

Sacramento, California 95818

RECEIVED

9:16 am, Feb 01, 2011 Alameda County Environmental Health

January 26, 2011

Ms. Barbara Jakub Alameda County Environmental Health 1131 Harbor Bay Parkway Alameda, CA 94502

Semi-Annual Summary Report Transmittal Re:

Third Quarter through Fourth Quarter 2010 76 Service Station #6129

3420 35th Avenue Oakland, California

Dear Ms. Jakub:

I declare under penalty of perjury that the information and/or recommendations contained in the attached document or report is true and correct to the best of my knowledge.

If you have any questions or need additional information, please call:

Ted Moise (Contractor) ConocoPhillips Risk Management & Remediation 76 Broadway Sacramento, CA 95818

Phone: (510) 245-5162 Fax: (918) 662-4480

Ted.Moise@contractor.conocophillips.com

Sincerely,

Eric G. Hetrick Site Manager

Risk Management & Remediation

Attachment

SEMI-ANNUAL SUMMARY REPORT Third Quarter through Fourth Quarter 2010

76 Station 6129 3420 35th Ave Oakland, CA

Antea Group Project No. C1Q6129010

January 26, 2011

Prepared for: ConocoPhillips 76 Broadway Sacramento, CA 95818 Prepared by:
AnteaTMGroup
11050 White Rock Road
Suite 110
Rancho Cordova, CA
95670

January 26, 2011

Ms. Barbara Jakub Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re:

SEMI-ANNUAL SUMMARY REPORT

THIRD QUARTER THROUGH FOURTH QUARTER 2010

Fuel Leak Case No. RO0058

Dear Ms. Jakub:

Due to global rebranding, as of January 5, 2011 Delta Consultants has become Antea Group. Any reports submitted prior to this date will still be referenced as Delta reports.

On behalf of ConocoPhillips Company (COP), Antea Group (Antea) is submitting the *Semi-Annual Summary Report – Third Quarter through Fourth Quarter 2010* and forwarding a copy of TRC Solutions, Inc. (TRC's) *Groundwater Monitoring Report – October through December 2010*, dated December 10, 2010, for the following location:

Service Station

Location

76 Service Station No. 6129

3420 35th Avenue Oakland, California

Sincerely,
ANTEA GROUP

James B. Barnard, P.G.

remes B. Barran

Senior Project Manager

California Registered Professional Geologist No. 7478

cc: Mr. Ted Moise, ConocoPhillips (electronic copy)

SEMI-ANNUAL SUMMARY REPORT Third Quarter through Fourth Quarter 2010 76 Service Station No. 6129 3420 35th Avenue Oakland, Alameda County, California

SITE DESCRIPTION

The site is currently an operating 76 Service Station that dispenses gasoline stored in two 12,000-gallon underground storage tanks (USTs) from two dispenser islands. An automotive repair facility is present at the site which contains three service bays. Additionally, there is one used-oil UST, three hydraulic lifts, and three groundwater monitoring wells (MW-1 through MW-3) present at the site. There was previously one used-oil UST, one clarifier beneath the central hydraulic lift, and two floor drains, all of which have been removed.

PREVIOUS ASSESSMENT

According to Kaprealian Engineering, Inc. (KEI), in 1989 two 10,000-gallon gasoline USTs and one 550-gallon waste oil UST were removed from the site. Analytical data from soil samples collected beneath the former gasoline USTs, used-oil UST, and product piping indicated low concentrations of petroleum hydrocarbons were present in each of the sampling areas. Three groundwater monitoring wells (MW-1 through MW-3) were installed in 1989 to depths of approximately 44 feet below ground surface (bgs).

In 1990, four soil borings (EB1 through EB4) were advanced at the site in the vicinity of MW-3 in an attempt to define the petroleum hydrocarbon impact to soil. Based on the analytical data from the soil sampling, approximately 230 cubic yards of soil were excavated from an area between the dispenser islands and around monitoring well MW-3 in 1991. The excavation was completed as to not destroy monitoring well MW-3. Analytical data from confirmation soil samples indicated the majority of the impacted soil had been removed.

On November 12 and 13, 2003, as part of a due diligence investigation, four soil borings (SB-1 and SB-3 through SB-5) were advanced to total depths of approximately 31.5 to 36.5 feet bgs. Proposed boring SB-2 was unable to be advanced due to the presence of subsurface utilities and/or structures. Groundwater was encountered in the borings at a depth of approximately 35 feet bgs. Methyl tertiary butyl ether (MTBE) was reported at concentrations ranging from 0.37 to 0.41 milligrams per kilogram (mg/kg) in the soil samples collected at depths ranging from 26 and 31 feet bgs. All other constituents were below the laboratory's indicated reporting limits for the soil samples analyzed. The three existing groundwater monitoring wells were sampled on November 13, 2003. Analytical data indicated MTBE was present at concentrations ranging from 240 and 3,700 micrograms per liter (μ g/L), with the most elevated concentrations found in monitoring wells MW-2 (2,100 μ g/L) and MW-3 (3,700 μ g/L).

On September 13, 2006, Delta observed the advancement of six boreholes by a licensed contractor using CPT technology. The CPT borings provided accurate continuous records of the subsurface lithology and stratigraphy and measured depth to

first groundwater. Groundwater and soil samples were not collected from the CPT borings.

On November 7 and 8, 2006, Delta observed the advancement of five soil borings (B-2, B-7, B-8, B-9, and B-14) by a licensed contractor using hollow stem auger technology. Four of these soil borings were advanced adjacent to the previously advanced CPT borings. On December 27, 2006, four soil borings (B-10, B-12, B-15, and B-16) were advanced using hollow stem auger technology. Soil samples were collected every five feet for lithologic descriptions, field hydrocarbon screening, and laboratory analysis. A description of this work is presented in the *Soil Boring Site Assessment Report* dated February 19, 2007.

SENSITIVE RECEPTORS

2004 - A 1,000-foot radius well search was completed by the request of the Alameda County Public Works Agency (ACPWA). The search indicated that a six-inch diameter irrigation well was located at 3397 Arkansas Street, approximately 800 feet west-northwest of the site. The well was installed in August 1977 to a total depth of 62 feet bgs with depth to water reported at 18 feet bgs. Alameda County Health Care Services update of July 30, 1984 reported the well owner as Arthur Smith.

2006 – A survey entailing a visit to the State of California Department of Water Resources (DWR) office in Sacramento was conducted to examine well log records and to identify domestic wells within the survey area. The DWR survey indicated three potential receptors were located within one mile of the site; two irrigation wells located 0.5 mile and 0.8 mile north (up-gradient) of the site and one domestic/irrigation well located 0.8 mile northeast (up-gradient) of the site. Two additional potential receptors were identified although the specific addresses could not be located. Based on groundwater gradient information and distance to the receptors from the site, identified receptors do not appear to be at risk due to gasoline constituents in groundwater at the site.

MONITORING AND SAMPLING

Groundwater monitoring and sampling activities were conducted at the site from January 1990 through May 1991. Sampling activities were re-initiated during the third quarter 2004. The monitoring well network consists of three onsite wells (MW-1, 2, 3), and is currently sampled on a semi-annual basis during second and fourth quarters. Samples collected from the monitoring wells are analyzed for total petroleum hydrocarbons as gasoline (TPHg), benzene, toluene, ethylbenzene, and total xylenes (BTEX), and fuel oxygenates [MTBE, di-isopropyl ether (DIPE), tertiary butyl alcohol (TBA), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE), 1,2-dichloroethane (1,2-DCA), ethylene dibromide (EDB), and ethanol] by Environmental Protection Agency (EPA) Method 8260B. TRC has been retained to perform the monitoring and sampling.

During the most recent groundwater monitoring event, conducted on November 1, 2010, the depth to groundwater ranged from 29.29 feet (MW-3) to 30.18 feet (MW-1) below top of casing (TOC). Average groundwater elevation is 160.27 feet above mean sea level, which is a decrease of 4.16 feet since the previous sampling event (5/7/09). The current groundwater gradient and flow direction was interpreted to be 0.01 feet per foot (ft/ft) to the southwest. This is consistent with a gradient and flow direction of 0.02 ft/ft to the southwest during the previous sampling event. This is also consistent with a historical groundwater flow direction of southwest.

A historical groundwater flow direction rose diagram is included as Attachment A.

Contaminants of Concern:

- TPHg: TPHg was above laboratory indicated reporting limits in the groundwater samples collected from two of the three wells sampled, with a maximum concentration of 140 μg/L in MW-2 during the current sampling event. This is a decrease from a maximum concentration of 600 μg/L in MW-2 during the previous sampling event (5/7/09). Well MW-3 was reported with a concentration of 120 μg/L during the current sampling event.
- BTEX: BTEX compounds were all below laboratory indicated reporting limits in groundwater samples collected
 from all of the three wells sampled during the current sampling event. This is consistent with the previous
 sampling event.
- MTBE: MTBE was above laboratory indicated reporting limits in the groundwater samples collected from all of the three wells sampled, with a maximum concentration of 730 μg/L in MW-2 during the current sampling event. This is a decrease from a maximum concentration of 940 μg/L in MW-2 during the previous sampling

76 Service Station No. 6129

event. Wells MW-1 and MW-3 were reported with concentration of 92 μ g/L and 490 μ g/L, respectively, during the current sampling event.

- **DIPE:** DIPE was above laboratory indicated reporting limits in the groundwater sample collected from one of the three wells sampled, with a maximum concentration of 28 μ g/L in MW-2 during the current sampling event. This is an increase from a maximum concentration of 14 μ g/L in MW-2 during the previous sampling event.
- Other Fuel Oxygenates: TBA, ETBE, TAME, 1,2-DCA, EDB, and Ethanol were all below laboratory indicated reporting limits in groundwater samples collected from all of the three wells sampled during the current sampling event. This is consistent with the previous sampling event except for TBA which showed a concentration of 63 µg/L in MW-3.

REMEDIATION STATUS

In 1991, based on the analytical results of soil samples from borings EB1 through EB4, approximately 230 cubic yards of soil were excavated from the area between the dispensers and the pump islands in the area around MW-3.

Additional remediation has not been required by the lead regulatory agency for this site.

CHARACTERIZATION STATUS

A Site Assessment Work Plan, dated March 23, 2009, was submitted and approved by the agency. Delta completed the soil borings in October 2009.

Contaminant concentration contour maps provided in the *Groundwater Monitoring Report – October through December 2010* from TRC indicated that TPHg and MTBE concentrations onsite are, at least in part, derived from a source located at the Former Exxon site across Quigley Street (currently an active Valero case).

Delta submitted a *Proposed Monitoring Well Addendum Letter* on January 25, 2010 based on cross-sections and the CPT boring results, proposing installation of a total of 4 wells (two wells per water bearing units). MW-4S and MW-4D will be located in the westernmost corner of the station in the vicinity of B-18. MW-5S and MW-5D will be located near boring B-20 in the northeastern drive way along Quigley Street. At each location, the two wells will be placed in close proximity to one another, with differing screen intervals. One well will be screened from 30 to 40 feet bgs, while the other will be screened from 40 to 50 feet bgs. This will allow possible water sampling from a wider range of depth while limiting screen length in each well to ten feet. The purpose of the wells located near B-20 will be to identify contaminants migrating from the Exxon site across Quigley Street. The purpose of the wells near B-18 will be to identify if contaminants are migrating offsite.

Groundwater monitoring is ongoing.

RECENT CORRESPONDENCE

No regulatory correspondence was received during the first and second quarter 2010.

WASTE DISPOSAL SUMMARY

No waste has been generated at this site recently.

76 Service Station No. 6129

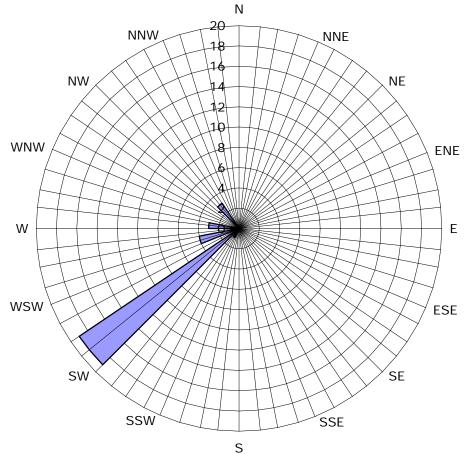
THIRD QUARTER THROUGH FOURTH QUARTER ACTIVITIES

1. TRC conducted semi-annual monitoring and sampling activities on November 1, 2010, and presented their results in the *Groundwater Monitoring Report – October through December* 2010, dated December 10, 2010.

FIRST QUARTER THROUGH SECOND QUARTER 2011 PLANNED ACTIVITIES

- 1. TRC will conduct semi-annual monitoring and sampling activities at the site, and present their results in a semi-annual groundwater monitoring report.
- 2. Antea will prepare a semi-annual summary report.
- 3. Upon agency approval of the *Proposed Monitoring Well Addendum Letter*, dated January 25, 2010, Antea will install four new monitoring wells onsite and prepare a report.

CONSULTANT: ANTEA GROUP


Attachment A – Historic Groundwater Flow Directions (Rose) Diagram
Attachment B – Groundwater Monitoring Report – October through December 2010

ATTACHMENT A

Historic Groundwater Flow Directions

Historic Groundwater Flow Directions ConocoPhillips Site No. 6129

3420 35th Avenue Oakland, California

<u>Legend</u>

Concentric circles represent Quarterly Montoring Events. First Quarter 1990 through Fourth Quarter 2010. 30 data points shown.

ATTACHMENT B

Groundwater Monitoring Report – October through December 2010

123 Technology Drive West Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

December 10, 2010

TO:

ConocoPhillips Company

76 Broadway

Sacramento, CA 94563

ATTN:

MR. TED MOISE

SITE:

76 STATION 6129

3420 35TH AVENUE

OAKLAND, CALIFORNIA

RE:

GROUNDWATER MONITORING REPORT

OCTOBER THROUGH DECEMBER 2010

Dear Mr. Moise:

Please find enclosed our Groundwater Monitoring Report for 76 Station 6129, located at 3420 35th Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

Anju Farfan

Groundwater Program Operations Manager

CC: Mr. James Barnard, Delta Consultants (1 copy)

Enclosures:

20-0400/6129R26.QMS

GROUNDWATER MONITORING REPORT OCTOBER THROUGH DECEMBER 2010

76 STATION 6129 3420 35th Avenue Oakland, California

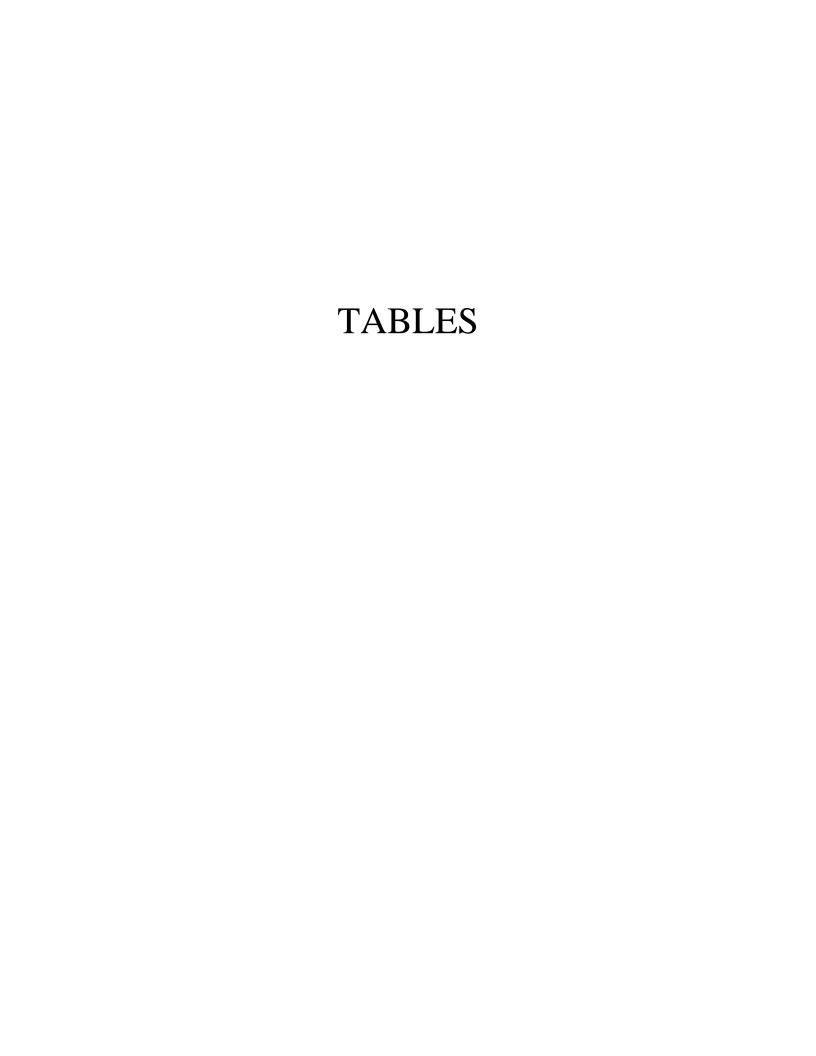
Prepared For:

Mr. Ted Moise CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, CA 94563

By:

Senior Project Geologist, Irvine Operations

Date: 12 /10/10



No. 3531

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
	Table 2b: Additional Historic Analytical Results
	Table 2c: Additional Historic Analytical Results
Coordinated	Former Exxon Station 7-0234
Event Data	Table 1A: Cumulative Groundwater Monitoring and Sampling Data
	Table 1B: Additional Cumulative Groundwater Monitoring and Sampling
	Data
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	Benzene Concentrations vs. Time
	MTBE 8260B Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 11/1/10
	Groundwater Sampling Field Notes – 11/1/10
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities October through December 2010 76 Station 6129 3420 35th Ave. Oakland, CA

Project Coordinator: Ted Moise Telephone: 510-245-5162	Water Sampling Contractor: <i>TRC</i> Compiled by: Daniel Lee
Date(s) of Gauging/Sampling Event: 11/1/2010	. 3
Sample Points	
Groundwater wells: 3 onsite, 0 offsite Purging method: Submersible pump/bailer Purge water disposal: Crosby and Overton treatment of the Sample Points: 0 Type:	Points gauged: 3 Points sampled: 3 atment facility
Liquid Phase Hydrocarbons (LPH)	
Sample Points with LPH: 0 Maximum thickness LPH removal frequency: Treatment or disposal of water/LPH:	ss (feet): Method:
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum Average groundwater elevation (relative to available Average change in groundwater elevation since provided in the p	revious event: -4.16 feet on:
Selected Laboratory Results	
Sample Points with detected Benzene: 0 Maximum reported benzene concentration: -	Sample Points above MCL (1.0 μg/l):
Sample Points with TPH-G by GC/MS 2 Sample Points with MTBE 8260B 3	Maximum: 140 μg/l (MW-2) Maximum: 730 μg/l (MW-2)
Notes:	

TABLE KEY

STANDARD ABBREVIATIONS

-- e not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons

μg/l = micrograms per liter (approx. equivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx. equivalent to parts per million, ppm)

ND< = not detected at or above laboratory detection limit TOC = top of casing (surveyed reference elevation)

D = duplicate P = no-purge sample

ANALYTES

DIPE = di-isopropyl ether

ETBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene
TBA = tertiary butyl alcohol
TCA = trichloroethane
TCE = trichloroethene

TPH-G = total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2. Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known. A value of 0.75 is used for gasoline and when the density is not known. A value of 0.83 is used for diesel.
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4. Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report.
- 5. A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6. Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags.
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display. Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Prior to the 1st quarter 2010, the word "monitor" was used in table comments interchangeably with the word "gauge". Starting in the 1st quarter 2010, the word "monitor" is used to include both "gauge" and "sample".

REFERENCE

TRC began groundwater monitoring and sampling 76 Station 6129 in August 2004.

Contents of Tables 1 and 2 Site: 76 Station 6129

Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen	Pre-purge ORP	Post-purge ORP	
Historic	Data												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	ТВА	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME	Carbon (organic, total)	Chromium VI	Chromium (total)	Chromium (dissolved)	Iron Ferric
Table 2b	Well/ Date	Iron Ferrous	Iron (total)	Manganese (dissolved)	Manganese (total)	Nitrogen as Nitrate	Sulfate	Alkalinity (total)	Dissolved Oxygen (Lab)	Redox Potential (ORP-Lab)	Specific Con- ductance	Post-purge Dissolved Oxygen	Pre-purge Dissolved Oxygen
Table 2c	Well/ Date	Pre-purge ORP	Post-purge ORP										

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 1, 2010
76 Station 6129

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness	water	Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation	1	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	(µg/l)							
MW-1			(Scree	n Interva	l in feet: 25-	45)								
11/1/20	10 190.79	30.18	0.00	160.61	-4.12		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		92	
MW-2			(Scree	n Interva	l in feet: 25-	45)								
11/1/20	10 190.80	29.90	0.00	160.90	-4.79		140	ND<0.50	ND<0.50	ND<0.50	ND<1.0		730	
MW-3			(Scree	n Interva	l in feet: 25-	45)								
11/1/20	10 188.58	29.29	0.00	159.29	-3.57		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		490	

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 6129

Date			Ethylene-					Post-purge	Pre-purge			
Sampled		Ethanol	dibromide	1,2-DCA				Dissolved	Dissolved	Pre-purge	Post-purge	
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	Oxygen	Oxygen	ORP	ORP	
	$(\mu g/l)$	(mg/l)	(mg/l)	(mV)	(mV)							
MW-1												
11/1/2010	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.54	2.30	150	163	
MW-2												
11/1/2010	ND<10	ND<250	ND<0.50	ND<0.50	28	ND<0.50	ND<0.50	1.12	1.22	96	158	
MW-3												
11/1/2010	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.98	1.22	142	148	

Page 1 of 1

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2010
76 Station 6129

Date	TC)C	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elev	ation	Water	Thickness		Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
					Elevation	1	8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(fe	et)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	
MW-1				(Scre	en Interva	ıl in feet: 25-	-45)								
1/5/199	90						ND		ND	ND	ND	ND			
5/11/19	90						ND		ND	7.1	ND	ND			
8/9/199	90						ND		ND	ND	ND	ND			
11/14/19	990						ND		ND	ND	ND	ND			
2/12/19	91						ND		0.32	ND	ND	ND			
5/9/199	91						ND		ND	ND	ND	ND			
11/13/20	003							180	ND<1.0	ND<1.0	ND<1.0	ND<2.0		240	
8/27/20	004	102.24	30.65	0.00	71.59			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/20	004	102.24	29.35	0.00	72.89	1.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
2/9/200	05	102.24	26.89	0.00	75.35	2.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.3	
5/17/20	005	102.24	26.56	0.00	75.68	0.33		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.9	
7/27/20	005	102.24	27.33	0.00	74.91	-0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/6/20	005	102.24	29.59	0.00	72.65	-2.26		ND<50	ND<0.50	0.93	ND<0.50	1.8		ND<0.50	
2/21/20	006	102.24	28.27	0.00	73.97	1.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.6	
6/8/200	06	102.24	26.07	0.00	76.17	2.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
9/15/20	006	102.24	28.86	0.00	73.38	-2.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.4	
12/14/20	006	102.24	29.49	0.00	72.75	-0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.5	
3/28/20	007	102.24	27.24	0.00	75.00	2.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.64	
6/25/20	007	102.24	28.30	0.00	73.94	-1.06		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		ND<0.50	
9/22/20	007	102.24	30.61	0.00	71.63	-2.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		4.1	
12/14/20	007	102.24	30.30	0.00	71.94	0.31		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		0.65	
3/17/20	800	102.24	27.22	0.00	75.02	3.08		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		14	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2010
76 Station 6129

Date	TOC		Depth to	LPH Thickness		Change in									Comments
Sampled	Elevan	on	Water	Inickness	water Elevation	Elevation	TPH-G	TPH-G	D	TT 1	Ethyl-	Total	MTBE	MTBE	
	(feet)		(feet)	(feet)	(feet)	(feet)	8015 (μg/l)	(GC/MS) (µg/l)	Benzene (µg/l)	Toluene (µg/l)	benzene (µg/l)	Xylenes (µg/l)	(8021B) (µg/l)	(8260B) (µg/l)	
			(leet)	(leet)	(Ieet)	(IEEL)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	(μg/1)	
MW-1 6/20/20		1ed 2.24	30.10	0.00	72.14	-2.88		ND<50	ND <0.50	ND <0.50	ND<0.50	ND<1.0		11	
9/11/20		2.24	31.04	0.00	71.20	-0.94		ND<50			ND<0.50			1.3	
11/25/20		2.24	30.88	0.00	71.20	0.16		ND<50			ND<0.50			5.8	
3/9/200		2.24	27.50	0.00	74.74	3.38		ND<50			ND<0.50	ND<1.0		25	
5/28/20		2.24	28.25	0.00	73.99	-0.75		ND<50			ND<0.50	ND<1.0		23 17	
12/11/20		0.79	30.60	0.00	160.19	86.20		ND<50			ND<0.50	ND<1.0		18	
5/7/201		0.79	26.06	0.00	164.73	4.54		ND<30 67			ND<0.50	ND<1.0		64	
				0.00										92	
11/1/20	110 190	0.79	30.18		160.61	-4.12		ND<50	ND<0.30	ND<0.30	ND<0.50	ND<1.0		92	
MW-2				(Scree	en Interva	l in feet: 25-	,								
1/5/199							ND		ND	ND	ND	ND			
5/11/19							ND		ND	ND	ND	ND			
8/9/199							ND		ND	ND	ND	ND			
11/14/19	990 -						ND		ND	ND	ND	ND			
2/12/19	91 -						ND		ND	0.42	ND	0.51			
5/9/199	91 -						ND		ND	ND	ND	ND			
11/13/20	003 -							ND<2000	ND<20	ND<20	ND<20	ND<40		2100	
8/27/20	004 102	2.16	30.28	0.00	71.88			950	ND<5.0	ND<5.0	ND<5.0	ND<10		1400	
11/23/20	004 102	2.16	28.75	0.00	73.41	1.53		53	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.2	
2/9/200	05 102	2.16	26.08	0.00	76.08	2.67		ND<500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		400	
5/17/20	005 102	2.16	24.53	0.00	77.63	1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		330	
7/27/20	005 102	2.16	27.51	0.00	74.65	-2.98		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		580	
12/6/20	005 102	2.16	29.13	0.00	73.03	-1.62		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0		780	
2/21/20	006 102	2.16	29.23	0.00	72.93	-0.10		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		340	
6120									Page	2 of 5					

Page 2 of 5

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2010
76 Station 6129

Date		Depth to	LPH		Change in									Comments
Sampled 1	Elevation	Water	Thickness	water Elevation	Elevation 1	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	
MW-2	continued													
6/8/2006		25.76	0.00	76.40	3.47		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		440	
9/15/200	06 102.16	29.17	0.00	72.99	-3.41		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<5.0		570	
12/14/200	06 102.16	29.11	0.00	73.05	0.06		520	ND<0.50	ND<0.50	ND<0.50	ND<0.50		770	
3/28/200	7 102.16	26.68	0.00	75.48	2.43		290	ND<0.50	ND<0.50	ND<0.50	ND<0.50		460	
6/25/200	7 102.16	25.91	0.00	76.25	0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		1.2	
9/22/200	7 102.16	30.18	0.00	71.98	-4.27		400	ND<0.50	ND<0.50	ND<0.50	ND<0.50		530	
12/14/200	07 102.16	29.96	0.00	72.20	0.22		400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		930	
3/17/200	08 102.16	26.74	0.00	75.42	3.22		570	ND<5.0	ND<5.0	ND<5.0	ND<10		630	
6/20/200	08 102.16	29.78	0.00	72.38	-3.04		580	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1200	
9/11/200	08 102.16	30.62	0.00	71.54	-0.84		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		29	
11/25/200	08 102.16	30.48	0.00	71.68	0.14		500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1500	
3/9/2009	9 102.16	25.75	0.00	76.41	4.73		910	ND<5.0	ND<5.0	ND<5.0	ND<10		1400	
5/28/200	9 102.16	27.71	0.00	74.45	-1.96		460	ND<0.50	ND<0.50	ND<0.50	ND<1.0		740	
12/11/200	09 190.80	29.80	0.00	161.00	86.55		640	ND<5.0	ND<5.0	ND<5.0	ND<10		1300	
5/7/2010	0 190.80	25.11	0.00	165.69	4.69		600	ND<1.0	ND<1.0	ND<1.0	ND<2.0		940	
11/1/201	0 190.80	29.90	0.00	160.90	-4.79		140	ND<0.50	ND<0.50	ND<0.50	ND<1.0		730	
MW-3			(Scre	en Interva	al in feet: 25	-45)								
1/5/1990	0		0.00			ND		ND	ND	ND	ND			
5/11/199	00					ND		ND	ND	ND	ND			
8/9/1990	0					ND		ND	ND	ND	ND			
11/14/199	90					ND		ND	ND	ND	ND			
2/12/199	01					ND		ND	ND	ND	ND			
5/9/1991	1					ND		ND	ND	ND	ND			
								Dogo	2 of 5					

Page 3 of 5

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2010
76 Station 6129

Date Sampled l	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G 8015	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	μg/l)	(θ021B) (μg/l)	(β260 B) (μg/l)	
MW-3	continued													
11/13/200	03						2600	ND<20	ND<20	ND<20	ND<40		3700	
8/27/200	4 100.00	29.61	0.00	70.39			1700	ND<10	ND<10	ND<10	ND<20		2600	
11/23/200	04 100.00	28.48	0.00	71.52	1.13		1500	ND<10	ND<10	ND<10	ND<20		1800	
2/9/2005	5 100.00	26.45	0.00	73.55	2.03		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2100	
5/17/200	5 100.00	25.61	0.00	74.39	0.84		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1200	
7/27/200	5 100.00	27.35	0.00	72.65	-1.74		ND<1000	ND<10	ND<10	ND<10	ND<20		1400	
12/6/200	5 100.00	28.78	0.00	71.22	-1.43		430	ND<0.50	1.6	ND<0.50	3.6		1800	
2/21/200	6 100.00	28.91	0.00	71.09	-0.13		420	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1100	
6/8/2006	5 100.00	25.97	0.00	74.03	2.94		ND<1200	ND<12	ND<12	ND<12	ND<25		1000	
9/15/200	6 100.00	28.73	0.00	71.27	-2.76		ND<1200	ND<12	ND<12	ND<12	ND<12		1200	
12/14/200	06 100.00	28.62	0.00	71.38	0.11		ND<1000	ND<10	ND<10	ND<10	ND<10		1300	
3/28/200	7 100.00	26.69	0.00	73.31	1.93		500	ND<1.0	ND<1.0	ND<1.0	ND<1.0		860	
6/25/200	7 100.00	26.74	0.00	73.26	-0.05		270	ND<0.50	ND<0.50	ND<0.50	ND<0.50		570	
9/22/200	7 100.00	29.57	0.00	70.43	-2.83		500	ND<0.50	ND<0.50	ND<0.50	ND<0.50		980	
12/14/200	07 100.00	29.30	0.00	70.70	0.27		270	ND<0.50	ND<0.50	ND<0.50	ND<1.0		570	
3/17/200	8 100.00	26.82	0.00	73.18	2.48		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		520	
6/20/200	8 100.00	29.10	0.00	70.90	-2.28		490	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1300	
9/11/200	8 100.00	29.89	0.00	70.11	-0.79		630	ND<5.0	ND<5.0	ND<5.0	ND<10		1200	
11/25/200	08 100.00	29.74	0.00	70.26	0.15		380	ND<0.50	ND<0.50	ND<0.50	ND<1.0		870	
3/9/2009	9 100.00	25.56	0.00	74.44	4.18		310	ND<0.50	ND<0.50	ND<0.50	ND<1.0		720	
5/28/200	9 100.00	27.55	0.00	72.45	-1.99		410	ND<0.50	ND<0.50	ND<0.50	ND<1.0		750	
12/11/200	09 188.58	3 29.10	0.00	159.48	87.03		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		620	
5/7/2010	188.58	3 25.72	0.00	162.86	3.38		360	ND<0.50	ND<0.50	ND<0.50	ND<1.0		660	
								_						

Page 4 of 5

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2010
76 Station 6129

Date	TOC	Depth to	LPH	Ground-	Change in									Comments
Sampled	Elevation	Water	Thickness			TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
				Elevation		8015	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	$(\mu g/l)$								
MW-3	continued													
11/1/20	10 188.58	3 29.29	0.00	159.29	-3.57		120	ND<0.50	ND<0.50	ND<0.50	ND<1.0		490	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6129

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Chromium	Iron
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	(dissolved)	Ferric
	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	$(\mu g/l)$	$(\mu g/l)$	$(\mu g/l)$	(mg/l)	(µg/l)	(µg/l)	(µg/l)	$(\mu g/l)$
MW-1												
11/13/2003	ND<200	ND<1000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0					
8/27/2004	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50					
11/23/2004	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50					
2/9/2005	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
5/17/2005	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
7/27/2005	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
12/6/2005	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
2/21/2006	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
6/8/2006	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
9/15/2006	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
12/14/2006	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
3/28/2007	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
6/25/2007	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
9/22/2007	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
12/14/2007	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
3/17/2008	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
6/20/2008	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
9/11/2008	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
11/25/2008	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
3/9/2009	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.83				
5/28/2009	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.88	ND<2.0	21	ND<10	27000
12/11/2009	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
5/7/2010	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
11/1/2010	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					

MW-2 6129

CTRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6129

Date			Ethylene-					Carbon				
Sampled		Ethanol	dibromide	1,2-DCA				(organic,	Chromium	Chromium	Chromium	Iron
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME	total)	VI	(total)	(dissolved)	Ferric
	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$	(mg/l)	(µg/l)	$(\mu g/l)$	(µg/l)	$(\mu g/l)$
MW-2 co	ntinued											
11/13/2003	ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80					
8/27/2004	ND<50	ND<500	ND<5.0	ND<5.0	24	ND<5.0	ND<5.0					
11/23/2004	ND<5.0	ND<50	ND<0.50	ND<0.50	18	ND<0.50	ND<0.50					
2/9/2005	ND<50	ND<500	ND<5.0	ND<5.0	19	ND<5.0	ND<5.0					
5/17/2005	ND<5.0	ND<50	ND<0.50	ND<0.50	12	ND<0.50	ND<0.50					
7/27/2005	140	ND<500	ND<5.0	ND<5.0	16	ND<5.0	ND<5.0					
12/6/2005	61	ND<250	ND<0.50	ND<0.50	15	ND<0.50	ND<0.50					
2/21/2006	ND<10	ND<250	ND<0.50	ND<0.50	18	ND<0.50	ND<0.50					
6/8/2006	ND<100	ND<2500	ND<5.0	ND<5.0	14	ND<5.0	ND<5.0					
9/15/2006	ND<100	ND<2500	ND<5.0	ND<5.0	17	ND<5.0	ND<5.0					
12/14/2006	27	ND<250	ND<0.50	ND<0.50	20	ND<0.50	ND<0.50					
3/28/2007	260	ND<250	ND<0.50	ND<0.50	23	ND<0.50	ND<0.50					
6/25/2007	ND<10	ND<250	ND<0.50	ND<0.50	23	ND<0.50	ND<0.50					
9/22/2007	ND<10	ND<250	ND<0.50	ND<0.50	35	ND<0.50	ND<0.50					
12/14/2007	48	ND<250	ND<0.50	ND<0.50	24	ND<0.50	ND<0.50					
3/17/2008	ND<100	ND<2500	ND<5.0	ND<5.0	18	ND<5.0	ND<5.0					
6/20/2008	ND<10	ND<250	ND<0.50	ND<0.50	16	ND<0.50	ND<0.50					
9/11/2008	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
11/25/2008	ND<10	ND<250	ND<0.50	ND<0.50	19	ND<0.50	ND<0.50					
3/9/2009	ND<100	ND<2500	ND<5.0	ND<5.0	15	ND<5.0	ND<5.0	1.4				
5/28/2009	ND<10	ND<250	ND<0.50	ND<0.50	20	ND<0.50	ND<0.50	1.6	ND<2.0	49	ND<10	43000
12/11/2009	ND<100	ND<2500	ND<5.0	ND<5.0	19	ND<5.0	ND<5.0					
5/7/2010	ND<20	ND<500	ND<1.0	ND<1.0	14	ND<1.0	ND<1.0					
11/1/2010	ND<10	ND<250	ND<0.50	ND<0.50	28	ND<0.50	ND<0.50					

MW-3

©TRC

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6129

Date Sampled	TBA (μg/l)	Ethanol (8260B) (μg/l)	Ethylene- dibromide (EDB) (µg/l)	1,2-DCA (EDC) (μg/l)	DIPE (μg/l)	ETBE (μg/l)	TAME (μg/l)	Carbon (organic, total) (mg/l)	Chromium VI (µg/l)	Chromium (total) (µg/l)	Chromium (dissolved) (µg/l)	Iron Ferric (μg/l)
MW-3 co	ntinued											
11/13/2003	ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80					
8/27/2004	ND<100	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10					
11/23/2004	ND<100	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10					
2/9/2005	130	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10					
5/17/2005	ND<100	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10					
7/27/2005	360	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10					
12/6/2005	160	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
2/21/2006	88	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.58					
6/8/2006	ND<250	ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12					
9/15/2006	ND<250	ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12					
12/14/2006	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10					
3/28/2007	500	ND<500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0					
6/25/2007	11	ND<250	ND<0.50	0.65	ND<0.50	ND<0.50	ND<0.50					
9/22/2007	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
12/14/2007	26	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
3/17/2008	ND<10	ND<250	ND<0.50	0.65	ND<0.50	ND<0.50	ND<0.50					
6/20/2008	49	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
9/11/2008	ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0					
11/25/2008	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
3/9/2009	15	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.4				
5/28/2009	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	1.5	ND<2.0	23	ND<10	11000
12/11/2009	63	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
5/7/2010	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					
11/1/2010	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50					

Page 3 of 3

Table 2 b
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6129

Date Sampled	Iron	Iron	Manganese	Manganese	Nitrogen as		Alkalinity	Dissolved Oxygen	Redox Potential	Specific Con-	Post-purge Dissolved	Pre-purge Dissolved
	Ferrous	(total)	(dissolved)	(total)	Nitrate	Sulfate	(total)	(Lab)	(ORP-Lab)	ductance	Oxygen	Oxygen
	$(\mu g/l)$	$(\mu g/l)$	(µg/l)	(µg/l)	(mg/l)	(mg/l)	(mg/l)	(mg O/)	(mV)	(µmhos)	(mg/l)	(mg/l)
MW-1												
3/9/2009	ND<1000				2.0	46	310				1.95	2.54
5/28/2009	ND<500	27000	10	680	2.9	43	310	7.7	126	798		4.05
12/11/2009											1.42	2.35
5/7/2010											2.60	3.06
11/1/2010											0.54	2.30
MW-2												
3/9/2009	940				2.0	41	410				0.85	1.32
5/28/2009	ND<1000	44000	4.3	500	1.6	40	370	7.1	138	813		1.54
12/11/2009											0.47	0.74
5/7/2010											1.89	2.39
11/1/2010											1.12	1.22
MW-3												
3/9/2009	ND<500				ND<0.44	38	310				0.94	0.84
5/28/2009	ND<500	12000	49	300	ND<0.44	39	300	7.5	125	667		0.91
12/11/2009											0.75	1.03
5/7/2010											2.35	2.29
11/1/2010											0.98	1.22

Table 2 c
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6129

Date		
Sampled	Pre-purge	Post-purge
	ORP	ORP
	(mV)	(mV)
MW-1		
3/9/2009	8	24
5/28/2009	70	
12/11/2009	32	21
5/7/2010	211	205
11/1/2010	150	163
MW-2		
3/9/2009	39	56
5/28/2009	80	
12/11/2009	29	-10
5/7/2010	208	204
11/1/2010	96	158
	7.7	
MW-3		22
3/9/2009	14	32
5/28/2009	66	
12/11/2009		
	44	35
5/7/2010	44 209	35 204

COORDINATED EVENT DATA

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (μg/L)	Total Pb (µg/L)	Organic Pb (mg/L)
Monitorin	g Well Samples													
MW1	07/15/92			Well ins	talled.									
MW1	07/17/92		192.00	33.02	158.98	No	67		6.6	6.9	2.0	4.5	17	
MW1	10/22/92		192.00	34.07	157.93	No	<50		2.9	<0.5	< 0.5	< 0.5	16	
MW1	02/04/93		192.00	29.43	162.57	No	<50		0.8	<0.5	< 0.5	< 0.5	4	
MW1	05/03/93		192.00	29.72	162.28	No	71		2.8	7.2	2.2	22	40	
MW1	07/30/93		192.00	32.95	159.05	No	<50		<0.5	<0.5	< 0.5	< 0.5	5	
MW1	10/19/93		192.00	34.34	157.66	No	<50		<0.5	< 0.5	< 0.5	< 0.5	12	
MW1	02/23/94		192.00	31.72	160.28	No	<50		<0.5	<0.5	<0.5	<0.5	4	
MW1	06/06/94		192.00	31.77	160.23	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW1	08/18/94		192.00	33.76	158.24	No	<50		<0.5	<0.5	<0.5	<0.5	130	
MW1	11/15/94		192.00	34.08	157.92	No	<50		<0.5	<0.5	<0.5	<0.5	<3.0	<100
MW1	02/06/95		192.00	28.50	163.50	No	<50		<0.5	<0.5	<0.5	<0.5		
MW1	05/10/95		192.00	29.30	162.70	No	<50		<0.5	< 0.5	< 0.5	< 0.5		
MW1	09/20/99		192.00	33.30	158.70	No	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<75	<50
MW1	Well destroyed	d in June 2000												
MW2	07/15/92			Well ins	talled.									
MW2	07/17/92		194.85	34.65	160.20	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	10/22/92		194.85	35.64	159.21	No	<50		<0.5	<0.5	<0.5	<0.5		
MW2	02/04/93		194.85	31.13	163.72	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	05/03/93		194.85	31.08	163.77	No	<50		<0.5	<0.5	<0.5	<0.5	3	
MW2	07/30/93		194.85	34.34	160.51	No	<50		<0.5	<0.5	<0.5	<0.5	14	
MW2	10/19/93		194.85	36.00	158.85	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	02/23/94		194.85	33.92	160.93	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	06/06/94		194.85	33.50	161.35	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW2	08/18/94		194.85	35.38	159.47	No	<50		<0.5	<0.5	<0.5	<0.5	<3.0	
MW2	11/15/94		194.85	35.93	158.92	No	<50		<0.5	<0.5	<0.5	<0.5	<3.0	<100
MW2	02/06/95		194.85	30.38	164.47	No	<50		<0.5	<0.5	<0.5	<0.5		
MW2	05/10/95		194.85	30.77	164.08	No	<50		<0.5	<0.5	<0.5	<0.5		
MW2	09/20/99		194.85	35.15	159.70	No	<50	<0.5	<0.5	<0.5	<0.5	<0.5	<75	<0.5
MW2	Well destroyed	d in June 2000												
MW3	07/15/92			Well ins	talled.									
MW3	07/17/92		196.90	37.24	159.66	No	<50		<0.5	<0.5	< 0.5	< 0.5	50	
MW3	10/22/92		196.90	35.95	160.95	No	<50		<0.5	<0.5	<0.5	<0.5	9	

Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	Total Pb (µg/L)	Organic Pb (mg/L)
MW3	02/04/93		196.90	29.85	167.05	No	<50		<0.5	<0.5	<0.5	<0.5	<3	
MW3	05/03/93		196.90	29.87	167.03	No	<50		<0.5	<0.5	<0.5	<0.5	3	
MW3	07/30/93		196.90	33.85	163.05	No	<50		<0.5	<0.5	<0.5	<0.5	22	
MW3	10/19/93		196.90	35.89	161.01	No	<50		<0.5	<0.5	<0.5	<0.5	12	
MW3	02/23/94		196.90	32.88	164.02	No	<50		<0.5	<0.5	<0.5	<0.5	25	
MW3	06/06/94		196.90	32.40	164.50	No	<50		< 0.5	< 0.5	<0.5	<0.5	<3	
MW3	08/18/94		196.90	35.07	161.83	No	<50		< 0.5	< 0.5	<0.5	<0.5	<3.0	
MW3	11/15/94		196.90	35.97	160.93	No	<50		<0.5	<0.5	<0.5	<0.5	<3.0	<100
MW3	02/06/95		196.90	28.39	168.51	No	<50		<0.5	<0.5	<0.5	<0.5		
MW3	05/10/95		196.90	28.90	168.00	No	<50		< 0.5	< 0.5	<0.5	<0.5		
MW3	09/20/99		196.90	34.68	162.22	No	75.0	1.87	< 0.5	11.5	1.8	18.0	<75	<0.5
MW3	Well destroyed	d in June 2000.												
MW4	03/02/09			Well ins	talled.									
MW4	03/30/09		197.62	30.94	166.68	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW4	04/02/09		197.62	Well sur	veyed.									
MW4	05/28/09		197.62	32.00	165.62	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW4	08/31/09		197.62	35.43	162.19	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW4	12/11/09		197.62	35.01	162.61	No	<50	< 0.50	< 0.50	0.83	< 0.50	1.1		
MW4	05/07/10		197.62	29.11	168.51	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
MW4	11/01/10		197.62	34.95	162.67	No	<50	<0.50	<0.50	<0.50	<0.50	<1.0		
MW5	03/06/09			Well ins	talled.									
MW5	03/30/09		196.35	30.05	166.30	No	4,200	1,900	540	140	<12	310		
MW5	04/02/09		196.35	Well sur	veyed.									
MW5	05/28/09		196.35	31.45	164.90	No	5,300	3,600	890	150	<25	140		
MW5	08/31/09		196.35	34.70	161.65	No	5,800	3,500	550	<100	<100	<100		
MW5	12/11/09		196.35	34.52	161.83	No	4,000b	3,800	230	<100	<100	<100		
MW5	05/07/10		196.35	30.84	165.51	No	2,700b	1,700	73	5.3	3.6	6.5		
MW5	11/01/10		196.35	33.93	162.42	No	2,400b	3,400	320	71	21	40		
MW6	03/09/09			Well ins	talled.									
MW6	03/30/09		192.41	26.94	165.47	No	2,800	4,800	0.91	< 0.50	< 0.50	< 0.50		
MW6	04/02/09		192.41	Well sur	veyed.									
MW6	05/28/09		192.41	28.04	164.37	No	2,800	6,000	<100	<100	<100	<100		
MW6	08/31/09		192.41	30.57	161.84	No	4,900	6,600	<100	<100	<100	<100		
MW6	12/11/09		192.41	30.78	161.63	No	4,900b	6,200	<100	<100	<100	<100		

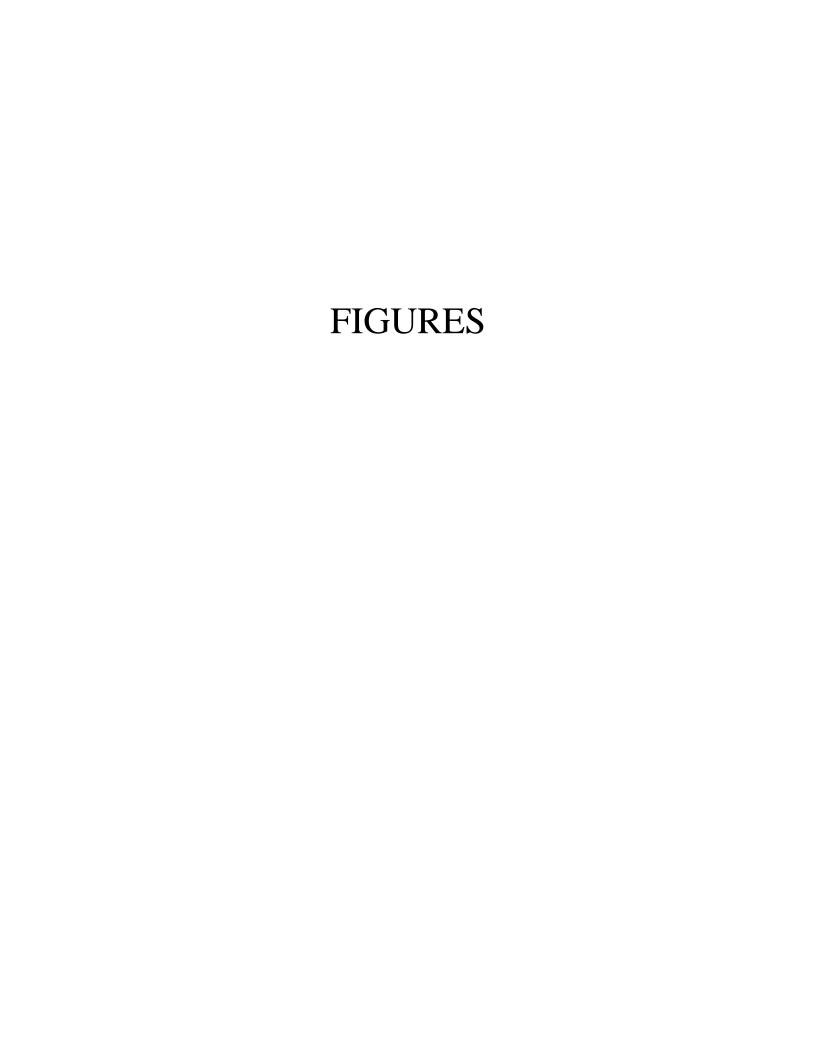
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	X (µg/L)	Total Pb (µg/L)	Organic Pb (mg/L)
MW6	05/07/10		192.41	25.42	166.99	No	2,900b	3,700	2.7	<0.50	0.74c	<1.0		
MW6	11/01/10		192.41	30.68	161.73	No	850b	6,100	2.1	<0.50	<0.50	<1.0		
MW7	03/09/09			Well ins	talled.									
MW7	03/30/09		194.34	29.15	165.19	No	55	66	< 0.50	< 0.50	< 0.50	< 0.50		
MW7	04/02/09		194.34	Well sur	veyed.									
MW7	05/28/09		194.34	30.16	164.18	No	50	67	<1.0	<1.0	<1.0	<1.0		
MW7	08/31/09		194.34	33.31	161.03	No	<50	12	< 0.50	0.60	< 0.50	< 0.50		
MW7	12/11/09		194.34	32.71	161.63	No	<50	31	0.78	1.7	0.62	2.4		
MW7	05/07/10		194.34	27.54	166.80	No	510b	700	< 0.50	< 0.50	<0.50	<1.0		
MW7	11/01/10		194.34	32.82	161.52	No	68b	140	<0.50	<0.50	<0.50	<1.0		
MW8	03/04/09			Well inst	talled.									
MW8	03/30/09		192.96	27.35	165.61	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
MW8	04/02/09		192.96	Well sur	veyed.									
8WN	05/28/09		192.96	28.72	164.24	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50		
AWN8	08/31/09		192.96	31.93	161.03	No	<50	< 0.50	< 0.50	< 0.50	<0.50	< 0.50		
8WN	12/11/09		192.96	31.24	161.72	No	<50	< 0.50	0.74	1.6	0.59	2.3		
MW8	05/07/10		192.96	25.68	167.28	No	<50	< 0.50	< 0.50	< 0.50	< 0.50	<1.0		
MW8	11/01/10		192.96	31.18	161.78	No	<50	<0.50	<0.50	<0.50	<0.50	<1.0		
MW9	03/05/09			Well ins	talled.									
MW9	03/30/09		195.16	28.31	166.85	No	<50	<0.50	< 0.50	<0.50	<0.50	< 0.50		
MW9	04/02/09		195.16	Well sur										
MW9	05/28/09		195.16	29.69	165.47	No	<50	< 0.50	< 0.50	<0.50	<0.50	< 0.50		
MW9	08/31/09		195.16	33.20	161.96	No	<50	<0.50	< 0.50	<0.50	<0.50	<0.50		
MW9	12/11/09		195.16	32.62	162.54	No	<50	<0.50	0.73	1.7	0.54	2.2		
MW9	05/07/10		195.16	26.59	168.57	No	<50	<0.50	<0.50	<0.50	<0.50	<1.0		
MW9	11/01/10		195.16	32.45	162.71	No	<50	<0.50	<0.50	<0.50	<0.50	<1.0		
irab Grou	ndwater Sample	es												
Pit Water	06/14/02	11.5a					5,600	12,000	140	840	100	530		
JST Pit	06/19/02	13.5a					680	640	2.7	36	18	130		
N-38-B11	11/14/07	38					<50	<0.50	<0.50	<0.50	<0.50	<0.50		
	11/13/07	15					8,400	78	67	<5.0	140	150		
	11/12/07	40					<50	0.53	< 0.50	<0.50	<0.50	<0.50		

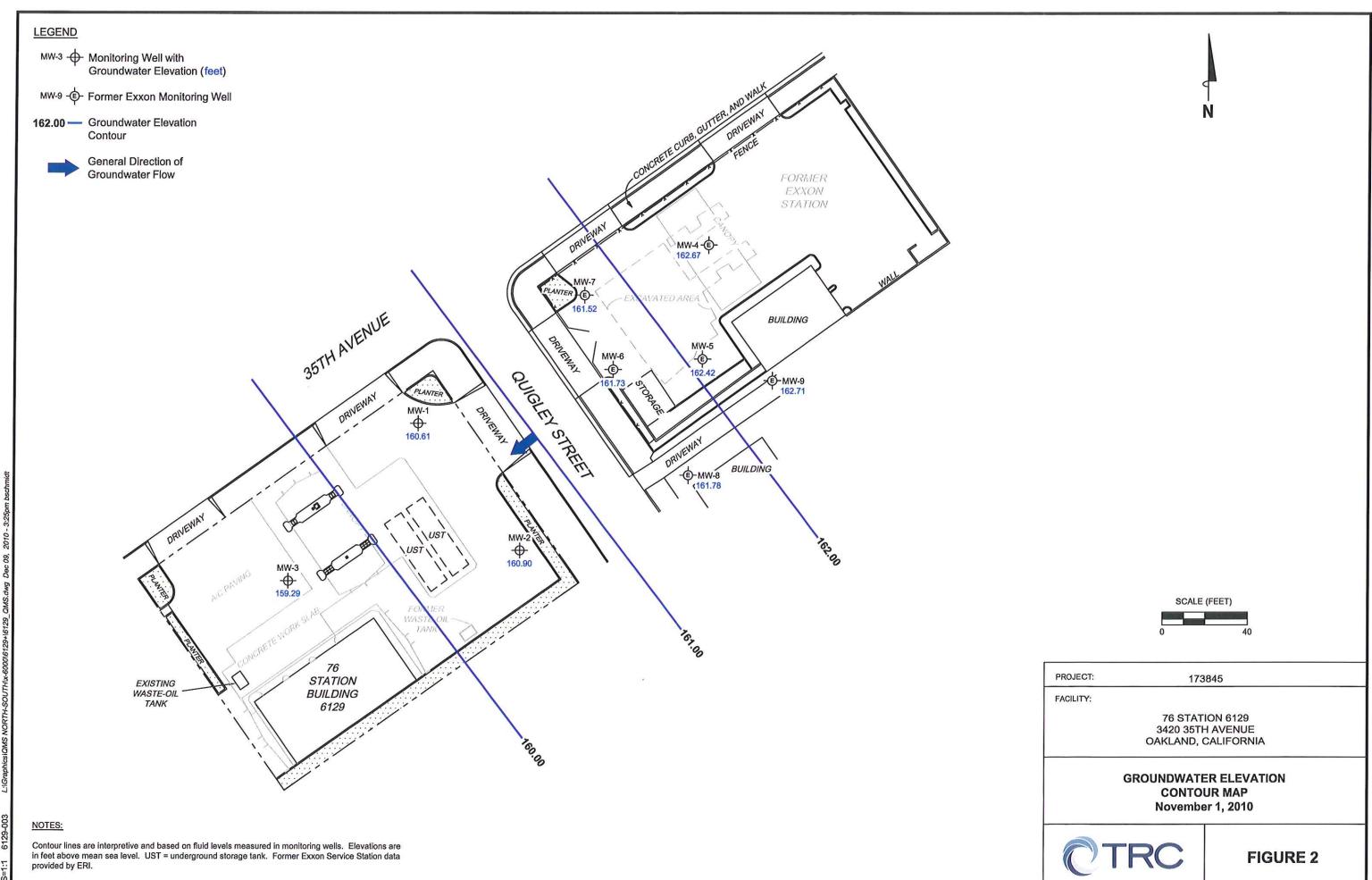
Well ID	Sampling Date	Depth (feet)	TOC Elev. (feet)	DTW (feet)	GW Elev. (feet)	NAPL (feet)	TPHg (µg/L)	MTBE (μg/L)	B (µg/L)	T (µg/L)	E (µg/L)	Χ (μg/L)	Total Pb (μg/L)	Organic Pb (mg/L)
W-15-B14	11/13/07	15					2,500	16	1.7	3.0	26	13		
W-38-B15	11/15/07	38					18,000	12,000	3,400	2,500	330	2,000		
W-40-B16	11/15/07	40					<50	7.7	< 0.50	< 0.50	< 0.50	< 0.50		
W-37-B17	11/13/07	37					630	2,200	1.8	< 0.50	4.1	1.4		
W-38-B18	11/12/07	38					4,300	1,400	52	<12	56	96		
W-35-B19	03/03/09	35					4,400	7,100	<0.50	<0.50	<0.50	<1.0		
W-35-B20	03/03/09	35					640	440	< 0.50	< 0.50	< 0.50	<1.0		
W-35-B21	03/03/09	35					<50	1.4	< 0.50	< 0.50	< 0.50	<1.0		

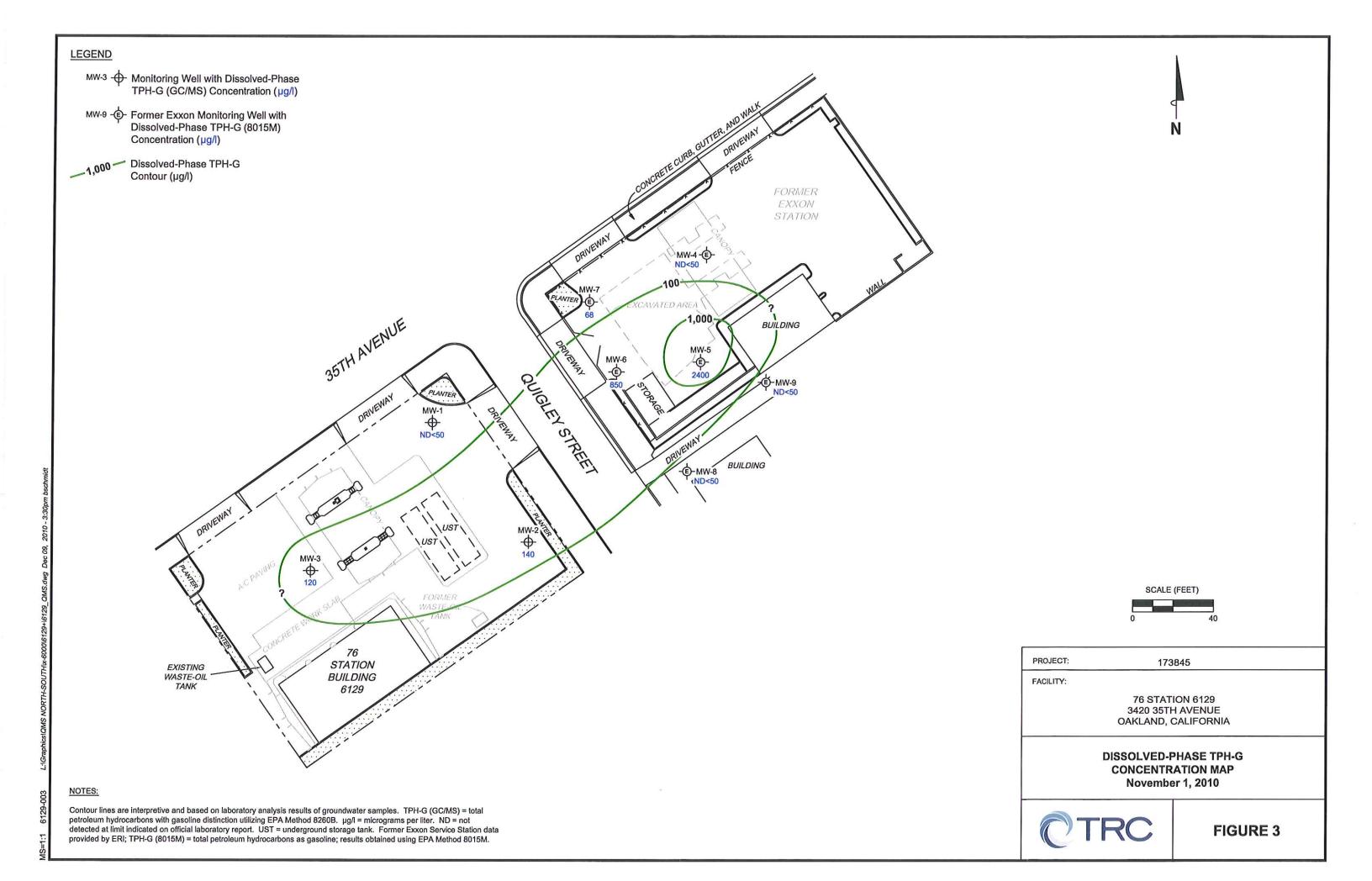
Notes:		Data prior to 1999 provided by EA Environmental Science and Engineering in previously submitted reports.
TOC Elev.	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
NAPL	=	Non-aqueous phase liquid.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B; prior to March 2009, analyzed using EPA Method 8020/8021B.
Total Pb	=	Total lead analyzed using EPA Method 6010.
Organic Pb	=	Organic lead analyzed using CA DHS LUFT method.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dicloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ehter analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
μg/L	=	Micrograms per liter.
mg/L	=	Milligrams per liter.
<	=	Less than the stated laboratory reporting limit.
	=	Not sampled/Not analyzed/Not measured/Not applicable.
а	=	Approximate depth to groundwater surface at time of sampling.
b	=	Hydrocarbon pattern does not match the requested fuel.
С	=	Analyte presence was not confirmed by second column or GC/MS analysis.

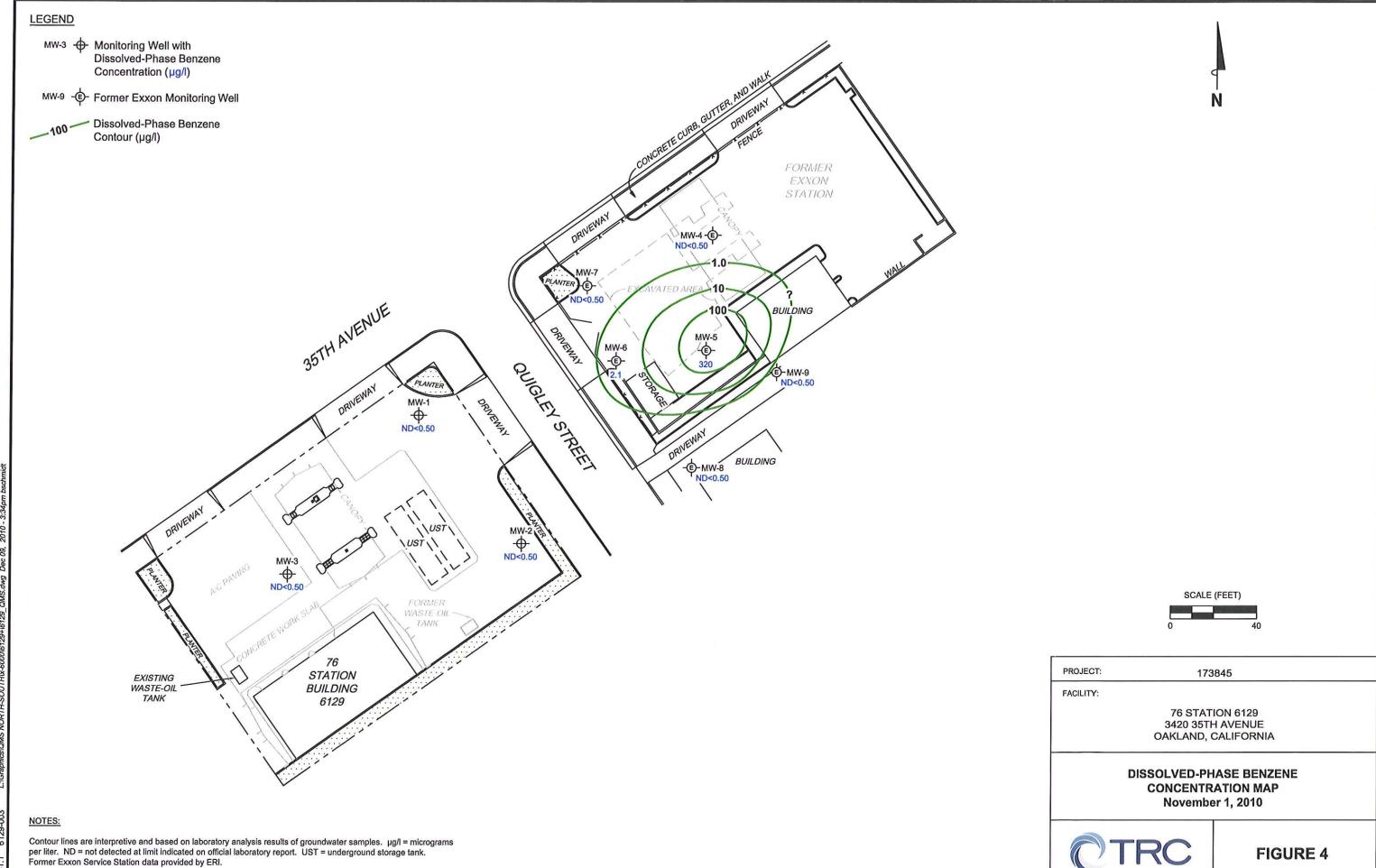
TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70234 3450 35th Avenue Oakland, California

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	TAME (µg/L)	TBA (µg/L)	ETBE (µg/L)	DIPE (µg/L)	Ethanol (μg/L)
Monitoring \	Well Samples								
MW1	07/17/92 - 09/20/99		Not analyzed for	or these analytes.					
MW1	Well destroyed in June 2	2000		•					
MW2	07/17/92 - 09/20/99		Not analyzed fo	or these analytes.					
MW2	Well destroyed in June 2	2000							
MW3	07/17/92 - 09/20/99		Not analyzed for	or these analytes.					
MW3	Well destroyed in June 2	2000							
MW4	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW4	05/28/09		<0.50	<0.50	< 0.50	<5.0	< 0.50	< 0.50	
MW4	08/31/09		<0.50	<0.50	< 0.50	<5.0	< 0.50	< 0.50	
MW4	12/11/09		<0.50	< 0.50	< 0.50	<5.0	<0.50	< 0.50	
MW4	05/07/10		<0.50	<0.50	< 0.50	<5.0	<0.50	<0.50	
MW4	11/01/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW5	03/30/09		<12	17	<12	450	<12	<12	
MW5	05/28/09		<25	<25	<25	530	<25	<25	
MW5	08/31/09		<100	<100	<100	<1,000	<100	<100	
MW5	12/11/09		<100	<100	<100	2,000	<100	<100	
MW5	05/07/10		<25	<25	<25	400	<25	<25	
MW5	11/01/10		<50	<50	<50	1,500	<50	<50	
MW6	03/30/09		<0.50	<0.50	1.3	410	<0.50	0.82	
MW6	05/28/09		<100	<100	<100	<1,000	<100	<100	
MW6	08/31/09		<100	<100	<100	1,100	<100	<100	
MW6	12/11/09		<100	<100	<100	2,600	<100	<100	
MW6	05/07/10		<100	<100	<100	<1,000	<100	<100	
MW6	11/01/10		<50	<50	<50	2,400	<50	<50	
MW7	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW7	05/28/09		<1.0	<1.0	<1.0	<10	<1.0	<1.0	
MW7	08/31/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW7	12/11/09		<0.50	<0.50	<0.50	12	<0.50	<0.50	

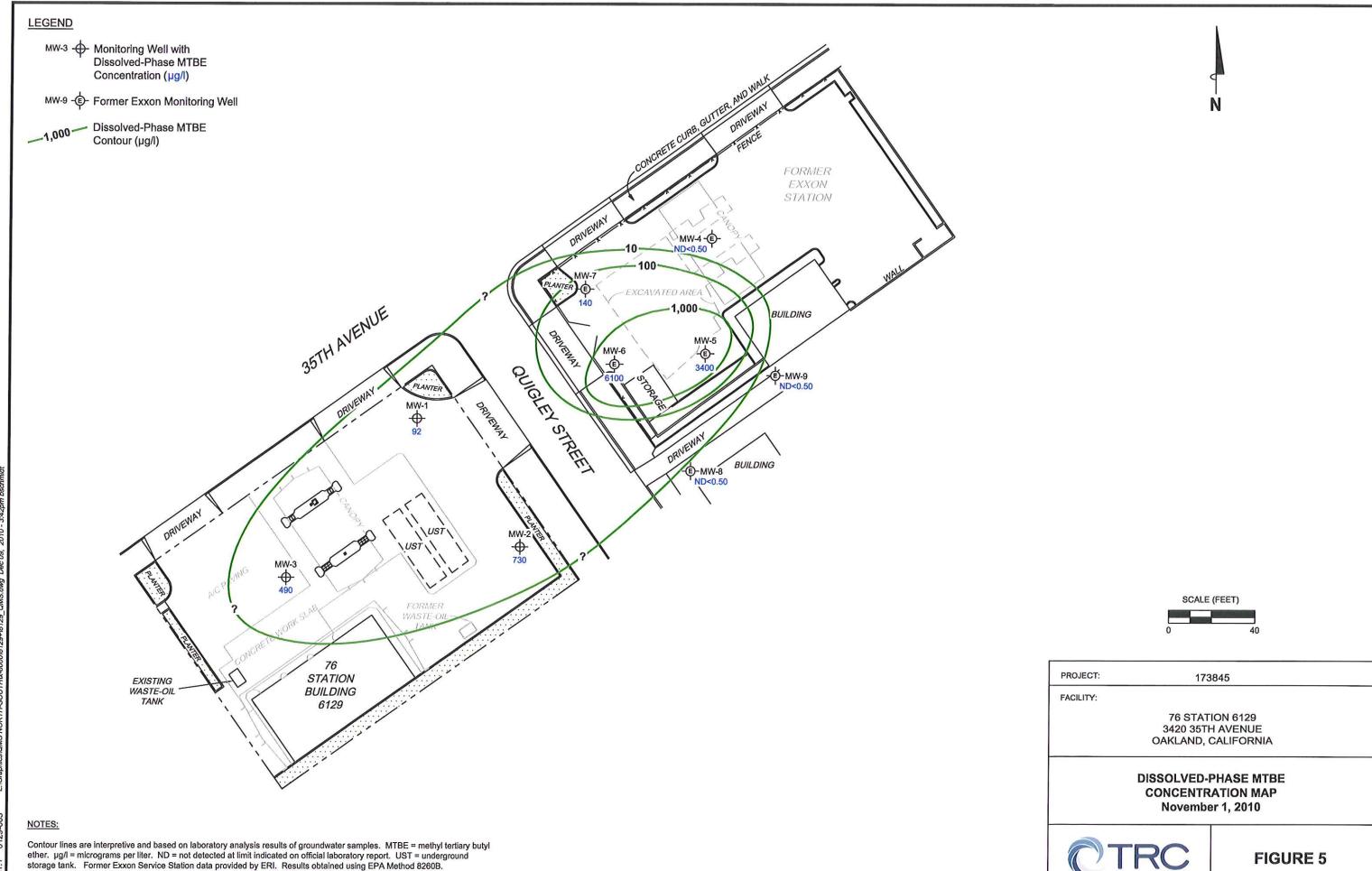

TABLE 1B ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA Former Exxon Service Station 70234 3450 35th Avenue Oakland, California

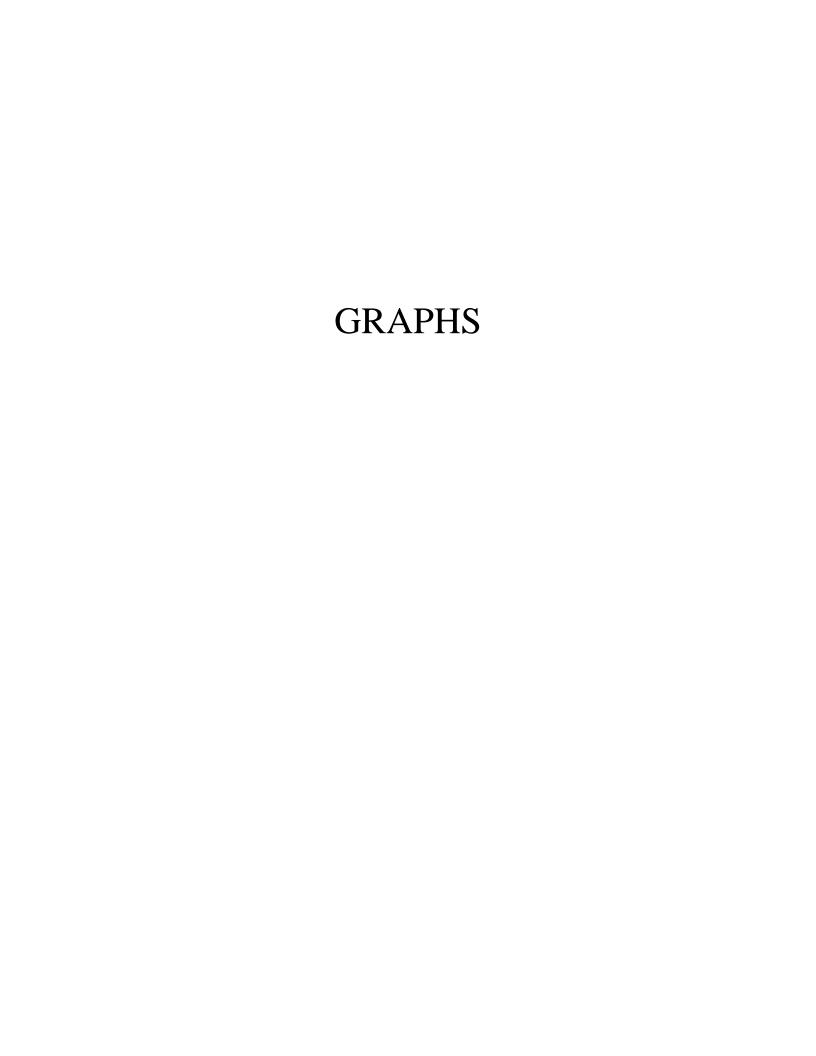

Well ID	Sampling Date	Depth (feet)	EDB (µg/L)	1,2-DCA (μg/L)	TAME (µg/L)	TBA (μg/L)	ETBE (µg/L)	DIPE (μg/L)	Ethanol (µg/L)
MW7	05/07/10		<0.50	<0.50	<0.50	130	<0.50	<0.50	
MW7	11/01/10		<2.5	<2.5	<2.5	27	<2.5	<2.5	
MW8	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW8	05/28/09		<0.50	<0.50	<0.50	<5.0	<0.50	< 0.50	
MW8	08/31/09		<0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	
MW8	12/11/09		<0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	
MW8	05/07/10		<0.50	< 0.50	< 0.50	<5.0	< 0.50	< 0.50	
MW8	11/01/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	03/30/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	05/28/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	08/31/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	12/11/09		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	05/07/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
MW9	11/01/10		<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	
Grab Ground	lwater Samples								
Pit Water	06/14/02	11.5a							
UST Pit	06/19/02	13.5a							
W-38-B11	11/14/07	38	<0.50	<0.50	<0.50	<10	<0.50	<0.50	<50
W-15-B12	11/13/07	15	<5.0	<5.0	<5.0	<100	<5.0	<5.0	<500
W-40-B13	11/12/07	40	<0.50	< 0.50	< 0.50	<10	<0.50	< 0.50	<50
W-15-B14	11/13/07	15	<1.0	<1.0	<1.0	<20	<1.0	<1.0	<100
W-38-B15	11/15/07	38	<25	<25	<25	1,900	<25	<25	<2,500
W-40-B16	11/15/07	40	<0.50	<0.50	<0.50	<10	<0.50	<0.50	85
W-37-B17	11/13/07	37	<0.50	<0.50	<0.50	58	<0.50	<0.50	<50
W-38-B18	11/12/07	38	<12	<12	<12	<250	<12	<12	<1,200
W-35-B19	03/03/09	35	<50	<50	<50	<500	<50	<50	<5,000
W-35-B20	03/03/09	35	<0.50	<0.50	<0.50	12	<0.50	<0.50	<50
W-35-B21	03/03/09	35	<0.50	<0.50	<0.50	<5.0	<0.50	<0.50	<50

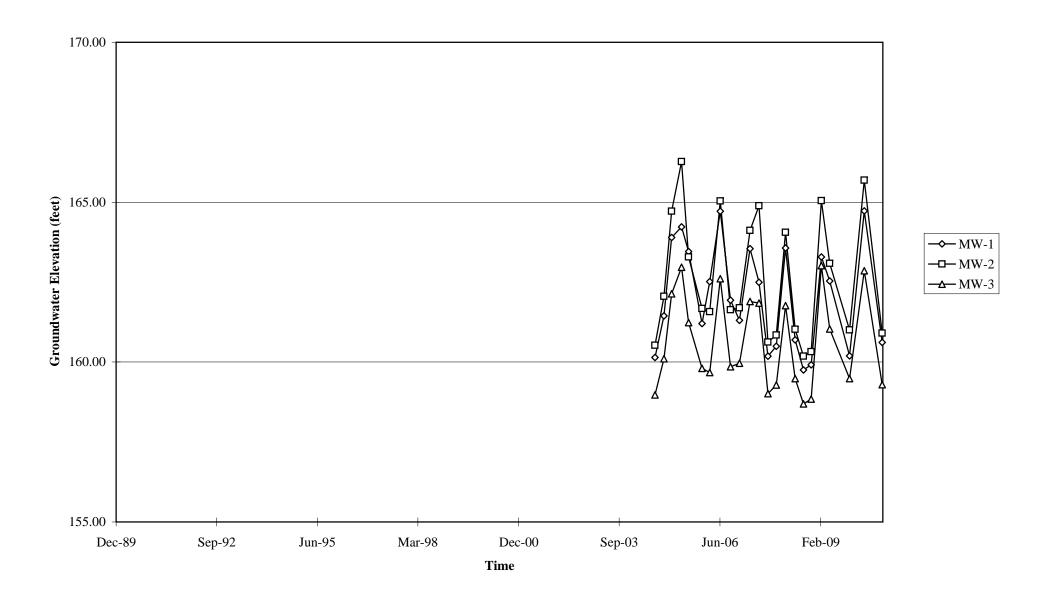

TABLE 1B


ADDITIONAL CUMULATIVE GROUNDWATER MONITORING AND SAMPLING DATA
Former Exxon Service Station 70234
3450 35th Avenue
Oakland, California

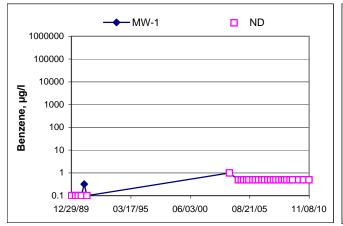
Notes:		Data prior to 1999 provided by EA Environmental Science and Engineering in previously submitted reports.
TOC Elev.	=	Top of well casing elevation; datum is mean sea level.
DTW	=	Depth to water.
GW Elev.	=	Groundwater elevation; datum is mean sea level.
NAPL	=	Non-aqueous phase liquid.
TPHg	=	Total petroleum hydrocarbons as gasoline analyzed using EPA Method 8015.
MTBE	=	Methyl tertiary butyl ether analyzed using EPA Method 8260.
BTEX	=	Benzene, toluene, ethylbenzene, and total xylenes analyzed using EPA Method 8260B; prior to March 2009, analyzed using EPA Method 8020/8021B.
Total Pb	=	Total lead analyzed using EPA Method 6010.
Organic Pb	=	Organic lead analyzed using CA DHS LUFT method.
EDB	=	1,2-dibromoethane analyzed using EPA Method 8260B.
1,2-DCA	=	1,2-dicloroethane analyzed using EPA Method 8260B.
TAME	=	Tertiary amyl methyl ether analyzed using EPA Method 8260B.
TBA	=	Tertiary butyl alcohol analyzed using EPA Method 8260B.
ETBE	=	Ethyl tertiary butyl ether analyzed using EPA Method 8260B.
DIPE	=	Di-isopropyl ehter analyzed using EPA Method 8260B.
Ethanol	=	Ethanol analyzed using EPA Method 8260B.
μg/L	=	Micrograms per liter.
mg/L	=	Milligrams per liter.
<	=	Less than the stated laboratory reporting limit.
	=	Not sampled/Not analyzed/Not measured/Not applicable.
а	=	Approximate depth to groundwater surface at time of sampling.
b	=	Hydrocarbon pattern does not match the requested fuel.
С	=	Analyte presence was not confirmed by second column or GC/MS analysis.

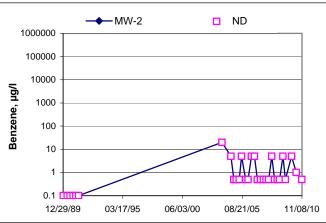


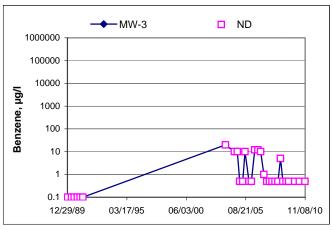



400 000

4 6420 002

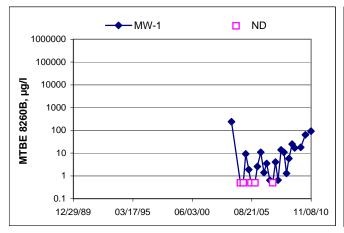


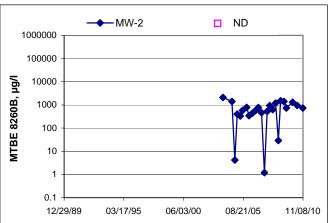

Groundwater Elevations vs. Time 76 Station 6129

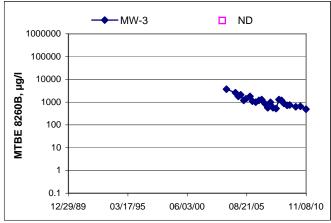


Benzene Concentrations vs Time

76 Station 6129







MTBE 8260B Concentrations vs Time

76 Station 6129

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted.

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed. Bailed fluids are placed in a container separate from normal purge water, and properly disposed.

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps.

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular care is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed. Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages.

3/7/08 version

FIELD MONITORING DATA SHEET

Technician:	Bo	rilis	Jol) #/Task #:	1738	15 FAZO	?	Date: <u>//- /-/</u>
Site#	610	9	Projec	t Manager	A. G	llins		Page of/
Well#	тос	Time Gauged	Total Depth	Depth to Water	Depth to Product	Product Thickness (feet)	Time Sampled	Misc. Well Notes
Mu-1	V	1040		30.18	1		1110	Z"
1141-3	V	1048	43.55			-	1137	2"
MW-3 MW-2	V	1052	39.45	29.90	Carrier-	*********	1205	21
	<u> </u>	1-50						
						1		
		-						
FIELD DATA	COMPL	ETE	QA/QC	·	COC	W	ELL BOX C	ONDITION SHEETS
MANIFEST		DRUM IN	VENTOR	Y	TRAFFIC	CONTROL		

GROUNDWATER SAMPLING FIELD NOTES

Technician:

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conductivity (µS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
Pre-l	Purge						2.30	150	
1057			3	825-2	20.6	7.55	1.90	144	
			6	8466	20.4	7.04	0.83	160	
	1104		9	835.7	20.4	6.80	0.54	163	
Stat	ic at Time Sa	ampled	Tota	al Gallons Pur	ged		Sample	Time	
	32.84		9			111	0		
Comments								***************************************	
Comments									

Well No.
Aw-3

Depth to Water (feet):
29.29

Total Depth (feet)
43.55

Water Column (feet):
14.26

Recharge Depth(feet):
32.14

Purge Method:

Depth to Product (feet):

LPH & Water Recovered (gallons):

Casing Diameter (Inches):

2

1 Well Volume (gallons):

3

1.22 0.55	140	
0,55		}
	148	
0.73	150	
0.98	148	
Sample	 e Time	<u></u>
37		
_	<u> </u>	Sample Time 3子

GROUNDWATER SAMPLING FIELD NOTES

Technician: Basilis Project No.: 173845 73845 Date: 1/
Purge Method: BUSINE NB Site: 6129 Date: //- / - / V Well No. MW- 2 Depth to Water (feet): 29.90 Depth to Product (feet): Total Depth (feet) 39.45 LPH & Water Recovered (gallons): Casing Diameter (Inches): 2 80% Recharge Depth(feet): 31.81 1 Well Volume (gallons): Z Depth to Volume Time Time Conductivity Temperature D.O. ORP Water Purged рН **Turbidity** (F,C) Start Stop (µS/cm) (mg/L)(gallons) (feet) Pre-Purge 1.22 96 1.34 137 6.88 569.1 20.4 2 581.60 20.0 6-63 0.95 140 1152 613.5 70.8 1.12 158 Static at Time Sampled **Total Gallons Purged** Sample Time 1205 Comments: Well No._____ Purge Method:_____ Depth to Water (feet): Depth to Product (feet): Total Depth (feet)_____ LPH & Water Recovered (gallons):_____ Water Column (feet): Casing Diameter (Inches): 80% Recharge Depth(feet):____ ત્ર્ Well Volume (gallons): Depth to Volume Time Time Conductivity Temperature D.O. Water Purged μH ORP **Turbidity** Start Stop (µS/cm) (F,C) (mg/L)(feet) (gallons) Pre-Purge Static at Time Sampled **Total Gallons Purged** Sample Time Comments:

B089881

Date of Report: 11/12/2010

Anju Farfan

Invoice ID:

TRC 123 Technology Drive Irvine, CA 92618

RE: 6129 BC Work Order: 1015492

Enclosed are the results of analyses for samples received by the laboratory on 11/2/2010. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Molly Meyers

Client Service Rep

Authorized Signature

Certifications: CA ELAP #1186; NV #CA00014

Table of Contents

Sample Information	
Chain of Custody and Cooler Receipt form	3
Laboratory / Client Sample Cross Reference	5
Sample Results	
1015492-01 - MW-1	
Volatile Organic Analysis (EPA Method 8260)	6
1015492-02 - MW-3	
Volatile Organic Analysis (EPA Method 8260)	7
1015492-03 - MW-2	
Volatile Organic Analysis (EPA Method 8260)	8
Quality Control Reports	
Volatile Organic Analysis (EPA Method 8260)	
Method Blank Analysis	9
Laboratory Control Sample	10
Precision and Accuracy	11
Notes	
Notes and Definitions	

Environmental Testing Laboratory Since 1949 Laboratories, Inc.

Chain of Custody and Cooler Receipt Form for 1015492

Page 1 of 2

BC LABORATORIES, INC.

4100 Atlas Court

100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

CHAIN OF CUSTODY

	10-15492			Ana	alys	is Re	que	estec	ı	
Bill to: Conoco Phillips/ TRC	Consultant Firm: TRC	MATRIX	8015				2008			
Address: 3420 35th Ave.	21 Technology Drive Irvine, CA 92618-2302 Attn: Anju Farfan	Ground- water (S)	Gas by			7 8260B	N8/816			Requested
city: Oak land	4-digit site#: 6/29 Workorder # ₀ 4583-45129812	(WW) Waste- water	BTEX/MTBE by 8021B,	by 8015M	TPH DIESEL by 8015	BTEX/MTBE/OXYS BY 8260	8260B, 8	GC/MS		Time Rec
State: CA Zip:	Project #: /73845	(SL)	띪	þ	ቪ	BE	L by	by G		
Conoco Phillips Mgr: Pill Bough	Sampler Name: Baselio	Sludge	ZMT	GAS		ZMT	N.	ဖို		aron
Lab# Sample Description	Field Point Name Date & Tim Sampled	e	BTEX	TPH GAS	TPH	BTEX	ETHANOL by	TPH		Turnaround
~1	1141-1 11-1-10 111) 3				\times	×	X.		5/1
-2	May-3 1 113	7 3								
3	MW-2 1 120	5 3		- Comment		1	V	V	+-	10
		Pauzev	1.00	5101	TION					
		Da Gall	V	1	1	-11				
	0.1	15, 2	S	JB-O	UT E					
Comments:	Relinquished by: (Signature)			Ke	Aved by	uloy		11.2.		1420
GLOBAL ID:	Relinquished by: (Signature)	Icolog 112	h	Rece R (ived b	ر. سريد		Date &	t Time	1815
TO600101465	Relinquished by: (Signature)	0 2125		Reco	iyod b	y: \		Date &	Time	Un
		(,	{	

Chain of Custody and Cooler Receipt Form for 1015492 Page 2 of 2

BC LABORATORIES INC.		SAMPLE	RECEIP	TFORM	Rev	. No. 12	05/24/08	Page _	of]	-
Submission #: \0 15492	-									
SHIPPING INFORM	MATION and Deliv		_	ı	ce Chest.i Box	صط	NG CONT Non- Othe		cify)	
Refrigerant: Ice,8 ☐ Blue Ice ☐	None	□ Oth	ner 🗆 🤇	Comment	s:					
	Containe		None	Comme	nts:					
All samples received? Ye. ☑ No □ Al	ll samples	containers	intact? Y	No C	3	Descript	ion(s) mate	ch COC?	res Ser	No 🗆
			ontainer:				163	Date/Tin Analyst	ne <u>10/2</u> Init <u>U</u> L	LO 2130
					SAMPLE	NUMBERS				
SAMPLE CONTAINERS	1	.2	3	4	5	6	7			10
OT GENERAL MINERAL/ GENERAL PHYSICAL			-				 		-	-
PT PE UNPRESERVED							-	1	+	+
OT INORGANIC CHEMICAL METALS PT INORGANIC CHEMICAL METALS				-					1	
PT CYANIDE										
PT NITROGEN FORMS										1000
PT TOTAL SULFIDE										
2m. NITRATE / NITRITE										
PT TOTAL ORGANIC CARBON									_	
PT TOX									+	
PT CHEMICAL OXYGEN DEMAND								 	+	
PIA PHENOLICS							-		+	_
40mi VOA VIAL TRAVEL BLANK 40mi VOA VIAL	δĤ	43	AB	4				1		4 4
QT EPA 413.1, 413.2, 418.1			-	-	-		-	-	+	
PT ODOR			-	-	 			-	+ -	
RADIOLOGICAL						<u> </u>		1	+	
BACTERIOLOGICAL 40 ml VOA VIAL- 504				-		-			+	
QT EPA 508/608/8080								1		
OT EPA 515.1/8150									-	
QT EPA 525										
QT EPA 525 TRAVEL BLANK										
100ml EPA 547										
100ml EPA 531.1								1	+	
QT EPA 548				-	-			-	-	
QT EPA 549			+	-		 	-	+	+	
QT EPA 632		-	-	-			 	-	+	-
OT EPA 8015M			+	-		-	1	+	+	
OT AMBER		 	—		-		_	+	1	
8 OZ. JAR 32 OZ. JAR			†			1	†	1		
SOIL SLEEVE			1		1	1		1	1	
PCB VIAL		,								
PLASTIC BAG										
FERROUS IRON										
								1		

123 Technology Drive Irvine, CA 92618 Reported: 11/12/2010 11:52

Cooler ID:

Project: 6129

Project Number: 4512981219
Project Manager: Anju Farfan

Laboratory / Client Sample Cross Reference

Laboratory **Client Sample Information** 1015492-01 11/02/2010 21:25 **COC Number:** Receive Date: Sampling Date: **Project Number:** 6129 11/01/2010 11:10 Sampling Location: Sample Depth: Sampling Point: MW-1 Water Sample Matrix: Sampled By: **TRCI** Delivery Work Order: Global ID: T0600101465 Location ID (FieldPoint): MW-1 Matrix: W Sample QC Type (SACode): CS Cooler ID: 1015492-02 **COC Number:** Receive Date: 11/02/2010 21:25 **Project Number:** Sampling Date: 11/01/2010 11:37 6129 Sampling Location: Sample Depth: MW-3 Water Sampling Point: Sample Matrix: **TRCI** Delivery Work Order: Sampled By: Global ID: T0600101465 Location ID (FieldPoint): MW-3 Matrix: W Sample QC Type (SACode): CS Cooler ID: 1015492-03 **COC Number:** 11/02/2010 21:25 Receive Date: 11/01/2010 12:05 **Project Number:** 6129 Sampling Date: Sampling Location: Sample Depth: MW-2 Water Sampling Point: Sample Matrix: Sampled By: **TRCI** Delivery Work Order: Global ID: T0600101465 Location ID (FieldPoint): MW-2 Matrix: W Sample QC Type (SACode): CS

123 Technology Drive Irvine, CA 92618 Reported: 11/12/2010 11:52

Project: 6129

Project Number: 4512981219
Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1	015492-01	Client Sampl	e Name:	6129, MW-1, 11/1/2	010 11:10:00AM			
Constituent		Result	Units	PQL	Method	MB Bias	Lab Quals	Run#
Benzene		ND	ug/L	0.50	EPA-8260	ND	·	1
1,2-Dibromoethane		ND	ug/L	0.50	EPA-8260	ND		1
1,2-Dichloroethane		ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene		ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether		92	ug/L	0.50	EPA-8260	ND		1
Toluene		ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes		ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether		ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol		ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Ethanol		ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether		ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	50	Luft-GC/MS	ND		1
1,2-Dichloroethane-d4 (Surr	ogate)	100	%	76 - 114 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)		100	%	88 - 110 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Suri	rogate)	97.9	%	86 - 115 (LCL - UCL)	EPA-8260			1

			Run				QC	
Run #	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID	
1	EPA-8260	11/04/10	11/05/10 10:59	KEA	MS-V12	1	BTK0376	

123 Technology Drive Irvine, CA 92618 Reported: 11/12/2010 11:52

Project: 6129

Project Number: 4512981219
Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1015492-03	2 Client Sample	e Name:	6129, MW-3, 11/1/2	010 11:37:00AM			
Constituent	Result	Units	PQL	Method	MB Bias	Lab Quals	Run #
Benzene	ND	ug/L	0.50	EPA-8260	ND	Quais	1 Kuli #
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		<u>·</u> 1
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	ND	ug/L	0.50	EPA-8260	ND		1
Methyl t-butyl ether	490	ug/L	2.5	EPA-8260	ND	A01	2
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol	ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Ethanol	ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	120	ug/L	50	Luft-GC/MS	ND	A90	1
1,2-Dichloroethane-d4 (Surrogate)	99.6	%	76 - 114 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surrogate)	97.6	%	76 - 114 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)	99.2	%	88 - 110 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	99.0	%	88 - 110 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Surrogate)	98.1	%	86 - 115 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	99.1	%	86 - 115 (LCL - UCL)	EPA-8260			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	11/04/10	11/05/10 11:35	KEA	MS-V12	1	BTK0376
2	EPA-8260	11/04/10	11/05/10 03:57	KEA	MS-V12	5	BTK0376

123 Technology Drive Irvine, CA 92618 Reported: 11/12/2010 11:52

Project: 6129

Project Number: 4512981219 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 1015492-0	Client Sample	e Name:	6129, MW-2, 11/1/2	010 12:05:00PM			
Constituent	Result	Units	PQL	Method	MB Bias	Lab	Dun #
Benzene	ND	ug/L	0.50	EPA-8260	ND ND	Quals	Run #
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
1.2-Dichloroethane	ND	ug/L	0.50	EPA-8260	ND		1
Ethylbenzene	ND ND	ug/L	0.50	EPA-8260	ND		<u>'</u> 1
Methyl t-butyl ether	730	ug/L	5.0	EPA-8260	ND	A01	2
Toluene	ND	ug/L	0.50	EPA-8260	ND		1
Total Xylenes	ND	ug/L	1.0	EPA-8260	ND		1
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	ND		1
t-Butyl alcohol	ND	ug/L	10	EPA-8260	ND		1
Diisopropyl ether	28	ug/L	0.50	EPA-8260	ND		1
Ethanol	ND	ug/L	250	EPA-8260	ND		1
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	ND		1
Total Purgeable Petroleum Hydrocarbons	140	ug/L	50	Luft-GC/MS	ND	A90	1
1,2-Dichloroethane-d4 (Surrogate)	101	%	76 - 114 (LCL - UCL)	EPA-8260			1
1,2-Dichloroethane-d4 (Surrogate)	106	%	76 - 114 (LCL - UCL)	EPA-8260			2
Toluene-d8 (Surrogate)	98.7	%	88 - 110 (LCL - UCL)	EPA-8260			1
Toluene-d8 (Surrogate)	97.3	%	88 - 110 (LCL - UCL)	EPA-8260			2
4-Bromofluorobenzene (Surrogate)	103	%	86 - 115 (LCL - UCL)	EPA-8260			1
4-Bromofluorobenzene (Surrogate)	97.1	%	86 - 115 (LCL - UCL)	EPA-8260			2

			Run				QC
Run#	Method	Prep Date	Date/Time	Analyst	Instrument	Dilution	Batch ID
1	EPA-8260	11/04/10	11/05/10 04:34	KEA	MS-V12	1	BTK0376
2	EPA-8260	11/10/10	11/10/10 18:07	KEA	MS-V10	10	BTK0497

123 Technology Drive Irvine, CA 92618 Reported: 11/12/2010 11:52

Project: 6129

Project Number: 4512981219 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
QC Batch ID: BTK0376						
Benzene	BTK0376-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BTK0376-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BTK0376-BLK1	ND	ug/L	0.50		
Ethylbenzene	BTK0376-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BTK0376-BLK1	ND	ug/L	0.50		
Toluene	BTK0376-BLK1	ND	ug/L	0.50		
Total Xylenes	BTK0376-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BTK0376-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BTK0376-BLK1	ND	ug/L	10		
Diisopropyl ether	BTK0376-BLK1	ND	ug/L	0.50		
Ethanol	BTK0376-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BTK0376-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BTK0376-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BTK0376-BLK1	98.4	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BTK0376-BLK1	100	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTK0376-BLK1	99.8	%	86 - 115 (LCL - UCL)	
QC Batch ID: BTK0497						
Methyl t-butyl ether	BTK0497-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane-d4 (Surrogate)	BTK0497-BLK1	102	%	76 - 114 (LCL - UCL)	
Toluene-d8 (Surrogate)	BTK0497-BLK1	98.1	%	88 - 110 (LCL - UCL)	
4-Bromofluorobenzene (Surrogate)	BTK0497-BLK1	97.9	%	86 - 115 (LCL - UCL)	

123 Technology Drive Irvine, CA 92618 **Reported:** 11/12/2010 11:52

Project: 6129

Project Number: 4512981219 Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

						Control Limits			
00.0	T	Danult	Spike	l lucita	Percent	DDD	Percent	DDD	Lab
QC Sample ID	туре	Result	Levei	Units	Recovery	RPU	Recovery	RPU	Quals
BTK0376-BS1	LCS	25.280	25.000	ug/L	101		70 - 130		
BTK0376-BS1	LCS	25.200	25.000	ug/L	101		70 - 130		
BTK0376-BS1	LCS	9.8900	10.000	ug/L	98.9		76 - 114		
BTK0376-BS1	LCS	10.180	10.000	ug/L	102		88 - 110		
BTK0376-BS1	LCS	10.170	10.000	ug/L	102		86 - 115		
BTK0497-BS1	LCS	9.7600	10.000	ug/L	97.6		76 - 114		
BTK0497-BS1	LCS	10.040	10.000	ug/L	100		88 - 110		
BTK0497-BS1	LCS	9.7900	10.000	ug/L	97.9		86 - 115		
	BTK0376-BS1 BTK0376-BS1 BTK0376-BS1 BTK0376-BS1 BTK0497-BS1 BTK0497-BS1	BTK0376-BS1 LCS BTK0376-BS1 LCS BTK0376-BS1 LCS BTK0376-BS1 LCS BTK0376-BS1 LCS BTK0497-BS1 LCS BTK0497-BS1 LCS	BTK0376-BS1 LCS 25.280 BTK0376-BS1 LCS 25.200 BTK0376-BS1 LCS 9.8900 BTK0376-BS1 LCS 10.180 BTK0376-BS1 LCS 10.170 BTK0497-BS1 LCS 9.7600 BTK0497-BS1 LCS 10.040	QC Sample ID Type Result Level BTK0376-BS1 LCS 25.280 25.000 BTK0376-BS1 LCS 25.200 25.000 BTK0376-BS1 LCS 9.8900 10.000 BTK0376-BS1 LCS 10.180 10.000 BTK0376-BS1 LCS 10.170 10.000 BTK0497-BS1 LCS 9.7600 10.000 BTK0497-BS1 LCS 10.040 10.000	QC Sample ID Type Result Level Units BTK0376-BS1 LCS 25.280 25.000 ug/L BTK0376-BS1 LCS 25.200 25.000 ug/L BTK0376-BS1 LCS 9.8900 10.000 ug/L BTK0376-BS1 LCS 10.180 10.000 ug/L BTK0376-BS1 LCS 10.170 10.000 ug/L BTK0497-BS1 LCS 9.7600 10.000 ug/L BTK0497-BS1 LCS 10.040 10.000 ug/L	QC Sample ID Type Result Level Units Recovery BTK0376-BS1 LCS 25.280 25.000 ug/L 101 BTK0376-BS1 LCS 25.200 25.000 ug/L 101 BTK0376-BS1 LCS 9.8900 10.000 ug/L 98.9 BTK0376-BS1 LCS 10.180 10.000 ug/L 102 BTK0376-BS1 LCS 10.170 10.000 ug/L 102 BTK0497-BS1 LCS 9.7600 10.000 ug/L 97.6 BTK0497-BS1 LCS 10.040 10.000 ug/L 100	QC Sample ID Type Result Level Units Recovery RPD BTK0376-BS1 LCS 25.280 25.000 ug/L 101 101 BTK0376-BS1 LCS 25.200 25.000 ug/L 101 101 BTK0376-BS1 LCS 9.8900 10.000 ug/L 98.9 102 BTK0376-BS1 LCS 10.180 10.000 ug/L 102 102 BTK0376-BS1 LCS 10.170 10.000 ug/L 102 102 BTK0497-BS1 LCS 9.7600 10.000 ug/L 97.6 100 BTK0497-BS1 LCS 10.040 10.000 ug/L 100 100	QC Sample ID Type Result Spike Level Units Percent Recovery RPD Percent Recovery BTK0376-BS1 LCS 25.280 25.000 ug/L 101 70 - 130 BTK0376-BS1 LCS 25.200 25.000 ug/L 101 70 - 130 BTK0376-BS1 LCS 9.8900 10.000 ug/L 98.99 76 - 114 BTK0376-BS1 LCS 10.180 10.000 ug/L 102 88 - 110 BTK0376-BS1 LCS 10.170 10.000 ug/L 102 86 - 115 BTK0497-BS1 LCS 9.7600 10.000 ug/L 97.6 76 - 114 BTK0497-BS1 LCS 10.040 10.000 ug/L 100 88 - 110	QC Sample ID Type Result Spike Level Units Percent Recovery RPD Percent Recovery RPD BTK0376-BS1 LCS 25.280 25.000 ug/L 101 70 - 130 100 BTK0376-BS1 LCS 25.200 25.000 ug/L 101 70 - 130 100 BTK0376-BS1 LCS 9.8900 10.000 ug/L 98.9 76 - 114 102 88 - 110 BTK0376-BS1 LCS 10.170 10.000 ug/L 102 86 - 115 100

123 Technology Drive Irvine, CA 92618 Reported: 11/12/2010 11:52

Project: 6129

Project Number: 4512981219
Project Manager: Anju Farfan

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

									Cont		
		Source	Source		Spike			Percent		Percent	Lab
Constituent	Туре	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery	Quals
QC Batch ID: BTK0376	Use	ed client samp	ole: N								
Benzene	− MS	1015011-33	ND	23.380	25.000	ug/L		93.5		70 - 130	
	MSD	1015011-33	ND	22.780	25.000	ug/L	2.6	91.1	20	70 - 130	
Toluene	MS	1015011-33	ND	24.090	25.000	ug/L		96.4		70 - 130	
	MSD	1015011-33	ND	23.500	25.000	ug/L	2.5	94.0	20	70 - 130	
1,2-Dichloroethane-d4 (Surrogate)	MS	1015011-33	ND	10.030	10.000	ug/L		100		76 - 114	
	MSD	1015011-33	ND	10.020	10.000	ug/L	0.1	100		76 - 114	
Toluene-d8 (Surrogate)	MS	1015011-33	ND	10.250	10.000	ug/L		102		88 - 110	
	MSD	1015011-33	ND	10.170	10.000	ug/L	0.8	102		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1015011-33	ND	10.030	10.000	ug/L		100		86 - 115	
	MSD	1015011-33	ND	10.010	10.000	ug/L	0.2	100		86 - 115	
QC Batch ID: BTK0497	Use	ed client samp	le: N								
1,2-Dichloroethane-d4 (Surrogate)	MS	1015011-39	ND	9.9100	10.000	ug/L		99.1		76 - 114	
	MSD	1015011-39	ND	9.7500	10.000	ug/L	1.6	97.5		76 - 114	
Toluene-d8 (Surrogate)	MS	1015011-39	ND	10.170	10.000	ug/L		102		88 - 110	
	MSD	1015011-39	ND	10.120	10.000	ug/L	0.5	101		88 - 110	
4-Bromofluorobenzene (Surrogate)	MS	1015011-39	ND	9.7300	10.000	ug/L		97.3		86 - 115	
	MSD	1015011-39	ND	9.5900	10.000	ug/L	1.4	95.9		86 - 115	

TRC Reported: 11/12/2010 11:52

Project: 6129

Irvine, CA 92618 Project Number: 4512981219 Project Manager: Anju Farfan

Notes And Definitions

123 Technology Drive

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit

PQL Practical Quantitation Limit RPD Relative Percent Difference

PQL's and MDL's are raised due to sample dilution. A01

TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE. A90

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring wells is accumulated at TRC's groundwater monitoring field office at Concord, California, for transportation by a licensed carrier to an authorized disposal facility. Currently, non-hazardous purge water is transported under a bulk non-hazardous waste manifest to Crosby and Overton, Inc. in Long Beach, California.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.