FROTEGION 1:36

1921 Ringwood Avenue • San Jose, California 95131-1721 • (408) 453-7300 • Fax (408) 437-9526

		Date Project	September 26, 1996 20805-135.006
To:			
Department of En	Health Care Services A vironmental Health Parkway, Suite 250 iia 94502-6577	gency	
We are enclosing:			
Copies	Description		
1	Second guarte	r 1996 groundwate	er monitoring results and
	remediation sy	ystem performance	evaluation report for
	ARCO service	e station 6148, Oak	cland, California
For your:	X Use	Sent by:	X Regular Mail
	Approval	-	Standard Air
	Review	-	Courier
	Information		Other:
	groundwater monitorin ts Company. Please ca		sent to you per the request of stions or comments.

John C. Young Project Manager

cc: Kevin Graves, RWQCB - SFBR Paul Supple, ARCO Products Company File

Date:

September 26, 1996

Re: ARCO Station #

6148 • 5131 Shattuck Avenue • Oakland, CA Second Quarter 1996 Groundwater Monitoring Results and Remediation System Performance Evaluation Report

"I declare, that to the best of my knowledge at the present time, that the information and/or recommendations contained in the attached proposal or report are true and correct."

Submitted by:

Paul Supple

Environmental Engineer

1921 Ringwood Avenue • San Jose, California 95131-1721 • (408) 453-7300 • Fax (408) 437-9526

September 25, 1996 Project 20805-135.006

NO. 640

Mr. Paul Supple ARCO Products Company P.O. Box 6549 Moraga, California 94570

Second quarter 1996 groundwater monitoring program results and remediation system performance evaluation report, ARCO service station 6148, Oakland,

California

Dear Mr. Supple:

This letter presents the results of the second quarter 1996 groundwater monitoring program at ARCO Products Company (ARCO) service station 6148, 5131 Shattuck Avenue, Oakland, California (Figure 1). Operation and performance data for the on-site soil-vapor extraction (SVE), air-sparge (AS), and air-bubbling remediation systems are also presented. The quarterly monitoring program complies with Alameda County Health Care Services Agency (ACHCSA) requirements regarding underground tank investigations.

LIMITATIONS

No monitoring event is thorough enough to describe all geologic and hydrogeologic conditions of interest at a given site. If conditions have not been identified during the monitoring event, such a finding should not therefore be construed as a guarantee of the absence of such conditions at the site, but rather as the result of the scope, limitations, and cost of work performed during the monitoring event.

ohn C. Young, R.G. 8

Project Manager

Please call if you have questions.

alli Offifor

Sincerely,

EMCON

Sailaja Yelamanchili

Staff Engineer

ARCO QUARTERLY REPORT

Station No.:	6148	Address:	5131 Shattuck Avenue, Oakland, California	
EMCON Projec	t No.		20805-135.006	
ARCO Environ	nental Engineer	r/Phone No.:	Paul Supple /(510) 299-8891	
EMCON Projec	t Manager/Phor	ne No.:	John C. Young /(408) 453-7300	
Primary Agency	/Regulatory ID	No.:	ACHCSA /Susan Hugo	
Reporting Perio	d:		April 1, 1996 to July 1, 1996	

WORK PERFORMED THIS QUARTER (Second- 1996):

- 1. Conducted quarterly groundwater monitoring and sampling for second quarter 1996.
- 2. Prepared and submitted quarterly report for first quarter 1996.
- 3. Operated soil vapor extraction (SVE), air-sparge, and air-bubbling systems.

WORK PROPOSED FOR NEXT QUARTER (Third-1996):

- 1. Perform quarterly groundwater monitoring and sampling for third quarter 1996.
- 2. Continue operation of SVE, air-sparge, and air-bubbling systems.
- 3. Prepare and submit quarterly report for second quarter 1996.

QUARTERLY MONITORING:

Quarterly Groundwater Monitoring and Operation and Maintenance of Remediation Systems
Quarterly (groundwater), Monthly (SVE)
Quarterly (groundwater),
Monthly (SVE, air-sparge, and air-bubbling)
e:
560 cubic yards of TPH-impacted soil
None
None
SVE, Air-Sparge, and Air-Bubbling Systems
15.90 feet
0.015 ft/ft toward southwest (consistent with past events)
ON AND PERFORMANCE:
Therm Tech Model CATVAC-10E, Electric/Catalytic Oxidizer
Catalytic Oxidation
25126
180 ppmv
<1 ppmv
116.7 scfm
195.3 pounds
1,641.8 pounds
22,770 KWH

Operating Hours This Period: 689.1 hours 31.6% Percent Operational: System was down for quarterly monitoring, power interruptions, and other maintenance issues. Operating Hours to Date: 1811.3 hours NA Unit Maintenance: Number of Auto Shut Downs: 3 Destruction Efficiency Permit 90% Requirement: Percent TPH Conversion: 97.3% Stack Temperature: 610°F Source Flow: 126.2 scfm (6-28-96) 126.2 scfm (6-28-96) Process Flow: Source Vacuum: 28 inches of water (6-28-96)

ATTACHED:

- Table 1 Groundwater Monitoring Data, Second Quarter 1996
- Table 2 Historical Groundwater Elevation and Analytical Data, Petroleum Hydrocarbons and Their Constituents
- Table 3 Historical Groundwater Analytical Data, Volatile and Semivolatile Organic Compounds
- Table 4 Historical Groundwater Analytical Data, Metals
- Table 5 Soil-Vapor Extraction System Operation and Performance Data
- Table 6 Soil-Vapor Extraction Well Data
- Table 7 Air-Sparge and Air-Bubbling Systems Operation and Performance Data
- Figure 1 Site Location
- Figure 2 Site Plan
- Figure 3 Groundwater Data, Second Quarter 1996
- Figure 4 Soil-Vapor Extraction and Treatment System, Historical System Influent TVHG and Benzene Concentrations
- Figure 5 Soil-Vapor Extraction and Treatment System, Historical Hydrocarbon Removal Rates
- Appendix A Field Data Sheets, Second Quarter 1996 Groundwater Monitoring Event
- Appendix B Analytical Results and Chain of Custody Documentation, Second Quarter 1996
 Groundwater Monitoring Event
- Appendix C SVE System Monitoring Data Log Sheets
- Appendix D Field Data Sheets, Operation and Maintenance Visits, Second Quarter 1996
- Appendix E Analytical Results and Chain-of-Custody Documentation for Soil Vapor Extraction System, Second Quarter 1996

cc: Susan Hugo, ACHCSA Kevin Graves, RWQCB-SFBR

Table 1 Groundwater Monitoring Data Second Quarter 1996

ARCO Service Station 6148 5131 Shattuck Avenue, Oakland, California

Date: 7-15-96

Well Designation	Water Level Field Date	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	T PHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethyibenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	M TBE EPA 8240	Oil & Grease SM 5520C	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μg/L
MW-1	05-15-96	107.80	17.53	90.27	ND	sw	0.015	05-15-96 1	Not sampled	: not sched	uled for che	emical anal	ysis					
MW-2	05-15-96	107.28	17.40	89.88	ND	SW	0.015	05-15-96	480	82	48	8	48	87				
MW-3	05-15-96	107.61	17.35	90.26	ND	SW	0.015	05-15-96	5600	66	12	37	67	230				
MW-4	05-15-96	106.71	15.90	90.81	ND	SW	0.015	05-15-96 N	Not sampled	not sched	uled for ch	emical anal	lysis					
MW-5	05-15-96	106 60	16.58	90.02	ND	SW	0.015	05-15-96	3400	350	6	72	20	220			••	
MW-6	05-15-96	105.13	14 10	91.03	ND	SW	0.015	05-15-96 N	Vot sampled	not sched	uled for che	emical anal	lysis					
MW-7	05-15-96	107.05	14.65	92.40	ND	sw	0 015	05-15-96 N	-				-					

ft-MSL: elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

µg/L: micrograms per liter

EPA: United Statest Environmental Protection Agency

MTBE: methyl-tert-butyl ether SM· standard method

mg/L: milligrams per liter

TRPH: total recoverable petroleum hydrocarbons

TPHD: total petroleum hydrocarbons as diesel, California DHS LUFT Method

ND: none detected SW: southwest

- -: not analyzed or not applicable

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

	•																	
Well Designation	Water Level Field Date	구 W Yor Casing Caranon	B Depth to Water	TS Groundwater	Floating Product	Groundwater Flow Direction	Hydraulic	Water Sample Field Date	TPHG LUFT Method	Benzene BPA 8020	Toluene EPA 8020	Ethylbenzene PPA 8020	Total Xylenes	MTBE EPA 8020	MTBE . EPA 8240	Oil & Grease SM 5520C	TRPH EPA 418.1	TPHD LUFT Method
		II-MISC	1001	IFMSL	1601	101 00 10	1010	<u> </u>	μg/L	µg/L	μg/L	μg/L	μg/L	μg/L	μg/L	mg/L	mg/L	μ g/L
MW-1	02-02-94	108.03	17.31	90.72	ND	NR	NR	02-02-94	250	93	<0.5	1.9	1					
MW-I	04-29-94	108.03	17.31	90.72	ND	NR	NR	04-02-94	350	99	I,3	3.9	1 11				•	
MW-1	08-02-94	108.03	17.95	90.08	ND	SW	0.017	08-02-94	210	82	-1.5 <1	3.9 </td <td>2.5</td> <td></td> <td></td> <td></td> <td>••</td> <td></td>	2.5				••	
MW-1	11-16-94	108.03	17.04	90.99	ND	SW	0.02	11-16-94	650	260	38	6.1	15		••	••		
MW-1	03-20-95	108 03	15.75	92,28	ND	SW	0.02	03-20-95	830	140	5	41	110		••	••		
MW-1	06-06-95	108.03	17.68	90.35	ND	sw	0.016	06-06-95	210	30	<0.5	7.3	16	••				
MW-1	08-24-95	107.80	17.45	90 35	ND	sw	0.014	08-24-95	Not sample			_						
MW-1	11-16-95	107.80	17.64	90.16	ND	sw	0 012		<50	5.6	<0.5	1.4	1.2	55				
MW-1	02-27-96	107.80	15.21	92.59	ND	sw	0.016	02-27-96	1400	240	88	44	110	200				
MW-1	05-15-96	107 80	17 53	90.27	ND	SW	0.015	05-15-96	Not sample					200				
MW-2	02-02-94	107.43	16.96	90.47	ND	NR	NR	02-02-94	16000	1300	2500	540	2700		••	• •		
MW-2	04-29-94	107.43	16.95	90 48	ND	NR	NR	04-29-94	11000	1400	1200	360	1400					
MW-2	08-02-94	107.43	17 59	89.84	ND	SW	0.017	08-02-94	4900	800	290	120	620					
MW-2	11-16-94	107.43	16.73	90.70	ND	SW	0.02	11-16-94	49000	3300	8300	1400	7200					
MW-2	03-20-95	107 43	15 50	91 93	ND*	SW	0 02	03-20-95	Not sample	d: floating p	roduct ente	red well do	ring purgir	ıg				
MW-2	06-06-95	107.43	17.43	90.00	ND	sw	0 016	06-06-95	1200	60	21	35	140					
MW-2	08-24-95	107,28	17.22	90.06	ND	SW	0.014	08-24-95	Not sample	f: well was i	inaccessible	e due to cor	struction					
MW-2	11-16-95	107.28	17.36	89.92	ND	SW	0.012	11-16-95	360	45	13	7.1	7.5	210				
MW-2	02-27-96	107.28	14 82	92.46	ND	SW	0.016	02-27-96	8900	1400	980	150	550	940				
MW-2	05-15-96	107.28	17.40	89.88	ND	SW	0.015	05-15-96	480	82	48	8	48	87				

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Well Designation	Water Level Field Date	7. Top of Casing 7. Elevation	33 Depth to Water	Groundwater	Floating Product	Groundwater Groundwater Groundwater Groundwater	Hydraulic F Gradient	Water Sample Field Date	TPHG	Benzene	Toluene	н Ethylbenzene	Total Xylenes	MTBE	자 MTBE 가 BPA 8240	B OII & Gresse	B TRPH	TPHD CLUFT Method
MW-3	02-02-94	107.77	17.16	90.61	ND	NR	NR	02-02-94	26000	1400	1200	1200	4400			7.7	78	
MW-3	04-29-94	107.77	17.14	90.63	ND	NR	NR	04-29-94	22000	1400	620	910	3400			10		
MW-3	08-02-94	107.77	17.81	89.96	ND	SW	0.017	08-02-94	17000	530	410	720	2600				6.6	•-
MW-3	11-16-94	107.77	16.91	90.86	ND	SW	0 02	11-16-94	18000	1400	560	790	2800				2.3	
MW-3	03-20-95	107.77	15.60	92.17	ND	sw	0.02	03-20-95	29000	880	190	760	2000				16	
MW-3	06-06-95	107.77	17 54	90.23	ND	sw	0.016	06-06-95	22000	450	54	380	1300				71	
MW-3	08-24-95	107.61	17.42	90.19	ND	sw	0.014	08-24-95	Not sampled	i: well was	inaccessible	due to cor	struction					
MW-3	11-16-95	107.61	17.58	90.03	ND	sw	0.012	11-16-95	13000	210	<20	320	1000	790			8.3	
MW-3	02-27-96	107.61	15.03	92.58	ND	sw	0.016	02-27-96	9700	94	15	290	720	430			10	
MW-3	05-15-96	107.61	17.35	90.26	ND	sw	0.015	05-15-96	5600	66	12	37	67	230				
MW-4	02-02-94	106 58	15 36	91.22	ND	NR	NR	02-02-94	<50	3.9	<0.5	<0.5	<0.5					•-
MW-4	04-29-94	106.58	15.36	91.22	ND	NR	NR	04-29-94	<50	4.2	<0.5	< 0.5	< 0.5					
MW-4	08-02-94	106.58	15.94	90.64	ND	SW	0.017	08-02-94	<50	3.8	<0.5	< 0.5	<0.5		••			
MW-4	11-16-94	106.58	14.99	91.59	ND	SW	0.02	11-16-94	110	31	<0.5	<0.5	< 0.5					
MW-4	03-20-95	106.58	13.85	92.73	ND	SW	0.02	03-20-95	88	1	< 0.5	< 0.5	0.7					
MW-4	06-06-95	106.58	15.70	90.88	ND	SW	0.016	06-06-95	<50	< 0.5	<0.5	< 0.5	<0.5					
MW-4	08-24-95	106 71	15.86	90.85	ND	SW	0 014	08-24-95	Not sampled	ł: well was i	inaccessible	due to con	struction					
MW-4	11-16-95	106.71	16 10	90.61	ND	SW	0.012	11-16-95	<50	<0.5	<0.5	<0.5	<0.5	6				• •
MW-4	02-27-96	106.71	13.72	92.99	ND	SW	0.016	02-27-96	<50	<0.5	<0.5	<0.5	<0.5	10				
MW-4	05-15-96	106.71	15. 9 0	90.81	ND	SW	0.015	05-15-96	Not sample	i: not sched	uled for che	mical anal	ysis					

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Well Designation	Water Lovel Field Date	7. Top of Casing 7. Elevation	R Depth to Water	Groundwater G Elevation	Floating Product	Groundwater Flow Direction	Hydraulic F Gradien	Water Sample Field Date	TPHG TI LUFT Method	Benzene G EPA 8020	Toluene T EPA 8020	Ethylbenzene EPA 8020	Total Xylenes EPA 8020	MTBE EPA 8020	MTBE S EPA 8240	Oll & Grease S SM 5520C	m TRPH	TPHD LUFT Method
		I(-MOL	1000	TOWISE	1001	INC.	IUIC		руу.	μg/L	pg/L	μg/L	μg/L	h&\r	h&\r.	mg/L	mg/L	μg/L
MW-5	02-02-94	106.68	16.38	90.30	ND	NR	NR	02-02-94	10000	3000	65	240	78					
MW-5	04-29-94	106 68	16.41	90.27	ND	NR	NR	04-29-94	7600	2400	27	130	44					
MW-5	08-02-94	106.68	16.81	89.87	ND	sw	0.017	08-02-94	1900	680	<10	24	<10					
MW-5	11-16-94	106.68	16.12	90.56	ND	sw	0.02	11-16-94	17000	5900	700	440	320		• -			
MW-5	03-20-95	106.68	14.92	91.76	ND	sw	0.02	03-20-95	21000	6900	450	800	1300		• •			
MW-5	06-06-95	106.68	16.61	90.07	ND	SW	0.016	06-06-95	6500	1700	<20	120	69					
MW-5	08-24-95	106 60	16.47	90.13	ND	SW	0.014	08-24-95	Not sampled	i: well was	inaccessible	due to cor	struction					
MW-5	11-16-95	106 60	16.69	89.91	ND	sw	0.012	11-16-95	1800	470	<5	17	5	1000				
MW-5	02-27-96	106 60	14.35	92 25	ND	SW	0 016	02-27-96	10000	1000	71	690	1000	440	450			
MW-5	05-15-96	106.60	16.58	90.02	ND	SW	0.015	05-15-96	3400	350	6	72	20	220		- 4		
		<u>.</u>																
MW-6	02-02-94	105.16	13 60	91.56	ND	NR	NR	02-02-94	61	2.2	<0.5	<0.5	<0.5					
MW-6	04-29-94	105.16	13.66	91.50	ND	NR	NR	04-29-94	<50	0.6	<0.5	< 0.5	< 0.5					
MW-6	08-02-94	105 16	13.99	91.17	ND	SW	0 017	08-02-94	<50	< 0.5	<0.5	<0.5	< 0.5					
MW-6	11-16-94	105.16	13.11	92 05	ND	SW	0.02	11-16-94	<50	11	<0.5	<0.5	< 0.5					
MW-6	03-20-95	105.16	12.13	93.03	ND	sw	0.02	03-20-95	<50	<0.5	<0.5	<0.5	< 0.5					
MW-6	06-06-95	105.16	13.95	91.21	ND	SW	0.016	06-06-95	<50	<0.5	<0.5	<0.5	<0.5			• •		
MW-6	08-24-95	105.13	14.07	91.06	ND	SW	0.014	08-24-95	<50	< 0.5	<0.5	<0.5	<0.5	<3				
MW-6	11-16-95	105.13	14.34	90.79	ND	SW	0.012	11-16-95	<60	<0.5	<0.5	<0.5	< 0.5					
MW-6	02-27-96	105.13	12.00	93.13	ND	SW	0.016	02-27-96	<50	<0.5	<0.5	< 0.5	< 0.5	<3				
MW-6	05-15-96	105.13	14.10	91.03	ND	SW	0.015	05-15-96	Not sampled	i: not sched	uled for che	emical anal	ysis					

Table 2
Historical Groundwater Elevation and Analytical Data
Petroleum Hydrocarbons and Their Constituents
1994 - Present**

Date: 07-15-96

Well Designation	Water Level Field Date	Top of Casing Blevation	Depth to Water	Groundwater Elevation	Floating Product Thickness	Groundwater Flow Direction	Hydraulic Gradient	Water Sample Field Date	TPHG LUFT Method	Benzene EPA 8020	Toluene EPA 8020	Ethylbenzene EPA 8020	Total Xylenes BPA 8020	MTBE BPA 8020	MTBE EPA 8240	Oil & Grease SM 5520C	TRPH EPA 418.1	TPHD LUFT Method
		ft-MSL	feet	ft-MSL	feet	MWN	ft/ft		µg/L	µg/L	μg/L	pg/L	Лgц	pg/L	pg/L	mg/L	mg/L	J/gq
MW-7	02-02-94	107.08	14.04	93.04	ND	NR	NR	02-02-94	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	04-29-94	107.08	14.10	92.98	ND	NR	NR	04-29-94	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	08-02-94	107.08	14.61	92.47	ND	sw	0.017	08-02-94	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	11-16-94	107.08	13.37	93.71	ND	SW	0.02	11-16-94	<50	<0.5	<0.5	<0.5	<0.5					
MW-7	03-20-95	107 08	12.32	94.76	ND	SW	0.02	03-20-95	<50	<0.5	<0.5	<0.5	<0.5	• •				
MW-7	06-06-95	107.08	14.59	92.49	ND	SW	0.016	06-06-95	Not sampled	: not sched	uled for che	mical anal	ysis					
MW-7	08-24-95	107.05	14.64	92.41	ND	SW	0.014	08-24-95	<50	<0.5	<0.5	<0.5	<0.5	<3	••			
MW-7	11-16-95	107.05	15.30	91.75	ND	SW	0.012	11-16-95	Not sampled	l not sched	uled for che	mical anal	ysis					
MW-7	02-27-96	107.05	12.24	94.81	ND	SW	0.016	02-27-96	<50	<0.5	<0.5	<0.5	<0.5	<3	••			
MW-7	05-15-96	107.05	14.65	92.40	ND	sw	0 015	05-15-96	Not sampled	l: not sched	uled for che	mical anal	ysis					

ft-MSL; elevation in feet, relative to mean sea level

MWN: ground-water flow direction and gradient apply to the entire monitoring well network

ft/ft: foot per foot

TPHG: total petroleum hydrocarbons as gasoline, California DHS LUFT Method

μg/L; micrograms per liter

EPA: United States Environmental Protection Agency

MTBE: Methyl-tert-butyl ether

SM: standard method

mg/L: milligrams per liter

TRPH: total recoverable petroleum hydrocarbons

TPHD; total petroleum hydrocarbons as diesel, California DHS LUFT Method

NR: not reported; data not available

ND; none detected

SW: southwest

^{^:} groundwater elevation (GWE) and depth to water (DTW) adjusted to include 80 percent of the floating product thickness (FPT): [GWE: (TOC - DTW) + (FPT x 0.8)]

^{*:} floating product entered the well during purging

^{- -:} not analyzed or not applicable

^{**:} For previous historical groundwater elevation and analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996).

Table 3
Historical Groundwater Analytical Data
Volatile and Semivolatile Organic Compounds
1994 - Present**

				d Voiatile O EPA Metho	rganic Comp d 5030/601	ounds			olatile Organ EPA Method	-	ds
Well Designation	Water Sample Field Date	Tetrachloro- ethene	Trichloro- ethene	Chloroform	cis-1,2-Dichloro- ethene	Vinyl Chloride	1,1-Dichloro- ethane	Naphthalene	2-Methyl- naphthalene	Bis (2ethylhexyl) Phthalate	Di-n-octyl Phthalate
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
MW-1	02-02-94	11	1.1	ND	ND	ND	ND				· .
MW-I	04-29-94	13	1.3	0.5	<0.5	< 0.5	<0.5				
MW-I	08-02-94	15	1.4	0.7	0.7	<0.5	<0.5		•-		
MW-1	11-16-94	12	1.1	05	1.2	<0.5	<0.5	• •			
MW-1	03-20-95	Not analyzed s	sampling for a	ddittonal par	rameters was	discontinued					
MW-2	02-02-94	13	ND	ND	ND	ND	ND				
MW-2	04-29-94	9.4	1.9	<0.5	2.2	<0.5	<0.5				
MW-2	08-02-94	15	2	<0.5	2.9	< 0.5	< 0.5				
MW-2	11-16-94	9.6	1.8	<0.5	2.1	<0.5	<0.5				
MW-2	03-20-95	Not analyzed: s	ampling for a	dditional par	ameters was	discontinued					
MW-3	02-02-94	ND*	ND*	ND*	ND*	ND*	ND*	160	91	9	ND
MW-3	04-29-94	1.7	<0.5	< 0.5	<0.5	<0.5	<0.5	110	50	<10	<10
MW-3	08-02-94	1	<0.5	<0.5	<0.5	<0.5	<0.5	120	53	10	<10
MW-3	11-16-94	1.3	<0.5	<0.5	< 0.5	<0.5	< 0.5	100	53	<10	<10
MW-3	03-20-95	Not analyzed: s	ampling for a	dditional par	ameters was o	discontinued					
MW-4	02-02-94	1.4	ND	ND	ND	ND	ND		••		
MW-4	04-29-94	1.9	<0.5	<0.5	<0.5	<0.5	<0.5		• •		
MW-4	08-02-94	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		••		
MW-4	11-16-94	1.8	<0.5	<0.5	<0.5	<0.5	<0.5			••	
MW-4	03-20-95	Not analyzed: s.	ampling for a	ddittonal par	ameters was o	discontinued					
MW-5	02-02-94	27	ND	ND	ND	ND	ND	••			
MW-5	04-29-94	10	2.7	<0.5	2.4	<0.5	<0.5	••	•-		
MW-5	08-02-94	13	5.4	<0.5	5.7	<0.5	<0.5				
MW-5	11-16-94	1.1	1	<0.5	3.5	1.3	<0.5				
MW-5	03-20-95	Not analyzed: sa	ampling for a	dditional par	ameters was o	hscontinued					

Table 3
Historical Groundwater Analytical Data
Volatile and Semivolatile Organic Compounds
1994 - Present**

				i Volatile O EPA Metho	rganic Comp d 5030/601	ounds			olatile Organ EPA Method	nic Compoun 1 3510/8270	ds		
Well Designation	Water Sample Field Date	Tetrachloro- cthene	Trichloro- ethene	Chloroform	cis-1,2-Dichloro- ethene	Vinyl Chloride	1,1-Dichloro- ethane	Naphthalene	2-Methyl- naphthalene	Bis (2ethylbexyl) Phthalate	Di-n-octyl Phthalate		
		μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L	μg/L		
MW-6	02-02-94	100	ND	6.7	ND	ND	ND						
MW-6	04-29-94	95	66	7.2	<2.5	<2.5	<2.5						
MW-6	08-02-94	87	6.1	4.6	<2.5	<2.5	<2.5						
MW-6	11-16-94	86	6.8	8.9	<2.5	<2.5	<2.5	+-					
MW-6	03-20-95	Not analyzed, s	ampling for a	dditional par	ameters was o	discontinued							
MW-7 MW-7 MW-7 MW-7	02-02-94 04-29-94 08-02-94 11-16-94 03-20-95	3.4 3.4 3.3 3.3 Not analyzed. s	ND <0 5 <0.5 <0.5 ampling for ac	0.8 1.1 0.8 <0.5 dditional par	ND <0.5 <0.5 <0.5 ameters was o	ND <0.5 <0.5 <0.5 siscontinued	ND <0.5 <0.5 <0.5	 	 	 			
AS-I	09-30-93	29	1.5	1	ΝD	ND	ND						
AS-2	08-11-95	Not analyzed: s	ampling for a	dditional par	ameters was r	ot initiated							
AS-3	08-11-95	Not analyzed s	ampling for a	dditional par	ameters was r	not initiated							
AS-4	08-11-95	Not analyzed: sampling for additional parameters was not initiated											
AS-5	08-11-95	Not analyzed: s	ampling for ac	iditional para	ameters was n	ot initiated							

EPA: United Statest Environmental Protection Agency

μg/L· micrograms per liter

ND: none detected

^{- -} not analyzed or not applicable

^{*:} sample was analyzed for volatile organic compounds using USEPA Method 624 (only BTEX was detected)

^{**:} For previous historical analytical data please refer to Fourth Quarter 1995 Groundwater Monitoring Program Results and Remediation System Performance Evaluation Report, ARCO Service Station 6148, Oakland, California, (EMCON, March 4, 1996).

Table 4 Historical Groundwater Analytical Data Metals

Date: 07-15-96

ā					
am te	E 0	L 01	21	01	10
er S dD	, 60 mit	6 6	d 747	, 8	- S
Wat Fiel	C G	Chr EPA	Lea	Zink	Nickel EPA 6010
	μg/L	μg/L	μg/L	μg/L	μg/L
02.12.02					
		_			<20
		••	- •		
			••		••
		• •	••		••
			=	==	<20
09-30-93	Not analyzed: sampling	ior additional parai	meters was disconti	nued	
		•	_		
					38
06-12-92	Not analyzed: sampling	for additional parai	meters was disconti	nued	
03-18-92	<3	67	27	156	113
06-12-92		• •			
09-14-92					••
10-07-92	Not sampled: well conta	ined floating produ	ct		
01-22-93	<3	10	8	28	23
04-14-93	<3	<5	3	25	<20
09-30-93	<5	50	26	100	70
11-16-93	Not analyzed: sampling	for additional parar	meters was disconti	nued	
11-12-92	Not analyzed: sampling	for additional parar	neters was not initi	ated	
		•			
		-			
		•			
11-12-72	To analyzed sampling	ror additional parall	ilotois was not intu	awu	
09-30-93	Not analyzed: sampling	for additional paran	neters was not initia	ated	
08-11-95	Not analyzed: sampling i	for additional paran	neters was not initi:	ated	
08-11-95	Not analyzed: sampling t	for additional paran	neters was not initia	ated	
00 11 72		or acamaconar param			
08-11-95	Not analyzed: sampling i	-			
	06-12-92 09-14-92 10-07-92 01-22-93 04-14-93 09-30-93 11-16-93 11-12-92 11-12-92 11-12-92 09-30-93 08-11-95	Hg/L	μg/L μg/L 03-18-92 <3 5 06-12-92 09-14-92 10-07-92 01-22-93 04-14-93 <3 <5 09-30-93 Not analyzed: sampling for additional parameters of the param	μg/L μg/L μg/L μg/L	μg/L μg/L μg/L μg/L μg/L μg/L

EPA: United Statest Environmental Protection Agency

µg/L: micrograms per liter

- - : not analyzed

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/

catalytic oxidizer

	Oakiano, Camonna			Ca	atarytic Oxigize	21			
Consultant:	EMCON 1921 Ringwood Avenue San Jose, California		Start-Up Date: 09-27-95 Operation and Performance Data From: 09-27-95 To: 07-01-96						
Date Begin:		09-27-96	10-01-95	01-01-96	02-01-96	03-01-96			
Date End:		10-01-95	01-01-96	02-01-96	03-01-96	04-01-96			
Mode of Oxidation:		Cat-ox	Cat-ox	Cat-ox	Cat-ox	Cat-ox			
Days of Operation:		3	11	16	7	11			
Days of Downtime:		1	81	15	22	20			
Average Vapor Concen	trations (1)								
Well Field Influent:	ppmv (2) as gasoline	3800	1200	670	230	320			
	mg/m3 (3) as gasoline	14000	4400	2790	830	1300			
	ppmv as benzene	81	19	NA (13)	0.6	1,6			
	mg/m3 as benzene	260	61	NA	2	5.2			
System Influent:	ppmv as gasoline	1800	600	415	230	320			
	mg/m3 as gasoline	6700	2200	1730	830	1300			
	ppmv as benzene	41	11	NA	0.6	1.6			
	mg/m3 as benzene	130	34	NA	2	5.2			
System Effluent:	ppmv as gasoline	52	30	3.8*	21	26			
	mg/m3 as gasoline	190	110	20	76	110			
	ppmv as benzene	1.1	0.5	NA	< 0.1	< 0.1			
	mg/m3 as benzene	3.5	1.5	NA	<0.5	<0.5			
Average Well Field Flow	Rate (4), scfm (5):	75.0	104.0	124.6	128.2	126 4			
Average System Influent		103.6	132.3	111.9	128.2	126.4			
Average Destruction Eff	iciency (6), percent (7):	97.2	95.0	98.8	90.8	91.5			
Average Emission Rates	(8), pounds per day (9)								
Gasoline:		1.77	1.31	0.20	0.88	1.25			
Benzene:		0.03	0.02	0.00	0.01	0.01			
Operating Hours This Per	riod:	74.9	255.3	381.7	157.2	253.0			
Operating Hours To Date		74.9	330.2	711.9	869.1	1122.2			
Pounds/ Hour Removal R	ate, as gasoline (10):	3.93	1.71	1.30	0.40	0.62			
Pounds Removed This Pe	eriod, as gasoline (11):	<u>294.4</u>	<u>437.3</u>	<u>496.6</u>	62.6	<u>155.6</u>			
Pounds Removed To Date	e, as gasoline:	294.4	731.7	1228.3	1290.9	1446.5			
Gallons Removed This Po	eriod, as gasoline (12);	47.5	<u>70.5</u>	80.1	10.1	<u>25.1</u>			
Gallons Removed To Dat	e, as gasoline:	47.5	118.0	198.1	208.2	233.3			

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit¹ ThermTech Model

CATVAC-10E electric/ catalytic oxidizer

Consultant	:: EMCON 1921 Ringwood Avenue San Jose, California		Operation and		-Up Date: 09-27-95 ata From: 09-27-95 To: 07-01-96
Date Begin:	*	04-01-96	05-01-96	06-01-96	
Date End:		05-01-96	06-01-96	07-01-96	
Mode of Oxidation:		Cat-ox	Cat-ox	Cat-ox	
Days of Operation:		22	3	3	
Days of Downtime:		8	28	27	
Average Vapor Conce	ntrations (1)				
Well Field Influent	: ppmv (2) as gasoline	190	160	180	
	mg/m3 (3) as gasoline	760	650	740	
	ppmv as benzene	0.9	0.6	<1	
	mg/m3 as benzene	3	2	<2.5	
System Influent	: ppmv as gasoline	190	160	180	
	mg/m3 as gasoline	760	650	740	
	ppmv as benzene	0.9	0.6	<1	
	mg/m3 as benzene	3	2	<2.5	
System Effluent	: ppmv as gasoline	10	10	<5	
	mg/m3 as gasoline	41	39	<20	
	ppmv as benzene	<0.2	<0.2	< 0.2	
	mg/m3 as benzene	<0.5	< 0.5	<0.5	
Average Well Field Flow	w Rate (4), scfm (5):	100.3	91.8	116.7	
Average System Influen	t Flow Rate (4), scfm:	100.3	91.8	116-7	
Average Destruction Ef	ficiency (6), percent (7):	94.6	94.0	97.3	
Average Emission Rate	es (8), pounds per day (9)				
Gasoline:		0.37	0 32	0.21	
Benzene:		0.00	0.00	0.01	
Operating Hours This Pe	eriod:	532,5	72.9	83.7	
Operating Hours To Dat		1654.6	1727.6	1811.3	
Pounds/ Hour Removal	Rate, as gasoline (10):	0.29	0.22	0.32	
Pounds Removed This F	Period, as gasoline (11):	151.9	16.3	27.1	
Pounds Removed To Da		1598.4	1614.7	1641.8	
Gallons Removed This !	Period, as gasoline (12):	24.5	2.6	4.4	
Gallons Removed To Da		257.8	260.5	264.8	

Table 5 Soil-Vapor Extraction System Operation and Performance Data

Facility Number: 6148

Location: 5131 Shattuck Avenue

Oakland, California

Vapor Treatment Unit: ThermTech Model

CATVAC-10E electric/catalytic oxidizer

Consultant: EMCON

Start-Up Date: 09-27-95

1921 Ringwood Avenue Operation and Performance Data From: 09-27-95

San Jose, California To: 07-01-96

CURRENT REPORTING PERIOD:	04-01-96	to	07-01-96
DAYS / HOURS IN PERIOD:	91	2184.0	
DAYS / HOURS OF OPERATION:	29	689.1	
DAYS / HOURS OF DOWN TIME:	62	1494 9	
PERCENT OPERATIONAL:		31.6	%
PERIOD POUNDS REMOVED:	195.3		
PERIOD GALLONS REMOVED:	31.5		
AVERAGE WELL FIELD FLOW RATE (scfm):		101.4	
AVERAGE SYSTEM INFLUENT FLOW RATE (scfm):		101.4	

^{1.} Average concentrations are based on discrete sample results reported during the month; refer to Appendix C for discrete sample results

For the period of January 1, 1996 to February 1, 1996, laboratory analytical results were unavailable. The average concentrations were based on photoionization de (PID) field readings taken during the month of January 1996.

^{2.} ppmv: parts per million by volume

^{3.} mg/m3: milligrams per cubic meter

^{4.} Average flow rates (time weighted average) are based on instantaneous flow rates recorded during the month; refer to Appendix C for instantaneous flow data.

^{5.} scfm: flow in standard cubic feet per minute at one atmosphere and 70 degrees Fahrenheit

^{6.} Average destruction efficiencies are calculated using monthly average concentrations; refer to Appendix C for instantaneous destruction efficiency data.

^{7.} destruction efficiency, percent = ([system influent concentration (as gasoline in mg/m3) - system effluent concentration (as gasoline in mg/m3)] / system influent concentration (as gasoline in mg/m3)) x 100 percent

⁸ Average emission rates are calculated using monthly average concentrations and flow rates; refer to Appendix C for instantaneous emission rate data

^{9.} emission rates (pounds per day) = system effluent concentration (as gasoline or benzene in mg/m3) x system influent flow rate (scfm) x 0 02832 m3/ft3 x 1440 minutes/day x 1 pound/454,000 mg

¹⁰ pounds/ hour removal rate (as gasoline) = well field influent concentration (as gasoline in mg/m3) x well field influent flow rate (scfm) x 0 02832 m3/ft3 x 60 minutes/hour x 1 pound/454,000 mg

^{11.} pounds removed this period (as gasoline) = pounds/ hour removal rate x hours of operation

^{12.} gallons removed this period (as gasoline) = pounds removed this period (as gasoline) x 0.1613 gallons/pound of gasoline

¹³ not available

Table 6
Soil-Vapor Extraction Well Data

Date, 07-17-96

						Well Iden	tification					
<u> </u>		VW-I			VW-2			VW-3			VW-4	
Date	Valve Position	TVHG	Vacuum Response									
		ppmv	in-H2O									
09-27-95	ореп	NA	7.0	open	NA	7.5	open	NA	7.0	орел	NA	7.0
09-27-95	open	NA	14 0	open	NA	13.0	open	NA	13.0	open	NA	13.0
09-27-95	open	NA	18.0	open	NA	18.0	ореп	NA	17.0	open	NA	17.0
09-27-95	open	538 PID	19.0	open	767 PID	19.5	open	531 PID	19.0	apen	627 PID	19.5
09-27-95	open	NA	NA	ореп	4100 LAB	NA	open	1700 LAB	NA	open	3600 LAB	NA
09-28-95	open	1006 PID	18.0	open	NA	18.0	open	NA	18.0	open	NA	18.5
09-28-95	open	2800 LAB	NA	open	NA	NA	open	NA	NA	open	NA	NA
09-29-95	open	NA	20.0									
10-11-95	open	NA	18.0	ореп	NA	180	open	NA	180	орел	NA	18.0
01-12-96	open	300 PID	25.0	ореп	500 PID	25.0	open	430 PID	25.0	open	580 PID	25 0
02-15-96	open	NA	27.0	open	NA	27.0	open	NA	26.0	ореп	NA	26.0
03-19-96	closed	14.1 PID	0.0	closed	18.8 PID	00	closed	30.2 PID	0.0	closed	16.6 PID	0.0
05-08-96	closed	NA	NA									
05-16-96	open	190 PID	10.0	open	183 PID	10.0	open	167 PID	10.0	open	128 PID	10.0
06-07-96	open	NA	11.0	open	NA	10.0	open	NA	11.0	open	NA	11.0
06-28-96	open	290 PID	NA	open	550 PID	NA	open	400 PID	NA]	closed	210 PID	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water open: open to the system

open (b): open to the system and bubbling air at 1 scfm per well

passive: open to the atmosphere

closed: closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 6
Soil-Vapor Extraction Well Data

ARCO Service Station 6148

5131 Shattuck Avenue. Oakland, California

						Well Ider	itification					
		VW-5			VW-6			VW-7	-		VW-8	
	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response
·		ppmv	in-H2O		ppmv	in-H2O		ppmv	in-H2O		ppmv	în-H2O
09-27-95	open	NA.	6.5	open	NA	6.0	open	NA NA	6.0	ореп	NA	6.0
09-27-95	open	NA	13.0	open	NA	13.0	open	NA	13.0	open	NA	13.0
09-27-95	open	NA	17.0	open	NA	17.0	open	NA	17.0	open	ΝA	170
09-27-95	open	247 PID	18.0	open	2615 PID	19.0	open	856 PID	19.0	open	501 PID	18.5
09-27-95	open	550 LAB	NA	open	4700 LAB	NA	open	2800 LAB	NA	open	1100 LAB	NA
09-28-95	open	NA	18 0	open	NA	18.0	open	NA	17.5	open	NA	17.0
09-28-95	open	NA	NA	open	NA	NA	ореп	NA	NA ·	open	NA	NA
09-29-95	closed	NA	NA	open	NA	190	open	NA	19.5	open	NA	19.0
10-11-95	closed	NA	NA	open	NA	17.5	open	NA	17.0	open	NA.	17.0
01-12-96	open	350 PID	25.0	open	2210 PID	25.0	open	300 PID	22.0	ореп	225 PID	25.0
02-15-96	open	NA	26.0	open	NA	26.0	open	NA	24.0	open	NA	25.0
03-19-96	closed	8.9 PID	00	open (b)	512 PID	38.0	open (b)	156 PID	37.0	open (b)	60.1 PID	38.0
05-08-96	closed	NA	NA	closed	NA	NA	closed	NA	NA	closed	NA	NA
05-16-96	open	240 PID	10.0	open	191 PID	10.0	ореп	198 PID	10.0	open	220 PID	10.0
06-07-96	open	NA	11.0	open	NA	10.0	open	NA	10.0	open	NA	11.0
06-28-96	closed	95 PID	NA	open	430 PID	NA	open	460 PID	NA	closed	12 PID	NA
						:			:			

TVHG concentration of total volatile hydrocarbons as gasoline

ppmv: parts per million by volume

in-H2O: inches of water open: open to the system

open (b): open to the system and bubbling air at 1 scfm per well

passive: open to the atmosphere

closed: closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB: TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 6 Soil-Vapor Extraction Well Data

ARCO Service Station 6148
5131 Shattuck Avenue, Oakland, California

Date. 07-17-96

	ļ					Well Iden	tification					
		VW-9		1	VW-10	· I	·	MW-1	Ţ		MW-5	
	Valve		Vacuum	Valve	<u>-</u> -	Vacuum	Valve		Vacuum	Valve		Vacuum
Date	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Response	Position	TVHG	Respons
		ppmv	in-H2O		ppmv	ın-H2O		ppmv	in-H2O		ppmv	in-H2C
09-27-95	open	NA	7.5	open	NA	6.0	open	NA	7.5	open	NA NA	5.0
09-27-95	open	NA	13.0	open	NA	13.0	open	NA	14.0	open	NA	12.0
09-27-95	open	NA	17.0	open	NA	17.0	open	NA	17.0	open	NA	17.0
09-27-95	open	801 PID	19.0	open	482 PID	19.0	open	438 PID	5.0	open	457 PID	18 5
09-27-95	open	6300 LAB	NA	open	1700 LAB	NA]	open	1600 LAB	NA .	орел	960 LAB	NA
09-28-95	open	NA	18.0	open	NA	18.0	open	NA	50	open	NA	17.0
09-28-95	open	NA	NA	open	NA	NA	open	NA	NA	open	NA	NA
09-29-95	open	NA	19.0	open	NA	19.5	open	NA	5.0	орел	NA	19.0
10-11-95	open	NA	175	open	NA	17.5	ореп	NA	4.0	open	NA	16.5
01-12-96	open	930 PID	22 0	open	170 PID	5.0	closed	13 PID	00	open	172 PID	50
02-15-96	open	NA	24.0	open	NA	10.0	closed	NA	00	open	NA	6.0
03-19-96	open (b)	50.2 PID	38.0	open (b)	22.4 PID	38 0	closed	32 6 PID	0.0	open (b)	43.2 PID	38 0
05-08-96	closed	NA	NA	closed	NA	NA [closed	NA	NA (closed	NA	NA
05-16-96	open	175 PID	10.0	closed	40 PID	00	open	152 PID	10.0	closed	28.5 PID	0.0
06-07-96	open	NA	110	closed	NA	0.0	open	NA	10.0	closed	NA	0.0
06-28-96	open	310 PID	NA	closed	120 PID	NA .	closed	100 PID	NA	closed	68 PID	NA

TVHG: concentration of total volatile hydrocarbons as gasoline

ppmv parts per million by volume

in-H2O: inches of water

open: open to the system

open (b): open to the system and bubbling air at I sofm per well

passive: open to the atmosphere

closed: closed to the system and atmosphere

NA: not analyzed or not measured

FID: TVHG concentration was measured with a portable flame ionization detector

LAB TVHG concentration was analyzed in the laboratory

PID: TVHG concentration was measured with a portable photoionization detector

Table 7 Air-Sparge and Air-Bubbling Systems Operation and Performance Data

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Air-Bubbling Start-Up Date: 03-19-96

Consultant: EMCON

AS Start-Up Date: 06-07-96

1921 Ringwood Avenue San Jose, California

Operation and Performance Data From: 03-19-96

To: 07-01-96

San Jose, Can	noma	To: 07-01-96
Date Begin:	06-28-96	
Date End:	07-01-96	
Air-Bubbling Well Status:		
MW-2	on	
MW-3	on	
MW-4	on	
Air-Sparge Well Status:		
AS-1	on	
AS-2	on	
AS-3	on	
AS-4	on	
AS-5	on	
Air-Bubbling Well Pressure (psig) (1):		
MW-2	4.0	
MW-3	4.0	
MW-4	4.0	
Air-Sparge Well Pressure (psig):		
AS-1	4.0	
AS-2	3.0	
AS-3	4.0	
AS-4	3.0	
AS-5	3.5	
Total Air-Sparge and		
Air-Bubbling Pressure (psig):	20.0	
Total Air-Sparge and		
Air-Bubbling Flow Rate (scfm) (2):		
Dissolved Oxygen (ppm) (3):		
Air-Bubbling Wells:		
MW-2	- -	
MW-3		
MW-4		

Table 7 Air-Sparge and Air-Bubbling Systems Operation and Performance Data

Facility Number: 6148

Air-Sparge and Air-Bubbling Unit:

Location: 5131 Shattuck Avenue

5 Hp Powerex Rotary Oilless Compressor

Oakland, California

Air-Bubbling Start-Up Date: 03-19-96

Consultant: EMCON

AS Start-Up Date: 06-07-96

1921 Ringwood Avenue

Operation and Performance Data From: 03-19-96

San Jose, California

To: 07-01-96

CURRENT REPORTING PERIOD:

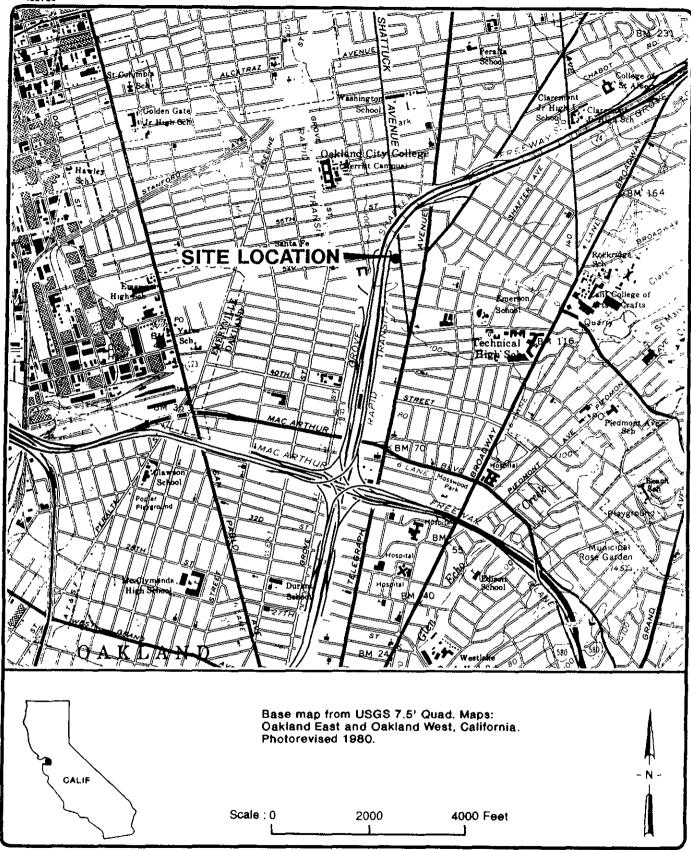
04-01-96

07-01-96

DAYS / HOURS IN PERIOD:

91.0

2184

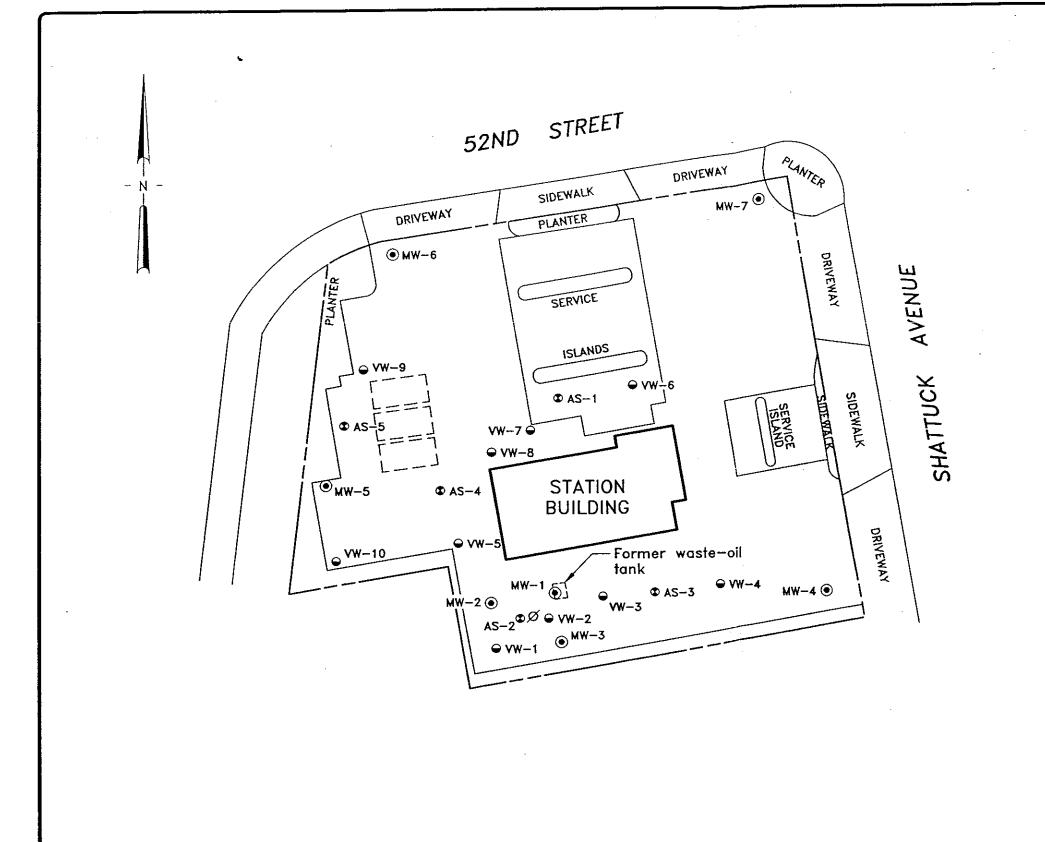

to

^{1.} psig: pounds per square inch gauge

^{2.} scfm: standard cubic feet per minute at 14.7 psi and 70° F

^{3.} ppm: parts per million

^{4. --:} not analyzed, not applicable, or not available

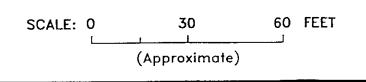


ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVENUE
QUARTERLY GROUNDWATER MONITORING
OAKLAND, CALIFORNIA

SITE LOCATION

FIGURE

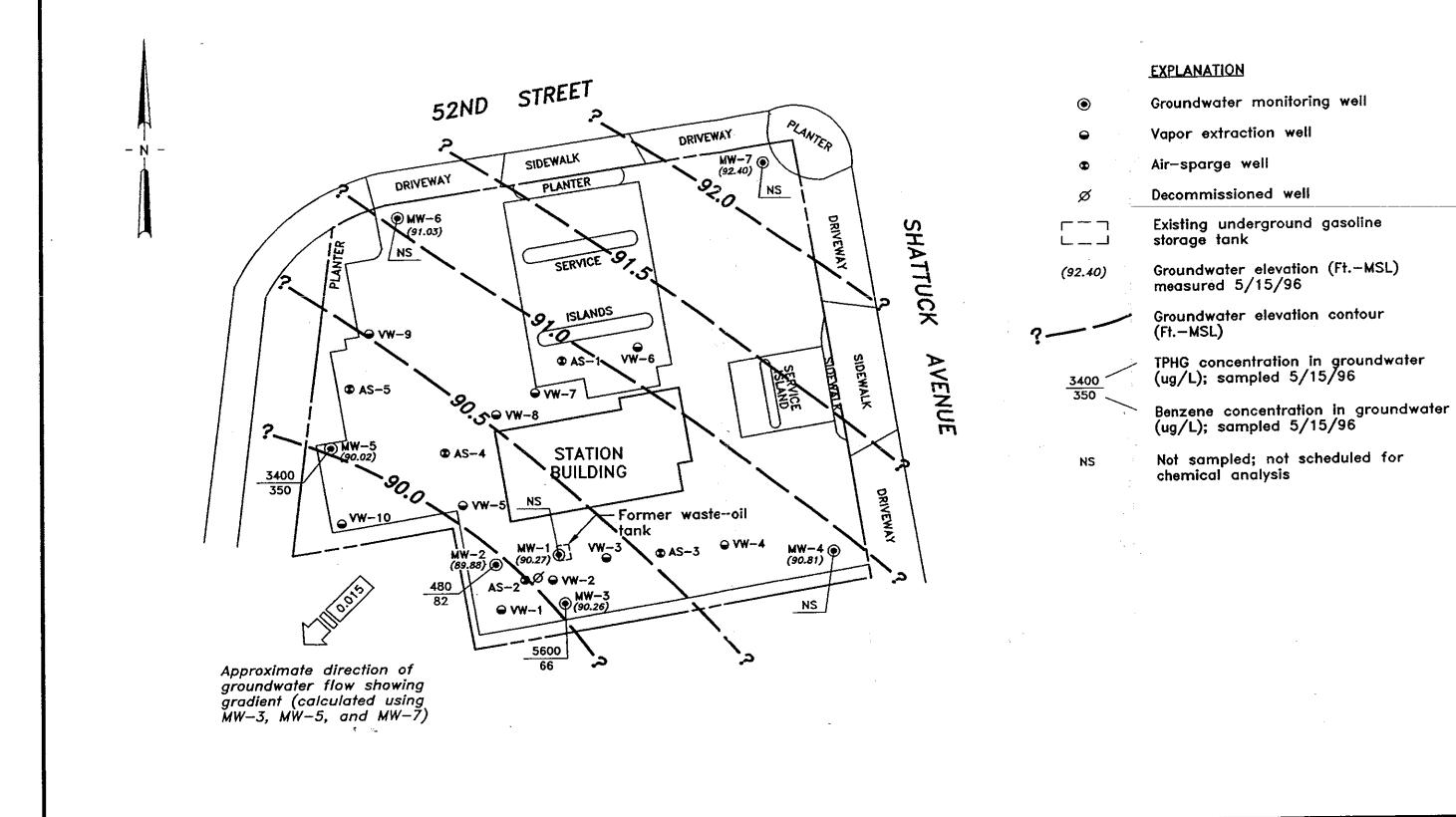
PROJECT NO. 805-135.06



EXPLANATION

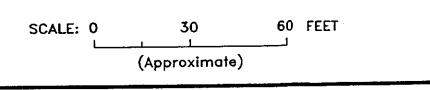
- Groundwater monitoring well
- Vapor extraction well
- Ø Decommissioned well
- Existing underground gasoline

 storage tank



ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVENUE
QUARTERLY GROUNDWATER MONITORING
OAKLAND, CALIFORNIA

SITE PLAN


FIGURE NO.

PROJECT NO. 805-135.06

G:\805-135\G00 REV 0 07/09/96 16:08:13 DD

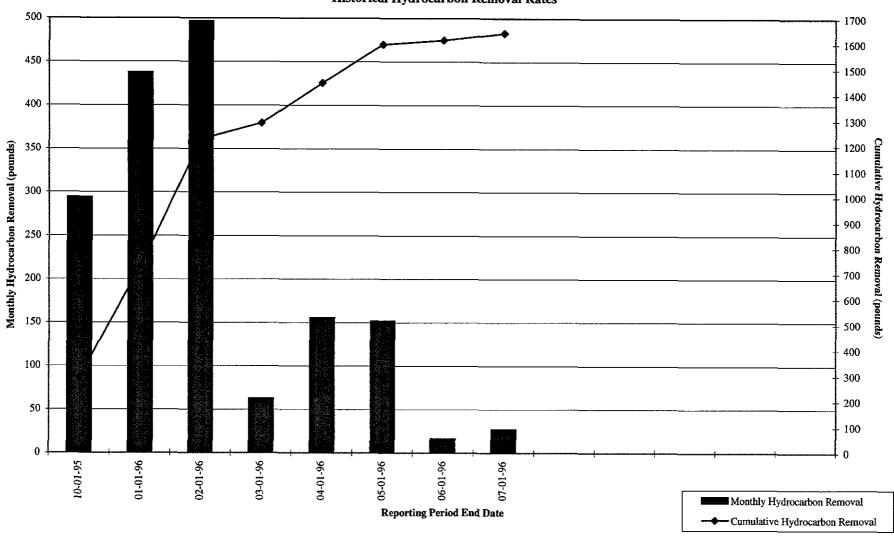

ARCO PRODUCTS COMPANY
SERVICE STATION 6148, 5131 SHATTUCK AVENUE
QUARTERLY GROUNDWATER MONITORING
OAKLAND, CALIFORNIA

GROUNDWATER DATA SECOND QUARTER 1996 FIGURE NO.

PROJECT NO. 805-135.006

ARCO Service Station 6148
Soil-Vapor Extraction and Treatment System
Historical Well Field Influent TVHG and Benzene Concentrations

Figure 4



TVHG: total volatile hydrocarbons as gasoline ppmv parts per million by volume

Figure 5

ARCO Service Station 6148

Soil-Vapor Extraction and Treatment System
Historical Hydrocarbon Removal Rates

APPENDIX A

FIELD DATA SHEETS, SECOND QUARTER 1996 GROUNDWATER MONITORING EVENT

FIELD REPORT DEPTH TO WATER/FLOATING PRODUCT SURVEY

STATION ADDRESS: 5131 Shattuck Avenue, Oakland PROJECT #: 21775-250.002

DATE: 5-15-96

DAY: Wednesday FIELD TECHNICIAN: M. Rollesus ARCO STATION #: 6148

										,		y
1		Well	Well			Туре	FIRST	SECOND	DEPTH TO	FLOATING	WELL	
DTW	WELL	Box	Lid	Gasket	Lock	Of Well	DEPTH TO	DEPTH TO	FLOATING	PRODUCT	TOTAL	2011151370
Order	ID	Seal	Secure	Present	Number	Cap	WATER	WATER	PRODUCT	THICKNESS	DEPTH	COMMENTS
			<u> </u>	 			(feet)	(feet)	(feet)	(feet)	(feet)	
1	MW-4	good	Soul	and	ne	Tec.	15.90	15,50 +1R	XIR	X/A.	20.0	44.
2	MW-6	Good	Soot	900L	AYCO	دسر.	14.10	14.10	MK	MA	26-4	
3	MW-7	Sost	6004	Good	Arco	Livi	1465	14.65	HK	114	26.7	
4	MW-1	9001	goid	المنعرة	non	Tec	17.53		NR	X10	25,5	
5	MW-2	الارو	لاري	900K	nove	Tic	17.40	17.40	KIR	NA	25,5	
6	MW-3	Soul	لاري	3002	none	Tec.	17.35	17.75	MK	HA	75.5	
7	MW-5	Soci	good	good	Kenu	Fec	14.58	16.58	MR	WA	25.0	
								<u> </u>				
											<u> </u>	
									"			
		<u> </u>	1	<u></u>		IDVE	/ DOINTS /	DE TOD C	E WELL C	ACINGS		

SURVEY POINTS ARE TOP OF WELL CASINGS

Rev.	3	2/94
1 (O)	Ο,	2334

WATER SAMPLE FIELD DATA SHEET	
EMCON PROJECT NO: 21775-250-002 SAMPLE ID:	s ')
ASSOCIATES PURGED BY: M. College CLIENT NAME: ARIOH 6148	
SAMPLED BY: LOCATION: OAKLAND, CA	
TYPE: Ground Water V Surface Water Treatment Effluent Other	
CASING DIAMETER (inches): 2 3 4X	
	5,29
1	5,87
DEPTH OF WELL (feet): 25,5 ACTUAL PURGE VOL. (gal.):/	(1 s
DATE PURGED: 5-15-74 Start (2400 Hr) 11/3 End (2400 Hr) 1/	18
DATE SAMPLED: Start (2400 Hr) End (2400 Hr)	
	JRBIDITY
(2400 Hr) (gal.) (units) (μmhos/cm@ 25° C) (°F) (visual) 1115 5,5 4.03 4/63 7/3 (ουλγ	(visual)
1116 11.0 6.32 455 71.1	2161
1118 160 6.38 447 70.7 11	"
	
	<u> </u>
D. O. (ppm): 1/R ODOR: Strong	NR
(COBALT 0 - 500) (N	TU 0 - 200
Field QC samples collected at this well: Parameters field filtered at this well: OI OI OI OI OI OI OI OI OI O	0 - 1000)
PURGING EQUIPMENT SAMPLING EQUIPMENT	
2" Bladder Pump Bailer (Teffon®) 2" Bladder Pump Bailer (Teffon®)	eflon®)
Centrifugai Pump — Bailer (PVC) — DDL Sampler — Bailer (S	
— Submersible Pump — Bailer (Stainless Steel) — Dipper — Submers	ible Pump
— Well Wizard™ — Dedicated — Well Wizard™ — Dedicate	d
Other:Other:	
WELL INTEGRITY: LOCK #: NON	<u></u>
REMARKS: CII Sample fu kan	
ALMANO,	
Meter Calibration: Date: 5/15/96 Time: 1110 Meter Serial #: 9204 Temperature °F	79,1
(EC 1000 109 1000) (DI) (pH 7 700 1 700) (pH 10 994 1 1000) (pH 4 400	1900
Location of previous calibration:	
5/4	2
Signature: Reviewed By: 26 Page	of <u> </u>
	==

Rev.	3.	2/94
------	----	------

WATER SAMPLE FIELD DATA SHEET EMCON PROJECT NO: 2/725-250.002 SAMPLE ID: MW-3 PURGED BY: M.Ball=603 CLIENT NAME: ARCOM LOCATION: ORKLAN TYPE: Ground Water Surface Water Treatment Effluent Other CASING DIAMETER (inches): 2 3 4 4 4.5 6 6	(25) 6148 11.CA
CASING ELEVATION (feet/MSL):	15.97
DATE PURGED: 5-15-96 DATE SAMPLED: Start (2400 Hr) 1/37 End (2400 Hr) TIME VOLUME pH (2400 Hr) 1/48 [2400 Hr) (gal.) (units) (μπhos/cm@25°C) (°F) (visual) 1/38 5.5 (ε.51 4/83 (.9.4 B) K 1/39 11.0 6.69 4/73 69.9 (Ισιλη 1/10 με (μπλο β. 78 6.7 (μπ	TURBIDITY (visual) IKANY MOD IICh+
Centrifugal Pump — Bailer (PVC) — DDL Sampler — Submersible Pump — Bailer (Stainless Steel) — Dipper —	ENT Bailer (Teflon®) Bailer (Stainless Steel Submersible Pump Dedicated

REMARKS: GII Scamply +	aken	OCK #:
Meter Calibration: Date: 5/5/59 Time:	<u>-</u>	
Signature: 21 Life uplant	Reviewed By:	Page <u>Z</u> of <u>S</u>

Day	2	2/0/
Rev.	J.	2/94

WATER SAMPLE FIELD DATA SHEET
PROJECT NO: 21775-250,002 SAMPLE ID: MW-5(35') PURGED BY: MIGALIFICAL CLIENT NAME: ARCOHOLYS
SAMPLED BY: LOCATION: OAKLANA, CA
TYPE: Ground Water Surface Water Treatment Effluent Other
CASING DIAMETER (inches): 2 3 4X 4.5 6 Other
CASING ELEVATION (feet/MSL): //// VOLUME IN CASING (gal.): 5,50 DEPTH TO WATER (feet): //// S CALCULATED PURGE (gal.): //// D DEPTH OF WELL (feet): 25.0 ACTUAL PURGE VOL. (gal.): //// O
DATE PURGED: 5-15-94 Start (2400 Hr) 120 End (2400 Hr) 121 DATE SAMPLED: Start (2400 Hr) 120 End (2400 Hr) —
TIME VOLUME pH E.C. TEMPERATURE COLOR TURBIDITY (2400 Hr) (gal.) (units) (μπhos/cm@ 25°C) (°F) (visual) (visual) (200
1222 Millarge 5.89 1411 69.8 Cloudy Light
D. O. (ppm): ODOR:
PURGING EQUIPMENT SAMPLING EQUIPMENT
2* Bladder Pump Bailer (Teffon®) 2* Bladder Pump Bailer (Teffon®)
Centrifugal Pump Bailer (PVC) DDL Sampler Bailer (Stainless Steel)
— Submersible Pump — Bailer (Stainless Steel) — Dipper — Submersible Pump — Well Wizard™ — Dedicated — Well Wizard™ — Dedicated Other: Other:
WELL INTEGRITY: REMARKS: all samply the kin
Meter Calibration: Date: 5/15/56 Time: Meter Serial #: 9204
(EC 1000/) (DI) (pH 7/) (pH 10/) (pH 4/) Location of previous calibration:
Signature: Page 3 of 3

APPENDIX B

ANALYTICAL RESULTS AND CHAIN OF CUSTODY DOCUMENTATION, SECOND QUARTER 1996 GROUNDWATER MONITORING EVENT

May 29, 1996

Service Request No: \$9600772

Mr. John Young **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

21775-250.002/TO#19350.00/6148 Oakland Re:

Dear Mr. Young:

The following pages contain analytical results for sample(s) received by the laboratory on May 15, 1996. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. Listed above -- to help expedite our service please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 8, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely.

Steven L. Green

Project Chemist

Oristina V Layburn for Greg Anderson

Regional QA Coordinator

SLG/jk

COLUMBIA ANALYTICAL SERVICES, Inc.

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LUFT Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether
NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion
ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed , 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

COLUMBIA ANALYTICAL SERVICES, INC.

Analytical Report

Client: ARCO Products Company

Project: 6148 OAKLAND/21775-250.002/TO#19350.00

Sample Matrix: Water

Service Request: S9600772
Date Collected: 5/15/96
Date Received: 5/15/96
Date Extracted: NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

	Sample Name: Lab Code: Date Analyzed:	MW-2 (25) S9600772-001 5/21/96	MW-3 (25) S9600772-002 5/21/96	MW-5 (25) S9600772-003 5/21/96
Analyte	MRL			
TPH as Gasoline	50	480	5,600	3,400
Benzene	0.5	82	66	350
Toluene	0.5	48	12	6
Ethylbenzene	0.5	8	37	72
Total Xylenes	0.5	48	67	20
Methyl tert -Butyl Ether	3	87	230	220

Analytical Report

Client:ARCO Products CompanyService Request:\$9600772Project:6148 OAKLAND/21775-250.002/TO#19350.00Date Collected:5/15/96Sample Matrix:WaterDate Received:5/15/96Date Extracted:NA

BTEX, MTBE and TPH as Gasoline EPA Methods 5030/8020/California DHS LUFT Method Units: ug/L (ppb)

Sample Name: Method Blank
Lab Code: S960521-WB1
Date Analyzed: 5/21/96

Analyte	MRL	
TPH as Gasoline	50	ND
Benzene	0.5	ND
Toluene	0.5	ND
Ethylbenzene	0.5	ND
Total Xylenes	0.5	ND
Methyl tert -Butyl Ether	3	ND ·

APPENDIX A

QA/QC Report

Client: ARCO Products Company Service Request: S9600772

Project: 6148 OAKLAND/21775-250.002/TO#19350.00

Sample Matrix: Water Date Received: 5/15/96

Date Extracted: NA
Date Analyzed: 5/21/96

Surrogate Recovery Summary
BTEX, MTBE and TPH as Gasoline
EPA Methods 5030/8020/California DHS LUFT Method

Sample Name	Lab Code	PID Detector Percent Recovery 4-Bromofluorobenzene	FID Detector Percent Recovery α, α, α -Trifluorotoluene
MW-2 (25)	S9600772-001	95	101
MW-3 (25)	S9600772-002	91	98*
MW-5 (25)	S9600772-003	93	103*
Batch QC (MS)	S9600776-001MS	98	112
Batch QC (DMS)	S0600776-001DMS	90	104
Method Blank	S960521-WB1	96	98

CAS Acceptance Limits: 69-116 69-116

^{*} The surrogate used for this sample was 4-Bromofluorobenzene.

QA/QC Report

Client:

ARCO Products Company

Project: Sample Matrix: 6148 OAKLAND/21775-250.002/TO#19350.00

atrix: Water

Service Request: \$9600772

Date Collected: 5/15/96 **Date Received:** 5/15/96

Date Extracted: NA
Date Analyzed: 5/21/96

Matrix Spike/Duplicate Matrix Spike Summary

TPH as Gasoline

EPA Methods 5030/California DHS LUFT Method

Units: ug/L (ppb)

Sample Name:

Batch QC

Lab Code:

S9600776-001

Percent Recovery

							CH L X	ccovery	
								CAS	Relative
	Spike	Level	Sample	Spike	Result			Acceptance	Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Limits	Difference
Gasoline	250	250	120	330	350	84	92	67-121	6

QA/QC Report

Client: ARCO Products Company Service Request: S9600772

Project: 6148 OAKLAND/21775-250.002/TO#19350.00

Date Analyzed: 5/21/96

Initial Calibration Verification (ICV) Summary
BTEX, MTBE and TPH as Gasoline
EPA Methods 5030/8020/California DHS LUFT Method
Units: ppb

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	25	24.6	98	85-115
Toluene	25	25.0	100	85-115
Ethylbenzene	25	24.4	98	85-115
Xylenes, Total	75	75.4	101	85-115
Gasoline	250	248	99	90-110
Methyl tert -Butyl Ether	50	46	92	85-115

ARICO-		of Alian	Con-	Company		-		Task O	rder No.	193	50	00	j -			·						Č	hain of Custody
ARCO Facilit	y no. 6	149	ζ	Cit (Fa	y scility) ()akl	ana			Project (Consu	manaç	3 0 1		nY	1011	nc							Laboratory name
ARCO engine	er L	Tile	eW	The	an	<u> </u>	Telephor (ARCO)	ne no.		Telepho (Consu	one no.	$(\Delta \tilde{O})$	Q)Z	47.	72/1		k no.	[].(707	1.07	-04	<u>_</u>	CAS
Consultant na	arne	M	0/	J		,	10.0.00	Address (Consults	ent) 1921	Rij	CV	VOC	dI	TVE	2.5		J0		<i>(1</i> 4-	95	121	12	Contract number
				Matrix		Prese	rvation				, F1185							,	902			┪	Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH 10CICL MINE EPA MOOZOOZONOTS	TPH Modified 8015 Gas C Diesel C	Oil and Grease 413.1 🗀 413.2 🗆	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi	M Notats EPA 6011	Lead Org./DHS C			Sampler Will deliver
MIN-71	22/1	7		X		×	1-1/1	5-15-94		m 26		FØ	04	₽ ₩	Ü	iii	<u> </u>	₽業	_3≿	328			Special detection Limit/reporting
411/-2	25 7	7		, ,			Hal	3-73-74	i	 	X										\dashv		
MW-5	25' 3	2		X X		X	HCL	1/	1148		X X												Lowest Possible
				<u> </u>																			Special QA/QC
			<u> </u>	 																			AsNormal
				<u> </u>				<u> </u>													_		
			†	-							_												Remarks
																							2-40m1 HCL
																							2-40m1 HCL VOAs
		•																:					
																							#21775-250.C
						-																	Lab number 59600772
				-		· · · · · · · · · · · · · · · · · · ·						-											Turnaround time
Condition of s	amole:									Tompo	raturo.	receive										_	Priority Rush 1 Business Day
Relinquished		ler	, ,,	,			Date			Receiv			 L										Rush 2 Business Days
Relinquished	by	<u>uf le</u>	-U				<u>5-15</u> Date	-94	/335 Time	Receiv	ed by	<u>UT</u>	H	Wy	, /)						_	Expedited 5 Business Days
Relinquished	by						Date		Time	Receiv	ed by I	aborato	<u>"</u> S	T	6	Q	ate	96	2 1	Time 13	<u> </u>		Standard 10 Business Days

APPENDIX C SVE SYSTEM MONITORING DATA LOG SHEETS

ARCO 6148 SVE SYSTEM MONITORING DATA

					720.00 30.00																	•					
								·				E	aboratory	vionita	nng Data												
Flow Ra	ates	FID or	r PID Re	sults			٧	Veli Fiek	i Influent			ystem	Influent			System	Effluent										
Well Field Flow Rate	System Influent Flow Rate*	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gaso	line	Benz	zene	Gasoli	ne	Benze	ne .	Gaso	oline ,	Ben	ene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Jown Haurs	Down Days
cim :	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv	mg/m3	ppmv n	ng/m3	ррту п	g/m3	ppmv	mg/m3	ppmv	mg/m3	%	lb/day	lb/day						
		268	268	14.7	94.5	13:10	190	760	0.9	3	190	760	0.9	3	10	41	<0.2	<0.5	94.6	0.37	0.00	35.67 684.33	1126.63 1126.80 1659.11	0.17 532,31	0.01 22.18	35.5 152.0	1 4 6.3
																						720.00		532.48	22.19	187.52	78
8.00	100.3	268	268	14.7			190	760	0.9	3	190	760	0.9	3	10	41	<0.2	<0.5	94.6	0.37	0 00						
Company of the Contraction Date	mit Well Fleid Flow Hate	Flow Rates Registration How Hate Aveil Flow Hate Aveil	Flow Rates FID o	Pietro Monitoring Days in Field Monitoring Days in Flow Rates FID or PID Reserved House Hole Hole Hole Hole Hole Hole Hole Hol	Pied Monitoring Data Flow Rates FID or PID Results Flow Rates FID or PID Results State How Hates FID or PID Results Flow Rates FID or PID Results Flow Rates FID or PID Results State How Hates FID or PID Results Flow Rates FID or PID Results	Field Monitoring Data Flow Rates FID or PID Results state How Rates FID or PID Results A State How Hare How Hard How Hare How Hard Hard How Hard How Hard How Hard How Hard Hard How Hard Hard How Hard Hard How Hard Hard Hard Hard Hard Hard Hard Hard	Plow Rates FID or PID Results Flow Rates FID or PID Results Flow Rates FID or PID Results A Reflect Flow Rates FID o	Days in Period: 30.00 Operation Field Monitoring Data Flow Rates FID or PID Results Set Line Line Line Line Line Line Line Line	Pield Monitoring Data Flow Rates FID or PID Results Well Field The pield Monitoring Data Flow Rates FID or PID Results Well Field The pield Monitoring Data Flow Rates FID or PID Results Gasoline Gasoline Gasoline Gasoline The pield Monitoring Data Well Field Gasoline Gasoline The pield Monitoring Data The pield Monitoring Data The pield Monitoring Data Well Field Gasoline Gasoline The pield Monitoring Data The pield Monitoring Data The pield Monitoring Data Well Field Gasoline The pield Monitoring Data The	Days in Period: 30.00 Operation + Down Days: Field Monitoring Data Flow Rates FID or PID Results Well Field Influent The part of the pa	Days in Period: 30.00 Operation + Down Days: 30.00 Field Monitoring Data Flow Rates FID or PID Results Well Field Influent The part of t	Pied Monitoring Data Field Monitoring Data Filed Monitoring Data Flow Rates FiD or PID Results Well Field Influent Gasoline Gasoline	Days in Period: 30.00 Operation + Down Days: 30.00 Field Monitoring Data Flow Rates FID or PID Results Well Field Influent System Well Field Influent System Gasoline Benzene Gasoline Gasoline Benzene Gasoline The part of the par	Coperation + Down Days: 30.00 Field Monitoring Data Flow Rates FID or PID Results Well Field Influent System Influent Gasoline Benzene Gasoline Benzene Gasoline Benzene	Days in Period: 30.00 Operation + Down Days: 30.00 Field Monitoring Data Flow Rates FID or PID Results Well Field Influent System Influent Well Field Influent System Influent Gasoline Benzene Gasoline Benzene Gasoline Benzene Gasoline Benzene Od. 100 3 268 268 14.7 94.5 13:10 190 760 0.9 3 190 760 0.9 3	Days in Period: 30.00 Operation + Down Days: 30.00 Field Monitoring Data Flow Rates FID or PID Results Well Field Influent System Influent Well Field Influent System Influent Gasoline Benzene Gasoline Benze	Days in Period: 30.00 Operation + Down Days: 30.00 Field Monitoring Data Flow Rates FID or PID Results Well Field Influent System Influent System Well Field Influent System Influent System Well Field Influent System Influent System Gasoline Benzene Gasoline Benzene Gasoline Gasoline Benzene Gasoline Benzene Gasoline July July July July July July July July	Casoline Benzene Gasoline Benzene Gasoli	Cays in Period: 30.00 Operation + Down Days: 30.00 Field Monitoring Data Flow Rates FID or PID Results Well Field Influent System Influent System Influent System Efftuent Well Field Influent System Influent System Influent System Efftuent Gasoline Benzene Gasoline Benzene Gasoline Benzene Gasoline Benzene Flow Rates FID or PID Results Well Field Influent System Influent System Influent System Efftuent Gasoline Benzene Gasoline Benzene Gasoline Benzene Gasoline Benzene Gasoline Benzene Gasoline Benzene Od. 3 100 3 268 268 14.7 94.5 13:10 190 760 0.9 3 190 760 0.9 3 10 41 <0.2 <0.5	Days in Period: 30.00 Operation + Down Days: 30.00	Days in Period: 30.00 Operation + Down Days: 30.00	Days in Period: 30.00 Operation + Down Days: 30.00	Days in Period: 30.00 Operation + Down Days: 30.00	Days in Period: 30.00 Operation + Down Days: 30.00	Days in Period: 30.00 Operation + Down Days: 30.00 Field Monitoring Data	Days in Period: 30.00 Operation + Down Days: 30.00	Days in Period: 30.00 Operation + Down Days: 30.00

ARCO 6148 SVE SYSTEM MONITORING DATA

Reporting Period. 05/01/96 00:00 06/01/96 00:00					in Period: in Period:	744.00 31.00		•		n Hours: 744.0 vn Days: 31.0											·						
	Flow		eld Mond	toring D or PID R		T			Well Fiel	d Influent			aboratory Influent	Monito	ring Data		n Effluent]					
Reading Date & Time	Well Fletd Flow Rate	System Influent Flow Rate*	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gaso		Benzene	Gasoline		Benze	ne	Gase		1 1 1 1 1 1 1	zene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scim	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv mg/m3	ppmv mg/	m3	ррти п	ng/m3	ppmv	mg/m3	ppmv	mg/m3	%	lb/day	lb/day						
05/01/96 00:00 05/08/96 13:20 05/16/96 12:35 05/16/96 14:09 06/01/96 00:00	100 3 0.0 91.8 91.8	100 3 0.0 91.8 91.8	356			NR	14.02	160	650	0.6	2 160	650	0.6	2	10	39	<0.2	<0.5	94,0	0.32	0.00	181.33 191.25 1.57 369 85	1659.11 1659.11 1659.11 1660.53 1732.04	0.00 0.00 1.42 71.51	0.00 0.00 0.06 2.98	181.3 191.25 0.15 298.3	7 5 7.5 0.6 12 4
Period Totals:																	•					744.00		72 93	3.04	671.07	27.9
Period Averages:	91.8	91 8	356					160	650	0.6	2 160	650	0.6	2	10	39	<0.2	<0.5	94.0	0.32	0.00	ı					
* The total pressure	for the s	ystem in	fluent flov	v ratę w	as assum	ed to be	0 inche	s of water	because	e the data was u	navailabte.																

ARCO 6148 SVE SYSTEM MONITORING DATA

Reporting Period: 06/01/96 00:00 07/01/96 00:00				Hours in Days in				Operation Operatio																				
			eld Monit				İ						1	aboratory	Monito	ring Data												
ł	Flow	tates	FID o	r PID Res	sults			V	Veti Field	d Influent			System	Influent			System	Effluent										
Reading Date & Time	Well Fleid Flow Rate	System Influent Flow Rate*	Well Field	System Influent	System Effluent	Destruction Efficiency	Laboratory Sample Time	Gaso	line	Benz	сепе	Gaso	iline į	Benz	∍ne	Gaso	line	Benz	ene	Destruction Efficiency	Gasoline Emission Rate	Benzene Emission Rate	Period Hours	Meter Hours	Hours of Operation	Days of Operation	Down Hours	Down Days
	scfm	scfm	ppm	ppm	ppm	%		ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ppmv	mg/m3	ррти	mg/m3		lb/day	lb/day		_				
06/01/96 00:00		- 1							\neg															1732 04				
06/07/96 12:40	93.3	933	882	882	NR	NR	12:52	180	740	<1	<2.5	180	740	<1	<25	<5	<20	<0.2	<0.5	973	0 17	0.00	156.67	1733 12	1.08	0.05	155.6	6
06/28/96 11:40	93.3	93.3				- 1							1		i								503.00	1755.41	22 29	0.93	480.71	20.
06/28/96 13:20	126.2	126.2	512	512	26.3	94.9									ŀ								1.67	1757.08	1.67	0.07	0.00	0.
07/01/96 00:00	125.7	125 7											[Ì								58.67	1815 75	58.67	2.44	0.0	0.0
Period Totals.						_																'	720 00		83.71	3.49	636.29	26
Period Averages:	116.7	116.7	697	697	26			180	740	<1	<2.5	180	740	<1	<2.5	<5	<20	<02	<0.5	97.3	0.21	0.01						

APPENDIX D

FIELD DATA SHEETS, OPERATION AND MAINTENANCE VISITS, SECOND QUARTER 1996

Remarks: 12	<u>Azen</u>	sed ing	200	the	7	0:	il.	took	- In	1 -	Ě	-Zzs	7/	250	34	11.0 =			
Clound	1 1	ash A	0	m'	5 7,	te.										Spring .			
<u> </u>																			
SYSTEM F	ARAMI	Unschedul	ea :	SITE VIS	<u> </u>	~ A T1	S	cheduled s	site visit []										
Arrival Time (24:	On bour	ETERS (Thern	"	SCH IVI	20ei	CAI	VAC TUE	electric ca	atalytic o	xidize	r) AT	i pho	ne#	510	-595-	9298			
System Status (d	~~~	<u> </u>	\dashv		30	/		ent (E-1)						4_					
Shutdown Time			+	<u></u>	<u> </u>		Stack	Temperate	ure (*F)					<u> </u>	6/0	<u> </u>			
Restart Time (24			+				- Fire B		(0.51		STEN	1							
Reading Time (2			+	15	20	5	Cot Do	ox Temper pint (°F)	ature (°F))		 -			63				
Well Field I-1 (3		<i>7</i> 0. <i>j</i>	+	<u>/ / / / </u> `	<u></u>			L HOURS							10/0				
Vacuum (in. of H		· · · · · · · · · · · · · · · · · · ·	+	14	 (c Meter (k				——		ノ	04	8.19			
Velocity (in. of H,			+					n Controlle		4 (AFT)				<u> </u>					
Temperature (°F)		· · · · · · · · · · · · · · · · · · ·	\top		F	-	Diduoi	1 Condone			ייייי	21110		<u>L</u>	1;	200			
After Blower 1-2			\top		_ _		 	FID (nn)		R MO									
Total Pressure (in)	1		NA		Date:	FID (ppi	VABON FILTER)		mb	1-	1	┼	1-2	E-1			
Total Flow (in. of			+		10		Date:	(WITH CARBO	<u>-</u>	- 	-			 					
Temperature (°F)			+		92		-	PID (ppr				<u> </u>		<u>L</u>					
Dilution Air (3")	Temp	erature (*F)	+		NA		Date:	7-10-				AS TYPE:		T ~		 _			
Dilution Air Flow (in			†	Data or		only	Date:	7-10	16	7.	6	31.	<u> </u>	3/	2	 			
ATI operating prop		es/no	†_		ج د	· · · · ·		nples taken	for analys	le et	CA	1/				<u> </u>			
		· · · · · · · · · · · · · · · · · · ·			````	W	ELL FIE		TOT dilarya	518 at.	<u></u>	<u>/・ン</u>		····					
SVE/Bubbler Wel	ll Well	Screen		DTW	Т	TD	Valve	Va	cuum		(A.II)	Bubb	Nar						
ID	Diamete	1	1	(feet)			Position	'		- 1	v (2")	Flo	w		00	PID			
VW-1	4"	14'-24'	_	//($\overline{}$	feet)	(% open)	· · · · · ·	of H,O)	_	f H,O)	(cfn		_	1g/l)	(ppm)			
VW-2	4"	10'-24'	17	// 4	1	<u> </u>	100	1 - 8	<u> </u>	1/2	1	17/	<u> </u>	N,	IA.	361			
VW-3	4"	14'-24'	\vdash	+-	┼┈	+-	100	8		 				1		302			
VW-4	4"	10'-24'	├	+-	┼	+	0	8						_		247			
VW-5	4"	10'-24'	 	 	 	 	100	1 2						4		54			
VW-6	4"	10'-24'	 	+	\vdash	 	100	+ 8		 				\rightarrow		233			
VW-7	4"	10'-24'	一	 			100	& W W W		+			\sqcup	-		37/			
VW-8	4"	10'-24'	 	 			100	<u>C</u>		+				_		5/1			
VW-9	4"	10'-24'		 	-		100	8		 ;			\dashv			113			
VW-10	4"	10'-24'		 	 		0	0		 	\longrightarrow				-	173			
MW-1	4"	13'-26'	7		7		0	0		 /-			\dashv	\dashv		<u> 51</u>			
MW-5	4"	10'-25'	7	·	/		Ö	Ö		 / 	-					50			
Sparge/Bubbler Well	Well	Screened	<u>_</u>	TW	ז	Ф	Valve		Air Flow				ᆜ			50			
ID.	Diameter	l		eet)		et)	Position (% open)		1		ı		R	EM/	ARKS	i			
AS-1 (Sparge only)	1*	26'-28'		200	116		(wohan)	(psi)	(cfm)	(mg	3/1)								
S-2 (Sparge only)	2*	26'-28'			—			5.0	 	 	\rightarrow								
S-3 (Sparge only)	2*	26'-28'						5.5		 -	-					·			
S-4 (Sparge only)	2.	26'-28'		$\overline{}$				4.0											
S-5 (Sparge only)	2"	26'-28'						5.0		 									
W-2 (Bubbler only)	2"	14'-26'				\neg		5.C		 				· · · · · · · · · · · · · · · · · · ·					
W-3 (Bubbler only)	2*	14'-26'						5.5		 									
W-4 (Bubbler only)	4"	11.5'-26.5'						5.5		 	-								
W-6 (Monitor only)	4"	12'-27'					NA NA	NA NA	NA		 - -								
W-7 (Monitor only)	4"	12'-27'					NA	NA NA	NA NA	 									
		Total S	Spa	rge Da	ata		<u></u>			Comr	resso	or Hou							
otal Air Sparge Pre	ssure(p	si)= <i>3</i> つ 「	Tota	al Air S	parç	ge Flo	w Rate(cf	(m)=						20/°E		76.49			
ecial Instructions:										Total	/\ 0	parge	1 611	np(r	<u>)= 4</u>	16.47			
Use only	ARCO (chain-of-custo	dv f	Orme	مماه	oo in	dudo ou -									(AND)			

only ARCO chain-of-custody forms. Please include all analytical method numbers as requested on the chain-of-custody form. Request all TPHG,BTEX, and Benzene results in mg/m*. Report O, and CO, in % by volume.

WA # (Task Order # 18336)

Date: 7-10-96

Remarks: 5'	c4 a	Lown		V . X	2/ 1	014		<u> </u>	<i></i>					
nemarks.	J. en	- down	111	Cone	rol to	aut I	<u>, res</u>	arrea	Sys	Tem	,			
per S.	9/11	nanch	1// 5		ructi	ous.	Con	AWGSC	<u>r 7r</u>	rppea				
at sta	xer	relay-						/						
		Unsenedule				neduled sit			:_=========					
		TERS (Therm						dizer) ATI	phone #	<u>510-595-9</u>	298			
Arrival Time (24:0				40		t (E-1) (1		. <u> </u>						
System Status (or	<u>_</u> _		01	<u>u</u> A	Stack T	emperatur	e (°F)			82	6			
Shutdown Time (2	24:00 ho	ur)	_	•				SYSTEM			<u>. </u>			
Restart Time (24:	00 hour)		114	0	Fire Box	(Tempera	ture (°F)			616				
Reading Time (2	4:00 hot	ur)	13	3 <i>0</i>	Set Poir	nt (°F)				610				
Well Fleid I-1 (3	")		-		TOTAL	HOURS		<u></u>			7.08			
Vacuum (in. of H,0	O)		20	2		Meter (kw	h)				-			
Velocity (in. of H,C			.4				Setpoint (·F)		12	200			
Temperature (°F)	<u> </u>		· · · · · · · · · · · · · · · · · · ·	6				MONITOR	ING	12	.00			
After Blower I-2	(4°)		1 .		 	FiD (ppm		Amb	1-1	I-2	E 1			
Total Pressure (in.				NA.	Date:	(WITHOUT CAR	*	Allib	1-1	1-2	E-1_			
Total Flow (in. of h			1.0		Date:	(WITH CARBON				<u> </u>				
Temperature (°F)	·, <u>·</u>			0		PID (ppm	·	CALIBRATION GA						
Dilution Air (3*)	Temne	rature (°F)		NA	Date: Car	20/96	·/	.02	5/2	Z=/ =	363			
Dilution Air Flow (in o		ratoro (1)	 	ATI only	Date:	xoj ro		102	-1X	5/2	26,3			
ATI operating prope		s/no				oles taken	for analysis	e at:	ONE	<u>. </u>				
			 	W			or arranysis	at.	J10 1					
CVE/Bubbler Well	Wall	Corner	DTW		Valve			F1 (011)	Bubbler					
	Vacuum Flow (2") Screen DIW ID Position Vacuum Flow (2") Flow DO PID													
		 	(teet)	(feet)	(% open)	(in. c	of H ₁ O)	(in. of H,O)	(cfm)	(mg/l)	(ppm)			
VW-1	4"	14'-24'	ļ		100			1/1			290			
W-2	4"	10'-24'	ļ		100	<u> </u>					550			
VW-3	4"	14'-24'	ļ		100	<u> </u>					400			
VW-4	4"	10'-24'			0						210			
VW-5	4"	10'-24'	ļ,		0_						95			
VW-6	4"	10'-24'			100						430			
VW-7	4"	10'-24'			100						460			
VW-8	4"	10'-24'	<u> </u>		0						12			
VW-9	4"	10'-24'			100						310			
VW-10	4"	10'-24'			0						120			
MW-1	4"	13'-26'			0					_	100			
MW-5	4"	10'-25'	16.40		0			W			68			
Sparge/Bubbler Well	Well	Screened	WTQ	TD	Valve Position	Pressure	Air Flow	DO	<u> </u>	REMARKS	_			
ID	Diameter	Interval	(feet)	(feet)	(% open)	(psi)	(cfm)	(mg/l)	·					
AS-1 (Sparge only)	1*	26'-28'	\/		30	4	\0	(11917)		<u> </u>				
AS-2 (Sparge only)	2"	26'-28'			20	3								
AS-3 (Sparge only)	2.	26'-28'			30	4								
AS-4 (Sparge only)	2"	26'-28'			30	3				·	·			
AS-5 (Sparge only)	5.	26'-28'			30	.3.5								
MW-2 (Bubbler only)	2"	14'-26'			30	4				<u> </u>	····			
MW-3 (Bubbler only)	2"	14'-26'			25	Ų.								
MW-4 (Bubbler only)	4"	11.5'-26.5'			30	4								
MW-6 (Monitor only)	4*	12'-27'			NA	NA.	NA			···				
MW-7 (Monitor only)	4"	12'-27'			NA	NA	NA							
			Sparge D	ata				Compress	or Hours=	289	75			
Total Air Sparge Pro	essure(p	si)=_2()	Total Air	Sparge Flo	ow Rate(c	fm)=		Total Air S			78			
pecial Instructions:														
•	ARCO	chain-of-cust	ody forms	. Please in	clude all :	anaivtical	method nu	mbers as r	equested:	on the	(22)			
chain-of-custo											EMCON			
Project#2					WA # /Ta	sk Order	# 18336/	o, and c	· •, ar 70 D	, volume.				
Operator: $\frac{U}{L}$	whi	Hen	Data: /	6/28	166	sk Order Al	" 10000)	C=11 V==	_ P* ·	!				
Operator		<u> </u>	Date: C	157	<i>r</i> 6'	AI	0148	Soil Vapo	r Extract	ion Syste	m			

Remarks: ら、	ster	n dow	n m	Andl	ousin	ρ_{0}	ner t	· Ance	Atlan	Cana	Vica I
Aprilt, C	Dzid	n dow	gh Te	wo,	5yster	n Ren	notela	shut	down	1 000	<u> </u>
		*·	V					_			
OVOTEM S	454445	Unschedule			Sc	<u>heduled si</u>	te visit []				
		TERS (Thern	1 lech Mo	del CATV				dizer) AT	phone #	510-595-	9298
Arrival Time (24:0				50 11		nt (E-1) (-	
System Status (o Shutdown Time (1/4	Stack 1	emperatu	re (°F)			フン	<u> </u>
				35				SYSTEM			
Restart Time (24:				35		x Tempera	ature (°F)			Q/	0
Reading Time (2		ur)	1/20	40	Set Poi					0/	
Well Field I-1 (3			<u> </u>			HOURS				17	33.1:
Vacuum (in. of H, Velocity (in. of H,0				Ø		Meter (kw				.	
Temperature (°F)			80		Dilution	Controller				12	200
After Blower I-2			<u> </u>			FID (MONITOR		 	T
Total Pressure (in			1		Date	FID (ppn	*'	Amb	1-1	1-2	E-1
Total Flow (in. of I			-0	VA.	Date:	(WITHOUT CAP		.04	882	882	
Temperature (°F)	1,0)		38		Date:	(WITH CARBON		 			<u> </u>
Dilution Air (3")	Tompo	rature (°F)		NA	Date:	PID (ppn	1)	CALIBRATION G	AS TYPE:	·	
Dilution Air Flow (in o		iature (;)		ATI only	Date:						
ATI operating prope		18/00	Data Un	ATTOMY		ples taken	fan analusi	<u> </u>	72		<u> </u>
An operating prop.	<u> </u>	3/110	1	V	/ELL FIEL		ior analysis	sat;	42		
SVE/Bubbler Wel	Well	Screen	DTW	TD	Valve	1		40.00	Bubbler		
ID	L	į.	1	1	Position		uum	Flow (2")	Flow	DO	PID
VW-1	Diameter		(feet)	(feet)	(% open)	(in. c	of H,O)	(in. of H ₁ O)	(cfm)	(mg/l)	(ppm)
VW-2	4"	14'-24'		 -	100	- /	<u>/</u>				
VW-3	4"	10'-24'			100	10	<i>,</i>	ļ			
VW-4	4"	14'-24'		 	100	1/					
VW-5	4"	10'-24' 10'-24'	 	ļ	100	11		 			
VW-6	4"	10'-24'	<u> </u>			11		 			
VW-7	4"	10-24			100	10		 			
VW-8	4"				100	10					
VW-9	4"	10'-24'			100	1/					
VW-10	4"	10'-24' 10'-24'			100	11					
MW-1	4"	13'-26'			100	0		 			
MW-5	4"	10'-25'			0	8					
Sparge/Bubbler Well	Well	Screened	DTW	αT	Valve						
	Diameter	Interval			Position		Air Flow	DO	F	REMARKS	3
AS-1 (Sparge only)	1"	26'-28'	(feet)	(feet)	(% open)	(psi)	(cfm)	(mg/l)			
AS-2 (Sparge only)	2	26'-28'			100						
AS-3 (Sparge only)	2-	26'-28'			100					 	
AS-4 (Sparge only)	2.	26'-28'									·
AS-5 (Sparge only)	2.	26'-28'			100			<u> </u>		-	
MW-2 (Bubbler only)	2"	14'-26'			100						···
MW-3 (Bubbler only)	2"	14'-26'			100					······································	
AW-4 (Bubbler only)	4"	11.5'-26.5'			160				· · · · · -		
MW-6 (Monitor only)	4"	12'-27'			/ <i>C.C.</i> NA	NA NA	NA NA				
MW-7 (Monitor only)	4"	12'-27'			NA NA	NA NA	NA NA				
, (maintrain)			Sparge D	ata	140	14W	14A	Compress	or House		
otal Air Sparge Pro	essure/n		Total Air S		ow Rate/o	fm)=					<u>,63</u>
pecial Instructions:		-::- <u>^.</u>	· orai rai c	-purge i i	on male (C	/~		Total Air S	pharde 16	mp(* r)= _	
											(***)

Use only ARCO chain-of-custody forms. Please include all analytical method numbers as requested on the chain-of-custody form. Request all TPHG,BTEX, and Benzene results in mg/m³. Report O, and CO, in % by volume.

Project#20805-135.006 Operator: <u>V. W. VIHCN</u>

'WA # (Task Order # 18336)

Remarks: In Started	stall	ed 55	gallon	drum	ı in	toe-en	to Ku	sch-cu	ton	onto	herm 40
FINANCE	m	1_/			·						
		Unschedul	ed site visi	t [1	Sc	heduled si	te visit P		·		
SYSTEM P	ARAME	TERS (Thern			AC 10E e	lectric cat	talytic ox	dizer) ATI	phone #	510-595-	9298
Arrival Time (24:			101			t (E-1) (
System Status (c	n or off)		ot	Ä		emperatur				6	しる
Shutdown Time (····	our)		·	1		\/	SYSTEM		<u> </u>	~~
Restart Time (24	00 hour)	/3.	30	Fire Bo	x Tempera	ture (°F)			Co. 1	(0
Reading Time (2			140		Set Poi		itaio (1)	·		Gel	
Well Field I-1 (3			-			HOURS					7,53
Vacuum (in. of H,	O)		10	5		Meter (kw	h)			1	
Velocity (in. of H,			1,2			Controller		(°F)	······································	1	200
Temperature (°F)		- <u></u>	7					MONITOR	RING	<u> </u>	2.00
After Blower 1-2	(4")	·		-		FID (ppm		Amb	1-1	1-2	E-1
Total Pressure (in)		NA	Date:	(WITHOUT CAR		7,1110		172	
Total Flow (in. of		· · · · · · · · · · · · · · · · · · ·	. 0	75	Date:	(WITH CARBON	I FILTER)				
Temperature (°F)				10	1	PID (ppm	1)	CALIBRATION G	ASTYPE: / f	000	
Dilution Air (3")	Tempe	rature ('F)		NA	Date:			0	356	356	coppa)
Dilution Air Flow (in				n ATI only	Date:			 	274	120	
ATI operating prop		s/no	y-e-		Lab sam	ples taken	for analysi	s at:	45	<u> </u>	<u> </u>
	······································		- /		ELL FIEL		ioi unaiyoi	oui.	T -		
SVE/Bubbler Wel	ll Well	Screen	DTW	₹£0 /	Valve	Vac	uum	Flow (2")	Bubbler	DO	PID
ID	Diamete	Interval	(feet)	(test)	Position (% open)	1	of H ₂ O)	(in. of H _i O)	Flow (cfm)	(mg/l)	(ppm)
VW-1	4"	14'-24'	1	100	720	 	0		(4)	(111931)	190
VW-2	4"	10'-24'		100	183	14					183
VW-3	4"	14'-24'	1	100	167	10					107
VW-4	4"	10'-24'		100	128	10			·		128
VW-5	4"	10'-24'		100	240	10					240
VW-6	4"	10'-24'		100		10			·		191
VW-7	4"	10'-24'		100		10			·········	······································	198
VW-8	4"	10'-24'		100		10					220
VW-9	4"	10'-24'		100		10					175
VW-10	4"	10'-24'		0		0	· · · · ·				40.0
MW-1	4"	13'-26'		100		10	****				152
MW-5	4"	10'-25'		0		0					28.5
Sparge/Bubbler Well	Well	Screened	DTW	TD	Valve Position		Air Flow	DO	F	REMARKS	
aı	Diameter	Interval	(feet)	(feet)	(% open)	(psi)	(cfm)	(mg/l)			
AS-1 (Sparge only)	1*	26'-28'									
AS-2 (Sparge only)	2"	26'-28'									
AS-3 (Sparge only)	2"	26'-28'									
AS-4 (Sparge only)	2*	26'-28'									
AS-5 (Sparge only)	2	26'-28'							··· ·· · · · · · · · · · · · · · · · ·		
MW-2 (Bubbler only)	2"	14'-26'				2,5					
MW-3 (Bubbler only)	2"	14'-26'				_3					
MW-4 (Bubbler only)	4"	11.5'-26.5'									
MW-6 (Monitor only)	4"	12'-27'			NA	NA	NA				
/W-7 (Monitor only)	4"	12'-27'			NA	NA	NA				
		Total	Sparge D	ata				Compress	or Hours=		
otal Air Sparge Pr	essure(p	si)= ス <i>C</i>	Total Air	Sparge Flo	ow Rate(c	fm)= ~		Total Air S			74
pecial Instructions:	. 4000			-							
Use only	AHCO	chain-of-cust	ody forms.	. Please in	clude all a	analytical r	nethod nu	ımbers as r	equested	on the	EMCOR

Use only ARCO chain-of-custody forms. Please include all analytical method numbers as requested on the chain-of-custody form. Request all TPHG,BTEX, and Benzene results in mg/m². Report O, and CO, in % by volume.

Project#20805-135.006 Operator: V. Whitten

WA # (Task Order # 18336)

A100 0148 : 51						•		•					
Remarks: Inst	alled	addion	al Ki	rock-c	o true	n Un	it. U.	not he	aus e	ct st	artz		
1659.11					_								
		1 1		-				·					
CVCTEM DA	DAMET	Unschedule				reduled sit							
SYSTEM PA		EHS (Therm						dizer) All	phone #	510-595-9	298		
Arrival Time (24:0			110			t (E-1) (1				•			
System Status (or			Off		Stack T	emperatur	e (°F)			62	<u> </u>		
Shutdown Time (2		ar)			<u> </u>	· · · · · · · · · · · · · · · · · · ·		SYSTEM		· · · · · · · · · · · · · · · · · · ·			
Restart Time (24:0			123) >		Tempera	ture (°F)			610	 		
Reading Time (24		ir)	140	7	Set Poir					610			
Well Field I-1 (3'			-		1	HOURS				1660.	53		
Vacuum (in. of H,C	_		10			Meter (kw				-			
Velocity (in. of H,C))		1.2		Dilution	Controller				12	200		
Temperature (°F)			7	2	ļ		AIR	MONITOR	ING				
After Blower I-2		- 	-		ļ	FID (ppm)	Aṃb	l-1	I-2	E-1		
Total Pressure (in.				VA.	Date:	(WITHOUT CAR	BON FILTER)						
Total Flow (in. of F	1,0)		. ن7		Date:	(WITH CARBON							
Temperature (°F)			20	0		PID (ppm		CALIBRATION G	AS TYPE: 🛴	50 = 10	OADIN		
Dilution Air (3")	Tempe	rature (*F)		NA AV	Date ⁻	<u> 4-16-</u>	96	O	356	ļ			
Dilution Air Flow (in o			OData or	ATI only	Date.								
ATI operating prope	rly: ye	s/no	<u> </u>		Lab sam	ples taken	for analysi:	at: <i>C</i>	45				
WELL FIELD SVE/Bubbler Well Well Sereen DTW TD Valve V Bubbler Bubbler Bubbler													
SVE/Bubbler Well	Well	Screen	DTW	TD	Position Vacuum Flow (2") Flow DO PI								
ID	Diameter	Interval	(feet)	(feet)	(% open) (in. of H ₂ O) (in. of H ₂ O) (cfm) (mg/l) (
VW-1	4"	14'-24'	1	1	100 10 / 1								
VW-2	4"	10'-24'			100 10								
VW-3	4"	14'-24'			100	10					167		
VW-4	4"	10'-24'		{	100	10			/		128		
VW-5	4"	10'-24'			100	10			1		240		
VW-6	4"	10'-24'			100	10			/		191		
VW-7	4"	10'-24'			100	10		1			198		
VW-8	4"	10'-24'	7		100	10					220		
VW-9	4"	10'-24'			100	10					175		
VW-10	4"	10'-24'			0	0		- /	- (40.0		
MW-1	4"	13'-26'			€ /00	10					152		
MW-5	4"	10'-25'		1	0	0					28.9		
Sparge/Bubbler Welf	Well	Screened	DTW	TD	Valve		Air Flow	DO		REMARKS			
1D	Diameter		(feet)	(feet)	Position (% open)	(psi)	(cfm)	l i	•	· Limitation	_		
AS-1 (Sparge only)	1"	26'-28'		(1001)	(/o open/	(P31)	(Citi)	(mg/l)	<u></u>				
AS-2 (Sparge only)	2*	26'-28'				 		 	~~~~				
AS-3 (Sparge only)	2*	26'-28'						 					
AS-4 (Sparge only)	2*	26'-28'											
AS-5 (Sparge only)	2"	26'-28'				 		<u> </u>					
MW-2 (Bubbler only)	2"	14'-26'		 		7 =							
MW-2 (Bubbler only) 2" 14'-26' 2.5 MW-3 (Bubbler only) 2" 14'-26' 3													
MW-4 (Bubbler only) 4" 11.5'-26.5'													
	4"	12'-27'			N/A	\$1A	h1A						
	4"	12'-27'			NA NA	NA NA	NA NA	 					
MW-7 (Monitor only)	<u></u>		Sparge [l <u> </u>	NA	NA NA	NA	Committee	نستحاليم				
Total Air Sparge Pr	accurain			Sparge Fl	ow Poto/s	(m)		Compress			· 1 1		
		/ul/- / 🏲	i Olai Alf	oparge ri	ow nate(C	any=		Total Air	Sparge Te	**************************************	74		
pecial Instructions:		chain-of-cuct											

Use only ARCO chain-of-custody forms. Please include all analytical method numbers as requested on the chain-of-custody form. Request all TPHG,BTEX, and Benzene results in mg/m². Report O, and CO, in % by volume.

Project#20805-135.006 Operator: V. W. H. H. e.

WA # (Task Order # 18336)

Date: 5-16-96

Remarks: 🕡	nit	down-	· Did	unt 1	resta	rt u	w.t.	Qua	cterly	504	م از ارس		
Remarks: () will take	e pla	ue. (unit o	lown	on W	mitn	of Fau	(F)	, 1511, y		THE WAY		
	,						-						
		Unschedul	ed site visi	t p	Sc	heduled si	ite visit []						
SYSTEM P	ARAME	TERS (Thern	n Tech Mo	del CATV	AC 10E €	electric ca	talytic ox	idizer) ATi	phone #	510-595-9	9298		
Arrival Time (24:0			130	54		nt (E-1) (,	F	T	*		
System Status (o	n or off)		of			Temperatu					<i></i>		
Shutdown Time (24:00 hc	our)						SYSTEM		<u> </u>			
Restart Time (24:	00 hour)			Fire Bo	x Tempera	ature (°F)			T			
Reading Time (2	4:00 ho	ur)	132	20	Set Poi		******			 			
Well Field I-1 (3	")			,		. HOURS		····		1659	9 11		
Vacuum (in. of H.	O)					Meter (kw	vh)						
Velocity (in. of H,C	2)			/			r Setpoint ((°F)		15	200		
Temperature (°F)			1	~	1			MONITOR	NG	1- 1-	200		
After Blower I-2	(4")		1		1	FID (ppn		Amb	I-1	I-2	T = 4		
Total Pressure (in)	 	NA /	Date:		RBON FILTER)	11110	1=1	1-2	E-1		
Total Flow (in. of h			+	"/	Date:	(WITH CARBON		 			 		
Temperature (°F)			1	<u></u>		PID (ppn		CAUBRATION GA	AR TYDE.	L			
Dilution Air (3")	Tempe	erature (°F)	+	NA	Date:	1 10 (PP		- CALLOS - COL	CO (TFE.	Γ			
Dilution Air Flow (in c		· · · · · · · · · · · · · · · · · · ·		n ATI only	Date:			 					
ATI operating prope		es/no		17117 311.,		nlee taken	for analysis						
				W	ELL FIEL		TOT BITRIYS	S at:					
SVE/Bubbler Well	Well	Screen	DTW	TD	Valve				Bubbler				
	1			1	Position	1	cuum	Flow (2")	Flow	DO	PID		
ID .	Diamete		(feet)	(feet)	(% open)	(in.	of H ₂ O)	(in. of H ₂ O)	(cfm)	(mg/l)	(ppm)		
VW-1	4"	14'-24'	 	 				1					
VW-2	4"	10'-24'		ļ		 							
VW-3	4"	14'-24'	 	 	ļ <u></u>			<u> </u>					
VW-4	4"	10'-24'		 									
VW-5	4 [#]	10'-24'	<u> </u>	<u> </u>									
VW-6	4"	10'-24'		<u> </u>		<u> </u>							
VW-7	4"	10'-24'		1	()"								
VW-8	4"	10'-24'											
VW-9	4"	10'-24'	<u> </u>										
VW-10	4"	10'-24'											
MW-1	4"	13'-26'	1										
MW-5	4"	10'-25'											
Sparge/Bubbler Well	Weli	Screened	DTW	TD	Valve Position	Pressure	Air Flow	DO	F	EMARKS			
ID	Diameter	Interval	(feet)	(feet)	(% open)	(psi)	(cfm)	(mg/l)			•		
AS-1 (Sparge only)	1"	26'-28'				1	10	\".9.7					
AS-2 (Sparge only)	2*	26'-28'		. 1			/ -	 					
AS-3 (Sparge only)	2"	26'-28'					 	 -					
AS-4 (Sparge only)	2*	26'-28'					-						
AS-5 (Sparge only)	2"	26'-28'	ĺ		7	<u> </u>	 	 	<u></u>	<u> </u>			
MW-2 (Bubbler only)	2"	14'-26'		-	171								
MW-3 (Bubbler only)	2"	14'-26'			<u> </u>	 	-						
MW-4 (Bubbler only)	4"	11.5'-26.5'								"			
MW-6 (Monitor only)	4"	12'-27'			NA	NA.	NA NA	 					
VW-7 (Monitor only)	4"	12'-27'			NA NA	NA NA	NA NA						
			Sparge Da	ata			<u>'</u>	Compress	~ Houre-	-			
Total Sparge Data Compressor Hours= 2 ^ 7, 30 Total Air Sparge Pressure(psi)= Total Air Sparge Flow Rate(cfm)= Total Air Sparge Temp(*F)=													
pecial Instructions:		- 1	Total 7-10 C	parge r io	M Date(o)	nij=	1	TOTAL AIF O	parge rer	<u>np(°⊦)=</u>			
	ARCO	chain-of-custo	adu forme	Dioaca inc	alido all c	- nalutioal r			1I	_			
chain-of-custo	idv form	chain-of-custo	JUY IUIIIIS. FDLIC RTE	Flease III.	Nuce an a	inalylicai i	netnoa nu	moers as re	equestea :	on the	EMCOR		
chain-of-custo Project#20	09 101111. 00/15,12	nequest dii	irna,bil					rt O, and C	O, in % by	/ volume.			
Operator:	1005-13.	5.006	4	-10/01	VA # (1as	sk Order i	•						
Operator:		b) Cor	Date:	5/E/96	.	AF	1CO 6148	Soil Vapor	Extraction	on Syster	n		

WEIL FIELD	Remarks: 5	1540	n dow	u wx	on c	wi	valu	High	tank	leve	PN PE	Avme
Unscheduled site visit Scheduled site vis	worth	ly C	su pe	rat	tucke	d v	eg, we	31				
SYSTEM PARAMETERS (Therm Tech Model CATVAC 10E electric catalytic oxidizer) ATI phone # 510-595-9288	<u> </u>	<u>'</u>							assu	m= /?	stut h	K 1120
Annual Time (24:00 hour)	CYCTEM	245445	Unschedul	ed site visi	t []	Sc	heduled s	ite visit 🗗				
System Status (on or off)	STSIEM I	AHAME	IEHS (Inerr	n Jech Mo	del CATV	AC 10E 6	electric ca	talytic ox	idizer) AT	phone #	510-595-	9298
Shutdown Time (24:00 hour)												
Restart Time (24:00 hour)		~					emperatu	re (°F)			101	0
Reading Time (24:00 hour)			···					· · · · · · · · · · · · · · · · · · ·	SYSTEM	<u> </u>		., <u>.</u>
Well Field I-1 (3")								ature (°F)				
Vacuum (in. of H,O) 2			, ui j	12 -1								
Velocity (in. of H ₂ O)				17	0	7,					1/20	2.80
Temperature ("F)				2	0						 	·····
After Blower 1-2 (4")					7	Dilution	Controller				1:	200
Total Pressure (In. of H,O)		'		1		╢	EID /mm		_			
Total Flow (in. of H,O)			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		NIΛ	Date			Amb	[-1	1-2	E-1
Temperature (°F)			<i>.</i>			 			 		<u> </u>	
Dilution Air (3") Temperature (F)		· 1,0 /							G41 mp 47004 a	<u> </u>		<u> </u>
Dilution Air Flow (in of H ₁ O)) Tempe	erature (°F)			Date: C					. 90 5 j	
ATI operating properly: yes/no							<u> </u>	f ²	7.6	168	ļ	14.7
Well FIELD			es/no				nies taken	for engine	in oth	75	<u> </u>	<u></u>
SVE/Bubbler Well Screen DTW TD Position (feet) (feet								ioi allalys	s at:	7.7	-	=======================================
ID	SVE/Bubbler We	li Well	Screen	DTW	1	Valve			Flow (20)	Bubbler	50	T
VW-1 4" 14'-24' Ø (mg/l) (ppm) VW-2 4" 10'-24' Ø (mg/l) (ppm) VW-3 4" 14'-24' Ø (mg/l) (ppm) VW-4 4" 10'-24' Ø (mg/l) (ppm) VW-5 4" 10'-24' Ø (ppm) (ppm) (ppm) VW-6 4" 10'-24' Ø (ppm)	ID	Diamete	Interval				O G I I I I I I I I I I I I I I I I I I			FIOW		I .
WW-2 4" 10'-24' Ø WW-3 4" 14'-24' Ø WW-4 4" 10'-24' Ø WW-5 4" 10'-24' Ø WW-6 4" 10'-24' Ø VW-7 4" 10'-24' Ø VW-8 4" 10'-24' Ø VW-9 4" 10'-24' Ø VW-10 4" 10'-24' Ø MW-1 4" 13'-26' Ø MW-5 4" 10'-25' Ø Sparge/Bubbler Weil Well Screened DTW TD Valve Position (% open) Pressure Air Flow (psi) DO REMARKS AS-1 (Sparge only) 2" 26'-28' AS-2 (Sparge only) 2" 26'-28' AS-3 (Sparge only) 2" 26'-28' AS-4 (Sparge only) 2" 26'-28' AS-4 (Sparge only) 2" 26'-28' AS-28' AS-28' AS-3 (Sparge only) 2" 26'-28' AS-28' AS-3 (Sparge only) 2				1 (1001)	(lect)		(111.1	i n _i oj	(In. of H ₂ O)	(cfm)	(mg/l)	(ppm)
VW-3 4" 14'-24' Ø VW-4 4" 10'-24' Ø VW-5 4" 10'-24' Ø VW-6 4" 10'-24' Ø VW-7 4" 10'-24' Ø VW-8 4" 10'-24' Ø VW-9 4" 10'-24' Ø VW-10 4" 10'-24' Ø MW-1 4" 13'-26' Ø MW-5 4" 10'-25' Ø Sparge/Bubbler Well Well Screened DTW TD Valve Position (% open) Pressure Air Flow (psi) Om REMARKS AS-1 (Sparge only) 2" 26'-28' AS-2 (Sparge only) 2" 26'-28' AS-2 (Sparge only) 2" 26'-28' AS-3 (Sparge only) 2" 26'-28' AS-2 (Sparge only) 2" 26'-28' AS-2 (Sparge only) 2" 26'-28' AS-2 (Sparge only) 2" 26'-28' AS-3 (Sparge only) 2" 26'-28' AS-3 (Sparge only) 2"			T	 			 		 		ļ	
VW-4 4" 10'-24' \$\mathcal{D}\$ \$\mathcal{D}\$ \$\mathcal{Q}\$ \$\m			 	 			 -		 		-	
VW-5 4" 10'-24' [5.77] /OC 2.2 3.9 4O VW-6 4" 10'-24' O O C-46 2.92 VW-7 4" 10'-24' /OO 2.2 0.80 /OT VW-8 4" 10'-24' O 0 0 0 0 0 VW-9 4" 10'-24' O O 0			 	 		L	 		-		<u> </u>	
VW-6 4" 10'-24' C 3.7 70 VW-7 4" 10'-24' 10'-24' 10'-24' 10'-24' 20 2.4 2.7 VW-8 4" 10'-24' 0 2.2 0.80 10.7 10.7 VW-9 4" 10'-24' 0	VW-5	~		15.77			7	2	24		ļ	06.00
VW-7 4" 10'-24' /OO 20 0.46 292 VW-8 4" 10'-24' 6.08 /OO 22 0.80 /OT VW-9 4" 10'-24' 0 <t< td=""><td></td><td></td><td>7</td><td> · · · ·</td><td></td><td></td><td>~</td><td></td><td>ا .د</td><td></td><td>ļ₁</td><td>40</td></t<>			7	· · · ·			~		ا .د		ļ ₁	40
VW-8 4" 10'-24' 16.08 100 22 0.80 12 VW-9 4" 10'-24' 0 0 10'-24' 0 10'-24' 0 10'-24' 0 10'-24' 0 10'-24' 0 10'-25' 0'-20'	VW-7	_				···	2/	<u> </u>	12.440			7.00
VW-9 4" 10'-24' 0 70 / VW-10 4" 10'-24' 0 <td>VW-8</td> <td>4"</td> <td> </td> <td>16.08</td> <td></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td>-</td> <td></td>	VW-8	4"	 	16.08					+		-	
VW-10 4" 10'-24' 0 MW-1 4" 13'-26' 0 0 2 0.30 35 MW-5 4" 10'-25' 700 2 0.30 35 Sparge/Bubbler Well Well Screened DTW TD Valve Position (% open) Pressure Air Flow (psi) DO REMARKS AS-1 (Sparge only) 1" 26'-28' (feet) (feet) (psi) (cfm) (mg/l) AS-3 (Sparge only) 2" 26'-28'	VW-9	4"	·····						10.00		_	101
MW-1	VW-10	4"				0			[
MW-5 4" 10'-25'	MW-1	4"				7	<u> </u>					
Sparge/Bubbler Well Well Screened DTW TD Pressure Air Flow DO REMARKS	MW-5	4"					2 2		0.30			2 6
ID Diameter Interval (feet) (feet) (% open) (psi) (cfm) (mg/l)	Sparge/Bubbler Well	Well		DTW	TD	Valve			7		- DVC	
AS-1 (Sparge only) 1° 26'-28' AS-2 (Sparge only) 2° 26'-28' AS-3 (Sparge only) 2° 26'-28' AS-4 (Sparge only) 2° 26'-28'	ID.	Diameter	Interval	! !	· · · · · · · · · · · · · · · · · · ·			•	1		IEMANNS	•
AS-2 (Sparge only) 2° 26'-28' AS-3 (Sparge only) 2° 26'-28' AS-4 (Sparge only) 2° 26'-28'	S-1 (Sparge only)	1-				(и срои)	(551)	(Oiiii)	(mg/i)			
AS-3 (Sparge only) 2° 26'-28' AS-4 (Sparge only) 2° 26'-28'		2"										
	S-3 (Sparge only)	2°	26'-28'			•				· · · · · · · · · · · · · · · · · · ·		
AC F (2) 101 001 001	S-4 (Sparge only)	2*	26'-28'									-
43-3 (sparge only) 2 20-28	S-5 (Sparge only)	2-	26'-28'									
1W-2 (Bubbler only) 2* 14'-26' 2.5	W-2 (Bubbler only)	2*	14'-26'				2.5					
1W-3 (Bubbler only) 2* 14'-26' 3	W-3 (Bubbler only)	2*	14'-26'									
IW-4 (Bubbler only) 4° 11.5'-26.5'	W-4 (Bubbler only)	4*	11.5'-26.5'			1 VI			-			
fW-6 (Monitor only) 4" 12'-27' NA NA NA NA	W-6 (Monitor only)	4"	12'-27'			NA	NA	NA				
W-7 (Monitor only) 4" 12'-27' NA NA NA	W-7 (Monitor only)	4"	12'-27'			NA	NA	NA	·			─
Total Sparge Data Compressor Hours=				Sparge Da	ata				Compresso	or Hours=	=	
otal Air Sparge Pressure(psi)= 20 Total Air Sparge Flow Rate(cfm)= Total Air Sparge Temp(*F)= 72	otal Air Sparge Pr	essure(p	si)= 10	Total Air S	parge Flo	w Rate(c	m)=					720
ecial Instructions:	ecial Instructions:										<u> </u>	
Use only ARCO chain-of-custody forms. Please include all analytical method numbers as requested on the	Use only	/ ARCO	chain-of-custo	ody forms.	Please inc	clude all a	nalytical n	nethod nu	mbers as re	equested	on the	

Use only ARCO chain-of-custody forms. Please include all analytical method numbers as requested on the chain-of-custody form. Request all TPHG,BTEX, and Benzene results in mg/m². Report O, and CO, in % by volume.

Project#20805-135,006
Operator: | White en

WA # (Task Order # 18336)

Date: 4-2-96

APPENDIX E

ANALYTICAL RESULTS AND CHAIN-OF-CUSTODY DOCUMENTATION FOR SOIL-VAPOR EXTRACTION SYSTEM, SECOND QUARTER 1996

Service Request No: <u>\$9600541</u>

April 17, 1996

Ms. Salilaja Yelamanchili **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

6148 Oakland/Project No. 20805-135.006/TO#18336.00 Re:

Dear Ms. Yelamanchili:

The following pages contain analytical results for sample(s) received by the laboratory on April 2, 1996. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. Listed above -- to help expedite our service please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 11, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely.

Steven L. Green **Project Chemist**

SLG/sh

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement

ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billionppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids

TPH Total Petroleum Hydrocarbons

tr Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: Arco Products Company

Project: 6148 Oakland/#20805-135.006/TO#18336.00

Sample Matrix: Air

Service Request: \$9600541

Date Collected: 4/2/96

Date Received: 4/2/96

Date Extracted: NA

Date Analyzed: 4/4/96

1

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: I-1

Lab Code: S9600541-001

]	MRLs	R	sults	
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.5	0.2	3	0.9	
Toluene	0.5	0.1	18	4.8	
Ethylbenzene	0,5	0.1	8	1.8	
Xylenes, Total	1	0.2	45	10	
Total Volatile Hydrocarbons:					
C1 - C5	10	5	450	110	
C6 - C12	20	5	760	190	
TPH as Gasoline*	20	5	760	190	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: Arco Products Company

Project: 6148 Oakland/#20805-135.006/TO#18336.00

Sample Matrix: Air

Date Collected: 4/2/96 Date Received: 4/2/96 Date Extracted: NA Date Analyzed: 4/4/96

Service Request: S9600541

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: E-1

Lab Code: S9600541-002

	ì	MRLs	Re	esults
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.5	0.2	ND	ND
Toluene	0.5	0.1	ND	ND
Ethylbenzene	0.5	0.1	ND	ND
Xylenes, Total	1	0.2	ND	ND
Total Volatile Hydrocarbons:				
C1 - C5	10	5	78	19 ·
C6 - C12	20	5	41	10
TPH as Gasoline*	20	5	41	10

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: Arco Products Company

Project: 6148 Oakland/#20805-135.006/TO#18336.00

Sample Matrix: Air

Service Request: S9600541
Date Collected: 4/2/96
Date Received: 4/2/96
Date Extracted: NA
Date Analyzed: 4/4/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: Method Blank Lab Code: S9600541-002

]	MRLs	R	esults
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.5	0.2	ND	ND
Toluene	0.5	0.1	ND	ND
Ethylbenzene	0.5	0.1	ND	ND
Xylenes, Total	1	0.2	ND	ND
Total Volatile Hydrocarbons:			ND	ND
C1 - C5	10	5	ND	ND
C6 - C12	20	5	ND	ND
TPH as Gasoline*	20	5	ND	ND

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

APPENDIX A

QA/QC Report

Client: Arco Products Company

Project: 6148 Oakland/#20805-135.006/TO#18336.00

Sample Matrix: Air

Date Collected: 4/2/96
Date Received: 4/2/96
Date Extracted: NA
Date Analyzed: 4/4/96

Service Request: S9600541

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Sample Name: I-1

Lab Code: \$9600541-001D

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzenc	0.5	3	3	3	<1
Toluenc	0.5	18	18	18	<1
Ethylbenzene	0.5	8	8	8	<1
Xylenes, Total	1	45	45	45	<1
Total Volatile Hydrocarbons					
C ₁ - C ₅ Hydrocarbons	20	450	440 .	445	2
C ₆ - C ₁₂ Hydrocarbons	20	760	760	760	<1
Gasoline Fraction (C ₅ -C ₁₂)	60	760	760	760	<1

Note: $ppmV = mg/m^3 x [24.45 (gas constant)/ molecular weight (MW)]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

QA/QC Report

Client: Arco Products Company

Project: 6148 Oakland/#20805-135.006/TO#18336.00

Sample Matrix: Air

Date Collected: 4/2/96
Date Received: 4/2/96
Date Extracted: NA
Date Analyzed: 4/4/96

Service Request: S9600541

Duplicate Summary
BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

Sample Name: I-1

Lab Code: S9600541-001D

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.5	0.9	0.9	1	<1
Toluene	0.5	4.8	4.8	5	<1
Ethylbenzene	0.5	1.8	1.8	2	<1
Xylenes, Total	1	10	10	10	<1
Total Volatile Hydrocarbons					
C ₁ - C ₅ Hydrocarbons	20	110	110	110	<1
C ₆ - C ₁₂ Hydrocarbons	20	190	190	190	<1
Gasoline Fraction (C ₅ -C ₁₂)	60	190	190	190	<1

Note: $ppmV = mg/m^3 x [24.45 (gas constant)/ molecular weight (MW)]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

QA/QC Report

Client: Arco Products Company

Project: 6148 Oakland/#20805-135.006/TO#18336.00

LCS Matrix: Air

Service Request: S9600541
Date Collected: NA
Date Received: NA
Date Extracted: NA
Date Analyzed: 4/4/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

				CAS Percent
Analyte	True Value	Result	Percent Recovery	Recovery Acceptance Limits
Gasoline	210	105	104	60-140

QA/QC Report

Client: Arco Products Company Service Request: \$9600541

Project: 6148 Oakland/#20805-135.006/TO#18336.00

LCS Matrix: Air

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 4/4/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

				CAS Percent
Analyte	True Value	Result	Percent Recovery	Recovery Acceptance Limits
Gasoline	49	51	104	60-140

QA/QC Report

Client: Arco Products Company

Project: 6148 Oakland/#20805-135.006/TO#18336.00

Service Request: \$9600541 Date Analyzed: 4/4/96

Initial Calibration Verification (ICV) Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	25	24.0	96	85-115
Toluene	25	23,9	96	85-115
Ethylbenzene	25	23,5	94	85-115
Xylenes, Total	75	71.0	95	85-115
Gasoline	250	227	91	90-110

RCC	Division	of Atlantic	COLL. Richfleld	Company					rder No.	1	33	37	0.0	20	<u>.</u> 1							Chain of Custody
ARCO Facili	ty по.	148		Cit (Fa	y acility) (Ook.	land	<u>d</u>		Project (Consu	manag Itant)	jer _	î, }	al	im	an	cl	ili	, ne	045		Laboratory name
ARCO engin	M	ike	W	he/a	in		(ARCO)	ne no. 409 453 -/6	040	(Consu	one no. Itant) 4	453	~ 7.	3 <i>0</i> C	2	(Co	rno. nsultar	11) 45	13 -	045	2	Contract number
Consultant n	arne E	MI	ON	<u>(</u>				Address (Consulta	int) 192	/ K	129	100	ocl	Av	e.,	San	n I	~ 6.	0			
		;		Matrix		Prese	rvation		_		9015	<u>.≂</u> ⊓		Ж				Semi VOA□	0007/010			Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	Ice	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEX/TPH EPA #602/8020/8015	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 824/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA	CAM Metals EPA 6	Lead Org./DHS C		
I-1 E-1	/	}			X			4-2-96	1315		X											Special detection Limit/reporting
E-1	2	1			Y			4-2-96	1310		X											Mg/M3 ;
										-			_									PPMV
				-	ļ			ļ		 		ļ			ļ			ļ				Special QA/QC
																						ARO
										 -												
				 -										,								Remarks
																						20805-135.006
				<u> </u>	ļ																	
				<u> </u>						<u> </u>									!			
				<u> </u>				<u> </u>														
																						Turnaround time
				†																		Priority Rush
Condition of	sample:				//			1		Temp	erature	receive	d:					l	l	1		1 Business Day
Relinquishe	by sam	pler	lil	1X	ب		Date 4	2-96	Time / 4/4/	Recei	ved by	LT	-l	kg				CA:	5.5			— Rush 2 Business Days □
Relinquished							Date 4.2	.91	Time		led by	·		(<u></u>					<u> </u>		Expedited 5 Business Days
Relinquished	d by						Date		Time		ved by	laborat	огу			D	ate			Time		Standard 10 Business Days //6 12

May 29, 1996

Service Request No: Servic

Sailaia Yelamanchili **EMCON** 1921 Ringwood Avenue San Jose, CA 95131

Re: 6148 OAKLAND/20805-135.006/TO#18336.00

Dear Sailaja Yelamanchili:

The following pages contain analytical results for sample(s) received by the laboratory on May 16, 1996. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. Listed above -- to help expedite our service please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 11, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

Please feel welcome to contact me should you have questions or further needs.

Sincerely

Steven L. Green

Project Chemist

SLG/jk

Justina V Rayleun for

Regional QA Coordinator

Acronyms

A21 A American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials BOD

Biochemical Oxygen Demand **BTEX**

Benzene, Toluene, Ethylbenzene, Xylenes CAM

California Assessment Metals CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon **CFU** Colony-Forming Unit COD Chemical Oxygen Demand

DEC Department of Environmental Conservation DEQ Department of Environmental Quality

DHS Department of Health Services **DLCS Duplicate Laboratory Control Sample**

DMS Duplicate Matrix Spike DOE Department of Ecology DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

Gas Chromatography GC

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit MPN Most Probable Number MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable NAN Not Analyzed NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL **Practical Quantitation Limit** QA/QC Quality Assurance/Quality Control

Resource Conservation and Recovery Act **RCRA**

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992 STLC

Solubility Threshold Limit Concentration SW

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure TDS Total Dissolved Solids

.TPH Total Petroleum Hydrocarbons

Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS **Total Suspended Solids**

TTLC **Total Threshold Limit Concentration**

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: Arco Products Company

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

Sample Matrix: Air

Date Collected: 5/16/96
Date Received: 5/16/96
Date Extracted: NA
Date Analyzed: 5/17/96

Service Request: S9600785

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: I-1

Lab Code: S9600785-001

•	MRLs		Results	
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.5	0.2	2	0.6
Toluene	0,5	0.1	3	8.0
Ethylbenzene	0.5	0.1	2	0.5
Xylenes, Total	1	0.2	17	3.9
Total Volatile Hydrocarbons:				
C1 - C5	10	5	820	200
C6 - C12	20	5	650	160
TPH as Gasoline*	20	5	650	160

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: Arco Products Company

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

Sample Matrix: Air

Service Request: S9600785

Date Collected: 5/16/96

Date Received: 5/16/96

Date Extracted: NA

Date Analyzed: 5/17/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: E-1

Lab Code: S9600785-002

	MRLs		Results	
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.5	0.2	ND	ND
Toluene	0.5	0.1	ND	ND
Ethylbenzene	0.5	0.1	ND	ND
Xylenes, Total	1	0.2	ND	ND
Total Volatile Hydrocarbons:				
C1 - C5	10	5	140	34
C6 - C12	20	5	39	10
TPH as Gasoline*	20	5	39	10

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: Arco Products Company

Project: 6148 OAKLAND/20805-135,006/TO#18336.00

Sample Matrix: Air

Service Request: \$9600785

Date Collected: 5/16/96

Date Received: 5/16/96

Date Extracted: NA

Date Analyzed: 5/17/96

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: Method Blank Lab Code: S969517-VB1

•	MRLs		Results	
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.5	0.2	ND	ND
Toluene	0.5	0.1	ND	ND
Ethylbenzene	0.5	0.1	ND	ND
Xylenes, Total	1	0.2	ND	ND
Total Volatile Hydrocarbons:				
C1 - C5	10	5	ND	ND ·
C6 - C12	20	5	ND	ND
TPH as Gasoline*	20	5	ND	ND

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

APPENDIX A

QA/QC Report

Client: **Arco Products Company** Service Request: S9600785 Project: 6148 OAKLAND/20805-135.006/TO#18336.00 Date Collected: 5/16/96

Sample Matrix: Air Date Received: 5/16/96

Date Extracted: N/A Date Analyzed: 5/17/96

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Sample Name: I-1

Lab Code: S9600785-001

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.5	2	2	2	<1
Toluene	0.5	3	3	3	<1
Ethylbenzene	0.5	2	2	2	<1
Xylenes, Total	1	17	15	16	13
Total Volatile Hydrocarbons					
C1 - C5	10	820	790	805	4
C6 - C12	20	650	610	630	6
TPH as Gasoline*	20	650	610	635	5

 $ppmV = mg/m^3 x [24.45 (gas constant)/ molecular weight (MW)]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a

QA/QC Report

Client: Arco Products Company Service Request: \$9600785

Project: 6148 OAKLAND/20805-135.006/TO#18336.00 Date Collected: NA

Sample Matrix: Air

Date Received: NA

Date Extracted: N/A

Date Analyzed: 5/17/96

Duplicate Summary
BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

Sample Name: I-1

Lab Code: S9600785-001D

Analyte	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Benzene	0.2	0.6	0.6	1	<1
Toluene	0.1	0.8	0.8	1	<1
Ethylbenzene	0.1	0.5	0.5	1	<1
Xylenes, Total	0.2	3.9	3.5	4	11
Total Volatile Hydrocarbons					
C1 - C5	5	200	190	195	5
C6 - C12	5	160	150	155	6
TPH as Gasoline*	5	160	150	155	6

Note: $ppmV = mg/m^3 \times [24.45 \text{ (gas constant)/ molecular weight (MW)}]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

QA/QC Report

Client: Arco Products Company Service Request: S9600785

Project: 6148 OAKLAND/20805-135.006/TO#18336.00 Date Collected: NA

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

LCS Matrix: Air

Date Collected: NA

Date Received: NA

Date Extracted: NA

Date Analyzed: 5/17/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

				CAS
				Percent
				Recovery
	True		Percent	Acceptance
Analyte	Value	Result	Recovery	Limits
Gasoline	200	230	115	60-140

QA/QC Report

Client: Arco Products Company

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

LCS Matrix: Air

Service Request: S9600785

Date Collected: NA

Date Received: NA
Date Extracted: NA
Date Analyzed: 5/17/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Gasoline	49	• 56.0	114	60-140

QA/QC Report

Client: Project: Arco Products Company

6148 OAKLAND/20805-135.006/TO#18336.00

Service Request: S9600785

Date Analyzed: 5/17/96

Initial Calibration Verification (ICV) Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Limits
Benzene	25	22.6	90	85-115
Toluene	25	22.6	90	85-115
Ethylbenzene	25	22.5	90	85-115
Xylenes, Total	75	66.9	89	85-115
Gasoline	250	255	102	90-110

ARCOT				onpany	₩.			Task Or	der No.	12	33	6.0	00									Chain of Custo	dy
ARCO Facilit	y no. <i>G</i>	148)	Cit (Fa	y scility)	Oak	lang	L CA 10 40 1453-16		Project (Consul	manag tant)	je r	S.	}	el	20	na	cl	u	049		Laboratory name	
ARCO engin	ame F	Em	hela 1001	<u>~</u>	-		(ARCO)		040 Int) 192	Telepho (Consul				300) 1e	(Co	no. nsultar	1) 45 Jos	53 -	O49	72	Contract number	
			<u></u>	Matrix		Prese	rvation					7						□ Vo	0004/01			Method of shipment	
Sample I.D.	Lab по.	Container no.	Soil	Water	Other	lce	Acid	Sampling date	Sampling time	BTEX 602/EPA 8020	BTEXTPH EPA M602/8020/8015	TPH Modified 8015 Gas Diesek	Oil and Grease 413.1 413.2	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA □	CAN Metas EPA 60 TTLC T STLC L	Leed Org./DHS CLeed EPA		Special detection	
I-1	(1)	t			Х			5-16-96	1415		×											Limit/reporting	
E-1	(2)				χ			5-16-96	1402		×											Mg/m³ 3 ppmV	7 ;
																						ppmv	
										-						<u>.</u>	L				_	Special QA/QC	
						 				-							-				_		
				<u> </u>						-				. —							-		
<u> </u>										 -							 -	 			- -	Remarks	
				-	-																	20805 -135.0	86
	<u> </u>									 											_		
				 						<u> </u>												1	
										1												1	
				<u> </u>						 													
	·																					Lab number 59600785	
	! 																					Turnaround time	
	\		<u> </u>	2 ,,		<u></u>			l 													Priority Rush 1 Business Day	
Condition of Relinquistres	by sam	pler	HIII	H			Date 5	-16-92	Time 1557		erature ved by	receive	od: 		<u> </u>							Rush 2 Business Days	
Relinquished	UM I by	" [A		<u> </u>			Date	>€ ⁄	Time	Recei	ved by	Kin	<u>e</u>	R	Ry				<u></u>			Expedited 5 Business Days	
Relinquished	i by						Date		Time	Recei	Yed by	laborate	J		- and	[eate 5-16	-90	>	Time /60	10	Standard 10 Business Days	

Service Request No: S9600916

June 20, 1996

Mr. John Young **EMCON** 1921 Ringwood Ave. San Jose, Ca 95131

Re: 6148 OAKLAND/20805-135.006/TO#18336.00

Dear Mr. Young:

The following pages contain analytical results for sample(s) received by the laboratory on June 7, 1996. Results of sample analyses are followed by Appendix A which contains sample custody documentation and quality assurance deliverables requested for this project. The work requested has been assigned the Service Request No. Listed above -- to help expedite our service please refer to this number when contacting the laboratory.

Analytical results were produced by procedures consistent with Columbia Analytical Services' (CAS) Quality Assurance Manual (with any deviations noted). Signature of this CAS Analytical Report below confirms that pages 2 through 11, following, have been thoroughly reviewed and approved for release in accord with CAS Standard Operating Procedure ADM-DatRev3.

If you have questions or further needs, please call me at (408) 428-1283.

Sincerely,

Steven L. Green

Chietena V-Reighun for

Project Chemist

Greg Anderson

Regional QA Coordinator

Acronyms

A2LA American Association for Laboratory Accreditation

ASTM American Society for Testing and Materials

BOD Biochemical Oxygen Demand

BTEX Benzene, Toluene, Ethylbenzene, Xylenes

CAM California Assessment Metals
CARB California Air Resources Board

CAS Number Chemical Abstract Service registry Number

CFC Chlorofluorocarbon
CFU Colony-Forming Unit
COD Chemical Oxygen Demand

DEC Department of Environmental Conservation
DEQ Department of Environmental Quality
DHS Department of Health Services
DLCS Duplicate Laboratory Control Sample

DMS Duplicate Matrix Spike
DOE Department of Ecology
DOH Department of Health

EPA U. S. Environmental Protection Agency

ELAP Environmental Laboratory Accreditation Program

GC Gas Chromatography

GC/MS Gas Chromatography/Mass Spectrometry

IC Ion Chromatography

ICB Initial Calibration Blank sample

ICP Inductively Coupled Plasma atomic emission spectrometry

ICV Initial Calibration Verification sample

J Estimated concentration. The value is less than the MRL, but greater than or equal to

the MDL. If the value is equal to the MRL, the result is actually <MRL before rounding.

LCS Laboratory Control Sample
LUFT Leaking Underground Fuel Tank

M Modified

MBAS Methylene Blue Active Substances

MCL Maximum Contaminant Level. The highest permissible concentration of a

substance allowed in drinking water as established by the U. S. EPA.

MDL Method Detection Limit
MPN Most Probable Number
MRL Method Reporting Limit

MS Matrix Spike

MTBE Methyl tert-Butyl Ether

NA Not Applicable
NAN Not Analyzed
NC Not Calculated

NCASI National Council of the paper industry for Air and Stream Improvement
ND Not Detected at or above the method reporting/detection limit (MRL/MDL)

NIOSH National Institute for Occupational Safety and Health

NTU Nephelometric Turbidity Units

ppb Parts Per Billion ppm Parts Per Million

PQL Practical Quantitation Limit
QA/QC Quality Assurance/Quality Control
RCRA Resource Conservation and Recovery Act

RPD Relative Percent Difference SIM Selected Ion Monitoring

SM Standard Methods for the Examination of Water and Wastewater, 18th Ed., 1992

STLC Solubility Threshold Limit Concentration

SW Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846,

3rd Ed., 1986 and as amended by Updates I, II, IIA, and IIB.

TCLP Toxicity Characteristic Leaching Procedure

TDS Total Dissolved Solids
TPH Total Petroleum Hydrocarbons

Trace level. The concentration of an analyte that is less than the PQL but greater than or equal

to the MDL. If the value is equal to the PQL, the result is actually <PQL before rounding.

TRPH Total Recoverable Petroleum Hydrocarbons

TSS Total Suspended Solids

TTLC Total Threshold Limit Concentration

VOA Volatile Organic Analyte(s) ACRONLST.DOC 7/14/95

Analytical Report

Client: ARCO Products Company

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

Sample Matrix: Air

Date Collected: 6/7/96
Date Received: 6/7/96
Date Extracted: NA
Date Analyzed: 6/7/96

Service Request: S9600916

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: E-1

Lab Code: S9600916-001

	1	MRLs	Re	esults
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)
Benzene	0.5	0.2	· ND	ND
Toluene	0.5	0.1	ND	ND
Ethylbenzene	0.5	0.1	ND	ND
Xylenes, Total	1	0.2	ND	ND
Total Volatile Hydrocarbons:				
C1 - C5	10	5	76	19
C6 - C12	20	5	ND	ND
TPH as Gasoline*	20	5	ND	ND

LCS/102194

^{*} TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Analytical Report

Client: **ARCO Products Company**

6148 OAKLAND/20805-135.006/TO#18336,00 Project:

Sample Matrix:

Date Collected: 6/7/96 Date Received: 6/7/96 Date Extracted: NA Date Analyzed: 6/7/96

Service Request: \$9600916

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: I-1

Lab Code: S9600916-002

]	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.5	0.2	<2.5**	<1**	
Toluene	0.5	0.1	2.8	0.7	
Ethylbenzene	0.5	0.1	3	0.7	
Xylenes, Total	1	0.2	8.8	2.0	
Total Volatile Hydrocarbons:					
C1 - C5	10	5	1,200	290	
C6 - C12	20	5	740	180	
TPH as Gasoline*	20	5	740	180	

LCS/102194

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

Raised MRL due to high analyte concentration requiring sample dilution.

Analytical Report

Client: ARCO Products Company

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

Sample Matrix: Air

Date Collected: 6/7/96
Date Received: 6/7/96
Date Extracted: NA
Date Analyzed: 6/7/96

Service Request: S9600916

BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Sample Name: Method Blank Lab Code: S960607-VB1

	1	MRLs	Results		
	mg/m3	uL/L (ppmv)	mg/m3	uL/L (ppmv)	
Benzene	0.5	0,2	ND	ND	
Toluene	0.5	0,1	ND	ND	
Ethylbenzene	0.5	0.1	ND	ND	
Xylenes, Total	1	0.2	ND	ND	
Total Volatile Hydrocarbons:					
C1 - C5	10	5	ND	ND	
C6 - C12	20	5	ND	ND	
TPH as Gasoline*	20	5	ND	ND	

TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

LCS/102194

APPENDIX A

QA/QC Report

Client: ARCO Products Company Service Request: S9600916
Project: 6148 OAKLAND/20805-135.006/TO#18336.00 Date Collected: 6/7/96

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

Date Collected: 6/7/96

Sample Matrix: Air

Date Received: 6/7/96

Date Extracted: N/A

Date Extracted: N/A
Date Analyzed: 6/7/96

Duplicate Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

Sample Name: I-1

Lab Code: \$9600916-002

			Relative			
		Sample	Sample		Percent	
Analyte	MRL	Result	Result	Average	Difference	
Benzene	0,5	<2.5**	<2.5**			
Toluene	0,5	2.8	2.6	3	7	
Ethylbenzene	0.5	3.0	3.1	3	3	
Xylenes, Total	1	8,8	8.9	9	1	
Total Volatile Hydrocarbons						
C1 - C5	10	1,200	1,200	1,200	<1	
C6 - C12	20	740	750	745	1	
TPH as Gasoline*	20	740	750	745	1	

Note: $ppmV = mg/m^3 x [24.45 (gas constant)/ molecular weight (MW)]$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

* TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a

molecular weight of 100 to calculate the ppmv.

* Raised MRL due to high analyte concentration requiring sample dilution.

QA/QC Report

Client:ARCO Products CompanyService Request:\$9600916Project:6148 OAKLAND/20805-135.006/TO#18336.00Date Collected:6/7/96

Sample Matrix: Air

Date Received: 6/7/96

Date Extracted: N/A

Date Extracted: N/A
Date Analyzed: 6/7/96

Duplicate Summary
BTEX and Total Volatile Hydrocarbons

Units: uL/L (ppmv)

Sample Name: I-1

Lab Code: S9600916-002

			Relative			
		Sample	Sample		Percent	
Analyte	MRL	Result	Result	Average	Difference	
Benzene	0.2	<1**	<1**	₹~		
Toluene	0.1	0.7	0.7	1	<1	
Ethylbenzene	0.1	0.7	0.7	1	<1	
Xylenes, Total	0.2	2.0	2.1	2.	5	
Total Volatile Hydrocarbons						
C1 - C5	5	290	290	290	<1	
C6 - C12	5	180	180	180	<1	
TPH as Gasoline*	5	180	180	180	<1	

Note: $ppmV = mg/m^3 x \{24.45 (gas constant) / molecular weight (MW)\}$

MW Benzene = 78, Toluene = 92, Ethylbenzene = 106, Total Xylenes = 106

MW Gasoline = 100

* TPH as gasoline is defined as C6 (benzene) through C12 (dodecane) and uses a molecular weight of 100 to calculate the ppmv.

QA/QC Report

Client: ARCO Products Company Service Request: \$9600916
Project: 6148 OAKLAND/20805-135.006/TO#18336.00

LCS Matrix: Air Date Received: 6/7/96

Date Extracted: NA
Date Analyzed: 6/7/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Units: mg/m³

CAS

	True		Percent	Percent Recovery Acceptance
Analyte	Value	Result	Recovery	Limits
Benzene	24	24.7	103	60-140
Toluene	24	23.6	98	60-140
Ethylbenzene	24	22.9	95	60-140

QA/QC Report

Client: ARCO Products Company Service Request: \$9600916

Project: 6148 OAKLAND/20805-135.006/TO#18336.00

LCS Matrix: Air Date Received: 6/7/96

Date Extracted: NA

Date Analyzed: 6/7/96

Laboratory Control Sample Summary BTEX and Total Volatile Hydrocarbons EPA Methods 5030/8020/Modified 8015

Units: uL/L (ppmv)

CAS

Analyte	True Value	Result	Percent Recovery	Percent Recovery Acceptance Limits		
Benzene	7.5	7.7	103	60-140		
Toluene	6.4	6.3	98	60-140		
Ethylbenzene	5.5	5.3	96	60-140		

QA/QC Report

Client: ARCO Products Company
Project: 6148 OAKLAND/20805-135.006/TO#18336.00

Service Request: S9600916 Date Analyzed: 6/7/96

Initial Calibration Verification (ICV) Summary BTEX and Total Volatile Hydrocarbons

Units: mg/m³

				CAS Percent		
Analyte	True Value	Result	Percent Recovery	Recovery Acceptance Limits		
Benzene	25	21.3	85	85-115		
Toluene	25	21.3	85	85-115		
Ethylbenzene	25	21.3	85	85-115		
Xylenes, Total	75	63.8	85	85-115		
Gasoline	250	255	102	90-110		

AHCO								Task O	rder No.		18	33	G.	ÖC	<u>う</u>							Chain of Custody
ARCO Facilit	y no.	14	8	Cit (Fa	ty acility)	Oa	Klas	ud		Project (Consu	mana(ltant))er	S,	Yo	ela	rm	an	cl	ri/	(Laboratory name
ARCO engine	er /	1:K	e u	<u>Uhel</u>	lou	<u> </u>	(ARCO)	16 no. 40 453-76 Address	40	Telepho (Consu	one no. Itant)	45	3-7	300	0_	Fax (Co	no. nsultar	nt) 4	23	-21	76	Contract number
	E	=M	1.0	4/		I		(Consulta	ant) /7	<u>2/</u>	~	140	1400	9 <u>0</u> 0	$^{\varrho}$	400	- · ·	Sa	200	ose,	CA.	
				Matrix		Prese	rvation				2015	201		₩				\\$@i	00220			Method of shipment
Sample I.D.	Lab no.	Container no.	Soil	Water	Other	lcə	Acid	Sampling date	Sampling time	BTEX 602EPA 8020	BTEX/TPH EPA M602/80/20/8015	TPH Modified 8015 Gas Diesel	Oil and Grease 413.1 🗀 413.2 🗀	TPH EPA 418.1/SM503E	EPA 601/8010	EPA 624/8240	EPA 625/8270	TCLP Semi Metals □ VOA □ VOA □	CAM Metals EPA 8	Lead Org./DHS CLead EPA 16ad EPA 7420/7421 CL		
E-1		1			X			6-7-96	1252	<u> </u>	X											Special detection Limit/reporting
I-1		1			×			6-7-96	1310		×											_]
!	<u></u>									<u> </u>												_
					-					-												Special DA/QC MS/M3 ? PPMV
			 							_											_	
																						Remarks 175 on
ļ	_													_					:			20805 - 135.00
	<u></u>			-														_				
ļ	.		ļ	<u> </u>						 								-				_
									}													
	-																					Lab number
																						Turnaround time
Condition of	<u> </u>			<u> </u>						T									!			Priority Rush 1 Business Day
Condition of Relinquished	by sam	pler //	The.	H			Date	12/10	Time	Recei	erature ved by	receive	od: 							-	··· <u>·</u> ····	Rush 2 Business Days
Relinquished by Ce / 7/96 15:00 Date Time				Received by											Expedited 5 Business Days							
Relinquished	by				, <u></u>		Date		Time	Received	red by	laborate	Tae	1/60	n	D	ate /7	146		Time	: 0v	Standard 10 Business Days

Distribution: White copy — Laboratory; Canary copy — ARCO Environmental Engineering; Pink copy — Consultant APC-3292 (2-91)