

September 16, 1998 Project 20805-135.008

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Re: Quarterly Groundwater Monitoring Report and Remediation System Performance Evaluation Report, First Quarter 1998, for ARCO Service Station No. 6148, located at 5131 Shattuck Avenue, Oakland, California

Dear Mr. Supple:

Pinnacle Environmental Solutions, a division of EMCON (Pinnacle), is submitting the attached report which presents the results of the first quarter 1998 groundwater monitoring program at ARCO Products Company (ARCO) Service Station No. 6148, located at 5131 Shattuck Avenue, Oakland, California (see Figure 1). Operation and performance data for the on-site soil-vapor extraction (SVE), air-sparge (AS), and air-bubbling remediation systems are also presented. The quarterly monitoring program complies with Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, results should not be construed as a guarantee of the absence of such conditions at the site, but rather as the product of the scope, and limitations, of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

Pinnacle

Glen VanderVeen

Project Manager

Valli Voruganti, P.E.

Project Engineer

Attachment: Quarterly Groundwater Monitoring Report, First Quarter 1998

cc: Susan Hugo, ACHCSA

PROTECTION
8 NCT -2 PM 3: 06

ARCO QUARTERLY GROUNDWATER MONITORING REPORT

Station No.:	6148	Address:	5131 Shattuck Avenue, Oakland, California	
		Pinnacle Project No.	20805-135.008	
ARCO E	nvironmental	Engineer/Phone No.:	Paul Supple /(510) 299-8891	
Pin	nacle Project	Manager/Phone No.:	Glen VanderVeen /(925) 977-9020	
F	Primary Agen	cy/Regulatory ID No.:	ACHCSA /Susan Hugo	

WORK PERFORMED THIS QUARTER (First - 1998):

- 1. Prepared and submitted quarterly groundwater monitoring report for fourth quarter 1997.
- 2. Performed quarterly groundwater monitoring and sampling for first quarter 1998.
- 3. Started and attempted to operate soil-vapor extraction system (SVE).
- 4. Operated air bubbling system to enhance biodegredation.

WORK PROPOSED FOR NEXT QUARTER (Second - 1998):

- 1. Prepare and submit quarterly groundwater monitoring report for first quarter 1998.
- 2. Perform quarterly groundwater monitoring and sampling for second quarter 1998.
- 3. Restart soil-vapor extraction (SVE) and air-sparge systems if hydrocarbon concentrations in extracte soil vapor warrant.
- 4. Continue to operate air bubbling system.

QUARTERLY MONITORING:

Current Phase of Project	Quarterly Groundwater Monitoring and Operation and Maintenance of Remediation Systems
	The SVE system was started on 01/27/98. Due to low influent TPH concentrations, the system did not operate continuously during the first quarter 1998. The air-bubbling system operated during the quarter.
Frequency of Sampling	Annual (1st Quarter): MW-6, MW-7
	Semi-Annual (1st/3rd Quarter): MW-4
_	Quarterly: MW-1, MW-2, MW-3, MW-5
Frequency of Monitoring	Quarterly (groundwater),
_	Monthly (SVE, air-sparge, and air-bubbling)
Is Floating Product (FP) Present On site _	☐ Yes ⊠ No
Bulk Soil Removed to Date _	560 cubic yards of TPH-impacted soil
Bulk Soil Removed This Quarter _	None
Water Wells or Surface Waters	
within 2000 ft., impacted by site _	None
Current Remediation Techniques	SVE, Air-Sparge, and Air-Bubbling Systems
Average Depth to Groundwater	12.1 ft.
Groundwater Gradient (Average)	0.012 toward south-southwest

SVE QUARTERLY OPERATION AND PERFORMANCE:

Equipment Inventory:	Therm Tech Model CATVAC-10E, Electric/Catalytic Oxidizer
Operating Mode:	Catalytic Oxidation
BAAQMD Permit #:	25126
TPH Conc. End of Period (lab):	NA (Not Available)
Benzene Conc. End of Period (lab):	NA
Flowrate End of Period:	NA
HC Destroyed This Period:	0.0 pounds
HC Destroyed to Date:	1885.6 pounds
Utility Usage	
Electric (KWH):	1178 KWH
Operating Hours This Period:	0.0 hours
Percent Operational:	0.0%
Operating Hours to Date:	2697.5 hours
Unit Maintenance:	Routine monthly maintenance
Number of Auto Shut Downs:	0
Destruction Efficiency Permit	· ·
Requirement:	95% or <1 lb./day TPH and <0.02 lb./day Benzene
Percent TPH Conversion:	
Average Stack Temperature:	NA
Average Source Flow:	0.0 scfm
Average Process Flow:	0.0 scfm
Average Source Vacuum:	0 inches of water

ATTACHMENTS:

- Table 1 Groundwater Monitoring Data, First Quarter 1998
- Table 2 Historical Groundwater Elevation and Analytical Data, Petroleum Hydrocarbons and Their Constituents
- Table 3 Soil-Vapor Extraction System Operation and Performance Data
- Table 4 Soil-Vapor Extraction Well Data
- Table 5 Air-Sparge and Air-Bubbling Systems Operation and Performance Data
- Figure 1 Site Location
- Figure 2 Groundwater Analytical Summary Map
- Figure 3 Groundwater Elevation Contour Map
- Figure 4 Soil-Vapor Extraction and Treatment System, Historical System Influent TVHG and Benzene Concentrations
- Figure 5 Soil-Vapor Extraction and Treatment System, Historical Hydrocarbon Removal Rates
- Appendix A Sampling and Analysis Procedures
- Appendix B Certified Analytical Reports and Chain of Custody Documentation
- · Appendix C Field Data Sheets
- Appendix D SVE System Monitoring Data Log Sheets
- Appendix E Certified Analytical Reports and Chain of Custody Documentation for Soil-Vapor Extraction System

Table 1 Groundwater Monitoring Data First Quarter 1998

ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California

Well Designation	Water Level Field Date	Top of Casing Sevation	Depth to Water	W-ip Groundwater	Floating Product	Groundwater Row Direction	Hydraulic	Water Sample Field Date	TPHG	Benzene EPA 8020	Toluene © EPA 8020	Ethylbenzene EPA 8020	Total Xylenes	MTBE E BPA 8020	MTBE E EPA 8240	Olf & Grease	TRPH	TPHD
MW-1	02-13-98	107.80	13.15	94.65	ND	SSW	0.012	02-13-98	<100^	8.4	<1^	<1^	14	130		<u></u>		
MW-2	02-13-98	107.28	12.75	94.53	ND	SSW	0.012	02-13-98	220	9.5	3.9	3.7	48	84				
									· ·		-		40			• •	••	
MW-3	02-13-98	107.61	13.00	94.61	ND	SSW	0.012	02-13-98	<50	1.3	<0.5	<0.5	1	21		• •		
MW-4	02-13-98	106.71	13.05	93.66	ND	SSW	0.012	02-13-98	<50	1.3	0.7	<0.5	2.3	19				
MW-5	02-13-98	106.60	12.21	94.39	ND	SSW	0.012	02-13-98	11,200	51	<10^	<10^	<10^	2000				
MW-6	02-13-98	105.13	10.06	95.07	ND	SSW	0.012	02-13-98	<50	<0.5	<0.5	<0.5	<0.5	8				
MW-7	02-13-98	107.05	10.80	96.25	ND	ssw	0.012	02-13-98	<50	<0.5	<0.5	<0.5	<0.5	<3				

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl tert-butyl ether SM: standard method mg/L: milligrams per liter

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND: none detected SSW: south-southwest

^: The MRL was elevated due to high analyte concentration requiring sample dilution.

--: not analyzed or not applicable

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	Top of Casing	B Dupth to Water	Groundwater GElevation	Floating Product 즐 Thickness	Groundwater Flow Direction	Hydraulic P Gradient	Water Sample Field Date	TPHG T LUFT Method	Benzene © EPA 8020	Toluene	Ethylbenzene	Total Xylenes	MTBE	MTBE E EPA 8240	Oll & Grease	TRPH	TPHD
MW-1	03-20-95	108.03	15.75	92.28	ND	sw	0.02	03-20-95	830	140	5	41	110					
MW-1	06-06-95	108.03	17 68	90.35	ND	SW	0.016	06-06-95	210	30	<0.5	7.3	16	••				
MW-1	08-24-95	107.80	17.45	90.35	ND	sw	0.014	08-24-95	Not sampled			_						
MW-1	11-16-95	107.80	17.64	90.16	ND	sw	0.012	11-16-95	<50	5.6	<0.5	1.4	1.2	55				
MW-1	02-27-96	107.80	15.21	92.59	ND	sw	0.016	02-27-96	1400	240	88	44	110	200				
MW-1	05-15-96	107.80	17.53	90.27	ND	sw	0.015	05-15-96	Not sampled	: well samp	led semi-an	nually, duri	ng the first	and third or	arter			
MW-1	08-14-96	107,80	17.15	90.65	ND	sw	0.021	08-14-96	98	18	<0.5	1.9	1	45				
MW-1	11-11-96	107.80	17.78	90.02	ND	sw	0.015	11-11-96	Not sampled	: well samp	led semi-an	nually, duri	ng the first	and third or	arter			
MW-1	03-25-97	107.80	17.68	90.12	ND	ssw	0.018	03-25-97	<50	<0.5	<0.5	<0.5	<0.5	હ				
MW-1	05-15-97	107.80	17.91	89.89	ND	ssw	0.014	05-15-97	Not sampled	: well samp	led semi-an	nually, duri	ing the first	and third qu	arter			
MW-1	10-26-97	107.80	18.85	88.95	ND	sw	0.009	10-26-97	<50	<0.5	<0.5	<0.5	<0.5	⊲ ં				
MW-1	11-10-97	107.80	18.10	89.70	ND	SSW	0.014	11-10-97	<50	<0.5	<0.5	<0.5	<0.5	4				
MW-1	02-13-98	107,80	13.15	94.65	ND	ssw	0.012	02-13-98	<100^	8.4	<1^	<1^	14	130	•	••		
MW-2	03-20-95	107.43	15.50	91.93	ND#	sw	0.02	03-20-95	Not sampled	: floating o	mduct enter	ed well dur	ing oproing					
MW-2	06-06-95	107.43	17.43	90.00	ND	sw	0.016	06-06-95	1200	60	21	35	140					
MW-2	08-24-95	107.28	17.22	90.06	ND	sw	0.014	08-24-95	Not sampled									
MW-2	11-16-95	107.28	17.36	89 92	ND	sw	0.012	11-16-95	360	45	1.3	7.1	7.5	210				• •
MW-2	02-27-96	107.28	14.82	92,46	ND	sw	0.016	02-27-96	8900	1400	980	150	550	940				٠
MW-2	05-15-96	107.28	17.40	89.88	ND	sw	0.015	05-15-96	480	82	48	8	48	87				
MW-2	08-14-96	107.28	17.00	90.28	ND	sw	0.021	08-14-96	130	22	4	2	9	120				
MW-2	11-11-96	107.28	17.55	89.73	ND	sw	0.015	11-11-96	1200	150	120	21	160	110				~ -
MW-2	03-25-97	107.28	17.32	89.96	ND	ssw	0.018	03-25-97	670	23	58	13	120	28				
MW-2	05-15-97	107.28	17.61	89.67	ND	SSW	0.014	05-15-97	<50	<0.5	<0.5	<0.5	<0.5	23				
MW-2	10-26-97	107,28	18.43	88.85	ND	sw	0.009	10-26-97	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-2	11-10-97	107,28	17.84	89.44	ND	ssw	0.014	11-10-97	<100^	<1^	<1^	<1^	1	74	• •			
MW-2	02-13-98	107.28	12.75	94.53	ND	ssw	0.012	02-13-98	220	9.5	3.9	3.7	48	84				

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	Top of Casing So Elevation	S Depth 10 Water	ts Groundwater	Floating Product	Groundwater Flow	Hydraulic M Gradient	Water Sample Field Date	TPHG	т Benzene gg EPA 8020	Toluene	Ethylbenzene E EPA 8020	Total Xylenes	MTBE	MTBE	B Oll & Grease	TRPH	TPHD
MW-3	03-20-95	107.77	15 60	92.17	ND	sw	0.02	03-20-95	29000	880	190	760	2000				16	
MW-3	06-06-95	107.77	17.54	90.23	ND	sw	0.016	06-06-95	22000	450	54	380	1300				7.1	
MW-3	08-24-95	107.61	17.42	90.19	ND	sw	0.014	08-24-95	Not sampled	: well was i	naccessible	due to cons	struction					
MW-3	11-16-95	107.61	17.58	90.03	ND	sw	0.012	11-16-95	13000	210	<20	320	1000	790			8.3	
MW-3	02-27-96	107.61	15.03	92.58	ND	sw	0.016	02-27-96	9700	94	15	290	720	430			10	
MW-3	05-15-96	107.61	17.35	90.26	ND	sw	0.015	05-15-96	5600	66	12	37	67	230				
MW-3	08-14-96	107.61	17.10	90.51	ND	sw	0.021	08-14-96	830	17	<1*	8	7	110	••			
MW-3	11-11-96	107.61	17.73	89.88	ND	\$W	0.015	11-11-96	500	28	3	12	13	150				
MW-3	03-25-97	107.61	17.99	89.62	ND	ssw	0.018	03-25-97	<50	<0.5	<0.5	<0.5	<0.5	94				
MW-3	05-15-97	107 61	17.84	89.77	ND	ssw	0.014	05-15-97	. <50	<0.5	<0.5	<0.5	<0.5	65				
MW-3	10-26-97	107.61	18.50	89.11	ND	sw	0.009	10-26-97	220	4	<1^	<1^	<1^	160				
MW-3	11-10-97	107.61	18.00	89 61	ND	ssw	0.014	11-10-97	350	8	<2^	3	3	230		• •		
MW-3	02-13-98	107 61	13.00	94.61	ND	ssw	0.012	02-13-98	<50	1.3	<0.5	<0.5	1	21				- •
MW-4	03-20-95	106.58	13.85	92,73	ND	sw	0.02	03-20-95	88	1	<0.5	<0.5	0.7					
MW-4	06-06-95	106.58	15.70	90.88	ND	sw	0.016	06-06-95	<50	<0.5	<0.5	<0.5	<0.7 <0.5		••			
MW-4	08-24-95	106.71	15.86	90.85	ND	sw	0.014							••		- "		
MW-4	11-16-95	106.71	16.10	90.61	ND	sw	0.014	11-16-95	1401. sampton <00	. wen was i	< 0.5	<0.5	<0.5	6				
MW-4	02-27-96	106.71	13.72	92,99	ND	sw	0.012	02-27-96	<50	<0.5	<0.5	<0.5	<0.5	10			•••	
MW-4	05-15-96	106.71	15.90	90.81	ND	sw	0.015	05-15-96	Not sampled	-	-						••	
MW-4	08-14-96	106.71	15.68	91,03	ND	sw	0.021	08-14-96	<50	wo suzµ <0.5	<0.5	<0.5	-0.5		Januari Januari			
MW-4	11-11-96	106.71	16.19	90.52	ND	sw	0.015	11-11-96	· ·					-	tarter	••		
MW-4	03-25-97	106.71	16.10	90.61	ND	SSW	0.018	03-25-97	<50		-0.5	<0.5	<0.5	<3	,			
MW-4	05-15-97	106.71	16.38	90.33	ND	SSW	0.014	05-15-97							arter			
MW-4	10-26-97	106.71	17.78	88.93	ND	· sw	0.009	10-26-97	<50	wom samp -<0.5	<0.5	<0.5	<0.5	<3				
MW-4	11-10-97	106.71	16.43	90.28	ND	SSW	0.014	11-10-97	Not sampled					_	anter			
MW-4	02-13-98	106.71	13.05	93.66	ND	SSW	0.012	02-13-98	<50	1.3	0.7	<0.5	2.3	19				
		· · -																

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	Top of Casing To Elevation	33 Depth to Water	G Groundwater	Floating Product	Groundwater Flow S Direction	Hydraulic 17 Gradient	Water Sample Field Date	TPBG	Benzene S EPA 8020	Toluene Se EPA 8020	Ethylbenzene	Total Xylenes	新 MTBE 警 EPA 8020	MTBE S EPA 8240	Dil & Grease	TRPH	TPHD E LUFT Method
MW-5	03-20-95	106.68	14.92	91.76	ND	sw	0.02	03-20-95	21000	6900	450	800	1300		••			
MW-5	06-06-95	106.68	16.61	90.07	ND	sw	0.016	06-06-95	6500	1700	<20	120	69					
MW-5	08-24-95	106.60	16.47	90.13	ND	sw	0.014	08-24-95	Not sampled	: well was i	naccessible	due to cons	struction					
MW-5	11-16-95	106.60	16.69	89.91	ND	\$W	0.012	11-16-95	1800	470	ৰ্ব	17	5	1000				
MW-5	02-27-96	106.60	14.35	92.25	ND	sw.	0.016	02-27-96	10000	1000	71	690	1000	440	450	••	. • •	
MW-5	05-15-96	106.60	16.58	90.02	ND	sw	0.015	05-15-96	3400	350	6	72	20	220				
MW-5	08-14-96	106.60	17.26	89.34	ND	sw	0.021	08-14-96	2100	130	2.7	47	4.7	220				
MW-5	11-11-96	106.60	16.62	89.98	ND	\$W	0.015	11-11-96	1200	31	1	8	2	130				
MW-5	03-25-97	106.60	16.38	90.22	ND	wzz	0.018	03-25-97	<50	<0.5	<0.5	<0.5	<0.5	5		••		
MW-5	05-15-97	106.60	16.54	90 06	ND	SSW	0.014	05-15-97	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-5	10-26-97	106.60	17.60	89.00	ND	sw	0.009	10-26-97	<50	<0.5	<0.5	<0.5	<0.5	7	••			• •
MW-5	11-10-97	106.60	16.78	89.82	ND	SSW	0.014	11-10-97	<50	<0.5	<0.5	<0.5	<0.5	24				
MW-5	02-13-98	106,60	12.21	94.39	ND	ssw	0.012	02-13-98	11,200	51	<10^	<10^	<10^	2000				
MW-6	03-20-95	105.16	12.13	93.03	ND	sw	0.02	03-20-95	<50	<0.5	<0.5	<0.5	<0.5		••		•-	
MW-6	06-06-95	105.16	13.95	91.21	ND	SW	0.016	06-06-95	<50	<0.5	<0.5	<0.5	<0.5					
MW-6	08-24-95	105.13	14.07	91.06	ND	sw	0.014	08-24-95	<50	< 0.5	<0.5	<0.5	<0.5	<3				
MW-6	11-16-95	105.13	14.34	90.79	ND	sw	0.012	11-16-95	<60	<0.5	<0.5	<0.5	<0.5					
MW-6	02-27-96	105,13	12.00	93.13	ND	sw	0.016	02-27-96	<50	<0.5	< 0.5	<0.5	< 0.5	<3				
MW-6	05-15-96	105.13	14.10	91.03	ND	sw	0.015	05-15-96	Not sampled	i: well samp	led annuail	y, during th	e first quart	er				
MW-6	08-14-96	105.13	13.70	91.43	ND	sw	0.021	08-14-96	Not sampled	i: well samp	led annuall	y, during th	e first quart	er				
MW-6	11-11-96	105.13	14.11	91.02	ND	SW	0.015	11-11-96	Not sampled	i: well samp	ied annuali	y, during th	e first quart	er				
MW-6	03-25-97	105.13	14.15	90.98	ND	SSW	0.018	03-25-97	<50	√ 0.5	<0.5	<0.5	<0.5	<3				
MW-6	05-15-97	105.13	14.44	90.69	ND	SSW	0.014	05-15-97	Not sample	i: well samp	led annuall	ly, during th	e first quart	er				
MW-6	10-26-97	105.13	16.02	89.11	ND	sw	0,009	10-26-97	Not sample	-		-	-					
MW-6	11-10-97	105.13	14.52	90.61	ND	SS₩	0.014	11-10-97	Not samples	i: well samp	led annuall	y, during th	e first quart	er				
MW-6	02-13-98	105 13	10.06	95.07	ND	ssw	0.012	02-13-98	<50	⊲ 0.5	<0.5	<0.5	<0.5	8				
MW-6	02-13-98	105 13	10.06	95.07	ND	SSW	0,012	02-13-98	<50	<02	<∪.5	<0.5	<0.5	8	• •			

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	P Top of Casing C Elevation	35 Depth to Water	G Groundwater	Floating Product	K Groundwater Flow K Direction	Hydraulic ∰ Gradient	Water Sample Field Date	TPHG	Benzene	Toluene	Ethylbenzene	Total Xylenes ਨੂੰ BPA 8020	mTBE	MTBE	Oil & Grease	B TRPH P EPA 418.1	TPHD
MW-7	03-20-95	107.08	12.32	94.76	ND	sw	0.02	03-20-95	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	06-06-95	107.08	14.59	92.49	ND	SW	0.016	06-06-95	Not sampled	: well samp	led semi-an	nually, duri	ing the first	and third qu	uarters			
MW-7	08-24-95	107.05	14.64	92.41	ND	SW	0.014	08-24-95	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-7	11-16-95	107.05	15.30	91.75	ND	SW	0.012	11-16-95	Not sampled	: well samp	led semi-an	nually, duri	ing the first	and third qu	uarters			
MW-7	02-27-96	107.05	12,24	94.81	ND	SW	0.016	02-27-96	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-7	05-15-96	107.05	14.65	92.40	ND	sw	0.015	05-15-96	Not sampled	: well samp	led annually	y, during th	e first quart	er				
MW-7	08-14-96	107.05	14.35	92.70	ND	sw	0.021	08-14-96	Not sampled	l: well samp	led annuall	y, during th	e first quart	er				
MW-7	11-11-96	107.05	14.92	92.13	ND	sw	0.015	11-11-96	Not sampled	: well samp	led annuall	y, during th	e first quart	er				
MW-7	03-25-97	107.05	14.80	92.25	ND	ssw	0.018	03-25-97	<50	< 0.5	<0.5	<0.5	<0.5	<3				
MW-7	05-15-97	107.05	15.27	91.78	ND	ssw	0.014	05-15-97	Not sampled	: well samp	led annually	y, during th	e first quart	er				
MW-7	10-26-97	107.05	16.68	90.37	ND	sw	0.009	10-26-97	Not sampled	: well samp	led annually	y, during th	e first quart	er				
MW-7	11-10-97	107.05	15.37	91.68	ND	ssw	0.014	11-10-97	Not sampled	: well samp	led annuall	y, during th	e first quart	er				
MW-7	02-13-98	107 05	10.80	96.25	ND	SSW	0.012	02-13-98	<50	<0.5	<0.5	<0.5	<0.5	43	•-	• •		

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oil & Grease SM 5520C	TRPII EPA 418 1	TPIID LUFT Method
		n-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	µg/L	µg/L	µg/L	mg/L	mg/L	µg/L

ft-MSL; elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl tert-butyl ether

SM: standard method

mg/L: milligrams per liter

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND: none detected

SSW: south-southwest

- #: floating product entered the well during purging
- -: not analyzed or not applicable
- ^: method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference

^{**:} For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996).

Table 3 Soil-Vapor Extraction System **Operation and Performance Data**

Number: 6148 Facility

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/

catalytic oxidizer

Consultant: Pinnacle Environmental Solutions

Start-Up Date:

09-27-95

Syste	m was shut d	own on 10-3-		
09-27-96	10-01-95	01-01-96	02-01-96	03-01-96
10-01-95	01-01-96	02-01-96		04-01-96
Cat-ox	Cat-ox	Cat-ox		Cat-ox
3	11			11
1	81	15	22	20
=				320
				1300
		• •		1.6
260	61	NA	2	5.2
1800	600	415	230	320
6700	2200	1730	830	1300
41	11	NA	0.6	1.6
130	34	NA	2	5.2
. 52	30	3.8*	21	26
190	110	20	76	110
1.1	0.5	NA	<0.1	<0.1
3.5	1.5	NA	<0.5	<0.5
75.0	104.0	124.6	128.2	126.4
103.6	132.3	111.9		126.4
97.2	95.0	98.8	90.8	91.5
1.77	1.31	0.20		1.25
0.03	0.02	0.00	0.01	0.01
74.9	<u>255.3</u>	<u>381.7</u>	<u>157.2</u>	<u>253.0</u>
74.9	330.2	711.9	869.1	1122.2
3.93	1.71	1.30	0.40	0.62
<u>294.4</u>	<u>437.3</u>	<u>496.6</u>	<u>62.6</u>	<u>155.6</u>
294.4	731.7	1228.3	1290.9	1446.5
<u>47.5</u>	<u>70.5</u>	<u>80.1</u>	<u>10.1</u>	<u>25.1</u>
47.5	118.0	198.1	208.2	233.3
	09-27-96 10-01-95 Cat-ox 3 1 3800 14000 81 260 1800 6700 41 130 52 190 1.1 3.5 75.0 103.6 97.2 1.77 0.03 74.9 74.9 3.93 294.4	System was shut de 109-27-96 10-01-95 10-01-95 01-01-96 Cat-ox Cat-ox 3 11 1 81 1 81 1 81 1 81 1 81 1 81 1 8	System was shut down on 10-3- 09-27-96	10-01-95

Table 3
Soil-Vapor Extraction System
Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/

catalytic oxidizer

Consultant: Pinnacle Environmental Solutions

144-A Mayhew Way

Operation and Performance Data From:

Start-Up Date: 09-27-95 oce Data From: 09-27-95

Walnut Creek, CA 94596

To: 04-01-98

Walliut Cleek, CA 94390	Syste	em was shut d	own on 10-3-	96. Started u	p 01-27-98
Date Begin:	04-01-96	05-01-96	06-01-96	07-01-96	08-01-96
Date End:	05-01-96	06-01-96	07-01-96	08-01-96	09-01-96
Mode of Oxidation:	Cat-ox	Cat-ox	Cat-ox	Cat-ox	Cat-ox
Days of Operation:	22	3	3	20	11
Days of Downtime:	8	28	27	11	20
Average Vapor Concentrations (1)					
Well Field Influent: ppmv (2) as gasoline	190	160	180	170	170
mg/m3 (3) as gasoline	760	650	740	690	710
ppmv as benzene	0.9	0.6	<1	0.4	<1
mg/m3 as benzene	3	2	<2.5	1.3	<2.5
System Influent: ppmv as gasoline	190	160	180	170	170
mg/m3 as gasoline	760	650	740	690	710
ppmv as benzene	0.9	0.6	<1	0.4	<1
mg/m3 as benzene	3	2	<2.5	1.3	<2.5
System Effluent: ppmv as gasoline	10	10	<5	6	9
mg/m3 as gasoline	41	39	<20	23	38
ppmv as benzene	<0.2	<0.2	<0.2	<0.2	<0.2
mg/m3 as benzene	<0.5	<0.5	<0.5	<0.5	<0.5
Average Well Field Flow Rate (4), scfm (5):	100.3	91.8	116.7	125.7	125.4
Average System Influent Flow Rate (4), scfm:	100.3	91.8	116.7	125.7	125.4
Average Destruction Efficiency (6), percent (7):	94.6	94.0	97.3	96.7	94.6
Average Emission Rates (8), pounds per day (9)					
Gasoline:	0.37	0.32	0.21	0.26	0.43
Benzene:	00.0	0.00	0.01	0.01	0.01
Operating Hours This Period:	<u>532.5</u>	<u>72.9</u>	83.7	<u>478.9</u>	<u>255.2</u>
Operating Hours To Date:	1654.6	1727.6	1811.3	2290.1	2545.3
Pounds/ Hour Removal Rate, as gasoline (10):	0.29	0.22	0.32	0.32	0.33
Pounds Removed This Period, as gasoline (11):	<u>151.9</u>	<u>16.3</u>	<u>27.1</u>	<u>155.4</u>	<u>85.0</u>
Pounds Removed To Date, as gasoline:	1598.4	1614.7	1641.8	1797.2	1882.2
Gallons Removed This Period, as gasoline (12):	<u>24.5</u>	<u>2.6</u>	4.4	<u>25.1</u>	<u>13.7</u>
Gallons Removed To Date, as gasoline:	257.8	260.5	264.8	289.9	303.6

Table 3 **Soil-Vapor Extraction System Operation and Performance Data**

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/

catalytic oxidizer

Consultant: Pinnacle Environmental Solutions

144-A Mayhew Way

Start-Up Date: Operation and Performance Data From:

09-27-95 09-27-95

04-01-98

Walnut Creek, CA 94596

	Traillat Cloon, Cla 24020	Syste	m was shut d	own on 10-3-	96. Started uj	01-27-98
Date Begin:		09-01-96	10-01-96	11-01-96	12-01-96	01-01-97
Date End:		10-01-96	11-01-96	12-01-96	01-01-97	04-01-97
Mode of Oxidation:		Cat-ox	Cat-ox	Cat-ox	Cat-ox	Cat-ox
Days of Operation:		6	0	0	0	0
Days of Downtime:		24	31	30	31	90
Average Vapor Conce	ntrations (1)					
Well Field Influent	: ppmv (2) as gasoline	NA	450	NA	NA	NA
	mg/m3 (3) as gasoline	NA	1900	NA	NA	NA
	ppmv as benzene	NA	<1	NA	NA	NA
	mg/m3 as benzene	NA	<4	NA	NA	NA
System Influent	: ppmv as gasoline	NA	330	NA	NA	NA
•	mg/m3 as gasoline	NA	1400	NA	NA	NA
	ppmv as benzene	NA	<1	' NA	NA	NA
	mg/m3 as benzene	NA	<4	NA	NA	NA
System Effluent	: ppmv as gasoline	NA	20	NA	NA	NA
,	mg/m3 as gasoline	NA	83	NA	NA	NA
	ppmv as benzene	NA	<0.1	NA	NA	NA
	mg/m3 as benzene	NA	<0.4	NA	NA	NA
Average Well Field Flo	w Rate (4), scfm (5):	125.2	63.7	0.0	91.8	0.0
Average System Influer	it Flow Rate (4), scfm:	125.2	63.3	0.0	81.9	0.0
Average Destruction E	fficiency (6), percent (7):	NA	94.1	NA	NΑ	NA
Average Emission Rat	es (8), pounds per day (9)					
Gasoline:		NA	0.47	NA	NA	NA
Benzene:		NA	0.00	NA	NA	NA
Operating Hours This P	eriod:	<u>140.7</u>	<u>7.5</u>	0.0	<u>0.6</u>	0.0
Operating Hours To Da		2686.0	2693.5	2693.5	2694.1	2694.1
Pounds/ Hour Removal	Rate, as gasoline (10):	0.00	0.45	00.0	00.0	00.0
Pounds Removed This	Period, as gasoline (11):	0.0	<u>3.4</u>	0.0	0.0	0.0
Pounds Removed To D	ate, as gasoline:	1882.2	1885.6	1885.6	1885.6	1885.6
Gallons Removed This	Period, as gasoline (12):	0.0	<u>0.5</u>	0.0	0.0	0.0
Gallons Removed To D	ate, as gasoline:	303.6	304.2	304.2	304.2	304.2

Table 3 **Soil-Vapor Extraction System Operation and Performance Data**

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/

catalytic oxidizer

Start-Up Date:

Consultant: Pinnacle Environmental Solutions

144-A Mayhew Way

Operation and Performance Data From:

09-27-95 09-27-95

04-01-98

Walnut Creek, CA 94596	To: 04-01-98 System was shut down on 10-3-96. Started up 01-27-98						
Date Begin:	04-01-97	07-01-97	10-01-97	11-01-97			
Date End;	07-01-97	10-01-97	11-01-97	12-01-97			
Mode of Oxidation:	Cat-ox	Cat-ox	Cat-ox	Cat-ox			
Days of Operation:	0	0	0	0			
Days of Downtime:	91	92	31	30			
Average Vapor Concentrations (1)							
Well Field Influent: ppmv (2) as gasoline	NA	NA	680	NA			
mg/m3 (3) as gasoline	NA	NA	2800	NA			
ppmv as benzene	NA	NA	24	NA			
mg/m3 as benzene	NA	NA	78	NA			
System Influent: ppmv as gasoline	NA	NA	680	NA			
mg/m3 as gasoline	NA	NA	2800	NA			
ppmy as benzene	NA	NA	24	NA			
mg/m3 as benzene	NA	NA	78	NA			
System Effluent: ppmv as gasoline	NA	NA	61	NA			
mg/m3 as gasoline	NA	NA	250	NA			
ppmv as benzene	NA	NA	0.2	NA			
mg/m3 as benzene	NA	NA	0.5	NA			
Average Well Field Flow Rate (4), scfm (5):	0.0	0.0	0.0	0.0			
Average System Influent Flow Rate (4), scfm:	0.0	0.0	0.0	0.0			
Average Destruction Efficiency (6), percent (7):	NA	NA	91.1	NA			
Average Emission Rates (8), pounds per day (9)							
Gasoline:	NA	NA	0.00	NA			
Benzene:	NA	NA	00.0	NA			
Operating Hours This Period:	0.0	0.0	1.4	<u>2.1</u>			
Operating Hours To Date:	2694.1	2694.1	2695.5	2697.5			
Pounds/ Hour Removal Rate, as gasoline (10):	0.00	0.00	0.00	0.00			
Pounds Removed This Period, as gasoline (11):	0.0	0.0	0.0	0.0			
Pounds Removed To Date, as gasoline:	1885.6	1885.6	1885.6	1885.6			
Gallons Removed This Period, as gasoline (12):	0.0	0.0	0.0	0.0			
Gallons Removed To Date, as gasoline:	304.2	304.2	304.2	304.2			

Table 3
Soll-Vapor Extraction System
Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue Oakland, California Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/catalytic oxidizer

Consultant: Pinnacle Environmental Solutions

144-A Mayhew Way Walnut Creek, CA 94596 Start-Up Date: 09-27-95

Operation and Performance Data From: 09-27-95

To: 04-01-98

Walnut Creek, CA 94596	Syste	System was shut down on 10-3-96. Started up 01-27-98						
Date Begin:	12-01-97	01-01-98	02-01-98	03-01-98				
Date End:	01-01-98	02-01-98	03-01-98	04-01-98				
Mode of Oxidation:	Cat-ox	Cat-ox	Cat-ox	Cat-ox				
Days of Operation:	0	0	0	9				
Days of Downtime:	31	31	28	22				
Average Vapor Concentrations (1)								
Well Field Influent: ppmv (2) as gasoline.	NA	39	NA	NA				
mg/m3 (3) as gasoline	NA	160	NA	NA				
ppmv as benzene	NA	<.1	NA	NA				
mg/m3 as benzene	NA	<.4	NA	NA				
System Influent: ppmv as gasoline	NA	39	NA	NA				
mg/m3 as gasoline	NA	160	NA	NA				
ppmv as benzene	NA	<.1	NA	NA				
mg/m3 as benzene	NA	<.4	· NA	NA				
System Effluent: ppmv as gasoline	NA	<5	NA	NA				
mg/m3 as gasoline	NA	<20	NA	NA				
ppmv as benzene	NA	<.1	NA	NA				
mg/m3 as benzene	NA	<.4	NA	NA				
Average Well Field Flow Rate (4), scfm (5):	0.0	0.0	0.0	0.0				
Average System Influent Flow Rate (4), scfm:	0.0	0.0	0.0	0.0				
Average Destruction Efficiency (6), percent (7):	NA	87.5	NA	NA				
Average Emission Rates (8), pounds per day (9)					٠			
Gasoline:	NA	NA	NA	NA				
Benzene:	NA	NA	NA	NA				
Operating Hours This Period:	0.0	0.0	0.0	0.0				
Operating Hours To Date:	2697.5	2697.5	2697.5	2697.5				
Pounds/ Hour Removal Rate, as gasoline (10):	0.00	0.00	0.00	0.00				
Pounds Removed This Period, as gasoline (11):	0.0	0.0	0.0	0.0				
Pounds Removed To Date, as gasoline:	1885.6	1885.6	1885.6	1885.6				
Gallons Removed This Period, as gasoline (12):	0.0	0.0	0.0	0.0				
Gallons Removed To Date, as gasoline:	304.2	304.2	304.2	304.2				

Table 3 Soll-Vapor Extraction System Operation and Performance Data

Facility Number: 6148 Vapor Treatment Unit: ThermTech Model

Location: 5131 Shattuck Avenue CATVAC-10E electric/
Oakland, California catalytic oxidizer

Consultant: Pinnacle Environmental Solutions Start-Up Date: 09-27-95

144-A Mayhew Way Operation and Performance Data From: 09-27-95

Walnut Creek, CA 94596 To: 04-01-98
System was shut down on 10-3-96. Started up 01-27-98

URRENT REPORTING PERIOD:	01-01-98	to	04-01-98
DAYS / HOURS IN PERIOD:	90	2160.0	
DAYS / HOURS OF OPERATION:	0	0.2	
DAYS / HOURS OF DOWN TIME:	90	2159.9	
PERCENT OPERATIONAL:		0.0	%
PERIOD POUNDS REMOVED:	0.0		
PERIOD GALLONS REMOVED:	0.0		
AVERAGE WELL FIELD FLOW RATE (scfm):		0.0	
AVERAGE SYSTEM INFLUENT FLOW RATE (scfm):		0.0	

Average concentrations are based on discrete sample results reported during the month; refer to Appendix B for discrete sample results.
 For the period of January 1, 1996 to February 1, 1996, laboratory analytical results were unavailable. The average concentrations were based on photoionization det (PID) field readings taken during the month of January 1996.

^{2.} ppmv: parts per million by volume

^{3.} mg/m3: milligrams per cubic meter

^{4.} Average flow rates (time weighted average) are based on instantaneous flow rates recorded during the month; refer to Appendix B for instantaneous flow data.

^{5.} scfm: flow in standard cubic feet per minute at one atmosphere and 70 degrees Fahrenheit

^{6.} Average destruction efficiencies are calculated using monthly average concentrations; refer to Appendix B for instantaneous destruction efficiency data.

destruction efficiency, percent = ([system influent concentration (as gasoline in mg/m3)] - system effluent concentration (as gasoline in mg/m3)]
 / system influent concentration (as gasoline in mg/m3)) x 100 percent

^{8.} Average emission rates are calculated using monthly average concentrations and flow rates; refer to Appendix B for instantaneous emission rate data.

emission rates (pounds per day) ≈ system effluent concentration (as gasoline or benzene in mg/m3) x system influent flow rate (scfm) x 0.02832 m3/ft3
 x 1440 minutes/day x 1 pound/454,000 mg

^{10.} pounds/hour removal rate (as gasoline) = well field influent concentration (as gasoline in mg/m3) x well field influent flow rate (scfm) x 0.02832 m3/ft3 x 60 minutes/hour x 1 pound/454,000 mg

^{11.} pounds removed this period (as gasoline) = pounds/hour removal rate x hours of operation

^{12.} gallons removed this period (as gasoline) = pounds removed this period (as gasoline) x 0.1613 gallons/pound of gasoline

¹³ not available

Table 4 Soil-Vapor Extraction Well Data

ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California

	1					Well Ider	ntification					
.i t		VW-1			VW-2			VW-3			VW-4	
, <u>l</u>	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		рршч	in-H2O
For SVE monitory	ing well data prior t	to June 1, 1996, p	please refer to the	l second quarter 1996	j groundwater mo	nitoring report for	this site.		!			
07-10-96	open	361 PID	8.0	open	302 PID	8.0	open	247 PID	0.8	closed	54 PID	0.0
08-05-96	open	NA	8.0	open	NA	7.0	open	NA	6.0	closed	NA	0.0
08-12-96	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
09-27-96	open (b)	NA	NA	open (b)	NA	NA	open	NA	NA	closed	NA	NA
09-30-96	open	200 FID	NA	open	220 FID	NA	open	800 FID	NA.	open	>1000 FtD	NA
10-03-96	open	NA	9.0	open	NA	10.0	open	NA	9.0	open	NA	10.0
12-04-96	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
01-08-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
02-04-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-97	closed (b)	NA	NA	closed (b)	NA	NA.	closed (b)	NA	NA	closed	NA	NA
07-22-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
08-04-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
08-26-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
09-26-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
10-17-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA.	closed	NA	NA
11-05-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
11-13-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
12-15-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
01-27-98	open(b)	NA	NA	open(b)	NA	NA	open(b)	NA	NA	open	NA	NA
02-10-98	open(b)	NA	NA	open(b)	NA	NA	open(b)	NA	NA	open	NA	NA
02-16-98	open(b)	NA	NA	open(b)	NA	NA	open(b)	NA	NA	open	NA	NA
03-23-98	open(b)	NA	NA	open(b)	NA	NA	open(b)	NA	NA	open	NA	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water

open: open to the system

open (b): open to the system and bubbling air at 1 scfm per well

passive: open to the atmosphere

closed: closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

Table 4 Soil-Vapor Extraction Well Data

ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California

						Well Ide	atification					
		VW-5			VW-6			VW-7			VW-8	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O		ppmv	ın-H2O		ppmv	in-H2O
or SVE monitori	ng well data prior	to June 1, 1996, p	lease refer to the s	econd quarter 1996	groundwater mor	nitoring report for	his site.					
07-10-96	open	233 PID	8.0	орел	371 PID	8.0	орел	511 PID	0.8	open	113 PID	8.0
08-05-96	open	NA	0.8	open	NA	8.0	open	NA.	6.0	ореп	NA	8.0
08-12-96	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0	closéd	NA	0.0
09-27-96	open	NA.	NA	open (b)	NA	NA	open (b)	NA	NA	open	NA	NA
09-30-96	closed	48 FID	NA	closed	140 FID	NA	open	480 FID	NA .	closed	120 FID	NA
10-03-96	closed	NA	NA .	closed	NA	NA	орев	NA	8.0	closed (b)	NA	0.0
12-04-96	closed	NA	NA	closed	NA	NA	closed (b)	NA	NA	closed	NA	NA
01-08-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
02-04-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
03-07-97	closed	NA	NA.	closed	NA.	NA	closed	NA	NA	closed	NA	NA
05-16-97	closed	NA	NA .	closed	NA	NA	closed	NA	NA	closed	NA	NA
07-22-97	closed	NA	NA.	closed	NA	NA	closed	NA	NA	closed	NA	NA
08-04-97	closed	NA	NA.	closed	NA	NA	closed	NA	NA	closed	NA	NA
08-26-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
09-26-97	closed	NA	NA	closed	NA	NA	closed	NA	NA.	closed	NA	NA
10-17-97	closed	NA	NA	closed	NA	NA	closed	NA	NA .	closed	NA	NA
11-05-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
11-13-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
12-15-97	closed	NA	NA	closed	NA	NA	closed	NA	NA .	closed	NA	NA
01-27-98	closed	NA	NA	closed	NA	NA	open	NA	NA	closed	NA	NA
02-10-98	closed	NA.	NA	closed	NA.	NA	open	NA	NA	closed	NA	NA
02-16-98	closed	NA	NA	closed	NA	NA	open	NA	NA	closed	NA	NA
03-23-98	closed	NA	NA	closed	NA	NA	open	NA	NA.	closed	NA	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water

open: open to the system

open (b): open to the system and bubbling air at 1 scfm per well

passive; open to the atmosphere

closed: closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

Table 4 Soil-Vapor Extraction Well Data

ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California

						Well ide	ntification					
		VW-9	 		VW-10			MW-1		<u> </u>	MW-5	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O		pprav	in-H2O	1	ppmv	in-H2O
For SVE monitor	ing well data prior t	o June 1, 1996, p	lease refer to the s	i econd quarter 199	6 groundwater mon	itoring report for	his site.					
07-10-96	open	173 PID	8.0	closed	51 PID	0.0	closed	50 PID	0.0	closed	50 PID	0.0
08-05-96	open	NA	6.0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
08-12-96	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
09-27-96	open (b)	NA	NA	closed	NA	NA	closed (b)	NA	NA	open (b)	NA	NA
09-30-96	open	600 FID	NA	open	>1000 FID	NA	closed	NA	NA	open	250 FID	NA
10-03-96	open	NA	9.0	open	NA	8.0	closed (b)	NA	0.0	open	NA	8.0
12-04-96	closed (b)	NA	NA	closed	NA	NA	closed	NA	NA	closed (b)	NA	NA
01-08-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
02-04-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
07-22-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
08-04-97	closed (b)	NA	NA.	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
08-26-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
09-26-97	closed (b)	NA	NA	closed (b)	NA	NA.	closed (b)	NA	NA	closed (b)	NA	NA
10-17-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
11-05-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
11-13-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
12-15-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
01-27-98	open(b)	NA	NA	open(b)	NA	NA	closed(b)	NA	NA	open(b)	NA	NA
02-10-98	open(b)	NA	NA	open(b)	NA	NA	closed(b)	NA	NA	open(b)	NA	NA
02-16-98	open(b)	NA	NA	open(b)	NA	NA	closed(b)	NA	NA	open(b)	NA	NA
03-23-98	open(b)	NA	NA	open(b)	NA	NA	closed(b)	NA	NA	open(b)	NA	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water

open: open to the system

open (b): open to the system and bubbling air at 1-2 scfm per well

passive: open to the atmosphere

closed: closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Air-Bubbling Start-Up Date: 03-19-96

Consultant: EMCON Air-Sparge Start-Up Date: 06-07-96

	CON I Ringwood Avenue Jose, California	Operation and Performance Data From: 03-19-96 To: 03-23-98						
Date Begin: Date End:	03-19-96	03-19-96 04-02-96	04-02-96 05-08-96	05-08-96 05-16-96	05-16-96 06-07-96	06-07-96 06-28-96		
Air-Bubbling Well Status:								
	See Table 6 t Air is bubble							
MW-2	off	on	on	off	on	on		
MW-3	off	on	on	off	on	on		
MW-4	off	off	off	off	off	on		
Air-Sparge Well Status:								
AS-1	off	off	off	off	off	on		
AS-2	off	off	off	off	off	on		
AS-3	off	off	off	off	off	on		
AS-4	off	off	off	off	off	on		
AS-5	off	off	off	off	off	on		
Air-Bubbling Well Pressure (p								
MW-1	(4)		~ ~					
MW-2	•-	2.5	2.5		2.5 3.0			
MW-3 MW-4		3.0	3.0		3,0			
MW-5	••							
	~\							
Air-Sparge Well Pressure (psi	g) (1):							
AS-1 AS-2								
AS-3								
AS-4								
AS-5	• •							
Total Air-Sparge and Air-Bubbling Pressure (psig) ((1):	20.0	20.0	0.0	20.0	20.0		
Total Air-Sparge and Air-Bubbling Flow Rate (scfm	1) (2):	• -			- -			
Dissolved Oxygen (ppm) (3):								
Air-Bubbling Weils:								
MW-1								
MW-2						*-		
MW-3	- •				- -			
MW-4								
MW-5								

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96 Consultant: EMCON Operation and Performance Data From: 03-19-96 1921 Ringwood Avenue To: 03-23-98 San Jose, California 09-27-96 10-01-96 10-03-96 07-10-96 08-12-96 Date Begin: 06-28-96 07-10-96 08-12-96 09-27-96 10-01-96 10-03-96 10-07-96 Date End: Air-Bubbling Well Status: See Table 6 for the status of the 12 SVE/air-bubbling wells. Air is bubbled at an average flow rate of 1 scfm per well. MW-2 off on on on on MW-3 on on off on on on MW-4 on off oπ on on on Air-Sparge Well Status: off AS-1 on off off on on AS-2 οп on off off on off AS-3 off off off on oπ on AS-4 off off off OΠ on on AS-5 on on off off on off Air-Bubbling Well Pressure (psig) (1): MW-1 0.0 5.0 2.6 2.0 MW-2 4.0 0.0 0.0 MW-3 5.5 2.5 2.5 0.0 4.0 0.0 MW-4 4.1 3.5 0.0 4.0 5.5 0.0 MW-5 3.0 Air-Sparge Well Pressure (psig): AS-1 4.0 5.0 0.0 0.0 8.0 0.0 AS-2 3.0 5.5 0.0 0.0 4.0 0.00.0 AS-3 4.0 4.0 0.0 0.0 7.0 0.0 0.0 AS-4 3.0 4.5 0.0 4.0 AS-5 3.5 5.0 0.0 0.0 12.0 0.0 Total Air-Sparge and Air-Bubbling Pressure (psig): 40.0 32.0 50.0 20.0 30.0 0.0 Total Air-Sparge and Air-Bubbling Flow Rate (scfm) (2): Dissolved Oxygen (ppm) (3): Air-Bubbling Wells: MW-1 MW-2 MW-3 MW-4 - -

MW-5

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue Oakland, California

ıue

5 Hp Powerex Rotary Oilless Compressor

	Oakianu, Cuii	IOI III G						
						rt-Up Date:		
Consultant:	Consultant: EMCON					rt-Up Date:		
	od Avenue	Opera	rformance I	Data From: 03-19-96				
	San Jose, Cali	fomia	To: 03-23-					
Date Begin:		10-07-96	11-06-96	12-04-96		02-04-97	03-07-97	
Date End:		11-06-96	12-04-96	01-08-97	02-04-97	03-07-97	04-01-97	
Air-Bubbling Well Statu	s:							
-		See Table 6	for the statu	s of the 12 S	SVE/air-bub	bling wells.		
N 4311 A		Air is bubble					on	
MW-2		on off	on off	on off	on off	on off	on off	
MW-3 MW-4		off	off	off	off	off	off	
W W-4		OH	OH	ULI	OII	OH	OH	
Air-Sparge Well Status:			64	cc	cc	- ce	_ 66	
۸S-1		off	off	off	off	off	off	
AS-2		off	off	off	off	off	off	
AS-3		off	off	off	off off	off off	off off	
AS-4 AS-5		off off	off off	off off	off	off	off	
		OII	Ott	ULL	Oil	Oil	OH	
Air-Bubbling Well Press	ure (psig) (1):	2.5	2.5					
MW-1		3.5	3.5		2.5	2 5		
MW-2		3.0	3.0	0.0	3.5 0.0	3.5 0.0	0.0	
MW-3		0.0 0.0	0.0 0.0	0.0	0.0	0.0	0.0	
MW-4 MW-5		3.0	3.5	0.0	0.0	0.0	0.0	
		3.0	3.3		-			
Air-Sparge Well Pressure	e (psig):							
AS-1		0.0	0.0	0.0	0.0	0.0	0.0	
AS-2		0.0	0.0	0.0	0.0	0.0	0.0	
AS-3		0.0	0.0	0.0	0.0	0.0	0.0	
AS-4		0.0	0.0	0.0 0.0	0.0	0.0 0.0	0.0 0.0	
AS-5		0.0	0.0	0.0	0.0	0.0	0.0	
Total Air-Sparge and		,						
Air-Bubbling Pressure (p	osig): ,	50.0	0.0	60.0				
Total Air-Sparge and								
Air-Bubbling Flow Rate	(scfm) (2):							
Dissolved Oxygen (ppm) (3):							
Air-Bubbling Wells:								
MW-1								
MW-2							0.5	
MW-3							0.5	
MW-4							0.5	

MW-5

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

	Oakland, California	Tip Towerex Rotaly Onless Complessor							
	EMCON 1921 Ringwood Avenue San Jose, California	Opera	Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96 Operation and Performance Data From: 03-19-96 To: 03-23-98						
Date Begin; Date End;	04-01-97 05-01-97			07-01-97 07-22-97	07-22-97 08-04-97	08-04-97 08-26-97			
		00-01-97	07-01-97	07-22-51	00-04-97	00-20-57			
Air-Bubbling Well Status		for the statu	s of the 12 S	SVE/air-bub	bling wells.				
		ed at an avei							
MW-2	off	on	on	, on	on	on			
MW-3	, off		on	on	on	on			
MW-4	off	on	on	on	on	on			
Air-Sparge Well Status:									
AS-1	off	off	off	off	off	off			
AS-2	off	off	off	off	off	off			
AS-3	off	off	off	off	off	off			
AS-4	off		off	off	off	off			
AS-5	off	off	off	off	off	off			
Air-Bubbling Well Pressu MW-1	rre (psig) (1):								
MW-2	0.0		- -						
MW-3	0.0	0.0	0.0	0.0	0.0	0.0			
MW-4	0.0	0.0	0.0	0.0	0.0	0.0			
MW-5	0.0								
Air-Sparge Well Pressure	(nsia):								
AS-1	0.0	0.0	0.0	0.0	0.0	0.0			
AS-2	0.0	0.0	0.0	0.0	0.0	0.0			
AS-3	0.0	0.0	0.0	0.0	0.0	0.0			
AS-4	0.0		0.0	0.0	0.0	0.0			
AS-5	0.0	0.0	0.0	0.0	0.0	0.0			
Total Air-Sparge and Air-Bubbling Pressure (ps	sig); 0.0	20.0		10.0	10.0	10.0			
Total Air-Sparge and Air-Bubbling Flow Rate ((scfm) (2): 0.0	16.0				16.0			
Dissolved Oxygen (ppm)	(3):								
Air-Bubbling Wells:									
MW-1									
MW-2		0.5							
MW-3		0.5							
MW-4		0.2							
MW-5		1.5							

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Consultant: EMCON

Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96

1921 Ringwood Avenue

Operation and Performance Data From: 03-19-96

San Jose, Ca		Opera	To: 03-23-98		
Date Begin: Date End:	08-26-97 09-26-97	09-26-97 10-17-97	10-17-97 11-05-97	11-05-97 11-13-97	11-13-97 12-15-97
Air-Bubbling Well Status:	See Table 6 Air is bubble	for the statu	s of the 12 S	SVE/air-bub	bling wells.
MW-2	Alt is outdoor	on at all aver	age now ta	on on	on
MW-3	on	off	off	off	off
MW-4	on	off	off	off	off
Air-Sparge Well Status:					
AS-1	off	off	off	off	off
AS-2	off	off	off	off	off
AS-3	off	off	off	off	off
AS-4	off	off	off	off	off
AS-5	off	off	off	off	off
Air-Bubbling Well Pressure (psig) (1):	:				
MW-1			2.5		
MW-2			2.0		
MW-3	0.0	0.0	0.0	0.0	0.0
MW-4	0.0	0.0	0.0	0.0	0.0
MW-5		~-	5.5		
Air-Sparge Well Pressure (psig):	0.0	0.0	0.0	0.0	0.0
AS-1	0.0	0.0	0.0 0.0	0.0	0.0
AS-2	0.0	0.0 0.0	0.0	0.0	0.0
AS-3		0.0	0.0	0.0	0.0
AS-4	0.0 0.0	0.0	0.0	0.0	0.0
AS-5					
Total Air-Sparge and Air-Bubbling Pressure (psig):	10.0	10.0	10.0	10.0	10.0
Total Air-Sparge and Air-Bubbling Flow Rate (scfm) (2):	16.0	16.0	16.0	16.0	16.0
Dissolved Oxygen (ppm) (3):					
Air-Bubbling Wells:					
MW-1					* •
MW-2					
MW-3					
MW-4		• •			
MW-5					

Facility Number: 6148

Dissolved Oxygen (ppm) (3):
Air-Bubbling Wells:
MW-1
MW-2
MW-3
MW-4
MW-5

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

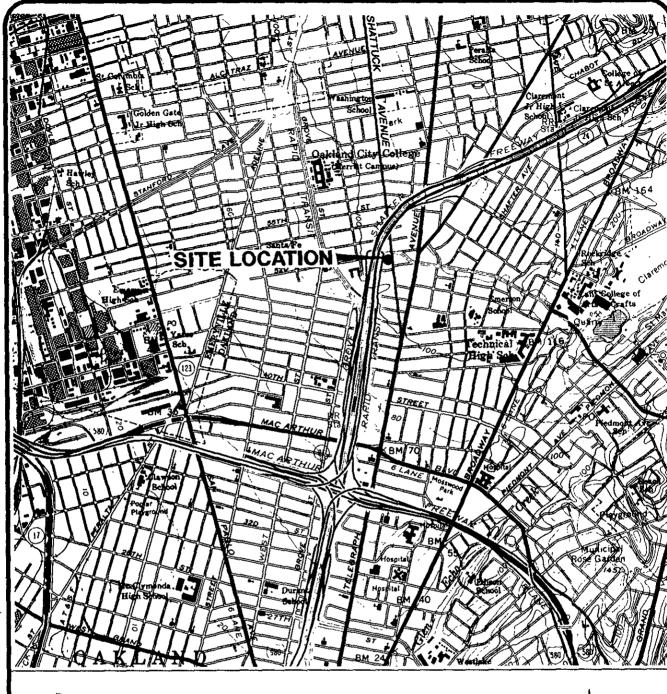
Oakland, California

Consultant: EMCON

Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96

1921 Ringwood Avenue

Operation and Performance Data From: 03-19-96


To: 03-23-98

San Jose, California

Date Begin: 12-15-97 01-27-98 02-10-98 02-16-98

Date End:	01-27-98	02-10-98	02-16-98	03-23-98
Air-Bubbling Well Status:				VE/air-bubbling wells. e of 2 scfm per well.
MW-2	on	on	off	ОП
MW-3	off	off	off	off
MW-4	off	off	off	off
Air-Sparge Well Status:				
AS-1	off	off	off	off
AS-2	off	off	off	off
AS-3	off	off	off	off
AS-4	off	off	off	off
AS-5	off	off	off	off
Air-Bubbling Well Pressure (psig) (1):				
MW-I		2.0	0.0	0.0
MW-2		2.0	0.0	2.0
MW-3	0.0	0.0	0.0	0.0
MW-4	0.0	0.0	0.0	0.0
MW-5		2.0	0.0	2.0
Air-Sparge Well Pressure (psig):				
AS-1	0.0	0.0	0.0	0.0
AS-2	0.0	0.0	0.0	0.0
AS-3	0.0	0.0	0.0	0.0
AS-4	0.0	0.0	0.0	0.0
AS-5	0.0	0.0	0.0	0.0
Total Air-Sparge and Air-Bubbling Pressure (psig):	10.0	10.0	10.0	8.0
Total Air-Sparge and Air-Bubbling Flow Rate (scfm) (2):	0.61	16.0		

CURRENT REPORTING PERIOD:	01-01-98	to 03-23-98	
DAYS / HOURS IN PERIOD:	81.0	1944	

Base map from USGS 7.5' Quad. Maps: Oakland East and Oakland West, California. Photorevised 1980.

O 2000 4000 SCALE IN FEET

DATE NOV. 1997
DWN KAJ

PROJECT NO. 805-135.007

FIGURE 1

ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVE.
OAKLAND, CALIFORNIA

QUARTERLY GROUNDWATER MONITORING SITE LOCATION

52ND STREET PLANTER DRIVEWAY SIDEWALK DRIVEWAY MW-7 **●** (ND/ND) PLANTER DRIVEWAY SHATTUCK MW−6 (ND/ND) SERVICE ISLANDS W-6 **⊕** SIDEWALK AVENUE Ф_{AS−5} AS-4 STATION **●**MW-5 (51/40) BUILDING **W**-5 VW-10 Former waste-oil tank MW-4 MW-1 (<100/8.4) (ND/1.3)MW-2-(220/9.5)

EXPLANATION

Groundwater monitoring well

Vapor extraction well

Air-sparge well

Ø Decommissioned well

Existing underground gasoline

storage tanks

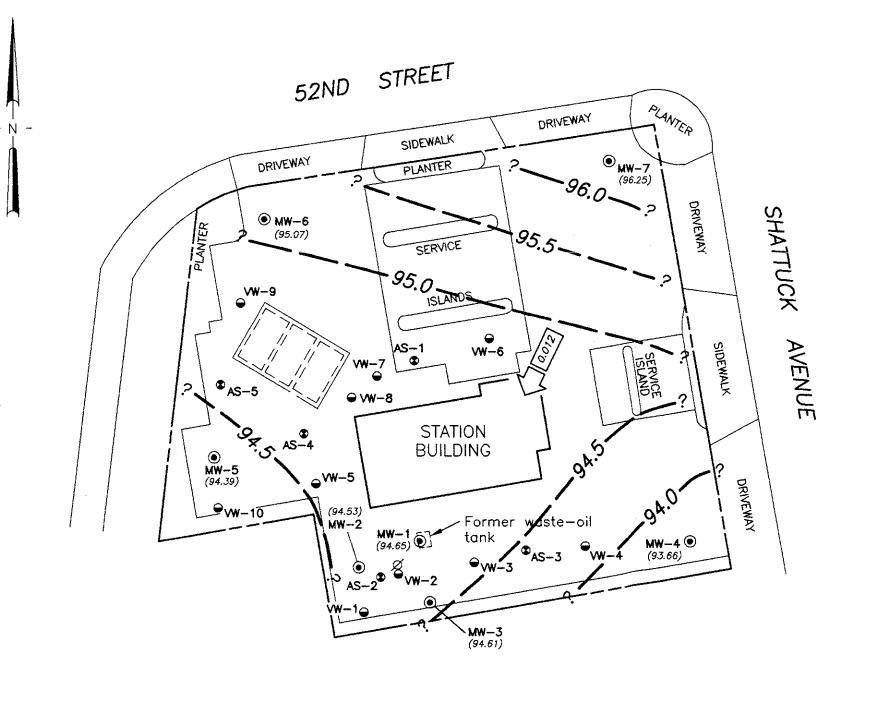
(220/9.5) Concentration of total petroleum hydrocarbons, as gasoline (TPHG) and benzene in groundwater (ug/L); water samples were collected on 2/13/98

Not detected at or above the method reporting limit for TPHG (50 ug/L) or benzene (0.5 ug/L)

Method reporting limit raised due to high analyte concentration requiring sample dilution or matrix interference

Pînnacle

ENVIRONMENTAL SOLUTIONS A DIVISION OF EMCON

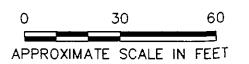

DATE MAY 1998
DWN KAJ
APP
REV

<

PROJECT NO. 805-135.007 FIGURE 2

ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVE.
OAKLAND, CALIFORNIA

GROUNDWATER ANALYTICAL SUMMARY
1ST QUARTER 1998



EXPLANATION

- Groundwater monitoring well
- Vapor extraction well
- Air—sparge well
- Ø Decommissioned well
- ☐ ☐ ☐ Existing underground gasoline☐ ☐ ☐ Storage tank
- (96.25) Groundwater elevation (Ft.-MSL) measured 2/13/98
 - Groundwater elevation contour (Ft.-MSL)
 - Approximate direction of groundwater flow showing gradient

Pînnacle

ENVIRONMENTAL SOLUTIONS
A DIVISION OF EMCON

DATE MAY 1998
DWN KAJ
APP
REV
PROJECT NO.
805-135.007

ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVE.
OAKLAND, CALIFORNIA
GROUNDWATER ELEVATION CONTOURS
1ST QUARTER 1998

FIGURE 3

ARCO Service Station 6148
Soil-Vapor Extraction and Treatment System
Historical Well Field Influent TVHG and Benzene Concentrations

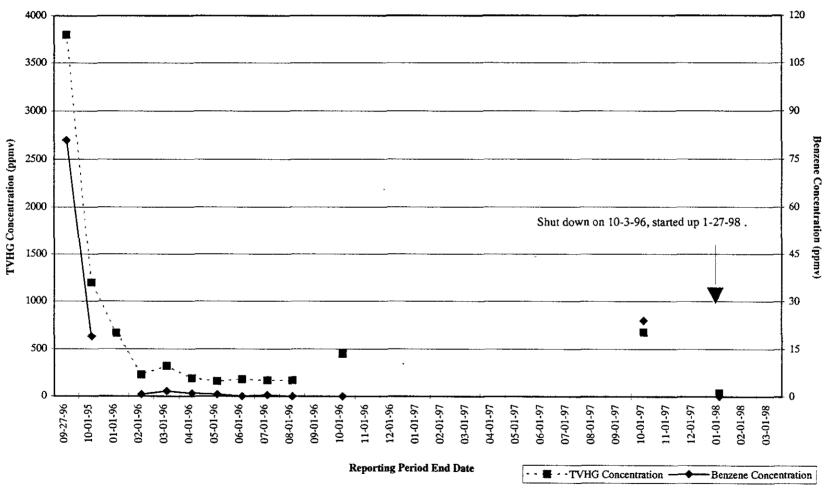


Figure 5

ARCO Service Station 6148

Soil-Vapor Extraction and Treatment System

APPENDIX A SAMPLING AND ANALYSIS PROCEDURES

APPENDIX A

SAMPLING AND ANALYSIS PROCEDURES

The sampling and analysis procedures for water quality monitoring programs are contained in this appendix. The procedures provided for consistent and reproducible sampling methods, proper application of analytical methods, and accurate and precise analytical results. Finally, these procedures provided guidelines so that the overall objectives of the monitoring program were achieved.

The following documents have been used as guidelines for developing these procedures:

- Procedures Manual for Groundwater Monitoring at Solid Waste Disposal Facilities, Environmental Protection Agency (EPA)-530/SW-611, August 1977
- Resource Conservation and Recovery Act (RCRA) Groundwater Monitoring Technical Enforcement Guidance Document, Office of Solid Waste and Emergency Response (OSWER) 9950.1, September 1986
- Test Methods for Evaluating Solid Waste: Physical/Chemical Methods, EPA SW-846,
 3rd edition, November 1986
- Methods for Organic Chemical Analysis of Municipal and Industrial Waste Water, EPA-600/4-82-057, July 1982
- Methods for Organic Chemical Analysis of Water and Wastes, EPA-600/4-79-020, revised March 1983
- Leaking Underground Fuel Tank (LUFT) Field Manual, California State Water Resources Control Board, revised October 1989

Sample Collection

Sample collection procedures include equipment cleaning, water level and total well depth measurements, and well purging and sampling.

Equipment Cleaning

Before the sampling event was started, equipment that was used to sample groundwater was disassembled and cleaned with detergent water and then rinsed with deionized water. During field sampling, equipment surfaces that were placed in the well or came into contact with groundwater during field sampling were steam cleaned with deionized water before the next well was purged or sampled.

Water Level, Floating Hydrocarbon, and Total Well Depth Measurements

Before purging and sampling occurred, the depth to water, floating hydrocarbon thickness, and total well depth were measured using an oil/water interface measuring system. The oil/water interface measuring system consists of a probe that emits a continuous audible tone when immersed in a nonconductive fluid, such as oil or gasoline, and an intermittent tone when immersed in a conductive fluid, such as water. The floating hydrocarbon thickness and water level were measured by lowering the probe into the well. Liquid levels were recorded relative to the tone emitted at the groundwater surface. The sonic probe was decontaminated by being rinsed with deionized water or steam cleaned after each use. A bottom-filling, clear Teflon bailer was used to verify floating hydrocarbon thickness measurements of less than 0.02 foot. Alternatively, an electric sounder and a bottom-filling Teflon bailer may have been used to record floating hydrocarbon thickness and depth to water.

The electric sounder is a transistorized instrument that uses a reel-mounted, two-conductor, coaxial cable that connects the control panel to the sensor. Cable markings are stamped at 1-foot intervals. The water level was measured by lowering the sensor into the monitoring well. A low-current circuit was completed when the sensor contacted the water, which served as an electrolyte. The current was amplified and fed into an indicator light and audible buzzer, signaling when water had been contacted. A sensitivity control compensated for highly saline or conductive water. The electric sounder was decontaminated by being rinsed with deionized water after each use. The bailer was lowered to a point just below the liquid level, retrieved, and observed for floating hydrocarbon.

Liquid measurements were recorded to the nearest 0.01 foot on the depth to water/floating product survey form. The groundwater elevation at each monitoring well was calculated by subtracting the measured depth to water from the surveyed elevation of the top of the well casing. (Every attempt was made to measure depth to water for all wells on the same day.) Total well depth was then measured by lowering the sensor to the bottom of the well. Total well depth, used to calculate purge volumes and to determine whether the well screen was partially obstructed by silt, was recorded to the nearest 0.1 foot on the depth to water/floating product survey form.

Well Purging

If the depth to groundwater was above the top of screens of the monitoring wells, then the wells were purged. Before sampling occurred, a polyvinyl chloride (PVC) bailer, centrifugal pump, low-flow submersible pump, or Teflon bailer was used to purge standing water in the casing and gravel pack from the monitoring well. Monitoring wells were purged according to the protocol presented in Figure A-1. In most monitoring wells, the amount of water purged before sampling was greater than or equal to three casing volumes. Some monitoring wells were expected to be evacuated to dryness after removing fewer than three casing volumes. These low-yield monitoring wells were allowed to recharge for up to 24 hours. Samples were obtained as soon as the monitoring wells recharged to a level sufficient for sample collection. If insufficient water recharged after 24 hours, the monitoring well was recorded as dry for the sampling event.

Groundwater purged from the monitoring wells was transported in a 500-gallon water trailer, 55-gallon drum, or a 325-gallon truck-mounted tank to EMCON's San Jose or Sacramento office location for temporary storage. EMCON arranged for transport and disposal of the purged groundwater through Integrated Waste Stream Management, Inc.

Field measurements of pH, specific conductance, and temperature were recorded in a waterproof field logbook. Figure A-2 shows an example of the water sample field data sheet on which field data are recorded. Field data sheets were reviewed for completeness by the sampling coordinator after the sampling event was completed.

The pH, specific conductance, and temperature meter were calibrated each day before field activities were begun. The calibration was checked once each day to verify meter performance. Field meter calibrations were recorded on the water sample field data sheet.

Well Sampling

A Teflon bailer was the only equipment acceptable for well sampling. When samples for volatile organic analysis were being collected, the flow of groundwater from the bailer was regulated to minimize turbulence and aeration. Glass bottles of at least 40-milliliters volume and fitted with Teflon-lined septa were used in sampling for volatile organics. These bottles were filled completely to prevent air from remaining in the bottle. A positive meniscus formed when the bottle was completely full. A convex Teflon septum was placed over the positive meniscus to eliminate air. After the bottle was capped, it was inverted and tapped to verify that it contained no air bubbles. The sample containers for other parameters were filled, filtered as required, and capped.

When required, dissolved concentrations of metals were determined using appropriate field filtration techniques. The sample was filtered by emptying the contents of the Teflon bailer into a pressure transfer vessel. A disposable 0.45-micron acrylic copolymer filter was threaded onto the transfer vessel at the discharge point, and the vessel was sealed. Pressure was applied to the vessel with a hand pump and the filtrate directed into the appropriate containers. Each filter was used once and discarded.

Sample Preservation and Handling

The following section specifies sample containers, preservation methods, and sample handling procedures.

Sample Containers and Preservation

Sample containers vary with each type of analytical parameter. Container types and materials were selected to be nonreactive with the particular analytical parameter tested.

Sample Handling

Sample containers were labeled immediately prior to sample collection. Samples were kept cool with cold packs until received by the laboratory. At the time of sampling, each sample was logged on an ARCO chain-of-custody record that accompanied the sample to the laboratory.

Samples that required overnight storage prior to shipping to the laboratory were kept cool (4° C) in a refrigerator. The refrigerator was kept in a warehouse, which was locked when not occupied by an EMCON employee. A sample/refrigerator log was kept to record the date and time that samples were placed into and removed from the refrigerator.

Samples were transferred from EMCON to an ARCO-approved laboratory by courier or taken directly to the laboratory by the environmental sampler. Sample shipments from EMCON to laboratories performing the selected analyses routinely occurred within 24 hours of sample collection.

Sample Documentation

The following procedures were used during sampling and analysis to provide chain-of-custody control during sample handling from collection through storage. Sample documentation included the use of the following:

- Water sample field data sheets to document sampling activities in the field
- Labels to identify individual samples
- Chain-of-custody record sheets for documenting possession and transfer of samples
- Laboratory analysis request sheets for documenting analyses to be performed

Field Logbook

In the field, the sampler recorded the following information on the water sample field data sheet (see Figure A-2) for each sample collected:

- Project number
- · Client's name
- Location
- Name of sampler
- Date and time
- · Well accessibility and integrity
- Pertinent well data (e.g., casing diameter, depth to water, well depth)

- · Calculated and actual purge volumes
- · Purging equipment used
- · Sampling equipment used
- Appearance of each sample (e.g., color, turbidity, sediment)
- Results of field analyses (temperature, pH, specific conductance)
- General comments

The water sample field data sheet was signed by the sampler and reviewed by the sampling coordinator.

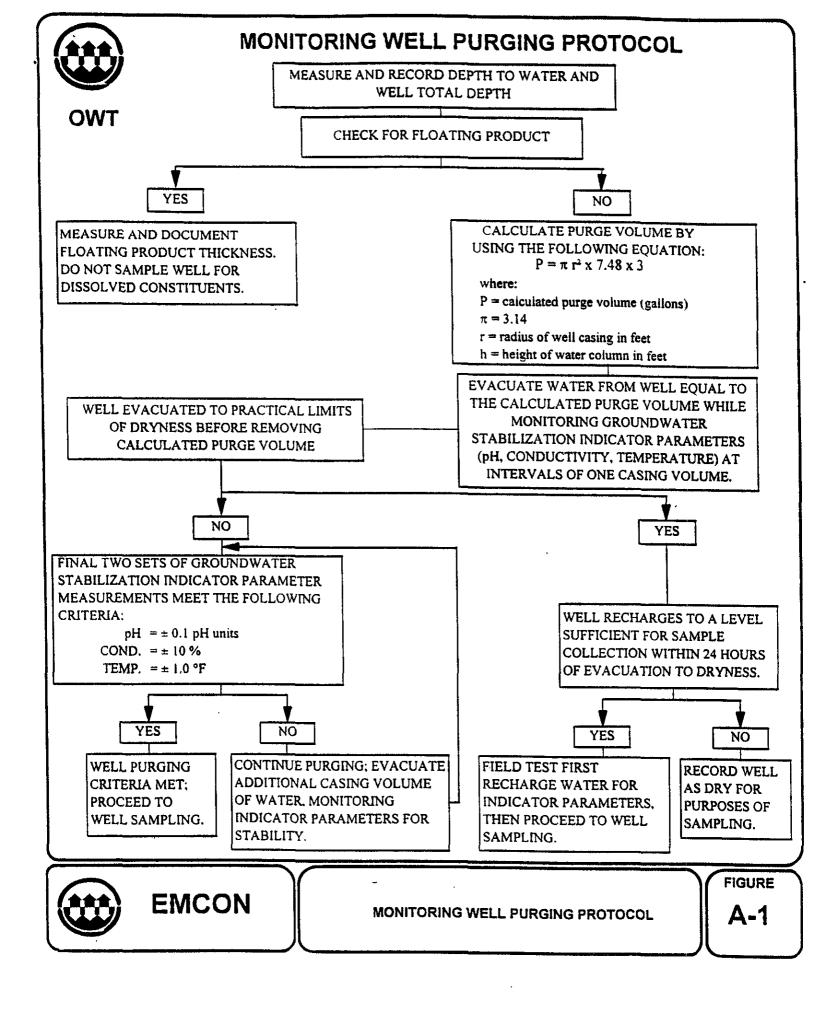
Labels

Sample labels contained the following information:

- Project number
- Sample number (i.e., well designation)
- Sample depth

- Sampler's initials
- Date and time of collection
- Type of preservation used (if any)

Sampling and Analysis Chain-of-Custody Record


The ARCO chain-of-custody record initiated at the time of sampling contained, at a minimum, the sample designation (including the depth at which the sample was collected), sample type, analytical request, date of sampling, and the name of the sampler. The record sheet was signed, timed, and dated by the sampler when transferring the samples. The number of custodians in the chain of possession was minimized. A copy of the ARCO chain-of-custody record was returned to EMCON with the analytical results.

Groundwater Sampling and Analysis Request Form

A groundwater sampling and analysis request form (see Figure A-3) was used to communicate to the environmental sampler the requirements of the monitoring event. At a minimum, the groundwater sampling and analysis request form included the following information:

- Date scheduled
- Site-specific instructions
- Specific analytical parameters

- Well number
- Well specifications (expected total depth, depth of water, and product thickness)

W	ATER SAMP	LE FIELD	DATA SH	EET	Rev. 5/96
OWT SAMPLED	NO : BY :		CLIENT NAME : LOCATION :		
	Surface Wate		.eachate		
CASING DIAMETER (inch	es): 2 3	4	4.5	6 Other	
CASING ELEVATION (feet DEPTH OF WELL DEPTH OF WATER	/MSL) : . (feet) :	CAL	LUME IN CASING CULATED PURGE UAL PURGE VOL.	(gal.) :	
DATE PURGED	•		END PURGE :		
			MPLING TIME :	· · · · · · · · · · · · · · · · · · ·	
TIME VOLUI (2400 HR) (gal.)	•		TEMPERATURE (°F)		TIME (2400 HR)
OTHER: FIELD QC SAMPLES CO	LLECTED AT THIS WE		DUP-1) :	(COBALT 0-100)	(NTU 0-200)
PURGING EQU	<u>IPMENT</u>		SAMPLIN	G EQUIPMENT	
2" Bladder Pump Centrifugal Pump Submersible Pump Well Wizard™ Other:	Bailer (Teflon) Bailer (PVC) Bailer (Stainless Dedicated	-	2" Bladder Pur Bomb Sample Dipper Well Wizard™ Other:	Subm	(Stainless Steel) nersible Pump
WELL INTEGRITY:				LOCK	<:
pH, E.C., Temp. Meter Calibra				er Serial No.:	
E.C. 1000/ Temperature *F		pH :	10/	pH 4	
SIGNATURE:	 -	REVIE	WED BY:	_PAGE	_OF

WATER SAMPLE FIELD DATA SHEET

FIGURE

A-2

EMCON - SACRAMENTO GROUNDWATER SAMPLING AND ANALYSIS REQUEST FORM

PROJECT NAME:

SCHEDU	JL.	ED	D	ATE	,

		ULED DATE:				
					Project	
PECIAL INST	RUCTIONS / 0	CONSIDERAT	TIONS:		Authorization:	
					EMCON Project No.:	
					OWT Project No.:	
					Task Code:	·····
					Originals To:	
					cc:	-7
					-	
					ſ	Well Lock
						Number (s
					ļ	*
						
				···-	•	'
CHECK BO	X TO AUTHOR	dze data en	TRY	Site Contact:		
Well	Casing	Contra			Name	Phone #
WEII	Casing	Casing	Depth to			
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
				ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or	Diameter	Length	Water	ANAY	SES REQUESTED	
Number or Source	Diameter (inches)	Length (feet)	Water	ANAY	SES REQUESTED	
Number or Source	Diameter	Length (feet)	Water	ANAY	SES REQUESTED	
Number or Source	Diameter (inches)	Length (feet)	Water	ANAY	SES REQUESTED	

EMCON

SAMPLING AND ANALYSIS REQUEST FORM

FIGURE

APPENDIX B

CERTIFIED ANALYTICAL REPORT AND CHAIN-OF-CUSTODY DOCUMENTATION

February 27, 1998

Service Request No.: S9800307

Gary Messerotes **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 20805-135.007/TO#21133.00/6148 OAKLAND

Dear Mr. Messerotes:

The following pages contain analytical results for sample(s) received by the laboratory on February 13, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 15, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green

Project Chemist

Greg Anderson

Regional QA Coordinator

Bernadette I. Cox you

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

Politica Donnert Difference

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: ARCO Products Company

Project: 20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix: Water

Service Request: \$9800307 Date Collected: 2/13/98 Date Received: 2/13/98

BTEX, MTBE and TPH as Gasoline

Sample Name: Lab Code: MW-7(26) \$9800307-001 Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	2/15/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	2/15/98	ND	

1S22/020597p

Analytical Report

Client: ARCO Products Company

Project: 20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: S9800307 Date Collected: 2/13/98

Date Received: 2/13/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-6(26)

S9800307-002

Lab Code: Test Notes: Units: ug/L (ppb)
Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	ı	NA	2/15/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	2/15/98	8	

IS22/020597p

Analytical Report

Client:

Sample Matrix:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Water

Service Request: \$9800307 Date Collected: 2/13/98 Date Received: 2/13/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-4(14)

Lab Code:

S9800307-003

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	2/15/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	2/15/98	1.3	
Toluene	EPA 5030	8020	0.5	1	NA	2/15/98	0.7	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	2/15/98	2.3 .	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	2/15/98	19	

IS22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: \$9800307

Date Collected: 2/13/98
Date Received: 2/13/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-1(14)

Units: ug/L (ppb)
Basis: NA

Lab Code:

\$9800307-004

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	2	NA	2/18/98	<100	C1
Benzene	EPA 5030	8020	0.5	2	NA	2/18/98	8.4	
Tolucne	EPA 5030	8020	0.5	2	NA	2/18/98	<1	C1
Ethylbenzene	EPA 5030	8020	0.5	2	NA	2/18/98	<1	C1
Xylenes, Total	EPA 5030	8020	0.5	2	NA	2/18/98	14	
Methyl tert -Butyl Ether	EPA 5030	8020	3	2	NA	2/18/98	130	

The MRL was elevated due to high analyte concentration requiring sample dilution.

1S22/020597p

Cl

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: S9800307

Date Collected: 2/13/98
Date Received: 2/13/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-3(14) \$9800307-005 Units: ug/L (ppb)
Basis: NA

Lab Code:

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	2/15/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	2/15/98	1.3	
Toluene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	2/15/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	2/15/98	1.0	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	2/15/98	21	

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Water

Service Request: \$9800307 Date Collected: 2/13/98

Date Received: 2/13/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

Sample Matrix:

MW-2(14)

Lab Code:

\$9800307-006

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	2/15/98	220	
Benzene	EPA 5030	8020	0.5	1	NA	2/15/98	9.5	
Toluene	EPA 5030	8020	0.5	1	NA	2/15/98	3.9	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	2/15/98	3.7	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	2/15/98	48	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	2/15/98	84	

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: \$9800307

Date Collected: 2/13/98

Date Received: 2/13/98

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-5(14) \$9800307-007 Units: ug/L (ppb) Basis: NA

Lab Code:

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	20	NA	2/18/98	1200	
Benzene	EPA 5030	8020	0.5	20	NA	2/18/98	51	
Toluene	EPA 5030	8020	0.5	20	NA	2/18/98	<10	C1
Ethylbenzene	EPA 5030	8020	0.5	20	NA	2/18/98	<10	Cl
Xylenes, Total	EPA 5030	8020	0.5	20	NA	2/18/98	<10	Ci
Methyl tert -Butyl Ether	EPA 5030	8020	3	20	NA	2/18/98	2000	

The MRL was elevated due to high analyte concentration requiring sample dilution.

1S22/020597p

Cl

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: S9800307

Date Collected: NA
Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank S980214-WB1 Units: ug/L (ppb)
Basis: NA

Lab Code:

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	2/14/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	2/14/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	2/14/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	2/14/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	2/14/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	2/14/98	ND	

IS22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: \$9800307

Date Collected: NA
Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Units: ug/L (ppb)
Basis: NA

Lab Code: Test Notes:

b Code: \$980217-WB1

	Prep	Analysis		Dilution	Date	Date		Result
Analyte	Method	Method	MRL	Factor	Extracted	Analyzed	Result	Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	2/17/98	ND	
Benzene	EPA 5030	8020	0.5	1	NA	2/17/98	ND	
Toluene	EPA 5030	8020	0.5	1	NA	2/17/98	ND	
Ethylbenzene	EPA 5030	8020	0.5	l	NA	2/17/98	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	2/17/98	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	2/17/98	ND	

1S22/020597p

APPENDIX A

QA/QC Report

Client:

ARCO Products Company

CA/LUFT

Service Request: S9800307

Project:

20805-135,007/TO#21133.00/6148 OAKLAND

Date Collected: NA Date Received: NA

Sample Matrix:

Water

Date Extracted: NA

Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Prep Method:

EPA 5030

Units: PERCENT

Analysis Method: 8020

Basis: NA

Sample Name	Lab Code	Test Notes	Percent 4-Bromofluorobenzene	Recovery a,a,a-Trifluorotoluene
• • • • • • • • • • • • • • • • • • • •				
MW-7(26)	\$9800307-001		87	93
MW-6(26)	\$9800307-002		93	99
MW-4(14)	\$9800307-003		95	88
MW-1(14)	S9800307-004		109	72
MW-3(14)	\$9800307-005		92	90
MW-2(14)	S9800307-006		104	97
MW-5(14)	\$9800307-007		98	82
BATCH QC	S9800310-001MS		103	113
BATCH QC	S9800310-001DMS		103	113
Method Blank	\$980214-WB1		93	98
Method Blank	S980217-WB1		98	93

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client: ARCO Products Company

Project: 20805-135.007/TO#21133.00/6148 OAKLAND

Sample Matrix Water

Service Request: S9800307

Date Collected: NA

Date Received: NA

Date Extracted: NA
Date Analyzed: 2/14/98

Matrix Spike/Duplicate Matrix Spike Summary

TPH as Gasoline

Sample Name: BATCH QC

Lab Code: \$9800310-001MS,

S9800310-001DMS

Units: ug/L (ppb)
Basis: NA

Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike	Result			CAS Acceptance	Relative Percent	Result
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes
Gasoline	EPA 5030	CA/LUFT	50	250	250	ND	240	240	96	96	75-135	<1	

QA/QC Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#21133.00/6148 OAKLAND

Service Request: \$9800307

Date Analyzed: 2/14/98

Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline

Sample Name:

ICV

Units: ug/L (ppb)

Lab Code: Test Notes:

ICV1

Basis: NA

ICV Source:					CAS Percent Recovery		
Analyte	Prep Method	Analysis Method	True Value	Result	Acceptance Limits	Percent Recovery	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	250	240	90-110	96	
Benzene	EPA 5030	8020	25	26	85-115	104	
Toluene	EPA 5030	8020	25	26	85-115	104	
Ethylbenzene	EPA 5030	8020	25	24	85-115	96	
Xylenes, Total	EPA 5030	8020	75	73	85-115	97	
Methyl tert -Butyl Ether	EPA 5030	8020	25	23	85-115	92	

ICY/032196

ARC	O Pre	oduć	its C	omi	pany	,		· · · · · · · · · · · · · · · · · · ·			11				_ 					- "	(Cha	ain	of Custody
	Division	of Atla	ntic/Rich	nfield Co	ompany		, , ,		ask Order N	lo. /	LL ect ma	SS mager	\mathcal{G}		. 11				+					Laboratory Name
ARCO Fa	Cinty 110	<u>614</u>	8		(Facility	Oakland				(Cor	Project manager Gary Messerotes Telephone no (Consultant) (408) 453-7300 (Consultant) (408) 453-7300 (Consultant) (408) 437-9526								<u></u>	CA-S Contract Number				
ARCO en	·	Pac	1/5	OPP	<u>10</u>		(AR	ohone no. CO)		(Cor	sultar	<u>i) (4</u>	08)	45	3-7	300	(Cons	sultant	X4C	16/4	5/	<u>-75</u> ,	26	Contract Number
Consultar	nt name	EMC	JON.					Add (Co	lress nsultant) /	<i>92.1</i>	<u>'Ri</u>	na	NOC	2d	AU	e.	50	n l	75E	> /	/4 C	15/	<u>5</u> /_	Method of shipment
			ļ	Matrix		Prese	rvation				45. M 18.)		щ				VOACI	6010/700	07421O				
Sample I.D.	Lab no.	Container no	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	8TEX 602/EPA 8020	BTEXTPH INCE	TPH Modified 8015 Gas () Diesel ()	Oil and Grease 413.1 (1 413.2 [TPH EPA 418.1/SM 50	EPA 60 1/80 10	EPA 624/8240	EPA 625/8270	TCLP Se Metalsco voaco	CAM Metals EPA 6010/7000 TTLC/2 STLC/3	Lead Org/DHSC Lead EPA 742				Sampler wi'll deliver Special Detection
MW-76	201	7		×		×	HCL	2-13-58	11:15		X													Lowest
MW-6	1 '	7		X			HCL	1	11:50		×											_		Possible
MW-41				×		χ	HCL		12:10		\times											\rightarrow		Special QA/QC
MW-10	4)4	2		\times		<u>×</u> _	HCL		12:25		\times													
MW-3	1 '			\times		×	HCL		12,40		\times							 						As Normal
MW-20	4)6	2	ļ	\times		\succ	1+CL	1	12:0		X								-					
MW-51	(H) f	12_	ļ	×	 -	\times	ItCL	V	13:15		X	<u> </u>					-							Remarks
																								2-40m/1+02 VOAs
											_						<u> </u>							// > o
	+	-			†				<u> </u>														_	#20905-135.00 Lab Number
	1		1					}	<u> </u>		<u> </u>													59800307
			1		\vdash																			Turnaround Time:
													_						<u> </u>					Priority Rush 1 Business Day
			-				<u> </u>				 	1					-			ļ				Rush 2 Business Days
Conditio	n of san	nple:—	. 	J	_1	<u></u> _	<u> </u>	<u> </u>	<u> </u>	Tem	.1 peratu	ге гесе		<u></u>					<u></u>			1		Expedited 5 Business Days
Religion	shed	sample	7	-			Date Z-13-	58	Time 14:45		eived l	ру	-	_5	- 7		,	عع	CAS	2/1:	3/48	16	<i>500</i>	Standard
Relingui							Date			Rece		•,								Time				10 Busíness Days
Relingu	shed by						Date		Time	Hece	Devie	by labo	ratory		<u></u>		Date		·····	Time				11.7-1

APPENDIX C FIELD DATA SHEETS

EMCON - Groundwater Sampling and Analysis Request Form

PROJECT NAME: ARCO STATION 6148

5131 Shattuck Avenue, Oakland

Sampling Project #: 21775-250.003

Reporting Project #: 20805-135.007

DATE REQUESTED: 13-Feb-98

Project Manager: Gary Messerotes

Groundwater Monitoring Instructions

Treatment System Instructions

Active System.

Quarterly Monitoring- Second Month Of The Quarter You will need a water trailer for purge water transport, and a 15/16" socket to access wells. Get the key from the station manager to open the gate. Perform a water level survey prior to sampling (See ARCO SOP). The survey points are tops of the well casings. Purge three (3) casing volumes. Well MW-2 may contain a skimmer, please note this on your field sheet. Sample all wells regardless of product per John Young's request. Please use the Reporting Project Number (20805-135.007) on the chain-of-custody, sample containers, and analytical results. Sample ID's on the Chain-Of-Custody and sample containers must include the depth at which the sample was collected [i.e. MW-1 (30)].

Lisle Rath Pager# (888) 606-0933

Site Contact: _____ Site Phone: <u>(510)</u> 654-3461

Well Locks: ARCO Key

Well ID or Source	Casing Diameter (inches)	Casing Length (feet)	Top Of Screen (feet)	Analyses Requested
MW-7 MW-6 MW-4 MW-1 MW-3 MW-2 MW-5	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	27.0 26.6 26.0 25.7 25.9 25.8 25.0	(feet) 14.0 14.0 13.0 11.5 10.0 12.0 12.0	Depth To Water Total Depth Dissolved Oxygen TPHG BTEX MTBE by EPA 8020
}				

Laboratory Instructions:

Provide ARCO standard detection limits.

Please use the Reporting Project Number (#20805-135.007) on the CARs.

ND = None Detected IP = Intermitent Product

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

PROJECT #: 21775-250.003 STATION ADDRESS: 5131 Shattuck Avenue, Oakland DATE: 2/13/98

ARCO STATION # : 6148 FIELD TECHNICIAN : Chris Chaco DAY : Friday

				····				<u></u>		·		
DTW Order	WELL	Well Box Seal	Well Lid Secure	Gasket Present	Lock Number	Type Of Well Cap	FIRST DEPTH TO WATER (feet)	SECOND DEPTH TO WATER (feet)	DEPTH TO FLOATING PRODUCT (feet)	FLOATING PRODUCT THICKNESS (feet)	WELL TOTAL DEPTH (feet)	COMMENTS
1	MW-7	oV	Y	4	ARCO	LUC	10.80	10.8	ND	NO	27.0	
2	MW-6	01/	У	V	ARLO	LUC	10.06	10.06	ND	200	Z6. U	
3	MW-4	ov	4	<u> </u>	NA	Twot	13.65	13.05	ND	(טען	26:1	
4	MW-1	oV	<u>}</u>	ý	MA	tw. it	13:15	13-15	MI	vk)	25.5	
5	MW-5	σK	Y	<u>y</u>	M	Twist	2/2 21	27	NO	20	24.8	
6	MW-2	ov	7	У	M	Tout	1275	12.75	טע	OH	25.6	
7	MW-3	OC	Y	7	NA	Tuit	13.0	13.0	NO	ND	25.6	
			′		<u> </u>							
i							-					

SURVEY POINTS ARE TOP OF WELL CASINGS

Rev.	3	2/94
1104.	J,	~ 34

WATER SAMPLE FIELD DATA SHEET
PROJECT NO: 21-175 230 003 SAMPLE ID: MW-1 (14)
CLIENT NAME: ARCO 6148
SAMPLED BY: C. C4760 LOCATION: OAKION
TYPE: Ground Water Surface Water Treatment Effluent Other
CASING DIAMETER (inches): 2 3 44.5 6 Other
CASING ELEVATION (feet/MSL): VOLUME IN CASING (gal.):
DEPTH TO WATER (feet): 13.15 CALCULATED PURGE (gal.): DEPTH OF WELL (feet): 25.5 ACTUAL PURGE VOL. (gal.):
DEPTH OF WELL (feet): 200 ACTUAL PURGE VOL. (gal.).
DATE PURGED: Start (2400 Hr) End (2400 Hr)
DATE SAMPLED: 2-13-58 Start (2400 Hr) 12:25 End (2400 Hr)
TIME VOLUME PH E.C. TEMPERATURE COLOR TURBIDITY
(2400 Hr) (gal.) (units) (μ mtros/cm \odot 25°C) (°F) (visual) (visual) (7:75 Grab 7.20 928-(70.0 C/R
·
D. O. (ppm): 0-1 ODOR: NONE (COBALT 0 - 500) (NTU 0 - 200
Field QC samples collected at this well: Parameters field filtered at this well: or 0 - 1000)
PURGING EQUIPMENT SAMPLING EQUIPMENT
2° Bladder Pump Bailer (Teffon®) 2° Bladder Pump Bailer (Teffon®)
Centrifugal Pump Bailer (PVC) DDL Sampler Bailer (Stainless Steel) Dipper Submersible Pump
Submersible Fump Bailer (Stainless Steel) Dipper Submersible Pump Well Wizard™ Dedicated Well Wizard™ Dedicated
Other:Other:
WELL INTEGRITY: COO C LOCK#: NA
REMARKS:
HEMARIO.
Towns African
Meter Calibration: Date: Time: Meter Serial #: Temperature °F:
(EC 1000) (DI) (pH 7/) (pH 10/) (pH 4/)
Signature: Reviewed By: 117 Page of
Signature: Reviewed By: Reviewed By: Page of

Rev.	3.	2/94

WATER SAMPLE FIELD DATA SHEET
FMCON PROJECT NO: 21775. 250.003 SAMPLE ID: MW-Z (14)
EMCON PURGED BY: CLIENT NAME: ARCO 6148
SAMPLED BY: C. Chaw LOCATION: CAK JANO
TYPE: Ground Water Surface Water Treatment Effluent Other
CASING DIAMETER (inches): 2 3 4 4.5 6 Other
CASING ELEVATION (feet/MSL): VOLUME IN CASING (gal.):
DEPTH TO WATER (feet): 12.75 CALCULATED PURGE (gal.):
DEPTH OF WELL (feet): 25-6 ACTUAL PURGE VOL. (gal.):
Fod (2400 Hz)
DATE PURGED:
TUDGOTT
(2400 Hr) (gal.) (units) (umhos/cm @ 25° C) (°F) (visual) (visual)
12755 Grah 691 998.1 70.1 CA
D. O. (ppm): 0-1 ODOR: NONE (COBALTO-500) (NTU 0-200
Field QC samples collected at this well: Parameters field filtered at this well: Or 0 - 1000) Field QC samples collected at this well: Or 0 - 1000)
PURGING EQUIPMENT SAMPLING EQUIPMENT
2* Bladder Pump Bailer (Teffon®) 2* Bladder Pump Bailer (Teffon®)
Centrifugal Pump Bailer (PVC) — DDL Sampler — Bailer (Stainless Steel)
Submersible Pump Bailer (Stainless Steel) Dipper Submersible Pump Submersible Pump Dedicated Well Wizard TM Dedicated Dedicated
Other: Other:
WELL INTEGRITY: Good LOCK#: V4
REMARKS:
Meter Calibration: Date: Time: Meter Serial #: Temperature °F:
(EC 1000/) (DI) (pH 7/) (pH 10/) (pH 4/)
Location of previous dalibration:
Signature Reviewed By: MA Page Z of Z

Rev.	3.	2/94
	υ,	~ ~ ~

WATER SAMPLE FIELD DATA SHEET
PROJECT NO: 21775 250,007 SAMPLE ID: MW-3 (14)
CLIENT NAME: ARCO 6148
SAMPLED BY: C. Chra LOCATION: Oak Incl
TYPE: Ground Water Surface Water Treatment Effluent Other
CASING DIAMETER (inches): 2 3 4 4.5 6 Other
CASING ELEVATION (feet/MSL): DEPTH TO WATER (feet): DEPTH OF WELL (feet): VOLUME IN CASING (gal.): CALCULATED PURGE (gal.): ACTUAL PURGE VOL. (gal.):
DATE PURGED:
TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDITY (2400 Hr) (gal.) (units) (umhos/cm @ 25°C) (°F) (visual) (visual) (2'40 Grab 6.78 1069 70.3 C/R
D. O. (ppm): O (ODOR: NOUL (COBALT 0 - 500) (NTU 0 - 200 or 0 - 1000)
PURGING EQUIPMENT SAMPLING EQUIPMENT
2* Bladder Pump Bailer (Teffon®) 2* Bladder Pump Bailer (Teffon®)
Centrifugal Pump Bailer (PVC) DDL Sampler Bailer (Stainless Steel) Dipper Submersible Pump
Submersible Pump — Bailer (Stainless Steel) — Dipper — Submersible Pump — Submersible Pump — Well Wizard™ — Dedicated — Well Wizard™ — Dedicated
Other:
WELL INTEGRITY: GOOC LOCK#: NA
REMARKS:
Meter Calibration: Date: Time: Meter Serial #: Temperature °F:
(EC 1000/) (DI) (pH 7/) (pH 10/) (pH 4/)
Location of previous cambration:
Signature: Reviewed By: Page 3 of 7

Rev. 3, 2/9
WATER SAMPLE FIELD DATA SHEET
FMCON PROJECT NO: 21775-250_003 SAMPLE ID: MW-4 (14)
CLIENT NAME: ARCO OTEN
SAMPLED BY: C. Chpco LOCATION: CAVIANCE
TYPE: Ground Water Surface Water Treatment Effluent Other
CASING DIAMETER (inches): 2 3 4 4.5 6 Other
CASING ELEVATION (feet/MSL): DEPTH TO WATER (feet): 13.05 DEPTH OF WELL (feet): 26-1 ACTUAL PURGE VOL. (gal.):
DATE PURGED: Start (2400 Hr) End (2400 Hr)
DATE SAMPLED: 2-13-58 Start (2400 Hr) End (2400 Hr)
TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDITY (2400 Hr) (9al.), (units) (umhos/cm 25°C) (°F) (visual) (visual)
17:10 Grab 689 621.2 71.0 c/R MOS
D. O. (ppm): 0-1 ODOR: NOVE (COBALT 0 - 500) (NTU 0 - 200
Field QC samples collected at this well: Parameters field filtered at this well: (COBALT 0 - 500) (NTU 0 - 200 or 0 - 1000)
PURGING EQUIPMENT SAMPLING EQUIPMENT
2* Bladder Pump Bailer (Teffon®) 2* Bladder Pump Bailer (Teffon®)
Centrifugal Pumpy Bailer (PVC) — DDL Sampler — Bailer (Stainless Steel
Submersible Pump Bailer (Stainless Steel) Dipper Submersible Pump Dedicated Well Wizard ^M Dedicated
Other: Other:
WELL INTEGRITY: Cook : NB
WELL INTEGRITY: LOCK #: NB
REMARKS:
Meter Calibration: Date: Time: Meter Serial #: Temperature °F:

(EC 1000 ____/ ___) (DI ____) (pH 7 ____/ ___) (pH 10 ____/ ___) (pH 4 ____/ ___)

Reviewed By: -

Location of previous calibration:

Signature:

Rev.	3.	2/94

WATER SAMPLE FIELD DATA SHEET	
PROJECT NO: 2177 \$ 850,003 SAMPLE ID: MW-5 C	14
ALLOCIATES PURGED BY: CLIENT NAME: ARCO . 6	148
SAMPLED BY: C Char- LOCATION: OAK IAN	d
TYPE: Ground Water Surface Water Treatment Effluent Other	
CASING DIAMETER (inches): 2 3 4 4.5 6 Other	r
CASING ELEVATION (feeVMSL): VOLUME IN CASING (gal.):	- /31
DEPTH TO WATER (feet): 12.21 CALCULATED PURGE (gal.):	<i>////</i>
DEPTH OF WELL (feet): 24.8 ACTUAL PURGE VOL. (gal.):	<i>V /</i>
DATE PURGED: Start (2400 Hr) End (2400 Hr)	
DATE SAMPLED: 2-13-98 Start (2400 Hr) End (2400 Hr)	
TEMPEDATURE COLOR	TURBIDITY
TIME VOLUME pH E.C. TEMPERATURE COLOR (2400 Hr) (gal.) (units) (units) (units) (fr) (fr) (visual)	(visual)
(2400 Hr) (gal.) (units) (unhos/cm @ 25°C) (°F) (visual) 13:13 (140 T.22 557.2 (°F) (R.)	<u> </u>
D. O. (ppm): 0-1 ODOR: NOW 2	
Field QC samples collected at this well: Parameters field filtered at this well: (COBALT 0 - 500)	(NTU 0 - 200 or 0 - 1000)
Field QC samples collected at this well:	
PURGING EQUIPMENT SAMPLING EQUIPMENT	· !
2' Sladder Pump Bailer (Teffon®) 2' Bladder Pump Baile	
Centrifugal Pump / Bailer (PVC) ODL Sampler Baile	1
	nersible Pump
Well Wizard™ Dedicated Well Wizard™ Dedicated	cated
Other:Other:	
WELL INTEGRITY: GOOD LOCK #: A	<i>II</i>
WELL INTEGRITY: 1 3000	
REMARKS:	
	_
Meter Calibration: Date: Time: Meter Serial #: Temperatur	e °F:
(EC 1000/) (DI) (pH 7/) (pH 10/) (pH 4	/)
Location of previous calibration:	

Signature:

Reviewed By: 44 Page 5 of 7

R	ev	3,	2/	94

WATER SAMPLE FIE	
PROJECT NO: 21775-750, 003	SAMPLE ID: MW-6 (26)
PURGED BY: C Chaco	
SAMPLED BY:	LOCATION: BAKLONS
TYPE: Ground Water Surface Water Trea	timent Effluent Other
CASING DIAMETER (inches): 2 3 4	
CASING ELEVATION (feet/MSL):	VOLUME IN CASING (gal.): 10-80
	CALCULATED PURGE (gal.): 32.41
DEPTH OF WELL (feet): 26.6	ACTUAL PURGE VOL. (gal.): 33.0
DATE PURGED: 2-13-58 Start (2400 Hr) DATE SAMPLED: 2-13-58 Start (2400 Hr)	/6:33 End (2400 Hr) //:50 End (2400 Hr)
TIME VOLUME OH E.C.	TEMPERATURE COLOR TURBIDITY
(2400 Hr) (gal.) (units) (umhos/cm 25°C)	(°F) (visual) (visual)
11:38 22.0 7.38 453.4	64.5 "
11:41 33.0 736 455.2	64.8 n
D. O. (ppm): 0-1 ODOR: NONO	(COBALT 0 - 500) (NTU 0 - 200
Field QC samples collected at this well: Parameters field	filtered at this well: or 0 - 1000)
PURGING EQUIPMENT	SAMPLING EQUIPMENT
2° Bladder Pump Bailer (Teflon®)	2* Bladder Pump Bailer (Teffon®)
Centrifugal Pump — Bailer (PVC)	DOL Sampler Bailer (Stainless Steel) Dipper Submersible Pump
Submersible Pump Bailer (Stainless Steel) Well Wizard™ Dedicated	— Well Wizard™ — Dedicated
	Other:
WELL INTEGRITY: COOL	LOCK#: ARIO
REMARKS:	
HEMAHAS:	
Meter Calibration: Date: Time: Meter S	Serial #: Temperature °F:
(EC 1000/)(DI)(pH7/	
Location of previous dalibration:	wed By: HA Page 6 of 7
Signature: Revie	wed By: Page 6 of

Signature: _

	Rev. 3, 2/94
WATER SAMPLE FIELD DATA	
PROJECT NO: 21775-250.003 SAMPLE ID:	
PURGED BY: C. Chres CLIENT NAME:	ARCO 6148
SAMPLED BY: LOCATION: _	Oakland
TYPE: Ground Water Surface Water Treatment Effluent	
CASING DIAMETER (inches): 2 3 4 _ 4.5	
CASING ELEVATION (feet/MSL): VOLUME IN CASING	(gal.): 10.58
DEPTH TO WATER (feet): 10.8 CALCULATED PURG	$E (gal.): \frac{3175}{32.0}$
DEPTH OF WELL (feet): 27.3 ACTUAL PURGE VO	L. (gal.):
DATE PURGED: 2-13-98 Start (2400 Hr) 10:58 E	ind (2400 Hr)//.08
	ind (2400 Hr)
TIME VOLUME DH E.C. TEMPERATURE	COLOR TURBIDITY
(2400 Hr) (gal.) (units) (µmhos/cm @ 25°C) (°F) // 00 /0 7.06 454,6 71.0	(visual) (visual)
11:04 21 709 458.3 70.5	11
11:08 32 7:13 462.1 70.1	<u> </u>
DO (nom): O-/ ODOR: NOUS	
υ. υ. γριιγ.	(COBALT 0 - 500) (NTU 0 - 200 or 0 - 1000)
Field QC samples collected at this well: Parameters field filtered at this well:	G 0 1000)
PURGING EQUIPMENT SAMPL	ING EQUIPMENT
2' Bladder Pump —— Bailer (Teffon®) —— 2' Bladder Pump Contributed Pump —— Bailer (PVC) —— DDL Sampler	Bailer (Teflon®) Bailer (Stainless Steel)
Centrifugal Pump — Bailer (PVC) — DDL Sampler — Dipper — Dipper	Submersible Pump
— Well Wizard™ — Dedicated — Well Wizard™	Dedicated
Other: Other:	
WELL INTEGRITY: Goo Q	LOCK#: ARCO
REMARKS:	

Meter Calibration: Date: 2-13-58 (EC 1000 1035 / 1000) (DI	Time: <u>/0:50</u>) (pH 7 <u>74</u> 0	Meter Serial #: _ / <u> </u>	10/95 1/60	Temperature °F: <u>67.3</u>)) (pH 4/)

Location of provings calibration:

Signature: Kun Khun

Reviewed By:

94 Page 7 of 7

EMCON A	ssociates -	Field Service	98			Histo	orical Mo	onitoring Well Date
1921 Rinc	wood Avenu	ıe		1998				ARCO 614
_	California	. •						#21775-250.000
Well ID	Quarter	Date	Purge Volume	Did well	Well Contained	First Second Third	Gallon 0.00 0.00 0.00	····
1			(gallons)	dry	Product	Fourth	0.00	
MW-1	First Second	02/13/98	GRAB	NA	NO		······	
	Third	08/22/97	GRAB	NO	NO NO			
MW-2	Fourth First	11/10/97 02/13/98	GRAB GRAB	NO NA	NO			
10100-2	Second Third	08/22/97	GRAB	NO	NO			
	Fourth	11/10/97	GRAB	NO	NO			
MW-3	First Second	02/13/98	GRAB	NA	NO			
	Third	08/22/97	GRAB	NO	NO			
<u></u>	Fourth	11/10/97	GRAB	NO	NO NO			
MW-4	First Second	02/13/98	GRAB	NA	NO			
	Third	08/22/97	GRAB	NO NA	NO NO			
MW-5	Fourth First	11/10/97	NA GRAB	NA NA	NO			
IMIMA-2	Second Third	08/22/97	GRAB	NO	NO			
	Fourth	11/10/97	GRAB	NO	NO			
MW-6	First Second	02/13/98	33.00	NO	NO			
	Third	08/22/97	NA NA	NA	NO			
	Fourth	11/10/97	NA_	NA	NO			
MW-7	First Second	02/13/98	32.00	NO	NO			
	Third	08/22/97	NA	NA	NO			
	Fourth	11/10/97	NA NA	NA	NO			
	,	 						
							,	
	 	+			s	l team water (gal)		
								-
L	<u>i</u>		<u> </u>		<u>L</u>	<u> </u>		

ARC	Divisio	n of Atla	antic/Ric	Com hfield C	pany Company	!		•	Task Order I	No. Z	211	33	.0	0	,							Ch	ain	of C		lody	
ARCO F	acility no	·614	18		City (Facility	OC	iklar	icl	,	Pro (Co	ject ma naultar	inage:	G	7/1	14/	<u>es</u>	se	10	te	5				Laboratory	de la	£	
ARCO e			c15		K		Tele (AR			Tek (Co	phone naultar	100C	108) 45	2-7	300	Fax (Con	no. sultant	(40	RI	137	-9	26	Contract A	45		
Consulta	nt name	FAR	CCN	-	ر المارية		eg.	Add (Co	dress onsultant) 🕺		IRI							m)				95	1				多
. :		ė		Matrix		Pres	ervation			400 300 300 300 300 300 300 300 300 300	英語	16 J		쌣				Void	.60107000	180 1420/14210			1911 1911	Method of SQ11		ent .	美 一
Sample I.D	Lab no.	Container no	Soil	Water	Other	lce	Acid	Sempling data	Sampling line	BTEX BLOEPA 8020	BEKIEFH	Cheed Cheed	Of and Grease 413,1 () 413.2	TPH EPA418.1/SM 503E	EPA 601/8010	EPA 6248240	EPA ezstezno	TCLP SAME	CAN MANA EPA 6010/700	Laid OrdOHSC Laad EPA 742	-			O(C) Special D			
MW-7	(14)	2	مر د پر د	×	7/25 1 (31)	×	HCL	7-13-58	1175		X			\$ 6g'	in. (Κ,	., ž				3	-		Limithepo			
MW-G	(EU)	2		×	公	入	HCL	1	11:50		X		, , , , , , , , , , , , , , , , , , ,	11 mg	# 1 2	, yı	A Section of the sect			1			40.	Lev Pos			Control of
MW-4	(14)	2	<u> </u>	<u>×</u>	T. "	\times	HCL		12:10	7. 154.1 A	X	े और जि		100	A 外。								,		W.		
MW-1	(14)	2		\geq		×	HCL		12:25		X	5 7/1	. ,		40.		,							Special Qu			ほり
MW-3	(14)	2	ļ	<u>><</u>		×	HCL		12,40	**	X	- د ر آه					j								2		555. 5 ⁷ m.
MW-ZI	(H)	2	<u> </u>	×		×	IHCL		12.55	,	X	200					,		NAC.	∜ . 			-	Nev			· A
MV-51	(41)	2		×		X	HCL	V	13:15	47,50 3,436	义	Sand Control	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	,			, ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '			(3) (3) (4) (4)				Remarks			
		<u> </u>	<u> </u>	1000	⊉ ,		·			i ya Jagan y	A STAN		-40 , 30 -140	·	: .	12			が表	(S. 2)		2					Sec.
	1	<u> </u>	<u> </u>		Julion.		2.	` .		, 15 m		3.84 A. Q.	蒙	* * * * * * * * * * * * * * * * * * *	1.							, , , , , , , , , , , , , , , , , , ,		2:4 1		$H^{H_{i}}$	
	 	<u> </u>	1,	300		4 *	, k.				8.		n first one	· ha	<u>}</u>		1,25						4.4.			5 .	Service.
		<u> </u>				,		1, d 19, c												Significan Story (* 1							
							3 385					×,		7%; 7%;	हरें च	, , ,	,					1 pr.,	1	#20%		L. .	
			<u> </u>		514		, ·	, , ,					. 73 . 73	2.4	٤		·				, , ,>		, -2, 35	Lab Numb	Annual Control of the City of the City		
	<u> </u>			. yek 23,	se (ce	-			dalanga			\$7.	order Gliger Victoria	, P.S.,	έλ. Συ		**,jg.**				ń spię		૾ૢૼૺ૽ૣૺૹૢ૽			a e	
			ļ <u>.</u>		·	- 1	, ** 	1 .3 A			adr.		\$15.65						es es			4	5.00	Tumaroun			
	<u> </u>	<u></u>			138	11 to 1 t	2 3 3						V (3)	Š, sa	-	1.5			44			,	12 25 1	Priority Flu			
	4.	<u> </u>	<u> </u>	A 44			1		多层的		1800			- 12 July 1995		" mgas"	1				(Confession of the Confession	, , ,		1 Business			
												がある。			() () () () () () () () () ()		10 X				2	4)		Hush 2 Business	2	E)	
Conditio	n of sam	ple:								Temp	eratun	rece	ved;								A KARAN	7	A 100 X	Expedies			
Relingui	shed by	samuta				,	Date 2-13	(g.)	Time		wed by					1.00				24:	11)	: 10	706	5 Bosons Standards		i.	
Relinguis	shed by	- - '			74.0		Date		ar Jime		ped by			er er Sing i							10 °€. 	- *		Standard* 10 Busines		×	
Relingui	shed by			'E. C.,			Date	**************************************	Time		ived by		atory		í		Date			Time							

APPENDIX D SVE SYSTEM MONITORING DATA LOG SHEETS

ARCO 6148 SVE SYSTEM MONITORING DATA

Reporting Period 01/01/98 00 00 02/01/98 00 00					n Period n Period	744 31 00		Operation Operation			744 31 00							•								·		
ĺ		F	eld Monr	tonng Da	ata		l [Laborator	y Monito	ring Data]					
	Flow	Rates	FID	PID R	esults		[Vell Fiel	t Influent	<u> </u>	w)	ystem	Influent			System	Effluent]					
Reading Date,& Time	Well Field Flow Rate	System Influent Flow Rate*	Weil Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gaso	line	Ben	Zene	Gasolii	ne	Benz	cen e	Gaso			zene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scfm	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv	mg/m3	opmy n	ng/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	%	ib/day	lb/day						
01/01/98 00 00 01/27/98 10 35 02/01/98 00 00	00						10 35	39	160	< 1	< 4	39	160	< 1	< 4	<5	<20	<1	< 4	875	0 00	NR	634 58 109 42	2702 01 2702 01 2702 01	0 00 0 00	ο 00 0 00	634.6 109.4	26 4 4 5
Penod Totals																		-					744		0 00	0 00	744	31 (
Period Averages	00	00																										

ARCO 6148 SVE SYSTEM MONITORING DATA

eporting Period 02/01/98 00 00 03/01/98 00 00				Hours in Days in	Penod Penod			Operation + Down														
			eld Monit								Laboratory Monito											
ļ	Flow	Rates	FtD c	r PID Re	sults	ļ		Well Fiel	d Influent	System	influent	System	Effluent									
Reading Date & Time	Well Field Flow Rate	System Influent Flow Rate*	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gasoline	Benzene	Gasolme	Benzene	-Gasolinė	Benzene	Destruction Efficiency	Gesoline Emission Rate	Senzene Emission Rate	Penod Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Supplemental Suppl
	scfm	scfm	ppm	ρpm	ppm	%		ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	%	lb/day	lb/day						_
02/01/98 00 00 02/10/98 11 33 02/16/98 10 38 03/01/98 00 00	00 00																227 55 143 08 301 37	2702 01 2704 73 2704 73 2704 73	2 72 0 00 0.80	0 11 0 00 0 00	224 8 143.1 301.4	1
Penod Totals																	672 00		2 72	0 11	669.28	2

ARCO 6148 SVE SYSTEM MONITORING DATA

Reporting Period 03/01/98 00:00 04/01/98 00:00					Penod.	744 31 00		Operation + Down														
			eld Monit								aboratory Monito		Effluent									
	Flow	Rates	_ FID a	r PIO Re	sults	<u> </u>		Well Field	influent .	System	Influent	Qystorri	Enadera									
teading Date & Time	Vell Field Flow Rate	system Influent Flow Rate*	Veil Field	system influent	System Effluent	Destruction Efficiency	aboratory Sample Time	Gasolinė	Benzene	Gasoline	Benzene	Gasoline	Benzene	Destruction Efficiency	Gasoline Emission Pate	Benzene Emission Rate	Penod Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scfm	scfm	ppm	ppm	ppm	%		ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	%	lb/day	lb/day						
03/01/98 00 00				FE														2702.01	. 70		500 £	20.04
03/23/98 11 15	00	0.0				i	l	1					1				539 25	2704 73	2 72	0 11	538 5	22 36
04/01/98 00.00	00	0.0													_		204 75	2906 76	202.03	8 42	2.7	0.11
Period Totals																	744 00		204.75	8.53	539 25	22 47
Period Averages	0.0	0.0																				

APPENDIX E

CERTIFIED ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY DOCUMENTATION FOR SOIL-VAPOR EXTRACTION SYSTEM

February 10, 1998

Service Request No.: S9800161

Valli Voruganti EMCON 1921 Ringwood Avenue San Jose, CA 95131

RE: 20805-135.007/TO#20830.00/6148 OAKLAND

Dear Ms. Voruganti:

The following pages contain analytical results for sample(s) received by the laboratory on January 27, 1998. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 14, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely

Steven L. Green Project Chemist Greg Anderson

Regional QA Coordinator

Bernadette J. Cox for

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC | Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUST Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference

SIM Selected for Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#20830.00/6148 OAKLAND

Sample Matrix:

Air

Service Request: \$9800161

Date Collected: 1/27/98 Date Received: 1/27/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

I-1

Lab Code: Test Notes: S9800161-001

Units: mg/m3 Basis: NA

Analysis Dilution Date Date Result Prep Notes Factor Extracted Analyzed Result Method Method MRL Analyte ND 1 NA 1/28/98 5030 8020 0.4 Benzene 1 NA 1/28/98 2.5 5030 8020 0.4 Toluene NA 0.5 5030 8020 0.5 1 1/28/98 Ethylbenzene ND 5030 8020 0.9 1 NA 1/28/98 Xylenes, Total Total Volatile Hydrocarbons: 200 8015M 1 NA 1/28/98 C1 - C5 5030 12 160 1 NA 1/28/98 8015M 20 C6 - C12 5030 160 5030 8015M 20 NA 1/28/98 TPH as Gasoline*

> TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

IS22/020597p

Analytical Report

Cllent:

ARCO Products Company

Project:

Sample Matrix:

20805-135.007/TO#20830.00/6148 OAKLAND

Air

Service Request: \$9800161

Date Collected: 1/27/98

Date Received: 1/27/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

I-1

Lab Code:

S9800161-001

Units: ppmV Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.1	1	NA	1/28/98	ND	
Tolucne	5030	8020	0.1	1	NA	1/28/98	0.7	
Ethylbenzene	5030	8020	0.1	1	NA	1/28/98	0.1	
Xylenes, Total	5030	8020	0.2	1	NA	1/28/98	ND	
Total Volatile Hydrocarbons:								
C1 - C5	5030	8015M	5	1	NA	1/28/98	84	
C6 - C12	5030	8015M	5	1	NA	1/28/98	39	
TPH as Gasoline*	5030	8015M	5	i	NA	1/28/98	39	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

IS22/020597p

Analytical Report

Client: ARCO Products Company

Project: 20805-135.007/TO#20830.00/6148 OAKLAND

Sample Matrix:

Air

Service Request: \$9800161 Date Collected: 1/27/98

Date Received: 1/27/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

E-1

Lab Code:

\$9800161-002

Units: mg/m3 Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.4	ī	NA	1/28/98	ND	
Toluene	5030	8020	0.4	1	NA	1/28/98	ND	
Ethylbenzene	5030	8020	0.5	1	NA	1/28/98	ND	
Xylenes, Total	5030	8020	0.9	1	NA	1/28/98	ND	
Total Volatile Hydrocarbons:								
C1 - C5	5030	8015M	12	1	NA	1/28/98	ND	
C6 - C12	5030	8015M	20	1	NA	1/28/98	ND	
TPH as Gasoline*	5030	8015M	20	1	NA	1/28/98	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#20830.00/6148 OAKLAND

Service Request: \$9800161

Sample Matrix:

Air

Date Collected: 1/27/98 Date Received: 1/27/98

BTEX and Total Volatile Hydrocarbons

Sample Name:

E-1

Units: ppmV Basis: NA

Lab Code:

S9800161-002

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.1	1	NA	1/28/98	ND	
Toluene	5030	8020	0.1	1	NA	1/28/98	ND	
Ethylbenzene	5030	8020	0.1	1	NA	1/28/98	ND	
Xylenes, Total	5030	8020	0.2	1	NA	1/28/98	ND	
Total Volatile Hydrocarbons:						•		
C1 - C5	5030	8015M	5	1	NA	1/28/98	ND	
C6 - C12	5030	8015M	. 5	1	NA	1/28/98	ND	
TPH as Gasoline*	5030	8015M	5	1	NA	1/28/98	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#20830.00/6148 OAKLAND

Sample Matrix:

Air

Service Request: \$9800161

Units: mg/m3

Basis: NA

Date Collected: NA
Date Received: NA

BTEX and Total Volatile Hydrocarbons

Sample Name:

Method Blank

Lab Code:

S980128-VB1

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.4	1	NA	1/28/98	ND	
Toluene	5030	8020	0.4	1	NA	1/28/98	ND	
Ethylbenzene	5030	8020	0.5	1	NA	1/28/98	ND	
Xylenes, Total	5030	8020	0.9	1	NA	1/28/98	ND	
Total Volatile Hydrocarbons:								
C1 - C5	5030	8015M	12	1	AИ	1/28/98	ND	
C6 - C12	5030	8015M	20	1	NA	1/28/98	ND	
TPH as Gasoline*	5030	8015M	20	1	NA	1/28/98	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1S22/020597p

n ,

Analytical Report

Client:

ARCO Products Company

Project:

20805-135,007/TO#20830,00/6148 OAKLAND

Sample Matrix:

Air

Service Request: \$9800161

Date Collected: NA Date Received: NA

BTEX and Total Volatile Hydrocarbons

Sample Name:

Method Blank

Lab Code:

S980128-VB1

Units: ppmV Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
Benzene	5030	8020	0.1	1	NA	1/28/98	ND	
Toluene	5030	8020	0.1	i	NA	1/28/98	ND	
Ethylbenzene	5030	8020	0.1	1	NA	1/28/98	ND	
Xylenes, Total	5030	8020	0.2	1	NA	1/28/98	ND	
Total Volatile Hydrocarbons:								
C1 - C5	5030	8015M	5	1	NA	1/28/98	ND	
C6 - C12	5030	8015M	5	1	NA	1/28/98	ND	
TPH as Gasoline*	5030	8015M	5	1	NA	1/28/98	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

1S22/020597p

APPENDIX A

QA/QC Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#20830.00/6148 OAKLAND

Sample Matrix: Air

Service Request: S9800161

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 1/28/98

Duplicate Summary
BTEX and Total Volatile Hydrocarbons

Sample Name:

I-i

Lab Code:

S9800161-001DUP

Test Notes:

Units: mg/m3
Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	A verage	Relative Percent Difference	Result Notes
Benzene	5030	8020	0.4	ND	ND	_	-	
Toluene	5030	8020	0.4	2.5	2.4	2.5	4	
Ethylbenzene	5030	8020	0.5	0.5	0.5	0.5	<1	
Xylenes, Total	5030	8020	0.9	ND	ND		-	
Total Volatile Hydrocarbons								
C1 - C5	5030	8015M	12	200	190	200	5	
C6 - C12	5030	8015M	20	160	150	160	6	
TPH as Gasoline*	5030	8015M	20	160	150	160	6	

QA/QC Report

Client: **ARCO Products Company**

20805-135.007/TO#20830.00/6148 OAKLAND Project:

Sample Matrix: Air

Service Request: S9800161 Date Collected: NA Date Received: NA Date Extracted: NA Date Analyzed: 1/28/98

Units: ppmV

Basis: NA

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Sample Name:

I-1

Lab Code:

S9800161-001DUP

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference	Result Notes
Benzene	5030	8020	0.1		_	-		
Toluene	5030	8020	0.1	0.7	0.6	0.7	14	
Ethylbenzene	5030	8020	0.1	0.1	0.1	0.1	<1	
Xylenes, Total	5030	8020	0.2		-		_	
Total Volatile Hydrocarbons								
C1 - C5	5030	8015M	5	84	80	82	5	
C6 - C12	5030	8015M	5	39	37	38	5	
TPH as Gasoline*	5030	8015M	5	39	37	38	5	

QA/QC Report

Client: ARCO Products Company

Project: 20805-135.007/TO#20830.00/6148 OAKLAND

LCS Matrix: Air

Service Request: S9800161

Date Collected: NA
Date Received: NA
Date Extracted: NA

Date Analyzed: 1/28/98

Laboratory Control Sample Summary

TPH as Gasoline

Sample Name:

Lab Control Sample S980128-LCS

Lab Code:

ontrol Sample

Units: mg/m3 Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits	Result Notes
Gasoline	5030	8015M	200	180	90	60-140	

QA/QC Report

Client: ARCO Products Company

Project: 20805-135.007/TO#20830.00/6148 OAKLAND

LCS Matrix: Air

Service Request: S9800161

Date Collected: NA
Date Received: NA
Date Extracted: NA

Date Analyzed: 1/28/98

Laboratory Control Sample Summary

Sample Name: Lab Code: Lab Control Sample

S980128-LCS

Units: ppmV Basis: NA

Test Notes:

						CAS Percent Recovery	
Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Acceptance Limits	Result Notes
Gasoline	5030	8015M	49	44	90	60-140	

QA/QC Report

Client: Project:

ARCO Products Company

20805-135.007/TO#20830.00/6148 OAKLAND

Service Request: S9800161

Date Analyzed: 1/28/98

Initial Calibration Verification (ICV) Summary BTEX and Total Volatile Hydrocarbons

Sample Name:

ICV ICV1 Units: mg/m3 Basis: NA

Lab Code:

Test Notes:

ICV Source:

Analyte	Prep Method	Analysia Method	True Value	Result	Percent Recovery	CAS Acceptance Limits
Benzene	5030	8020	25	24	96	80-120
Toluene	5030	8020	25	24	96	80-120
Ethylbenzene	5030	8020	25	23	92	80-120
Xylenes, Total	5030	8020	75	71	95	80-120
Gasoline	5030	8015M	250	260	104	80-120

ICV/032196

ARC	1	1		<u> </u>																					~
	DIVISIO	n of Atla	antic/Ric	htield C	company	1			Task Order	No.	a	08	33C		00							Cha	in of C	uste	o dy
ARCO Fa	cility no	· Co	148		City (Eacility	n 00	KIUV	ر ک		Pro (Co	ject ma	anager	V.	11.	-	/67/	Fax	^/ W	1.		,		Laborator Contract	y Name	
ARCO en	gineer	7	10rı	cero	+(Puul	Tele (AR	phone no.		Tele (Co	phone	no.	108	<u>سرت</u>	くつ	3 ni	Fax (Con	no.	······································				Contract	_ } _ <	<u>></u> _
ARCO en Consultar	t name	Ē	me	911		23/17		Ac	idress onsultant)	15	21	12.	· vc	م/ما	2 6 0 6	<u>300</u>	Δ	(abla	. ($\cap \Delta$		Commact	40111Del	
				Matrix			ervation				10	İ	'	J O (,	ΓΞ	Γ,	1		8	اً	<u> </u>	1	Method of	shipmer	nt
Ġ.		<u>6</u>	ļ	1			1				0 g	95		303E				₽	A 6010	20742					
Sample I.D.	Jō.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	A 8020	PH 802/802	odified 8	Oll and Grease 413.1 ☐ 413.2 ☐	8.1/SM	1/8010	4/8240	5/8270	YOA	etals EP 7 STLC	Lead OrgOHSCI Lead EPA 7420/7421CI			T	ودىر	_
Sarr	Lab no.	ပိ						Sampli	Sample	BTEX	BTEX/I	TPH IK	Olland 413.1	TPH EPA 41	EPA 60	EPA 62	EPA 62	TCLP Metals	CANIN	Lead O Lead E			<u> </u>		
T-1	1	,			AR	-		1/27	1145		X												Special D	etection rting	
<u> </u>	2	Į.			MIR			1/27	1130		X												Limit/repo Pe?o P?mu	1 + 1	n
								<u> </u>															טייקן	f-ma	m-
																						_	Special Q	A/QC	
																							_		
													,												
																							Remarks		
																						_		_	
									1													$\neg \vdash$	7080	550	150
																						-	20805	5 135	500
																				-	_		-		
																				\dashv					
														_						- 	_		Lab Numb S980	016	1
														_	_	-						_	Turnaroun		'
															\dashv					一十		_	Priority Ru		
													一		\neg			$\neg \dashv$	\dashv	_	\dashv	_ -	1 Business	Day	
															\dashv					\dashv		_	Rush		
Condition	of name:	ulo:	LJ				<u>[</u>		L					1		l			1		L		2 Business	Days	
							Date		Time		erature		/ed:			_							Expedited 5 Business	Days	
Relinguish		<u>د آ</u>	2 act	n			1-27	-98	1340	Recei													Standard	·	
Relinguish							Date		_	Recei	•									*			10 Busines	s Days	DX
Relinguish							Date		Time	Pecei	ved by	labota	tory		CAS	. [)atd	199	<u>y</u> T	Time	134	f0	DVE 2	19/92	8
istribution:	White	Сору –	Laborat	tory Ca	nary Co _l	py ~ ARC	O Environ	mental Eng	Ineenng [.] Pi	nk Co	y – Co	nsulta	nt				1	1						3150	