RECEIVED

2:28 pm, Jan 20, 2009

Alameda County Environmental Health

January 16, 2009

Barbara Jakub Alameda County Health Agency .1131 Harbor Bay parkway, Suite250 Alameda, California 94502-577

Re:

Quarterly Summary Report—Fourth Quarter 2008 76 Service Station # 6129 RO # 058 3420 35th Avenue Oakland, CA

Dear Ms. Jakub:

I declare under penalty of perjury that to the best of my knowledge the information and/or recommendations contained in the attached report is/are true and correct.

If you have any questions or need additional information, please call me at (916) 558-7666.

Sincerely,

Terry L. Grayson Site Manager

Risk Management & Remediation

January 16, 2009

Ms. Barbara Jakub Alameda County Health Care Services Agency 1131 Harbor Bay Parkway, Suite 250 Alameda, California 94502

Re: Quarterly Summary Report – Fourth Quarter 2008 Fuel Leak Case No. R00000058

Dear Ms. Jakub:

On behalf of ConocoPhillips Company (COP), Delta Consultants (Delta) is submitting the Quarterly Summary Report – Fourth Quarter 2008 and forwarding a copy of TRC Solutions, Inc. (TRC's) Quarterly Monitoring Report, October through December 2008, dated December 28, 2008, for the following location:

Service Station

Location

DENNIS SHANNON DETTLOFF No. 7480

76 Service Station No. 6129

3420 35th Avenue Oakland, California

Sincerely,

DELTA CONSULTANTS

Dennis S. Dettloff, P.G.

Senior Project Manager

California Registered Professional Geologist Alg

cc: Mr. Terry Grayson, ConocoPhillips (electronic copy)

QUARTERLY SUMMARY REPORT Fourth Quarter 2008 76 Service Station No. 6129 3420 35th Avenue Oakland, California

SITE DESCRIPTION

The site is currently an operating 76 Service Station that dispenses gasoline stored in two 12,000-gallon underground storage tanks (USTs) from two dispenser islands. An automotive repair facility is present at the site which contains three service bays. Additionally, there is one used-oil UST, three hydraulic lifts, and three groundwater monitoring wells (MW-1 through MW-3) present at the site. There was previously one used-oil UST, one clarifier beneath the central hydraulic lift, and two floor drains, all of which have been removed.

PREVIOUS ASSESSMENT

According to Kaprealian Engineering, Inc. (KEI), in 1989 two 10,000-gallon gasoline USTs and one 550-gallon waste oil UST were removed from the site. Analytical data from soil samples collected beneath the former gasoline USTs, used-oil UST, and product piping indicated low concentrations of petroleum hydrocarbons were present in each of the sampling areas. Three groundwater monitoring wells (MW-1 through MW-3) were installed in 1989 to depths of approximately 44 feet below ground surface (bgs).

In 1990, four soil borings (EB1 through EB4) were advanced at the site in the vicinity of MW-3 in an attempt to define the petroleum hydrocarbon impact to soil. Based on the analytical data from the soil sampling, approximately 230 cubic yards of soil were excavated from an area between the dispenser islands and around monitoring well MW-3 in 1991. The excavation was completed as to not destroy monitoring well MW-3. Analytical data from confirmation soil samples indicated the majority of the impacted soil had been removed.

On November 12 and 13, 2003, as part of a due diligence investigation, four soil borings (SB-1 and SB-3 through SB-5) were advanced to total depths of approximately 31.5 to 36.5 feet bgs. Proposed boring SB-2 was unable to be advanced due to the presence of subsurface utilities and/or structures. Groundwater was encountered in the borings at a depth of approximately 35 feet bgs. Methyl tertiary butyl ether (MTBE) was reported at concentrations ranging from 0.37 to 0.41 milligrams per kilogram (mg/kg) in the soil samples collected at depths ranging from 26 and 31 feet bgs. All other constituents were below the laboratory's indicated reporting limits for the soil samples analyzed. The three existing groundwater monitoring wells were sampled on November 13, 2003. Analytical data indicated MTBE was present at concentrations ranging from 240 and 3,700 micrograms per liter (μ g/L), with the most elevated concentrations found in monitoring wells MW-2 (2,100 μ g/L) and MW-3 (3,700 μ g/L).

On September 13, 2006, Delta observed the advancement of six boreholes by a licensed contractor using CPT technology. The CPT borings provided accurate continuous records of the subsurface lithology and stratigraphy and measured depth to

first groundwater. Groundwater and soil samples were not collected from the CPT borings.

On November 7 and 8, 2006, Delta observed the advancement of five soil borings (B-2, B-7, B-8, B-9, and B-14) by a licensed contractor using hollow stem auger technology. Four of these soil borings were advanced adjacent to the previously advanced CPT borings. On December 27, 2006, four soil borings (B-10, B-12, B-15, and B-16) were advanced using hollow stem auger technology. Soil samples were collected every five feet for lithologic descriptions, field hydrocarbon screening, and laboratory analysis. A description of this work is presented in the *Soil Boring Site Assessment Report* dated February 19, 2007.

SENSITIVE RECEPTORS

2004 - A 1,000-foot radius well search was completed by the request of the Alameda County Public Works Agency (ACPWA). The search indicated that a six-inch diameter irrigation well was located at 3397 Arkansas Street, approximately 800 feet west-northwest of the site. The well was installed in August 1977 to a total depth of 62 feet bgs with depth to water reported at 18 feet bgs. Alameda County Health Care Services update of July 30, 1984 reported the well owner as Arthur Smith.

2006 – A survey entailing a visit to the State of California Department of Water Resources (DWR) office in Sacramento was conducted to examine well log records and to identify domestic wells within the survey area. The DWR survey indicated three potential receptors were located within one mile of the site; two irrigation wells located 0.5 mile and 0.8 mile north (up-gradient) of the site and one domestic/irrigation well located 0.8 mile northeast (up-gradient) of the site. Two additional potential receptors were identified although the specific addresses could not be located. Based on groundwater gradient information and distance to the receptors from the site, identified receptors do not appear to be at risk due to gasoline constituents in groundwater at the site.

MONITORING AND SAMPLING

Groundwater monitoring and sampling activities were conducted at the site from January 1990 through May 1991. Sampling activities were re-initiated during the third quarter 2004. The monitoring well network is currently sampled on a quarterly basis. Samples collected from the monitoring wells are analyzed for total purgeable petroleum hydrocarbons (TPPH), benzene, toluene, ethyl-benzene, and total xylenes (BTEX), and MTBE, di-isopropyl ether (DIPE), tertiary butyl alcohol (TBA), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE), 1,2-dichloroethane (1,2-DCA), ethylene dibromide (EDB), and ethanol by Environmental Protection Agency (EPA) Method 8260. TRC has been retained to perform the monitoring and sampling. A copy of TRC's Quarterly Monitoring Report-October through December 2008, dated December 30, 2008, and has been forwarded with this report.

During the most recent groundwater monitoring event, conducted on November 25, 2008, the depth to groundwater ranged from 29.74 feet (MW-3) to 30.88 feet (MW-1) below top of casing (TOC). The groundwater flow direction was interpreted to be to the southwest with a gradient of 0.013 foot per foot (ft/ft). This is consistent with the previous quarterly sampling event when the groundwater flow direction was interpreted

to be to the southwest with a gradient of 0.013 ft/ft. Historic groundwater flow directions presented as a rose diagram included as Attachment A.

Contaminants of Concern:

- **TPPH:** TPPH was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-2 and MW-3 at concentrations of 500 µg/L and 380 µg/L, respectively during the current sampling event. However, the laboratory notes indicate that the TPPH in monitoring wells MW-2 and MW-3 does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.
- Benzene: Benzene was below the laboratory's indicated reporting limit in each
 of the groundwater samples collected and submitted for analysis from the
 monitoring wells purged and sampled during the current sampling event.
- MTBE: MTBE was above the laboratory's indicated reporting limits in the groundwater samples collected and submitted for analysis from monitoring wells MW-1, MW-2, and MW-3 at concentrations of 5.8 μg/L, 1,500 μg/L, and 870 μg/L, respectively during the current sampling event.
- **DIPE:** DIPE was above the laboratory's indicated reporting limits in the groundwater sample collected and submitted for analysis from monitoring well MW-2 at a concentration of 19 µg/L during the current sampling event.

With the exception of the constituents listed above, all other constituents tested were below the laboratory's indicated reporting limits the groundwater samples collected and submitted for analysis from the three monitoring wells during the fourth quarter 2008 sampling event.

REMEDIATION STATUS

Remediation has not been required by the lead regulatory agency for this site.

CHARACTERIZATION STATUS

Recent site assessment data has been submitted to the agency for review. Groundwater monitoring is ongoing.

RECENT CORRESPONDENCE

No correspondence was received or sent during the fourth quarter 2008...

WASTE DISPOSAL SUMMARY

In 1991, based on the analytical results of soil samples from borings EB1 through EB4, approximately 230 cubic yards of soil were excavated from the area between the dispensers and the pump islands in the area around MW-3.

Thirty three (33) drums of non-hazardous soil and water produced during recent field activities were transported off-site for disposal on 10/19/06 and 12/29/06.

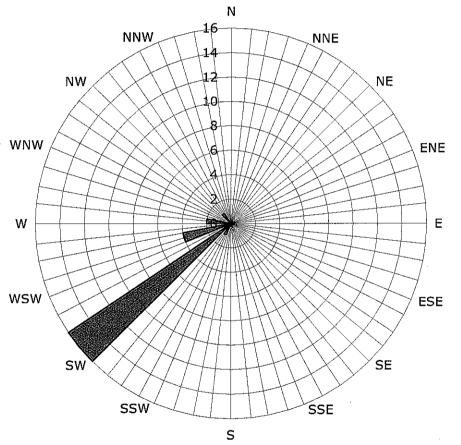
THIS QUARTER ACTIVITIES (Fourth Quarter 2008)

1. TRC conducted the quarterly monitoring and sampling event at the site.

NEXT QUARTER ACTIVITIES (First Quarter 2009)

- 1. TRC will conduct the quarterly groundwater monitoring and sampling event at the site.
- 2. If a response is received from the Alameda County Health Care Services Agency (ACHCSA) to the work plan submitted on September 10, 2008, Delta will proceed with the proposed work as requested.

CONSULTANT: Delta Consultants


Attachment A - Historic Groundwater Flow Directions

Attachment A

Historic Groundwater Flow Directions

Historic Groundwater Flow Directions ConocoPhillips Site No. 6129

3420 35th Avenue Oakland, California

Legend Concentric circles represent quarterly montoring events First Quarter 1990 through Fourth Quarter 2008 24 data points shown

21 Technology Drive Irvine, CA 92618

949.727.9336 PHONE 949.727.7399 FAX

www.TRCsolutions.com

DATE:

December 30, 2008

TO:

ConocoPhillips Company

76 Broadway

Sacramento, CA 94563

ATTN:

MR TERRY GRAYSON

SITE:

76 STATION 6129

3420 35TH AVENUE

OAKLAND, CALIFORNIA

RE:

QUARTERLY MONITORING REPORT

OCTOBER THROUGH DECEMBER 2008

Dear Mr. Grayson,

Please find enclosed our Quarterly Monitoring Report for 76 Station 6129, located at 3420 35th Avenue, Oakland, California. If you have any questions regarding this report, please call us at (949) 727-9336.

Sincerely,

TRC

Anju Farfan

Groundwater Program Operations Manager

CC: Mr. Dennis Dettloff, Delta Consultants (1 copy)

Enclosures:

20-0400/6129R21.QMS

QUARTERLY MONITORING REPORT OCTOBER THROUGH DECEMBER 2008

76 STATION 6129 3420 35th Avenue Oakland, California

Prepared For:

Mr. Terry Grayson CONOCOPHILLIPS COMPANY 76 Broadway Sacramento, CA 94563

By:

Senior Project Geologist, Irvine Operations

Date: 12/26/08

	LIST OF ATTACHMENTS
Summary Sheet	Summary of Gauging and Sampling Activities
Tables	Table Key
	Contents of Tables
	Table 1: Current Fluid Levels and Selected Analytical Results
	Table 1a: Additional Current Analytical Results
	Table 2: Historic Fluid Levels and Selected Analytical Results
	Table 2a: Additional Historic Analytical Results
Coordinated	Former Exxon Mobil 7-0234 (Not Provided this Quarter)
Event Data	
Figures	Figure 1: Vicinity Map
	Figure 2: Groundwater Elevation Contour Map
	Figure 3: Dissolved-Phase TPH-G (GC/MS) Concentration Map
	Figure 4: Dissolved-Phase Benzene Concentration Map
	Figure 5: Dissolved-Phase MTBE Concentration Map
Graphs	Groundwater Elevations vs. Time
	Benzene Concentrations vs. Time
	MTBE 8260B Concentrations vs. Time
Field Activities	General Field Procedures
	Field Monitoring Data Sheet – 11/25/08
	Groundwater Sampling Field Notes – 11/25/08
Laboratory	Official Laboratory Reports
Reports	Quality Control Reports
	Chain of Custody Records
Statements	Purge Water Disposal
	Limitations

Summary of Gauging and Sampling Activities October 2008 through December 2008 76 Station 6129 3420 35th Ave. Oakland, CA

Project Coordinator: Terry Grayson Telephone: 916-558-7666	Water Sampling Contractor: <i>TRC</i> Compiled by: Christina Carrillo
Date(s) of Gauging/Sampling Event: 11/25/08	complica by a compenia carrino
Sample Points	
Groundwater wells: 3 onsite, 0 offsite Purging method: Bailer/submersible pump Purge water disposal: Veolia/Rodeo Unit 100 Other Sample Points: 0 Type:	Points gauged: 3 Points sampled: 3
Liquid Phase Hydrocarbons (LPH)	
Sample Points with LPH: 0 Maximum thickness (f LPH removal frequency: Treatment or disposal of water/LPH:	eet): Method:
Hydrogeologic Parameters	
Depth to groundwater (below TOC): Minimum: 2 Average groundwater elevation (relative to available I Average change in groundwater elevation since previo Interpreted groundwater gradient and flow direction: Current event: 0.013 ft/ft, southwest Previous event: 0.013 ft/ft, southwest (09/1)	ocal datum): 71.10 feet ous event: 0.15 feet
Selected Laboratory Results	
Sample Points with detected Benzene : 0 San Maximum reported benzene concentration:	nple Points above MCL (1.0 μg/l):
	ximum: 500 μg/l (MW-2) ximum: 1,500 μg/l (MW-2)
Notes:	

TABLES

TABLE KEY

STANDARD ABBREVIATIONS

-- not analyzed, measured, or collected

LPH = liquid-phase hydrocarbons Trace = less than 0.01 foot of LPH in well

ug/l = micrograms per liter (approx e3quivalent to parts per billion, ppb)
mg/l = milligrams per liter (approx equivalent to parts per million, ppm)

ND= not detected at or above laboratory detection limitTOC= top of casing (surveyed reference elevation)

ANALYTES

BTEX = benzene, toluene, ethylbenzene, and (total) xylenes

DIPE = di-isopropyl ether

EIBE = ethyl tertiary butyl ether

MTBE = methyl tertiary butyl ether

PCB = polychlorinated biphenyls

PCE = tetrachloroethene

TBA = tertiary butyl alcohol

TCA = trichloroethane

TCE = trichloroethene
TPH-G = total petroleum hydrocarbons with gasoline distinction

TPH-G (GC/MS) = total petroleum hydrocarbons with gasoline distinction utilizing EPA Method 8260B

TPH-D = total petroleum hydrocarbons with diesel distinction

TRPH = total recoverable petroleum hydrocarbons

TAME = tertiary amyl methyl ether 1,1-DCA = 1,1-dichloroethane

1,2-DCA = 1,2-dichloroethane (same as EDC, ethylene dichloride)

1,1-DCE = 1,1-dichloroethene

1,2-DCE = 1,2-dichloroethene (cis- and trans-)

NOTES

- 1. Elevations are in feet above mean sea level. Depths are in feet below surveyed top-of-casing.
- 2 Groundwater elevations for wells with LPH are calculated as: <u>Surface Elevation Measured Depth to Water + (Dp x LPH Thickness)</u>, where Dp is the density of the LPH, if known A value of 0.75 is used for gasoline and when the density is not known A value of 0.83 is used for diesel
- 3. Wells with LPH are generally not sampled for laboratory analysis (see General Field Procedures).
- 4 Comments shown on tables are general. Additional explanations may be included in field notes and laboratory reports, both of which are included as part of this report
- 5 A "J" flag indicates that a reported analytical result is an estimated concentration value between the method detection limit (MDL) and the practical quantification limit (PQL) specified by the laboratory.
- 6 Other laboratory flags (qualifiers) may have been reported. See the official laboratory report (attached) for a complete list of laboratory flags
- 7. Concentration graphs based on tables (presented following Figures) show non-detect results prior to the Second Quarter 2000 plotted at fixed values for graphical display Non-detect results reported since that time are plotted at reporting limits stated in the official laboratory report.
- 8. Groundwater vs. Time graphs may be corrected for apparent level changes due to re-survey

REFERENCE

TRC began groundwater monitoring and sampling 76 Station 6129 in August 2004

Contents of Tables 1 and 2 Site: 76 Station 6129

Current E	vent												
Table 1	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 1a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					
Historic D)ata												
Table 2	Well/ Date	Depth to Water	LPH Thickness	Ground- water Elevation	Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)
Table 2a	Well/ Date	TBA	Ethanol (8260B)	Ethylene- dibromide (EDB)	1,2-DCA (EDC)	DIPE	ETBE	TAME					

Table 1
CURRENT FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
November 25, 2008
76 Station 6129

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness		Change in Elevation	TPH-G (8015M)	TPH-G (GC/MS)	Benzene	Toluene	Ethyl- benzene	Total Xylenes	MTBE (8021B)	MTBE (8260B)	Comments
	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	
MW-1 11/25/0	8 102.24	30.88	0.00	71.36	0.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.8	
MW-2 11/25/0	8 102.16	30.48	0.00	71.68	0.14		500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1500	
MW-3 11/25/0	8 100.00	29.74	0.00	70.26	0.15		380	ND<0.50	ND<0.50	ND<0.50	ND<1.0		870	

Table 1 a
ADDITIONAL CURRENT ANALYTICAL RESULTS
76 Station 6129

Date			Ethylene-				
Sampled		Ethanol	dibromide	1,2-DCA			
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)
MW-1							
11/25/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
MW-2							
11/25/08	ND<10	ND<250	ND<0.50	ND<0.50	19	ND<0.50	ND<0.50
MW-3							
11/25/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2008
76 Station 6129

Date	TOC	Depth to	LPH	Ground-	Change									Comments
Sampled	Elevation	Water	Thickness		ın Elevatıon	TPH-G	TPH-G			Ethyl-	Total	MTBE	M.TBE	
					Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	
MW-1														
01/05/9	00					ND		ND	ND	ND	ND			
05/11/9	90					ND		ND	7.1	ND	ND			
08/09/9	00					ND		ND	ND	ND	ND			
11/14/9	90					ND		ND	ND	ND	ND		44	
02/12/9	91					ND		0.32	ND	ND	ND			
05/09/9						ND		ND	ND	ND	ND			
11/13/0)3						180	ND<1.0	ND<1.0	ND<1.0	ND<2.0		240	
08/27/0	102.24	30.65	0.00	71.59			ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
11/23/0	04 102.24	1 29.35	0.00	72.89	1.30		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
02/09/0	5 102.24	26.89	0.00	75.35	2.46		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		9.3	
05/17/0	5 102.24	26.56	0.00	75.68	0.33	7-	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.9	
07/27/0	5 102.24	27.33	0.00	74.91	-0.77		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		ND<0.50	
12/06/0	5 102.24	29.59	0.00	72.65	-2.26		ND<50	ND<0.50	0.93	ND<0.50	1.8		ND<0.50	
02/21/0	6 102.24	28.27	0.00	73.97	1.32		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2.6	
06/08/0	6 102.24	26.07	0.00	76.17	2.20		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		11	
09/15/0	6 102.24	28.86	0.00	73.38	-2.79		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	~~	1.4	
12/14/0	6 102.24	29.49	0.00	72.75	-0.63		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		3.5	
03/28/0	7 102.24	27.24	0.00	75.00	2.25		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50		0.64	
06/25/0	7 102.24	28.30	0.00	73.94	-1.06		ND<50			ND<0.50			ND<0.50	
09/22/0	7 102.24	30.61	0.00	71.63	-2.31		ND<50			ND<0.50			4.1	
12/14/0	7 102.24	30.30	0.00	71.94	0.31					ND<0.50			0.65	
03/17/0	8 102.24		0.00	75.02	3.08					ND<0.50			14	
									1.2 -0.50	- 122 -0.50	1112 -11.0		17	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2008
76 Station 6129

Date Sampled	TOC Elevation	Depth to Water	LPH Thickness	Ground- water	Change in Elevation	TPH-G	ТРН-G			Ethyl-	Total	MTBE	MTBE	Comments
					Elevation	(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
*****	(feet)	(feet)	(feet)	(feet)	(feet)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	
06/20/0				72.14	-2.88		ND<50			ND<0.50			11	
09/11/0			0.00	71.20	-0.94		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1.3	
11/25/0	8 102.24	30.88	0.00	71.36	0.16		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		5.8	
MW-2														
01/05/9	0					ND		ND	ND	ND	ND			
05/11/9			==			ND		ND	ND	ND	ND			
08/09/9						ND		ND	ND	ND	ND			
11/14/9	0				7-	ND		ND	ND	ND	ND			
02/12/9	1					ND		ND	0.42	ND	0.51			
05/09/9	1					ND		ND	ND	ND	ND	~-		
11/13/0	3			m ==			ND<2000	ND<20	ND<20	ND<20	ND<40		2100	
08/27/0	4 102.16	30.28	0.00	71.88			950	ND<5.0	ND<5.0	ND<5.0	ND<10		1400	
11/23/0	4 102.16	28.75	0.00	73.41	1.53		53	ND<0.50	ND<0.50	ND<0.50	ND<1.0		4.2	
02/09/0	5 102.16	26.08	0.00	76.08	2.67		ND<500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		400	
05/17/0	5 102.16	24.53	0.00	77.63	1.55		ND<50	ND<0.50	ND<0.50	ND<0.50	ND<1.0		330	
07/27/0:	5 102.16	27.51	0.00	74.65	-2.98		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		580	
12/06/0:	5 102.16	29.13	0.00	73.03	-1.62		340	ND<0.50	ND<0.50	ND<0.50	ND<1.0		780	
02/21/0	6 102.16	29.23	0.00	72.93	-0.10		190	ND<0.50	ND<0.50	ND<0.50	ND<1.0		340	
06/08/0	6 102.16	25.76	0.00	76.40	3.47		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<10		440	
09/15/00	6 102.16	29.17	0.00	72.99	-3.41		ND<500	ND<5.0	ND<5.0	ND<5.0	ND<5.0		570	
12/14/0	6 102.16	29.11	0.00	73.05	0.06		520	ND<0.50	ND<0.50	ND<0.50	ND<0.50		770	
03/28/01	7 102.16	26.68	0.00	75.48	2.43		290	ND<0.50	ND<0.50	ND<0.50	ND<0.50		460	
06/25/0	7 102.16	25.91	0.00	76.25	0.77		ND<50			ND<0.50			1.2	
6129								Page 2	2 of 4					€ TPC

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2008
76 Station 6129

Date	TOC	Depth to	LPH	Ground-	Change									Comments
Sampled	Elevation	Water	Thickness		in Elevation	TPH-G	TPH-G			Ethyl-	Total	MTBE	MTBE	
						(8015M)	(GC/MS)	Benzene	Toluene	benzene	Xylenes	(8021B)	(8260B)	
	(feet)	(feet)	(feet)	(feet)	(feet)	(μg/l)	(µg/l)	(µg/l)	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	
	continued													
09/22/0				71.98	- 4.27		400	ND<0.50	ND<0.50	ND<0.50	ND<0.50		530	
12/14/0				72.20	0.22		400	ND<0.50	ND<0.50	ND<0.50	ND<1.0		930	
03/17/0		26.74	0.00	75.42	3.22		570	ND<5.0	ND<5.0	ND<5.0	ND<10		630	
06/20/0		29.78	0.00	72.38	-3.04		580	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1200	
09/11/0	08 102.16	30.62	0.00	71.54	-0.84		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		29	
11/25/0	08 102.16	30.48	0.00	71.68	0.14		500	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1500	
MW-3														
01/05/9	00		0.00			ND		ND	ND	ND	ND			
05/11/9	90					ND		ND	ND	ND	ND			
08/09/9	90					ND		ND	ND	ND	ND			
11/14/9	90			·		ND		ND	ND	ND	ND			
02/12/9	1					ND		ND	ND	ND	ND			
05/09/9						ND		ND	ND	ND	ND			
11/13/0	3						2600	ND<20	ND<20	ND<20	ND<40		3700	
08/27/0	4 100.00	29.61	0.00	70.39			1700	ND<10	ND<10	ND<10	ND<20		2600	
11/23/0	4 100.00	28.48	0.00	71.52	1.13		1500	ND<10	ND<10	ND<10	ND<20		1800	
02/09/0	5 100.00	26.45	0.00	73.55	2.03		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		2100	
05/17/0	5 100.00	25.61	0.00	74.39	0.84		ND<1000	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1200	
07/27/0	5 100.00	27.35	0.00	72.65	-1.74		ND<1000	ND<10	ND<10	ND<10	ND<20		1400	
12/06/0	5 100.00	28.78	0.00	71.22	-1.43		430	ND<0.50	1.6	ND<0.50	3.6		1800	
02/21/0	6 100.00	28.91	0.00	71.09	-0.13		420	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1100	
06/08/0	6 100.00	25.97	0.00	74.03	2.94		ND<1200	ND<12	ND<12	ND<12	ND<25		1000	
09/15/0	6 100.00	28.73	0.00	71.27	-2.76		ND<1200	ND<12	ND<12	ND<12	ND<12		1200	
6129								Page	3 of 4				•	

Table 2
HISTORIC FLUID LEVELS AND SELECTED ANALYTICAL RESULTS
January 1990 Through November 2008
76 Station 6129

Date Sampled	TOC Elevation (feet)	Depth to Water (feet)	LPH Thickness (feet)		Change in Elevation (feet)	TPH-G (8015M) (μg/l)	TPH-G (GC/MS) (μg/l)	Benzene (µg/l)	Toluene (µg/l)	Ethyl- benzene (μg/l)	Total Xylenes (µg/l)	MTBE (8021B) (μg/l)	MTBE (8260B) (μg/l)	Comments
MW-3	continued					•								
12/14/0	6 100.00	28.62	0.00	71.38	0.11		ND<1000	ND<10	ND<10	ND<10	ND<10		1300	
03/28/0	7 100.00	26.69	0.00	73.31	1.93		500	ND<1.0	ND<1.0	ND<1.0	ND<1.0		860	
06/25/0	7 100.00	26.74	0.00	73.26	-0.05	'	270	ND<0.50	ND<0.50	ND<0.50	ND<0.50		570	
09/22/0	7 100.00	29.57	0.00	70.43	-2.83		500	ND<0.50	ND<0.50	ND<0.50	ND<0.50		980	
12/14/0	7 100.00	29.30	0.00	70.70	0.27		270	ND<0.50	ND<0.50	ND<0.50	ND<1.0		570	y.
03/17/0	8 100.00	26.82	0.00	73.18	2.48		220	ND<0.50	ND<0.50	ND<0.50	ND<1.0		520	
06/20/0	8 100.00	29.10	0.00	70.90	-2.28		490	ND<0.50	ND<0.50	ND<0.50	ND<1.0		1300	
09/11/0	8 100.00	29.89	0.00	70.11	-0.79		630	ND<5.0	ND<5.0	ND<5.0	ND<10		1200	
11/25/0	8 100.00	29.74	0.00	70.26	0.15		380	ND<0.50	ND<0.50	ND<0.50	ND<1.0		870	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6129

Date			Ethylene-											
Sampled		Ethanol	dibromide	1,2-DCA										
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME							
	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)							
MW-1										 	 		• •	
11/13/03	ND<200	ND<1000	ND<4.0	ND<4.0	ND<4.0	ND<4.0	ND<4.0							
08/27/04	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
11/23/04	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<1.0	ND<0.50	ND<0.50							
02/09/05	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
05/17/05	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
07/27/05	ND<5.0	ND<50	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/06/05	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
02/21/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
06/08/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/15/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/14/06	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/28/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
06/25/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/22/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
12/14/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
03/17/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
06/20/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
09/11/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
11/25/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50							
MW-2														
11/13/03	ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80							
08/27/04	ND<50	ND<500	ND<5.0	ND<5.0	24	ND<5.0	ND<5.0							
11/23/04	ND<5.0	ND<50	ND<0.50	ND<0.50	18	ND<0.50	ND<0.50							
02/09/05	ND<50	ND<500	ND<5.0	ND<5.0	19	ND<5.0	ND<5.0							
05/17/05	ND<5.0	ND<50	ND<0.50	ND<0.50	12	ND<0.50	ND<0.50							
6129						Page 1 of 3						() TDC		A TOO

Table 2 a ADDITIONAL HISTORIC ANALYTICAL RESULTS 76 Station 6129

Date			Ethylene-				
Sampled		Ethanol	dibromide	1,2-DCA			
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(μg/l)	(μg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(μg/l)
MW-2 co	ontinued						
07/27/05	140	ND<500	ND<5.0	ND<5.0	16	ND<5.0	ND<5.0
12/06/05	61	ND<250	ND<0.50	ND<0.50	15	ND<0.50	ND<0.50
02/21/06	ND<10	ND<250	ND<0.50	ND<0.50	18	ND<0.50	ND<0.50
06/08/06	ND<100	ND<2500	ND<5.0	ND<5.0	14	ND<5.0	ND<5.0
09/15/06	ND<100	ND<2500	ND<5.0	ND<5.0	17	ND<5.0	ND<5.0
12/14/06	27	ND<250	ND<0.50	ND<0.50	20	ND<0.50	ND<0.50
03/28/07	260	ND<250	ND<0.50	ND<0.50	23	ND<0.50	ND<0.50
06/25/07	ND<10	ND<250	ND<0.50	ND<0.50	23	ND<0.50	ND<0.50
09/22/07	ND<10	ND<250	ND<0.50	ND<0.50	35	ND<0.50	ND<0.50
12/14/07	48	ND<250	ND<0.50	ND<0.50	24	ND<0.50	ND<0.50
03/17/08	ND<100	ND<2500	ND<5.0	ND<5.0	18	ND<5.0	ND<5.0
06/20/08	ND<10	ND<250	ND<0.50	ND<0.50	16	ND<0.50	ND<0.50
09/11/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
11/25/08	ND<10	ND<250	ND<0.50	ND<0.50	19	ND<0.50	ND<0.50
MW-3							
11/13/03	ND<4000	ND<20000	ND<80	ND<80	ND<80	ND<80	ND<80
08/27/04	ND<100	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10
11/23/04	ND<100	ND<1000	ND<10	ND<10	ND<20	ND<10	ND<10
02/09/05	130	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10
05/17/05	ND<100	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10
07/27/05	360	ND<1000	ND<10	ND<10	ND<10	ND<10	ND<10
12/06/05	160	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
02/21/06	88	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	0.58
06/08/06	ND<250	ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12
09/15/06	ND<250	ND<6200	ND<12	ND<12	ND<12	ND<12	ND<12
6129						Page 2 of 3	
						J	

Table 2 a
ADDITIONAL HISTORIC ANALYTICAL RESULTS
76 Station 6129

Date			Ethylene-				
Sampled		Ethanol	dibromide	1,2-DCA			
	TBA	(8260B)	(EDB)	(EDC)	DIPE	ETBE	TAME
	(μg/l)	(μg/l)	(µg/l)	(μg/l)	(μg/l)	(μg/l)	(μg/l)
MW-3 co	ontinued						
12/14/06	ND<200	ND<5000	ND<10	ND<10	ND<10	ND<10	ND<10
03/28/07	500	ND<500	ND<1.0	ND < i.0	ND<1.0	ND<1.0	ND<1.0
06/25/07	11	ND<250	ND<0.50	0.65	ND<0.50	ND<0.50	ND<0.50
09/22/07	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
12/14/07	26	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
03/17/08	ND<10	ND<250	ND<0.50	0.65	ND<0.50	ND<0.50	ND<0.50
06/20/08	49	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50
09/11/08	ND<100	ND<2500	ND<5.0	ND<5.0	ND<5.0	ND<5.0	ND<5.0
11/25/08	ND<10	ND<250	ND<0.50	ND<0.50	ND<0.50	ND<0.50	ND<0.50

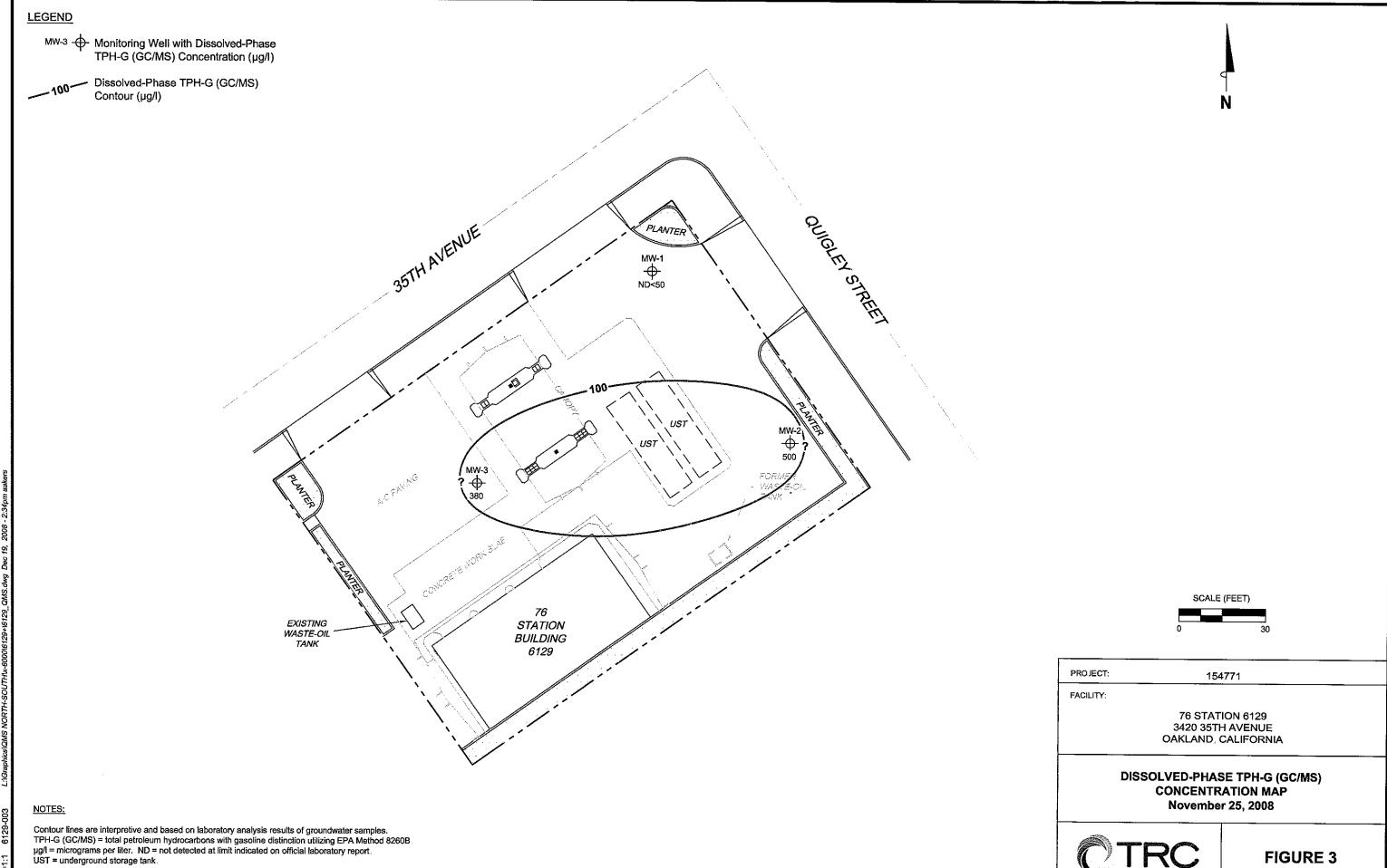
FIGURES

QUADRANGLE LOCATION

PS=1:1 L:\QMS V I C I N I T Y M A P S\6129vm.dwg Dec 26, 2008 — 6:44am aakers

NOTES:

Contour lines are interpretive and based on fluid levels measured in monitoring wells. Elevations are in feet above mean sea level. UST = underground storage tank.


76 STATION 6129 3420 35TH AVENUE OAKLAND, CALIFORNIA

154771

GROUNDWATER ELEVATION CONTOUR MAP November 25, 2008

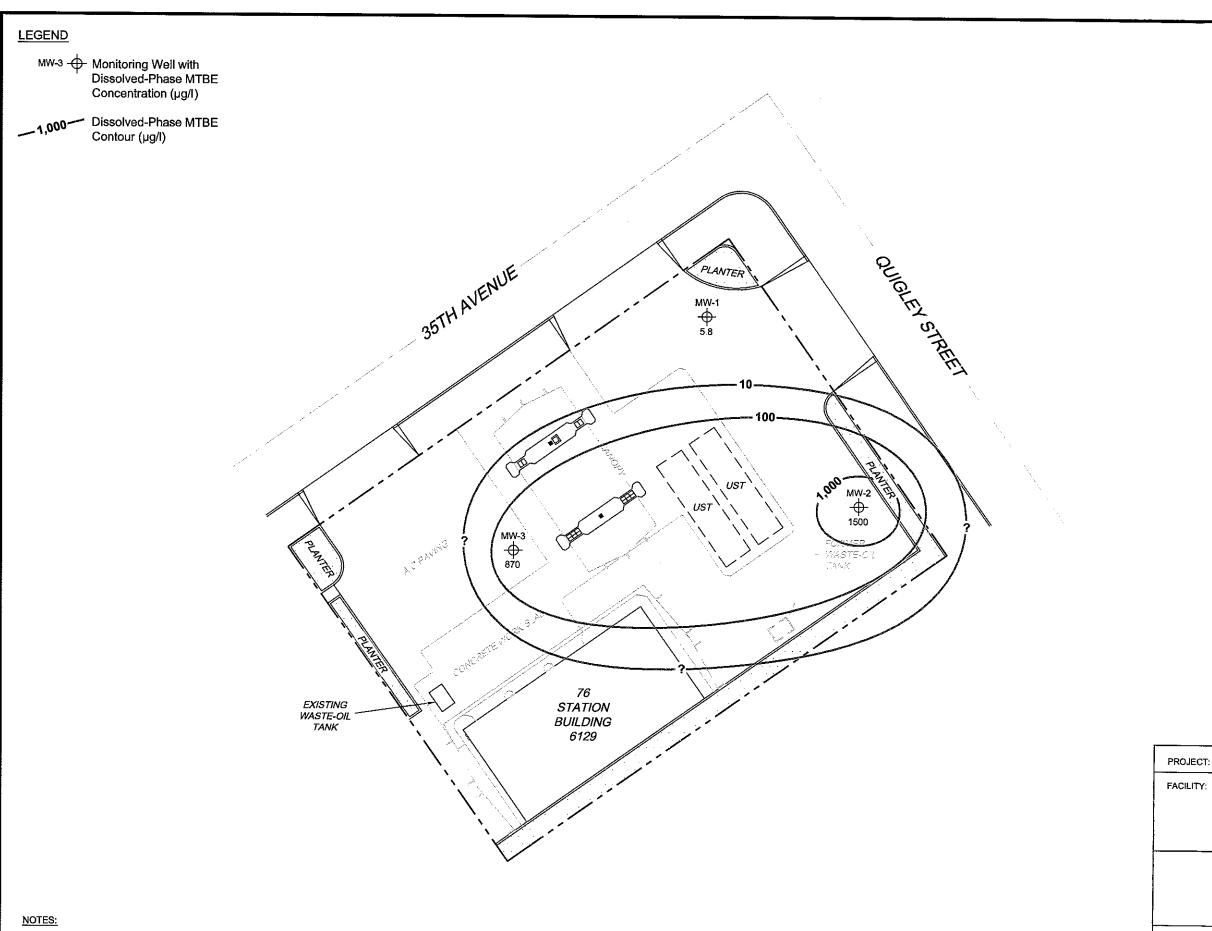


FIGURE 2

 μ g/I = micrograms per liter. ND = not detected at limit indicated on official laboratory report UST = underground storage tank.

FIGURE 4

SCALE (FEET)

154771

76 STATION 6129 3420 35TH AVENUE OAKLAND, CALIFORNIA

DISSOLVED-PHASE MTBE **CONCENTRATION MAP** November 25, 2008

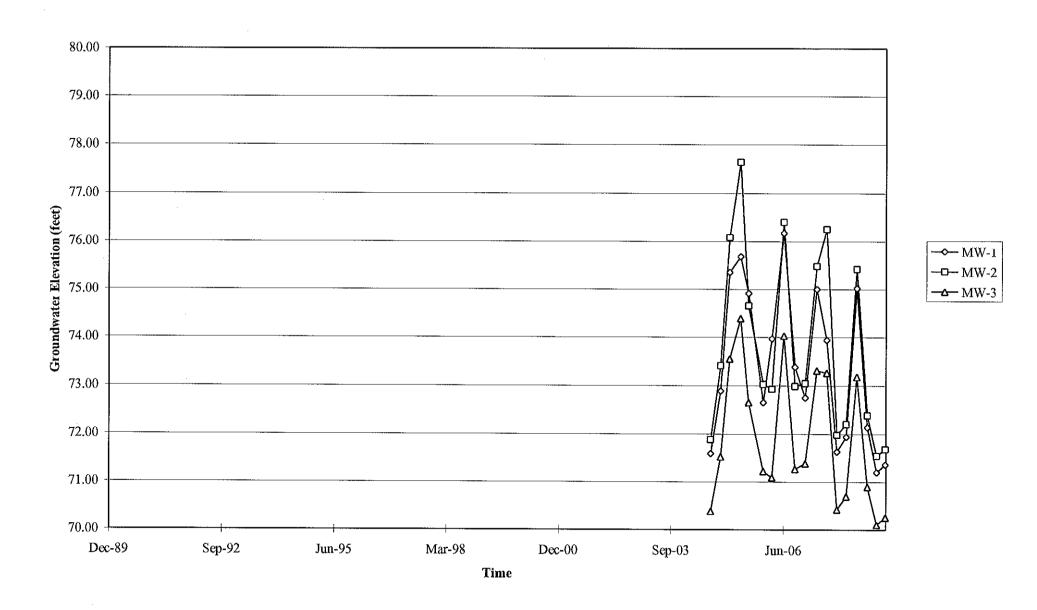
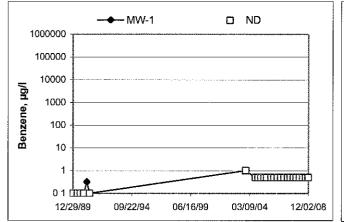
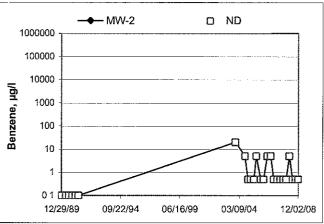


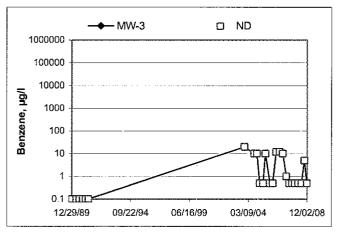
FIGURE 5

Contour lines are interpretive and based on laboratory analysis results of groundwater samples. MTBE = methyl tertiary butyl ether. µg/l = micrograms per liter. UST = underground storage tank. Results obtained using EPA Method 8260B

GRAPHS

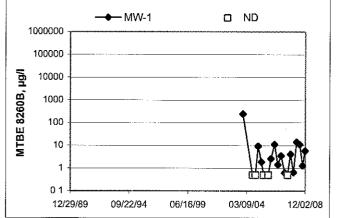

Groundwater Elevations vs. Time 76 Station 6129

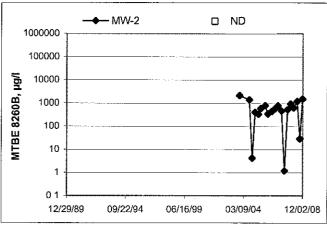


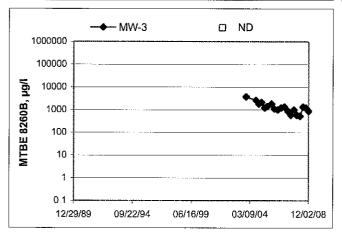

Elevations may have been corrected for apparent changes due to resurvey

Benzene Concentrations vs Time

76 Station 6129







MTBE 8260B Concentrations vs Time

76 Station 6129

GENERAL FIELD PROCEDURES

Groundwater Monitoring and Sampling Assignments

For each site, TRC technicians are provided with a Technical Service Request (TSR) that specifies activities required to complete the groundwater monitoring and sampling assignment for the site. TSRs are based on client directives, instructions from the primary environmental consultant for the site, regulatory requirements, and TRC's previous experience with the site.

Fluid Level Measurements

Initial site activities include determination of well locations based on a site map provided with the TSR. Well boxes are opened and caps are removed. Indications of well or well box damage or of pressure buildup in the well are noted

Fluid levels in each well are measured using a coated cloth tape equipped with an electronic interface probe, which distinguishes between liquid phase hydrocarbon (LPH) and water. The depth to LPH (if it is present), to water, and to the bottom of the well are measured from the top of the well casing (surveyors mark or notch if present) to the nearest 0.01 foot. Unless otherwise instructed, a well with less than 0.67 foot between the measured top of water and the measured bottom of the well casing is considered dry, and is not sampled. If the well contains 0.67 foot or more of water, an attempt is made to bail and/or sample as specified on the TSR.

Wells that are found to contain LPH are not purged or sampled. Instead, one casing volume of fluid is bailed from the well and the well is re-sealed Bailed fluids are placed in a container separate from normal purge water, and properly disposed

Purging and Groundwater Parameter Measurement

TSR instructions may specify that a well not be purged (no-purge sampling), be purged using low-flow methods, or be purged using conventional pump and/or bail methods. Conventional purging generally consists of pumping or bailing until a minimum of three casing volumes of water have been removed or until the well has been pumped dry. Pumping is generally accomplished using submersible electric or pneumatic diaphragm pumps

During conventional purging, three groundwater parameters (temperature, pH, and conductivity) are measured after removal of each casing volume. Stabilization of these parameters, to within 10 percent, confirm that sufficient purging has been completed. In some cases, the TSR indicates that other parameters are also to be measured during purging. TRC commonly measures dissolved oxygen (DO), oxidation-reduction potential (ORP), and/or turbidity. Instruments used for groundwater parameter measurements are calibrated daily according to manufacturer's instructions.

Low-flow purging utilizes a bladder or peristaltic pump to remove water from the well at a low rate. Groundwater parameters specified by the TSR are measured continuously until they become stable in general accordance with EPA guidelines.

Purge water is generally collected in labeled drums for disposal. Drums may be left on site for disposal by others, or transported to a collection location for eventual transfer to a licensed treatment or recycling facility. In some cases, purge water may be collected directly from the site by a licensed vacuum truck company, or may be treated on site by an active remediation system, if so directed.

Groundwater Sample Collection

After wells are purged, or not purged, according to TSR instructions, samples are collected for laboratory analysis. For wells that have been purged using conventional pump or bail methods, sampling is conducted after the well has recovered to 80 percent of its original volume or after two hours if the well does not recover to at least 80 percent. If there is insufficient recharge of water in the well after two hours, the well is not sampled.

Samples are collected by lowering a new, disposable, ½-inch to 4-inch polyethylene bottom-fill bailer to just below the water level in the well. The bailer is retrieved and the water sample is carefully transferred to containers specified for the laboratory analytical methods indicated by the TSR. Particular car e is given to containers for volatile organic analysis (VOAs) which require filling to zero headspace and fitting with Teflon-sealed caps.

After filling, all containers are labeled with project number (or site number), well designation, sample date, sample time, and the sampler's initials, and placed in an insulated chest with ice. Samples remain chilled prior to and during transport to a state-certified laboratory for analysis. Sample container descriptions and requested analyses are entered onto a chain-of-custody form in order to provide instructions to the laboratory. The chain-of-custody form accompanies the samples during transportation to provide a continuous record of possession from the field to the laboratory. If a freight or overnight carrier transports the samples, the carrier is noted on the form.

For wells that have been purged using low-flow methods, sample containers are filled from the effluent stream of the bladder or peristaltic pump. In some cases, if so specified by the TSR, samples are taken from the sample ports of actively pumping remediation wells.

Sequence of Gauging, Purging and Sampling

The sequence in which monitoring activities are conducted is specified on the TSR. In general, wells are gauged beginning with the least affected well and ending with the well that has the highest concentration based on previous analytic results. After all gauging for the site is completed, wells are purged and/or sampled from the least-affected to the most-affected well.

Decontamination

In order to reduce the possibility of cross contamination between wells, strict isolation and decontamination procedures are observed Portable pumps are not used in wells with LPH. Technicians wear nitrile gloves during all gauging, purging, and sampling activities. Gloves are changed between wells and more often if warranted. Any equipment that could come in contact with fluids are either dedicated a particular well, decontaminated prior to each use, or discarded after a single use. Decontamination consists of washing in a solution of Liqui-nox and water and rinsing twice. The final rinse is in deionized water.

Exceptions

Additional tasks or non-standard procedures, if any, that may be requested or required for a particular site, and noted on the site TSR, are documented in field notes on the following pages

3/7/08 version

FIELD MONITORING DATA SHEET

 Technician: JoE
 Job #/Task #: 154771 / FA20
 Date: 1/-25-08

 Site # 6129
 Project Manager A. Collins
 Page / of /

	X	0904	43.47	to Water 30.88 30.48	to Product	Thickness (feet)	Time Sampled /025	Misc. Well Notes
MW-2	X	0859 0904	43.47 43.56	30.48				2"
MW-2	X	0904	43.56	30.48				
					1		095/	2"
				27.74			1053	2"
								·
	,							
	:							
		,						
	**							
		٠						
							-	
FIELD DATA	€ OMPLE	ETE	QAV&C		cog	WI	ELL BOX	ONDITION SHEETS
MANIFEST		DRUM IN	VENTORY	<i>(</i>	TRAFFIC C	CONTROL		

GROUNDWATER SAMPLING FIELD NOTES

Technician: <u>JoE</u>

Project No.: <u>15477</u>/

Date://-25-08

Well NoMw-/	Purge Method: 54B
Depth to Water (feet): 30.88 Total Depth (feet) 43.47 Water Column (feet): 12.59 80% Recharge Depth(feet): 33.39	Depth to Product (feet): LPH & Water Recovered (gallons): Casing Diameter (Inches): 1 Well Volume (gallons): 3

Site: 6129

Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F.C)	pН	D O. (mg/L)	ORP	Turbidity
1004			3	821.2	18.6	7.22			
			6	845.4	19.2	6.87			
	1010		9	836.2	19.4	6.56			
Sta	tic at Time S	ampled	Tot	al Gallons Pu	rged		Sample	Time	
	33.39	·	9				102	5	
Comment	s:					·			

Well No. MW-2	Purge Method: J-SuB HB
Depth to Water (feet): 30.48	Depth to Product (feet):
Total Depth (feet) 43.56	LPH & Water Recovered (gallons):
Water Column (feet): 13.08	Casing Diameter (Inches): 2 "
80% Recharge Depth(feet): 33.89	1 Well Volume (gallons): 3

	32.3/		9				0951	<u> </u>	
Sta	tic at Time Sa	ampled	Tota	al Gallons Pu	ged		Sample		
		<u></u>							
	0947		9	825.6	18.6	6.80			
			6	839.3	18.4	6.90			
093/			3	717.7	18.3	7.45			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidit

GROUNDWATER SAMPLING FIELD NOTES

		Tech	nnician:	JOE					
617 Site: - M 1	29 N-3 JL	Proje	ect No.: 15	5477/			Date:_	//-25	5-08
Well No/	nw-3			Purge Metho	d:プし _	HB.	suß		
Total Depth	(feet)	29.74 39.43 9.69 _{eet):} 31.67		Depth to Pro	duct (feet): r Recovered (g eter (Inches):_ ne (gallons):	nallons):			
Time Start	Time Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	рН	D.O. (mg/L)	ORP	Turbidity
1035	1039		2 4 6	612.3 728.2 769.3	19.0	7.60 7.20 7.05			
Stat	ic at Time Sa		Tot	al Gallons Pu	rged		Sample	Time 53	
							,		
Well No		<u> </u>		Purge Metho	od:				
Depth to W	/ater (feet):			Depth to Pro	oduct (feet):		* * * * * * * * * * * * * * * * * * *		
Total Depti	r (feet)				r Recovered (
Water Colu				_	neter (Inches):			· · · ·	
80% Recha	arge Depth(fe	eet):		1 Well Volur	ne (gallons):				
Time Start	Timė Stop	Depth to Water (feet)	Volume Purged (gallons)	Conduc- tivity (uS/cm)	Temperature (F,C)	pН	D.O. (mg/L)	ORP	Turbidity
Sta	 tic at Time S	ampled	To	tal Gallons Pu	rged		Sample	Time	
Comment	 s:		<u> </u>						

Date of Report: 12/08/2008

Anju Farfan

TRC

21 Technology Drive Irvine, CA 92618

RE:

6129

BC Work Order:

0815643

Invoice ID:

B054115

Enclosed are the results of analyses for samples received by the laboratory on 11/25/2008. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Contact Person: Molly Meyers

Client Service Rep

Authorized Signature

21 Technology Drive Irvine, CA 92618

Project: 6129

Project Number: Inone! Project Manager: Anju Farfan

Reported: 12/08/2008 11:30

Laboratory / Client Sample Cross Reference

Laboratory	Client Sample Informatio	on .			
0815643-01	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 6129 MW-1 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	11/25/2008 21:20 11/25/2008 10:25 Water	Delivery Work Order: Global ID: T0600101465 Location ID (FieldPoint): MW-1 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0815643-02	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 6129 MW-2 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	11/25/2008 21:20 11/25/2008 09:51 Water	Delivery Work Order: Global ID: T0600101465 Location ID (FieldPoint): MW-2 Matrix: W Sample QC Type (SACode): CS Cooler ID:
0815643-03	COC Number: Project Number: Sampling Location: Sampling Point: Sampled By:	 6129 MW-3 TRCI	Receive Date: Sampling Date: Sample Depth: Sample Matrix:	11/25/2008 21:20 11/25/2008 10:53 Water	Delivery Work Order: Global ID: T0600101465 Location ID (FieldPoint): MW-3 Matrix: W Sample QC Type (SACode): CS Cooler ID:

21 Technology Drive Irvine, CA 92618

Project: 6129

Project Number: Inone! Project Manager: Anju Farfan

Reported: 12/08/2008 11:30

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID:	0815643-01	Client Sample	e Name:	6129, MW-1	, 11/25/2	2008 10:25:0	OAM							
							Prep	Run		Instru-		QC	МВ	Lab
Constituent		Result	Units	PQL	MDL	Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene		ND	ug/L	0.50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	1	BRL0323	ND	
1;2-Dibromoethane		ND	ug/L	0.50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	1	BRL0323	ND	
1,2-Dichloroethane		ND	ug/L	0.50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	1	BRL0323	ND	
Ethylbenzene		ND	ug/L	0,50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ND	
Methyl t-butyl ether		5.8	ug/L	0,50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	1	BRL0323	ND	
Toluene		ND	ug/L	0.50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	í	BRL0323	ND	
Total Xylenes		ND	ug/L	1.0		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ND	
t-Amyl Methyl ether		ND	ug/L	0.50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ИD	
t-Butyl alcohol		ND	ug/L	10		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ND	
Diisopropyl ether		ND	ug/L	0.50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ND	
Ethanol		ND	ug/L	250		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ND	
Ethyl t-butvl ether		ND	ug/L	0.50		EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ND	
Total Purgeable Petroleum Hydrocarbons		ND	ug/L	. 50	·	EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	i	BRL0323	ND	
1,2-Dichloroethane-d4 (Sur	rogate)	97.6	%	76 - 114 (LCL -	UCL)	EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	1	BRL0323		
Toluene-d8 (Surrogate)		95.7	%	88 - 110 (LCL -	UCL)	EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	1	BRL0323		
4-Bromofluorobenzene (Su	rrogate)	100	%	86 - 115 (LCL -	UCL)	EPA-8260	12/03/08	12/04/08 08:36	SDU	MS-V10	1	BRL0323		

21 Technology Drive Irvine, CA 92618

Project: 6129

Project Number: Inonei Project Manager: Anju Fartan

Reported: 12/08/2008 11:30

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0815643-0	2 Client Sam	ole Name:	6129, MW-2, 11/	25/2008 9:51:0	0AM							
					Prep	Run		Instru-		QC	МВ	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	í	BRL0323	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	í	BRL0323	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323	ND	
Methyl t-butyl ether	1500	ug/L	12	EPA-8260	12/03/08	12/05/08 00:13	SDU	MS-V10	25	BRL0323	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323	ND	
t-Amvi Methvi ether	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323	ND	
t-Butyl alcohol	ND	ug/L	10	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	i	BRL0323	ND	
Diisopropyl ether	19	ug/L	0,50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323	ND	
Ethanol	ND	ug/L	250	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	í	BRL0323	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1 .	BRL0323	ND	
Total Purgeable Petroleum Hydrocarbons	500	ug/L	50	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	96.9	%	76 - 114 (LCL - UCL	EPA-8260	12/03/08	12/05/08 00:13	SDU	MS-V10	25	BRL0323		
1,2-Dichloroethane-d4 (Surrogate)	99.0	%	76 - 114 (LCL - UCL)	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323		
Toluene-d8 (Surrogate)	97.8	%	88 - 110 (LCL - UCL)	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	1	BRL0323		
Toluene-d8 (Surrogate)	96.2	%	88 - 110 (LCL - UCL)	EPA-8260	12/03/08	12/05/08 00:13	SDU	MS-V10	25	BRL0323		
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260	12/03/08	12/05/08 00:13	SDU	MS-V10	25	BRL0323		
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL)	EPA-8260	12/03/08	12/04/08 08:54	SDU	MS-V10	i	BRL0323		

21 Technology Drive Irvine, CA 92618

Project: 6129

Project Number: Inonei Project Manager: Anju Farfan

Reported: 12/08/2008 11:30

Volatile Organic Analysis (EPA Method 8260)

BCL Sample ID: 0815643-03	Client Sample	e Name:	6129, MW-3, 11/	25/2008 10:53:	DOAM .							
					Prep	Run		lnstru-		QC	MB	Lab
Constituent	Result	Units	PQL MD	L Method	Date	Date/Time	Analyst	ment ID	Dilution	Batch ID	Bias	Quals
Benzene	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
1,2-Dibromoethane	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
1,2-Dichloroethane	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
Ethylbenzene	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
Methyl t-butyl ether	870	ug/L	6.2	EPA-8260	12/03/08	12/03/08 22:36	SDU	MS-V10	12.500	BRL0323	ND	A01
Toluene	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
Total Xylenes	ND	ug/L	1.0	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
t-Amyl Methyl ether	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
t-Butvl alcohol	ND	ug/L	10	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
Diisopropyl ether	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	1	BRL0323	ND	
Ethanol	ND	ug/L	250	EPA-8260	12/03/08	12/04/08 21:07	.SDU	MS-V10	1	BRL0323	ND	
Ethyl t-butyl ether	ND	ug/L	0.50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	í	BRL0323	ND	
Total Purgeable Petroleum Hydrocarbons	380	ug/L	50	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	í	BRL0323	ND	A90
1,2-Dichloroethane-d4 (Surrogate)	96.3	%	76 - 114 (LCL - UCL	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	î	BRL0323		
1,2-Dichloroethane-d4 (Surrogate)	96.0	%	76 - 114 (LCL - UCL	EPA-8260	12/03/08	12/03/08 22:36	SDU	MS-V10	12.500	BRL0323		
Toluene-d8 (Surrogate)	93,9	%	88 - 110 (LCL - UCL	EPA-8260	12/03/08	12/04/08 21:07	ŞDU	MS-V10	į	BRL0323		
Toluene-d8 (Surrogate)	95.4	%	88 - 110 (LCL - UCL	EPA-8260	12/03/08	12/03/08 22:36	SDU	MS-V10	12,500	BRL0323		
4-Bromofluorobenzene (Surrogate)	104	%	86 - 115 (LCL - UCL	EPA-8260	12/03/08	12/03/08 22:36	SDU	MS-V10	12.500	BRL0323		
4-Bromofluorobenzene (Surrogate)	102	%	86 - 115 (LCL - UCL	EPA-8260	12/03/08	12/04/08 21:07	SDU	MS-V10	i	BRL0323		

21 Technology Drive Irvine, CA 92618

Project: 6129

Project Number: Inonel Project Manager: Anju Farfan

Reported: 12/08/2008 11:30

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Precision & Accuracy

										<u>Contr</u>	<u>ol Limits</u>
			Source	Source		Spike			Percent		Percent
Constituent	Batch ID	QC Sample Type	Sample ID	Result	Result	Added	Units	RPD	Recovery	RPD	Recovery Lab Quals
Benzene	BRL0323	Matrix Spike	0815616-01	0	24.060	25.000	ug/L		96.2		70 - 130
		Matrix Spike Duplicate	0815616-01	0	27.020	25:000	ug/L	11.6	108	20	70 - 130
Toluene	BRL0323	Matrix Spike	0815616-01	0.12000	23.650	25.000	ug/L	**	94.1		70 - 130
		Matrix Spike Duplicate	0815616-01	0.12000	27.720	25,000	ug/L	15.6	110	20	70 - 130
1,2-Dichloroethane-d4 (Surrogate)	BRL0323	Matrix Spike	0815616-01	ND	9.5700	10.000	ug/L		95.7		76 - 114
		Matrix Spike Duplicate	0815616-01	ND	9.3300	10.000	ug/L		93.3		76 - 114
Toluene-d8 (Surrogate)	BRL0323	Matrix Spike	0815616-01	ND	9.7100	10.000	ug/L		97.1		88 - 110
		Matrix Spike Duplicate	0815616-01	ND .	9.9000	10.000	ug/L		99.0		88 - 110
4-Bromofluorobenzene (Surrogate)	BRL0323	Matrix Spike	0815616-01	ND	10.050	- 10,000	ug/L		100		86 - 115
		Matrix Spike Duplicate	0815616-01	ND	10.000	10.000	ug/L		100		86 - 115

21 Technology Drive Irvine, CA 92618

Project: 6129

Project Number: Inonei Project Manager: Anju Farfan

Reported: 12/08/2008 11:30

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Laboratory Control Sample

	•									Control	<u>Limits</u>	
Constituent	Batch ID	QC Sample ID	QC Type	Result	Spike Level	PQL	Units	Percent Recovery	RPD	Percent Recovery	RPD	Lab Quals
Benzene	BRL0323	BRL0323-BS1	LCS	23.690	25.000	0.50	ug/L	94.8		70 - 130		
Toluene	BRL0323	BRL0323-BS1	LCS	23.860	25.000	0.50	ug/L	95.4		70 - 130		
1,2-Dichloroethane-d4 (Surrogate)	BRL0323	BRL0323-BS1	LCS	9,3300	10.000		ug/L	93.3		76 - 114		
Toluene-d8 (Surrogate)	BRL0323	BRL0323-BS1	LCS	9.8200	10.000		ug/L	98.2		88 - 110		
4-Bromofluorobenzene (Surrogate)	BRL0323	BRL0323-BS1	LCS	10.330	10.000		ug/L	103		86 - 115		

TRC 21 Technology Drive Irvine, CA 92618

Project: 6129

Project Number: Inonel
Project Manager: Anju Farfan

Reported: 12/08/2008 11:30

Volatile Organic Analysis (EPA Method 8260)

Quality Control Report - Method Blank Analysis

Constituent	Batch ID	QC Sample ID	MB Result	Units	PQL	MDL	Lab Quals
Benzene	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
1,2-Dibromoethane	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
1,2-Dichloroethane	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
Ethylbenzene	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
Methyl t-butyl ether	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
Toluene	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
Total Xylenes	BRL0323	BRL0323-BLK1	ND	ug/L	1.0		
t-Amyl Methyl ether	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
t-Butyl alcohol	BRL0323	BRL0323-BLK1	ND	ug/L	10		
Diisopropyl ether	BRL0323	BRL0323-BLK1	ND	ug/L	0,50		
Ethanol	BRL0323	BRL0323-BLK1	ND	ug/L	250		
Ethyl t-butyl ether	BRL0323	BRL0323-BLK1	ND	ug/L	0.50		
Total Purgeable Petroleum Hydrocarbons	BRL0323	BRL0323-BLK1	ND	ug/L	50		
1,2-Dichloroethane-d4 (Surrogate)	BRL0323	BRL0323-BLK1	98.3	%	76 - 114 (LCL	- UCL)	
Toluene-d8 (Surrogate)	BRL0323	8RL0323-BLK1	95.9	%	88 - 110 (LCL	- UCL)	
4-Bromofluorobenzene (Surrogate)	BRL0323	BRL0323-BLK1	104	%	86 - 115 (LCL	- UCL)	

Project: 6129

Project Number: [none]

Project Number: [none]
Project Manager: Aniu Fartan

Reported: 12/08/2008 11:30

Notes And Definitions

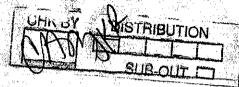
21 Technology Drive

Irvine, CA 92618

TRC

MDL Method Detection Limit

ND Analyte Not Detected at or above the reporting limit


PQL Practical Quantitation Limit

RPD Relative Percent Difference

A01 PQL's and MDL's are raised due to sample dilution.

A90 TPPH does not exhibit a "gasoline" pattern. TPPH is entirely due to MTBE.

BC LABORATORIES INC.	عاديبين سے مستحد ہے۔	SAMPLE	RECEIP'	T FORM	Rev	/. No. 12	06/24/08	Page _	I Of [
Submission #:0050					-							
SHIPPING INFOR	MATION					SHIPPIN	IG CON	FAINER				
	Hand Deliv			le	ce Chest		None					
BC Lab Field Service Other	□ (Specify))			Box		Othe	r □ (Spec	ify)			
			<u>}</u>									
Refrigerant: Ice ☐ Blue Ice ☐	None	□ Oth	ner 🗆 🔾	omment	s:		-		110	Kalendaria.		
Custody Seals lice@nest:⊞	Containe	is [a]	None	Comme	nts:							
\$560/690-0000-0000-0000-0000-0000-0000-000	Intact? Yes											
All samples received? Yes ☑ No□	All samples	containers	intact? Ye	s Z No E]	Descripti	on(s) mate	h COC? Y	es D No [)		
COC Received E	missivity: _	980	ontainer	מטט ד	hermomet	or In. 7/1/	4.3	Date/Time	2135	~\$		
I DATES TO NO.								Date/Time <u>11-25-0</u> 8				
Т	emperature:	A_4_	<u>3°</u>	0 / C	4.2	°C		Analyst li	ilt Flen			
	T				SAMPLE	U (MRCDS	·					
SAMPLE CONTAINERS	1	2	3	4	5	6	7	8	g	10		
OT GENERAL MINERALI GENERAL PHYSICAL												
PT PE UNPRESERVED	•											
OT INORGANIC CHEMICAL METALS												
PT INORGANIC CHEMICAL METALS												
PT CYANIDE												
PT NITROGEN FORMS							,					
PT TOTAL SULFIDE												
202 NITRATE / NITRITE												
PT TOTAL ORGANIC CARBON					a,							
PT TOX										l		
PT CHEMICAL OXYGEN DEMAND												
PLA PHENOLICS	.			·		<u> </u>			Single and the second s			
40ml VOA VIAL TRAVEL BLANK	1 2	12-2	0.2	<u> </u>				·	And the state			
40mi VOA VIAL	A3	H3	MO	(()	()	, ()	1 -	()	()		
QT EPA 413.1, 413.2, 418.1									(
PT ODOR						ļ		ļ				
RADIOLOGICAL				· · · · · ·	<u></u>	 	· · ·					
BACTERIOLOGICAL	- -		·		 -				<u> </u>			
40 ml VOA VIAL 504						and the s			 			
OT EPA 508/608/8089						<u> </u>		 	 			
OT EPA 515.1/8150 OT EPA 525					 	 -						
OT EPA 525 TRAVEL BLANK	 					<u> </u>		 -				
100ml EPA 547	 	<u> </u>	 									
100ml EPA 531.1						 			-			
OT EPA 548												
OT EPA 549												
OT EPA 632						1						
OT EPA 8015M						 						
OT AMBER						T						
8 OZ. JAR												
32 OZ. JAR					L				15			
SOIL SLEEVE			30.75									
PCB VIAL									<u> </u>			
PLASTIC BAG								<u> </u>				
FERROUS IRON				3			<u> </u>	<u> </u>	 			
ENCORE	1								<u> </u>			
Comments:	-AV			100	9100				·	· · · ·		

BC LABORATORIES, INC.

4100 Atlas Court Bakersfield, CA 93308 (661) 327-4911 FAX (661) 327-1918

BOD MBAS C OO CHAIN OF CUSTOD

Bill to: Conoco Phillips/ TRC	Consultant Firm: TRC 21 Technology Drive Irvine, CA 92618-2302 Attn: Anju Farfan 4-digit site#: 6129		MATRIX	Gas by 8015		ates	BTEX/MTBE/OXYS BY 8260B,				Personal Bill Account		
Address: 3420 35TH AVC.			(GW) Ground- water (S) Soil					by 8260B	GC/MS		¥.	Requested	
City: oakland			(WW)	24 B,	5	gen						tedn	
	Workorder #045%	Waste-	by 8021B,	15N 7 80	8260 full list w/ oxygenates						ne F		
State: CA Zip:	Project #: 15477	water (SL)	E by	y 80 L b							Ė		
Conoco Phillips Mgr. Grayson	Sampler Name: Jo		Sludge	MTB	AS b IESE	¥ = 1	MTB	705	3 by	. }		ommo	
	Field Point Name	Date & Time Sampled		BTEX/MTBE	TPH GAS by 8015M TPH DIESEL by 8015	8260 fi	BTEX/	ETHANOL	TPH –G			Turnaround Time	
	Mw-1	11-25-08 1025	GW	2			X	X	X			571	
-2		0951											
-3	MW-2 MW-3	1053	V				V	V	V			V	
											6.4		
						7							
		-											
Comments:	Relinquished by (Signature) See D. Seuri				Received by: Date & Time refridgers Tox 11-25-08 1535							535	
GLOBAL ID: 70600101465 Religioushed by: (Signature) Religioushed by: (Signature)			· · · · · · · · · · · · · · · · · · ·		Receive	d by)		- 1	Date	& Tir	Time 5/0 X 1535		
	/ Loss Wi	rc	5.71	Refugue 11-25-08							gar.		

STATEMENTS

Purge Water Disposal

Non-hazardous groundwater produced during purging and sampling of monitoring was accumulated at TRC's groundwater monitoring facility at Concord, California, for transportation by a licensed carrier, to the ConocoPhillips Refinery at Rodeo, California Disposal at the Rodeo facility was authorized by ConocoPhillips in accordance with "ESD Standard Operating Procedures — Water Quality and Compliance", as revised on February 7, 2003 Documentation of compliance with ConocoPhillips requirements is provided by an ESD Form R-149, which is on file at TRC's Concord Office Purge water suspected of containing potentially hazardous material, such as liquid-phase hydrocarbons, was accumulated separately in a drum for transportation and disposal by others.

Limitations

The fluid level monitoring and groundwater sampling activities summarized in this report have been performed under the responsible charge of a California Registered Geologist or Registered Civil Engineer and have been conducted in accordance with current practice and the standard of care exercised by geologists and engineers performing similar tasks in this area. No warranty, express or implied, is made regarding the conclusions and professional opinions presented in this report. The conclusions are based solely upon an analysis of the observed conditions. If actual conditions differ from those described in this report, our office should be notified.