50 FTC 18 FM 3147 December 15, 1998 Project 20805-190.001 R078 Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570 Re: Quarterly Groundwater Monitoring Report, Third Quarter 1998, for ARCO Service Station No. 0374, located at 6407 Telegraph Avenue, Oakland, California Dear Mr. Supple: Pinnacle Environmental Solutions, a division of EMCON (Pinnacle), is submitting the attached report which presents the results of the third quarter 1998 groundwater monitoring program at ARCO Products Company (ARCO) Service Station No. 0374, located at 6407 Telegraph Avenue, Oakland, California. The monitoring program complies with the Regional Water Quality Control Board - S.F. Bay Region requirements regarding underground tank investigations. #### LIMITATIONS No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, results should not be construed as a guarantee of the absence of such conditions at the site, but rather as the product of the scope and limitations of work performed during the monitoring event. Please call if you have questions. Sincerely, Pinnacle Glen Vander Veen Project Manager Jay/R. Johnson, R.G. Senior Project Supervisor Attachment: Quarterly Groundwater Monitoring Report, Third Quarter 1998 cc: Ms. Susan Hugo, Alameda County Health Care Services Agency Mr. John Kaiser, Regional Water Quality Control Board - S.F. Bay Region WC\S:\ARCO\0374\QTRLY\0374Q398.DOC\uh·1 Date: December 15, 1998 ## ARCO QUARTERLY GROUNDWATER MONITORING REPORT | Facility No. | : 0374 | Address: | 6407 Telegraph Avenue, Oakland, California | |--------------|-----------------------|--------------|--| | - | ARCO Environmental | | | | | Consulting Co./Conta | | L LO Julian Jondon Vondon Vondon | | | Consultant P | | | | 5 . | |) | O. F. Day Bogion | | Pr. | imary Agency/Regulato | וועוו שו עות | Tiegloriai ttater damis | ### WORK PERFORMED THIS QUARTER (THIRD - 1998): - 1. Prepared and submitted quarterly groundwater monitoring report for second quarter 1998. - 2. Performed quarterly groundwater monitoring and sampling for third quarter 1998. - 3. Continued intrinsic bioremediation enhancement at wells MW-3 and MW-4 using oxygen release compound socks. ## WORK PROPOSED FOR NEXT QUARTER (FOURTH - 1998): - 1. Prepare and submit quarterly groundwater monitoring report for third quarter 1998. - 2. Perform quarterly groundwater monitoring and sampling for fourth quarter 1998. - 3. Continue intrinsic bioremediation enhancement at wells MW-3 and MW-4. #### **QUARTERLY MONITORING:** | Current Phase of Project: | Monitoring/Remediation | |---|--| | Frequency of Groundwater Sampling: | Annual (3rd Quarter): MW-1, MW-2, MW-6 | | | Semiannual (1st/3rd Quarter): MW-3, MW-4 | | | Quarterly: MW-5 | | Frequency of Groundwater Monitoring: | Quarterly | | Is Free Product (FP) Present On-Site: | No | | FP Recovered this Quarter: | None | | Cumulative FP Recovered to Date: | None | | Bulk Soil Removed This Quarter: | None | | Bulk Soil Removed to Date: | None | | Current Remediation Techniques: | Bioremediation enhancement | | Average Depth to Groundwater: | 7.0 feet | | Groundwater Flow Direction and Gradient | | | | 0.04 ft/ft toward southwest | | | | #### **DISCUSSION:** - TPPH-g and benzene concentrations at downgradient perimeter Well MW-5 remained below detection limits this quarter. - The occurrence of intrinsic bioremediation at the site was documented during third quarter 1996. - Intrinsic bioremediation enhancement at the off-site wells MW-3 and MW-4 is in progress. Please refer to Attachment D for details. #### ATTACHMENTS: - Groundwater Elevation and Analytical Data Table 1 - - Groundwater Analytical Summary Map Figure 1 - - Groundwater Elevation Contour Map Figure 2 - - Appendix A Sampling and Analysis Procedures - Appendix B Certified Analytical Report and Chain-of-Custody Documentation Appendix C Field Data Sheets - Appendix D Remedial System Performance Summary Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE) ## ARCO Service Station 0374 6407 Telegraph Avenue at Alcatraz Avenue Oakland, California | · | Date | Well | Depth to | Groundwater | TPPH as | | | Ethyl- | | | Dissolved | Purged/ | |-------------|----------------------|-------------|--------------|------------------|----------------|---|---------|------------|--------------|-------|-----------|-----------| | Well | Gauged/ | Elevation | Water | Elevation | Gasoline | Benzene | Toluene | benzene | Xylenes | MTBE | Oxygen | Not Purge | | Number | Sampled | (fcet, MSL) | (feet, TOC) | (feet, MSL) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppm) | (P/NP) | | MW-1 | 01/31/96 | 158.91 | 6.34 | 152.57 | | | Well | Sampled | Annually | | | | | | 04/10/96 | | 5.82 | 153.09 | | | Well | l Sampled | Annually | | | | | | 07/16/96 | | 7.23 | 151.68 | <50 | <0.5 | <0.5 | <0.5 | | 340 | NM | | | | 10/14/96 | | 8.34 | 150.57 | * | | Wel | Sampled | Annually | | | | | | 03/27/97 | | 6.37 | 152.54 | | ••••• | Wel | I Sampled | Annually | | | | | | 05/27/97 | | 7.30 | 151.61 | | | | | Annually | | | | | | 08/12/97 | | 8.22 | 150.69 | <50 | <0.5 | <0.5 | <0.5 | | 620 | NM | | | | 11/17/97 | | 7.98 | 150.93 | | | Wel | 1 Sampled | Annually | | | | | | 03/16/98 | | 4.94 | 153.97 | | | Wel | l Sampled | Annually | | | | | | 05/12/98 | | 5.28 | 153.63 | | | Wel | l Sampled | Annually | | | | | | 07/27/98 | | 6.84 | 152.07 | <500 | <5 | <5 | <5 | s <5 | 580 | 0.6 | P | | MW-2 | 01/31/96 | 157.92 | 6.51 | 151.41 | | | Wel | l Sampled | Annually | | | | | 141 44 -5 | 04/10/96 | 137.72 | 6.94 | 150.98 | | | Wel | l Sampled | Annually | | | | | | 07/16/96 | | 1.73 | 150.19 | <50 | 1.2 | <0.5 | <0.5 | <0.5 | 33 | NM | | | | 10/14/96 | | 8.35 | 149.57 | | | Wel | l Sampled | Annually | | | | | | 03/27/97 | | 7.40 | 150.52 | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | Wel | I Sampled | Annually | | ****** | | | | 05/27/97 | | 7.82 | 150.10 | | | Wel | II Sampled | Annually | | | | | | 08/12/97 | | 8.29 | 149.63 | <50 | <0.5 | <0.5 | <0 | <0.5 | 23 | NM | | | | 11/17/97 | | 8.05 | 149.87 | | | Wel | II Sampled | Annually | | | | | | 03/16/98 | | 6.45 | 151.47 | | | We | Il Sampled | Annually | | | | | | 05/10/98 | | 6.93 | 150.99 | | | We | II Sampled | Annually | | | | | | 03/12/98 | | 7.39 | 150.53 | <50 | | | | | <3 | 0.85 | NP | | h 4111/ 2 # | 01/21/06 | 153.64 | 7.02 | 146.62 | 140 |) 20 | 0.87 | 1 | 1 14 | NA | NM | | | MW-3* | 01/31/96 | 155.04 | 7.82 | 145.82 | 84 | | | | 9 1.1 | NA | NM | | | | 04/10/96 | | 6.80 | 146.84 | <50 | | | | | <2.5 | NM | | | | 07/16/96 | | 7.67 | 145.97 | <50 | | | | 5 0.81 | 2.9 | NM | | | | 10/14/96 | | 7.62 | 146.02 | <50 | | | | 9 0.63 | <2.5 | NM | | | | 03/27/97 | | 6.72 | 146.92 | | | Well | Sampled | Semiannually | | | | | | 05/27/97 | | 8.20 | 145.44 | <50 | | | | | <2.5 | NM | | | | 08/12/97 | | 7.64 | 146.00 | | | | | inually | | 12.0 | 1 | | | 11/17/97 | | 5.14 | 148.50 | <50 | | | _ | | <3 | 4.0 | P | | | 03/18/98 | | 5.53 | 148.11 | | | Well | | Semiannually | | | | | | 05/12/98
07/27/98 | | 7.63 | 146.01 | 74 | | | | | <3 | 1.7 | NP | | | | 164.63 | 5 / 4 | 160.00 | 230 |) 23 | 3 2.2 | 2 3. | 7 32 | NA | NM | 1 | | MW-4 | 01/31/96 | 156.53 | 5.64 | 150.89 | 7,300 | | | | | NA | | | | | 04/10/96 | | 6.66 | 149.87 | 7,300
5,600 | | | | | 150 | | | | | 07/16/96 | | 7.73 | 148.80 | 4,500 | | | | | <62 | | | | | 10/14/96 | | 8.55 | 147.98 | | | | | | | | | | | 03/27/97 | | 7.15 | 149.38 | 25,000 | J,201 | | | Semiannually | | | | | | 05/27/97 | | 7.75 | 148.78 | 4,800 | 950 | | | | | NM | I | | | 08/12/97 | | 8.46 | 148 07 | | | | | Semiannually | | | | | | 11/17/97 | | 8.24 | 148.29 | ٠٠٠٠٠٠٠ | | | | | | 1.5 | S P | | | 03/16/98 | | 5.32 | 151.21 | <50 | · <0. | | | Semiannually | | | | | | 05/12/98
07/27/98 | | 6.38
7.36 | 150.15
149.17 | 21,000 | 0 6,10 | | • | | | 0.5 | S NP | # Table 1 Groundwater Elevation and Analytical Data Total Purgeable Petroleum Hydrocarbons (TPPH as Gasoline, BTEX Compounds, and MTBE) ## ARCO Service Station 0374 6407 Telegraph Avenue at Alcatraz Avenue Oakland, California | | Date | Well | Depth to | Groundwater | TPPH as | | ····· | Ethyl- | | | Dissolved | Purged/ | |--------------------------------|----------------------|----------------|------------------|-------------------|------------|--------------|--|--------------|----------|-------|-----------|------------| | Well | Gauged/ | Elevation | Water | Elevation | Gasoline | Benzene | Toluene | benzene | Xylenes | MTBE | Oxygen | Not Purged | | Number | _ | | (feet, TOC) | (feet, MSL) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | (ppm) | (P/NP) | | Number | Sampled | | | | | <0.5 | <0.5 | <0.5 | <0.5 | NA | NM | | | MW-5 | 01/31/96 | 151.33 | 8.64 | 142.69 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | NA | NM | | | | 04/10/96 | | N/A | | <50 | | 1.3 | <0.5 | <0.5 | <2.5 | NM | | | | 07/16/96 | | 8.15 | 143.18 | <50 | 0.79 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 10/14/96 | | 7.92 | 143.41 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 03/27/97 | | 7.75 | 143.58 | <50 | < 0.5 | <0.5 | <0.5 | <0.5 | <2.5 | NM | | | | 05/27/97 | | 8.16 | 143.17 | <50 | <0.5 | د.ن>
II Inaccessi | | | ~2.5 | | | | | 08/12/97 | | | | -50 | we
<0.5 | 11 11111111111111111111111111111111111 | <0.5 | <0.5 | <2.5 | 4.0 | NP | | | 11/17/97 | | 8.75 | 142.58 | <50 | | <0.5 | <0.5 | <0.5 | <3 | 1.5 | P | | | 03/16/98 | | 6.90 | 144.43 | <50 | <0.5 | | <0.5 | <0.5 | <3 | 2,2 | P | | | 05/12/98 | | 7.24 | 144.09 | <50 | <0.5 | <0.5 | | | <3 | 1.3 | P | | | 07/27/98 | | 7.91 | 143.42 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | <>> | 1.0 | • | | N 4 3 3 3
3 3 3 3 3 3 3 | 010106 | 153.84 | 5.15 | 148.69 | | | We | I Sampled A | Annually | | | | | MW-6 | 01/31/96
04/10/96 | 133.04 | 4.58 | 149.26 | | | Wel | I Sampled A | Annually | | | | | | 04/10/96 | | 4.96 | 148.88 | <50 | <0.5 | < 0.5 | <0.5 | <0.5 | 150 | NM | | | | 10/14/96 | | 6.15 | 147.69 | | | Wel | I Sampled A | Annually | | | | | | 03/27/97 | | 4.40 | 149.44 | | | We | II Sampled A | Annually | | | | | | 05/27/97 | | 4.90 | 148.94 | | | We | Il Sampled | Annually | | | | | | 08/12/97 | | 5.43 | 148.41 | <50 | <0.5 | <0.5 | <0.5 | <0.5 | 39 | NM | | | | 11/17/97 | | 5.87 | 147.97 | | | We | II Sampled A | Annually | | | | | | 03/16/98 | | 4.52 | 149.32 | | | We | ll Sampled. | Annually | | | | | | 05/10/98 | | 4.42 | 149.42 | | | We | Il Sampled | Annually | | | | | | 03/12/98 | | 4.75 | 149.09 | <50 | | | | | 18 | 0.9 | P | | | | | | | | | | | | | | | | МТВЕ | - Mothyl ter | t-butyl ether. | | | | | | | | | | | | MSL | = Mean sea | | | | | | | | | | | | | TOC | = Top of cas | | | | | | | | | | | | | ppb | = Parts per b | | | | | | | | | | | | | ppm
ppm | = Parts per n | | | | | | | | | | | | | /
-< | | | ection limit sta | ated to the right | • | | | | | | | | | NA | = Not analy: | | | ū | | | | | | | | | | NM | = Not measu | | | | | | | | | | | | | NS | = Not meast | | | | | | | | | | | | | N/A | = Not availa | | | | | | | | | | | | | 17/2 | - 1101 61010 | | | 4/95. Please re | forto Anna | ndiv D for o | letails | | | | | | ## APPENDIX A SAMPLING AND ANALYSIS PROCEDURES #### **APPENDIX A** #### SAMPLING AND ANALYSIS PROCEDURES The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved. The following documents have been used as guidelines for developing these procedures: - Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977 - Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986 - Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846, 3rd edition, November 1986 - Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982 - Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983 - Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989 ## **Sample Collection** Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling. ### **Equipment Cleaning** Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with deionized water. During field sampling, equipment surfaces that were placed in the well or came into contact with groundwater during field sampling were steam cleaned with deionized water before the next well was purged or sampled. ## Water Level, Floating Hydrocarbon, and Total Well Depth Measurements Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness, and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline, and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated by being rinsed with deionized water or steam cleaned after each use. A bottom-filling, clear Teflon bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water. The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated by being rinsed with deionized water after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon. Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form. ## **Well Purging** If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol presented in Figure A-1. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event. Groundwater purged from the monitoring wells was transported in a 500-gallon water trailer, 55-gallon drum, or a 325-gallon truck-mounted tank to EMCON's San Jose or Sacramento office location for temporary storage. EMCON arranged for transport and disposal of the purged groundwater through Integrated Waste Stream Management, Inc. Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Figure A-2 shows an example of the water sample field data sheet on which field data are recorded. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed. The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet. ## **Well Sampling** A Teflon bailer was the only equipment acceptable for well sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped. When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the Teflon bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded. ## Sample Preservation and Handling The following section specifies sample containers, preservation methods, and sample handling procedures. ## **Sample Containers and Preservation** Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested. ### Sample Handling Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs until received by the laboratory. At the time of sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory. Samples that required overnight storage prior to shipping to the laboratory were kept cool (4° C) in a refrigerator. The refrigerator was kept in a warehouse, which was locked when not occupied by an EMCON employee. A sample/refrigerator log was kept to record the
date and time that samples were placed into and removed from the refrigerator. Samples were transferred from EMCON to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from EMCON to laboratories performing the selected analyses routinely occurred within 24 hours of sample collection. ## **Sample Documentation** The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following: - Water sample field data sheets to document sampling activities in the field - Labels to identify individual samples - Chain-of-custody record sheets for documenting possession and transfer of samples - Laboratory analysis request sheets for documenting analyses to be performed #### Field Logbook In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected: - · Project number - · Client's name - Location - Name of sampler - Date and time - · Well accessibility and integrity - Pertinent well data (e.g., casing diameter, depth to water, well depth) - · Calculated and actual purge volumes - · Purging equipment used - Sampling equipment used - Appearance of each sample (e.g., color, turbidity, sediment) - Results of field analyses (temperature, pH, specific conductance) - General comments The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator. #### Labels Sample labels contained the following information: - Project number - Sample number (i.e., well designation) - · Sample depth - · Sampler's initials - Date and time of collection - Type of preservation used (if any) ## Sampling and Analysis Chain-of-Custody Record The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to EMCON with the analytical results. ## **Groundwater Sampling and Analysis Request Form** A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information: - · Date scheduled - Site-specific instructions - Specific analytical parameters - · Well number - Well specifications (expected total depth, depth of water, and product thickness) | | PROJECT NO :_ | | | SAMPI F ID | | | |---------------|--------------------------|-------------------|--------------|--|---------------------------|-------------------| | | PURGED BY : | | | CI IFNT NAME | | | | TWC | SAMPLED BY : | | | CLIENT NAME: | | | | YPE: Gr | roundwater | | | -eachate | Other | | | | WETER (inches): | | | | 6Othe | | | ASING ELE | VATION (feeVMSL) | : | VC | PLUME IN CASING | | | | DEF | 7TH OF WELL (feet) | : | CAL | CULATED PURGE | (oal.): | | | DEPT | H OF WATER (feet) | ; | ACT | UAL PURGE VOL | (gal.): | | | DA | TE PURGED : | | | | | | | DAT | E SAMPLED : | | SA | END PURGE :
MPLING TIME : | | | | | VOLUME | рН | E.C. | | | | | (2400 HR) | | (unds) | | | TURBIDITY (visual/NTU) | | | | | | | | | | | | | | | | | | | OTHER: | | | ODOR: | | | | | FIELD QC | SAMPLES COLLEC | TED AT THIS WE | | | (COBALT 0-100) | (NTU 0-200) | | | URGING EQUIPME | | | the second secon | G EQUIPMENT | | | 2* 914 | adder Pump | Bailer (Teñon) | | 2" Bladder Pur | mo Bailea | r (Taffort) | | Centr | nfugal Pump | Bailer (PVC) | - | Bomb Sample | | r (Stainless Stee | | | nersible Pump | Bailer (Stainless | Steel) | Dipper | Annual Control of Control | nersible Pump | | | Wizard14 | Dedicated | - | Well Wizard™ | | • | | Other: | | | | Xher: | | | | ELL INTEG | RITY: | | | | LOCK | · | | MARKS: | | | | | | · | | | | | | | | | | i, E.C., Temp |). Meter Calibration Dat | te: | Time: | Meta | er Senal No.: | | WATER SAMPLE FIELD DATA SHEET FIGURE **A-2** ## EMCON - SACRAMENTO GROUNDWATER SAMPLING AND ANALYSIS REQUEST FORM PROJECT NAME: | C C 1 1 | | | | • | - | |---------|-------|----|------|---------------|-----| | ~ H | > 111 | 11 | E 13 | 13 A | 715 | | SCH | | ~- | ~ | $\omega \sim$ | | | PECIAL INSTR | RUCTIONS/C | ONSIDERATI | ONS: | | Project Authorization: EMCON Project No.: OWT Project No.: Task Code: Originals To: | | |-------------------|-------------------------------|------------------|-------------------|---------------|---|-------------------------| | Well
Number or | X TO AUTHOR Casing Diameter | Casing
Length | Depth to
Water | Site Contact: | Name
(SES REQUESTED | Well Lock
Number (s) | | Source | (inches) | (feet) | (feet) | | | | | | | | | | | | | Laboratory and | l Lab QC Istruct | ions: | | | | | **EMCON** SAMPLING AND ANALYSIS REQUEST FORM FIGURE A-3 ### **APPENDIX B** ## CERTIFIED ANALYTICAL REPORTS, AND CHAIN OF CUSTODY DOCUMENTATION August 13, 1998 Service Request No.: <u>S9802013</u> Glen Vanderveen PINNACLE 144 A Mayhew Wy. Walnut Creek, CA 94596 RE: 20805-190,001/TO#22312,00/RAT8/374 OAKLAND Dear Mr. Vanderveen: The following pages contain analytical results for sample(s) received by the laboratory on July 31, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory. Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 15, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3. Please feel welcome to contact me should you have questions or further needs. Sincerely, Steven L. Green Project Chemist Greg Anderson Regional QA Coordinator **Acronyms** A2LA American Association for Laboratory Accreditation ASTM American Society for Testing and Materials BOD Biochemical Oxygen Demand BTEX Benzene, Toluene, Ethylbenzene, Xylenes CAM California Assessment Metals CARB California Air Resources Board CAS Number Chemical Abstract Service registry Number CFC Chlorofluorocarbon CFU Colony-Forming Unit COD Chemical Oxygen Demand DEC Department of Environmental Conservation DEQ Department of Environmental Quality DHS Department of Health Services DLCS Duplicate Laboratory Control Sample DMS Duplicate Matrix Spike DOE Department of Ecology DOH Department of Health EPA U. S. Environmental Protection Agency ELAP Environmental Laboratory Accreditation Program GC Gas Chromatography GC/MS Gas Chromatography/Mass Spectrometry IC Ion Chromatography Initial Calibration Blank sample Inductively Coupled Plasma atomic emission spectrometry Initial Calibration Verification sample j Estimated concentration. The value is less than the MRL, but greater than or equal to the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding. LCS Laboratory Control Sample LUFT Leaking Underground Fuel Tank M Modified MBAS Methylene Blue Active Substances MCL Maximum Contaminant Level. The highest permissible concentration of a substance allowed in drinking water as established by the U. S. EPA. MDL Method Detection Limit
MPN Most Probable Number MRL Method Reporting Limit MS Matrix Spike MTBE Methyl tert-Butyl Ether NA Not Applicable NAN Not Analyzed NC Not Calculated NCASI National Council of the paper industry for Air and Stream Improvement ND Not Detected at or above the method reporting/detection limit (MRL/MDL) NIOSH National Institute for Occupational Safety and Health NTU Nephelometric Turbidity Units ppb Parts Per Billion ppm Parts Per Million PQL Practical Quantitation Limit QA/QC Quality Assurance/Quality Control RCRA Resource Conservation and Recovery Act RPD Relative Percent Difference SIM Selected Ion Monitoring SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 STLC Solubility Threshold Limit Concentration SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, 3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB. TCLP Toxicity Characteristic Leaching Procedure TDS Total Dissolved Solids TPH Total Petroleum Hydrocarbons tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding. TRPH Total Recoverable Petroleum Hydrocarbons TSS Total Suspended Solids TTLC Total Threshold Limit Concentration VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95 #### Analytical Report Client: ARCO Products Company Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Service Request: S9802013 Date Collected: 7/27/98 Sample Matrix: Water Date Received: 7/31/98 BTEX, MTBE and TPH as Gasoline Sample Name: MW-1(25) Units: ug/L (ppb) Lab Code: S9802013-001 Basis: NA Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 10 | NA | 8/5/98 | <500 | Cl | | Benzene | EPA 5030 | 8020 | 0.5 | 10 | NA | 8/5/98 | <5 | C1 | | Toluene | EPA 5030 | 8020 | 0.5 | 10 | NA | 8/5/98 | <5 | Cl | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 10 | NA | 8/5/98 | <5 | Cl | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 10 | NA | 8/5/98 | <5 | Cl | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 10 | NA | 8/5/98 | 580 | | The MRL was elevated due to high analyte concentration requiring sample dilution. 1522/020597p Cl #### Analytical Report Client: ARCO Products Company Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Service Request: S9802013 Date Collected: 7/27/98 Sample Matrix: Water Date Received: 7/31/98 BTEX, MTBE and TPH as Gasoline Sample Name: MW-6(13) Lab Code: S9802013-002 Units: ug/L (ppb) Basis: NA Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 8/4/98 | ND | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | ı | NA | 8/4/98 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 8/4/98 | 18 | | #### Analytical Report Client: **ARCO Products Company** Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Service Request: S9802013 Date Collected: 7/27/98 Sample Matrix: Water Date Received: 7/31/98 BTEX, MTBE and TPH as Gasoline Sample Name: Lab Code: MW-5(22) S9802013-003 **EPA 5030** Units: ug/L (ppb) Basis: NA Test Notes: Mothyl tert -Butyl Ethor **Dilution** Date Date Result Prep Analysis Factor Extracted Analyzed Result Notes Method MRL Method Analyte CA/LUFT 50 1 NA 8/4/98 ND EPA 5030 TPH as Gasoline 1 8/4/98 ND Benzene EPA 5030 8020 0.5 NA 1 8/4/98 ND 0.5 NA Toluene **EPA 5030** 8020 0.5 1 NA 8/4/98 ND 8020 Ethylbenzene EPA 5030 8020 0.5 1 NA 8/4/98 ND EPA 5030 Xylenes, Total 8020 3 1 NA 8/4/98 ND 1822/020597p #### Analytical Report Client: **ARCO Products Company** 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Project: Service Request: S9802013 Date Collected: 7/27/98 Sample Matrix: Water Date Received: 7/31/98 BTEX, MTBE and TPH as Gasoline Sample Name: MW-2(25) S9802013-004 Units: ug/L (ppb) Basis: NA Lab Code: Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |-------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 8/4/98 | ND | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Methyl tert-Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 8/4/98 | ND | | 1S22/020597p #### Analytical Report Client: **ARCO Products Company** Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Service Request: S9802013 Date Collected: 7/27/98 Sample Matrix: Water Date Received: 7/31/98 BTEX, MTBE and TPH as Gasoline Sample Name: MW-3(25) Lab Code: S9802013-005 Units: ug/L (ppb) Basis: NA Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 8/4/98 | 74 | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 8/4/98 | ND | | #### Analytical Report Client: **ARCO Products Company** Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Sample Matrix: Water Service Request: \$9802013 Date Collected: 7/27/98 Date Received: 7/31/98 BTEX, MTBE and TPH as Gasoline Sample Name: MW-4(26) Units: ug/L (ppb) Basis: NA Lab Code: S9802013-006 Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 100 | NA | 8/6/98 | 21000 | | | Benzene | EPA 5030 | 8020 | 0.5 | 100 | NA | 8/6/98 | 6100 | | | Toluene | EPA 5030 | 8020 | 0.5 | 100 | NA | 8/6/98 | 390 | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 100 | NA | 8/6/98 | 810 | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 100 | NA | 8/6/98 | 1600 | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 100 | NA | 8/6/98 | <300 | Cl | The MRL was elevated due to high analyte concentration requiring sample dilution. 1S22/020597p C1 #### Analytical Report Client: ARCO Products Company Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Sample Matrix: Water Service Request: S9802013 Date Collected: NA Date Received: NA BTEX, MTBE and TPH as Gasoline Sample Name: Lab Code: Method Blank S980804-WB1 Units: ug/L (ppb) Basis: NA Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 8/4/98 | ND | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/4/98 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | t | NA | 8/4/98 | ND | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 8/4/98 | ND | | 1S22/020597p ה ע #### Analytical Report Client: ARCO Products Company Service Request: S9802013 Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Date Collected: NA Sample Matrix: Water Date Received: NA BTEX, MTBE and TPH as Gasoline Sample Name: Method Blank S980805-WB1 Units: ug/L (ppb) Basis: NA Lab Code: Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |-------------------------|----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 8/5/98 | ND | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/5/98 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/5/98 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/5/98 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/5/98 | ND | | | Methyl tert-Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 8/5/98 | ND | | 1S22/020597p #### Analytical Report Client: ARCO Products Company Service Request: S9802013 Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Date Collected: NA Sample Matrix: Water Date Received: NA BTEX, MTBE and TPH as Gasoline Sample Name: Method Blank S980806-WB1 Units: ug/L (ppb) Basis: NA Lab Code: Test Notes: | Analyte | Prep
Method | Analysis
Method | MRL | Dilution
Factor | Date
Extracted | Date
Analyzed | Result | Result
Notes | |--------------------------
----------------|--------------------|-----|--------------------|-------------------|------------------|--------|-----------------| | TPH as Gasoline | EPA 5030 | CA/LUFT | 50 | 1 | NA | 8/6/98 | ИÐ | | | Benzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/6/98 | ND | | | Toluene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/6/98 | ND | | | Ethylbenzene | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/6/98 | ND | | | Xylenes, Total | EPA 5030 | 8020 | 0.5 | 1 | NA | 8/6/98 | ND | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 3 | 1 | NA | 8/6/98 | ND | | IS22/020597p #### APPENDIX A #### QA/QC Report Client: **ARCO Products Company** Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Service Request: S9802013 Date Collected: NA Sample Matrix: Water Date Received: NA Date Extracted: NA Date Analyzed: NA Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline Prep Method: EPA 5030 Units: PERCENT **CA/LUFT** Analysis Method: 8020 Basis: NA | | | Test | Percent | Recovery | |--------------|-----------------|-------|----------------------|------------------------| | Sample Name | Lab Code | Notes | 4-Bromofluorobenzene | a,a,a-Trifluorotoluene | | MW-1(25) | S9802013-001 | | 103 | 86 | | MW-6(13) | \$9802013-002 | | 100 | 91 | | MW-5(22) | S9802013-003 | | 100 | 81 | | MW-2(25) | S9802013-004 | | 100 | 96 | | MW-3(25) | S9802013-005 | | 101 | 95 | | MW-4(26) | S9802013-006 | | 100 | 89 | | MW-5(22) | S9802013-003MS | | 95 | 103 | | MW-5(22) | S9802013-003DMS | | 96 | 101 | | Method Blank | S980804-WB1 | | 104 | 93 | | Method Blank | S980805-WB1 | | 98 | 90 | | Method Blank | S980806-WB1 | | 99 | 94 | CAS Acceptance Limits: 69-116 69-116 QA/QC Report Client: ARCO Products Company Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Sample Matrix Water Service Request: S9802013 Date Collected: NA Date Received: NA Date Extracted: NA Date Analyzed: 8/4-5/98 Matrix Spike/Duplicate Matrix Spike Summary TPH as Gasoline Sample Name: MW-5(22) S9802013-003MS, S9802013-003DMS Units: ug/L (ppb) Basis: NA Lab Code: Test Notes: Percent Recovery | | | | | | | | | | | | CAS | Relative | | |----------|----------|----------|-----|------|---------|--------|-------|--------|-----|-----|------------|------------|--------| | | Prep | Analysis | | Spik | e Level | Sample | Spike | Result | | | Acceptance | Percent | Result | | Analyte | Method | Method | MRL | MS | DMS | Result | MS | DMS | MS | DMS | Limits | Difference | Notes | | Gasoline | EPA 5030 | CA/LUFT | 50 | 250 | 250 | ND | 250 | 250 | 100 | 100 | 75-135 | <1 | | QA/QC Report Client: ARCO Products Company Project: 20805-190.001/TO#22312.00/RAT8/374 OAKLAND Service Request: \$9802013 Date Analyzed: 8/4/98 Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline Sample Name: **ICV** Units: ug/L (ppb) Lab Code: **ICVI** Basis: NA Test Notes: | ICV Source: | | | | | CAS | | | |--------------------------|----------|----------|-------|--------|------------------|----------|--------| | | | | | | Percent Recovery | | | | | Prep | Analysis | True | | Acceptance | Percent | Result | | Analyte | Method | Method | Value | Result | Limits | Recovery | Notes | | TPH as Gasoline | EPA 5030 | CA/LUFT | 250 | 250 | 90-110 | 100 | | | Benzene | EPA 5030 | 8020 | 25 | 26 | 85-115 | 104 | | | Toluene | EPA 5030 | 8020 | 25 | 27 | 85-115 | 108 | | | Ethylbenzene | EPA 5030 | 8020 | 25 | 27 | 85-115 | 108 | | | Xylenes, Total | EPA 5030 | 8020 | 75 | 83 | 85-115 | 111 | | | Methyl tert -Butyl Ether | EPA 5030 | 8020 | 25 | 23 | 85-115 | 92 | | ICV/032196 TPH I **Chain of Custody ARCO Products Company** Task Order No. 223/2 00 Division of Atlantic/Richfield Company Laboratory Name Project manager (Consultant) City (Facility) Oakland ARCO Facility no. GlenVanderveen Fax no. (Consultant) (408) 437-9526 Telephone no. (ARCO) Telephone no (408) 453-7300 ARCO engineer Consultant name EMCON 144-A Mauhew Way Walnut Creek Address (Consultant) Method of shipment TCLP Semi MetalsQ VOAQ VOAQ CAM Metals EPA 6010/7000 TILCO STLCO Lead Oxg/DHS/O Lead EPA 7420/7421O Sampler Preservation Matrix TPH Modified 8015 Gas C Diesel C Oil and Grease 413.1 C 413.2 C TPH EPA 418.1/SM 503E Container no. EPA 601/8010 EPA 624/8240 EPA 625/8270 Sampling time deliver Soil Water Other lca Acid Special Detection Limit/reporting 7/27/90 1409 Lowest 1439 Possible 1529 Special QA/QC 1545 As 1559 Normal 1619 Remarks RATS 2-40m1 HCL WOAS #20805-190.0C Lab Number 598(1)2013 Turnaround Time: Priority Rush 1 Business Day Rush 2 Business Days Expedited Temperature received: Condition of sample: 5 Business Days Received by Relinguished by sampler Date 7/31/98 10:00 An ulson 7-30-98 1343 Standard 10 Business Days 入 Received by elinguished b Date Received by laboratory Date Time Date Relinguished by Distribution: White Copy - Laboratory: Canary Copy - ARCO Environmental Engineering: Pink Copy - Consultant PULLOZ ## APPENDIX C FIELD DATA SHEETS #### **EMCON - Groundwater Sampling and Analysis Request Form** PROJECT NAME: ARCO STATION 0374 6407 Telegraph Ave, Oakland, CA Sampling Project # : 21775-261.003 Reporting Project#: 20805-190.001 OWT Project#: 71028 DATE REQUESTED: 27-Jul-98 Project Manager: Glen Vanderveen Groundwater Monitoring Instructions Quarterly Monitoring - Third Month of the Quarter Perform a water level survey prior to sampling (see ARCO SOP) Well survey points are top of well casings. Purge three (3) casing volumes. You will have to bring a trailer for purge water transport. Wells MW-5 and MW-6 are in the street. Sample each well with a Teflon bailer. Complexed St. MSon) Sample ID's on the C-O-C and the sample bottles must include the depth at which the sample was collected [i.e. MW-1 (30)] Lisle Rath Pager # (408) 798-2928 Site Contact: Mr. S. Sud Site Phone: (510) 658-7508 Well Locks: | Well ID | Casing | Casing | Top Of | | |------------|---------------|---------|--------|--| | or Source | Diameter | Length | Screen | Analyses Requested | | | (inches) | (feet) | (feet) | | | MW-1 | 4.0 | 26.8 | 7.0 | Depth to Water | | MW-6 | 4.0 | 14.7 | 5.0 | Depth to Floating Product | | MW-5 | 4.0 | 23.0 | 10.0 | Floating Product Thickness | | MW-2 | 4.0 | 26.3 | 7.0 | Total Depth | | MW-3 | 4.0 | 26.8 | 7.0 | Well Integrity | | MW-4 | 4.0 | 26.6 | 7.0 | Dissolved Oxygen | | Ahaya wall | s in indicate | d order | | (Field Measurement) | | ADOVE WEII | s III mulcale | u oruer | | TPHG/ BTEX/ MTBE by (EPA 8020) | | | | | | (Fill 2- 40ml HCL VOAs) | | | | | | If depth to water is below the top of the screen | | | | | | take a grab sample. If the water level is above the top of the screen purge as normal. | Laboratory Instructions: Provide lowest detection limits possible. Please use the EMCON Reporting Project Number (20805-190.001) on the ND = None Detected IP = Intermitent Product ## FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY PROJECT #: 21775-261.003 STATION ADDRESS: 6407 Telegraph Ave, Oakland, CA DATE: 7/27/98 ARCO STATION #: 374 FIELD TECHNICIAN: Patrick Jimison DAY: Monday | \ | | | | | | | | | | | | | |----------|--------------|------|----------|----------|----------|---------|--------------|-----------|-----------|-----------|-------------|------------------------| | | | Well | Туре | | | Туре | FIRST | SECOND | DEPTH TO | FLOATING | WELL | | | DTW | WELL | Вох | Of Well | Gasket | Lock | Of Well | DEPTH TO | DEPTH TO | FLOATING | PRODUCT | TOTAL | COMMENTS | | Order | ID | Seal | Lid | Present | Number | Cap | WATER | WATER | PRODUCT | THICKNESS | DEPTH | COMMENTS | | | | | | L | | | (feet) | (feet) | (feet) | (feet) | (feet) | | | 1 | MW-1 | | HEX | NO | ARCO | LWC | 6.84 | 6.84 | U.O . | | 26.8 | 00. = 0.6 Tenp = 19.0 | | 2 | MW-6 | | 15/16" | YES | ARCO | LWC | 4.75 | 4.75 | · ND. | | 14.7 | Do = 0.9 20.0 | | 3 | MW-5 | | HEX | YES | ARCO | LWG | 7.91 | 7.91 | N. 0 | | 27.1 | 00:1.3 20.0 | | 4 | MW-2 | | HEX | NO | ARCO | LWC | 7.39 | 1.39 | N.O. | | 26.4 | 0.0. 5. 0.85 21.0 | | 5 | MW-3 | _ | HEX | NO | ARCO | LWC | 7.63 | 7.63 | ND. | | 26.8 | OR(Sochs" DO: 1.7 20.0 | | 6 | MW-4 | - | HEX | NO | ARCO | LWC | 7.3 <i>6</i> | 7.36 | N.O. | | 27.0 | 00-0.5 21.0 | | | | | | | | | | l: | | | | 1 | | | | | | | | | | | <u> </u> | | | | | | | • | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | <u> </u> | 1 | <u> </u> | <u> </u> | CI. | IDVE | V DOINTS | ADE TOD (| TE WELL C | ASINGS | | | SURVEY POINTS ARE TOP OF WELL CASINGS | | 21775-261 | ~~? | | | |
--|-------------------|--------------------------|---|--|--| | | P. Janson | | | D: MN-10 | | | OWT SAMPLED BY | 7.4 | | | E: ARCO H | | | O 44 1 SYMPLED D | · | وحميه والمساورة الربانات | EOCATIO | N: Telegraph | Outeland | | TYPE: Groundwater 📐 | | tr | Leachate | Other | | | CASING DIAMETER (inche | s): 2 3_ | 4 | <u>}</u> 45 | 6 Oth | * | | CASING ELEVATION (feet) | | | | NG (gal.): 13. | | | DEPTH OF WELL I | | · · · | | (GE (gal.): 39. | | | DEPTH TO WATER | (1ec): | | ACTUAL PERGE V | OL (gal.): 40 | 5 | | DATE PURGED : | 7-27-98 | | END STIRGE | 1407 | | | DATE SAMPLED : | L | | Sampling time : | | | | TIME VOLUM | E pH | E.C. | | | | | (2400 HR) (gaL) | (units) | (µmhos/cm@25 | TEMPERATUR | E COLOR | TURBIDITY (visual) | | 1355 13.5 | 6.22 | 1152 | 72.3 | Clear | low | | 1359 27.0 | 6.73 | 1218 | 69.8 | 71 | " | | 1403 40.5 | 16.74 | 1289 | 69.8 | | | | | | | | | | | | | - · | · (4) | A STATE OF THE STA | Take 1 | | ATT THE STATE OF T | | | | Tarana da | in the | | OTHER: | | ODOF | ! None | | | | FTELD QC SAMPLES COLL | ECTED AT THIS WE | i (ie FB.) X | Dife.ive | COBALT 3-100 | INTU 0-2001 | | 100 | | | | STATE STATE | 機合 | | PURGING EQUI | MENT | | SAMPI | LING EQUIPMENT | | | 2" Bladder Pump | Bailer (Teflon) | | /2" Bladder (| Purmo <u>50</u> Bail | er i Teffon) | | Centrifugal Pump | Bailer (PVC) | · | Borne Same | | er (Stainless Steel) | | Submersible Pump | Bailer (Stainless | Sicel) | Dioper | | mensible Pump | | Well WizardÓ | Dedicated | | Well Wizan | dÒDed | icated | | Other: | | | Other: | | | | | | | - (* * * * * * * * * * * * * * * * * * * | | | | WELL INTEGRITY: | <u> </u> | ···· | | LOC | ж: | | REMARKS: | • | | | | | | | | | | | | | | | <u>'</u> | | | | | | | · | | | | | | | | | | | | pH. E.C., Temp. Meter Calibration: | | | 1322 | Meser Serial No.: | the same of sa | | EC 1000 1473 1 1417
Temperature *F 81.9 | pH7 <u>6.99</u> / | 7.00 | pH 10 <u>9.97</u> // | 0-00 pH 4 3. | 951- | | | 7: | | Es a | _ 1 | _ | | SIGNATURE: | | RE | VIEWED BY: /// | PAGE | of 6 | | | Other: D/Spesa | JE 691.4 | |---------------------------|----------------------------|----------| | ELL INTEGRITY: Gosof | | LOCK: | | EMARKS: The DTW was below | Yop as The scrow | in Took | | Gras som ple | | | | | | | | | | | | | - · · - · · - · | | REVIEWED BY: 200 PAGE 2 OF 6 Temperature 'F | Well WizardO Dedicated | Well WizardÓ Dedica | | |---|--------------------------|-----| | | Other: Disposable Buil | R./ | | WELL INTEGRITY: (= card) | LOCK | | | REMARKS: DTW is bolow | The Top of screen, 500, | k | | Grab Sample | | | | Had ORC Sock in The Mu | <i>y</i> - 3 | | | pH. E.C., Temp. Meter Calibration: Date: E.C. 1000 / pH 7 / | Time: Alexer Serial No.: | | REVIEWED BY JA PAGE 3 OF 6 Temperature "F | WELL INTEGRITY: | 600 A | | | | | | LOCK: | | |----------------------------|--------------|--------|-------------|------------|--------|--------------|--------------|---| | REMARKS: DTW | is belo | U TOP | of Scre | en. | Took G | يو واه | .p/e | | | | | | | | | | , | | | | | | | | | | | | | | | | | | | | | ر برون می اور در دارد این | | oH, E.C., Temp, Meter Cali | branone Dame | | | nen | | Meter Serial | No.: | | | EC 1000/ | (4 | pH7_/2 | 1 11 | _ l piftol | / | / | a H 4 | 1 | REVIEWED BY: # PAGE 4 OF 6 Temperature 'F Meter Serial No.: REVIEWED BY: 24 PAGE 6 OF 6 pH. E.C., Temp. Meter Calibration: E.C. 1000_____ Temperature *F # APPENDIX D REMEDIAL SYSTEM PERFORMANCE SUMMARY ## **Bioremediation Enhancement Program** On November 14, 1995, at the request of ARCO, twelve oxygen releasing compound
(ORC) socks manufactured by Regenesis Bioremediation Products, Inc. were installed below the groundwater surface in Well MW-3. ORC is a formulation of very fine, insoluble magnesium peroxide that releases oxygen at a slow, controlled rate when hydrated. ORC product literature was presented in PEG's fourth quarter 1995 report. Data collected from Well MW-3 indicate that concentrations of TPPH-g and benzene have declined since ORC units were installed. ORC units are changed when dissolved oxygen data indicate that they have been depleted. #### **Conclusions** As indicated above, GWE at the site has been terminated with verbal approval from ACHCSA. Bioremediation enhancement program will continue. Attachments: Table D-1 - Intrinsic Bioremediation Evaluation Data