

1921 Ringwood Avenue • San Jose, California 95131 1721 (408) 453-7300 • Fax (408) 437-9526

n Fig 4: 13

Date Project March 21, 1997 20805-135.006

To:

Ms. Susan Hugo Alameda County Health Care Services Agency Department of Environmental Health 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502-6577

We are enclosing:

	Description			
	Fourth quarte	r 1996 groundwa	ater monit	oring results and
	remediation s	ystem performar	nce evalua	tion report for
	ARCO service	e station 6148, C	Dakland, C	alifornia
– X	Use	Sent by:	Х	Regular Mail
	Approval	•		Standard Air
	Review			Courier
	Information			Other:
	X	Fourth quarter remediation sy ARCO service X Use Approval	Fourth quarter 1996 groundware remediation system performant ARCO service station 6148, Company and the serv	Fourth quarter 1996 groundwater moniteremediation system performance evaluated ARCO service station 6148, Oakland, Communication with the service station of the se

Comments:

The enclosed groundwater monitoring report is being sent to you per the request of ARCO Products Company. Please call if you have questions or comments.

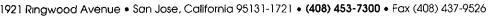
John C. Young Project Manager

cc: Kevin Graves, RWQCB - SFBR
Paul Supple, ARCO Products Company
File

Date:

March 14, 1997

Re: ARCO Station #


6148 • 5131 Shattuck Avenue • Oakland, CA Fourth Quarter 1996 Groundwater Monitoring Results and Remediation System Performance Evaluation Report

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached proposal or report are true and correct."

Submitted by:

Paul Supple

Environmental Engineer

March 17, 1997 Project 20805-135.006

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Re: Fourth quarter 1996 groundwater monitoring program results and remediation system performance evaluation report, ARCO service station 6148, Oakland, California

Dear Mr. Supple:

This letter presents the results of the fourth quarter 1996 groundwater monitoring program at ARCO Products Company (ARCO) service station 6148, 5131 Shattuck Avenue, Oakland, California (Figure 1). Operation and performance data for the on-site soil-vapor extraction (SVE), air-sparge (AS), and air-bubbling remediation systems are also presented. The quarterly monitoring program complies with Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the scope, limitations, and cost of work performed during the monitoring event.

ohn C. Young

Project Managel

Please call if you have questions.

Sincerely,

EMCON

Krishnaveni Meka Staff Engineer

EMCON

ARCO QUARTERLY REPORT

Station No.:	6148	Address:	5131 Shattuck Avenue, Oakland, California	
EMCON Project	No.		20805-135.006	
ARCO Environn	nental Engine	er/Phone No.:	Paul Supple /(510) 299-8891	
EMCON Project	Manager/Pho	one No.:	John C. Young /(408) 453-7300	
Primary Agency	Regulatory II	No.:	ACHCSA /Susan Hugo	
Reporting Period	l :		October 1, 1996 to January 1, 1997	

WORK PERFORMED THIS QUARTER (Fourth- 1996):

- 1. Conducted quarterly groundwater monitoring and sampling for fourth quarter 1996.
- 2. Prepared and submitted quarterly report for third quarter 1996.
- 3. Operated air-bubbling system.

WORK PROPOSED FOR NEXT QUARTER (First-1997):

- 1. Perform quarterly groundwater monitoring and sampling for first quarter 1997.
- 2. Continue operation air-bubbling system.
- 3. Restart soil-vapor extraction (SVE) and air-sparge systems if hydrocarbon concentrations warrant.
- 4. Prepare and submit quarterly report for fourth quarter 1996.

QUARTERLY MONITORING:

	EMCON
BAAQMD Permit #: 2	5126
	Catalytic Oxidation
	ow TVHg concentrations in the extracted soil vapor.
	The SVE system was shut down on October 3, 1996, because of naintenance problems. The SVE system remained shut down because of
	Therm Tech Model CATVAC-10E, Electric/Catalytic Oxidizer
SVE QUARTERLY OPERATIO	
Groundwater Gradient (Average);	
Approximate Depth to Groundwater:	16.19 feet
Current Remediation Techniques:	SVE, Air-Sparge, and Air-Bubbling Systems
within 2000 ft., impacted by site:	None
Water Wells or Surface Waters.	None
Bulk Soil Removed This Quarter :	None
Bulk Soil Removed to Date:	560 cubic yards of TPH-impacted soil
Is Floating Product (FP) Present On-site:	
requestly of traintering.	Monthly (SVE, air-sparge, and air-bubbling)
Frequency of Monitoring:	Quarterly (groundwater), Monthly (SVE) Quarterly (groundwater),
Frequency of Sampling:	The SVE system was shut down on October 3, 1996, because of maintenance problems. The SVE system remained shut down because of low TVHg concentrations in the extracted soil vapor. Quarterly (groundwater), Monthly (SVE)
Current Phase of Project:	Quarterly Groundwater Monitoring and Operation and Maintenance of Remediation Systems

TPH Conc. End of Period (lab):	450 ppmv (10-3-96)
Benzene Conc. End of Period (lab):	<1 ppmv (10-3-96)
Flowrate End of Period:	63.7 scfm (10-3-96)
HC Destroyed This Period:	3.4 pounds
HC Destroyed to Date:	1885.6 pounds
Utility Usage	
Electric (KWH):	4553
Operating Hours This Period:	8.1 hours
Percent Operational:	0.4% System was down for quarterly monitoring and maintenance issues
	with blower controller.
Operating Hours to Date:	2694.1 hours
Unit Maintenance:	NA
Number of Auto Shut Downs:	1
Destruction Efficiency Permit	
Requirement:	90%
Percent TPH Conversion:	94.1% (10-3-96)
Stack Temperature:	742°F (10-3-96)
Source Flow:	63.7 scfm (10-3-96)
Process Flow:	63.3 scfm (10-3-96)
Source Vacuum:	15 inches of water (10-3-96)

ATTACHED:

- Table 1 Groundwater Monitoring Data, Fourth Quarter 1996
- Table 2 Historical Groundwater Elevation and Analytical Data,
 Petroleum Hydrocarbons and Their Constituents
- Table 3 Historical Groundwater Analytical Data, Volatile and Semivolatile Organic Compounds
- Table 4 Historical Groundwater Analytical Data, Metals
- Table 5 Soil-Vapor Extraction System Operation and Performance Data
- Table 6 Soil-Vapor Extraction Well Data
- Table 7 Air-Sparge and Air-Bubbling Systems Operation and Performance Data
- Figure 1 Site Location
- Figure 2 Site Plan
- Figure 3 Groundwater Data, Fourth Quarter 1996
- Figure 4 Soil-Vapor Extraction and Treatment System, Historical System Influent TVHG and Benzene Concentrations
- Figure 5 Soil-Vapor Extraction and Treatment System, Historical Hydrocarbon Removal Rates
- Appendix A Analytical Results and Chain of Custody Documentation, Fourth Quarter 1996
 Groundwater Monitoring Event
- Appendix B SVE System Monitoring Data Log Sheets
- Appendix C Analytical Results and Chain-of-Custody Documentation for Soil Vapor Extraction System, Fourth Quarter 1996

cc: Susan Hugo, ACHCSA Kevin Graves, RWQCB-SFBR

Table 1 Groundwater Monitoring Data Fourth Quarter 1996

ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California

Date: 2-17-97

Well Designation	Water Level Field Date	Top of Caxing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene BPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oll & Grease SM 5520C	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ ft		μg/L	μg/L	μg/L	μg/L	µg/L	μg/L	μg/L	mg/L	mg/L	µg/L
MW-1	11-11-96	107.80	17 78	90.02	ND	sw	0.015	11-11-96 1	Not sampled	well samp	oled semi-a	nnually, du	ring the firs	t and third	quarter			
MW-2	11-11-96	107 28	17.55	89 73	ND	sw	0 015	11-11-96	1200	150	120	21	160	110				
MW-3	11-11-96	107.61	17.73	89 88	ND	SW	0 015	11-11-96	500	28	3	12	13	150				
MW-4	11-11-96	106 71	16 19	90.52	ND	SW	0 015	11-11-96	Not sampled	well samp	iled semi-a	nnually, du	nng the firs	t and third	quarter			
MW-5	11-11-96	106 60	16 62	89 98	ND	sw	0.015	11-11-96	1200	31	1	8	2	130				
MW-6	11-11-96	105 13	14.11	91 02	ND	SW	0.015	11-11-96	Not sampled	well samp	oled annual	ly, during t	he third qua	ırter				
MW-7	11-11-96	107 05	14.92	92 13	ND	sw	0.015	11-11-96 1	Not sampled	well samp	oled annual	ly, during t	he third qua	ırter				

ft-MSL elevation in feet, relative to mean sea level

MWN ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft. foot per foot

TPHG total petroleum hydrocarbons as gasoline. California DHS LUFT Method

µg/L, micrograms per liter

EPA: United Statest Environmental Protection Agency

MTBE. methyl-tert-butyl ether SM standard method mg/L milligrams per liter

TRPH- total recoverable petroleum hydrocarbons

TPHD total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND none detected SW- southwest

-- not analyzed or not applicable

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Well Designation	Water Level Field Date	Top of Casing Fig. Elevation	33 Depth to Water	Groundwater Groundwater F	Floating Product	S Groundwater Flow Direction	Hydraulic	Water Sample Field Date	TPHG	Benzene	Toluene	Ethylbenzene	Total Xylenes	THE MTBE G EPA 8020	MTBE	a Oll & Grease	д Т КРН 74 ЕРА 418.1	TPHD
MW-I	02-02-94	108 03	17 31	90.72	ND	NR	NR	02-02-94	250	93	<0.5	1.9	1				′	
MW-I	04-29-94	108.03	17 31	90.72	NĐ	NR	NR	04-29-94	350	99	1 3	39	11					
MW-1	08-02-94	108.03	17.95	90.08	ND	sw	0.017	08-02-94	210	82	<1	<1	2.5					
MW-1	11-16-94	108.03	17.04	90,99	ND	SW	0 02	11-16-94	650	260	38	61	15					
MW-1	03-20-95	108.03	15.75	92 28	ND	sw	0 02	03-20-95	830	140	5	41	110		~ -			
MW-1	06-06-95	108.03	17 68	90.35	ND	sw	0 016	06-06-95	210	30	<0.5	7.3	16					
MW-1	08-24-95	107.80	17 45	90.35	ND	sw	0 014	08-24-95	Not sampled	well was i	inaccessible	e due to cor	struction					
MW-I	11-16-95	107 80	17 64	90.16	NĐ	SW	0.012	11-16-95	<50	5.6	< 0.5	1.4	12	55			+ -	
MW-I	02-27-96	107.80	15.21	92.59	ND	SW	0.016	02-27-96	1400	240	88	44	110	200				
MW-1	05-15-96	107.80	17.53	90.27	ND	SW	0.015	05-15-96	Not sampled	not sched	uled for che	emical anal	ysts					
MW-1	08-14-96	107.80	17.15	90 65	ND	SW	0 021	08-14-96	98	18	< 0.5	19	Ţ	45				- 4
MW-1	11-11-96	107.80	17.78	90 02	ND	sw	0 015	11-11-96	Not sampled	i: well samp	oled semi-a	nnually, du	ring the firs	st and third	quarter			
MW-2	02-02-94	107.43	16 96	90 47	ND	NR	NR	02-02-94	16000	1300	2500	540	2700					
MW-2	04-29-94	107 43	16 95	90 48	ND	NR	NR	04-29-94	11000	1400	1200	360	1400					
MW-2	08-02-94	107 43	17 59	89 84	ND	SW	0.017	08-02-94	4900	800	290	120	620					
MW-2	11-16-94	107 43	16.73	90.70	ND	\$W	0 02	11-16-94	49000	3300	8300	1400	7200					
MW-2	03-20-95	107.43	15 50	91 93	ND#	SW	0 02	03-20-95	Not sampled	. floating p	roduct ente	red well du	ring purgin	ıg				
MW-2	06-06-95	107 43	17 43	90 00	ND	sw	0 016	06-06-95	1200	60	21	35	140					
MW-2	08-24-95	107 28	17 22	90.06	ND	SW	0 014	08-24-95	Not sampled	well was i	naccessible	due to con	struction					
MW-2	11-16-95	107.28	17.36	89.92	ND	SW	0 012	11-16-95	360	45	13	7 [7.5	210				
MW-2	02-27-96	107.28	14.82	92.46	ND	SW	0.016	02-27-96	8900	1400	980	150	550	940				
MW-2	05-15-96	107.28	17 40	89 88	ND	SW	0.015	05-15-96	480	82	48	8	48	87				
MW-2	08-14-96	107.28	17 00	90 28	ND	sw	0 021	08-14-96	130	22	4	2	9	120				
MW-2	11-11-96	107.28	17.55	89.73	ND	SW	0 015	11-11-96	1200	150	120	21	160	110				

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Well Designation	Water Level Field Date	7. Top of Casing 7. Elevation	as Depth to Water	TSM-13 Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic	Water Sample Field Date	TPHG LUFT Method	Benzene	五 Toluene 古 EPA 8020	Ethylbenzene Ga EPA 8020	Total Xylenes	MTBE P EPA 8020	MTBE 7 EPA 8240	B Oll & Grease N SM 5520C	m TRPH 7/ EPA 418.1	다 TPHD A LUFT Method
MW-3	02-02-94	107 77	17 16	90 61	ND	NR	NR	02-02-94	26000	1400	1200	1200	4400			77	7.8	
MW-3	04-29-94	107.77	17.14	90 63	ND	NR	NR	04-29-94	22000	1400	620	910	3400			10		
MW-3	08-02-94	107.77	17.81	89.96	ND	sw	0.017	08-02-94	17000	530	410	720	2600				6.6	
MW-3	11-16-94	107.77	16 91	90.86	ND	sw	0 02		18000	1400	560	790	2800				2.3	
MW-3	03-20-95	107 77	15 60	92 17	ND	sw	0.02		29000	880	190	760	2000				16	
MW-3	06-06-95	107 77	17 54	90 23	ND	sw	0.016	06-06-95	22000	450	54	380	1300			• •	71	
MW-3	08-24-95	107 61	17.42	90 19	ND	SW	0 014	08-24-95	Not sampled								, .	
MW-3	11-16-95	107.61	17.58	90.03	ND	SW	0 012	11-16-95	13000	210	<20	320	1000	790			83	
MW-3	02-27-96	107.61	15.03	92 58	ND	sw	0 016	02-27-96	9700	94	15	290	720	430			10	
MW-3	05-15-96	107 61	17.35	90 26	ND	SW	0.015	05-15-96	5600	66	12	37	67	230				
MW-3	08-14-96	107 61	17.10	90.51	ND	SW	0 021	08-14-96	830	17	<1*	8	7	110				• •
MW-3	11-11-96	107 61	17.73	89.88	ND	sw	0.015	11-11-96	500	28	3	12	13	150				
MW-4	02-02-94	106.58	15.36	91 22	ND	NR	NR	02-02-94	<50	39	<0.5	<0.5	<0.5					
MW-4	04-29-94	106.58	15.36	91.22	ND	NR	NR	04-29-94	<50	4.2	<0.5	<0.5	<0.5					
MW-4	08-02-94	106 58	15 94	90 64	ND	sw	0.017	08-02-94	<50	3.8	<0.5	<0.5	<0.5					
MW-4	11-16-94	106 58	14.99	91 59	ND	SW	0 02	11-16-94	110	31	<0.5	<0.5	<0.5					
MW-4	03-20-95	106 58	13.85	92.73	ND	SW	0 02	03-20-95	88	1	< 0.5	<0.5	07					• •
MW-4	06-06-95	106.58	15.70	90 88	ND	SW	0016	06-06-95	<50	<0.5	< 0.5	<0.5	<0.5					
MW-4	08-24-95	106 71	15 86	90 85	ND	SW	0.014		Not sampled			due to con	struction					
MW-4	11-16-95	106.71	16 10	90 61	ND	SW	0 012	11-16-95	<50	<0.5	<0.5	< 0.5	<0.5	6	- •			
MW-4	02-27-96	106.71	13.72	92 99	ND	SW	0 016	02-27-96	<50	<0.5	< 0.5	<0.5	<0.5	10			- ~	
MW-4	05-15-96	106.71	15.90	90 81	ND	sw	0 015		Not sampled			-						
MW-4	08-14-96	106 71	15 68	91 03	ND	SW	0.021	08-14-96	<50	<0.5	<0.5	< 0.5	<0.5	<3				
MW-4	11-11-96	106.71	16.19	90 52	ND	SW	0 015	11-11-96	Not sampled	: well samp	iled semi-ar	mually, dur	ing the firs	t and third o	quarter			

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Well Designation	Water Level Field Date	Top of Cusing Elevation	as Depth to Water	J. Groundwater SE Elevation	Floating Product	Groundwater Flow Direction	Hydraulic By Gradient	Water Sample Field Date	TPHG	Benzene 75 EPA 8020	Toluene	Ethylbenzene	ਜ Total Xylenes ਨੂੰ EPA 8020	표 MTBE 참 EPA 8020	ர் MTBE ந் EPA 8240	B Oll & Grease	ш ТКРН 77 EPA 418.1	다 TPHD 참 LUFT Method
MW-5	02-02-94	106.68	16 38	90 30	ND	NR	NR	02-02-94	10000	3000	65	240	78					
MW-5	04-29-94	106.68	16 41	90 27	ND ND	NR	NR.	04-29-94	7600	2400	27	130	44					
MW-5	08-02-94	106.68	1681	89 87	ND	sw	0.017	08-02-94	1900	680	<10	24	<10					
MW-5	11-16-94	106 68	16 12	90 56	ND	sw	0.02	11-16-94	17000	5900	700	440	320					
MW-5	03-20-95	106 68	14 92	91 76	ND	SW	0 02	03-20-95	21000	6900	450	800	1300					
MW-5	06-06-95	106 68	1661	90 07	ND	SW	0 016	06-06-95	6500	1700	<20	120	69					
MW-5	08-24-95	106 60	16.47	90 13	ND	sw	0 014		Not sampled		inaccessible	due to cor						
MW-5	11-16-95	106 60	16.69	89.91	ND	sw	0 012	11-16-95	1800	470	<5	17	5	1000				
MW-5	02-27-96	106 60	14.35	92 25	ND	SW	0.016	02-27-96	10000	1000	71	690	1000	440	450			
MW-5	05-15-96	106 60	16.58	90.02	ND	SW	0 015	05-15-96	3400	350	6	72	20	220				
MW-5	08-14-96	106 60	17 26	89 34	ND	SW	0.021	08-14-96	2100	130	2.7	47	47	220				
MW-5	11-11-96	106.60	16.62	89 98	ND	sw	0.015	11-11-96	1200	31	1	8	2	130				
NOV C	02-02-94	105.16	17.60	91.56	NID	NR	ND	02.02.04	<i>(</i> 1)	2.2	o e	-0.E	0.6					
MW-6 MW-6	04-29-94	105 16 105 16	13.60 13.66	91.50	ND ND	NR NR	NR NR	02-02-94 04-29-94	61 <50	2.2 0 6	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5					
MW-6	08-02-94	105 16	13.99	91.17	ND ND	SW	0 017	08-02-94	<50	<0.5	<0.5	< 0.5	< 0.5					
MW-6	11-16-94	105.16	13.39	92.05	ND ND	SW	0 02	11-16-94	<50	11	<0.5	<0.5	< 0.5					
MW-6	03-20-95	105.16	12 13	93.03	ND ND	SW	0 02	03-20-95	<50	< 0.5	<05	<0.5	<0.5					
MW-6	06-06-95	105 16	13 95	91.03	ND	SW	0 016	06-06-95	<50	< 0.5	<05	<0.5	<0.5					
MW-6	08-24-95	105 13	14.07	91.06	ND	SW	0 014	08-24-95	<50	<05	<0.5	<0.5	<0.5	<3				
MW-6	11-16-95	105 13	14.34	90.79	ND	SW	0 014	11-16-95	<60	<0.5	<0.5	<05	<0.5					
MW-6	02-27-96	105 13	12 00	93 13	ND	SW	0 012	02-27-96	<50	<0.5	<0.5	<0.5	<0.5	<3				
MW-6	05-15-96	105 13	14 10	91 03	ND	SW	0.015	05-15-96	Not sampled					~3	.,			
MW-6	08-14-96	105.13	13 70	91 43	ND	SW	0.021	08-14-96	Not sampled				,					
MW-6	11-11-96	105 13	14.11	91 02	ND	sw	0 015		Not sampled					arter				
									-	•		. •						

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Well Designation	Water Level Field Date	Top of Casing Elevation	na Depth to Water	Groundwater Gevation	Floating Product	G Groundwater Flow Direction	Hydraultc	Water Sample Field Date	TPHG LUFT Method	Benzene E EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oil & Grease SM 5520C	TRPH EPA 4181	TPHD LUFT Method
	- p	TOWISE	1661	II-MSL	1661	(41 44 14)	1011		μg/L	µg/L	μg/L	µg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L
MW-7	02-02-94	107.08	14 04	93.04	ND	NR	NR	02-02-94	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	04-29-94	107 08	14.10	92 98	ND	NR	NR	04-29-94	<50	<0.5	<0.5	<0.5	<0.5					- "
MW-7	08-02-94	107.08	14.61	92.47	ND	sw	0.017	08-02-94	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	11-16-94	107.08	13.37	93.71	ND	SW	0 02	11-16-94	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	03-20-95	107 08	12 32	94.76	ND	SW	0 02	03-20-95	<50	< 0.5	< 0.5	<0.5	<0.5					
MW-7	06-06-95	107 08	14.59	92 49	ND	sw	0 016	06-06-95	Not sampled	: not sched								
MW-7	08-24-95	107 05	14 64	92 41	ND	sw	0 014	08-24-95	<50	<0.5	<0.5	<0.5	<05	<3			* -	
MW-7	11-16-95	107 05	15 30	91.75	ND	SW	0 012	11-16-95	Not sampled	not sched	uled for che		vsis					
MW-7	02-27-96	107.05	12 24	94.81	ND	sw	0 016	02-27-96	<50	<0.5	< 0.5	<0.5	<0.5	<3				
MW-7	05-15-96	107.05	14.65	92 40	ND	sw	0.015	05-15-96	Not sampled	not sched	uled for che	mical anal	ysis					
MW-7	08-14-96	107.05	14.35	92 70	ND	SW	0.021	08-14-96	Not sampled	not sched	uled for che	mical anal	ysis					
MW-7	11-11-96	107 05	14.92	92 13	ND	SW	0.015	11-11-96	Not sampled	: well samp	oled annual	ly, during th	he third qua	arter				

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Date: 02-17-97

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE EPA 8240	Oil & Grease SM 5520C	TRPH EPA 418.1	T PHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	µg/L	µg/L	pg/L	µg/L	µg/L	µg/L	mg/L	mg/L	μg/ L

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft foot per foot

TPHG: total petroleum hydrocarbons as gasoline. California DHS LUFT Method

ug/L micrograms per liter

EPA: United States Environmental Protection Agency

MTBE Methyl-tert-butyl ether

SM: standard method

mg/L: milligrams per liter

TRPH, total recoverable petroleum hydrocarbons

TPHD, total petroleum hydrocarbons as diesel, California DHS LUFT Method

NR not reported; data not available

ND. none detected

SW. southwest

- # floating product entered the well during purging
- - not analyzed or not applicable
- *. method reporting limit was raised due to: (1) high analyte concentration requiring sample dilution, or (2) matrix interference
- ** For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996)

[^] groundwater elevation (GWE) and depth to water (DTW) adjusted to include 80 percent of the floating product thickness (FPT) [GWE: (TOC - DTW) + (FPT x 0 8)]

Table 3
Historical Groundwater Analytical Data
Volatile and Semivolatile Organic Compounds
1994 - Present**

	·i-		•	d Volatile O EPA Metho	rganic Comp d 5030/601	ounds			olatile Organ EPA Method	nic Compoun 1 3510/8270	ds
Well Designation	Water Sample Field Date	Tetrachloro- ethene	Trichloro- ethene	Chloroform	cis-1,2-Dichloro- ethene	Vınyl Chloride	1,1-Dichloro- ethane	Naphthalene	2-Methyl- naphthalene	Bis (2ethylhexyl) Phthalate	Di-n-octyl Phthalate
		µg/L	μg/L	µg/Ն	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	02-02-94	11	1,1	ND	ND	ND	ND				
MW-1	04-29-94	13	1.3	0.5	<0.5	< 0.5	<0.5				
MW-I	08-02-94	15	1.4	0.7	0.7	<0.5	<0.5	٠-			
MW-1	11-16-94	12	11	0.5	l 2	<0.5	< 0.5			• -	
MW-1	03-20-95	Not analyzed	sampling for a	idditional pai	rameters was	discontinued					
MW-2	02-02-94	13	ND	ND	ND	ND	ND				••
MW-2	04-29-94	9.4	1.9	<0.5	2 2	<0.5	<0.5				
MW-2	08-02-94	15	2	<0.5	2 9	<0.5	<0.5				
MW-2	11-16-94	9.6	1 8	<0.5	2 1	<0.5	<0.5				• •
MW-2	03-20-95	Not analyzed:	sampling for a	dditional par	ameters was	discontinued					
MW-3	02-02-94	ND*	ND*	ND*	ND*	ND*	ND*	160	91	9	ND
MW-3	04-29-94	1.7	<0.5	< 0.5	<0.5	< 0.5	<0.5	110	50	<10	<10
MW-3	08-02-94	i	< 0.5	<0.5	<0.5	<0.5	<0.5	120	53	10	<10
MW-3	11-16-94	1.3	<0.5	< 0.5	<0.5	< 0.5	<0.5	100	53	<10	<10
MW-3	03-20-95	Not analyzed:	sampling for a	dditional par	ameters was e	discontinued					
MW-4	02-02-94	1.4	ND	ND	ND	ND	ND				
MW-4	04-29-94	1.4	<0.5	<0.5	<0.5	<0.5	<0.5				•
MW-4	08-02-94	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		• •		
MW-4	11-16-94	1.8	<0.5	<0.5	<0.5	<0.5	<0.5				
MW-4		Not analyzed					CO 3		*-	••	
	03 20 73	riot unui y 250	aumpring for a	ouruonar pur	unicters was t	iscommed					
MW-5	02-02-94	2.7	ND	ND	ND	ND	ND				
MW-5	04-29-94	10	2.7	<0.5	24	<0.5	<0.5	- •			
MW-5	08-02-94	13	5 4	<0.5	57	<0.5	<0.5		• •		
MW-5	11-16-94	11	1	<0.5	3.5	1.3	<0.5				
MW-5	03-20-95	Not analyzed:	sampling for a	dditional para	ameters was c	liscontinued					

Table 3
Historical Groundwater Analytical Data
Volatile and Semivolatile Organic Compounds
1994 - Present**

				·							
			-	d Volatile O EPA Metho	rganic Comp d 5030/601	ounds			olatile Organ EPA Method	ilc Compoun i 3510/8270	ıds
Well Designation	Water Sample Field Date	Tetrachloro- ethene	Trichloro- ethene	Chloroform	cıs-1,2-Dichloro- ethene	Vinyl Chloride	1,1-Dichloro- ethane	Naphthalene	2-Methyl- naphthalene	Bis (2ethylhexyl) Phthalate	Dı-n-octyl Phthalate
		μg/L	μg/L,	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-6	02-02-94	100	ND	67	ND	ND	ND				
MW-6	04-29-94	95	6.6	72	<25	<2.5	<2.5				
MW-6	08-02-94	87	6.1	4.6	<2.5	<2.5	<2.5				• •
MW-6	11-16-94	86	68	8.9	<2.5	<2.5	<2.5	• •			
MW-6	03-20-95	Not analyzed, s	ampling for a	dditional par	ameters was	discontinued					
MW-7 MW-7 MW-7 MW-7	02-02-94 04-29-94 08-02-94 11-16-94 03-20-95	3 4 3.4 3.3 3.3 Not analyzed s	ND <0.5 <0.5 <0.5 ampling for ac	0.8 1 1 0 8 <0.5 dditional par	ND <0.5 <0.5 <0.5 rameters was o	ND <0.5 <0.5 <0.5 discontinued	ND <0.5 <0.5 <0.5	 	 		
AS-I	09-30-93	29	1.5	ì	ND	ND	ND				
AS-2	08-11-95	Not analyzed: s	ampling for ac	iditional par	ameters was r	ot initiated					
AS-3	08-11-95	Not analyzed: s	ampling for ac	ditional para	ameters was r	ot initiated					
AS-4	08-11-95	Not analyzed: sa	ampling for ac	lditional para	ameters was n	ot initiated					
AS-5	08-11-95	Not analyzed sa	ampling for ac	lditional para	ameters was n	ot initiated					

EPA: United Statest Environmental Protection Agency

µg/L micrograms per liter

ND none detected

^{- -} not analyzed or not applicable

[•] sample was analyzed for volatile organic compounds using USEPA Method 624 (only BTEX was detected)

^{**:} For previous historical analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996)

Table 4
Historical Groundwater Analytical Data
Metals

Date: 02-17-97

Nickel EPA 6010	Zinc EPA 6010	Lead EPA 7421	Chromium EPA 6010	Cadmium EPA 6010	Water Sample FieldDate	Well Designation
μg/I	μg/L	μg/L	μg/L	μg/L		
<20	31	3	5	<3	03-18-92	MW-1
-	•••				06-12-92	MW-1
					09-14-92	MW-I
		• •			10-07-92	MW-1
					01-22-93	MW-1
<20	25	3	<5	<3	04-14-93	MW-I
12.		neters was discontir	or additional paran	Not analyzed, sampling for	09-30-93	MW-1
38	54	9	21	<3	03-18-92	MW-2
30		-		Not analyzed: sampling for	06-12-92	MW-2
112	156	27	67	<3	03-18-92	MW-3
113	156	21	6/	<3	06-12-92	MW-3
					09-14-92	MW-3
				Not sampled well contain	10-07-92	MW-3
23	28	8	10	<3	01-22-93	MW-3
<20	25	3	<5	<3	04-14-93	MW-3
70	100	26	50	<5	09-30-93	MW-3
7.	="			Not analyzed: sampling for	11-16-93	MW-3
		THE WILLIAM	or an annual param	· // · · · · · · · · · · · · · · · · ·		
	ited	neters was not initia	or additional param	Not analyzed sampling for	11-12-92	MW-4
	ited	neters was not initia	or additional param	Not analyzed sampling for	11-12-92	MW-5
	ited	neters was not initia	or additional param	Not analyzed sampling for	11-12-92	MW-6
	ited	neters was not initia	or additional param	Not analyzed: sampling for	11-12-92	MW-7
	ited	neters was not initia	or additional param	Not analyzed: sampling for	09-30-93	AS-1
			-		08-11-95	AS-2
			=	Not analyzed sampling for	08-11-95	AS-3
			•	Not analyzed: sampling for	08-11-95	AS-4
	ited	neters was not initia	or additional param	Not analyzed, sampling for	08-11-95	AS-5
	ited ited ited	neters was not initia neters was not initia neters was not initia	or additional param or additional param or additional param	Not analyzed: sampling for	08-11-95 08-11-95 08-11-95	AS-2 AS-3 AS-4

EPA: United Statest Environmental Protection Agency

μg/L micrograms per liter

- - : not analyzed

Table 5
Soil-Vapor Extraction System
Operation and Performance Data

Facility Number: 6148 Vapor Treatment Unit: ThermTech Model

Location: 5131 Shattuck Avenue

Oakland, California catalytic

CATVAC-10E electric/catalytic oxidizer

Consultant: EMCON Start-Up Date: 09-27-95 1921 Ringwood Avenue Operation and Performance Data From: 09-27-95 San Jose, California To: 01-01-97 Date Begin: 09-27-96 10-01-95 01-01-96 02-01-96 03-01-96 Date End: 10-01-95 01-01-96 02-01-96 03-01-96 04-01-96 Mode of Oxidation: Cat-ox Cat-ox Cat-ox Cat-ox Cat-ox Days of Operation: 3 11 16 7 11 Days of Downtime 81 15 22 1 20 Average Vapor Concentrations (1) Well Field Influent: ppmv (2) as gasoline 3800 1200 670 230 320 mg/m3 (3) as gasoline 14000 4400 2790 830 1300 ppmv as benzene 81 19 NA (13) 0.6 1.6 mg/m3 as benzene 260 61 5.2 NA 2 System Influent: ppmv as gasoline 1800 600 230 415 320 mg/m3 as gasoline 6700 2200 1730 1300 830 ppmy as benzene 41 11 NA 0.6 1.6 mg/m3 as benzene 130 34 ΝA 5.2 2 System Effluent: ppmv as gasoline 52 30 3.8* 21 26 mg/m3 as gasoline 190 110 20 76 110 ppmv as benzene 1.1 0.5 NA < 0.1 < 0.1 mg/m3 as benzene 3.5 1.5 NA < 0.5 < 0.5 Average Well Field Flow Rate (4), scfm (5): 75.0 104.0 124.6 128.2 126.4 Average System Influent Flow Rate (4), scfm: 103.6 132.3 111.9 128.2 126.4 Average Destruction Efficiency (6), percent (7): 97.2 95.0 98.8 90.8 91.5 Average Emission Rates (8), pounds per day (9) Gasoline: 1.77 1.31 0.20 0.88 1.25 Benzene: 0.03 0.02 0.000.010.01 Operating Hours This Period 255.3 74.9 381.7 157.2 253.0 Operating Hours To Date: 74.9 330.2 711.9 1122.2 869.1 Pounds/ Hour Removal Rate, as gasoline (10): 3.93 1.71 1.30 0.40 0.62 Pounds Removed This Period, as gasoline (11): 294.4 437.3 496.6 62.6 155.6 Pounds Removed To Date, as gasoline: 294.4 731.7 1228.3 1290.9 1446.5 Gallons Removed This Period, as gasoline (12): 47.5 70.5 80.1 10.1 25.1 Gallons Removed To Date, as gasoline: 47.5 118.0 198.1 208.2 233.3

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/ catalytic oxidizer

Consultant: EMCON

Start-Up Date: 09-27-95

	1921 Ringwood Avenue San Jose, California	Operation and Performance Data From: 09-27-95 To: 01-01-97						
Date Begin:		04-01-96	05-01-96	06-01-96	07-01-96	08-01-96		
Date End:		05-01-96	06-01-96	07-01-96	08-01-96	09-01-96		
Mode of Oxidation:		Cat-ox	Cat-ox	Cat-ox	Cat-ox	Cat-ox		
Days of Operation:		22	3	3	20	11		
Days of Downtime:		8	28	27	11	20		
Average Vapor Conce								
Well Field Influent	: ppmv (2) as gasoline	190	160	180	170	170		
	mg/m3 (3) as gasoline	760	650	740	690	710		
	ppmv as benzene	0.9	0.6	<1	0.4	<1		
	mg/m3 as benzene	3	2	<2 5	1.3	<2.5		
System Influent	: ppmv as gasoline	190	160	180	170	170		
	mg/m3 as gasoline	760	650	740	690	710		
	ppmv as benzene	0.9	0.6	<1	0 4	<1		
	mg/m3 as benzene	3	2	<2.5	1.3	<2.5		
System Effluent	: ppmv as gasoline	10	10	<5	6	9		
	mg/m3 as gasoline	41	39	<20	23	38		
	ppmv as benzene	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2		
	mg/m3 as benzene	< 0.5	<0.5	<0.5	<0.5	< 0.5		
Average Well Field Flo		100.3	91.8	1167	125 7	125.4		
Average System Influen	t Flow Rate (4), scfm:	100.3	91.8	116.7	125.7	125 4		
Average Destruction E	fficiency (6), percent (7):	94.6	94.0	97.3	96.7	94 6		
Average Emission Rate	es (8), pounds per day (9)							
Gasoline:		0 37	0 32	0.21	0.26	0.43		
Benzene:		0.00	0.00	0.01	0.01	0.01		
Operating Hours This Po	eriod:	532.5	72.9	83.7	<u>478.9</u>	255.2		
Operating Hours To Date		1654.6	1727.6	1811.3	2290.1	2545.3		
Pounds/ Hour Removal	Rate, as gasoline (10):	0.29	0.22	0.32	0.32	0.33		
Pounds Removed This F	Period, as gasoline (11):	<u>151.9</u>	<u>16.3</u>	27.1	<u>155.4</u>	<u>85.0</u>		
Pounds Removed To Da	nte, as gasoline:	1598.4	1614.7	1641.8	1797.2	1882.2		
Gallons Removed This		<u>24.5</u>	<u>2.6</u>	<u>4.4</u>	<u>25.1</u>	13.7		
Gallons Removed To Da	ate, as gasoline:	257 8	260 5	264 8	289.9	303.6		

Table 5
Soil-Vapor Extraction System
Operation and Performance Data

Facility Number: 6148 Vapor Treatment Unit: ThermTech Model

Location: 5131 Shattuck Avenue
Oakland, California

CATVAC-10E electric/catalytic oxidizer

		catalytic oxidizer					
Consultant:	EMCON 1921 Ringwood Avenue San Jose, California		Operation and				
Date Begin:		09-01-96	10-01-96	11-01-96	12-01-96		
Date End:		10-01-96	11-01-96	12-01-96	01-01-97		
Mode of Oxidation:		Cat-ox	Cat-ox	Cat-ox	Cat-ox		
Days of Operation:		6	0	0	0		
Days of Downtime:		24	31	30	31		
Average Vapor Concen	trations (1)						
Well Field Influent:	ppmv (2) as gasoline	NA	450	NA	NA		
	mg/m3 (3) as gasoline	NA	1900	NA	NA		
	ppmv as benzene	NA	<1	NA	NA		
	mg/m3 as benzene	NA	<4	NA	NA		
System Influent:	ppmv as gasoline	NA	330	NA	NA		
	mg/m3 as gasoline	NA	1400	NA	NA		
	ppmv as benzene	NA	<1	NA	NA		
	mg/m3 as benzene	NA	<4	NA	NA		
System Effluent:	ppmv as gasoline	NA	20	NA	NA		
	mg/m3 as gasoline	NA	83	NA	NA		
	ppmv as benzene	NA	<0.1	NA	NA		
	mg/m3 as benzene	NA	< 0.4	NA	NA		
Average Well Field Flow	Rate (4), scfm (5):	125.2	63.7	0.0	918		
Average System Influent	Flow Rate (4), scfm:	125.2	63.3	0.0	81.9		
Average Destruction Eff	iciency (6), percent (7):	NA	94 1	NA	NA		
Average Emission Rates	(8), pounds per day (9)						
Gasoline:		NA	0.47	NA	NA		
Benzene.		NA	0.00	NA	NA		
Operating Hours This Per	iod:	140.7	7.5	0.0	0.6		
Operating Hours To Date		2686.0	2693.5	2693 5	2694.1		
Pounds/ Hour Removal R	ate, as gasoline (10):	0.00	0.45	0.00	0 00		
ounds Removed This Pe	riod, as gasoline (11)	0.0	3.4	0.0	0.0		
Pounds Removed To Date		1882.2	1885.6	1885 6	1885.6		
Gallons Removed This Pe	eriod as easoline (12):	0.0	0.5	00	- 0.0		
Gallons Removed To Dat	-	303.6	304.2	304 2	304.2		
anons removed to Dat	o, us Equotino.	0.606	304.2	304 2	304.2		

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Vapor Treatment Unit: ThermTech Model

Location: 5131 Shattuck Avenue

CATVAC-10E electric/

Oakland, California

catalytic oxidizer

Consultant: EMCON

Start-Up Date: 09-27-95

1921 Ringwood Avenue San Jose, California

Operation and Performance Data From: 09-27-95

To: 01-01-97

CURRENT REPORTING PERIOD:	10-01-96	to 01-01-97	****
DAYS / HOURS IN PERIOD:	92	2208.0	
DAYS / HOURS OF OPERATION:	0	8.1	
DAYS / HOURS OF DOWN TIME:	92	2199.9	
PERCENT OPERATIONAL:		0.4 %	
PERIOD POUNDS REMOVED:	3.4		
PERIOD GALLONS REMOVED:	0.5		
AVERAGE WELL FIELD FLOW RATE (scfm):		65.9	
AVERAGE SYSTEM INFLUENT FLOW RATE (scfm).		64.7	

Average concentrations are based on discrete sample results reported during the month; refer to Appendix B for discrete sample results.
 For the period of January 1, 1996 to February 1, 1996, laboratory analytical results were unavailable. The average concentrations were based on photoionization demand (PID) field readings taken during the month of January 1996.

² ppmy: parts per million by volume

^{3.} mg/m3: milligrams per cubic meter

^{4.} Average flow rates (time weighted average) are based on instantaneous flow rates recorded during the month; refer to Appendix B for instantaneous flow data

^{5.} scfm. flow in standard cubic feet per minute at one atmosphere and 70 degrees Fahrenheit

⁶ Average destruction efficiencies are calculated using monthly average concentrations; refer to Appendix B for instantaneous destruction efficiency data

⁷ destruction efficiency, percent = ([system influent concentration (as gasoline in mg/m3)] - system effluent concentration (as gasoline in mg/m3)] / system influent concentration (as gasoline in mg/m3)) x 100 percent

^{8.} Average emission rates are calculated using monthly average concentrations and flow rates, refer to Appendix B for instantaneous emission rate data.

⁹ emussion rates (pounds per day) = system effluent concentration (as gasoline or benzene in mg/m3) x system influent flow rate (scfm) x 0 02832 m3/ft3 x 1440 minutes/day x 1 pound/454,000 mg

^{10.} pounds/ hour removal rate (as gasoline) = well field influent concentration (as gasoline in mg/m3) x well field influent flow rate (scfm) x 0.02832 m3/ft3 x 60 minutes/hour x 1 pound/454,000 mg

¹¹ pounds removed this period (as gasoline) = pounds/ hour removal rate x hours of operation

^{12.} gallons removed this period (as gasoline) = pounds removed this period (as gasoline) x 0.1613 gallons/pound of gasoline

¹³ not available

Table 6
Soil-Vapor Extraction Well Data

ARCO Service Station 6148

5131 Shattuck Avenue, Oakland, California

Date. 02-17-97

						Well Idea	ntification					
		VW-I			VW-2		<u> </u>	VW-3	-	<u> </u>	VW-4	
ı	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve	·	Vacuu
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respon
		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H20
or SVE monitor	ing well data prior	to January 1, 199	6, please refer to t	l he fourth quarter 1	995 groundwater r	nonitoring report i	for this site.					·
01-12-96	open	300 PID	25.0	open	500 PID	25.0	open	430 PID	25.0	open	580 PID	25.0
02-15-96	open	NA	27.0	open	NA	27.0	open	NA	26.0	ореп	NA	26.0
03-19-96	closed	14.1 PID	00	closed	18 8 PID	0.0	closed	30.2 PID	0.0	closed	16 6 PID	0.0
05-08-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-96	open	190 PID	0.01	open	183 PID	100	open	167 PID	10.0	open	128 PID	10 0
06-07-96	open	NA	11 0	open	NA	10.0	open	NA	11.0	open	NA	11.0
06-28-96	open	290 PID	NA	open	550 PID	NA	open	400 PID	NA	closed	210 PID	NA
07-10-96	open	361 PID	0.8	open	302 PID	8.0	open	247 PID	8.0	closed	54 PID	0.0
08-05-96	ореп	NA	8.0	open	NA	7.0	open	NA	60	closed	NA	0.0
08-12-96	closed	NA	0 0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
09-27-96	open (b)	NA	NA	open (b)	NA	NA	open	NA	NA	closed	NA	NA
09-30-96	open	200 FID	NA	open	220 FID	NA	open	800 FID	NA	open	>1000 FID	NA
10-03-96	open	NA	9.0	open	NA	100	open	NA	90	open	NA	100
12-04-96	орел	NA	NA	open	NA	NA	open	NA	NA	open	NA	NA

TVHG, concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water

open open to the system

open (b): open to the system and bubbling air at 1 scfm per well

passive open to the atmosphere

closed: closed to the system and atmosphere

NA not analyzed or not measured

FID TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 6
Soil-Vapor Extraction Well Data

Date: 02-17-97

Date P or SVE monitoring well 01-12-96	Valve Position 7	PVHG Reppmv 1:	n-H2O	Valve Position	VW-6 TVHG ppmv	Vacuum Response in-H2O	Valve Position	VW-7 TVHG	Vacuum Response in-H2O	Valve Position	VW-8 TVHG	Vacuum Respons
Date P or SVE monitoring well 01-12-96	Position 7	PVHG Reppmv 1:	n-H2O			Response			Response			
or SVE monitoring well	ell data prior to Jan	opmv 1:	n-H2O	Position		·	Position		•	Position		
01-12-96	ell data prior to Jan				ppmv	in-H2O		ppmv	in-H2O			
01-12-96		rary 1, 1996, pleas	I					rı			ppmv	in-H2C
01-12-96			se refer to the for	orth quarter 199	35 groundwater n	nonitoring report f	or this site.					
02-15-06	opon s		25.0	open	2210 PID	25.0	open	300 PID	22.0	open	225 PID	25 0
02-13-70	open	NA	26.0	open	NA	26.0	open	NA	24.0	open	NA	25.0
03-19-96	closed 8	9 PID	00	open (b)	512 PID	380	open (b)	156 PID	37 0	open (b)	60 1 PID	38.0
05-08-96 c	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA.
05-16-96	open 2	0 PID	10.0	open	191 PID	10.0	open	198 PID	10.0	open	220 PID	10.0
06-07-96	open	NA	110	open	NA	100	ореп	NA	100	open	NA	11.0
06-28-96 c	closed 9	5 PID	NA	open	430 PID	NA	open	460 PID	NA	closed	12 PID	NA
07-10-96	open 2:	3 PID	80	open	371 PID	80	open	511 PID	8.0	open	H3 PID	80
	open	NA	8.0	ореп	NA	80	open	NA	6.0	open	NA	8.0
1	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
09-27-96	open	NA	NA (open (b)	NA	NA	open (b)	NA	NA	open	NA	NA
09-30-96 c	closed 4	8 FID	NA	closed	140 FID	NA	open	480 FID	NA	closed	120 FID	NA
	closed	NA	NA	closed	NA	NA	ореп	NA	80	closed (b)	NA	0.0
12-04-96 c	closed	NA	NA	closed	NA	NA	open	NA	NA	closed (b)	NA	NA

TVHG- concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O inches of water

open: open to the system

open (b), open to the system and bubbling air at 1 scfm per well

passive open to the atmosphere

closed closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB. TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 6
Soil-Vapor Extraction Well Data

ARCO Service Station 6148

5131 Shattuck Avenue, Oakland, California

Date 02-17-97

ł						Well Ide	ntification					
j		VW-9			VW-10		1	MW-1			MW-5	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respons
		ppmv	in-H2O		ppmv	in-H2O	<u> </u> 	ppmv	in-H2O		ppmv	in-H2C
or SVE monitori	ing well data prior	to January 1, 199	6, please refer to t	T he fourth quarter !	1995 groundwater r	nonitoring report	for this site					
01-12-96	open	930 PID	22.0	open	170 PID	5.0	closed	13 PID	0.0	open	172 PID	5.0
02-15-96	open	NA	24.0	open	NA	10.0	closed	NA	0.0	open	NA	60
03-19-96	open (b)	50.2 PID	38 0	open (b)	22 4 PID	38 0	closed	32.6 PID	0.0	open (b)	43.2 PID	38 0
05-08-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-96	open	175 PID	10.0	closed	40 PID	0.0	open	152 PID	100	closed	28 5 PID	0.0
06-07-96	open	NA	11.0	closed	NA	0.0	open	NA	10.0	closed	NA	0.0
06-28-96	open	310 PID	NA	closed	120 PID	NA	closed	100 PID	NA	closed	68 PID	NA
07-10-96	open	173 PID	80	closed	51 PID	0 0	closed	50 PID	0.0	closed	50 PID	0.0
08-05-96	ореп	NA	60	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
08-12-96	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0	closed	NA	0.0
09-27-96	open (b)	NA	NA	closed	NA	NA	closed (b)	NA	NA	open (b)	NA	NA
09-30-96	open	600 FID	NA	open	>1000 FID	NA	closed	NA	NA	open	250 FID	NA
10-03-96	open	NA	9.0	open	NA	80	closed (b)	NA	0.0	open	NA	80
12-04-96	open	NA	NA	closed	NA	NA	closed (b)	NA	NA	open	NA	NA

TVHG- concentration of total volatile hydrocarbons as gasoline

ppmv. parts per million by volume

in-H2O: inches of water

open, open to the system

open (b), open to the system and bubbling air at 1 scfm per well

passive open to the atmosphere

closed closed to the system and atmosphere

NA. not analyzed or not measured

FID TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Facility Number: 6148

Location: 5131 Shattuck Avenue

Air-Sparge and Air-Bubbling Unit:
5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Consultant:	EMCON 1921 Ringwoo San Jose, Calif		Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96 Operation and Performance Data From: 03-19-96 To: 01-01-97				
Date Begin: Date End:		03-19-96	03-19-96 04-02-96	04-02-96 05-08-96	05-08-96 05-16-96	05-16-96 06-07 - 96	06-07-96 06-28-96
Air-Bubbling Well Statu	is:						
		See Table 6					s
MW-2		Air is bubble off	ed at an ave on	rage flow ra on	ate of 1 scfr off	•	
MW-3		off	on	on	off	on on	on on
MW-4		off	off	off	off	off	on
Air-Sparge Well Status:							
AS-1		off	off	off	off	off	on
AS-2		off	off	off	off	off	on
AS-3		off	off	off	off	off	on
AS-4		off	off	off	off	off	on
AS-5		off	off	off	off	off	on
Air-Bubbling Well Press	sure (psig) (1):						
MW-2		(4)	2.5	2.5		2.5	
MW-3			3.0	3.0		3.0	
MW-4							
Air-Sparge Well Pressur	e (psig) (1):						
AS-1							• •
AS-2				* *			
AS-3							
AS-4							
AS-5							
Total Air-Sparge and Air-Bubbling Pressure (p	osig) (1):		20.0	20.0	0.0	20.0	20.0
Total Air-Sparge and Air-Bubbling Flow Rate	(scfm) (2):						
Dissolved Oxygen (ppm)	(3):						
Air-Bubbling Wells:							
MW-2							• •
MW-3							
MW-4							

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland California

Air-Sparge and Air-Bubbling Unit: 5 Hp Powerex Rotary Oilless Compressor

	Oakland, Calif	fornia					
Consultant:	EMCON 1921 Ringwoo San Jose, Calif		Air-Bubbling Start-Up Date: 03-19-96 Air-Sparge Start-Up Date: 06-07-96 Operation and Performance Data From: 03-19-96 To: 01-01-97				
Date Begin:	<u> </u>	06-28-96	07-10-96		09-27-96	10-01-96	10-03-96
Date End:		07-10-96	08-12-96	09-27 - 96	10-01-96	10-03-96	10-07-96
Air-Bubbling Well Statu	s:						
		See Table 6					s.
		Air is bubble	ed at an ave	-	ite of 1 scfn	n per well.	
MW-2		on	on	off	on	on	on
MW-3		on	on	off	on	on	on
MW-4		on	on	off	on	on	on
Air-Sparge Well Status:							
AS-1		on	on	off	off	on	off
AS-2		on	on	off	off	on	off
AS-3		on	on	off	off	on	off
AS-4		on	on	off	off	on	off
AS-5		on	on	off	off	on	off
Air-Bubbling Well Press	ure (psig) (1):						
MW-2	(F0) (-).	4.0	5.0	0.0	2.6	2.0	
MW-3		4.0	5.5	0.0	2.5	2.5	
MW-4		4.0	5.5	0.0	4.1	3.5	
Air-Sparge Well Pressure	e (neig):						
AS-1	c (paig).	4.0	5.0	0.0	0.0	8.0	0.0
AS-2		3.0	5.5	0.0	0.0	4.0	0.0
AS-3		4.0	4.0	0.0	0.0	7.0	0.0
AS-4		3.0	4.5	0.0	0.0	4.0	0.0
AS-5		3.5	5.0	0.0	0.0	12.0	0.0
Total Air-Sparge and Air-Bubbling Pressure (p	isio).	20.0	30.0	0.0	40.0	32.0	50.0
- "	.s.g).	20.0	50.0	0.0	40.0	32.0	30.0
Total Air-Sparge and Air-Bubbling Flow Rate	(scfm) (2):					•-	
Dissolved Oxygen (ppm)	(3):						
Air-Bubbling Wells:							
MW-2							• •
MW-3							
MW-4							

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Air-Bubbling Start-Up Date: 03-19-96

Consultant: EMCON

Air-Sparge Start-Up Date: 06-07-96

1921 Ringwood Avenue San Jose, California

Operation and Performance Data From: 03-19-96

To: 01-01-97

Date Begin: Date End:

10-07-96 11-06-96 12-04-96

11-06-96 12-04-96 01-01-97

Air-Bubbling Well Status:

See Table 6 for the status of the 12 SVE/air-bubbling wells.

Air is bubbled at an average	flow rate of 1 scfm per well.

	Air is bubbled a		ge flow rate o
MW-2	on	off	on
MW-3	off	off	off
MW-4	off	off	off
Air-Sparge Well Status:			
AS-1	off	off	off
AS-2	off	off	off
AS-3	off	off	off
AS-4	off	off	off
AS-5	off	off	off
Air-Bubbling Well Pressure (psig) (1):			
MW-2	3.0	0.0	
MW-3	0.0	0.0	0.0
MW-4	0.0	0.0	0.0
Air-Sparge Well Pressure (psig):			
AS-1	0.0	0.0	0.0
AS-2	0.0	0.0	0.0
AS-3	0.0	0.0	0.0
AS-4	0.0	0.0	0.0
AS-5	0.0	0.0	0.0
Total Air-Sparge and			
Air-Bubbling Pressure (psig):	50.0	0.0	60.0
Total Air-Sparge and Air-Bubbling Flow Rate (scfm) (2):		3.7	
Dissolved Oxygen (ppm) (3):			
Air-Bubbling Wells:			
MW-2			
MW-3			
MW-4			

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

5 Hp Powerex Rotary Oilless Compressor

Location: 5131 Shattuck Avenue Oakland, California

Air-Bubbling Start-Up Date: 03-19-96

Air-Sparge Start-Up Date: 06-07-96

Operation and Performance Data From: 03-19-96

To: 01-01-97

Consultant: EMCON

1921 Ringwood Avenue

San Jose, California

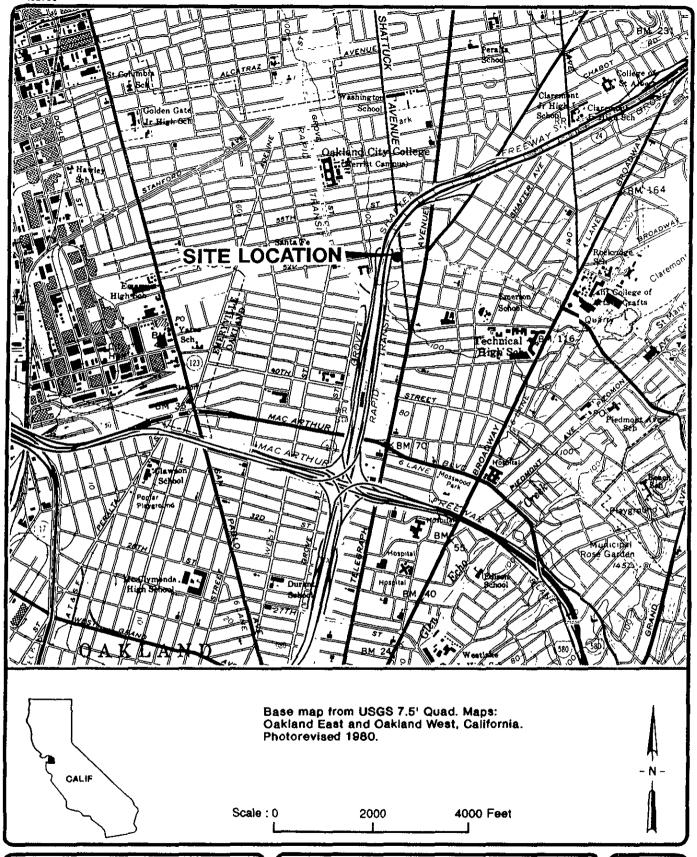
CURRENT REPORTING PERIOD:

10-01-96

01-01-97 to

DAYS / HOURS IN PERIOD:

92.0

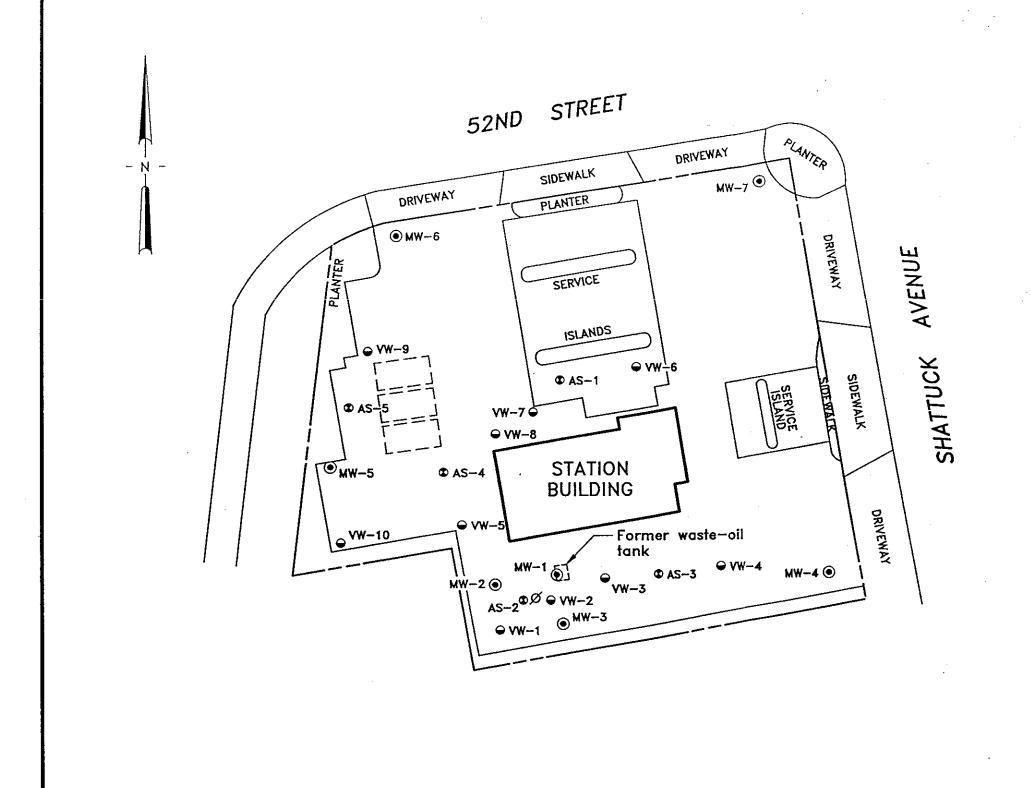

2208

I psig: pounds per square inch gauge

^{2.} scfm. standard cubic feet per minute at 14.7 psi and 70° F

^{3.} ppm: parts per million

^{- - ·} not analyzed, not applicable, or not available



ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVENUE
QUARTERLY GROUNDWATER MONITORING
OAKLAND, CALIFORNIA

SITE LOCATION

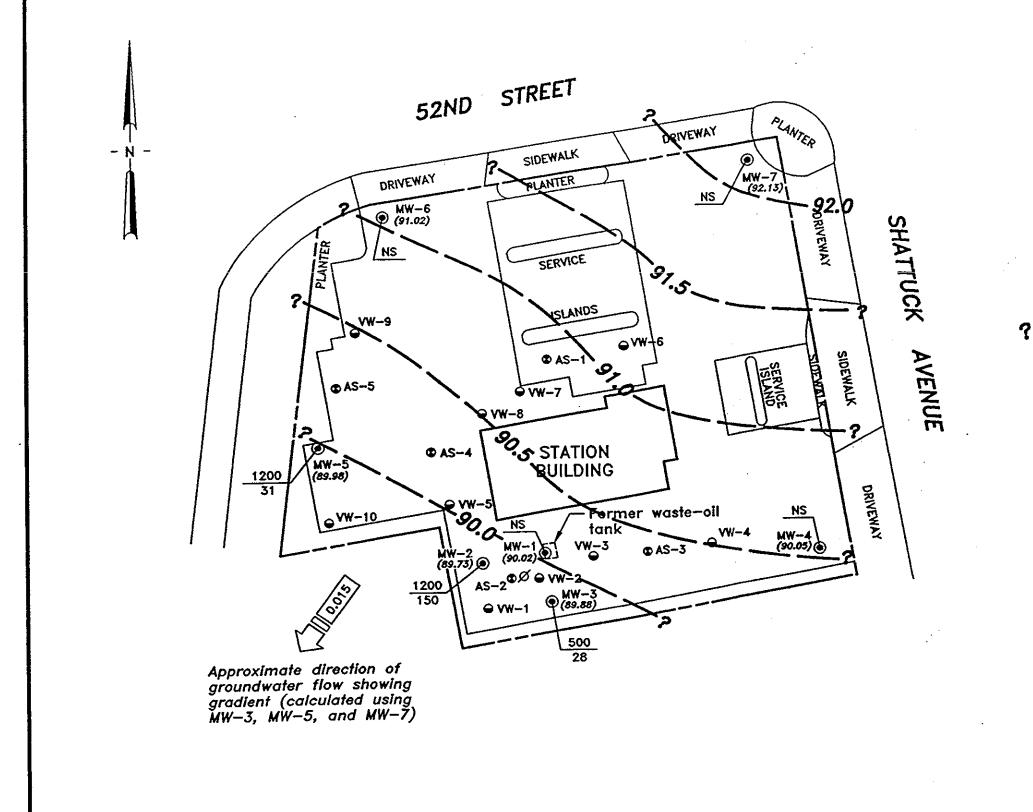
FIGURE

PROJECT NO. 805-135.06

EXPLANATION

- Groundwater monitoring well
- Vapor extraction well
- Air-sparge well
- Ø Decommissioned well
 - Existing underground gasoline storage tank

EMCON


SCALE: 0 30 60 FEET
(Approximate)

ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVENUE
QUARTERLY GROUNDWATER MONITORING
OAKLAND, CALIFORNIA

SITE PLAN

FIGURE NO.

PROJECT NO. 805-135.06

EXPLANATION

- Groundwater monitoring well
- Vapor extraction well
- Decommissioned well
- Existing underground gasoline storage tank
- (90.52) Groundwater elevation (Ft.-MSL) measured 11/11/96
- Groundwater elevation contour (Ft.-MSL)
 - TPHG concentration in groundwater (ug/L); sampled 11/11/96
 - Benzene concentration in groundwater (ug/L); sampled 11/11/96
 - NS Not sampled; not scheduled for chemical analysis
 - Not detected at or above the method reporting limit for TPHG (50 ug/L) and benzene (0.5 ug/L)

emcon

SCALE: 0 30 60 FEET
(Approximate)

ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVENUE
QUARTERLY GROUNDWATER MONITORING
OAKLAND, CALIFORNIA
GROUNDWATER DATA
FOURTH QUARTER 1996

ND

FIGURE NO.

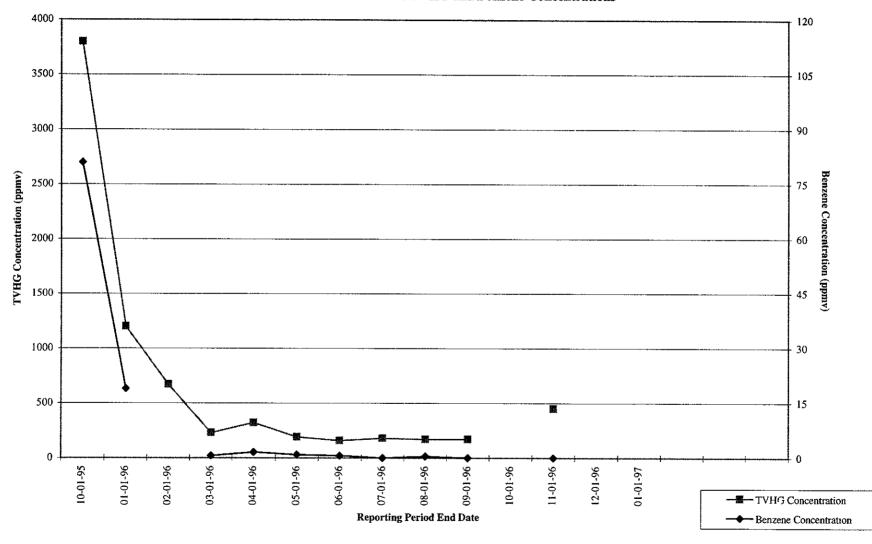
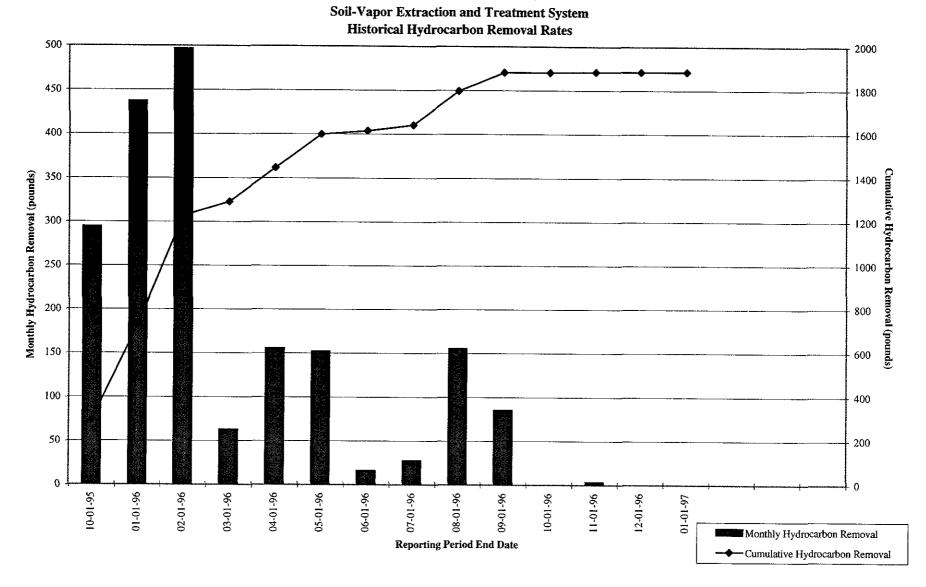

PROJECT NO. 805-135.006

Figure 4

ARCO Service Station 6148

Soil-Vapor Extraction and Treatment System


Historical Well Field Influent TVHG and Benzene Concentrations

TVHG: total volatile hydrocarbons as gasoline ppmv parts per million by volume

Figure 5

ARCO Service Station 6148

APPENDIX A

ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATION, FOURTH QUARTER 1996 GROUNDWATER MONITORING EVENT

Columbia **Analytical** Services inc.

November 22, 1996

Service Request No.: S9601881

Mr. John Young **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 6148 OAKLAND/20805-135.006/TO#19350.00

Dear Mr. Young:

The following pages contain analytical results for sample(s) received by the laboratory on November 11, 1996. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. listed above. To help expedite our service, please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 8, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely,

Steven L. Green **Project Chemist**

COLUMBIA ANALYTICAL SERVICES, Inc.

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials
BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client:

ARCO Products Company

Project:

6148 Oakland / #20805-135.006/TO#19350.00

Sample Matrix: Water

Service Request: S9601881

Date Collected: 11/11/96

Date Received: 11/11/96

Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-2 (25) S9601881-001 11/19/96	MW-3 (25) \$9601881-002 11/18/96	MW-5 (24) \$9601881-003 11/19/96
Analyte	MRL			
TPH as Gasoline	50	1,200	500	1,200
Benzene	0.5	150	28	31
Toluene	0.5	120	3	1
Ethylbenzene	0.5	21	12	8
Total Xylenes	0.5	160	13	2
Methyl tert -Butyl Ether	3	110	150	130

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: ARCO Products Company

Project: 6148 Oakland / #20805-135.006/TO#19350.00

Sample Matrix: Water

Date Collected: 11/11/96
Date Received: 11/11/96
Date Extracted: NA

Service Request: S9601881

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name:	Method Blank	Method Blank
	Lab Code:	S961118-WB1	S961119-WB1
	Date Analyzed:	11/18/96	11/19/96
Analyte	MRL		
TPH as Gasoline	50	ND	ND
Benzene	0.5	ND	ND
Toluene	0.5	ND	ND
Ethylbenzene	0.5	ND	ND
Total Xylenes	0.5	ND	ND
Methyl tert -Butyl Ether	3	ND	ND

APPENDIX A

QA/QC Report

Client:

ARCO Products Company

Project:

6148 Oakland / #20805-135.006/TO#19350.00

Sample Matrix: Water

Service Request: S9601881

Date Collected: 11/11/96

Date Received: 11/11/96

Date Extracted: NA

Date Extracted: NA
Date Analyzed: NA

Surrogate Recovery Summary
BTEX, MTBE and TPH as Gasoline
EPA Methods 5030/8020/California DHS LUFT Method

Sample Name	Lab Code	PID Detector Percent Recovery 4-Bromofluorobenzene	FID Detector Percent Recovery α, α, α -Trifluorotoluene
MW-2 (25)	\$9601881-001	98	95
MW-3 (25)	S9601881-002	95	109
MW-5 (24)	S9601881-003	94	112
Batch QC (MS)	S0601886-001MS	99	106
Batch QC (DMS)	S9601886-001DMS	98	110
Method Blank	S961118-WB1	99	91
Method Blank	S961119-WBI	100	99

CAS Acceptance Limits:

69-116

69-116

QA/QC Report

Client: ARCO Products Company

Project: 6148 Oakland / #20805-135.006/TO#19350.00

Sample Matrix: Water

Service Request: S9601881
Date Collected: 11/11/96
Date Received: 11/11/96
Date Extracted: NA
Date Analyzed: 11/18/96

Matrix Spike/Duplicate Matrix Spike Summary TPH as Gasoline EPA Methods 5030/California DHS LUFT Method

Units: ug/L (ppb)

Sample Name:

Batch QC

Lab Code:

\$9601886-001MS, DMS

	Spike	Level	Sample	Spike	Result	Perc	ent R	CAS Acceptance	Relative Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Gasoline	250	250	ND	240	240	96	96	67-121	<1

QA/QC Report

Client:

ARCO Products Company

Project: 6148 Oakland

6148 Oakland / #20805-135.006/TO#19350.00

Service Request: S9601881

Date Analyzed: 11/18/96

Initial Calibration Verification (ICV) Summary BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ppb

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	25	24.2	97	85-115
Toluene	25	24.1	96	85-115
Ethylbenzene	25	26.7	107	85-115
Xylenes, Total	75	71.3	95	85-115
Gasoline	250	228	91	90-110
Methyl tert -Butyl Ether	50	47	94	85-115

ARCO		of Atlantic	Comp CRichfield					Task O	rder No.	931	īΟ.	 ОС	,									Chain of Cust	ody
ARCO Facil	ty no. 6	148		Cit (Fa	y acility)	<i>2ald</i>	and			Project (Consu	manag	ger	0h	n Y	21.10	100						Laboratory name	
ARCO engir		7015	ו מו/)	10		2	Telephor (ARCO)	ne no.		Teleph	one no.	(10	σ_{L}	(7-	72/	Fa	c no.	.//	n G	1.0	3-045	J CAS	
Consultant r	ame E	MCO	Ň				10::100)	Address (Consulta	ant) 1971	Ric	CW	000	AK	ve.	50	in)	25 <i>6</i>		<u> </u>	95. 95.	2. UD 13.1	Contract number	
				Matrix		Prese	rvation				MIBE:	•										Method of shipment	
Sample 1.D.	Lab по.	Container no.	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH IN INC. MIST.	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi	CAM Metals EPA 6010/7000	Lead Org./DHS CLead EPA		Sample Will delive	r r
MW-26	<i>S</i>)0	2		×		X	Hal	11/1/96	1150		X											Special detection Limit/reporting	
MW-3C	25)Ø	2		\times		×	HCL		1215		×											Lowest Possible	•
MW-SC	24/3) 7		×		×	HCL	V	1256		X											T Possible	2
											<u> </u>											Special QA/QC	
																						As Norma	
																						Norma	1
<u></u>						<u> </u>	<u> </u>										<u> </u>					Remarks	
							<u> </u>	<u> </u>			_											_	
				ļ																<u> </u>		2-40m11	HCL
								<u> </u>						-								2-40m11 VOAs	
																		Γ.					
															-							# 7000 P 17	- /\/
<u> </u>								ļ											<u> </u>			# 20805-139 Lab number	5.U
							 															5960 1881	/
\		-		ļ			<u> </u>	<u> </u>			-											Turnaround time	
		<u> </u>																				Priority Rush 1 Business Day	
Condition of Relinquished		nietr 🐔	1	ok		1	Date,	<u>, </u>	Time	Tempe		receive	d:	6	11	<u>{</u> _						Rush	
21/1	1/20	tilk					1//1/	194	14.03													2 Business Days	
Relinquished	_	7					Date		Time	Receiv										*****		Expedited 5 Business Days	ם
Relinquished	i by						Date		Time	Recei	red by 1	laborato	ory	Gros	v.t		ate //-//	-94		Time 14	:03	Standard 10 Business Days	×

Distribution: White copy — Laboratory; Canary copy — ARCO Environmental Engineering; Pink copy — Copysultant APPC-3292 (2-91)

R8

APPENDIX B SVE SYSTEM MONITORING DATA LOG SHEETS

ARCO 6148 SVE SYSTEM MONITORING DATA

Reporting Period: 10/01/96 00:00 11/01/96 00:00					in Period in Period	744.00		Operation Operation		m Hours: wn Days:						-	<u>.</u>		****									
			eld Mon]								y Monito	ring Data			·									
	Flow	tates	FID	or PID R	esults			<u> </u>	Well Fie	id Influen	<u> </u>		System	Influent			System	Effluent										
Reading Date & Time	Well Field Flow Rate	System Influent Flow Rate*	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gas	oline	Ben	zene	Gasoli	ne	Benz	ene	Gaso	iline	Ben:	zene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	deter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scim	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv	mg/m3	ррту п	ng/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	%	fb/day	lb/day				<u> </u>		
10/01/96 00 00								ł										İ						2690 48				
10/01/96 09 58		115.5																					9.97	2690 48	0.00	0.00	10.0	0
10/01/96 11 30 10/01/96 11.39	114.3 114.3	114.3 114.3									i												1 53	2692.03	1 55	0.06	-0 02	0
10/03/96 16:05																		1					0 15	2692.22	0 19	0 01	-0 04	0.
11/01/96 00:00	1157	114.4				1	15.28	450	1900	<1	<4	330	1400	<1	<4	20	83	<01	<0.4	94 1	0.85	0 00		2694 61	2 39	0 10	50 04	2
11/01/96 00:00		UU																				ļ	679 92	2697 94	3 33	0 14	676 6	28
Period Totals	_																	,	,				744.00		7 46	0 31	736 54	30
Penod Averages:	63 7	63 3						450	1900	<1	<4	330	1400	<1	<4	20	83	<01	<0 4	94 1	0 47	٥ 00						

ARCO 6148 SVE SYSTEM MONITORING DATA

Reporting Period: 11/01/96 00:00 12/01/96 00:00					n Penod: n Penod:			Operation Operation												<u></u>		•				*****	
			ield Mon]						Laboratory	Monito	nng Data							1					
	Flow F	Tates	FID	or PID R	esults		ł		Well Fiel	ld influen	ıt	Syst	m Influent			ystem	Effluent]					
Reading Date & Time	Well Fleld Flow Rate	System Influent Flow Rate*	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gaso	oline	Ben	zene	Gasoline	Benze	ne	Gasoli	ne	Ben	zene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Penod Hours	Weter Hours	Hours of Operation	Days of Operation	Jown Hours	Down Days
4.45.455.55	scim	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv	mg/m3	ppmv mg/n	3 ppmv r	ng/m3	ppmv n	ng/m3	ppmv	тд/т3	%	lb/day	lb/day				. 444		
11/01/96 00.00 11/06/96 10 37 12/01/96 00:00	00	0.0 0 0											<u> </u>									130.62 589 38	2697 94 2697 94 2697.94	0 00	0 00 0.00	130.6 589.4	5 24
Period Totals:	0.0	0.0																				720.00		0.00	0 00	720.00	30.

ARCO 6148 SVE SYSTEM MONITORING DATA

Monitoring Data FID or PID Results FID or PID Results Available of System Inflinence Edition of System Edition of Syst	% Destruction Efficiently	Laboratory Sample Time	Well Fiel	ld influent Benzene		Laboratory Monito Influent Benzene		Effluent Benzene	Destruction Efficiency	Gasoline Émission Rate	Benzene Emission Rate	enod Hours	Meter Hours	dours of Operation	Days of Operation	Down Hours	Down Days
Weil Field System Influent System Effluent	Destruction								struction Efficiency	soline Emission Rate	nzene Emission Aate	nod Hours	eter Hours	ours of Operation	ays of Operation	own Hours	ın Days
	Destruction		Gasoline	Benzene	Gasoline	Benzene	Gasoline	Benzene	struction Efficiency	soline Emission Rate	nzene Emission Aate	nod Hours	eter Hours	ours of Operation	ays of Operation	own Hours	ın Days
рт ррт ррт	0/					L			පී		8	<u> </u>	Ž	Ĭ	ă	ă	ð
	76		ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	ppmv mg/m3	%_	lb/day	lb/day						
	1							1	İ				2697 94				
						ļ			Ī			82 50	2697 94	0 00	0 00	82 5	3
												1					0
	1 1	j]]]	Ì								0.
												660 63	2698 56	0 00	0 00	660 6	27.
												744 00		0 62	0 03	743.38	30
	flow rate was assum	flow rate was assumed to be 5	flow rate was assumed to be 5.0 inche	flow rate was assumed to be 5.0 inches of water because	flow rate was assumed to be 5.0 inches of water because the data was un	flow rate was assumed to be 5.0 inches of water because the data was unavailable.	flow rate was assumed to be 5.0 inches of water because the data was unavailable.				flow rate was assumed to be 5.0 inches of water because the data was unavailable.	flow rate was assumed to be 5.0 inches of water because the data was unavailable.		0.78 2698 56 660 63 2698 56 744 00	744 00 0 62	0 08 2698 02 0.08 0 00 0.78 2698 56 0.54 0 02 660 63 2698 56 0 00 0 00	0 08 2698 02 0.08 0 00 0 00 0.78 2698 56 0.54 0 02 0.24 660 63 2698 56 0 00 0 00 660 6

APPENDIX C

ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION FOR SOIL-VAPOR EXTRACTION SYSTEM, FOURTH QUARTER 1996

Columbia **Analytical** Services^{inc.}

October 9, 1996

Service Request No.: S9601626

Valli Voruganti **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

RE: 6148 OAKLAND/20805-135.003/TO#18336.00

Dear Valli Voruganti:

Attached are the results of the samples submitted to our lab on October 4, 1996. For your reference, our service request number for this work is \$9601626.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 9, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

If you have questions or further needs, please call me at (408) 428-1283.

Sincerely,

Steven L. Green

Project Chemist

Greg Anderson

Regional QA Coordinator

Juilina V. Eagreur en

SG/sh

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference
SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: EMCON

Project: ARCO Products Company #6148/#20805-135.006

Sample Matrix: Vapor

Service Request: L9604137

Date Collected: 10/3/96

Date Received: 10/4/96

Date Extracted: NA

Date Analyzed: 10/6/96

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: I-1

Lab Code: L9604137-001**

	MRLs		R	sults		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)		
Benzene	0.4	0.1	<4	<1		
Toluene	0.4	0.1	<4	<1		
Ethylbenzene	0.5	0.1	6.6	1.5		
Xylenes, Total	0.9	0.2	19	4.4		
Total Volatile Hydrocarbons:						
C1 - C5	20	5	2900	680		
C6 - C12*	20	5	1900	450		

^{*} TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

^{**} The MRL is elevated because of matrix interferences.

Analytical Report

Client:

EMCON

Project:

ARCO Products Company #6148/#20805-135.006

Sample Matrix:

√apor

Service Request: L9604137

Date Collected: 10/3/96 **Date Received:** 10/4/96

Date Extracted: NA
Date Analyzed: 10/6/96

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: I-2

Lab Code: L9604137-002**

	1	MRLs	R	esults
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.4	0.1	<4	<1
Toluene	0.4	0.1	<4	<1
Ethylbenzene	0.5	0.1	2.8	0.6
Xylenes, Total	0.9	0.2	6.0	1.4
Total Volatile Hydrocarbons:				
C1 - C5	20	5	2400	580
C6 - C12*	20	5	1400	330

** The MRL is elevated because of matrix interferences.

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client:

EMCON

Project:

ARCO Products Company #6148/#20805-135.006

Sample Matrix:

/apor

Service Request: L9604137

Date Collected: 10/3/96 **Date Received:** 10/4/96

Date Extracted: NA
Date Analyzed: 10/6/96

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: E-1

Lab Code: L9604137-003

	I	MRLs	Re	esults
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.4	0.1	ND	ND
Toluene	0.4	0.1	ND	ND
Ethylbenzene	0.5	0.1	ND	ND
Xylenes, Total	0.9	0.2	ND	ND
Total Volatile Hydrocarbons:				
C1 - C5	20	5	910	220
C6 - C12*	20	5	83	20

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: EMCON

Project: ARCO Products Company #6148/#20805-135.006

Sample Matrix: Vapor

Service Request: L9604137
Date Collected: NA
Date Received: NA
Date Extracted: NA
Date Analyzed: 10/6/96

BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015

Sample Name: Method Blank Lab Code: L9604137-MB

]	MRLs	Re	esults		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)		
Benzene	0.4	0.1	ND	ND		
Toluene	0.4	0.1	ND	ND		
Ethylbenzene	0.5	0.1	ND	ND		
Xylenes, Total	0.9	0.2	ND	ND		
Total Volatile Hydrocarbons:						
C1 - C5	20	5	ND	ND		
C6 - C12*	20	5	ND	ND		

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

APPENDIX A

QA/QC Report

Client: EMCON Service Request: L9604137

Project: ARCO Products Company #6148/#20805-135.006

LCS Matrix: Vapor

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 10/6/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015 Units: uL/L (ppmv)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	10.0	8.01	80	60-140
Toluene	10.0	8.46	85	60-140
Ethylbenzene	10.0	8.20	82	60-140
TPH as Gasoline*	710	519	73	60-140

TPH as gasoline is defined as C6 (Benzene) through C12 (Dodecane) and uses a molecular weight of 100 to calculate the ppmV.

QA/QC Report

Client:

EMCON

Service Request: L9604137

Project:

ARCO Products Company #6148/#20805-135.006

Date Collected: NA

Sample Matrix: Vapor

Date Received: NA Date Extracted: NA Date Analyzed: 10/4/96

Duplicate Summary BTEX and Total Volatile Hydrocarbons EPA Methods 8020/Modified 8015 Units: uL/L (ppmv)

Sample Name:

BATCH QC

Lab Code: L9604114-001

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.1	0.41	0.44	0.42	7
Toluene	0.1	2.60	2.65	2.62	2
Ethylbenzene	0.1	1.63	1.62	1,62	<1
Total Xylenes	0.2	5.23	5.17	5.20	1
Total Volatile Hydrocarbon:					
C1-C5	5	13.5	12.7	13.1	6
C6-C12*	5	154	146	150	5

TPH as gasoline is defined as C6 (Benzene) through C12 (Dodecane) and uses a molecular weight of 100 to calculate the ppmV.

RCO CO Facili		6 Kd			y scility)	1	ek/a	Task Or	der No.	Project (Consu	/ Ø	<u>ン</u> コ	<u>ن ن</u> ۱	<u>ر برد</u> الدول	_Ç	~			44	<i>y</i>	4	4	in of Cust ratory name :MS raci number	
iCO engin	1861					<u> </u>	Telephor	ne no		Teleph	itant) one no.			VIII		Fax	10.0	<u>ern</u>			عام		AS	
n Inalluen		<u>ra</u>	ul_	Δu	pple		(ARCO)	40% 377 Address		Teleph (Consu	ltent)	YO	345	32	<u> 3<i>0</i>0</u>	(Co	nsultai	n) 40	08 <u>44</u>	530	450	Cont	rect number	
	7		EI	nco	N_{\parallel}			(Consults	nt)	921	+	line	ω	0ර	\ \	ve	1		<u>، ناذ</u>	C C	14 9	BI		
				Maisix		Prese	rvation				ρž	• 25 7	٠	띪				1	a			Mett	tnemqirle to bo	
Sample I.D	Lab no.	Contrainer no.	Soll	Water	Other	t ce	Acid	Sampiing date	Sampling time	BTEX GRZ/EPA BOZD	BTEVTPH GYZ EPA WGZBGZUBO!S	TPH Modified 6015 Gas C Dissel	Ol and Gradus ers.: 413.2	TPH EPA 418 (SUSTEE	EPA 601/8010	EPA R24R240	EPA 625/8270	TCLP Semin	CAN Meet EAC	Lead Org./DHS [] Lead Grg./DHS [] TASO/AC! []				
<u> </u>	1	1			X			10-346			X											Limit	ial detection fraporting	
	2	1			X)	1530		X											P	ease repo	М
-2	3	1			X			4	1532		X											PI	ease repo results nv and m	z/m³
																							lal QA/QC	<u> </u>
						-								,								Equit		
																						2	0805-139 See atta 01 96041_ Windler 160162	57.00%
] (,	see attaq	led)
																					\dashv	1	96041_	37
			<u></u>	-						 					$\neg \dagger$							Labr	umber	
				ļ ———										1	1					}		Turne	9 <u>60/6</u> 4 Iround time	0
																							ity Rush Siness Day	
indition of sample: /nf/afed Date Time						<u></u>	Temperature received: Ambient Received of SCAB (CAS)									Rus	ı alnesa Days							
Daniel Son 10-4-96 1135							1/35 Time	Receiv	GO est by	th,	ü	B	ró	w	1	<u> </u>		· · · ·		Expe	dited			
Refinquished by SiAB Date Time ORACL DISCOTO 10.4-96 1850								Recei		aborato	\mathcal{A}	LA B		O.	eta /0/-	5/90	1	Time //6	0	Stan	sinese Daya derd usinese Daya	ם پور		

- Laboratory; Canary copy - ARCO Environmental Engineering, Pink copy - Consultant FLOCX 320-0:734-9.84 APC-3292 (2-91)

																							tage Air des ing
ARCO Products Company Task Order No.											18	33	6.0	<u>~</u>			<u>"</u>				С	hain of Custody	
		6148		City (Facility)		00	K/a:	nd 408377	Project (Consu Telepho	t manag ltant) one no.	jer)	Iall	<u>i 1</u>	JO C	rugunti ax no. Consultant) 4084530452						Laboratory name	
Consultant r	name	<u>ra</u>	UL Fr	ncc	pple N		(ARCO)	Address (Consulta	8691	(Consu 921	Itant)	907	<u> </u>	<u>5 7.</u>	2 <i>00</i>	100	nsultan	(1) YC	18 4	250	45°	<u> </u>	Contract number
				Matrix			rvation	T(CONSCIN	any 1			١ ١	۲ ا	1			<u>-</u>	ov □	0007/0[Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	íce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH 6775 EPA M602/8020/8015	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 U 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Metals □ VOA □ VOA	CAM Metals EPA 60 TTLC TSTLC	Lead Org./DHS CLead EPA			
I-1		1			X			10-376	1528		X												Special detection Limit/reporting
I-1 I-2 E-1		1			X			1	1530		X												Please report all results in pluv and mg/m³
		 				· · · ·		 	1532	 												\neg	Special QA/QC
					-																		Remarks
																							20805-135:006
																							Lab number 59601626
																							Turnaround time
																		<u> </u>					Priority Rush 1 Business Day
Condition of sample: Inflated Refinquished by sampler Date Time 10-4-96 1135						Rece	Temperature received: Ambient Received by SLAB (C45) John Brown										Rush 2 Business Days						
						Time	Received by								Expedited 5 Business Days								
Relinquished by Date							Time	Recei	Received by laboratory Date Time								Standard						

10 Business Days