

1921 Ringwood Avenue • San Jose, California 95131-1721 • (408) 453-7300 • Fax (408) 437-9526

			Date Proje		27, 1997 05-135.007
To:					
Ms. Susan Hug Alameda Coun Department of 1131 Harbor B Alameda, Calif	ty Healt Environ ay Park	way, Suite 250	gency		
We are enclosi	ng:				
Copies 1			997 groundwate stem performan station 6148, O	ce evaluat	ion report for
For your:	X	Use Approval Review Information	Sent by:	<u>X</u>	Regular Mail Standard Air Courier Other:
		ndwater monitoring ompany. Please ca		uestions or	ou per the request of comments.

Project Manager

cc: Keyin Graves, RWQCB - SFBR Paul Supple, ARCO Products Company File

Date:

June 25, 1997

Re: ARCO Station #

6148 • 5131 Shattuck Avenue • Oakland, CA
First Quarter 1997 Groundwater Monitoring Results and
Remediation System Performance Evaluation Report
"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached proposal or report are true and correct."

Submitted by:

Paul Supple

Environmental Engineer

June 27, 1997 Project 20805-135.007

Mr. Paul Supple **ARCO Products Company** P.O. Box 6549 Moraga, California 94570

First quarter 1997 groundwater monitoring program results and remediation system performance evaluation report, ARCO service station 6148, Oakland, California

Dear Mr. Supple:

This letter presents the results of the first quarter 1997 groundwater monitoring program at ARCO Products Company (ARCO) service station 6148, 5131 Shattuck Avenue, Oakland, California (Figure 1). Operation and performance data for the on-site soil-vapor extraction (SVE), air-sparge (AS), and air-bubbling remediation systems are also presented. The quarterly monitoring program complies with Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the scope, limitations, and cost of work performed during the monitoring event.

Please call if you have questions.

Sincerely,

EMCON

Gowri Kowtha

Staff Engineer

ynn Gallagher, R.G. 6090

Project Geologist

EMCON

RG6090

ARCO QUARTERLY REPORT

Station No.:	6148	Address:	5131 Shattuck Avenue, Oakland, California	
EMCON Projec	t No.	•	20805-135.007	
ARCO Environ	mental Engine	er/Phone No.:	Paul Supple /(510) 299-8891	
EMCON Project	t Manager/Ph	one No.:	Valli Voruganti /(408) 453-7300	
Primary Agency	/Regulatory I	D No.:	ACHCSA /Susan Hugo	
Reporting Perio	•		January 1, 1997 to April 1, 1997	

WORK PERFORMED THIS QUARTER (First-1997):

- 1. Conducted quarterly groundwater monitoring and sampling for first quarter 1997.
- 2. Prepared and submitted quarterly report for fourth quarter 1996.
- 3. Operated air-bubbling system.

WORK PROPOSED FOR NEXT QUARTER (Second- 1997):

- 1. Perform quarterly groundwater monitoring and sampling for second quarter 1997.
- 2. Continue operation air-bubbling system.
- 3. Restart soil-vapor extraction (SVE) and air-sparge systems if hydrocarbon concentrations warrant.

of Remediation Systems

Quarterly Groundwater Monitoring and Operation and Maintenance

4. Prepare and submit quarterly report for first quarter 1997.

QUARTERLY MONITORING:

Current Phase of Project:

	The SVE system was shut down on October 3, 1996, because of maintenance problems. The SVE system remained shut down because of low TVHg concentrations in the extracted soil vapor.
Frequency of Sampling:	Quarterly (groundwater), Monthly (SVE)
Frequency of Monitoring:	Quarterly (groundwater),
	Monthly (SVE, air-sparge, and air-bubbling)
Is Floating Product (FP) Present On-sit	e: Yes 🛛 No
Bulk Soil Removed to Date:	560 cubic yards of TPH-impacted soil
Bulk Soil Removed This Quarter:	None
Water Wells or Surface Waters,	
within 2000 ft., impacted by site:	None
Current Remediation Techniques:	SVE, Air-Sparge, and Air-Bubbling Systems
Average Depth to Groundwater:	16.10 feet
Groundwater Gradient (Average):	0.018 ft/ft toward south-southwest (consistent with past events)
SVE QUARTERLY OPERATI	ON AND PERFORMANCE:
Equipment Inventory:	Therm Tech Model CATVAC-10E, Electric/Catalytic Oxidizer
Operating Mode:	Catalytic Oxidation
BAAQMD Permit #:	25126
TPH Conc. End of Period (lab):	NA (Not Available)
Benzene Conc. End of Period (lab):	NA
Flowrate End of Period:	NA
	EMCON

HC Destroyed This Period:	0.0 pounds
HC Destroyed to Date:	1885.6 pounds
Utility Usage	
Electric (KWH):	3450 KWH
Operating Hours This Period:	0.0 hours
Percent Operational:	0.0%
Operating Hours to Date:	2694.1 hours
Unit Maintenance:	Routine monthly maintenance
Number of Auto Shut Downs:	0
Destruction Efficiency Permit	
Requirement:	90%
Percent TPH Conversion:	NA
Average Stack Temperature:	NA '
Average Source Flow:	0.0 scfm
Average Process Flow:	0.0 scfm
Average Source Vacuum:	0 inches of water

ATTACHED:

- Table 1 Groundwater Monitoring Data, First Quarter 1997
- Table 2 Historical Groundwater Elevation and Analytical Data, Petroleum Hydrocarbons and Their Constituents
- Table 3 Historical Groundwater Analytical Data, Volatile and Semivolatile Organic Compounds
- Table 4 Historical Groundwater Analytical Data, Metals
- Table 5 Soil-Vapor Extraction System Operation and Performance Data
- Table 6 Soil-Vapor Extraction Well Data
- Table 7 Air-Sparge and Air-Bubbling Systems Operation and Performance Data
- Figure 1 Site Location
- Figure 2 Site Plan
- Figure 3 Groundwater Data, First Quarter 1997
- Figure 4 Soil-Vapor Extraction and Treatment System, Historical System Influent TVHG and Benzene Concentrations
- Figure 5 Soil-Vapor Extraction and Treatment System, Historical Hydrocarbon Removal Rates
- Appendix A Analytical Results and Chain of Custody Documentation, First Quarter 1997
 Groundwater Monitoring Event
- Appendix B SVE System Monitoring Data Log Sheets

cc: Susan Hugo, ACHCSA Kevin Graves, RWQCB-SFBR

Table 1 Groundwater Monitoring Data First Quarter 1997

ARCO Service Station 6148
5131 Shattuck Avenue, Oakland, California

Date: 6-6-97

Well Designation	Water Level Field Date	Top of Casing Elevation	an Depth to Water	Groundwater SE Elevation	Floating Product	Groundwater Relow Direction	Hydraulic By Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene Benzene BPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	ਜ Total Xylenes ਨੂੰ EPA 8020	MTBE MEPA 8020	MTBE S EPA 8240	DII & Grease SM 5520C	TRPH	TPHD LUFT Method
MW-i	03-25-97	107.80	17.68	90.12	ND	ssw	0.018	03-25-97	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-2	03-25-97	107 28	17.32	89.96	ND	SSW	0.018	03-25-97	670	23	58	13	120	28				
MW-3	03-25-97	107.61	17.99	89.62	ND	SSW	0.018	03-25-97	<50	<0.5	<05	<0.5	<0.5	94				
MW-4	03-25-97	106.71	16.10	90.61	ND	ssw	0 018	03-25-97	<50	<0.5	<0.5	<0.5	< 0.5	<3				
MW-5	03-25-97	106 60	16.38	90.22	ND	SSW	0.018	03-25-97	<50	<0.5	<0.5	<0.5	< 0.5	5				
MW-6	03-25-97	105.13	14 15	90.98	ND	SSW	0.018	03-25-97	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-7	03-25-97	107.05	14 80	92.25	ND	SSW	0.018	03-25-97	<50	<0.5	<0.5	<0.5	< 0.5	<3				

ft-MSL: elevation in feet, relative to mean sea level

MWN. ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

μg/L micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl tert-butyl ether SM: standard method mg/L: milligrams per liter

TRPH total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND: none detected SSW south-southwest

- -. not analyzed or not applicable

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	구 Vop of Casing C Elevation	33 Depth to Water	Groundwater GElevation	Floating Product	Groundwater Flow Direction	Hydraulic	Water Sample Field Date	TPHG	н Benzene Т EPA 8020	Toluene	Ethylbenzene	Total Xylenes	The MTBE The SOLO	± MTBE № EPA 8240	B Oll & Gresse S SM 5520C	в ТКРН 7 ЕРА 418.1	TPHD CLUFT Method
	03-20-95	108.03	15.75	92 28	ND	sw	0.02	03-20-95	830	140	5	41	110					
MW-1	06-06-95	108.03	17.68	90 35	ND	SW		06-06-95	210	30	<0.5	7.3	16					
MW-1	08-24-95	107.80	17.45	90.35	ND	SW	0.014											
MW-1	11-16-95	107.80	17 64	90.16	ND	sw		11-16-95	<50	5.6	<0.5	1.4	1.2	55				
MW-1	02-27-96	107.80	15 21	92.59	ND	sw	0.016	02-27-96	1400	240	88	44	110	200				
MW-1	05-15-96	107.80	17.53	90 27	ND	sw	0.015	05-15-96	Not sampled	l: well samp	led semi-a	nnually, du	ring the firs	t and third	quarter			
MW-1	08-14-96	107.80	17.15	90.65	ND	sw	0.021	08-14-96	98	18	<0.5	1.9	1	45	·			
MW-1	11-11-96	107.80	17 78	90.02	ND	sw	0.015	11-11-96	Not sampled	l: well samp	led semi-a	nnually, du	ring the firs	t and third	quarter			
MW-1	03-25-97	107.80	17 68	90.12	ND	SSW	0.018	03-25-97	<50	<0.5	<0.5	<0.5	<0.5	<3	••			
MW-2	03-20-95	107.43	15 50	91.93	ND#	SW	0.02	03-20-95	Not sampled	l. floating p	roduct ente	red well du	ring purgen	ıg				
MW-2	06-06-95	107.43	17 43	90.00	ND	SW	0.016	06-06-95	1200	60	21	35	140			••		
MW-2	08-24-95	107.28	17 22	90.06	ND	sw	0.014	08-24-95	Not sampled	l: well was i	inaccessible	due to cor	struction					
MW-2	11-16-95	107.28	17.36	89.92	ND	SW		11-16-95	360	45	1.3	71	7.5	210				
MW-2	02-27-96	107.28	14.82	92.46	ND	sw		02-27-96	8900	1400	980	150	550	940				
MW-2	05-15-96	107.28	17 40	89.88	ND	SW			480	82	48	8	48	87				
MW-2	08-14-96	107.28	17.00	90 28	ND	SW	0.021	08-14-96	130	22	4	2	9	120				
MW-2	11-11-96	107.28	17.55	89.73	ND	SW			1200	150	120	21	160	110				
MW-2	03-25-97	107.28	17 32	89.96	ND	SSW	0 018	03-25-97	670	23	58	13	120	28				

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	TSM-13 Groundwater TS Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oll & Grease SM 5520C	TRPH • EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	II-MSL	feet	MWN	ft/ft		μg/L	µg/Ľ	μg/L	µg/L	µg/L	μg/L	µg/L	mg/L	mg/L	µg/L.
MW-3	03-20-95	107.77	15.60	92 17	ND	SW	0.02	03-20-95	29000	880	190	760	2000	, irriadia			16	
MW-3	06-06-95	107.77	17.54	90 23	ND	sw		06-06-95	22000	450	54	380	1300				7.1	
MW-3	08-24-95	107.61	17.42	90.19	ND	SW	0.014	08-24-95								• •	7.1	
MW-3	11-16-95	107.61	17.58	90.13	ND	SW	0.014		13000	210	<20	320	1000	790			8.3	
MW-3	02-27-96	107.61	15.03	92.58	ND	SW		02-27-96	9700	94	15	290	720	430		••	10	
MW-3	05-15-96	107.61	17.35	90 26	ND	SW		05-15-96	5600	66	12	37	67	230		• • • • • • • • • • • • • • • • • • • •		
MW-3	08-14-96	107.61	17.10	90.51	ND	SW	0 021		830	17	<1*	8	7	110				
MW-3	11-11-96	107.61	17.73	89 88	ND	SW	0.015	11-11-96	500	28	3	12	13	150				
MW-3	03-25-97	107.61	17.99	89 62	ND	SSW	810.0		<50	<0.5	<0.5	<0.5	<0.5	94			••	- "
MW-4	03-20-95	106 58	13.85	92 73	ND	SW	0 02	03-20-95	88	1	<0.5	<0.5	0.7					
MW-4	06-06-95	106.58	15.70	90 88	ND	SW	0.016	06-06-95	<50	<0.5	<0.5	<0.5	< 0.5			••		
MW-4	08-24-95	106.71	15.86	90 85	ND	SW	0.014	08-24-95	Not sampled	l: well was	ınaccessibk	due to cor	struction					
MW-4	11-16-95	106.71	16.10	90.61	ND	SW	0 012	11-16-95	<50	<0.5	<0.5	< 0.5	< 0.5	6	•-			
MW-4	02-27-96	106.71	13.72	92.99	ND	SW	0.016	02-27-96	<50	<0.5	<0.5	< 0.5	<0.5	10				
MW-4	05-15-96	106 71	15.90	90.81	ND	SW	0.015	05-15-96	Not sampled	l: well samı	oled semi-a	nnually, đư	ring the firs	st and third	quarter			
MW-4	08-14-96	106 71	15.68	91.03	ND	SW	0.021	08-14-96	<50	< 0.5	<0.5	<0.5	<0.5	<3				
MW-4	11-11-96	106.71	16.19	90.52	ND	sw	0.015	11-11-96	Not sampled	l: well samp	oled semi-a	nnually, du	ring the firs	st and third	quarter			
MW-4	03-25-97	106 71	16.10	90.61	ND	SSW	0.018	03-25-97	<50	<0.5	<0.5	< 0.5	<0.5	<3				

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oll & Grease SM 5520C	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L
MW-5	03-20-95	106.68	14.92	91.76	ND	sw	0 02	03-20-95	21000	6900	450	800	1300					
MW-5	06-06-95	106.68	16.61	90.07	ND	SW	0 016	06-06-95	6500	1700	<20	120	69					
MW-5	08-24-95	106.60	16.47	90.13	ND	SW	0.014	08-24-95	Not sampled	l: well was	inaccessible	due to cor	struction					
MW-5	11-16-95	106.60	16.69	89.91	ND	SW	0.012	11-16-95	1800	470	<5	17	5	1000				••
MW-5	02-27-96	106. 6 0	14 35	92 25	ND	SW	0 016	02-27-96	10000	1000	71	690	1000	440	450		••	
MW-5	05-15-96	106.60	16 58	90 02	ND	SW	0 015	05-15-96	3400	350	6	72	20	220				
MW-5	08-14-96	106.60	17 26	89 34	ND	SW	0.021	08-14-96	2100	130	2.7	47	4.7	220				
MW-5	11-11-96	106.60	16.62	89.98	ND	SW	0.015	11-11-96	1200	31	1	8	2	130	••			
MW-5	03-25-97	106.60	16.38	90.22	ND	SSW	0.018	03-25-97	<50	<0.5	<0.5	<0.5	<0.5	5	••		••	
MW-6	03-20-95	105.16	12 13	93 03	ND	sw	0.02	03-20-95	<50	<0.5	<0.5	<0.5	<0.5					
MW-6	06-06-95	105.16	13.95	91.21	ND	SW	0.016	06-06-95	<50	<0.5	<0.5	< 0.5	<0.5		• •		•-	
MW-6	08-24-95	105.13	14.07	91.06	ND	SW	0.014	08-24-95	<50	< 0.5	<0.5	< 0.5	<0.5	<3				
MW-6	11-16-95	105.13	14.34	90 79	ND	SW	0.012	11-16-95	<60	< 0.5	<0.5	< 0.5	<0.5					
MW-6	02-27-96	105.13	12 00	93 13	ND	SW	0.016	02-27-96	<50	<0.5	<0.5	< 0.5	<0.5	<3				
MW-6	05-15-96	105.13	14.10	91.03	ND	SW	0.015	05-15-96	Not sampled	l· well samp	oled annual	ly, during t	he first qua	rter				
MW-6	08-14-96	105.13	13 70	91.43	ND	SW	0.021	08-14-96										
MW-6	11-11-96	105.13	14.11	91 02	ND	SW	0.015	11-11-96	Not sampled	l: well sam	oled annual	ly, du r ing ti	he first qua	rter				
MW-6	03-25-97	105.13	14.15	90 98	ND	SSW	0.018	03-25-97	<50	< 0.5	< 0.5	< 0.5	<0.5	<3				

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1995 - Present**

Well Designation	Water Level Field Date	W- Top of Casing	33 Depth to Water	TSW-rs TSW-rst Groundwater TS Elevation	Floating Product	G Groundwater Flow Direction	Hydraulic R Gradient	Water Sample Field Date	TPHG	Benzene P EPA 8020	Toluene	Ethylbenzene Ep 8020	Total Xylenes	MTBE T EPA 8020	MTBE EPA 8240	B Oll & Grease	m TRPH	TPHD LUFT Method
MW-7	03-20-95	107.08	12.32	94.76	ND	sw	0.02	03-20-95	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	06-06-95	107.08	14.59	92 49	ND	sw	0.016	06-06-95	Not sampled	: well sam	oled semi-a	nnually, du	ring the firs	st and third	quarters			
MW-7	08-24-95	107 05	14.64	92.41	ND	SW	0.014	08-24-95	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-7	11-16-95	107 05	15.30	91.75	ND	SW	0.012	11-16-95	Not sampled	: well sam	oled semi-a	nnually, du	ring the fire	st and third	quarters			
MW-7	02-27-96	107 05	12.24	94.81	ND	SW	0.016	02-27-96	<50	< 0.5	< 0.5	<0.5	<0.5	<3				
MW-7	05-15-96	107.05	14 65	92 40	ND	SW	0.015	05-15-96	Not sampled	: well sam	oled annual	ly, during t	he first qua	rter				
MW-7	08-14-96	107.05	14.35	92 70	ND	sw	0.021	08-14-96	Not sampled	l: well sam	pled annual	ly, during t	he first qua	rter				
MW-7	11-11-96	107 05	14.92	92.13	ND	SW	0.015	11-11-96	Not sampled	l: weIl sam	pled annual	ly, during t	he first qua	rter				
MW-7	03-25-97	107 05	14.80	92.25	ND	SSW	0.018	03-25-97	<50	< 0.5	<0.5	<0.5	<0.5	<3				

Table 2 Historical Groundwater Elevation and Analytical Data Petroleum Hydrocarbons and Their Constituents 1995 - Present**

ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California

Date: 06-06-97

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oil & Grease SM 5520C	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	·feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L

ft-MSL. elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft. foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

μg/L: micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl tert-butyl ether

SM: standard method

mg/L: milligrams per liter

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND: none detected

SW southwest

SSW: south-southwest

^{#:} floating product entered the well during purging

^{- -.} not analyzed or not applicable

^{^:} method reporting limit was raised due to. (1) high analyte concentration requiring sample dilution, or (2) matrix interference

^{**} For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996)

Table 3
Historical Groundwater Analytical Data
Volatile and Semivolatile Organic Compounds
1994 - Present**

			_	d Volatile O EPA Metho	rganic Comp d 5030/601	ounds			olatile Organ EPA Method	nic Compoun 1 3510/8270	ds
Well Designation	Water Sample Field Date	Terrachloro- cthene	Trichloro- ethene	Chloroform	cıs-1,2-Dichloro- ethene	Vinyl Chloride	1,1-Dichloro- ethane	Naphthalene	2-Methyl- naphthalene	Bis (2ethylhexyl) Phthalate	Di-n-octyl Phthalate
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	02-02-94	11	1.1	ND	ND	ND	ND				
MW-1	04-29-94	13	1.3	0.5	< 0.5	< 0.5	< 0.5				
MW-1	08-02-94	15	1.4	0.7	0.7	< 0.5	<0.5	••		• •	
MW-1	11-16-94	12	1.1	0.5	1.2	<0.5	<0.5				
MW-1	03-20-95	Not analyzed: s	sampling for a	dditional par	ameters was o	liscontinued					
MW-2	02-02-94	13	ND	ND	ND	ND	ND				
MW-2	04-29-94	9,4	1.9	< 0.5	2.2	<0.5	<0.5				
MW-2	08-02-94	15	2	<0.5	2.9	<0.5	< 0.5		• •		
MW-2	11-16-94	9.6	18	<0.5	2.1	< 0.5	< 0.5				
MW-2	03-20-95	Not analyzed: s	sampling for a	ddittonal par	ameters was	liscontinued					
MW-3	02-02-94	ND*	ND*	ND*	ND*	ND*	ND*	160	91	9	ND
MW-3	04-29-94	1.7	<0.5	<0.5	<0.5	<0.5	<0.5	110	50	<10	<10
MW-3	08-02-94	1	<0.5	<0.5	<0.5	<0.5	<0.5	120	53	10	<10
MW-3	11-16-94	1.3	< 0.5	< 0.5	<0.5	<0.5	<0.5	100	53	<10	<10
MW-3		Not analyzed: s									
MW-4	02-02-94	1.4	ND	ND	ND	ND	ND			# ₩	
MW-4	04-29-94	1.9	<0.5	<0.5	< 0.5	< 0.5	<0.5				
MW-4	08-02-94	<0.5	<0.5	< 0.5	<0.5	<0.5	< 0.5				
MW-4	11-16-94	1.8	<0.5	<0.5	<0.5	<0.5	<0.5		• -		
MW-4	03-20-95	Not analyzed: s	sampling for a	dditional par	ameters was o	liscontinued					
MW-5	02-02-94	2.7	ND	ND	ND	ND	ND				
MW-5	04-29-94	10	2.7	<0.5	2.4	<0.5	< 0.5		• •		
MW-5	08-02-94	13	5.4	<0.5	5.7	< 0.5	<0.5				
MW-5	11-16-94	1,1	1	< 0.5	3.5	1.3	< 0.5				
MW-5	03-20-95	Not analyzed: s	ampling for a	dditional par	ameters was o	liscontinued					

Table 3 Historical Groundwater Analytical Data Volatile and Semivolatile Organic Compounds 1994 - Present**

Date: 06-06-97

			-	l Volatile O EPA Metho	rganic Comp d 5030/601	ounds			olatile Organ EPA Method	ic Compoun 1 3510/8270	ds
Well Designation	Water Sample Field Date	Tetrachloro- ethene	Trichloro- ethene	Chloroform	cis-1,2-Dichloro- ethene	Vinyl Chłoride	1,1-Dichloro- ethane	Naphthalene	2-Methyl- naphthalene	Bis (2ethylhexyl) Phthalate	Di-n-octyl Phthalate
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L,
MW-6	02-02-94	100	ND	6.7	ND	ND	ND				
MW-6	04-29-94	95	6.6	7.2	<2.5	<2.5	<2.5	••			
MW-6	08-02-94	87	6.1	4.6	<2.5	<2.5	<2.5	• •			
MW-6	11-16-94	86	6.8	8.9	<2.5	<2.5	<2.5				• -
MW-6	03-20-95	Not analyzed: s	ampling for a	dditional par	ameters was o	liscontinued					
MW-7 MW-7 MW-7 MW-7 MW-7	02-02-94 04-29-94 08-02-94 11-16-94 03-20-95	3.4 3.4 3.3 3.3 Not analyzed: s	ND <0.5 <0.5 <0.5 ampling for a	0 8 1 1 0 8 <0 5 dditional par	ND <0.5 <0.5 <0.5 ameters was o	ND <0.5 <0.5 <0.5 liscontinued	ND <0.5 <0.5 <0.5			 	
AS-1	09-30-93	29	1.5	i	ND	ND	ND				
AS-2	08-11-95	Not analyzed: s	ampling for a	dditional par	ameters was r	ot initiated					
AS-3	08-11-95	Not analyzed: s	ampling for a	dditional par	ameters was r	ot initiated					
AS-4	08-11-95	Not analyzed; s	ampling for a	iditional par	ameters was r	ot initiated					
AS-5	08-11-95	Not analyzed: s	ampling for a	iditional par	ameters was r	ot initiated					

µg/L: micrograms per liter

EPA: United Statest Environmental Protection Agency

ND none detected

^{*:} sample was analyzed for volatile organic compounds using USEPA Method 624 (only BTEX was detected)

**: For previous historical analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996).

Table 4
Historical Groundwater Analytical Data
Metals

Date. 06-06-97

Well Designation Water Sample Freid/Date		Chromium R EPA 6010	Lead	Zinc	Nickel : EPA 6010
	μg/L	µg/L	μg/L	μg/L	μg/L
MW-1 03-18-	92 <3	5	3	31	<20
MW-1 06-12-	92	••			
MW-I 09-14-	92				
MW-1 10-07-	92				
MW-1 01-22-	93				
MW-1 04-14-	93 <3	<5	3	25	<20
MW-1 09-30-	93 Not analyzed: sampl	ing for additional para	meters was disconti	nued	
MW-2 03-18- MW-2 06-12-		21 ing for additional para	9	54	38
MW-3 03-18-		67	27	156	113
MW-3 06-12-					
MW-3 09-14-					
MW-3 10-07-	•	ontained floating produ		22	22
MW-3 01-22- MW-3 04-14-		10 <5	8	28 25	23 <20
MW-3 04-14- MW-3 09-30-		50	26	100	70
MW-3 09-30- MW-3 11-16-		ing for additional para			70
MW-4 11-12- MW-5 11-12- MW-6 11-12- MW-7 11-12-	92 Not analyzed, sampl 92 Not analyzed; sampl	ing for additional parating for additional parating for additional parating for additional parating for additional parat	meters was not initi meters was not initi	ated ated	
AS-1 09-30- AS-2 08-11- AS-3 08-11- AS-4 08-11-	95 Not analyzed: sampl 95 Not analyzed: sampl	ing for additional para ing for additional para ing for additional para ing for additional para	meters was not initi meters was not initi	ated ated	

EPA: United Statest Environmental Protection Agency

μg/L' micrograms per liter

- -: not analyzed

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/ catalytic oxidizer

Start-Up Date: 09-27-95

Consultant: EMCON

Operation and Performance Data From: 09-27-95

To: 04-01-97

1921 Ringwood Avenue San Jose, California

San Jose, Camorna		S	ystem was sh	ut down on 10	0-3-96.
Date Begin:	09-27-96	10-01-95	01-01-96	02-01-96	03-01-96
Date End:	10-01-95	01-01-96	02-01-96	03-01-96	04-01-96
Mode of Oxidation:	Cat-ox	Cat-ox	Cat-ox	Cat-ox	Cat-ox
Days of Operation:	3	11	16	7	11
Days of Downtime:	1	81	15	22	20
Average Vapor Concentrations (1)					
Well Field Influent: ppmv (2) as gasoline	3800	1200	670	230	320
mg/m3 (3) as gasoline	14000	4400	2790	830	1300
ppmv as benzene	81	19	NA (13)	0.6	1.6
mg/m3 as benzene	260	61	NA	2	5.2
System Influent: ppmv as gasoline	1800	600	415	230	320
mg/m3 as gasoline	6700	2200	1730	830	1300
ppmv as benzene	41	11	NA	0.6	1.6
mg/m3 as benzene	130	34	NA	2	5.2
System Effluent: ppmv as gasoline	52	30	3.8*	21	26
mg/m3 as gasoline	190	110	20	76	110
ppmv as benzene	1.1	0.5	NA	< 0.1	<0.1
mg/m3 as benzene	3 5	1.5	NA	<0.5	<0.5
Average Well Field Flow Rate (4), scfm (5):	75.0	104.0	124.6	128.2	126 4
Average System Influent Flow Rate (4), scfm:	103.6	132.3	111.9	128 2	126 4
Average Destruction Efficiency (6), percent (7):	97.2	95 0	98.8	90.8	91 5
Average Emission Rates (8), pounds per day (9)					
Gasoline:	1.77	1.31	0.20	0.88	1.25
Benzene:	0.03	0.02	0.00	0.01	0.01
Operating Hours This Period:	74.9	255.3	381.7	157.2	253.0
Operating Hours To Date:	74.9	330.2	711.9	869.1	1122.2
Pounds/ Hour Removal Rate, as gasoline (10):	3.93	1.71	1.30	0.40	0.62
Pounds Removed This Period, as gasoline (11):	294.4	<u>437,3</u>	<u>496.6</u>	<u>62.6</u>	<u>155.6</u>
Pounds Removed To Date, as gasoline:	294.4	731.7	1228.3	1290 9	1446.5
Gallons Removed This Period, as gasoline (12):	<u>47.5</u>	<u>70.5</u>	<u>80.1</u>	10.1	25.1
Gallons Removed To Date, as gasoline:	47.5	118.0	198.1	208.2	233.3

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/ catalytic oxidizer

Consultant: EMCON

1921 Ringwood Avenue San Jose, California

Start-Up Date: 09-27-95 Operation and Performance Data From: 09-27-95

To: 04-01-97

		S	ystem was sh	ut down on 10	0-3-96.
Date Begin:	04-01-96	05-01-96	06-01-96	07-01-96	08-01-96
Date End:	05-01-96	06-01-96	07-01-96	08-01-96	09-01-96
Mode of Oxidation:	Cat-ox	Cat-ox	Cat-ox	Cat-ox	Cat-ox
Days of Operation:	22	3	3	20	11
Days of Downtime:	8	28	27	11	20
Average Vapor Concentrations (1)					
Well Field Influent ppmv (2) as gasoline	190	160	180	170	170
mg/m3 (3) as gasoline	760	650	740	690	710
ppmv as benzene	0.9	0.6	<i< td=""><td>0.4</td><td><1</td></i<>	0.4	<1
mg/m3 as benzene	3	2	<2.5	1.3	<2.5
System Influent: ppmv as gasoline	190	160	180	170	170
mg/m3 as gasoline	760	650	740	690	710
ppmv as benzene	0.9	0.6	<l< td=""><td>0.4</td><td><1</td></l<>	0.4	<1
mg/m3 as benzene	3	2	<2.5	1 3	<2 5
System Effluent: ppmv as gasoline	10	10	<5	6	9
mg/m3 as gasoline	41	39	<20	23	38
ppmv as benzene	<0.2	<02	< 0.2	< 0.2	< 0.2
mg/m3 as benzene	<0.5	<0.5	<0.5	<0.5	<0.5
Average Well Field Flow Rate (4), scfm (5):	100.3	91 8	116.7	125.7	125.4
Average System Influent Flow Rate (4), scfm:	100 3	91.8	116.7	125.7	125.4
Average Destruction Efficiency (6), percent (7):	94.6	94.0	97.3	96.7	94.6
Average Emission Rates (8), pounds per day (9)					
Gasoline:	0.37	0 32	0.21	0.26	0.43
Benzene:	0.00	0 00	0.01	0.01	0.01
Operating Hours This Period:	532.5	72.9	<u>83.7</u>	<u>478.9</u>	<u>255.2</u>
Operating Hours To Date:	1654.6	1727.6	1811 3	2290.1	2545.3
Pounds/ Hour Removal Rate, as gasoline (10):	0.29	0.22	0.32	0.32	0.33
Pounds Removed This Period, as gasoline (11):	151.9	16.3	27.1	155.4	85.0
Pounds Removed To Date, as gasoline:	1598.4	1614.7	1641.8	1797.2	1882.2
Gallons Removed This Period, as gasoline (12):	24.5	<u>2.6</u>	<u>4.4</u>	<u>25.1</u>	<u>13.7</u>
Gallons Removed To Date, as gasoline:	257.8	260.5	264.8	289.9	303 6

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Consultant: EMCON

1921 Ringwood Avenue

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/ catalytic oxidizer

Start-Up Date: 09-27-95 Operation and Performance Data From: 09-27-95

	1921 Ringwood Avenue San Jose, California		Operation and			1-01-97
Date Begin:		09-01-96	10-01-96	11-01-96	12-01-96	01-01-97
Date End:		10-01-96	11-01-96	12-01-96	01-01-97	04-01-97
Mode of Oxidation:		Cat-ox	Cat-ox	Cat-ox	Cat-ox	Cat-ox
Days of Operation: Days of Downtime:		6 24	0 31	0 30	0 31	0 90
Average Vapor Conce	ntrations (1)					
Well Field Influent	: ppmv (2) as gasoline	NA	450	NA	NA	NA
	mg/m3 (3) as gasoline	NA	1900	NA	NA	NA
	ppmv as benzene	NA	<1	NA	NA	NA
	mg/m3 as benzene	NA	<4	NA	NA	NA
System Influen	: ppmv as gasoline	NA	330	NA	NA	NA
·	mg/m3 as gasoline	NA	1400	NA	NA	NA
	ppmv as benzene	NA	<1	NA	NA	NA
	mg/m3 as benzene	NA	<4	NA	NA	NA
System Effluen	t: ppmv as gasoline	NA	20	NA	NA	NA
•	mg/m3 as gasoline	NA	83	NA	NA	NA
	ppmv as benzene	NA	< 0.1	NA	NA	NA
	mg/m3 as benzene	NA	<0.4	NA	NA	NA
Average Well Field Flo	w Rate (4), scfm (5).	125.2	63.7	0.0	91.8	0.0
Average System Influer		125.2	63.3	0.0	81.9	0.0
Average Destruction E	fficiency (6), percent (7):	NA	94.1	NA	NA	NA
Average Emission Rat	cs (8), pounds per day (9)					
Gasoline:		NA	0.47	NA	NA	NA
Benzene:		NA	0.00	NA	NA	NA
Operating Hours This P	eriod:	140.7	7.5	0.0	0.6	00
Operating Hours To Da	te:	2686.0	2693.5	2693 5	2694 1	2694 1
Pounds/ Hour Removal	Rate, as gasoline (10)	0.00	0.45	0.00	0.00	0.00
Pounds Removed This	Period, as gasoline (11):	0.0	<u>3,4</u>	0.0	0.0	0.0
Pounds Removed To D	ate, as gasoline:	1882 2	1885.6	1885.6	1885.6	1885.6
Gallons Removed This	Period, as gasoline (12):	0.0	0.5	0.0	0.0	0.0
Gallons Removed To D	ate, as gasoline:	303 6	304.2	304.2	304.2	304 2

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148 Vapor Treatment Unit: ThermTech Model

Location: 5131 Shattuck Avenue

CATVAC-10E electric/ catalytic oxidizer

Oakland, California

Consultant: EMCON

Start-Up Date: 09-27-95

1921 Ringwood Avenue San Jose, California

Operation and Performance Data From: 09-27-95

To: 04-01-97

System was shut down on 10-3-96.

CURRENT REPORTING PERIOD:	01-01-97	to	04-01-97
DAYS / HOURS IN PERIOD:	90	2160.0)
DAYS / HOURS OF OPERATION:	0	0.0)
DAYS / HOURS OF DOWN TIME:	90	2160.0)
PERCENT OPERATIONAL:		0.0) %
PERIOD POUNDS REMOVED:	0.0		
PERIOD GALLONS REMOVED:	0.0		
AVERAGE WELL FIELD FLOW RATE (scfm):		0.0)
AVERAGE SYSTEM INFLUENT FLOW RATE (scfm):		0.0)

^{1.} Average concentrations are based on discrete sample results reported during the month; refer to Appendix B for discrete sample results For the period of January 1, 1996 to February 1, 1996, laboratory analytical results were unavailable. The average concentrations were based on photoionization de (PID) field readings taken during the month of January 1996.

^{2.} ppmv parts per million by volume

mg/m3 milligrams per cubic meter

^{4.} Average flow rates (time weighted average) are based on instantaneous flow rates recorded during the month, refer to Appendix B for instantaneous flow data.

^{5.} scfm: flow in standard cubic feet per minute at one atmosphere and 70 degrees Fahrenheit

^{6.} Average destruction efficiencies are calculated using monthly average concentrations; refer to Appendix B for instantaneous destruction efficiency data

^{7.} destruction efficiency, percent = ([system influent concentration (as gasoline in mg/m3)] - system effluent concentration (as gasoline in mg/m3)] / system influent concentration (as gasoline in mg/m3)) x 100 percent

^{8.} Average emission rates are calculated using monthly average concentrations and flow rates; refer to Appendix B for instantaneous emission rate data.

^{9.} emission rates (pounds per day) = system effluent concentration (as gasoline or benzene in mg/m3) x system influent flow rate (scfm) x 0 02832 m3/ft3 x 1440 minutes/day x 1 pound/454,000 mg

^{10.} pounds/ hour removal rate (as gasoline) = well field influent concentration (as gasoline in mg/m3) x well field influent flow rate (scfm) x 0.02832 m3/ft3 x 60 minutes/hour x 1 pound/454,000 mg

^{11.} pounds removed this period (as gasoline) = pounds/ hour removal rate x hours of operation

^{12.} gallons removed this period (as gasoline) = pounds removed this period (as gasoline) x 0.1613 gallons/pound of gasoline

¹³ not available

Table 6
Soil-Vapor Extraction Well Data

ARCO Service Station 6148

5131 Shattuck Avenue, Oakland, California

Date. 05-28-97

						Well Ide	ntification					
Ì		VW-1		<u> </u>	VW-2	·		VW-3			VW-4	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve	•	Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O
I For SVE monitori	ng well data prior	to January 1, 199	6, please refer to the	l he fourth quarter 19	995 groundwater i	monitoring report	for this site					
01-12-96	open	300 PID	25 0	open	500 PID	25.0	open	430 PID	25.0	open	580 PID	25.0
02-15-96	open	NA	27 0	open	NA	27.0	open	NA	26.0	open	NA	26.0
03-19-96	closed	14 1 PID	00	closed	18.8 PID	0.0	closed	30.2 PID	0.0	closed	16 6 PID	0.0
05-08-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-96	open	190 PID	10.0	open	183 PID	10.0	open	167 PID	10.0	open	128 PID	10.0
06-07-96	open	NA	11.0	open	NA	10.0	open	NA	11.0	open	NA	110
06-28-96	open	290 PID	NA	open	550 PID	NA	open	400 PID	NA	closed	210 PID	NA
07-10-96	open	361 PID	8.0	open	302 PID	8.0	open	247 PID	8.0	closed	54 PID	00
08-05-96	open	NA	8.0	open	NA	7.0	open	NA	6.0	closed	NA	0.0
08-12-96	closed	NA	0.0	closed	NA	00	closed	NA	0.0	closed	NA	00
09-27-96	open (b)	NA	NA	open (b)	NA	NA	open	NA	NA	closed	NA	NA
09-30-96	open	200 FID	NA	open	220 FID	NA	open	800 FID	NA	open	>1000 FID	NA
10-03-96	open	NA	90	open	NA	10.0	open	NA	9.0	open	NA	10.0
12-04-96	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
01-08-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
02-04-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA

TVHG concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O: inches of water open, open to the system

open (b): open to the system and bubbling air at 1 scfm per well

passive: open to the atmosphere

closed closed to the system and atmosphere

NA not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB. TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 6
Soil-Vapor Extraction Well Data

Date: 05-28-97

						Well Ide	nufication					
-		VW-5			VW-6			VW-7			VW-8	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve	-	Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O
Tor SVE monitorii	ng well data prior	to January 1, 199	6, please refer to the	T he fourth quarter 1	995 groundwater i	monitoring report	for this site.				· · · · · ·	
01-12-96	open	350 PID	25.0	open	2210 PID	25.0	open	300 PID	22 0	open	225 PID	25 0
02-15-96	open	NA	26.0	орел	NA	26.0	open	NA	24.0	open	NA	25.0
03-19-96	closed	8.9 PID	0.0	open (b)	512 PID	38.0	open (b)	156 PID	37.0	open (b)	60.1 PID	38.0
05-08-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-96	open	240 PID	10.0	open	191 PID	10 0	open	198 PID	10.0	open	220 PID	10.0
06-07-96	open	NA	11.0	open	NA	10.0	open	NA	100	open	NA	11.0
06-28-96	closed	95 PID	NA	ореп	430 PID	NA	open	460 PID	NA	closed	12 PID	NA
07-10-96	open	233 PID	8.0	open	371 PID	80	open	511 PID	8.0	open	113 PID	8 0
08-05-96	open	NA	8.0	open	NA	8.0	open	NA	60	open	NA	8.0
08-12-96	closed	NA	00	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
09-27-96	open	NA	NA	open (b)	NA	NA	open (b)	NA	NA	open	NA	NA
09-30-96	closed	48 FID	NA	closed	140 FID	NA	open	480 FID	NA	closed	120 FID	NA
10-03-96	closed	NA	NA	closed	NA	NA	open	NA	8.0	closed (b)	NA	0.0
12-04-96	closed	NA	NA	closed	NA	NA	closed (b)	NA	NA	closed	NA	NA
01-08-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
02-04-97	closed	NA	NA	closed	NA	NA	clos ed	NA	NA	closed	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA

TVHG concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O: inches of water

open: open to the system

open (b), open to the system and bubbling air at 1 scfm per well

passive: open to the atmosphere

closed closed to the system and atmosphere

NA: not analyzed or not measured

FID TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID TVHG concentration was measured with a portable photoionization detector

Table 6
Soil-Vapor Extraction Well Data

ARCO Service Station 6148

5131 Shattuck Avenue, Oakland, California Date. 05-28-97

						Well Ide	ntification					
ł		VW-9			VW-10			MW-i			MW-5	
Ī	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
		ppmv	ın-H2O		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O
or SVE monitori	ng well data prior	to January 1, 199	6, please refer to t	l he fourth quarter 1	995 groundwater n	nonitoring report	for this site					
01-12-96	open	930 PID	22.0	open	170 PID	5.0	closed	13 PID	0.0	open	172 PID	5.0
02-15-96	open	NA	24.0	open	NA	10.0	closed	NA	0.0	open	NA	6.0
03-19-96	open (b)	50.2 PID	38.0	open (b)	22.4 PID	38 0	closed	32 6 PID	0.0	open (b)	43.2 PID	38 0
05-08-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-96	open	175 PID	100	closed	40 PID	0.0	ореп	152 PID	10.0	closed	28.5 PID	0.0
06-07-96	open	NA	11.0	closed	NA	0.0	open	NA	10.0	closed	NA	00
06-28-96	open	310 PID	NA	closed	120 PID	NA	closed	100 PID	NA	closed	68 PID	NA
07-10-96	open	173 PID	80	closed	51 PID	0.0	closed	50 PID	0.0	closed	50 PID	0.0
08-05-96	open	NA.	6.0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
08-12-96	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
09-27-96	open (b)	NA	NA	closed	NA	NA	closed (b)	NA	NA	open (b)	NA	NA
09-30-96	open	600 FID	NA	open	>1000 FID	NA	closed	NA	NA	open	250 FID	NA
10-03-96	open	NA	90	open	NA	80	closed (b)	NA	0.0	open	NA	8.0
12-04-96	closed (b)	NA	NA	closed	NA	NA	closed	NA	NA	closed (b)	NA	NA
01-08-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	NA
02-04-97	closed (b)	NA	NA	closed (b)	NA	NA	closed (b)	NA	, NA	closed (b)	NA	NA
03-07-97	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O: inches of water open: open to the system

open (b) open to the system and bubbling air at I sefm per well

passive, open to the atmosphere

closed closed to the system and atmosphere

NA not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Facility Number: 6148

Location: 5131 Shattuck Avenue

Air-Sparge and Air-Bubbling Unit: 5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Air-Bubbling Start-Up Date: 03-19-96

Date End: O4-02-96 O5-08-96 O5-16-96 O6-07-96 O6-28-96 O6-07-96 O6-07-96 O6-28-96 O6-07-96 O6-07-96 O6-28-96 O6-07-96 O6-07-96 O6-28-96 O6-07-96 O6-07-96	Consultant: EMCON 1921 Ringw San Jose, C	vood Avenue alifornia	Air-Sparge Start-Up Date: 06-07-96 Operation and Performance Data From: 03-19-96 To: 04-01-97					
See Table 6 for the status of the 12 SVE/air-bubbling wells. Air is bubbled at an average flow rate of 1 scfm per well. MW-2		03-19-96					06-07-96 06-28-96	
MW-2 MW-3 Off on on off on on MW-3 Off on on off on on MW-4 Off off off off off off off Air-Sparge Well Status: AS-1 AS-2 Off off off off off off off off off AS-3 Off off off off off off off off off off	Air-Bubbling Well Status:						S.	
MW-4 off off off off off Air-Sparge Well Status: AS-1 off off <t< td=""><td>MW-2</td><td>off</td><td></td><td>-</td><td>off</td><td>-</td><td>on</td></t<>	MW-2	off		-	off	-	on	
Air-Sparge Well Status: AS-1	MW-3						on	
AS-1 off off off off off off off off off of	MW-4	off	off	off	off	off	on	
AS-1 off off off off off off off off off of	Air-Sparge Well Status:							
AS-2 off off off off off off off off off of		off	off	off	off	off	on	
AS-3 off off off off off off off off off of							on	
AS-4							on	
AS-5 off off off off off off off off off of					off		on	
MW-2 (4) 2.5 2.5 2.5 2.5 MW-3 3.0 3.0 3.0 3.0 3.0 MW-4							on	
AS-1 AS-2	MW-2 MW-3	(4) 	3.0	3.0		3.0	 	
AS-1 AS-2	Air Sparge Well Pressure (psig) (1):							
AS-2 AS-3 AS-4 AS-5 Total Air-Sparge and Air-Bubbling Pressure (psig) (1): Dissolved Oxygen (ppm) (3): Air-Bubbling Wells: MW-2 MW-3 MW-3 AS-5					. .			
AS-3 AS-4 AS-5 Total Air-Sparge and Air-Bubbling Pressure (psig) (1): 20.0 20.0 0.0 20.0 20.0 Total Air-Sparge and Air-Bubbling Flow Rate (scfm) (2): Dissolved Oxygen (ppm) (3): Air-Bubbling Wells: MW-2 MW-3								
AS-4 AS-5								
AS-5								
Air-Bubbling Pressure (psig) (1): Total Air-Sparge and Air-Bubbling Flow Rate (scfm) (2): Dissolved Oxygen (ppm) (3): Air-Bubbling Wells: MW-2 MW-3 MW-3 MW	AS-5							
Air-Bubbling Flow Rate (scfm) (2):			20.0	20.0	0.0	20.0	20.0	
Air-Bubbling Wells: MW-2 MW-3								
MW-2	Dissolved Oxygen (ppm) (3):							
MW-2	Air-Rubbling Wells							
MW-3								
VI VV -4	MW-4	· -						

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96

Consultant: EMCON

Operation and Performance Data From: 03-19-96

1921 Ringwood Avenue San Jose, California

To: 04-01-97

Date Begin: Date End:		07-10-96 08-12-96		
Air-Bubbling Well Status:	See Table 6 Air is bubble			S.

	Air is bubbled	at an averag		of 1 scfm p	er well.	
MW-2	on	on	off	on	on	on
MW-3	on	on	off	on	on	on
MW-4	on	on	off	on	on	on
Air-Sparge Well Status:						
AS-1	on	on	off	off	on	off
AS-2	on	on	off	off	on	off
AS-3	on	on	off	off	on	off
AS-4	on	on	off	off	on	off
AS-5	on	on	off	off	on	off
Air-Bubbling Well Pressure (psig) (1):						
MW-2	4.0	5.0	0.0	2.6	2.0	
MW-3	4.0	5.5	0.0	2.5	2.5	
MW-4	4.0	5.5	0.0	4.1	3.5	
Air-Sparge Well Pressure (psig):						
AS-1	4.0	5.0	0.0	0.0	8.0	0.0
AS-2	3.0	5.5	0.0	0.0	4.0	0.0
AS-3	4.0	4.0	0.0	0.0	7.0	0.0
AS-4	3.0	4.5	0.0	0.0	4.0	0.0
AS-5	3.5	5.0	0.0	0.0	12.0	0.0
Total Air-Sparge and						
Air-Bubbling Pressure (psig):	20.0	30.0	0.0	40.0	32.0	50.0
Total Air-Sparge and						
Air-Bubbling Flow Rate (scfm) (2):						
Dissolved Oxygen (ppm) (3):						
Air-Bubbling Wells:						
MW-2						
MW-3						
MW-4						

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96

Consultant: EMCON

Consultant: EMCON 1921 Ring San Jose, C	wood Avenue California	Operat		formance D	ata From:	
Date Begin:	10-07-96	11-06-96	12-04-96	01-08-97	02-04-97	03-07-97
Date End:	11-06-96	12-04-96	01-08-97	02-04-97	03-07-97	04-01-97
Air-Bubbling Well Status:						
	See Table 6					S.
	Air is bubble		_		-	
MW-2	on	off	on	on	on	off
MW-3	off	off	off	off	off	off
MW-4	off	off	off	off	off	off
Air-Sparge Well Status:						
AS-1	off	off	off	off	off	off
AS-2	off	off	off	off	off	off
AS-3	off	off	off	off	off	off
AS-4	off	off	off	off	off	off
AS-5	off	off	off	off	off	off
Air-Bubbling Well Pressure (psig) (1):					
MW-2	3.0	0.0		3.5	3.5	0.0
MW-3	0.0	0.0	0.0	0.0	0.0	0.0
MW-4	0.0	0.0	0.0	0.0	0.0	0.0
Air-Sparge Well Pressure (psig):						
AS-1	0.0	0.0	0.0	0.0	0.0	0.0
AS-2	0.0	0.0	0.0	0.0	0.0	0.0
AS-3	0.0	0.0	0.0	0.0	0.0	0.0
AS-4	0.0	0.0	0.0	0.0	0.0	0.0
AS-5	0.0	0.0	0.0	0.0	0.0	0.0
Total Air-Sparge and						
Air-Bubbling Pressure (psig):	50.0	0.0	60.0			
Total Air-Sparge and						
Air-Bubbling Flow Rate (scfm) (2):						
Dissolved Oxygen (ppm) (3):						
Air-Bubbling Wells:						n s
MW-2					- "	0.5
MW-3						0.5
MW-4						0.5

Facility Number: 6148

Consultant: EMCON

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

Oakland, California

5 Hp Powerex Rotary Oilless Compressor

Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96

Operation and Performance Data From: 03-19-96

To: 04-01-97

1921 Ringwood Avenue

San Jose, California

01-01-97

04-01-97 to

DAYS / HOURS IN PERIOD:

CURRENT REPORTING PERIOD:

90.0

2160

^{1.} psig: pounds per square inch gauge

² scfm: standard cubic feet per minute at 14.7 psi and 70° F

ppm; parts per million

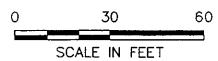
^{4. -- ,} not analyzed, not applicable, or not available

0 2000 4000

SCALE IN FEET

DATE APR. 1997
DWN KAJ
APP
REV
PROJECT NO.
805-135.007

FIGURE 1 ARCO PRODUCTS COMPANY SERVICE STATION 6148, 5131 SHATTUCK AVE. OAKLAND, CALIFORNIA


QUARTERLY GROUNDWATER MONITORING SITE LOCATION

52ND STREET DRIVEWAY SIDEWALK DRIVEWAY PLANTER MW-7 **●** SHATTUCK ● MW-6 SERVICE VW-9 ISLANDS W-6 ⊋ AVENUE €_{W-7} Ф_{AS−5} AS-4 **②** STATION BUILDING ₩-5 Former waste-oil tank MW-4

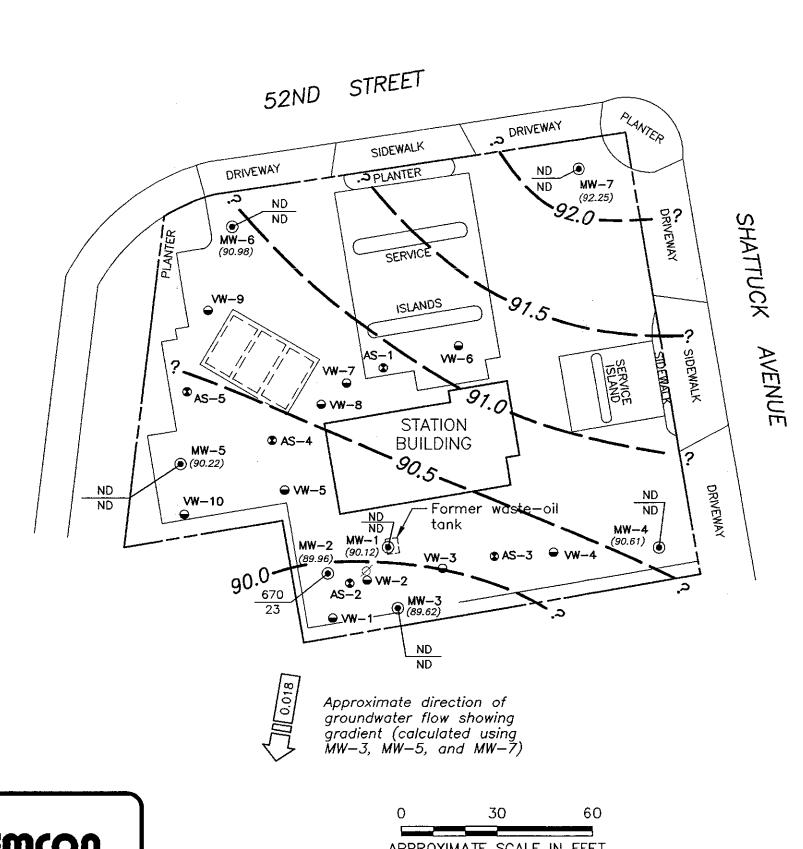
EXPLANATION

- Groundwater monitoring well
- Vapor extraction well
- ◆ Air-sparge well
- Ø Decommissioned well
- Existing underground gasoline storage tanks

EMCOU

DATE APR. 1997

DWN KAJ


PROJECT NO. 805-135.007 FIGURE 2

ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVE.
OAKLAND, CALIFORNIA

OAKLAND, CALIFORNIA

QUARTERLY GROUNDWATER MONITORING

SITE PLAN

EXPLANATION

Groundwater monitoring well

Vapor extraction well

Air-sparge well

Decommissioned well Ø

Existing underground gasoline storage tank

Groundwater elevation (Ft.-MSL) (89.96)measured 3/25/97

> Groundwater elevation contour (Ft.-MSL)

TPHG concentration in groundwater (ug/L); sampled 3/25/97

Benzene concentration in groundwater (ug/L); sampled 3/25/97

Not sampled; not scheduled for NS chemical analysis

Not detected at or above the method reporting limit for TPHG (50 ug/L) ND

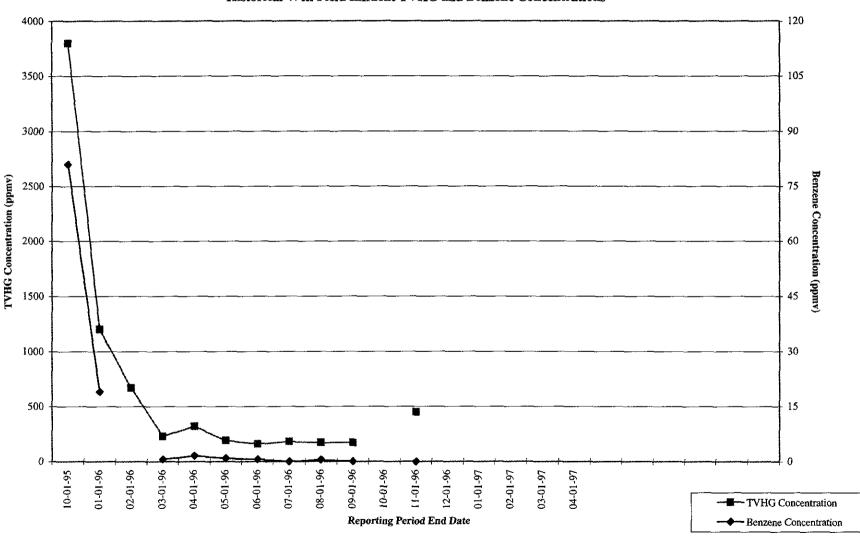
and benzene (0.5 ug/L)

DATE MAY 1997 KMM

670

REV. PROJECT NO. 20805-135.007 FIGURE 3

ARCO PRODUCTS COMPANY SERVICE STATION 6148, 5131 SHATTUCK AVE.

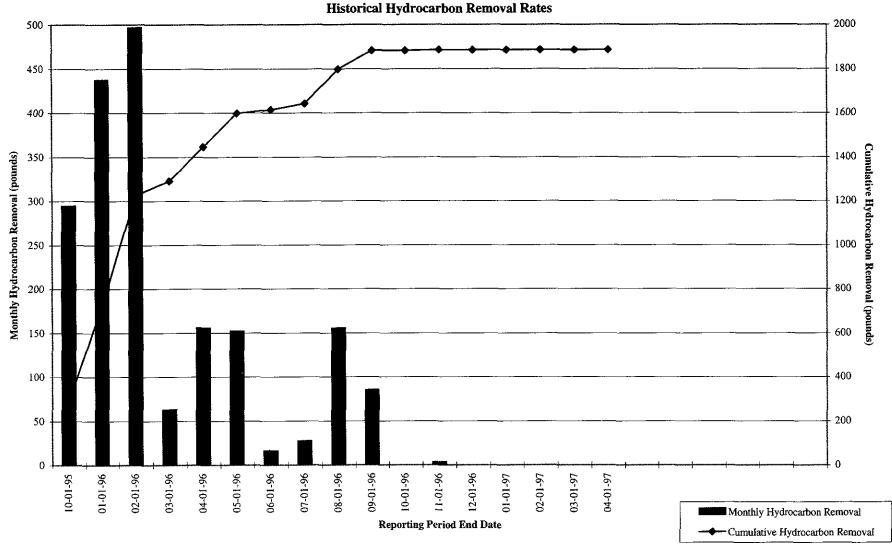

OAKLAND, CALIFORNIA QUARTERLY GROUNDWATER MONITORING GROUNDWATER DATA - 1ST QUARTER 1997

EMCON

APPROXIMATE SCALE IN FEET

ARCO Service Station 6148
Soil-Vapor Extraction and Treatment System
Historical Well Field Influent TVHG and Benzene Concentrations

Figure 4



TVHG: total volatile hydrocarbons as gasoline ppmv. parts per million by volume

Figure 5

ARCO Service Station 6148

Soil-Vapor Extraction and Treatment System

APPENDIX A

ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATION, FIRST QUARTER 1997 GROUNDWATER MONITORING EVENT

April 8, 1997

Service Request No.: S9700542

Mr. John Young **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 6148 OAKLAND/20805-135.007/TO#19350.00

Dear Mr. Young:

The following pages contain analytical results for sample(s) received by the laboratory on March 25, 1997. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 16, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green **Project Chemist**

COLUMBIA ANALYTICAL SERVICES, Inc.

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Service Request: S9700542 Date Collected: 3/25/97 Date Received: 3/25/97

Sample Matrix:

Water

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-6 (16)

Lab Code:

S9700542-001

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/4/97	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Toluene	EPA 5030	8020	0.5	I	NA	4/4/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	4/4/97	ND	

1322/020597p

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Service Request: S9700542 Date Collected: 3/25/97

Sample Matrix:

Water

Date Received: 3/25/97

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-5 (17)

Lab Code:

S9700542-002

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/5/97	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	4/5/97	5	

IS22/020597p

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: **ARCO Products Company**

Project: 20805-135.007/TO#19350.00/6148 OAKLAND

Date Collected: 3/25/97 Water Sample Matrix: Date Received: 3/25/97

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-7 (16)

Lab Code:

S9700542-003

Units: ug/L (ppb) Basis: NA

Service Request: S9700542

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/3/97	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Tolueno	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	4/3/97	ND	

1S22/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: S9700542

Date Collected: 3/25/97

Date Received: 3/25/97

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-4 (17)

Lab Code:

S9700542-004

Units: ug/L (ppb)
Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/4/97	ND	
Benzeno	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	4/4/97	ND	

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Service Request: S9700542 Date Collected: 3/25/97

Sample Matrix:

Water

Date Received: 3/25/97

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-1 (18)

Lab Code:

S9700542-005

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/4/97	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Tolueno	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	4/4/97	ND	

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: S9700542

Date Collected: 3/25/97 Date Received: 3/25/97

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-2 (18)

Lab Code:

Test Notes:

S9700542-006

Units: ug/L (ppb)

Basis: NA

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	4	NA	4/4/97	670	
Benzene	EPA 5030	8020	0.5	4	NA	4/4/97	23	
Toluene	EPA 5030	8020	0.5	4	NA	4/4/97	58	
Ethylbenzene	EPA 5030	8020	0.5	4	NA	4/4/97	13	
Xylenes, Total	EPA 5030	8020	0.5	4	NA	4/4/97	120	
Methyl tert-Butyl Ether	EPA 5030	8020	3	4	NA	4/4/97	28	

Analytical Report

Client: **ARCO Products Company**

Project: 20805-135.007/TO#19350.00/6148 OAKLAND

Sample Matrix:

Water

Service Request: S9700542 Date Collected: 3/25/97

Date Received: 3/25/97

BTEX, MTBE and TPH as Gasoline

Sample Name:

MW-3 (18)

Lab Code:

S9700542-007

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/5/97	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	4/5/97	94	

1522/020597p

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Date Collected: NA

Service Request: S9700542

Sample Matrix:

Water

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S970403-WB1

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/3/97	ND	
Benzeno	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/3/97	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	4/3/97	ND	

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Date Received: NA

Service Request: S9700542 Date Collected: NA

Sample Matrix:

Water

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S970404-WB1

Units: ug/L (ppb) Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/4/97	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/4/97	ND	
Methyl tert -Butyl Ether	EPA 5030	8020	3	1	NA	4/4/97	ND	

Analytical Report

Client:

ARCO Products Company

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Service Request: S9700542 Date Collected: NA

Sample Matrix:

Water

Date Received: NA

BTEX, MTBE and TPH as Gasoline

Sample Name:

Method Blank

Lab Code:

S970405-WB1

Units: ug/L (ppb)

Basis: NA

Test Notes:

Analyte	Prep Method	Analysis Method	MRL	Dilution Factor	Date Extracted	Date Analyzed	Result	Result Notes
TPH as Gasoline	EPA 5030	CA/LUFT	50	1	NA	4/5/97	ND	
Benzene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Toluene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Ethylbenzene	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Xylenes, Total	EPA 5030	8020	0.5	1	NA	4/5/97	ND	
Methyl tert-Butyl Ether	EPA 5030	8020	3	1	NA	4/5/97	ND	

APPENDIX A

QA/QC Report

Client: **ARCO Products Company**

Service Request: S9700542 Date Collected: NA

Project:

20805-135.007/TO#19350.00/6148 OAKLAND

Date Received: NA

Sample Matrix: Water

Date Extracted: NA Date Analyzed: NA

Surrogate Recovery Summary BTEX, MTBE and TPH as Gasoline

Units: PERCENT Prep Method: EPA 5030

Basis: NA Analysis Method: 8020 **CA/LUFT**

		Test	Percent	Recovery
Sample Name	Lab Code	Notes	4-Bromofluorobenzene	a,a,a-Trifluorotoluene
MW-6 (16)	S9700542-001		97	94
MW-5 (17)	S9700542-002		99	92
MW-7 (16)	S9700542-003		100	92
MW-4 (17)	S9700542-004		99	92
MW-1 (18)	S9700542-005		89	92
MW-2 (18)	S9700542-006		98	95
MW-3 (18)	S9700542-007		103	88
Batch QC	S9700541-001MS		94	107
Batch QC	S9700541-001DMS		95	106
Method Blank	S970403-WB1		97	94
Method Blank	S970404-WB1		97	91
Method Blank	S970405-WB1		95	85

CAS Acceptance Limits: 69-116 69-116

QA/QC Report

Client: **ARCO Products Company**

20805-135.007/TO#19350.00/6148 OAKLAND Project:

Sample Matrix Water

Service Request: S9700542

Date Collected: 3/25/97

Date Received: 3/25/97

Date Extracted: NA

Date Analyzed: 4/3/97

Matrix Spike/Duplicate Matrix Spike Summary

TPH as Gasoline

Sample Name: Batch QC

S9700541-001MS,

S9700541-001DMS

Units: ug/L (ppb)

Basis: NA

Lab Code: Test Notes:

Percent Recovery

	Prep	Analysis		Spike	Level	Sample	Spike Result				CAS Acceptance	Relative Percent	Result	
Analyte	Method	Method	MRL	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference	Notes	
Gasoline	EPA 5030	CA/LUFT	50	250	250	ND	240	250	96	100	75-135	4		

QA/QC Report

Service Request: S9700542

Units: ug/L (ppb)

Basis: NA

96

Client: ARCO Products Company

EPA 5030

Project: 20805-135.007/TO#19350.00/6148 OAKLAND Date Analyzed: 4/4/97

Initial Calibration Verification (ICV) Summary
BTEX, MTBE and TPH as Gasoline

BTEX, MTBE and TPH as Gasoline

8020

Sample Name: ICV Lab Code: ICV1

Test Notes:

ICV Source:

Methyl tert - Butyl Ether

Analyte	Prep Method	Analysis Method	True Value	Result	Percent Recovery	Result Notes
TPH as Gasolino	EPA 5030	CA/LUFT	250	240	96	
Benzene	EPA 5030	8020	25	25	100	
Toluene	EPA 5030	8020	25	26	104	
Ethylbenzene	EPA 5030	8020	25	26	104	
Xylenes, Total	EPA 5030	8020	75	78	104	

25

24

ICV/032196

59700542 ARCO Products Company \$\times\$

Division of AtlanticRichfieldCompany 193<u>50,00</u> **Chain of Custody** Task Order No. Project manager ARCO Facility no. Laboratory name Oakland (Consultant) (as Telephone no (28)
(Consultant) ARCO engineer Telephone no. 453-7300 (Consultant) Contract number Consultant name EMLSN Address (Consultant) BTEXTPHORS +MTB TCLP Semi Method of shipment Preservation Matrix Sampler Oil and Grease 413.1
413.2 TPH EPA 418.1/SM503E TPH Modified 8015 Gas Diesel Sampling date Sampling time Ę BTEX 802/EPA 8020 EPA 601/8010 EPA 624/8240 EPA 625/8270 Sample 1.D. Container Deliver Water Other Ice Acid ė æ Special detection 1210 X 3-25-47 2 Limit/reporting CONEST POSSIBLE 2 3-25-97 2 3.25-97 3-25.97 Special QA/QC 3-25-57 3-25-97 Lab number 59700542 Turnaround time **Priority Rush** 1 Business Day Condition of sample: Temperature received: Relinquished by sampler Date Time 2 Business Davs 3-25-97 Expedited Received by 5 Business Days

Distribution: White copy — Laboratory; Canary copy — ARCO Environmental Engineering; Pink copy — Consultant APPC-3292 (2-91)

Date

Time

Received by laboratory

Standard 10 Business Days

Relinquished by

APPENDIX B SVE SYSTEM MONITORING DATA LOG SHEETS

01/01/97 00:00					n Penod.			Operation + Down													_	
02/01/97 00:00				Days	n Penod	31 00		Operation + Dov	vn Days: 31 00						V-1-		•					
			ield Moni			,	ŀ				Laboratory Monito											
	Flow F	Rates	FID	r PID R	esults		ł	Well Fiel	d រិកអីuent	System	Influent	System	Effluent									
Reading Dake & Time	Weil Field Flow Rate	System influent Flow Rate*	Well Field	System influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gasoline	Benzene	Gasoline	Benzene	Gasoline	Benzene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Penod Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scfm	scfm	ppm	ppm	ppm	%		ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	%	lb/day	lb/day						
01/01/97 00:00 01/08/97 11:45 02/01/97 00:00	0.0	0.0															179.75 564.25	2698.56 2698.56 2698.56	0 00	0.00		7 23
Penod Totals																	744.00		0 00	0.00	744 00	31.
Period Averages	0.0	0.0																				

Reporting Period 02/01/97 00:00 Hours in Period: 672.00 Operation + Down Hours: 672.00 03/01/97 00:00 Days in Penod: 28 00 Operation + Down Days: 28.00 Field Monitoring Data Laboratory Monitoring Data FID or PID Results Well Field Influent System Influent .System Effluent Flow Rates aboratory Sample Time soline Emission Rate enzene Emission Rate ading Date & Time Destruction Efficiency ours of Operation Gasoline Benzene Gasoline Benzene Gasoline Benzene stem Effluent own Days ppmv mg/m3 % scim scim ppm ррт % lb/day lb/day 02/01/97 00 00 2698.56 02/04/97 13:30 0.0 0.0 85 50 2698 56 0.00 0.60 85 5 3 56 03/01/97 00:00 0.0 0.0 2698 56 0.00 586 5 24.44 \$86.50 0.00 Penod Totals 672.00 0.00 0.00 672.00 28.00 Period Averages: 0.0 0.0 * The total pressure for the system influent flow rate was assumed to be 5.0 inches of water because the data was unavailable

Reporting Period 03/01/97 00:00 Hours in Penod: 744.00 Operation + Down Hours: 744.00 04/01/97 00:00 Days in Period 31.00 Operation + Down Days, 31.00 Field Monitoring Data Laboratory Monitoring Cata FID or PID Results Well Field Influent System Influent System Effluent Flow Rates Gasoline Benzene Gasoline Benzene Gasoline Benzene Down Days ppmv mg/m3 scfm scfm ppm % ppm 03/01/97 00:00 2698 56 03/07/97 11 55 00 00 155.92 2698.56 0.00 0.00 155.9 6 50 04/01/97 00:00 0.0 0.0 588 08 2698 56 0.00 0.00 588.1 24.50 744.00 0 00 744.00 31.00 Period Totals: 0,00 Period Averages: 00 0.0 The total pressure for the system influent flow rate was assumed to be 5.0 inches of water because the data was unavailable