | | | | | | | <u> </u> | <u> </u> | | | | | / | | | | | ļ | | | | | | | | | | | | | | | ļ | | | | | | 1 cil al | | | | | <u> </u> | | | | | | | | | | | | | | | | <u> </u> | | |] | | Remarks | | | | | | | | | | | | | | | | | | <u> </u> | | <u> </u> | | <u> </u> | ļ | | | PATE | | | | | | | | | | <u> </u> | | | | | | | | <u> </u> | | Ļ | ļ | | | | | - 1.0. 110 | | | | | | | | | | | | | | | | | | <u> </u> | | | | <u> </u> | | | | -40 ml 110 | <u> </u> | | <u> </u> | | | | CAS | 41708CS-151 | Ì | | | | | | Lab Number | - | | | | | 1 | | | | | | | | | | | | | | | | | | | Turnaround Time: | <u> </u> | | | | | | Priority Rush | | | | | † | | | | | | | | | | | <u> </u> | | | | ┞ | | \vdash | | | | 1 Business Day | | _ | | | | | | | | † | | | | | | | <u> </u> | | | ┢ | | \vdash | | | | Rush
2 Business Days 🔲 | | | | <u> </u> | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | <u> </u> | | L | <u> </u> | <u> </u> | <u> </u> | | <u> </u> | | | | i 1 | | Condition | of sam | ple: | | | | | | | | • | *. | e rece | | or noveled | | | | | | | | | | Expedited 5 Business Days | | Relinguis | | | r | | | | Date 3//9/ | 1 1 | Time) | Rece | ived b | y 🛬 | <u></u> | , | =,< <i>Ç</i> | Z/ 1. | | (A= | <u> </u> | 419 | 199 | 15 | つわ | Standard | | Relinguis | hed by | . ` | | | | | Date | <u></u> | | Rece | | | *************************************** | i.e. | <u>`</u> | | | <u> </u> | | | 7 + 7 | · ./ | | 10 Business Days | | Relinguis | hed by | | | <u></u> | | | Date | | Time | Rece | ived b | y labo | ratory | | | | Date | | | Time | | | | | # APPENDIX D REMEDIAL SYSTEM PERFORMANCE SUMMARY ### APPENDIX D ## REMEDIAL SYSTEM PERFORMANCE SUMMARY ### **GWE System** Groundwater extraction (GWE) was conducted between December 21, 1993, and October 13, 1995. No evidence of additional plume migration has been observed since system deactivation. The GWE system was comprised of a pneumatic pump in Well W-2 and three 200-pound granular activated carbon vessels arranged in series to treat the extracted groundwater. Extracted and treated groundwater was discharged into the East Bay Municipal Utility District (EBMUD) Permit Account Number 502-85611. Based on verbal approval from the ACHCSA, indicating that GWE would no longer be required at the site, the EBMUD permit was relinquished on June 14, 1996. Overall, approximately 0.1 million gallons of groundwater were extracted and less than 0.05 gallon of benzene was removed. Please refer to the Second Quarter 1997 Groundwater Monitoring Report, for historical GWE system performance and analytical data. ### Intrinsic Bioremediation Evaluation Intrinsic bioremediation indicator parameters (bioparameters) were monitored during the third quarter 1996 groundwater monitoring event. Groundwater samples from Wells MW-3, MW-4, and MW-5 were analyzed for total alkalinity, dissolved oxygen (DO), ferrous iron, nitrate, sulfate, methane, biological oxygen demand (BOD), chemical oxygen demand (COD), and carbon dioxide (CO₂). Intrinsic bioremediation evaluation data are presented in Table D-1. It is generally accepted that depleted concentrations of electron acceptors (DO, nitrate, and sulfate), and elevated concentrations of bioremediation byproducts (CO₂, methane, and ferrous iron) within the hydrocarbon-impacted plume compared to background levels indicate that intrinsic bioremediation is occurring. Collected data follow a trend that indicates the occurrence of intrinsic bioremediation. ## **Bioremediation Enhancement Program** On November 14, 1995, at the request of ARCO, twelve oxygen releasing compound (ORC) socks manufactured by Regenesis Bioremediation Products, Inc. were installed below the groundwater surface in Well MW-3. ORC is a formulation of very fine, insoluble magnesium peroxide that releases oxygen at a slow, controlled rate when hydrated. ORC product literature was presented in PEG's fourth quarter 1995 report. Data collected from Well MW-3 indicate that concentrations of TPPH-g and benzene have declined since ORC units were installed. On September 29, 1998 ORC socks were also installed in MW-4. ORC units are changed when dissolved oxygen data indicate that they have been depleted. ### Conclusions As indicated above, GWE at the site has been terminated with verbal approval from ACHCSA. Bioremediation enhancement program will continue. Attachments: Table D-1 - Intrinsic Bioremediation Evaluation Data Table D-1 Intrinsic Bioremediation Evaluation and Enhancement Data | | Ī | | Fi | eld Analyses | | | | | | Labor | ratory An | alvses | | | | | |-----------|-------------|--------------|---------|--------------|--------|---------|--------------|--------|---------|--------|-----------|---------|---------|---------|----------|--------| | | į | | - | | | | | | | | | Nitrate | Nitrite | | | | | | | Groundwater | | | | Ferrous | Total | | Carbon | | | as | as | | TPH as | Total | | | 1 | Temperature | pН | Conductivity | D.O. | Iron | Alkalinity | B.O.D. | Dioxide | C.O.D. | Methane | | Nitrite | Sulfate | Gasoline | BTEX | | Well | Sampled | (deg F) | (units) | (µmhos) | (mg/L) | (mg/L) | (mg CaCO3/L) | (mg/L) | (mg/L) | (mg/L) | (%) | (mg/L) | (mg/L) | (mg/L) | (μg/L) | (µg/L) | | | 11/14/95 ** | 65.5* | 6.76* | 508* | 7.17 | N/A | NS | NS | NS | NS | NS | 6.6 | <1.0 | NS | 140 | 46 | | 141 44 -2 | 06/06/96 ** | 66.2 | 7.38 | 700 | 12.28 | N/A | NS 84† | 5.4† | | | 07/16/96 | 67.8 | 7.08 | 1,010 | 8.73 | 0.0 | 280 | 1.8 | 270 | 44 | < 0.020 | <1.0 | NS | 78 | <50 | 2.2 | | | 01/21/97 ** | 59 | N/A | N/A | 11.15 | 0.5 | N/A | | 08/12/97 ** | 74.4 | 6.65 | 600 | 6.7 | 1.6 | N/A | | 11/17/97 | N/A | N/A | N/A | 12.0 | 0.2 | N/A | 1 | 03/16/98 | 68.5 | 7.75 | 806 | 4.0 | N/A ND | ND | | | 05/12/98 | NM | NM | NM | NM | NM | NS | | 07/27/98 | 68.1 | 6.81 | 904 | 1.7 | NM | N/A 74 | ND | | | · · | ORC installe | d | | | | | | | | | | | | | | | | 10/15/98 | NM | NM | NM | NM | NM | NS | | 02/18/99 | NM | NM | NM | NM | NM | NS | | 00/1/2/06 | 60.5 | 6.72 | 1,370 | 3.20 | 4.20 | 420 | NS | 470 | NS | 0.11 | <1.0 | NS | 18 | 5,600 | 2,020 | | MW-4 | 07/16/96 | 69.5 | 6.89 | 1,411 | 1.50 | N/A ND | ND | | | 03/16/98 | 66.2
NM | NM | 1,411
NM | NM | NM | NS | | 05/12/98 | | 6.34 | 1434 | 0.5 | NM | N/A 21,000 | 8,900 | | 1 | 07/27/98 | 70.5 | * | 1434 | ···· | 11117 | | | , | | | | | | | | | | | ORC installe | NM | NM | NM | NM | l NS | | | 10/15/98 | NM | NM | NM | NM | NM | NS | | 02/18/99 | NM | INIVI | IATAT | 14141 | 7 4747 | 1,10 | 2.2 | | - · - | | | | | | | Table D-1 Intrinsic Bioremediation Evaluation and Enhancement Data | | | | <u>Fi</u> | eld Analyses | | | *= | | | Labor | ratory An | alvses | | | | | |--|--|---|-----------|--------------|-------------|---------|-------------------------------|--|----------------------------|--------------|--------------|----------|---------|---------|----------|--------| | | | | | | | : | | | | | | Nitrate | Nitrite | | | | | Ì | | Groundwater | | | | Ferrous | Total | | Carbon | | | as | as | | TPH as | Total | | | Date | Temperature | pН | Conductivity | D.O. | Iron | Alkalinity | B.O.D. | Dioxide | C.O.D. | Methane | Nitrate | Nitrite | Sulfate | Gasoline | BTEX | | Well | Sampled | (deg F) | (units) | (µmhos) | (mg/L) | (mg/L) | (mg CaCO3/L) | (mg/L) | (mg/L) | (mg/L) | (%) | (mg/L) | (mg/L) | (mg/L) | (μg/L) | (μg/L) | | l
Imw-5 | 07/16/96 | 70.4 | 6.85 | 690 | 6.80 | 0.0 | 170 | NS | 180 | NS | < 0.020 | <1.0 | NS | 35 | <50 | 1.1 | | | 03/16/98 | 69.5 | 7.19 | 584 | 1.5 | N/A ND | ND | | | 05/12/98 | 65.9 | 7.04 | 619 | 2.2 | N/A ND | ND | | 1 | 07/27/98 | 73.6 | 7.39 | 569 | 1.3 | NM | N/A ND | ND | | | 10/15/98 | 65.8 | 6.88 | 626 | 3.0 | NM | N/A ND | 0.6 | | | 02/18/99 | 63.4 | 6.98 | - 616 | 2.0 | NM | N/A . | N/A ND | ND | | MW-6 | 06/06/96 | N/A | N/A | N/A | 3.47 | N/A | NS | <u> </u> | 03/16/98 | N/A | N/A | N/A | N/A | N/A | NS | 1 | 05/12/98 | NM | NM | NM | NM | NM | NS | | 07/27/98 | 70.3 | 6.67 | 638 | 0.9 | NM | N/A ND | ND | | | 10/15/98 | NM | NM | NM | NM | NM | NS | | 02/18/99 | NM | NM | NM | NM | NM | NS | D.O.
B.O.D
C.O.D
TPPH
BTEX | = Chemical of
= Total purger
= Benzene, to | al oxygen demand
oxygen demand
eable petroleum hy
oluene, ethylbenze | | | | | μg/L
NM
NS
ND
N/A | = not me
= Not sa
= Not de
= Not av | mpled
tected
ailable | | | 1005 | | | | | | deg F | = Degrees Fa | | | | | | * | Field me
ORC ins | asurements of | confected on | November 2 | 4, 1995. | | | | | | μmhos
mg/L | = Micromhos= Milligrams | | | | | | † | | ril 10, 1996 | groundwate | r monitoring | g event. | | | |
|