

July 19, 1995

Ms. Juliet Shin
Senior Hazardous Materials Specialist
Alameda County Department of Environmental Health
Environmental Protection Division
1131 Harbor Bay Parkway, #250
Alameda, California 94502-6577

SUBJECT:

Preliminary Site Assessment (PSA) Report

Alameda Federal Center

620 Central Avenue, Alameda, California

STID 4655

Dear Ms. Shin:

Please find enclosed the PSA Report for the above-referenced project. This report has been prepared by Cape Environmental Management Inc (CEMI) on behalf of the General Services Administration (GSA) to assess lateral and vertical extent and severity of observed soil and ground water contamination due to underground storage tank releases.

CEMI and the GSA will await Department of Environmental Health review and comment of the PSA prior to commencing further assessment activitities, however contracting procedures for the removal of Tanks 3 and 4 are proceeding.

If you have further questions or require additional information, please contact us at (310) 532-4500.

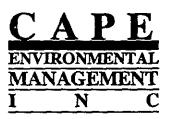
Respectfully Submitted,

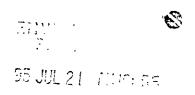
Law M. Harler

Larry M. Harlan Project Geologist

Kenneth W. Pitchford

mut D. Pcholfes


R.G. # 4135 C.E.G.# 1461 Senior Geologist


Attachment

cc:

Richard Chiu/GSA Region 9

Project File

Preliminary Site Assessment Report

Alameda Federal Center 620 Central Avenue Alameda, California

CEMI Project No. 2403C.16

prepared for:

General Services Administration, Pacific Rim Region 525 Market Street San Francisco, California 94105-2799

prepared by:

Cape Environmental Management Inc 20280 South Vermont Avenue Suite 250 Torrance, California 90502

July 1995

TABLE OF CONTENTS

			Page								
1.0	INTRO	DDUCTION									
	1.1	Site Description	. 1								
	1.2	Previous Site Investigations	. 1								
2.0	PROJE	ECT DESCRIPTION	. 3								
	2.1	Soil Investigation Methodology									
		2.1.1 Drilling and Sampling Methods	. 3								
		2.1.2 Sample Preparation and Handling	. 4								
		2.1.3 Laboratory Testing									
	2.2	Groundwater Investigation Methodology									
	•	2.2.1 Monitoring Well Installations									
		2.2.2 Well Development, Purging, and Sampling									
		2.2.3 Sample Preparation and Handling									
		2.2.4 Laboratory Testing									
3.0	HYDR	OGEOLOGIC CONDITIONS	. 7								
4.0	SOIL	INVESTIGATION RESULTS	8								
7.0	4.1	Tank 1 and 2 Area									
	4.2	Tank 3 and 4 Area									
	7.2										
5.0	GROU	GROUNDWATER INVESTIGATION RESULTS									
	5.1	Tank 1 and 2 Area	10								
	5.2	Tank 3 and 4 Area	10								
	5.3	Groundwater Gradient Determination	11								
6.0	CONC	LUSIONS AND RECOMMENDATIONS	12								
	6.1	Conclusions									
	6.2	Recommendations									
TABL	<u>ES</u>										
Table	1	Summary of Analytical Results - Petroleum and Volatile Compounds (Soil))								
Table	2	Summary of Analytical Results - Polynuclear Aromatic Compounds (Soil)									
Table	3	Summary of Analytical Results - Petroleum Compounds (Water)									
Table	4	Summary of Analytical Results - Volatile Halocarbons and Polynuclear									
		Aromatic Compounds (Water)									
Table	5	Static Water Level (SWL) Measurements									

FIGURES

Figure 1 - Site Vicinity Map

Figure 2 - Site Map

Figure 3 - Tank 1 and 2 Area/Boring Locations

Figure 4 - Tank 3 and 4 Area/Boring Locations

Figure 5 - Groundwater Gradient Map

APPENDICES

Appendix A - Drilling Permit/Application - Zone 7 Water Agency

Appendix B - Boring Logs/Well Construction Details

Appendix C - Well Development Logs

Appendix D - Groundwater Monitor Well Sampling and Field Data Sheet

Appendix E - Monitoring Well Survey Data

Appendix F - Certified Laboratory Reports and Sample Chain-of-Custody Documentation

Section 1 Introduction

On behalf of General Services Administration (GSA), Cape Environmental Management Inc (CEMI) has performed a Preliminary Site Assessment (PSA) of the Alameda Federal Center, located at 620 Central Avenue, Alameda, California. The purpose of the PSA is to investigate the extent of soil and ground water contamination, due to underground storage tank (UST) releases, observed during soil and groundwater testing activities.

1.1 Site Description

The site is located in the northwest portion of the City of Alameda, approximately 500 feet east of the San Francisco Bay shoreline, and is situated in a relatively flat tidal plain area which slopes gently towards the bay. The site covers an approximate area of 10 acres and maintains several building structures used for administrative office and storage functions. Figure 1 - Site Vicinity Map depicts the subject site vicinity. Figure 2 - Site Map depicts location and orientation of the subject site.

1.2 Previous Site Investigations

Previous site investigation information was obtained from a report titled <u>Preliminary Report on Tank Removal</u>, Site Investigation, Additional Investigation and Tank Closure Plans, dated May 1994 and prepared by TKS Consulting Ltd. It is reported that on January 27, 1994, a 1,000-gallon gasoline/waste oil UST (Tank 1) and a 5,000-gallon unleaded gasoline UST (Tank 2) were removed from the site.

In addition, during excavation activities to locate a reported 550-gallon diesel fuel UST, two (2) 10,000-gallon USTs were discovered (Tanks 3 and 4) in the northwest portion of the site. These two USTs were reported full of an extremely heavy black hydrocarbon with water, grease, and sandy sediment on the bottom. Laboratory analyses of the material contained in Tank 3 indicated the presence of diesel fuel, oil and grease, and concentrations of the metals chromium, nickel, lead, and zinc, at 22 milligrams per kilogram (mg/kg), 33 mg/kg, 10 mg/kg, and 47 mg/kg, respectively. Analysis of Tank 4 contents indicated the presence of diesel fuel, and concentrations of the metals chromium, nickel, and zinc at 17 mg/kg, 21 mg/kg, and 15 mg/kg, respectively, and ethylbenzene at 12 micrograms per kilogram (μ g/kg) and total xylenes at 64 μ g/kg. The tanks were decommissioned around 1950 and had been partially filled with sand and covered, leaving the fill ports open. Efforts to pump out the tank contents failed, due to the occurrence of rocks and a hardened clay material which plugged the vacuum hose.

Prior to the removal of Tanks 1 and 2, soil borings were advanced adjacent to each tank and soil samples were obtained for laboratory chemical analyses. Analysis of soil samples obtained from borings near Tank 1 identified concentrations up to 57 mg/kg total petroleum hydrocarbons as diesel (TPHd), up to 120 mg/kg oil and grease, 1.5 mg/kg total petroleum hydrocarbons as gasoline (TPHg), 20 μ g/kg toluene, 11 μ g/kg ethylbenzene, 75 μ g/kg total xylenes, 7 μ g/kg trichloroethene (TCE), and traces of several heavy metals. Soil samples

collected from borings near Tank 2 identified concentrations of 12 mg/kg fluoranthene and 26 mg/kg pyrene. Soil samples collected from borings near Tanks 3 and 4 identified concentrations of up to 5,100 mg/kg TPHd, oil and grease up to 19,000 mg/kg, 18 mg/kg fluoranthene, and 35 mg/kg pyrene.

Three of the soil borings were converted to monitoring wells (MW1, MW2 and MW3). MW1 is located near Tank 1; MW2 was installed near Tank 2 and was apparently damaged during construction and rendered unusable; and MW3 is located near Tanks 3 and 4. The wells were installed to a total depth of 14 feet below ground surface (bgs), with a screened interval from about 4 to 13 feet bgs, and are constructed of 2-inch nominal diameter PVC casing. Water samples collected from MW1 identified concentrations of 0.52 milligrams per liter (mg/L) total petroleum hydrocarbons as motor oil (TPHmo), 0.6 micrograms per liter (μ g/L) benzene, 0.4 μ g/L ethylbenzene, 3.0 μ g/L trichloroethene (TCE), 1.0 μ g/L tetrachloroethene (PCE), and 1.5 μ g/L 1,2-dichloroethene (DCE). MW3 was not sampled, however free product was observed.

Three soil samples were obtained during the removal of Tanks 1 and 2. Laboratory analyses of a soil sample obtained from a depth of 7-feet at the west-side bottom of excavation at Tank 1 identified concentrations of 180 mg/kg oil and grease, 2.9 mg/kg TPHmo, and not detected for TPHd, TPHg, and BTEX. Analyses of a soil sample obtained from a depth of 11-feet at the middle-center of excavation at Tank 2 identified a concentration of 5.1 mg/kg TPHmo and not detected for TPHd, TPHg, and BTEX. The third soil sample was obtained along the product line from Tank 2 and contained TPHmo at a concentration of 3.1 mg/kg, and not detected for TPHd, TPHg, and BTEX.

Section 2 Project Description

This Section describes details of the field and laboratory activities conducted during this preliminary site assessment to include general drilling techniques, soil sampling, groundwater monitoring well installation, soil and water sample handling, and laboratory testing methodologies. Field work was conducted on May 16, 17, and 18, 1995. For convenience of report presentation the subject site has been divided into the following two areas: Tank 1 and 2 Area, and Tank 3 and 4 Area. Figure 3 - Tank 1 and 2 Area/Boring Location depicts the location and orientation of the former USTs and the location of soil borings and monitoring wells that were utilized for this PSA. Figure 4 - Tank 3 and 4 Area/Boring Location depicts the location and orientation of the two existing USTs and the location of soil borings and existing monitoring well that were utilized for this assessment.

2.1 Soil Investigation Methodology

A detailed subsurface investigation was performed, consisting of drilling activities for soil test borings, monitoring well installations, soil sampling, and laboratory analysis. For this study, seven (7) test borings were drilled at selected locations in order to collect soil samples, observe general subsurface hydrogeologic conditions, and install monitoring wells. One of the test borings (TB1-A) was an unsuccessful attempt to drill, having met drill refusal at approximately 4-feet depth. Test boring TB1 was successfully drilled to the target depth of 15-feet. Also, a damaged existing groundwater monitoring well (MW2) was replaced and designated MW2-R. Soil samples were obtained from the borings at approximate five-foot depth intervals, including samples at the soil/water interface and at any change in lithology. Following field screening, selected samples were laboratory tested for various organic constituents. Prior to commencement of field activities, a site health and safety plan was prepared detailing potential physical and chemical hazards, emergency response procedures, and other related topics.

2.1.1 Drilling and Sampling Methods

Drilling services were performed by West Hazmat Drilling Corporation of Newark, California (C57 license #554979). Prior to drilling activities, a drilling permit (Permit #95294) was obtained from the Alameda County Flood Control and Water Conservation District (Zone 7). The drilling permit is included as Appendix A.

Soil borings completed during the present investigation were advanced using a truck-mounted mobile B-57 drill rig with an 8-inch outside diameter continuous flight hollow-stem auger. Following soil sample collection the boreholes were either sealed with Type I-II Portland neat cement concrete from total depth to surface or were completed as monitoring wells.

Drilling spoils generated from the test borings are temporarily stored on-site in DOT-approved 55-gallon sealed steel drums. Soil sample chemical test results will be used to evaluate the appropriate disposal method(s) for the spoils material. Following transport and disposal of the drilling spoils, manifests will be forwarded to the Alameda County

ENV\GSA\2403C.16\ALAMEDA PSA

Department of Environmental Health - Environmental Protection Division.

Soil samples were collected in 2.5-inch diameter brass sample sleeves contained in an 18 inch-long California-modified split-spoon drive sampler advanced below the lead auger by repeated blows of a 140-pound drop hammer. Samples were generally collected at five (5), ten (10), and fifteen (15) foot depth intervals for logging and initial screening. Logging included visual, tactile and olfactory observations of soil physical characteristics and were described according to the Unified Soil Classification System and other appropriate descriptors. Geologic logs of all soil test borings are provided in Appendix B -Soil Boring Logs/Well Construction Details. Also indicated on the boring logs are the drilling method utilized at each test boring location, total depth of each boring, monitoring well construction details, and other relevant information.

Appropriate decontamination procedures were followed for all soil collection and handling activities to assure sample representativeness and avoid sample contamination and formation cross-contamination. Specifically, all drill augers were cleaned using a high-pressure steam cleaner prior to contacting the formation, and all drive sampler components were thoroughly decontaminated by brushing and agitation in Alconox laboratory detergent solution followed by triple-rinsing in clear tap water obtained from an on-site drinking water source.

All soil samples were screened by ambient temperature headspace (ATH) methods for indications of hydrocarbon contamination, and results of the headspace readings were recorded on the boring logs. The ATH method involves placing approximately 5 cubic inches of soil into a sealed polyethylene bag and allowing the soil temperature to equilibrate for approximately 15 minutes under ambient air temperature conditions. At that time, the probe of a portable organic vapor meter (OVM) or photo-ionization detector (PID), calibrated with 100 ppm isobutylene, was inserted into the bag headspace and the reading recorded. Samples of material exhibiting an OVM response, and other potential indications of contamination were selected for laboratory analysis.

2.1.2 Sample Preparation and Handling

Selected soil samples were sealed with Teflon sheets, capped, labelled, placed in a pre-cooled ice chest for preservation at 4° Celsius, and transferred under Chain-of-Custody documentation to a state-certified hazardous waste analytical laboratory. All holding times, sample preservation, and other applicable protocols were observed during sample preparation, handling, and transportation.

2.1.3 Laboratory Testing

Chemical analyses of the selected soil samples were performed by Curtis & Tompkins, Ltd., a California Department of Health Services-certified hazardous waste analytical laboratory located in Berkeley, California. Laboratory analyses consisted of the following U.S. EPA-approved procedures:

Hydrocarbon Oil and Grease (O&G) using Test Method SMWW 5520;

- Total Extractable Petroleum Hydrocarbons (TEPH) using DHS/LUFT procedure EPA Test Method 8015-Modified (diesel fuel);
- Total Volatile Hydrocarbons (TVH) using DHS/LUFT procedure EPA Test Method 8015-Modified (gasoline);
- Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) using EPA Test Method 8020;
- Volatile Halocarbons (VH) for EPA Test Method 8010 Compounds using EPA Test Method 8240; and
- Polynuclear Aromatic Hydrocarbons (PNA) using EPA Test Method 8270.

A total of eighteen (18) soil samples were collected from the seven (7) test borings excavated for this investigation. Of these samples, thirteen (13) were selected for immediate laboratory analysis. Remaining soil samples were archived under refrigeration at the laboratory for a period of thirty (30) days for possible future analysis if necessary. Appendix F - Certified Laboratory Reports and Sample Chain-of-Custody Documentation indicates those individual samples selected for immediate laboratory analysis and those archived for possible future testing.

2.2 Groundwater Investigation Methodology

2.2.1 Monitoring Well Installations

Selected soil borings were converted to monitoring wells by installation of nominal 4-inch or 2-inch diameter schedule 40 PVC casing and screen. Screen slot was 0.020-inch mill-slot. The annulus of each well was filled with Monterey #3 graded and washed high-silica sand from total depth to approximately 1 foot above the upper screened section, upon which a one-foot seal of hydrated bentonite chips was placed followed by a Portland neat cement concrete surface monument with trafficable at-grade well cover. All wells are equipped with a locking well cap and completed in accordance with CEMIs standard operating procedures, California State Water Resources Control Board, Department of Water Resources and other applicable protocols.

Refer to Appendix B - Soil Boring Logs/Well Construction Details for monitoring well completion information. Figure 3 - Tank 1 and 2 Area/Boring Locations and Figure 4 - Tank 3 and 4 Area/Boring Locations depict the locations of all test borings (including monitoring well borings).

2.2.2 Well Development, Purging and Sampling

CEMI personnel supervised West Hazmat Drilling in the development of the groundwater monitoring wells. The purpose of well development is to consolidate the sand filter pack around the screened interval of the casing and to remove silty sediments from within the well water. Each well was initially purged with an 8-foot long by 4-inch diameter, stainless steel

bailer, of approximately 15-20 gallons. The wells were then surged with a vented surge block for approximately twenty five minutes and then re-purged of approximately twenty five gallons. The groundwater monitoring wells were allowed to equilibrate for approximately 40 to 60 minutes prior to sampling. Refer to Appendix C - Well Development Logs for additional information.

CEMI measured the depth to ground water and collected ground water samples from each of the monitoring wells. The depths to ground water and other development and sampling details for each well are provided in Appendix C and Appendix D. Water samples were collected with dedicated disposal 2-inch diameter PVC hand bailers and placed in 40 milliliter (ml) glass and 1 liter amber glass containers, labelled, preserved at 4° Celsius, and transferred under Chain-of- Custody documentation to a state-certified laboratory.

2.2.3 Sample Preparations and Handling

All groundwater samples, following collection, were secured in laboratory supplied vessels fitted with threaded Teflon-lined caps. Sample vessels were immediately placed in a precooled ice chest and delivered to the analytical laboratory within approximately 24 hours after collection. Samples were submitted for a 5-day turn-around analytical testing schedule.

One quality control tip blank (Sample "MB") was included in the sampling protocol.

2.2.4 Laboratory Testing

Chemical analysis of the six (6) groundwater samples (MW-1 through MW-6) were identical, i.e. the following suite of parameters:

- Hydrocarbon Oil and Grease (O&G) using Test Method SMWW 5520;
- Total Extractable Petroleum Hydrocarbons (TEPH) using DHS/LUFT procedure EPA Test Method 8015-Modified (diesel fuel);
- Total Volatile Hydrocarbons (TVH) using DHS/LUFT procedure EPA Test Method 8015-Modified (gasoline);
- Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX) using EPA Test Method 8020;
- Volatile Halocarbons (VH) for EPA Test Method 8010 Compounds using EPA Test Method 8240; and
- Polynuclear Aromatic Hydrocarbons (PNA) using EPA Test Method 8270.

This is the same analytical suite utilized in all project soil samples.

Section 3 Hydrogeologic Conditions

The following description of surficial and shallow hydrogeologic conditions was derived from direct observation of drill spoils and soil samples collected from the several soil test borings and monitoring well borings drilled for the present investigation. Surficial material at all drilling locations consisted of improved engineered pavement, i.e. 4-inch rolled asphaltic concrete and bare grade foundation gravel.

Exploratory drilling was conducted in two site areas: the Tank 1 and 2 Area located in the southern portion of the site, and the Tank 3 and 4 Area located in a north-eastern portion of the project site. Subsurface geologic or soil conditions are generally similar in both areas, consisting of sandy materials containing varying proportions of silty and clayey fines and what appear to be pelecypod shell fragments. An additional common factor noted in all test borings is the occurrence of shallow unconfined groundwater having a static water level ranging from about four to five feet below ground surface. Minor differences in hydrogeologic conditions observed between the two site areas are described below.

Subsurface soil in the Tank 1 and 2 Area appear to consist of an upper artificial fill or regraded native beach or tidal flat sand of well or poorly graded sediments which generally fines downward to silty or clayey sand at approximately 8 foot depth. Trace to abundant pelecypod shell fragments were noted from 5 feet to about 15 feet depths in the various borings at this area. Heaving sand was observed during the installation of MW-4, TW/MW-5, and MW-6 at depths from 13 feet to about 15 feet. No sheen or stain was noted in soil samples collected in this area, however, a faint possible decayed hydrocarbon odor was noted at about 10 feet depth in boring MW-6 located between the former USTs.

Soils in Tank Area 3 and 4, as noted in samples from test borings TB-1, TB-2, and TB-3, are grossly similar to those encountered in Tank Area 1 and 2, but differ principally in having a generally coarser average grain texture with notably fewer fines. Also, the presence of imported non-native materials is inferred by the presence of coarse granules and trace wood fragments and other debris. These features were not noted in Tank Area 1 and 2.

Groundwater flow in the shallow unconfined aquifer system observed is inferred to be in a general south-southwest direction toward San Francisco Bay. Additional discussion of this feature is provided in Section 5 - Groundwater Investigation Results (Groundwater Gradient Determination). Groundwater recharge to the shallow aquifer system is believed to originate as infiltration and percolation of local precipitation and urban runoff. Observed soil texture (i.e. sands) is inferred by physical appearance to be highly transmissive to water in vertical and lateral directions. Finer materials observed at depth in a number of the test borings suggests possible perching or semi-perched shallow groundwater in the immediate site area. Any connections of the upper or shallow unconfined groundwater system to possible underlying groundwater(s) cannot be discerned from the results of the present investigation.

ENV\GSA\2403C.16\ALAMEDA.PSA

Section 4 Soil Investigation Results

This section describes the results of the present investigation with respect to identified contaminant concentrations and distribution in soils at the two site areas investigated. Each site area (Tank 1 and 2 Area, Tank 3 and 4 Area) is discussed separately below.

4.1 Tank 1 and 2 Area

Summaries of laboratory chemical test results for soil samples are provided on Tables 1 and 2. As indicated on the tables, only soil samples from boring MW-4 and MW-6 in Tank 1 and 2 Area were tested. The analytical results from these samples indicate the presence of modest concentrations of oil and grease (O&G) and total extractable petroleum hydrocarbons (TEPH) ranging from a few milligrams per kilogram (mg/kg) to 290 mg/kg depending on the location and depth of these samples. In general, O&G and TEPH concentrations exhibited an increase with depth and concentrations maximized at about 10 to 15 feet depths, corresponding roughly to the former UST invert elevation in this area. TVH, BTEX, and VH were not detected in soil samples from this area.

Polynuclear Aromatic (PNA) compound concentrations were detected at various levels ranging from less than 500 to over 3,000 micrograms per kilogram ($\mu g/kg$), depending on the specific PNA compound and location and depth of sample. The vertical distribution of PNAs appears to mimic the observational distribution of O&G and TEPH, i.e. increasing concentration with depth. At both the MW-4 and MW-6 locations, PNAs were detected only in the 10-foot samples, and were not detected in the shallow and deep samples from these borings. PNA compounds exhibiting the highest concentrations were various pyrenes, chrysene, and fluoranthenes.

4.2 Tank 3 and 4 Area

A summary of laboratory test results for soil samples collected in this area are tabulated on Table 1 and 2. Samples from various depths at all three test borings in this site area were analyzed for the same suite of parameters as samples collected in the Tank 1 and 2 Area, i.e. O&G, TEPH, TVH, BTEX, VH, and PNAs. Among these analyses tested, only O&G, TEPH, and PNAs were detected. This same array of constituents were detected in the two Tank 1 and 2 Area borings, and at the similar concentrations and proportions. For example, O&G, TEPH, and PNAs were most highly concentrated at about 10 feet depth, and most constituents exhibit a generally increasing concentration with depth when viewing this area in a general perspective. PNA compounds were detected in roughly equivalent concentrations in both UST areas. In addition, various pyrenes, chrysene, and fluoranthene constitute the most abundant PNAs at both UST locations.

In the Tank 3 and 4 Area, for all analytes detected there is an apparent trend for increasing contaminant concentrations in a south to north direction. This trend is accompanied by a northward increase in thickness of probable imported artificial fill material, exemplified by

unusually large gravel or cobbles, notable soil and presence of wood fragments and woody debris.

9

Section 5 Groundwater Investigation Results

This section describes the results of the present investigation with respect to identified groundwater contamination and groundwater flow direction. The results for Tank 1 and 2 Area and Tank 3 and 4 Area are described individually below.

5.1 Tank 1 and 2 Area

In this area, groundwater samples were obtained from pre-existing well MW1, replacement well MW2-R, new monitoring wells MW-4 and MW-6, and new test well TW/MW-5. Well locations are shown on Figure 3 - Tank 1 and 2 Area/Boring Locations. Groundwater samples from wells MW2-R, MW-4, and MW-6 exhibited no detectable concentrations of O&G, TEPH, TVH, BTEX, VH or PNAs. Samples from wells MW-1 and TW/MW-5, were the only water samples in the Tank 1 and 2 Area to exhibit any tested analytes. MW-1 samples contained elevated levels of TEPH and detected levels of benzene and several VH compounds. Well TW/MW-5 samples also contained elevated TEPH, trace levels of one VH compound (chloroform), and trace levels of several PNA compounds. A summary of groundwater chemical test results is provided on Tables 3 and 4.

Two principal findings are revealed by groundwater testing in Tank 1 and 2 Area: 1) groundwater contamination possibly originating from the former USTs appears limited to Tank No. 1 (former 1,000-gallon gasoline/waste oil UST), and 2) groundwater contamination probably unrelated to either of the former USTs is present in Parking Lot 1 east of the former UST locations.

The first finding (groundwater contamination related only to former UST No. 1) is evident from the observation that well MW-6, located immediately downgradient of former UST No. 2, is uncontaminated with respect to all tested parameters while well MW-1, located immediately south of former UST No. 1, contains 5,500 μ g/l TEPH and 1.1 μ g/l benzene. The shape, size, annotation, and configuration of the groundwater contaminant plume inferred to originate from former UST No. 1 is not known at this time.

The second principal finding, the presence of groundwater contamination well east of the former UST locations, is exhibited by the discovery of 680 μ g/l TEPH, 1.0 μ g/l chloroform, and trace levels of several PNA compounds from water samples obtained from well TW/MW-5. The origin of these contaminants, and prime geometry, is not known at this time.

5.2 Tank 3 and 4 Area

Groundwater samples were collected at only one location in this area of investigation, namely pre-existing monitoring well MW-3. This well is the only formal groundwater monitoring point presently located in the immediate area. Samples from well MW3 were tested for the same suite of analytical parameters as all other groundwater samples in this investigation; i.e. O&G, TEPH, TVH, BTEX, VH, and PNAs. Of those constituents, only TEPH was

ENV\GSA\2403C 16\ALAMEDA.PSA 10

detected, at a modest concentration of 92 μ g/l. Because the well is located immediately down gradient of existing USTs 3 and 4, the presumption is made that the detected contaminant has a probable source at the tank(s). This suggestion is supported by the similarity of TEPH to diesel fuel, the former contents of USTs 3 and 4.

Also, a very thin petroleum film was detected within the static water column of well MW-3 having a thickness (measured using an ORS Interface Probe) of 0.005 foot. This was measured while the well was at rest prior to well purging and sampling.

The shape, size configuration, and orientation of the groundwater contaminant plume is not known at this time, but is presumed to correspond with the south-trending flow direction existing at the Tank 1 and 2 Area of investigation. Also, the area of soil contamination is known from test boring sample tests to extend at least so far north as the TB-3 locations north of the existing USTs. Therefore, some form of groundwater contamination, related or unrelated to USTs 3 and 4, may be expected in the area upgradiant and north of the USTs. A further suggestion of potential groundwater contamination in the area north of USTs 3 and 4 Areas was the observation of oily material on the drill rods during drilling and sampling of TB-3.

5.3 Groundwater Gradient Determination

A relative elevation and location survey was conducted on May 18, 1995 encompassing the Tank 1 and 2 and Tank 3 and 4 Areas. The survey was performed by Ron Archer, Civil Engineer, Inc., a California-Registered Professional Engineer (civil), using engineer's level and stadia rod methods. Survey data is included as Appendix E. Survey graphics used in determining groundwater gradient are provided on Figure 5 - Groundwater Gradient Map and monitoring well reference point locations are tabulated on Table 5 - Static Water Level (SWL) Measurements. All elevations determined for this study are reduced to mean sea level datum. Survey locations are relative to established permanent site landmarkers (i.e, building corners, street curbs, etc.).

Groundwater gradient at Tank 1 and 2 Area was detected by concurrent sounding of all five monitoring points after the elevations at each well reference points were determined. Depth to static groundwater from each reference point was then reduced to mean sea level elevations and a graphic 3-point solution method used to establish groundwater gradient and direction. The result of the determination is groundwater gradient = 0.0025 ft/ft (13 ft/mile) with a flow direction compass bearing of 198° (SSW).

These calculations represent the configuration of the shallow groundwater surface at the time of sounding. It is expected that seasonal, annual, and opportunistic fluctuation in water level and corresponding alterations of the current groundwater flow regime (gradient and direction) may occur in response to local precipitation, landscape irrigation, urban runoff, tidal influences and other factors. It is not possible at this time to estimate these possible effects. Continued periodic monitoring (sounding) of site wells will yield information regarding the relation stability or variation of local groundwater air conditions.

ENV\GSA\2403C.16\ALAMEDA PSA

Section 6.0 Conclusions and Recommendations

This Section presents a summary of conclusions and recommendations derived from activities of the current site assessment. Conclusions are first presented generally, with respect to both tank areas, then presented as specific findings related to each unique tank area. This Section concludes with recommendations for further action.

6.1 Conclusions

General

- The presence of PNAs (pyrene and fluoranthene) identified in site soils during previous site assessment work has been confirmed, as described below in Tank 1 and 2 Area and Tank 3 and 4 Area discussions.
- PNA compounds identified in previous site assessment work and in the present investigation are generally consistent with a diesel fuel or heating oil source.
- All soil test results from both tank areas were negative for TVH, BTEX, and VH.
- All groundwater test results for both tank areas were negative for TVH and O&G.

Tank 1 and 2 Area

- Existing monitoring well MW-2 was observed as damaged beyond repair, therefore it was replaced and given the designation of MW2-R. The previously existing 2-inch diameter well was overdrilled, removed and a new 4-inch diameter PVC cased well was installed, developed, purged, sampled and rendered useable.
- Soil samples from the MW-4 and MW-6 borings contained modest levels of O&G, TEPH, and PNAs only. No other tested analytes were detected at these locations. Potential sources of these substances in the MW-4 and MW-6 borings are unknown. No soil samples from the MW2-R or TW/MW-5 borings were tested.
- Ground water gradient in this area was determined at 0.0025 ft/ft (13 ft/mile) with a flow direction compass bearing of 198° (SSW).
- Groundwater samples from wells MW2-R, MW-4, and MW-6 contained no detectable concentrations of any of the tested parameters (O&G, TEPH, TVH, BTEX, and PNAs). These three wells are located upgradient, cross-gradient, and down-gradient of former Tank 2, respectively. The results indicate no groundwater contamination originating at the former Tank 2 location, and no apparent motor fuel contamination of groundwater in the area immediately west of former Tank 2 (well MW-4).
- MW-1 groundwater samples contained TEPH, benzene, and the volatile halocarbons

- (DCE, TCE, PCE). Benzene and TCE levels exceed current MCLs. The presence of these compounds is consistent with diesel fuel, gasoline, and chlorinated solvents or degreasers, possibly originating at former Tank 1.
- TW/MW-5 groundwater samples contained TEPH, and trace concentrations of chloroform and several PNA compounds. TEPH and PNAs are consistent with a diesel fuel source, but no UST or other point of release was identified in the vicinity of TW/MW-5. This well is designated "TW" (test well) due to initial temporary installation for water level measurements. During field activities is was determined prudent to convert this well into a permanent installation for future ground water gradient measurements, however proper development has not been completed. Laboratory test results of water samples collected from this well are therefore not conclusive.

Tank 3 and 4 Area

- Soil in this area appears to be largely artificial fill, as evidenced by wood fragments and other foreign or non-native material observed in drill spoils and drive samples.
- Results of laboratory analyses for all soil samples from the three test borings drilled in this area for the present investigation were not detected for TVH, VH, and BTEX.
- A strong south-to-north directional trend in increasing soil contaminant levels was noted from TB-1 to TB-2 to TB-3. This trend is particularly notable with respect to PNAs; pyrene was detected at very low concentration at TB-1, not detected at TB-2 and present in the form of several chemical species at relatively high concentrations at TB-3.
- The lateral and vertical distribution of soil contamination in this area will influence the sequence, area, and depth of soil excavation related to UST and contaminated soil removal: TB-1 area is "clean" except for possible trace pyrene at 10 feet depth; TB-2 area contains moderate to trace O&G and TEPH at 10 feet depth; TB-3 area contains trace to modest O&G and TEPH and elevated levels of various PNA compounds to 15 feet depth.
- An interface probe was used to measure reported free product at MW-3. Results of this measurement indicated a product thickness of 0.005 feet.
- Groundwater samples from well MW3 contained minor concentrations of TEPH; all other tested analytes were not detected. This result is consistent with a diesel fuel or heating oil source, possibly one or both of the existing fuel USTs. MW3 is located immediately down-gradient of Tank 3 (based on the southward groundwater flow direction determined at Tank 1 and 2 Area).
- Transmissivity or water-bearing capacity of site soils is believed to be favorable for the purposes of dewatering the tank and/or contaminated soils excavation(s). Additional field testing or office research will be required in order to provide an

13

accurate estimate of dewatering flow rate.

6.2 Recommendations

- Rehabilitate or recondition well TW/MW-5 to improve the validity of future groundwater sample test results from that location. From our field observations, this might best be accomplished by jetting-surging-bailing methods.
- Include all currently-existing on-site monitoring wells (including reconditioned TW/MW-5) in an initial program of groundwater sounding and sampling. This initial program will generally duplicate the analytical testing methods used during the current PSA. If current groundwater analytical test results are confirmed during this initial program, then CEMI recommends deleting wells MW2-R, MW-4, and TW/MW-5 from additional laboratory testing. These wells should remain in a scheduled groundwater sounding program to assist in future groundwater gradient measurements. Monitoring wells MW-1 and MW-6 should be sampled and laboratory tested as part of a groundwater monitoring program. MW-3 will be destroyed during excavation activities to remove Tanks 3 and 4, therefore MW-3 is not to be included in the recommended groundwater monitoring program.
- Prepare a formal written and agency-approved Groundwater Monitoring Program to guide future well sounding, sampling, and reporting activities.
- Remove Tanks 3 and 4, and concurrently excavate contaminated in-place soil relating to the UST removal. An assessment of impacted soil should be conducted and documented during the excavation activities. CEMI recommends interim groundwater remedial activities to include water treatment during excavation and shoring placement dewatering activities. Water treatment may include utilizing an oil/water separator unit during dewatering activities and permits must be obtained from the East Bay Municipal Utilities District (MUD) for the discharge of treated groundwater into the sanitary sewer system.
- Evaluate subsequent groundwater gradient measurements to determine possible installation of an additional monitoring well down-gradient of MW-1 and assess the extent of groundwater impacts related to releases at Tank 1.

Tables

Table 1 Summary of Analytical Results Petroleum and Volatile Compounds (Soil)

Sample ID (Depth in feet)	Date Sampled	O&G (mg/Kg)	TEPH (mg/Kg)	TVH (mg/Kg)	B (µg/Kg)	T (µg/Kg)	E. (pg/Kg)	X (µg/Kg)	VH (µg/Kg)
TW/MW4-5'	5/17/95	ND	3.3	ND	ND	ND	ND	ND	ND
TW/MW4-10'	5/17/95	ND	19 (2.0)	ND	ND	ND	ND	ND	ND
TW/MW4-15'	5/17/95	290	3.2	ND	ND	ND	ND	ND	ND
MW6-4'	5/18/95	90	ND	ND	ND	ND	ND	ND	ND
MW6-10'	5/18/95	98	25 (5.0)	ND	ND	ND	ND	ND	ND
MW6-13'	5/18/95	ND	ND	ND	ND	ND	ND	ND	ND
TB1-10'	5/18/95	ND	ND	ND	ND	ND	ND	ND	ND
TB1-15'	5/18/95	ND	ND	ND	ND	ND	ND	ND	ND
TB2-10'	5/18/95	520	3.2	ND	ND	ND	ND	ND	ND
TB2-15'	5/18/95	ND	ND	ND	ND	ND	ND	ND	ND
TB3-5'	5/18/95	140	9.3 (5.0)	ND	ND	ND	ND .	ND	ND
TB3-10'	5/18/95	150	42 (5.0)	ND	ND	ND	ND	ND	ND
TB3-15'	5/18/95	120	10	ND	ND	ND	ND	ND	ND

NOTES:

mg/Kg- Milligrams per kilogram μg/Kg- Micrograms per kilogram

ND- Not detected at or above Method Detection Limit (MDL).

O&G- Hydrocarbon oil and grease using test method SMWW 5520 with MDL of 50 mg/Kg.

TEPH- Total extractable petroleum hydrocarbons as diesel fuel using California Department of Health Services

(DOHS) Method with MDL of 1.0 mg/Kg. Number in parenthesis following reported concentration

represents raised MDL.

TVH- Total volatile hydrocarbons as gasoline using California DOHS Method with a MDL of 1.0 mg/Kg.

BTEX- Benzene, toluene, ethyl benzene and total xylenes using EPA Test Method 8020 with MDL of $5.0 \mu g/Kg$. VH- Volatile halocarbons for EPA Test Method 8010 compounds using EPA Test Method 8240 with compound

MDLs ranging from 5.0 μ g/Kg to 20.0 μ g/Kg.

Table 2 Summary of Analytical Results Polynuclear Aromatic Hydrocarbons (Soil)

Sample ID (Depth in feet)	Date Sampled	PNA (µg/L)		
TW/MW4-5'	5/17/95	ND		
TW/MW4-10'	5/17/95	450 Phenanthrene 1,400 Fluoranthene 3,400 Pyrene (3,300) 740 Benzo (a) anthracene 1,000 Chrysene 1,000 Benzo (b) fluoranthene 660 Benzo (k) fluoranthene 1,400 Benzo (a) pyrene 770 Indeno (1,2,2-cd) pyrene 980 Benzo (g,h,i) perylene		
TW/MW4-15'	5/17/95	ND		
MW6-4'	5/18/95	ND		
MW6-10'	5/18/95	*240 Phenanthrene 490 Fluoranthene 1,100 Pyrene 450 Benzo (a) anthracene 390 Chrysene 660 Benzo (b)fluoranthene 540 Benzo (k) fluoranthene 830 Benzo (a) pyrene 370 Indeno (1,2,3-cd) pyrene 460 Benzo (g,h,i) perylene		
MW6-13	5/18/95	ND		
TB1-10'	5/18/95	*230 Pyrene		
TB1-15'	5/18/95	ND		
TB2-10'	5/18/95	ND		
TB2-15'	5/18/95	ND		

NOTES: Results indicate concentrations of compounds detected at or above Method Detection Limit (MDL) of 330 μ g/L. Number in parenthesis following compound indicate raised MDL. Undetected compounds are not listed.

PNA- Polynuclear aromatic hydrocarbons using EPA Test Method 8270.

 μ g/L- Micrograms per liter.

ND- Not detected at or above MDL.

* Concentration of compound detected using instrument detection limit (IDL) of 50 μ g/L.

Table 2 (cont.) Summary of Analytical Results Polynuclear Aromatic Hydrocarbons (Soil)

Sample ID (Depth in feet)	Date Sampled	PNA (µg/L)			
TB3-5'	5/18/95	ND			
TB3-10'	5/18/95	420 Phenanthrene 1,100 Fluoranthene 2,600 Pyrene 660 Benzo (a) anthracene 780 Chrysene 680 Benzo (b) fluoranthene 710 Benzo (k) fluoranthene 930 Benzo (a) pyrene 340 Indeno (1,2,3-cd) pyrene 410 Benzo (g,h,i) perylene			
TB3-15'	5/18/95	*260 Phenanthrene 900 Fluoranthene 1,500 Pyrene 410 Benzo (a) anthracene 500 Chrysene 370 Benzo (b) fluoranthene 370 Benzo (k) fluoranthene 590 Benzo (a) pyrene *270 Indigo (1,2,3-cd) pyrene 330 Benzo (g,h,i) perylene			

NOTES: Results indicate concentration of compound detected at or above Method Detection Limit (MDL) of 330 μ g/L. Undetected compounds are not listed.

PNA- Polynuclear aromatic hydrocarbons using EPA Test Method 8270.

 μ g/L- Micrograms per liter.

* Concentration of compound detected using instrument detection limit (IDL) of 50 μ g/L.

Table 3
Summary of Analytical Results
Petroleum Compounds (Water)

Sample ID	Date Sampled	O&G (mg/L)	TEPH (pg/L)	TVH (µg/L)	B (µg/L)	T (pg/L)	E (pg/L)	X (pg/L)
MW-1	5/18/95	ND	5,500	ND	1.1	ND	0.9	1.6
MW2-R	5/18/95	ND	ND	ND	ND	ND	ND	ND
MW-3	5/18/95	ND	92	ND	ND	ND	ND	ND
MW-4	5/17/95	ND	ND	ND	ND	ND	ND	ND
TW/MW-5	5/17/95	ND	680	ND	ND	ND	ND	ND
MW-6	5/18/95	ND	ND	ND	ND	ND	ND	ND

NOTES:

- mg/L- Milligrams per liter.
- μg/L- Micrograms per liter.
- ND- Not detected at or above Method Detection Limit (MDL).
- O&G- Hydrocarbon oil and grease using Test Method SMWW 5520 with MDL of 5 to 7 mg/L. Number in parenthesis following reported concentration represents raised MDL.
- TEPH- Total extractable petroleum hydrocarbon using California Department of Health Services (DOHS) Method with MDL of 50 μ g/L.
- TVH- Total volatile hydrocarbons as gasoline using California DOHS Method with MDL of 50 μ g/L.
- BTEX- Benzene, toluene, ethyl benzene and total xylenes using EPA Test Method 8020 with MDL of 0.5 μ g/L.

Table 4 Summary of Analytical Results Volatile Halocarbons and Polynuclear Aromatic Hydrocarbons (Water)

Sample ID	Date Sampled	VH (µg/L)	PNA (ag/L)
MW-1	5/18/95	3.0 cis-1,2-Dichloroethene (1.0) 3.0 trans-1,2-Dichloroethene (1.0) 7.0 Trichloroethene (1.0) 1.0 Tetrachloroethene (1.0)	ND
MW2-R	5/18/95	ND	ND
MW-3	5/18/95	ND	ND
MW-4	5/18/95	ND	ND
TW/MW-5	5/17/95	1.0 Chloroform (1.0)	*7.5 Napthalene *8.5 Fluoranthene 14 Pyrene *5.5 Chrysene *6.2 Benzo (a) pyrene
MW-6	5/18/95	ND	ND

- NOTES: Results indicate concentration of compound detected and corresponding method detection limit (MDL) in parenthesis following respective compound.
- μ g/L- Micrograms per liter.
- ND- Compounds not detected at or above MDL.
- VH- Volatile halocarbons for EPA Test Method 8010 compounds using EPA Test Method 8240 with compound MDL's ranging from 1.0 μ g/L to 20 μ g/L.
- PNA- Polynuclear aromatic hydrocarbons using EPA Test Method 8270 with MDL of 10 µg/L.
- * Reported compound concentrations below MDL were detected using instrument detection limit (IDL) ranging from 1 to 5 μ g/L.

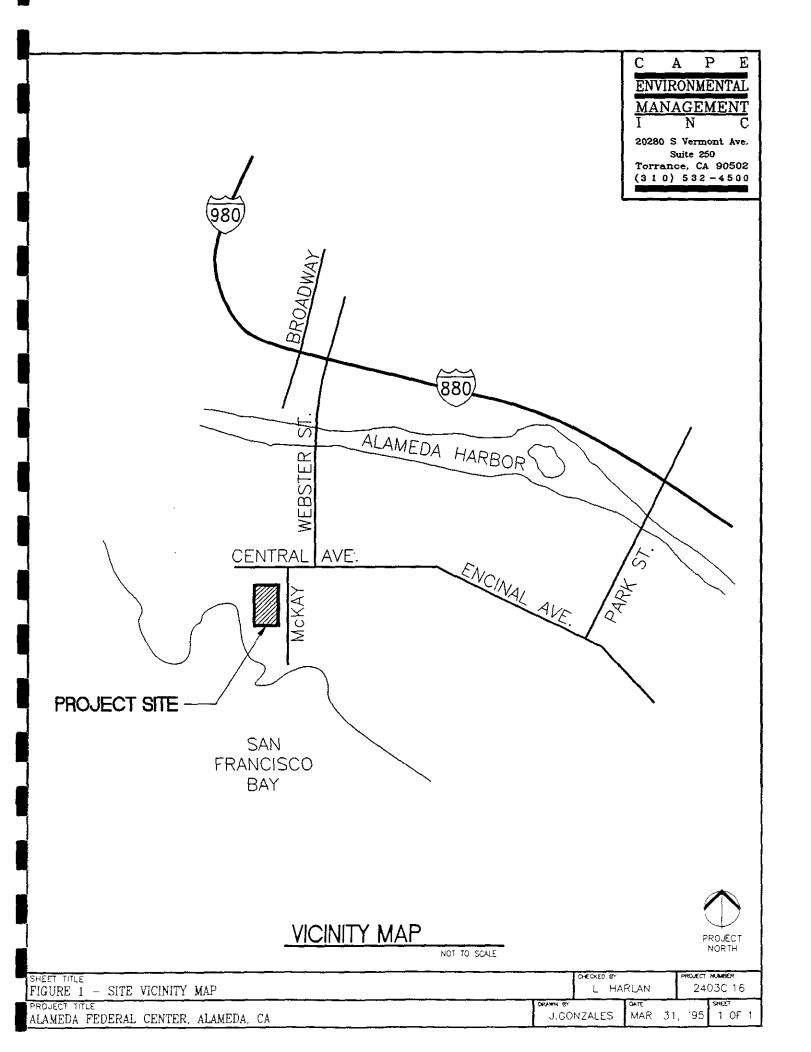
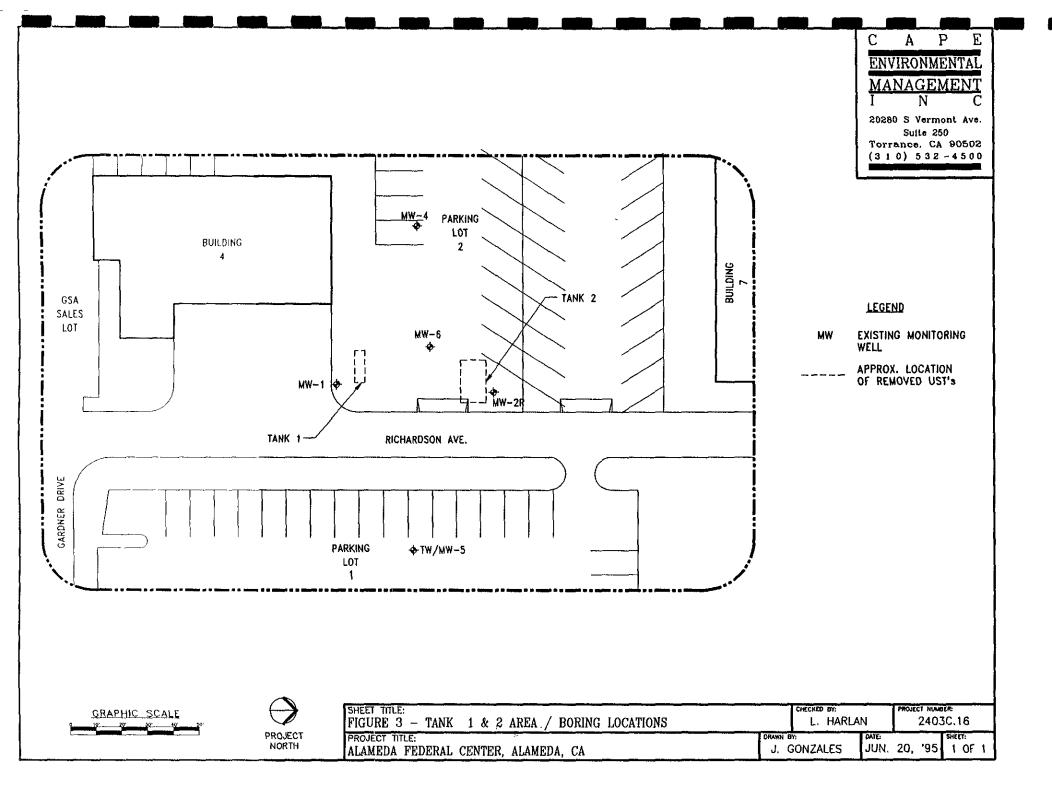
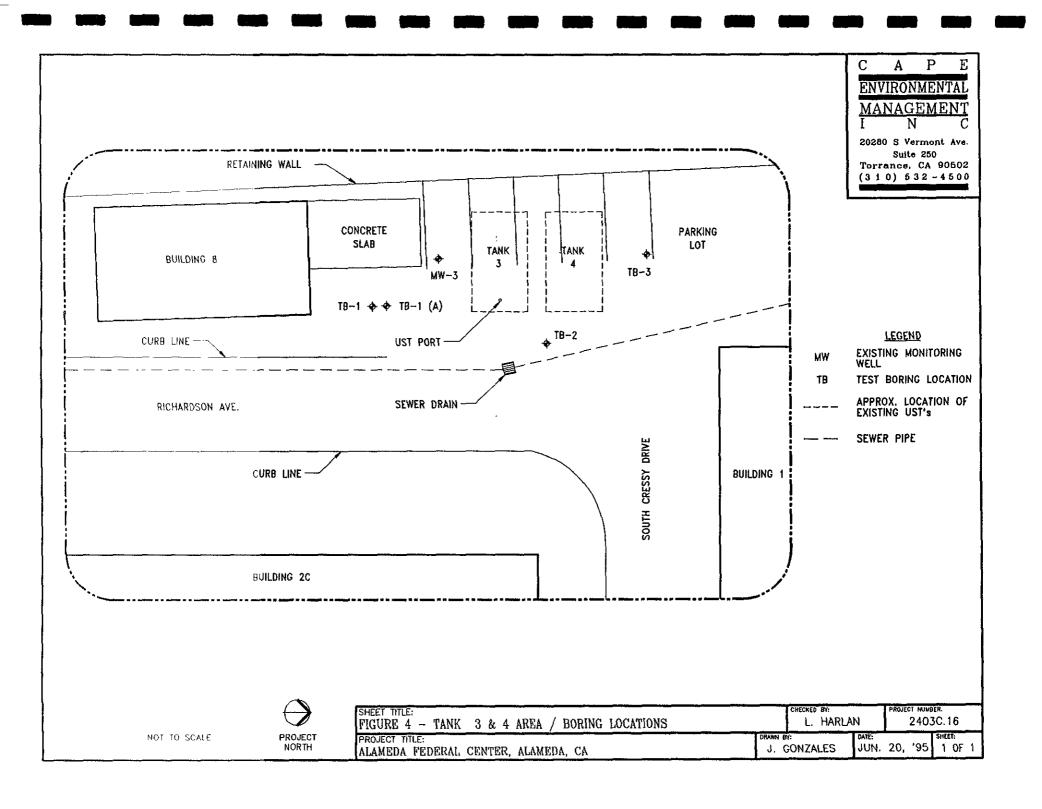
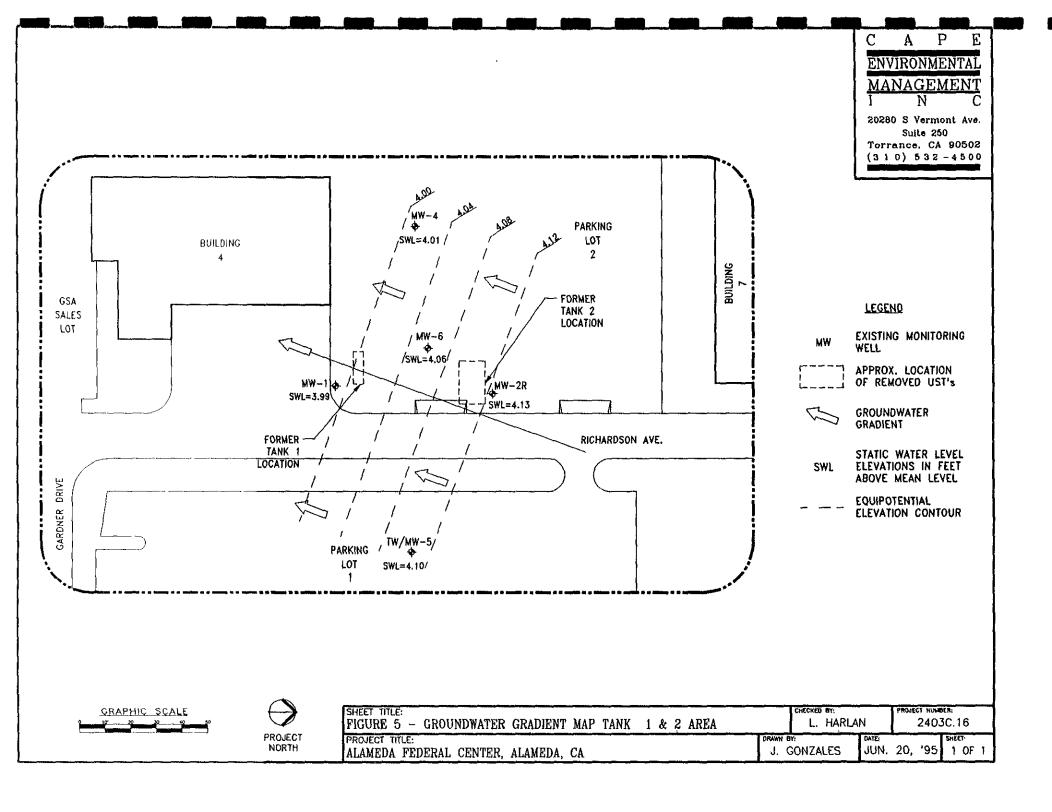

MCls
Benzo (a) pyrane - 0.2 ppb

Table 5
Static Water Level (SWL) Measurements


Location	Date	Time	SWL	Casing: Elevation	Water Elevation
MW-1	5/18/95	1813	4.20	8.19	3.99
MW2-R	5/18/95	1822	4.14	8.27	4.13
MW-3	5/16/95	1415	4.72	9.00	4.28
MW-4	5/18/95	1810	4.52	8.53	4.01
TW/MW-5	5/18/95	1819	4.27	8.37	4.10
MW-6	5/18/95	1808	4.55	8.61	4.06


NOTES:

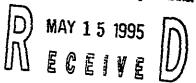

SWL in feet below top of well casing. Elevations in feet above mean sea level. Figures

Appendix A

Drilling Permit/Application - Zone 7 Water Agency

ALAMEDA COUNTY FLOOD CONTROL AND WATER CONSERVATION DISTRICT

5997 PARKSIDE DRIVE


PLEASANTON, CALIFORNIA 94588-5127

PHONE (510) 484-2600 FAX (510) 462-3914

May 12, 1995

CAPE Environmental Management Inc.

Cape Environmental Management, Inc. 20280 South Vermont Avenue Torrence, CA 90502

Gentlemen:

Enclosed is drilling permit 95294 for the destruction of well 2S/4W 11M80 at 620 Central Avenue in Alameda for General Services Administration.

Please note that permit condition A-2 requires that a well destruction report be submitted after completion of the work. The report should include a description of methods and materials used to destroy the well, location sketch, date of destruction and permit number.

If you have any questions, please contact Wyman Hong at extension 235 or me at extension 233.

Very truly yours,

Craig A. Mayfield

Water Resources Engineer III

WH:djf encls.

APPLICANTS SIGNATURE

ZONE 7 WATER AGENCY

5997 PARKSIDE DRIVE

Lary M. Harla Date May 8,1995

PLEASANTON, CALIFORNIA 94588

VOICE (510) 484-2600 FAX (510) 462-3914

91990

DRILLING PERMIT APPLICATION

	FOR OFFICE USE
FOR APPLICANT TO COMPLETE	PERMIT NUMBER 95294
OCATION OF PROJECT Alameda Federal Center	LOCATION NUMBER 2S/4W 11M80
620 Central Avenue	
Alameda, Ca.	•
CLIENT	
The General Services Administration All Rich	hard Chic PERMIT CONDITIONS
tress 525 Market St. Voice 415 744 5806	Circled Permit Requirements Apply
City San Francisco Zip 94105	Ollogo I guint 120 d-
Name Cape Environmental Management Inc (CEMI)	A. GENERAL 1. A permit application should be submitted so as to arrive at the
70780 S. Vermont Ave Fax 310 53 2	Zone 7 office five days prior to proposed starting date.
Adress Suite 250 Voice 310 532 4500	5. beit to Zone 7 within 60 days after completion or permitted
City Torrance CA Zip 90502	werk the original Department of Water Hesources water wen
See Attached	Drillers Report or equivalent for well Projects, or chilling logs
PE OF PROJECT (See Text. Geotechnical Investigation	and location sketch for geotechnical projects.
Cathodic Protection General	Permit is void if project not begun within 90 days of approval
- Water Supply Contamination	date. B. WATER WELLS, INCLUDING PIEZOMETERS
Monitoring Well Destruction /: located	Minimum surface seal thickness is two inches of cement grout
PROPOSED WATER SUPPLY WELL USE Dimestic Industrial Other Municipal Irrigation PRILLING METHOD:	placed by tremie. 2. Minimum seal depth is 50 feet for municipal and industrial wells or 20 feet for domestic and irrigation wells unless a lesser depth is specially approved. Minimum seal depth for monitoring wells is the maximum depth practicable or 20 feet. C. GEOTECHNICAL. Backfill bore hole with compacted cuttings or
and Rotary Air Rotary Auger X	have bestocke and upper two feet with companies material.
Cable Other	areas of known or suspected contamination, tremied cement grout
RILLER'S LICENSE NO. C57 \$ 554979	shall be used in place of compacted cuttings. D. CATHODIC. Fill hole above anode zone with concrete placed by
WELL PROJECTS	tremie. (E_)WELL DESTRUCTION. See attached.
Drill Hole Diameter 8 in. Maximum Casing Diameter 4 in. Depth 15 ft.	
Casing Diameter 4 in. Depth 15 it. Surface Seal Depth ft. Number 1	
Sunace Sear Debut	
BEOTECHNICAL PROJECTS	
Number of Borings Maximum	
Hole Diameter in. Depth 11.	-
ESTIMATED STARTING DATE NW 17 1995	-
ESTIMATED STARTING DATE ESTIMATED COMPLETION DATE May 18, 1995	Wiman Hana Date 10 May
.	Approved Wyman Hone
hereby agree to comply with all requirements of this permit and Alameda	V wyman none //
County Ordinance No. 73-68.	V

ZONE 7 WATER RESOURCES ENGINEERING DRILLING ORDINANCE

GENERAL SERVICES ADMINISTRATION
620 CENTRAL AVENUE
ALAMEDA
WELL 2S/4W 11M80
PERMIT 95294

Destruction Requirements:

- Drill out the well so that the casing, seal and gravel pack are removed to the bottom of the well.
- 2. Using a tremie pipe, fill the hole to 2 feet below the lower of finished grade or original ground with neat cement.
- 3. After the seal has set, backfill the remaining hole with compacted material.

These destruction requirements as proposed by Larry Harlan of Cape Environmental meet or exceed the Zone 7 minimum requirements.

Appendix B

Boring Logs/Well Construction Details

BORING LOG MW2-R Date <u>MAY 17, 199</u>5 Sheet __1_ OF __1_ Project _GSA - ALAMEDA FEDERAL CENTER FIGURE 3 Project No. 2403C.16 Type of Rig MOBILE B-57 HSA Drilling Co. WEST HAZMAT Hole Diameter 8" O.D., 10" REAM _ Drop_NA_ in. . in. Drive Weight N.A. (msl) Top of Casing Elevation 8.27 (msl) Location Sketch Surface Elevation _N.A. Well Construction Samples Logged by: KEN PITCHFORD, CEG Ę Blows Per 6 Interval Approved by: KEN PITCHFORD, CEG OVA/PID (PPM) USCS Graphic Remarks Detall SOIL/GEOLOGIC DESCRIPTION PCC BLANK NOTES: RP TD=15 FT. 2-DESTROY AND REPLACE. 8" DIA INITIAL THIS BORING DRILLED THROUGH EXISTING MW-2 WELL, TO DESTROY AND REPLACE.
8" DIA. INITIAL PILOT HOLE, 10" DIA. REAM.
CASING OBSTRUCTION @ - 3.5 FT. = ~ 10 DEGREE BEND
IN ORIGINAL WELL PVC (2" DIA.) BLANK @ JOINT THREAD.
MW2-R REPLACEMENT WELL COMPLETION DETAILS IN COLUMN
(LEFT) THIS LOG.
SWL=4.72 FT. (T.O.C.) 5/16/95 @ 15:00 HRS.
WELL CASING=4" NOMINAL DIA. SCH. 40 PVC.
WELL SCREEN=4" NOMINAL DIA. SCH. 40 PVC 0.020" MILL
SLOT NO SAMPLES COLLECTE - FILTER 8. N.A. N.A. N.A. N.A. FILTER PACK=MONTEREY No.3 WASHED, GRADED HIGH-SILICA 9. 8-SCREEN SAND 10. HYDRATED BENTONITE PELLET SURFACE SEAL ("BAROID" 3/8" 11. PORTLAND CEMENT CONCRETE MONUMENT WITH TRAFFICABLE AT-GRADE COVER.

12. WELL PRE-DEVELOPED BY VENTED SURGE BLOCK AND BAILER.

13. WELL CONSTRUCTION: WELL CONSTRUCTION:
CASING=4" NOMINAL DIA. SCH. 40 PVC
SCREEN=0.020" MILL SLOT.
FILTER=MONTEREY No.3 WASHED, GRADED HIGH-SILICA SAND.
SURFACE SEAL=HYDRATED BENTONITE PELLETS.
SURFACE MONUMENT=TRAFFICABLE AT-GRADE COVER IN TYPE I-II 12-

LEGEND TOTAL DEPTH

24030-16\BORE-LOG\MW-LOG2R DWG

16-

19-

NOTE. This log of subsurface conditions is a simplification of actual conditions encountered it applies at the location and time of drilling Subsurface conditions may differ at other locations and times

TOTAL DEPTH FEET SCHEDULE TYPE HI NEAT PORTLAND CEMENT CONCRETE HYDRATED BENTONITE PELLET SEAL

NOT APPLICABLE

SCH PCC BP

_					BORING LOG $MW-4$						
		SEE			1			1995 Sheet1_ OF1			
		FIGURE 3			, .			ALAMEDA FEDERAL CENTER Project No. 2403C.16			
						-		ST HAZMAT Type of Rig MOBILE B-57 HSA			
					Hole Diameter 8 0.D. in. Drive Weight 140# Drop 30						
<u> </u>		ocation Sket	tch		Surfac	Surface Elevation N.A. (msl) Top of Casing Elevation 8.53					
	Well Co	onstruction	Samples		e 8.			Logged by: KEN PITCHFORD, CEG			
(Feet)	Detall	orks	9	Interval Blows Per	Graphic Log	nscs	OVA/PID (PPM)	Approved by: KEN PITCHFORD, CEG			
	ğ	Remark		at la	<u>و</u> م		8-	SOIL/GEOLOGIC DESCRIPTION			
١, ٦	· A.	PCC		Н	* • •		ļ	6" ROLLED ASPHALTIC CONCRETE SURFACE			
[']	BLANK BLANK	BP		П		SP		MEDIUM GRAY-BROWN POORLY GRADED FINE <u>SAND</u> WITH TRACE SILT, MEDIUM SAND AND ROOTS, SHELL FRAGMENTS. @ 5 FT. DAMP TO WET OR SATURATED. NO STAIN OR ODOR.			
2-	a	_		H				WET OR SATURATED. NO STAIN OR ODOR.			
3-				П	30.20		<u> </u>	l P			
4-	- 143		TW/MW 4-4	7772	§		3.4	ļ -			
5-		, i		ЦŒ	2 2						
6-	-147			Ц							
7-		- FILTER		H.							
8-	- 13	-SCREEN		Н			ŀ				
9-	-4			H		[
10—	_ : : : : : : : : : : : : : : : : : : :		TW/MW 4-10	٤ 🗖							
11-	_]:		4-10	\prod_{3}^{1}	5	SM	7.6				
12-	_		<u>'</u>	H				CLAY, LOOSE, SATURATED, NO SHEEN, STAIN OR ODOR.			
13-) از الب	·	1	Ħ			Ì				
14-			<u> </u>			1	}				
15	/ HS		TW/MW	H.	_ [[[[]]]		11.3				
16-		ı	4-15	2 3 5		sw		MOTTLED MEDIUM GRAY TO MEDIUM BROWN <u>SILTY-CLAYEY FINE SAND.</u> DAMP. MODERATELY COHESIVE. NO STAIN OR ODOR.			
17—			l	<u> </u>	ر	1 50	J	Druit : MODELVATEET OUTEONE. 110 ST UT ON OBSTA			
18-											
19-								NOTES: 1. TD=16.5 FT.			
20-								2. SWL=4.53 FT. (5/18/95 @ 07:50 HRS.).			
1 -								CASING=NOMINAL 4" DIA. SCH. 40 PVC. SCREEN=0.020" MILL SLOT.			
21-								FILTER=MONTEREY No.3 WASHED, GRADED HIGH-SILICA SAND. SURFACE SEAL=HYDRATED BENTONITE PELLETS.			
22-								SURFACE MONUMENT=TRAFFICABLE AT—GRADE COVER IN TYPE I—II UNEAT PORTLAND CEMENT CONCRETE.			
23-								MENT GRADUE GENERAL GONGREE			
24											
25								LEGEND			
26-								TD			
27—								SWL STATIC WATER LEVEL			
28								PCC TYPE I—II NEAT PORTLAND CEMENT CONCRETE — BP HYDRATED BENTONITE PELLET SEAL —			
29								N A NOT APPLICABLE HS HEAVING SAND			
30	0 16) 2000	-LOG\MW-LOG	04 DW0		<u>-</u>			TO THE WAY OF THE			

NOTE. This log of subsurface conditions is a simplification of actual conditions encountered it applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

BORING LOG TW/MW-5

1	Wall Ca	nstruction	Samples	 . T						7
1 }	Well Co	nstruction	Samples		<u>-</u> 70	5		_	Logged by: KEN PITCHFORD, CEG	-
Depth (Feet)	_	ş			e P	: :	sosn	OVA/PID (PPM)	Approved by: KEN PITCHFORD, CEG	_
S.E.	Detail	Remarks	₽	Interv	Blows Per 6" Interval	Graphic Log	ñ	%⊕	SOIL/GEOLOGIC DESCRIPTION	
	A	PCC		Ħ			AC		6" ROLLED ASPHALTIC CONCRETE SURFACE	H
2-	BLANK 1	BP		H			SM		MOTTLED MEDIUM BROWN TO MEDIUM GRAY FINE TO MEDIUM <u>SILTY</u> SAND WITH SOME COARSE SAND AND FINE GRAVEL. DAMP TO MOIST. LOOSE. NO STAIN OR ODOR.	H
3-				H					LOUSE. NO STAIN OR ODOR.	Ħ
4	-13		TW/MW	Ц				0.0		H
5—			5-4'	Ħ	4 5 6		SP		MEDIUM GRAY POORLY GRADED MEDIUM <u>SAND</u> WITH ABUNDANT SHELL FRAGMENTS (REWORKED BEACH SAND) WET TO SATURATED, LOOSE.	Ħ
5-	- 1			H	0				NO SHEEN, STAIN OR ODOR.	H
7-		- FILTER		H						H
8-	<u>- </u>	-SCREEN		H						\mathbb{H}
9.		-SUNLEN		F						H
10-			TW/MW 5-10°		7			1.6	SAME AS ABOVE. BUT LESS SHELL FRAGMENTS. SOME THIN (~3"-6" THICK PLASTIC CLAY LAYERS IN 10 TO 12 FT. DEPTH INTERVAL).	H
11-				Н	30 33					Ħ
12-				H						H
13			TW/MW 5-13'	H	18 30			6.6	SAME AS ABOVE.	H
14-	HS			Ц	40	36.7				A
15										\Box
16-									NOTES: 1. TD=14.5 FT.	H
17-									2. SWL=4.27 FT. (5/18/95 @ 07:50 HRS.). 3. CASING SILTED WITH ENTRAINED FORMATION SEDIMENT @ — 8.0	Н
19-									FT.; WILL REQUIRE JETTING/DEVELOPMENT TO CLEAR. 4. WELL CONSTRUCTION:	目
20-									CASING=NOMINAL 2" DIA. SCH. 40 PVC. SCREEN=0.020" MILL SLOT. FILTER=MONTEREY No.3 WASHED, GRADED HIGH-SILICA SAND.	H
21									SUFFACE SEAL=HYDRATED BENTONITE PELLETS. 5. NO DEVELOPMENT RECORD OR WELL SAMPLING LOG HAS BEEN	H
22—									PREPARED. A WATER SAMPLE WAS COLLECTED BY HAND BAILER FOR LAB ANALYSIS. SEE PROJECT FILE FOR DETAILS.	H
23										
24-										\Box
25									LEGEND	
26									TD TOTAL DEPTH FT FEET SWL STATIC WATER LEVEL	H
27—									'SWL STATIC WATER LEVEL SCH SCHEDULE POC TYPE -4 NEAT PORTLAND CEVENT CONCRETE	
28									BP HYDRATED BENTONITE PELLET SEAL N.A. NOT APPLICABLE	
29 -									HS HEAVING SAND	H
<u>30</u> 2403	C-16\BOR	0G\7 \ -LOG	35 DWG						NOTE. This log of subsurface conditions is a simplification of ac	

NOTE. This log of subsurface conditions is a simplification of actual conditions encountered it applies at the location and time of drilling Subsurface conditions may differ at other locations and times.

BORING LOG MW-6

SEE FIGURE 3
 Date
 MAY 18, 1995
 Sheet
 1
 OF
 1

 Project
 GSA - ALAMEDA FEDERAL CENTER
 Project No. 2403C.16

 Drilling
 Co. WEST HAZMAT
 Type of Rig
 MOBILE B-57 HSA

 Hole
 Diameter
 8 O.D.
 in.
 Drive
 Weight
 140#
 Drop 30 in.

Location Sketch Surface Elevation N.A. (msl) Top of Casing Elevation 8.61

L		ocation Sket	ch		1 Sauta	e Ele	evatio	on <u>N.A.</u> (msl) Top of Casing Elevation <u>8.61</u> (msl)
	Well Cor	nstruction	Samples	- 1	rog		۵_	Logged by: KEN PITCHFORD, CEG Approved by: KEN PITCHFORD, CEG
Depth (Feet)	Detail	Remarks	<u>o</u>	Interval Blows Per	6' interval Graphic Log	SOSIN	OVA/PID (PPM)	SOIL/GEOLOGIC DESCRIPTION
1 2 3 4 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	BLANK	PCC BP	MW- 64'			AC SP	68.2	4" ROLLED ASPHALTIC CONCRETE SURFACE MEDIUM GRAY-BROWN POORLY GRADED MEDIUM SAND WITH TRACE SHELL FRAGMENTS. DAMP TO WET. LOOSE. NO SHEEN, STAIN OR ODOR.
8 10 11 12 1		-SCREEN	MW- 6-10'	1 1 1 1	6	SM	95	MEDIUM TO DARK GRAY SILTY-CLAYEY FINE TO MEDIUM SAND WITH SOME SHELL FRAGMENTS. WET TO SATURATED. LOOSE. TO SLIGHTLY PLASTIC. VERY DARK GRAY TO BLACK SOIL MATERIAL © 11 TO 12 FT. INTERVAL, WITH POSSIBLE FAINT DECAYED HC ODOR.
13-	HS		MW- 6-13'	$\prod_{\substack{1\\2\\2}}$	5 [· · · .	SP	128	MOTTLED MEDIUM BROWN—GRAY SAND WITH TRACE SILT. NO SHELL I FRAGMENTS. WET. LOOSE, NO STAIN. POSSIBLE VERY FAINT DECAYED L. HC. ODOR.
15— 16— 17— 18— 19— 20— 21— 22— 23—				<u> </u>	<u> </u>	,	<u> </u>	NOTES: 1. TD=14.5 FT. 2. SWL= 3. VERY SLOW WATER LEVEL RECOVERY NOTED DURING DEVELOPMENT. 4. WELL CONSTRUCTION: CASING=NOMINAL 4" DIA. SCH. 40 PVC. SCREEN=0.020" MILL SLOTTED. FILTER=MONTEREY No.3 WASHED, GRADED HIGH-SILICA SAND. SURFACE SEAL=HYDRATED BENTONITE PELLETS. SURFACE MONUMENT=TRAFFICABLE AT—GRADE COVER IN TYPE I—II NEAT PORTLAND CEMENT CONCRETE.
25 26 27 28 29 33 2403	C-16\8GR	=_106\MW=106	56 D#G					LEGEND TO TOTAL DEPTH FT FEET SWL STATIC WATER LEVEL SCH SCHEDULE PCC TYPE I-II NEAT PORTLAND CEMENT CONCRETE BP HYDRATED BENTONITE PELLET SEAL HC HYDROCARBON N A NOT APPLICABLE HS HEAVING SAND

NOTE "his lag of subsurface conditions is a simplification or actuar conditions encountered it applies at the ocation and time of drilling Subsurface conditions may differ at other acations and times

								BORING LOG $TB-1$
					Date	MAY	18.	1995 Sheet 1 0F 1
		SEE FIGURE 4						ALAMEDA FEDERAL CENTER Project No. 2403C.16
								ST HAZMAT Type of Rig MOBILE B-57 HSA
								8" O.D. in. Drive Weight 140# Drop 30 in.
		Location Ske	tch		Surfac	e Ele	evatio	on <u>N.A.</u> (msl) Top of Casing Elevation <u>N.A.</u> (msl
	Well	Construction	Samples	1	_			Logged by: KEN PITCHFORD, CEG
<u></u>	_	, ,		Per	9	, s	등종	Approved by: KEN PITCHFORD, CEG
3.5	Backfil Detall	Remark	<u> </u>	Plows	Graphi	Š	§⊕	SOIL/GEOLOGIC DESCRIPTION
_	; 4			H	4 - '0'	AC		4" ROLLED ASPHALTIC CONCRETE SURFACE
3-4-5-7-8	4.	PCC	TB15'	536		SW	N.A.	DARK BROWN WELL GRADED FINE TO MEDIUM <u>SAND</u> WITH SOME COARSE SAND, FINE GRAVEL AND TRACE SILT AND CLAY. VERY MOIST TO WET. LOOSE. NO STAIN OR ODOR.
9	abla		TB-1-10	\mathbf{H}^{1}		SP	74.2	MEDIUM GRAY POORLY GRADED MEDIUM <u>SAND</u> WITH TRACE SILT AND CLAY AND ABUNDANT SHELL FRAGMENTS. SATURATED. LOOSE. NO SHEEN, STAIN OR ODOR.
5-	V	7	TB-1-15	H 40	1 1. **		46	SAME AS ABOVE, BUT COLOR TRANSITION AT APPROX. 14 TO 15 FT. TO MEDIUM BROWN COLOR AND LESS ABUNDANT SHELL FRAGMENTS. LOOSE. NO SHEEN, STAIN OR ODOR.
222 								NOTES: 1. TD=16.5 FT. 2. ORIGINAL TB-1 DRILL ATTEMPT RESULTED IN DRILL REFUSAL FT. (POSSIBLE LARGE ROCK OR BURIED PIPE). 3. RELOCATED TO PRESENT LOCATION 3 FT. WEST OF ORIGINAL ATTEMPT. 4. ORIGINAL ATTEMPT BORING BACKFILLED WITH PORTLAND CEMENT CONCRETE TO GRADE. 5. SOIL SAMPLE TB-1-5 RECOVERY 30% i.e. NO MATERIAL AVAILABLE FOR ATH/PID VAPOR TEST. 6. FREE GROUNDWATER FIRST ENCOUNTERED ∼ 5 FT. BELOW GRADE. LEGEND TD TOTAL DEP™H FT FEET PCC TYPE I-II NEA™ PORTLAND CEMENT CONCRETE BP HYDRATED BENTONITE PELLET SEAL N. A NOT APPLICABLE
	2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 5 6 7 8 9 0 1 2 3 7 7 8 9 0 1 2 2 7 7 8 9 0 1 7 7 8 9 0 1 7 7 7 8 9 1 7 7 7 8 9 1 7 7 7 7 8 9 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Well (1984) 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 21 2 3 4 5 6 7 8 9 0 2 1 2 2 3 4 5 6 7 8 9 0 2 1 2 3 4 5 6 7 8 9 0 2 1 2 3 4 5 6 7 8 9 0 2 1 2 3 4 5 6 7 8 9 0 2 1 2 3 4 5 6 7 8 9 0 2 1 2 3 4 5 6 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 5 7 8 9 0 2 1 2 3 4 7	Location Ske Well Construction Showing a symmetry PCC BP PCC BP PCC BP PCC BP PCC BP PCC	FIGURE 4 Location Sketch Well Construction Samples Sam	FIGURE 4 Location Sketch Well Construction Samples Page Pa	FIGURE 4 Project Drilling Hole I Surface Well Construction Samples Figure 4 Project Drilling Hole I Surface TB-1-5 TB-1-15 TB-1-1	FIGURE 4 Project Schrifting Co. Hole Diame Surface Ele Well Construction Samples Figure 1	FIGURE 4 Project CSA — Drilling Co. WE Hole Diameter Surface Elevation Well Construction Samples By SSS SS S

NOTE. This log of subsurface conditions is a simplification of actual conditions encountered it applies of the location and time of arilling. Subsurface conditions may differ at other locations and times.

									BORING LOG $TB-2$
			SEE FIGURE 4			Project Drilling	:t _C3 g Co.	SA _WE	1995 Sheet1_ OF1 ALAMEDA FEDERAL CENTER Project No. 2403C.16 ST HAZMAT Type of Rig MOBILE B-57 HSA
									8" O.D. in. Drive Weight 140# Drop 30 in.
느			Location Ske			Surtac	e Ele	evatio	on N.A. (msl) Top of Casing Elevation N.A. (msl)
5,	-	Well	Construction	Samples	t	Log	, ,	₽	Logged by: KEN PITCHFORD, CEG Approved by: KEN PITCHFORD, CEG
Elevati	Depth (Feet)	Backfill Detall	Remarks	ō	Interval Blows Per 6 Interval	Graphic Log	USCS	OVA/PID (PPM)	SOIL/GEOLOGIC DESCRIPTION
厂	<u> </u>	. 4				- 4	AC		4" ROLLED ASPHALTIC CONCRETE SURFACE
	1— 2— 3— 4—	4					SW		DARK BROWN WELL GRADED MEDIUM TO COARSE SAND WITH SOME GRAVEL TO ~ 1" DIA. AND TRACE TO MINOR FINES. DAMP TO WET BELOW 5 FT. DEPTH. LOOSE. NO STAIN, POSSIBLE FAINT HC ODOR.
	5—			TB-2-5'	10 14 21			N.A.	ZONE OF COARSE GRAVEL OR LARGER MATERIAL @ ~ 5 TO 8 FT. DEPTH INTERVAL.
	10-11-12-	44	PCC	TB-2-10	643			37. 7	SAME AS ABOVE.
	13—	4 4		TB-2-15	28 35 45		SM	36.4	MEDIUM GRAY FINE <u>SILTY SAND</u> WITH MINOR MEDIUM SAND AND TRACE CLAY. SATURATED. LOOSE. NO STAIN OR ODOR.
	17— 18— 20— 21— 22— 23— 25— 26— 27— 28—								NOTES: 1. TD=16.5 FT. 2. SOIL SAMPLE RECOVERY 20% IN TB-1-5, THEREFORE INADEQUATE MATERIAL VOLUME FOR HEADSPACE VAPOR FIELD TEST WITH PID. 3. FREE GROUNDWATER FIRST ENCOUNTERED ~ 5 FT. BELOW GRADE LEGEND TD TOTAL DEPTH FT FEET POO TYPE I—I NEAT PORTLAND CEMENT CONCRETE HC HYDROGARBON N A NOT APPLICABLE
24	29— 30—	16\ BOF	RE-LOG\TB-LOG	32 DWG		_ _			

NOTE. This log of subsurface conditions is a simplification of actual conditions encountered it applies at the location and time of arising Subsurface conditions may differ at other locations and times.

Г									BORING LOG $TB-3$				
					l	D-4-	MAY	19	1995 Sheet _1_ OF _1_				
			SEE FIGURE 4		ĺ				- ALAMEDA FEDERAL CENTER Project No. 2403C.16				
					ļ	•			ST HAZMAT Type of Rig MOBILE B-57 HSA				
-						Hole Diameter 8 0.0. in. Drive Weight 140# Drop 30							
L			Location Sket	tch		Surfac	e Ele	evatío	on <u>N.A.</u> (msl) Top of Casing Elevation <u>N.A.</u> (msl				
		Well Construction Samples		T	1	<u> </u>	T	Logged by: KEN PITCHFORD, CEG					
5-	_ ا				عَ يُهَا ا	60	,,	8-					
Elevat	Depth (Feet)	Bockfill Detall	Rømarks	Ō	Blows Per 6 Interval	Graphic Log	nscs	OVA/PID (PPM)	SOIL/GEOLOGIC DESCRIPTION				
-						4 - 44	AC	_	4" ROLLED ASPHALTIC CONCRETE SURFACE				
	1	á					SW		DARK BROWN WELL GRADED MEDIUM TO COARSE SAND WITH MINOR GRAVEL TO APPROX. 1° DIA. AND TRACE FINES. DAMP TO WET @ APPROX. 5 FT. DEPTH. LOOSE. FINER ZONES SLIGHTLY PLASTIC, MODERATELY COHESIVE. NO STAIN OR ODOR.				
	5	2	1	TB-3-5'	5 9 15			35.3	SPORADIC WOOD FRAGMENTS TO 2" DIA.				
	9-11-12-13-	44	PCC	TB-3-10°	6820			33.6	SAME AS ABOVE, BUT ENTIRELY SATURATED, LOOSE, AND WITH MORE ABUNDANT GRAVEL (TO 1/2" DIA.). WOOD FRAGMENTS IN SAMPLE TB-3-10.				
-	14-	ړ . ه ۵			H			<u> </u>					
	15— 16—	à		TB-3-15	22 56 50		SP	16.4	MEDIUM BROWN POORLY GRADED MEDIUM FINE <u>SAND</u> WITH LITTLE OR NO FINES AND NO SHELL FRAGMENTS. SATURATED. LOOSE. NO STAIN OR ODOR.				
	17— 18— 19— 20—												
	21—22—23—24—25—								NOTES: 1. TD=16.5 FT. 2. FREE GROUNDWATER FIRST ENCOUNTERED ~ 5 FT. BELOW GRADE. 3. OILY BLEBS AND PETROLEUM HC SHEEN OBSERVED ON DRILL RODS AND AUGERS WHEN RETRACTED. DEPTH OF ORIGIN OF THIS MATERIAL UNCERTAIN.				
	26 27 28 29								LEGEND TO TOTAL DEPTH FT FEET PCC TYPE I-II NEAT PORTLAND CEMENT CONCRETE HC HYDROCARBON N A NOT APPLICABLE				

NOTE. This log of subsurface conditions is a simplification of actual conditions encountered. It applies at the location and time of drilling. Subsurface conditions may differ at other locations and times.

Appendix C

Well Development Logs

Well Development Log

Date = /	17/95 +5/1	18/91			
			Sample Location <u>Mw</u>		
			Project No		
		, CLEAR, ~ 70			·
					
Developme	nt Completed By		DD11. LING		
		QUALITY (
			OND PUC WIREL		
Method to I	Measure Water Leve	I ORS HC INT	BEACE PROBE EVE	STILK CONTA:	T SOUNDED
Developmen	nt Lines: new cl	eaned			
Method of (Cleaning				
Comments :	WEL Schaen	SER 40 LA	LITES ASTER DES	SCO PINE	1180 45
		DEVELOPME		Cee Ne	Sparr NG S
Water Level	l (below MP)	Start 4.14 pt	End 4./	4 PT	
TRANSING	NATE VOCULE	~ 13 GAL. (1	Assume borehole, 4in,	1 czsh= £	14 = 0 70 =
	Point (MP)				. 174 - 07 50 1
Time	Pump Rate (gpm)	Discharge (gallons)	Color	Odor	Turbidity
1800	~ 3 GPM.	20	MEDIUM GRAY	KIONE	OCCULT
			i		
1836	• • • • • • • • • • • • • • • • • • • •	40	FAINT GLOY	11	TRANSPARENT
201					
0810		50		······································	NEAR CLEA
Note.	· Suspenden	DE .=	FR. BORDRIUT ON	5/17 -	
	CUATETZ	Level 7 25%	CESSION RESUMED	7/1/ re) Duen
	E/18/95	IN AN			
	· FIELD PEZSON	VNE (CEM) =	LARRY HORION 1	Sa! Pits	41 ² CD
otal Dischar	ge 50 GAL.	Ca	sing Volumes <u>~ 4.8</u> .		
			DRY ON-SITE DRULL		
			3,12 0,000		22 1 05 1

Well Development Log

				بوان والوان المالية	
Date 5/17	7/95		Sample Location <u>Mu</u>	1-4	
Project Name	e GSA - ALANIEDA	FOR CONTER 1	Project No		
	nditions Cuenz				
Observations	s/Comments				
	Completed By we				
		QUALITY			
Development	Method VENTED S	VEGE BLOCK 2	END PVC NIREL	G BAILER	_
			PRON INTERFACE		
Development				<u>~</u>	OUNDER.
Method of Cle	eaning				000000
			AFTER DESIGNATION (S	Section	.a Para
		DEVELOPM		A S (HALSAN	TOM FECTIO
Water Level (below MP) St	art 4.53 pr	End 4	53 er	
CASING/	Firms Value 5	17 500 005	(A. SSEVINE: 4-11)	\$ <23/09, 10	r-in & hole,
			ASING (MARKED		205.40
Time		,	ASMO (MARKES	<u>a)</u>	
111110	Pump Rate (gpm)	Discharge (gallons)	Color	Odor	Turbidity
17cc	~ Z GPM	20	DOEK GROY	NONE	0 6400
	,,				
1730		40	LIGHT EDAY	٤,	TRANSLUCE
1745	.,	50	FAINT GRAY	41	
			FAIN GRAY		CLESENG
					
NOTE . En	972 OUC COMAT	ENDED 1501146	NIT SURSTANTIALLY	REPUCED	DETEC_
	ESCLONS EXTRAC	_			
<u>- FIE</u>	30 Passoner ((SPE). (APP	HARLON, Key F	ATCHFORD.	
					
					
otal Discharge	e 50 GAL	Ca	sing Volumes ~ 4.	2 0 50) 641.
			DRY ON-SITE STORA		
	,				et_l of _l

Well Development Log

·	/18/95		Sample LocationM		
Project Na	me <u>GSA-Llamena</u> F	ED. CENTER P	Project No		
Weather C	onditions <u>Overcast</u> c	ocu, ~ 70°F			
Observatio	ns/Comments				
Developme	nt Completed By West	HAZUAT S	211 enash		
		QUALITY (CONTROL		
Developme	nt Method VENTED 502	SE BLACK A	un PVC Wizering	E BalleR.	
Method to	Measure Water Level. 🔿 🛚	E UC WITERE	VE PAR EUSUIZIO	CONTACT 50	אשפאנאנא
Developme	nt Lines: new cleaner	d			
Method of	Cleaning				
Comments	IT I SUPER APPL	·	<u> </u>	- 	
		DEVELOPME	ENT DATA		,
Water Leve	I (below MP) Star	t	End		
STENEIN'S L	Point (MP)	2005 - 20	me ud czin, io-in.dia	C-0 0.75 P	£14-22-62
Measuring I	Point (MP) 120 200 5155	or and so	int i		Water
Time	Pump Rate (gpm)	Discharge (gallons)	Color	Odor	Turbidity
10:00	72-3 GPM (W)	15	MED. SERV	Now€	<u>C</u> LoubV
1\$:30	*/	30	FAINT GROY	٧	Ç(350)
! 2∞	£¢.	45	FAINT GRAY		Scient.
	ge 50 Gallons		sing Volumes	77	
otai Dischai	96 02CC8KB.	r.	ting Values -	4 4	

Groundwater Monitor Well Sampling and Field Data Sheet

Groundwater Monitor Well Sampling & Field Data Sheet

Sampling & Fier	0 2 0 0 0 1 0 0 1					
1-2		Date: <u>5/</u>	1.2/05	Time:_o	810	
Location No. TANK		Weather:			<u> </u>	
Sample No. <u>MW - 2R</u>			n Ding((*			. 10 80-
Project/Client: GENERS 5	GE, OF ADMINISTRATION		S PARTLY CLOC		AZ, CA	CE 10 132 E
Location: A AND FERE	. <u>~</u>		erature <u>~ 75 /</u>		2 - 1	
Job No.		ersonne	ARRY HAG	CAN, K.E.	1 FIFCH	ronn
WELL INFORMATION						
Casing, Dia.: 4-4. 5	intake,		- 1	48 C.n.o.;	-a i- C	allons
() Stainless Steel	Diameter: 4-14.5	30 <u> </u>	olume of 2" ar	10 4 Casi	ng in G	aliuris
() Steel	() Stainless Steel	Τ				
L) PVC	() Steel	49 🚽				
() Tellon	PVC (د)	40				
() Other	() Tellon	Gais as			_	
Water Level: 4.1-4 en	() Other]				ļ
Total Depth: /2.2 4-	Well Conditions:	30		a- Well Casing		
Measuring Device	Well Clean to Bottom	25			•	1
() M-Scope	() yes, () no	20		_		ļ
(-) Other 72-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-2-	Well in Good Condition	13				
Volume of Water in	() yes. () no .	1				
Casing <u>1 3 /2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 </u>		10			- Weil Cass	29
Datum:	Clean (-) yes, () no	5 🚶				-
() Top of Surf. Casing	Condition	سَلِّ ه				
(-) Top of Well Casing		٥	10 26	20 40	20	80 79
() Other	Lock () yes, (N) no		Amount	of Water in West (F	+=4	
Purging Data:						
Method:	Tubing/rope		Purging Equipm	nent		
() Bladder Pump	() Teilon		(·) Dedicated	# 5:4-		
() Bailer	Polypropylene		() Prepared O			
() Submersible Pump	() Nylon		() Field Clean	еσ		
() Peristaltic Pump	() Other STEEL WIRE RIP	<u>.</u>		_		
() Other	Pumping Rate -1-7 324	رو <u>ت دیک</u>	Time Series Dat		_	
Materials:	Elapsed Time _~ 20 ~	4.	Measurement	1 2	3	4
Pump/Bailer	Volume Pumped		Well Volumes			
() Teflon	Well Evacuated (4) yes. ()no	Water Temp.			
(N) Stainless Steel	Number of Well Volumes		ρH .			
PVC	Purged		Other			
() Other				-		
						<u> </u>
Sampling Data:	() Tellon		Physic	al & Cher	nical D	ata:
Method:	Polypropylene					
() Bladder Pump	() Nylon		Appear (^) Cl			
() Saller	() Other					
() Submersible Pump	Sampling Equipme	nt.	() Τι () Co			
() Peristaltic Pump	(*) Dedicated	-		imiscible Pr	oduct	
() Other	() Prepared Off-Si	te				
Materials: Pump/Bailer	() Field Cleaned			her ondition of		
() Tellon	Metals Sample Field	d Filtered				
() Stainless Steel	() Yes		,			
MY PVC	() No		pH	4.6 14		
() Other	- Method N.A.		Uiner	<u> </u>	<u>, ce p</u>	
Materials: Tubing/rope						

Certification: Kaun H. D. Pute Ward C.E. 6.
This sample was collected and handled in accordance with standard regulatory and corporate procedures

Groundwater Monitor Well Sampling & Field Data Sheet

Sampling & Field		
3		Date: 2/12/95 Time: 1940 Has.
Location No. Lour	. 2	Weather:
	1w-3	Conditions CLEAR CALM DRY
Project/Client: Gereza	Setwar Admin	Air Temperature ~ 7505
Location: 스스타마스 트란트	TAL CENTER	Personnel LARZY HARLAN KEN PITCHFORD
Job No.		
	Ne	OTE: WELL SILTED ST-12.5 FT, DUE TO POOR
	.40	
WELL INFORMATION		Very sold and a Casing in Gallons
Casing, Dia.: 2- 4. 2	Intake,	Volume of 2" and 4" Casing in Gallons
() Stainless Steel	Diameter: <u> </u>	50
() Steel	() Steel	45.
(·) PVC	() PVC	40
() Teflon	() Tellon	Gais 22
() Other	() Other	
Water Level: 4. 38		30 -
Total Depth: 15 = 5	- Well Clean to Bottom	23
Measuring Device	f) yes, () no	20
()M-Scope ()Other <u>トニュール アン</u> タン	ومانتاهم في المراجع ال	15
Volume of Water in	() yes, () no	10 Z Wes Coung
Casing ~ 2 GoL.	Surface Protection:	
Datum:	Clean () yes, () no	,
() Top of Surf. Casing	Condition 457	20 30 40 30 50
() Top of Well Casing		0 10 20 30 40 30 60 Amount of Water in Work (Feed
() Other	Lock (v) yes, () no	
Purging Data:		Purging Equipment
Method:	Tubing/rope	(+) Dedicated
() Bladder Pump	() Teilon () Polypropylene	() Prepared Off-Site
() Bailer	() Polypropyrene () Nylon	() Field Cleaned
() Suomersible Pump	() Other <u>steer w z</u>	ينام والتاريخ
() Peristaltic Pump	Pumping Rate ~ ' 5	جريور سوي Time Series Data
() Other	Elapsed Time _~ ' =	Z. Measurement 1 2 3 4
Materials:	Volume Pumped	Well Volumes
Pump/Bailer	Well Evacuated (V) yes	1 Inc. Water Temp. 95,4 65,1 97.3
() Tellon () Stainless Steel	Number of Well Volum	es pH <u>17.92 (7.65 12.74 12.74</u>
() PVC	Purged	Other <u>EC 648 624 670 860</u>
() Other		
		NOTE APPARENT PH (METER MALPUNCTION.
Sampling Data:	() Tellon	Physical & Chemical Data:
Method:	N) Polypropyle	
() Bladder Pump	() Nylon	() Clear
(A) Bailer	() Other	T) Turbid - OCCULT
() Submersible Pump	Sampling Equip	oment () Color Beaux
() Peristallic Pump	N) Dedicated	() Immiscible Product
() Other Materials: Pump/Bailer	() Prepared O	Off-Site () Other
() Tellon	() Field Clean	ed Filed Condition of Sample
() Tellon () Stainless Steel	Metals Sample	Field Filtered Temp
~ I PVC	()Yes	рН
() Other	() Yes () No	Other 4°C .4 ICE CHEST
() Other Materials: Tubing/rope	* *	Other 4°C .4 ICE CHEST

Certification: Keemedt W. Pitchford C.E.G.

This sample was collected and handled in accordance with standard regulatory and corporate procedures

Groundwater Monitor Well Sampling & Field Data Sheet

Sampling & Field			
- I-z		Date: =	/:7/95 Time: 1900 HES.
ocation No. Tonk		Weather:	
Sample No. <u>Mw- 4</u>			ns Overcast, calm
Project/Client: Geveral			erature ~ 7c°F.
ocation: GSA - ALAM	edu Ferezal Centez	•	el Larry Harlan, Ken Pitchtore
Job No.		Personne	el Libery Farent, Len Pitenford
WELL INFORMATION	Intake,	•	
Casing, Dia.: 4 - 14. 1/2M. () Stainless Steel	Diameter: 4-14 P	V	Volume of 2" and 4" Casing in Gallons
	() Stainless Steel	50 <u> </u>	
() Steel	() Steel		
(N) PVO (5 sh. +5)	() PVC (5 =4. +0)	40	
() Teflon	() Tellon	Gals 35	
() Other	() Other	35	
Water Level: - 4.54 pr	Well Conditions:	30 🚽	
Total Depth: 13 FT	Well Clean to Bottom	25	4" Weil Casing
Measuring Device	(+) yes, () no	20	
() M-Scope		1	
(.) Other 1 1 72055	() yes, () no	15 🚽	
Volume of Water in	(\) yes, () no	10 -	2 Wall Casing
Casing	Clean (.) yes. () no	5]	
Datum:	Condition	, l	/
() Top of Surf. Casing	Condition 355	مر ب و	10 20 20 40 20 50
(-) Top of Well Casing	Lock () yes, (\) no	•	Amount of Water in Well (Feet)
() Other			
Purging Data:			
Method:	Tubing/rope		Purging Equipment
() Bladder Pump	() Teilon		() Dedicated
(·) Bailer	(N) Polypropylene		() Prepared Off-Site
() Supmersible Pump	() Nyion		() Field Cleaned
() Peristaltic Pump	(v) Other STEEL WIZE		N. Lew D 575, 201e
() Other	Pumping Rate <u>~ 중 술</u>		Time Series Data
Materials:	Elapsed Time ~ 30		Measurement 1 2 3 4
Pump/Bailer	Volume Pumped <u>50</u>		Well Volumes 4.2 4.2 4.2
() Tellon	Well Evacuated (v) yes.		Water Temp. 64.8 64.1 66.9
A) Stainless Steel	Number of Well Volume	es	pH 5.05 ±79 4.79 Other #C 6.16 6.41 7.02
Ya) PVC	Purged <u>~ 4.2</u>		Other EC 6.66 6.41 7.02
() Other			
Sampling Data:			
Method:	() Tellon		Physical & Chemical Data:
() Bladder Pump	🍅) Polypropyler	ne	Appearance:
や)Bailer	() Nylon		() Clear
() Suomersible Pumo	() Other		(~) Turoid
() Submersible Pumb () Peristaltic Pump	() Other Sampling Equips	ment	() Color FAINT GRAY
() Submersible Pumb () Peristatic Pump () Other	() Other		(~) Turoid
() Submersible Pumb () Peristaltic Pumb () Other Materials: Pump/Bailer	() Other	f-Site	() Color FAINT GRAY () Immiscible Product () Other
() Submersible Pumb () Peristaltic Pump () Other Materials: Pump/Bailer () Tellon	() Other	f-Site d	() Color FAINT GRAY () Immiscible Product
() Submersible Pumb () Peristaltic Pump () Other Materials: Pump/Bailer () Tellon () Stainless Steel	() Other	f-Site d	() Color FAINT GRAY () Immiscible Product () Other
() Submersible Pumb () Peristaltic Pump () Other Materials: Pump/Bailer () Tellon	() Other	f-Site d	(*) Turbid (*) Color Favor GRBY (*) Immiscible Product (*) Other Filed Condition of Sample Temp
() Submersible Pumb () Peristaltic Pump () Other Materials: Pump/Bailer () Tellon () Stainless Steel	() Other	f-Site d	() Turbid () Color Favor GRAY () Immiscible Product () Other Filed Condition of Sample

Certification: Kenneth & Piretral, C.E.G.
This sample was collected and handled in accordance with standard regulatory and corporate procedures

Appendix E

Monitoring Well Survey Data

RON ARCHER

CIVIL ENGINEER INC.

CONSULTING - PLANNING - DESIGN - SURVEYING

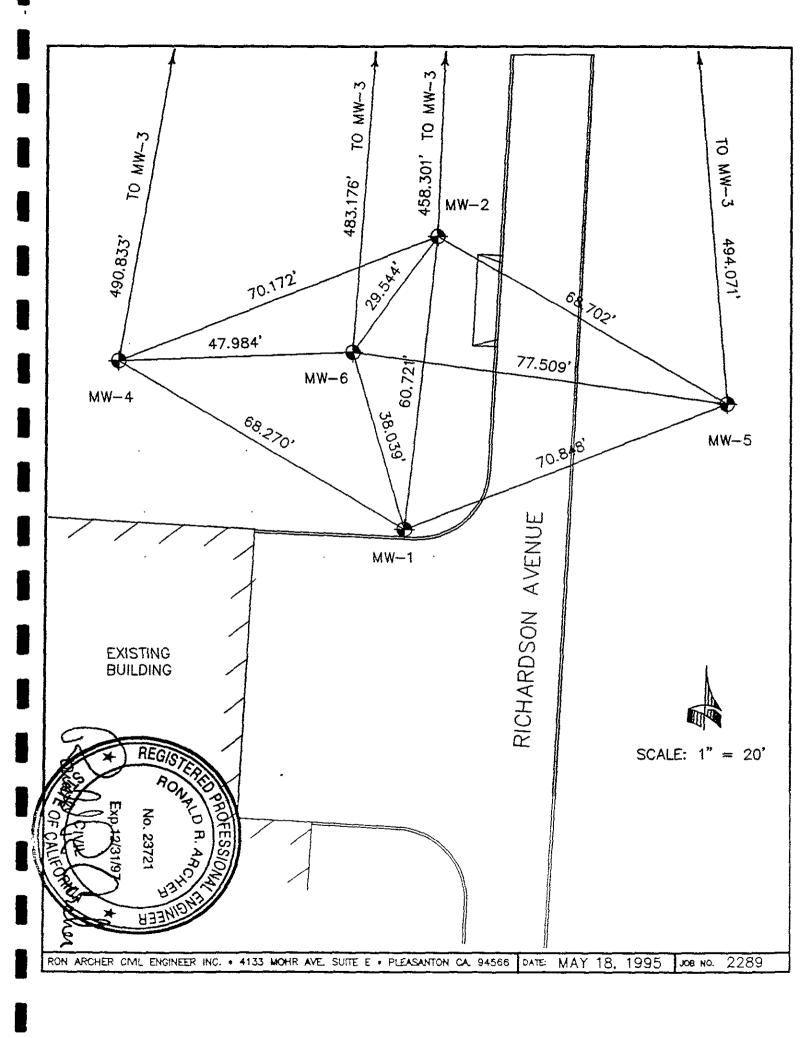
4133 Mohr Ave., Suite E • Pleasanton, CA 94566 (510) 462-9372

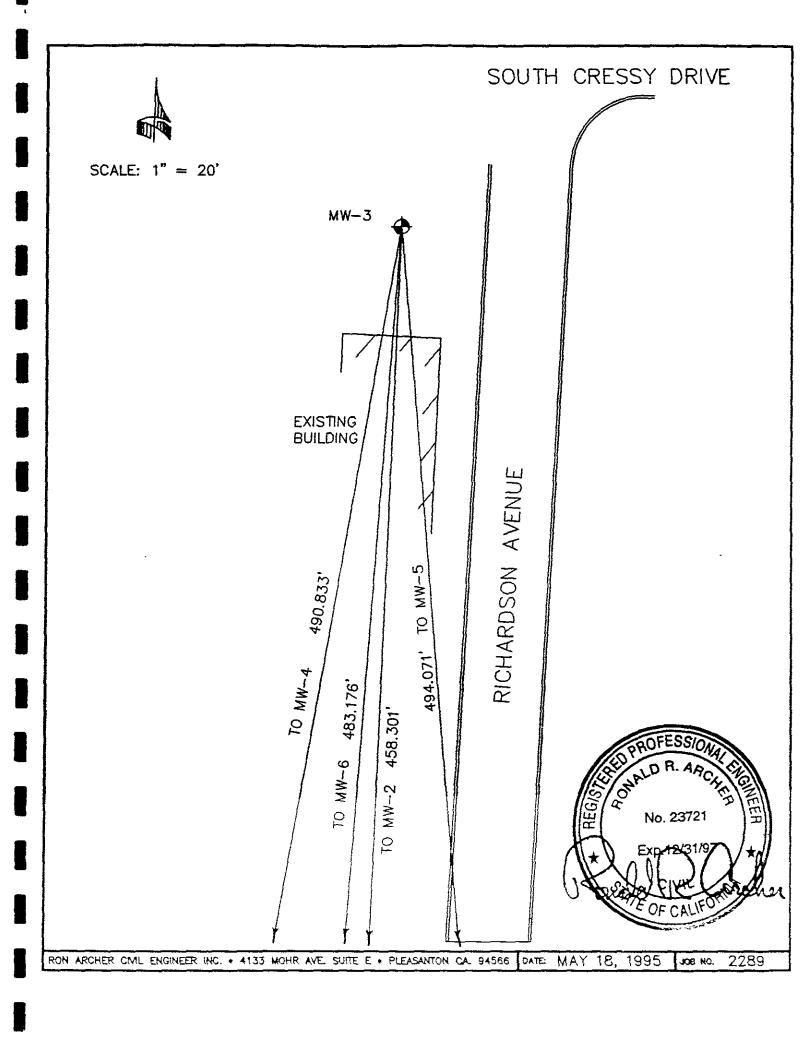
MAY 18, 1995

JOB NO 2289

ELEVATIONS OF EXISTING MONITORING WELLS AT THE FEDERAL CENTER, LOCATED AT 620 CENTRAL AVENUE AT MCKAY AVENUE, CITY OF ALAMEDA, ALAMEDA COUNTY, CALIFORNIA.

FOR: CAPE ENVIRONMENTAL MANAGEMENT INC.


BENCHMARK:


A FOUND U.S.C & G.S. BRONZE DISK STAMPED CENT-SIXTH, 1947, SET IN A STANDARD CITY MONUMENT CASING, 12 INCHES BELOW THE SIDEWALK SURFACE AT THE NORTHWEST CORNER OF THE INTERSECTION OF 6TH STREET AND CENTRAL AVENUE. ELEVATION TAKEN AS 16.792 M.S.L.

MONITORING WELL DATA TABLE

WELL	TOP OF CASING	TOP OF BOX
DESIGNATION	ELEVATION	ELEVATION
		4 2 2 2
MW-1	8.19	8.65
*::	//	
MW-2	8.27	8.73
> <u>, ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; </u>		- 15 (98)
MW-3	9.00	9.24
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MW-4	8.53	8.73
MW-5	8.37	8.73
MW-6	8.61	8.75

1995 , 8 * 4133 MOHR AVE. SUITE E * PLEASANTON CA. 94566 DATE: MAY RON ARCHER CML ENGINEER INC.

Groundwater Monitor Well Sampling & Field Data Sheet

<u>Jamping C 1 1</u>							
Location No. Tour	2 5.45	Date: <u>5/</u> Weather:		_Time	: 124	4C 42	<u>s</u>
Sample NoMW-1				.		,	
Project/Client: Geneza	SELLICES SOME		is <u>CLEAR</u>		, OR		
Location: ALEMEDA FE			erature <u>~ 7</u>				
Job No		Personne	el <u>Loezy Ha</u>	75 rox	. Keni	Pirch	FO2D
303 110.					_		
WELL WESSELLTON							
WELL INFORMATION	lto-	•					
Casing, Dia.: Z-18. X	Intake,	\	/olume of 2" a	and 4" (Casino	in Gal	lons
() Stainless Steel	Diameter: 2-14. \$\mathcal{L}\$	so					
() Steel	() Stainless Steel						
() PVC	() Steel	45					
() Teflon	TO PVC	40 4					_
() Other	() Tellon	Gais 35					
Water Level: 4.19	() Other	_]				/	
Total Depth: 15.0 FT	Well Conditions:	30 4			/		
Measuring Device	Well Clean to Bottom	25 4		4* W-8 Ca	ang ,		
	`() yes, () no	20				•	
() M-Scope	Well in Good Condition	1					
	() was () as	19 -					
Volume of Water in	-(.) yes, () no Surface Protection:	10 🗐		•	2" 1	Weil Casing	
Casing = ===============================		5					
Datum:	Clean (.) yes. () no	و د د الله	_/				
() Top of Surf. Casing	Condition ======	G 5 .					
() Top of Well Casing		- 0	10 20	20	40 1 Well (Feet)	50	60
() Other	Lock () yes, () no		Amoul	Ut Ot water n	s as out (Local)		
Purging Data:			Olivaina Saula				
Method:	Tubing/rope		Purging Equip				
() Bladder Pump	() Teilon		() Dedicated				
() Bailer	-(_) Polypropylene		() Prepared (
() Suomersible Pump	() Nylon		(-) Field Clear	ned			
() Peristaltic Pump	(~) Other STEELINGS						
() Other	Pumping Rate 👱 🚶 😉	<u>(د بحرُ سه</u>	Time Series Da				
Materials:	Elapsed Time ~ 20 m	in	Measurement	7	2	3	4
Pump/Bailer	Volume Pumped	<u>.0 Ga</u>	Well Volumes				
() Tellon	Well Evacuated (*) yes.		Water Temp.	68.5	685	68.2	03.6
(*) Stainless Steel	Number of Well Volume		ρH		12.82		8.5!
TA) PVC	Purged 3.0		Other EC				512
() Other	. 0.900						
[) Ourer	•						
Sampling Data:							
Method:	() Tellon		Physic	cal & C	hemic	cal Dat	a:
() Bladder Pump	() Polypropyler	re	Appea	arance:			
(2) Bailer	() Nylon		() 0				
() Supmersible Pump	() Other				5-164	:-	
() Peristallic Pump	Sampling Equip	ment			PAINT B		
() Other	(h) Dedicated				le Prod		
Materials: Pump/Bailer	() Prepared Off	'-Site					
	() Field Cleane			ther			
() Tellon	Metals Sample F				on of S	attible	
() Stainless Steel	() Yes		•	p		_	
Y) PVC	• •		рH _				
() Other	() No		Othe	er 4°C	thi iC	E 1.465	1
Materials: Tubing/rope	- Method N.A	L .	0.710	·			

This sample was collected and handled in accordance with standard regulatory and corporate procedures

Groundwater Monitor Well Sampling & Field Data Sheet

Sampling & Fie				
Location No. Tank	1-2 5E	Date: 5	: 8/== Time: 12:30 +	25
Sample No. NW-6		Weather:		
Project/Client: GENERAL	C-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		PARTY CLOUDY, CALL	
			ture ~ 75 ° #.	
Location: 454- ALONE		Personnel	LACEY HARLAN KEN PITC	عص=بر-
Job No.				
WELL INFORMATION				
Casing, Dia.: 4 W.	Intake,	Vol	ume of 2" and 4" Casing in G	ailons
() Stainless Steel	Diameter: 🛴 🐔	so	diffe of Z and 4 occord in C	
() Steel	() Stainless Steel	اً ده		
(1) PVC	() Steel	1		
() Teflon	Tr) PVC	40		
() Other	() Teflon	Gats 35	_	
₩ —Water Level:	() Other	30		
Total Depth:	Well Conditions:	25	4" Well Casing	
Measuring Device	Well Clean to Bottom	20		
() M-Scope	``{·) yes, () no Well in Good Condition	_]		
(.) Other = _	· (·) yes, () no	15		
Volume of Water in	Surface Protection:	10	Z' Wolf Case	<u> </u>
Casing <u>164. alas</u>	Clean (-) yes, (-) no	5		
Datum:	Condition	مراه		
() Top of Surf. Casing (:) Top of Well Casing	00/10-110-1	•	10 20 30 40 50	50
() Other	Lock () yes, (·) no		Amount of Water in Well (Feet)	
[/ Outer				
Purging Data:				
Method:	Tubing/rope	بر	urging Equipment 1323 = T	
() Bladder Pump	() Tellon		() Dedicated	
(·) Bailer	(=) Polypropylene		() Prepared Off-Site () Field Cleaned	
() Suomersible Pump	() Nylon	,	、 Xes Doored	
() Peristaltic Pump	الم Other عن المالية ا Pumping Rate من المالية المالي		me Series Data	
() Other	Elapsed Time <u>~ 2 #</u>	7	Measurement 1 2 3	4
Materials:	Volume Pumped		Well Volumes	
Pump/Bailer	Well Evacuated (-) yes.		Warer Temp 77.7 74.2 72	31.
() Tellon	Number of Well Volume	, , , , , , , , , , , , , , , , , , , ,	NH 17.52 11.5 10.	45
() Stainless Steel () PVC	Purged 42 350		Other EC 6.35 662 6.5	王 46
() Other			· · · · · · · · · · · · · · · · · · ·	
() Guiei		•	pr mercy zpozent malfunes	ਲ -
Sampling Data:	() Tellon		Physical & Chemical D	ata:
Method:	() Fellall (;) Polypropyler	20		
() Bladder Pump	() Nylon		Appearance:	
(*) Bailer	() Other		() Clear	
() Supmersible Pump	Sampling Equip	ment	() Color Early GRA	
() Peristaltic Pump	۲) Dedicated	· · · · · · · · ·	() Immiscible Product	
() Other	() Prepared Of	f-Site	() Other	
Materials: Pump/Bailer	() Field Cleane		K - Fixed Condition of Sample	e
() Tellon () Stainless Steel	Metals Sample F		Temp	
() Staintess Steel	() Yes		oH	
(1) PVC (1) Other	() No		Other 4°C IN ICE CH	हर
Materials: Tubing/rope	- Method <u>N. A</u>			

Certification: Krunete D. Fellent, C.E.G.

This sample was collected and handled in accordance with standard regulatory and corporate procedures

Appendix F

Certified Laboratory Reports and Sample Chain-of-Custody Documentation

Curtis & Tompkins, Ltd., Analytical Laboratories, Since 1878

2323 Fifth Street, Berkeley, CA 94710, Phone 510) 486-0900

ANALYTICAL REPORT

Prepared for:

Cape Environmental INC. 20280 South Vermont Ave Suite 250 Torrance, CA 90502

Date: 02-JUN-95

Lab Job Number: 121127 Project ID: 2403C.16

Location: Alameda Federal Center

Reviewed by:

Reviewed by:

This package may be reproduced only in its entirety.

Berkeley Irvine

Report Date: 02 June 95

Client: Cape Environmental INC. Laboratory Login Number: 121127

Project Name: Alameda Federal Center

Project Number: 2403C.16

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520EF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
121127-001	TW/NW4-10*	Soil	17-may-95	18-MAY-95	30-MAY-95	ND	mg/Kg	50	TR	2086
121127-002	TW/NW4-51	Soil	17-MAY-95	18-MAY-95	30-MAY-95	ND	mg/Kg	50	TR	2086
121127-003	TW/NW4-151	Soil	17-MAY-95	18-MAY-95	30-MAY-95	290	mg/Kg	50	TR	2086
121127-007	MW6-41	Soil	18-MAY-95	18-MAY-95	30-MAY-95	90.	mg/Kg	50	TR	2086
121127-008	MW6-10'	Soil	18-MAY-95	18-MAY-95	30-MAY-95	98.	mg/Kg	50	TR	2086
121127-009	MW6-131	Soil	18-MAY-95	18-MAY-95	30-MAY-95	ND	mg/Kg	50	TR	2086
121127-011	TB1-10'	Soil	18-MAY-95	18-MAY-95	30-MAY-95	ND	mg/Kg	50	TR	2086
121127-012	TB1-15'	Soil	18-MAY-95	18-MAY-95	30-MAY-95	ND	mg/Kg	50	TR	2086
121127-014	TB2-10'	Soil	18-MAY-95	18-MAY-95	30-MAY-95	520	mg/Kg	50	TŔ	2086
121127-015	тв2-15'	Soil	18-MAY-95	18-MAY-95	30-MAY-95	ND	mg/Kg	50	TŘ	2086
121127-016	183-54	Soil	18-MAY-95	18-MAY-95	30-MAY-95	140	mg/Kg	50	TR	2086
121127-017	383-40-mm/ an and 2	Soil 1	18-MAY-95	18-MAY-95	30-MAY-95	= 150	mg/Kg	50	* TR *	2086
121127019	TB3-15/	Soil	18-MAY-95	18-MAY-95	30-MAY-95	120	mg/Kg	50	TR	2086

QC Batch Report

Client: Cape Environmental INC.
Project Name: Alameda Federal Center

Laboratory Login Number: 121127 Report Date: 02 June 95

Project Number: 2403C.16

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch Number: 20869

					
lank Result	S				
Sample ID	Result	MDL	Units	Method	Date Analyze
BLANK	ND	50	mg/Kg	SMWW 17:5520EF	30-MAY-95
pike/Duplic	ate Results				
Sample ID	Recovery			Method	Date Analyze
BS	89%			SMWW 17:5520EF	30-MAY-95
BSD	89* 84*			SMWW 17:5520EF SMWW 17:5520EF	30-MAY-95
				Control	Limits
Av	erage Spike	Recover	ry	Control 86% 80% ~	

Laboratory Login Number: 121127 Client: Cape Environmental INC.

Project Name: Alameda Federal Center

Report Date: 02 June 95

Project Number: 2403C.16

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) METHOD: SMWW 17:5520BF

Lab ID	Sample ID	Matrix	Sampled	Received	Analyzed	Result	Units	RL	Analyst	QC Batch
121127-019	TW5	Water	17-MAY-95	18-MAY-95	24-MAY-95	ND	mg/L	7	TR	20813
121127-020	MW4	Water	17-MAY-95	18-MAY-95	24-MAY-95	ND	mg/L	5	TR	20813
121127-021	MW-2R	Water	18-MAY-95	18-MAY-95	24-MAY-95	ND	mg/L	5	TR	20813
121127-022	MW1	Water	18-MAY-95	18-MAY-95	24-MAY-95	ND	mg/L	5	TR	20813
121127-023	MW3	Water	18-MAY-95	18-MAY-95	24-MAY-95	ND	mg/L	5	TR	20813
121127-024	MW6	Water	18-MAY-95	18-MAY-95	24-MAY-95	ND	mg/L	5	TR	20813
	ence - em men - z	-								

02 June 95

QC Batch Report

Client:

Cape Environmental INC.

Laboratory Login Number: 121127

Report Date:

Project Name: Alameda Federal Center

Project Number: 2403C.16

ANALYSIS: Hydrocarbon Oil & Grease (Gravimetric) QC Batch Number: 20813

Blank Results

Sample ID Result MDL Units Method Date Analyzed

BLANK ND 5 mg/L SMWW 17:5520BF 24-MAY-95

Spike/Duplicate Results

Sample ID Recovery Method Date Analyzed

BS 86% SMWW 17:5520BF 24-MAY-95 BSD 82% SMWW 17:5520BF 24-MAY-95

Control Limits

Average Spike Recovery 84% 80% - 120% Relative Percent Difference 4.4% < 20%

Curtis & Tompkins, Ltd.

DATE SAMPLED: 05/17,18/95 DATE RECEIVED: 05/18/95 DATE EXTRACTED: 05/24/95 DATE ANALYZED: 05/26,27/95

DATE REPORTED: 06/02/95

BATCH NO: 20779

Extractable Petroleum Hydrocarbons in Soils & Wastes California DOHS Method LUFT Manual October 1989

LAB ID	SAMPLE ID	DIESEL RANGE (mg/Kg)	REPORTING LIMIT (mg/Kg)
121127-001	TW/MW4-10'	19*	2.0
121127-002	TW/MW4-5'	3.3*	1.0
121127-003	TW/MW4-15'	3.2*	1.0
121127-007	MW6-4'	ND	1.0
121127-008	MW6-10'	25*	5.0
121127-009	MW6-13'	ND	1.0
121127-011	TB1-10'	ND	1.0
121127-012	TB1-15'	ND	1.0
121127-014	TB2-10'	3.2*	1.0
121127-015	TB2-15'	ND	1.0
121127-016	TB3-5'	9.3*	5.0
121127-017	TB3-10'	42*	5.0
121127-018	TB3-15'	10*	1.0
METHOD BLAN	IK N/A	ND	1.0

ND = Not detected at or above reporting limit.

LABORATORY NUMBER: 121127

PROJECT ID: 2403C.16

CLIENT: CAPE ENVIRONMENTAL INC.

LOCATION: ALAMEDA FEDERAL CENTER

* Sample chromatogram does not resemble diesel standard.

QA/QC SUMMARY: MS/MSD of sample no: 121127-015

	======
RPD,%	15
RECOVERY, %	82
	=======

LABORATORY NUMBER: 121127

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

DATE SAMPLED: 05/17,18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/29/95
DATE ANALYZED: 05/30,31/95
DATE REPORTED: 06/02/95

BATCH NO: 20875

Extractable Petroleum Hydrocarbons in Aqueous Solutions
California DOHS Method
LUFT Manual October 1989

LAB ID	CLIENT ID	DIESEL RANGE (ug/L)	REPORTING LIMIT (ug/L)
·			
121127-019	TW5	680*	50
121127-020	MW4	ND	50
121127-021	MW-2R	ND	50
121127-022	MW1	5,500*	50
121127-023	MW3	92*	50
121127-024	MW6	ND	50
METHOD BLANK	N/A	ND	50

ND = Not detected at or above reporting limit.

* Sample chromatogram does not resemble diesel standard.

QA/QC SUMMARY: BS/BSD

RPD, %

RECOVERY, %

103

LABORATORY NUMBER: 121127

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

DATE SAMPLED: 05/17,18/95

Curtis & Tompkins, Ltd.

DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/25/95 DATE REPORTED: 06/02/95

BATCH NO.: 20773

Total Volatile Hydrocarbons with BTXE in Solids and Wastes
TVH by California DOHS Method/LUFT Manual October 1989
BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (mg/Kg)	BENZENE (ug/Kg)	TOLUENE (ug/Kg)	ETHYL BENZENE (ug/Kg)	TOTAL XYLENES (ug/Kg)
		(mg/kg/	(ug/kg)	(ug/kg)	(49/19)	(ug/kg)
121127-001	TW/MW4-10'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-002	TW/MW4-5'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-003	TW/MW4-15'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-007	MW6-4'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-008	MW6-10'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-009	MW6-13'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-011	TB1-10'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-012	TB1-15'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-014	TB2-10'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-015	TB2-15'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-016	TB3-5'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-017	TB3-10'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
121127-018	TB3-15'	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)
METHOD BLAN	K N/A	ND(1.0)	ND(5.0)	ND(5.0)	ND(5.0)	ND(5.0)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

 LABORATORY NUMBER: 121127

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

DATE SAMPLED: 05/17,18/95

DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/24/95
DATE REPORTED: 06/02/95

BATCH NO.: 20774

Total Volatile Hydrocarbons with BTXE in Aqueous Solutions TVH by California DOHS Method/LUFT Manual October 1989 BTXE by EPA 5030/8020

LAB ID	SAMPLE ID	TVH AS GASOLINE (ug/L)	BENZENE (ug/L)	TOLUENE (ug/L)	ETHYL BENZENE (ug/L)	TOTAL XYLENES (ug/L)
-						
121127-019	TW5	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
121127-020	MW4	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
121127-021	MW-2R	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
121127-022	MW1	ND(50)	1.1	ND(0.5)	0.9	1.6
121127-023	MW3	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
121127-024	MW6	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)
METHOD BLAN	K N/A	ND(50)	ND(0.5)	ND(0.5)	ND(0.5)	ND(0.5)

ND = Not detected at or above reporting limit; Reporting limit indicated in parentheses.

 LABORATORY NUMBER: 121127-001 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW/MW4-10'

Curtis & Tompkins, Ltd
DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/30/95

DATE REPORTED: 06/02/95

BATCH NO: 20894

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	ug/kg 10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
l,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ИD	5.0
l,3-Dichlorobenzene	ИD	5.0
l,2-Dichlorobenzene	ND	5.0
l,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

Sold Oct. I MEGO, DIGED		
=======================================		==
1,2-Dichloroethane-d4	91 %	
Toluene-d8	112 %	
Bromofluorobenzene	71 %	

LABORATORY NUMBER: 121127-002 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW/MW4-5'

Curtis & Tompkins .td

DATE SAMPLED: 05/17/95

DATE RECEIVED: 05/18/95

DATE ANALYZED: 05/30/95

DATE REPORTED: 06/02/95

BATCH NO: 20894

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ИД	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ИD	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

	=======================================	
1,2-Dichloroethane-d4	98 %	
Toluene-d8	97 %	
Bromofluorobenzene	86 %	
=======================================		

LABORATORY NUMBER: 121127-003 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW/MW4-15'

Curtis & Tompkins, Etd
DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/26/95

DATE REPORTED: 06/02/95

BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
l,l,l-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
l,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

	=======================================	=======================================
1,2-Dichloroethane-d4	103	0/0
Toluene-d8	97	90
Bromofluorobenzene	85	%

Curtis & Tompkins, Ltd

LABORATORY NUMBER: 121127-007

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

DATE SAMPLED: 05/18/95

DATE RECEIVED: 05/18/95

DATE ANALYZED: 05/30/95

LOCATION: ALAMEDA FEDERAL CENTER

DATE REPORTED: 06/02/95

SAMPLE ID: MW6-4' BATCH NO: 20894

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
l, l-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
l,l,l-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
l,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

COMMODINE MECOVEMEND		
1,2-Dichloroethane-d4	98 %	
Toluene-d8	95 %	
Bromofluorobenzene	83 %	
25224255256252242552562562562562562562562562562562562562		

LABORATORY NUMBER: 121127-008 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW6-10'

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/26/95 DATE REPORTED: 06/02/95

BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5:0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
l,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.
* Surrogate recovery out due to matrix interference.

SURROGATE RECOVERIES

=======================================	=======================================	=======================================
1,2-Dichloroethane-d4	102	०५०
Toluene-d8	124	%
Bromofluorobenzene	52	% ★

LABORATORY NUMBER: 121127-009 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW6-13'

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/26/95 DATE REPORTED: 06/02/95 BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
l,l-Dichloroethene	ND	5.0
l, l-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ИD	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

=======================================	=======================================
103	%
99	%
79	olo Olo
	103 99

LABORATORY NUMBER: 121127-011 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB1-10'

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/26/95 DATE REPORTED: 06/02/95

BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
l,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0°
Trichloroethene	ИD	5.0
l,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
l,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
l,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
l,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

		==========
1,2-Dichloroethane-d4	104	010
Toluene-d8	98	%
Bromofluorobenzene	84	8
=======================================		=======================================

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/27/95

DATE REPORTED: 06/02/95

BATCH NO: 20842

LABORATORY NUMBER: 121127-012 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB1-15'

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT	REPORTING
-	ug/Kg	LIMIT
		ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ИD	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
l,l-Dichloroethene	ND	5.0
l,l-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
l,l,l-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
l,l,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

#=====================================		==
1,2-Dichloroethane-d4	100 %	
Toluene-d8	101 %	
Bromofluorobenzene	80 %	

CUT Curtis & "ompkins, Ltd

LABORATORY NUMBER: 121127-014 DATE SAMPLED: 05/18/95 CLIENT: CAPE ENVIRONMENTAL INC. DATE RECEIVED: 05/18/95 PROJECT ID: 2403C.16 DATE ANALYZED: 05/27/95

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB2-10'

DATE REPORTED: 06/02/95 BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT	REPORTING
	ug/Kg	LIMIT
		ug/Kg
Chloromethane	ИD	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ИD	5.0
l,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	. ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0°
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

	=======	=======================================
1,2-Dichloroethane-d4	104	olo
Toluene-d8	82	৽৽
Bromofluorobenzene	85	%

DATE SAMPLED: LABORATORY NUMBER: 121127-015 05/18/95 DATE RECEIVED: 05/18/95 CLIENT: CAPE ENVIRONMENTAL INC. DATE ANALYZED: 05/27/95 PROJECT ID: 2403C.16 DATE REPORTED: 06/02/95

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB2-15

BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT
	3. 2	ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ИD	5.0
l,l-Dichloroethene	ND	5.0
l,l-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ИD	5.0
Chlorobenzene	ND	5.0
l,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

1,2-Dichloroethane-d4	101 %
Toluene-d8	98 %
Bromofluorobenzene	82 %

LABORATORY NUMBER: 121127-016 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB3-5'

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/27/95 DATE REPORTED: 06/02/95

BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

volacije najočajbolis ili b	JII W MASCCS	
Compound	RESULT	REPORTING
-	ug/Kg	LIMIT
	-	ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.
* Surogate recovery out due to matrix effect.

SURROGATE RECOVERIES

	====	====	=======================================
1,2-Dichloroethane-d4	103	%	
Toluene-d8	190	%	*
Bromofluorobenzene	51	%	*

LABORATORY NUMBER: 121127-017 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB3-10'

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/27/95 DATE REPORTED: 06/02/95

BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT ug/Kg	REPORTING LIMIT ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
1,1,1-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
1,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ИD	5.0
1,3-Dichlorobenzene	ND	5.0
l,2-Dichlorobenzene	ND	5.0
1,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

	=======================================	
1,2-Dichloroethane-d4	107	%
Toluene-d8	102	8
Bromofluorobenzene	78	8
	=======================================	=======================================

LABORATORY NUMBER: 121127-018 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB3-15'

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/27/95 DATE REPORTED: 06/02/95

BATCH NO: 20842

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT	REPORTING
	ug/Kg	LIMIT
		ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
l,l-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
l,2-Dichloroethane	ND	5.0
l,l,l-Trichloroethane	ND	5.0
Carbon tetrachloride	ИD	5.0
Bromodichloromethane	ND	5.0
l,2-Dichloropropane	ND	5 . 0
cis-l,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
l,3-Dichlorobenzene	ND	5.0
l,2-Dichlorobenzene	ND	5.0
l,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

1,2-Dichloroethane-d4	101	\$	
Toluene-d8	95	86	
Bromofluorobenzene	78	%	

Curtis & Tompkins, Ltd
DATE ANALYZED: 05/30/95

DATE REPORTED: 06/02/95

BATCH NO: 20894

LABORATORY NUMBER: 121127-Method Blank

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MB

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT	REPORTING
-	ug/Kg	LIMIT
		ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	МD	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ИD	5.0
l,l-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
l,l,l-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
l,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ИD	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
l,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

1,2-Dichloroethane-d4	95 %
Toluene-d8	92 %
Bromofluorobenzene	90 %

LABORATORY NUMBER: 121127-Method Blank

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MB

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Curtis & Tompkins, Ltd.

ANALYZED: 05/26/95

DATE REPORTED: 06/02/95

BATCH NO: 20842

Compound	RESULT	REPORTING
	ug/Kg	LIMIT
Oh lanamakha na	MD	ug/Kg
Chloromethane	ND	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
1,1-Dichloroethene	ND	5.0
1,1-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
l,l,l-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
l,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
1,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
1,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
l,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

1,2-Dichloroethane-d4
Toluene-d8
Bromofluorobenzene

1,2-Dichloroethane-d4

100 %

87 %

Curtis & Tompkins, etd

DATE ANALYZED: 05/27/95

DATE REPORTED: 06/02/95

BATCH NO: 20842

LABORATORY NUMBER: 121127-Method Blank

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MB

EPA 8010 Compound List by EPA 8240 Volatile Halocarbons in Soil & Wastes

Compound	RESULT	REPORTING
•	ug/Kg	LIMIT
	2 , -	ug/Kg
Chloromethane	ИD	10
Bromomethane	ND	10
Vinyl chloride	ND	10
Chloroethane	ND	10
Methylene chloride	ND	20
Trichlorofluoromethane	ND	5.0
l,l-Dichloroethene	ND	5.0
l,l-Dichloroethane	ND	5.0
cis-1,2-Dichloroethene	ND	5.0
trans-1,2-Dichloroethene	ND	5.0
Chloroform	ND	5.0
Freon 113	ND	5.0
1,2-Dichloroethane	ND	5.0
l,l,l-Trichloroethane	ND	5.0
Carbon tetrachloride	ND	5.0
Bromodichloromethane	ND	5.0
l,2-Dichloropropane	ND	5.0
cis-1,3-Dichloropropene	ND	5.0
Trichloroethene	ND	5.0
l,1,2-Trichloroethane	ND	5.0
trans-1,3-Dichloropropene	ND	5.0
Dibromochloromethane	ND	5.0
Bromoform	ND	10
Tetrachloroethylene	ND	5.0
1,1,2,2-Tetrachloroethane	ND	5.0
Chlorobenzene	ND	5.0
l,3-Dichlorobenzene	ND	5.0
1,2-Dichlorobenzene	ND	5.0
l,4-Dichlorobenzene	ND	5.0

ND = Not detected at or above reporting limit.

	=======================================	=======================================
1,2-Dichloroethane-d4	112	%
Toluene-d8	97	06
Bromofluorobenzene	84	ે

LFL

8240 Laboratory Control Sample Report

Lab No: QC94004 LCS Datafile: CEU22

Date Analyzed: 31-MAY-95

Matrix: SOIL Operator:

Batch No: 20894 425151001022

Compound	ug/Kg	SpikeAmt	% Rec	<u>Limits</u>
1,1-Dichloroethene	48.4	50	97 %	59-172%
Trichloroethene	41.1	50	82 %	62-137%
Benzene	43.8	50	83 %	66-142%
Toluene	45.8	50	92 %	59-139%
Chlorobenzene	44.1	50	88 %	60-133%
Surrogate Recoveries 1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	51.4	50	103 %	75-143%
	45.7	50	91 %	77-134%
	42.2	50	84 %	65-129%

Results within Specifications - PASS

Note: Instrument C and D surrogates based on LCS data

8010MS MS/MSD Report

Matrix Sample Number: 121127-002

Date Analyzed: 26-MAY-95

Lab No: QC93804 QC93805

Spike File:

CEQ16

Matrix: SOIL

Spike Dup File: CEQ17

Batch No: 20842 425146207016 425146214017 425146166010 Analyst: LFL

	Instrdg	SpikeAmt	% Rec	Limits
MS RESULTS				
1,1-Dichlorcethene	69.7	50	139 %	
Trichloroethene	48.4	50	97 °s	62-137%
Benzene	49.8	50	100 %	
Toluene	51.4	50	103 %	59-139%
Chlorobenzene	49.7	50	99 %	60-133%
Cultotoperisens	13			
cumpanto Bogoveries	•			
Surrogate Recoveries	53.8	50	108 %	75-143%
1,2-Dichloroethane-d4	47.2	50	94 %	77-134%
Toluene-d8		50	80 %	65-129%
Bromofluorobenzene	40	50	00 3	03 1270
MSD RESULTS			%	59-172%
1,1-Dichloroethene	58.3	50	117 %	
Trichloroethene	42.1	50	84 %	62-137%
Benzene	44.6	50	89 %	
Toluene	47.7	50		59-139%
Chlorobenzene	45.1	50	90 왕	60-133%
CITEOTODCITACITO				
Surrogate Recoveries				
1,2-Dichloroethane-d4	51.2	50	102 총	75-143%
Toluene-d8	48.6	50	97 %	77-134%
	42.9	50	86 %	65-129%
Bromofluorobenzene	4 2.5	30		
THE THE THE THE				
MATRIX RESULTS	0			
1,1-Dichloroethene	0			
Trichloroethene	0			
Benzene	0			
Toluene	0			
Chlorobenzene	0			
RPD DATA				. 222
1,1-Diomioroethene	13 %			< 22%
Trichloroethene	24 3			< 24%
Benzene	<u> </u>			< 21%
Toluene	3 %			< 21%
Chlorobenzene	10 3			< 21%
Culdiobeuzana				

LABORATORY NUMBER: 121127-019 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW5

DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20844

EPA 8010 Compound List by EPA 8240 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	1.0	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0
l,4-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

	========	========
1,2-Dichloroethane-d4	99	0/0
Toluene-d8	87	%
Bromofluorobenzene	91	્રે ફ
	========	========

LABORATORY NUMBER: 121127-020 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW4

DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20844

EPA 8010 Compound List by EPA 8240 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ИD	20
Trichlorofluoromethane	ИD	1.0
1,1-Dichloroethene	ND	1.0
l,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
l,l,l-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ИD	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
l,3-Dichlorobenzene	ND	1.0
l,2-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ИD	1.0

ND = Not detected at or above reporting limit.

	========	=========
1,2-Dichloroethane-d4	99	0/0
Toluene-d8	86	%
Bromofluorobenzene	91	06
	========	

LABORATORY NUMBER: 121127-021 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW-2R

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20844

EPA 8010 Compound List by EPA 8240 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
l,3-Dichlorobenzene	ND	1.0
l,2-Dichlorobenzene	ND	1.0
l,4-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

1,2-Dichloroethane-d4	100	%	
Toluene-d8	87	0/0	
Bromofluorobenzene	90	%	
		=========	

LABORATORY NUMBER: 121127-022 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW1

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20844

EPA 8010 Compound List by EPA 8240 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
l,l-Dichloroethene	ND	1.0
l,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	3.0	1.0
trans-1,2-Dichloroethene	3.0	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
l,l,l-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	7.0	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	1.0	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0
l,4-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

		====
1,2-Dichloroethane-d4	100 %	
Toluene-d8	87 %	
Bromofluorobenzene	92 %	
=======================================		====

DATE ANALYZED: 05/26/95 DATE REPORTED: 06/02/95

BATCH NO: 20844

LABORATORY NUMBER: 121127-Method Blank

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MB

EPA 8010 Compound List by EPA 8240 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromethane	ND	2.0
Bromomethane	ND	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
l, l-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ИD	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ИД	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ИD	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
l,2-Dichlorobenzene	ND	1.0
l,4-Dichlorobenzene	ИD	1.0

ND = Not detected at or above reporting limit.

=====================================	=======================================	=========
1,2-Dichloroethane-d4	97	%
Toluene-d8	77	%
Bromofluorobenzene	102	00

8240 Laboratory Control Sample Report

Lab No:

QC93814

LCS Datafile: DEQ03

Date Analyzed: 26-MAY-95

Operator:

TW

Matrix: Batch No: WATER

20844 435146116003

Compound .	ug/L	SpikeAmt	% Rec	Limits
1,1-Dichloroethene Trichloroethene Benzene Toluene Chlorobenzene	46.0 41.6 42.6 42.0 41.1	50 50 50 50 50	92 % 83 % 85 % 84 % 82 %	61-145% 71-120% 76-127% 76-125% 75-130%
٤				
Surrogate Recoveries	,	,		
1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	47.2 43.0 44.6	50 50 50	94 % 86 % 89 %	75-143% 77-134% 65-129%

Results within Specifications - PASS

Note: Instrument C and D surrogates based on LCS data

Curtis & Tompkins, Ltd 8010MS MS/MSD Report

Matrix Sample Number: 121127-022

Date Analyzed: 26-MAY-95

Lab No: QC93844 QC93844

Spike File: DEQ13

Matrix: WATER

Spike Dup File: DEQ14

Batch No: 20844 435146177013 435146183014 435146171012 Analyst: TW

	Instrdg	SpikeAmt	% Rec	Limits
MS RESULTS				
1,1-Dichloroethene	47.5	50	95 %	61-145%
Trichloroethene	52.1	50	90 %	71-120%
Benzene	46.8	50	90 웅 91 웅	76-127%
Toluene	44.8	50	90 %	76-125%
Chlorobenzene	43.8	50	88 %	75-130%
Surrogate Recoveries	,	,		
1,2-Dichloroethane-d4	50.3	50	101 %	75-143%
Toluene-d8	43.5	50	87 %	77-134%
Bromofluorobenzene	45.5	50	91 %	65-129%
MSD RESULTS				
1,1-Dichloroethene	45.6	50	91 %	61-145%
Trichloroethene	50.9	50	97 % 87 %	71-120%
Benzene	45.7	50	89 %	76-127%
Toluene	43.7	50	87 %	76-125%
Chlorobenzene	42.6	50	89 % 87 % 85 %	75-130%
Surrogate Recoveries				
1,2-Dichloroethane-d4	49.3	50	99 %	75-143%
Toluene-d8	43.5	50	87 %	77-134%
Bromofluorobenzene	45.7	50	91 %	65-129%
MATRIX RESULTS				
1,1-Dichloroethene	0			
Trichloroethene	7.23			
Benzene	1.16			
Toluene	0			_
Chlorobenzene	0			
RPD DATA				
1,1-Dichloroethene	4 %			< 14%
Trichloroethene	2 %			< 14%
Benzene	2 s			< 11%
Toluene	2 5 3 %			< 13%
Chlorobenzene	3 %			< 13%
CHIOLODGHZGHG	7 2			< 130

LABORATORY NUMBER: 121127-023 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW3

DATE SAMPDED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/25/95 DATE REPORTED: 06/02/95

BATCH NO: 20812

EPA 8010 Purgeable Halocarbons in Water

Compound	Result ug/L	Reporting Limit ug/L
Chloromothono	ND	2.0
Chloromethane	ND	
Bromomethane	_	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
l,1-Dichloroethene	ND	1.0
l,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
	ND	
1,3-Dichlorobenzene		1.0
1,4-Dichlorobenzene	ND -	1.0
1,2-Dichlorobenzene	ND	1.0
ا شد د اداره ا	1	•

ND = Not detected at or above reporting limit.

Surrogate Recovery

Bromobenzene 105 %

LABORATORY NUMBER: 121127-024 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW6

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE ANALYZED: 05/25/95 DATE REPORTED: 06/02/95

BATCH NO: 20812

EPA 8010

Purgeable Halocarbons in Water

Compound	Result	Reporting
	ug/L	Limit
		\mathtt{ug}/\mathtt{L}
Chloromethane	ND	2.0
Bromomethane	ИD	2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
l,l-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ИD	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ИD	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ND	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
1,4-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0

ND = Not detected at or above reporting limit.

Surrogate Recovery

Bromobenzene 101 %

LABORATORY NUMBER: 121127-Method Blank

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MB

EPA 8010 Purgeable Halocarbons in Water

Curtis & Tompkins, Ltd.

DATE ANALYZED: 05/25/95

DATE REPORTED: 06/02/95

BATCH NO: 20812

Compound	Result ug/L	Reporting Limit
Ohlessenshhaus	MD	ug/L
Chloromethane	ND ND	2.0
Bromomethane		2.0
Vinyl chloride	ND	2.0
Chloroethane	ND	2.0
Methylene chloride	ND	20
Trichlorofluoromethane	ND	1.0
1,1-Dichloroethene	ND	1.0
1,1-Dichloroethane	ND	1.0
cis-1,2-Dichloroethene	ND	1.0
trans-1,2-Dichloroethene	ND	1.0
Chloroform	ND	1.0
Freon 113	ND	1.0
1,2-Dichloroethane	ND	1.0
1,1,1-Trichloroethane	ND	1.0
Carbon tetrachloride	ND	1.0
Bromodichloromethane	ND	1.0
1,2-Dichloropropane	ND	1.0
cis-1,3-Dichloropropene	ND	1.0
Trichloroethene	ND	1.0
1,1,2-Trichloroethane	ND	1.0
trans-1,3-Dichloropropene	ND	1.0
Dibromochloromethane	ND	1.0
Bromoform	ИD	2.0
Tetrachloroethene	ND	1.0
1,1,2,2-Tetrachloroethane	- ND	1.0
Chlorobenzene	ND	1.0
1,3-Dichlorobenzene	ND	1.0
-1,4-Dichlorobenzene	ND	1.0
1,2-Dichlorobenzene	ND	1.0
r,z-brchrotopenzene	ND	1.0

ND = Not detected at or above reporting limit.

8010 BS/BSD Report

Date Analyzed: 25-MAY-95

Spike File: 145W002

Matrix: WATER Spike Dup File: 145W003

Batch No: 20812 325145147002 325145156003 Analyst: LW

	Instrdg	SpikeAmt	% Rec	Limits
BS RESULTS				
1,1-Dichloroethene	24.2	20	121 %	68-134%
Trichloroethene	23.0	20	115 %	-
Chlorobenzene	20.8	20	104 %	
Surrogate Recoveries				
Bromobenzene	100.9	100	101 %	85-119%
BSD RESULTS				
1,1-Dichloroethene	22.5	20	112 %	68-134%
Trichloroethene	21.9	20	110 %	
Chlorobenzene	21.0	20	105 %	
Surrogate Recoveries				
Bromobenzene	102.2	100	102 %	85-119%
RPD DATA				
1,1-Dichloroethene	7 %			< 14%
Trichloroethene	5 %			< 14%
Chlorobenzene	1 %			< 13%

Column: Rtx 502.2

£ª

Water Limits based on LCS Data Generated 5/95

Soil Limits based on 3/90 SOW

Results within Specifications - PASS

Operator: LFL

8240 Laboratory Control Sample Report

Lab No: QC93939 LCS Datafile: CEU03

Date Analyzed: 30-MAY-95

Matrix: SOIL

Batch No: 20878 425150110003

Compound	ug/Kg	SpikeAmt	% Rec	Limits
1,1-Dichloroethene Trichloroethene Benzene Toluene	44.3 39.6 41.0 44.2	50 50 50 50	89 % 79 % 82 % 88 %	59-172% 62-137% 66-142% 59-139%
Chlorobenzene	42.9	50	86 %	60-133%
Surrogate Recoveries	•	٠		
1,2-Dichloroethane-d4 Toluene-d8 Bromofluorobenzene	50.0 46.2 42.7	50 50 50	100 % 93 % 85 %	75-143% 77-134% 65-129%

Results within Specifications - PASS

1

Note: Instrument C and D surrogates based on LCS data

Curtis & Tompkins, Ltd 8240 MS/MSD Report

Matrix Sample Number: 121154-001

Date Analyzed:

30-MAY-95

Lab No: QC93943 QC93944

Spike File:

CEU09

Matrix: SOIL

Spike Dup File: CEU10 Batch No: 20878 425150156009 425150163010 425150135006 Analyst: LFL

	Instrdg	SpikeAmt	% Rec	Limits
MS RESULTS			_	
1,1-Dichloroethene	47.4	50	95 %	
Trichloroethene	39.9	50	80 %	62-137%
Benzene	42.7	50	85 % 93 %	66-142%
Toluene	46.7	50	93 %	59-139%
Chlorobenzene	43.9	50	88 %	60-133%
Surrogate Recoveries	•			
1,2-Dichloroethane-d4	46.1	50	92 %	75-143%
Toluene-d8	46.9	50	94 %	
Bromofluorobenzene	40.8	50	82 %	65-129%
WOD DECIMED				
MSD RESULTS	45.6	50	91 %	59-172%
1,1-Dichloroethene Trichloroethene	40.3	50	81 %	
	42.6	50	85 %	66-142%
Benzene		· 50	94 %	66-142% 59-139%
Toluene Chlorobenzene	44.5	50	89 %	60-133%
Surrogate Recoveries				
1,2-Dichloroethane-d4	46.5	50	93 %	
Toluene-d8	49.2	50	98 %	
Bromofluorobenzene	39.8	50	80 %	65-129%
MATRIX RESULTS	_			
1,1-Dichloroethene	0			
Trichloroethene	- 0			•
Benzene	0			
Toluene	· • •			· · · · · · · · · · · · · · · · · · ·
Chlorobenzene	0			
RPD DATA				
1,1-Dichloroethene	4 %			< 22%
Trichloroethene	1 %			< 24%
Benzene	0 %			< 21%
Toluene	0 %			< 21%
Chlorobenzene	1 %			< 21%

LABORATORY NUMBER: 121127-001 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW/MW4-10'

DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	450	330
Anthracene	ND	330
Fluoranthene	1,400	330
Pyrene	3,400*	3300
Benzo(a) anthracene	740	330
Chrysene	1,000	330
Benzo(b)fluoranthene	1,000	330
Benzo(k)fluoranthene	660	330
Benzo(a) pyrene	1,400	330
Indeno(1,2,3-cd)pyrene	770	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	980	330

ND = Not detected at or above reporting limit.

* Result obtained from a 1:10 dilution analyzed on 05/30/95.

Nitrobenzene-d5	75 %
2-Fluorobiphenyl	76 %
Terphenyl-d14	112 %

LABORATORY NUMBER: 121127-002 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW/MW4-5'

DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a)anthracene	ND	330
Chrysene	ND	330
Benzo(b)fluoranthene	ND	330
Benzo(k) fluoranthene	ND	330
Benzo(a)pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

	-		
SURROGATE RECOVERIES			
=======================================	 	====	
Nitrobenzene-d5		71	%
2-Fluorobiphenyl		77	&
Terphenyl-d14		88	%

LABORATORY NUMBER: 121127-003 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW/MW4-15'

DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a)anthracene	ND	330
Chrysene	ND	330
Benzo(b)fluoranthene	ND	330
Benzo(k)fluoranthene	ND	330
Benzo(a)pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

Nitrobenzene-d5	62	8	
2-Fluorobiphenyl	70	왕	
Terphenyl-d14	85	%	

LABORATORY NUMBER: 121127-007 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW6-4'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a)anthracene	ND	330
Chrysene	ND	330
Benzo(b) fluoranthene	ND	330
Benzo(k)fluoranthene	ND	330
Benzo(a)pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
SURROGATE RECOVERIES	
=======================================	======================================
Nitrobenzene-d5	71 %
2-Fluorobiphenyl	74 %
Terphenyl-d14	87 %
	=======================================

LABORATORY NUMBER: 121127-008 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW6-10'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	Detected(240)	330
Anthracene	ND	330
Fluoranthene	490	330
Pyrene	1,100	330
Benzo(a) anthracene	450	330
Chrysene	390	330
Benzo(b)fluoranthene	660	330
Benzo(k)fluoranthene	540	330
Benzo(a)pyrene	830	330
Indeno(1,2,3-cd)pyrene	370	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	460	330

ND = Not detected at or above reporting limit.

Nitrobenzene-d5	75	%	
2-Fluorobiphenyl	97	%	
Terphenyl-d14	118	%	

LABORATORY NUMBER: 121127-009 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW6-13'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a) anthracene	ND	330
Chrysene	ND	330
Benzo(b) fluoranthene	ND	330
Benzo(k) fluoranthene	ND	330
Benzo(a) pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

LABORATORY NUMBER: 121127-011 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB1-10'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

Curtis & Tompkins, Ltd.

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ИD	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	Detected(230)	330
Benzo(a)anthracene	ND	330
Chrysene	ND	330
Benzo(b)fluoranthene	ND	330
Benzo(k)fluoranthene	ND	330
Benzo(a)pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

***************************************	====	
Nitrobenzene-d5	69	%
2-Fluorobiphenyl	78	%
Terphenyl-d14	95	%

and the state of t

LABORATORY NUMBER: 121127-012 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB1-15'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

Curtis & Tompkins, Ltd

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a) anthracene	ND	330
Chrysene	ND	330
Benzo(b) fluoranthene	ND	330
Benzo(k) fluoranthene	ND	330
Benzo(a) pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

the state of the s	-	* *	and the second
SURROGATE RECOVERIES			
	:========		
Nitrobenzene-d5		63	%
2-Fluorobiphenyl		70	8
Terphenyl-d14		85	%

LABORATORY NUMBER: 121127-014 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB2-10'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/30/95
DATE REPORTED: 06/02/95

Curtis & Tompkins, Ltd.

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ИD	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a)anthracene	ND	330
Chrysene	ND	330
Benzo(b)fluoranthene	ND	330
Benzo(k) fluoranthene	ND	330
Benzo(a)pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ИD	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

Nitrobenzene-d5	67	%
2-Fluorobiphenyl	76	%
Terphenyl-d14	103	%

LABORATORY NUMBER: 121127-015 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB2-15'

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE EXTRACTED: 05/26/95 DATE ANALYZED: 05/27/95 DATE REPORTED: 06/02/95

Curtis & Tompkins, Ltd.

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND RESULT		REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a)anthracene	ND	330
Chrysene	ND	330
Benzo(b) fluoranthene	ND	330
Benzo(k) fluoranthene	ND	330
Benzo(a)pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ND	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

والبراني ورازات والأراب والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة والمنافرة

LABORATORY NUMBER: 121127-016 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB3-5'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	ND	330
Anthracene	ND	330
Fluoranthene	ND	330
Pyrene	ND	330
Benzo(a) anthracene	ND	330
Chrysene	ND	330
Benzo(b)fluoranthene	ND	330
Benzo(k) fluoranthene	ND	330
Benzo(a)pyrene	ND	330
Indeno(1,2,3-cd)pyrene	ND	330
Dibenzo(a,h)anthracene	ИD	330
Benzo(g,h,i)perylene	ND	330

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

\$=====================================		
Nitrobenzene-d5	73	%
2-Fluorobiphenyl	85	%
Terphenyl-d14	126	%

LABORATORY NUMBER: 121127-017 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB3-10'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/30/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND	RESULT	REPORTING LIMIT
	ug/Kg	ug/Kg
Naphthalene	ND	330
Acenaphthylene	ND	330
Acenaphthene	ND	330
Fluorene	ND	330
Phenanthrene	420	330
Anthracene	ND	330
Fluoranthene	1,100	330
Pyrene	2,600	330
Benzo(a)anthracene	660	330
Chrysene	780	330
Benzo(b)fluoranthene	680	330
Benzo(k) fluoranthene	710	330
Benzo(a) pyrene	930	330
Indeno(1,2,3-cd)pyrene	340	330
Dibenzo(a,h) anthracene	ND	330
Benzo(g,h,i)perylene	410	330

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

=======================================		
Nitrobenzene-d5	62	%
2-Fluorobiphenyl	76	olo
Terphenyl-d14	129	&

LABORATORY NUMBER: 121127-018 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TB3-15'

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND RESULT		REPORTING LIMIT	
	ug/Kg	ug/Kg	
Naphthalene	ND	330	
Acenaphthylene	ND	330	
Acenaphthene	ND	330	
Fluorene	ND	330	
Phenanthrene	Detected(260)	330	
Anthracene	ND	330	
Fluoranthene	900	330	
Pyrene	1,500	330	
Benzo(a)anthracene	410	330	
Chrysene	500	330	
Benzo(b)fluoranthene	370	330	
Benzo(k)fluoranthene	370	330	
Benzo(a)pyrene	590	330	
Indeno(1,2,3-cd)pyrene	Detected(270)	330	
Dibenzo(a,h)anthracene	ND	330	
Benzo(g,h,i)perylene	330	330	

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES

Nitrobenzene-d5	70	%		
2-Fluorobiphenyl	80	%		
Terphenyl-d14	115	olo		

and the second s

LABORATORY NUMBER: 121127-Method Blank

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MB

DATE EXTRACTED: 05/26/95
DATE ANALYZED: 05/27/95
DATE REPORTED: 06/02/95

Curtis & Tompkins, Ltd.

BATCH NO: 20859

Polynuclear Aromatic Hydrocarbons in Soils & Wastes by EPA 8270 Extraction Method: EPA 3550

COMPOUND RESULT		REPORTING LIMIT	
	ug/Kg	ug/Kg	
Naphthalene	ND	330	
Acenaphthylene	ND	330	
Acenaphthene	ND	330	
Fluorene	ND	330	
Phenanthrene	ND	330	
Anthracene	ND	330	
Fluoranthene	ND	330	
Pyrene	ND	330	
Benzo(a)anthracene	ND	330	
Chrysene	ND	330	
Benzo(b)fluoranthene	ND	330	
Benzo(k)fluoranthene	ND	330	
Benzo(a) pyrene	ND	330	
Indeno(1,2,3-cd)pyrene	ND	330	
Dibenzo(a,h)anthracene	ND	330	
Benzo(g,h,i)perylene	ND	330	

ND = Not detected at or above reporting limit.

SURROGATE RECOVERIES Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 89 %

8270 Laboratory Control Sample Report

QC93864 Lab No:

Date Analyzed: 27-MAY-95

Matrix: SOIL Batch No: 20859 20859 515147088005

Dilution Factor: 1

LCS Datafile: 05LCS_20859

Extraction Chemist: TEW

MS Operator: KC Prep Final Vol : 1

Compound	ug/Kg	SpikeAmt	% Rec	Limits
Phenol 2-Chlorophenol 4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Pyrene	1400 1500 1600 1700 1500 780 930 900 1000 1100	2500 2500 2500 2500 2500 1700 1700 1700 1700 1700	56 % % % % % % % % % % % % % % % % % % %	26-90% 25-102% 26-103% 11-114% 17-109% 28-104% 41-126% 38-107% 31-137% 28-89% 35-142%
Surrogate Recoveries				
2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4	1800 1800 2100 1200 1200 1500 1800 900	2500 2500 2500 1700 1700 1700 2500 1700	72 % 72 % 84 % 71 % 88 % 72 % 53 %	25-121% 24-113% 19-122% 23-120% 30-115% 18-137% 20-130% 20-130%

Results within Specifications - PASS

EPA 8270

SOIL SEMIVOLATILE MATRIX SPIKE\MATRIX SPIKE DUPLICATE REC

Curtis & Tompkins, Ltd.

Lab Name: CURTIS & TOMPKINS, LTD

Batchnum: 20859

Matrix Spike Sample No : 121127-012

Percent moisture: N/A %

	SPIKE ADDED	SAMPLE CONCENTRATION	MS CONCENTRATION	જ	QC LIMITS
COMPOUND	(ug/Kg)	(ug/Kg)	(ug/Kg)	REC #	REC.
*======================================	F#=F#=F#	========		**=*==	=====
Phenol	2500	0	1600	64	26-90
2-Chlorophenol	2500	0	1700	68	25-102
1,4-Dichlorobenzene	1700	0	780	46	28-104
N-Nitroso-di-n-prop.(1)	1700	0	1100	65	41-126
1,2,4-Trichlorobenzene	1700	0	950	56	38-107
4-Chloro-3-methylphenol	2500	0	1700	68	26-103
Acenaphthene	1700	0	1200	71	31-137
4-Nitrophenol	2500	0	1800	72	11-114
2,4-Dinitrotoluene	1700	0	1100	65	28-89
Pentachlorophenol	2500	0	1200	48	17-109
Pyrene	1700	ĺ	1300	7 6	35-142

COMPOUND	SPIKE ADDED (ug/Kg)	MSD CONCENTRATION (ug/Kg)	MSD % REC #	% RPD #	QC L RPD	IMITS REC.
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-prop.(1) 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	2500 2500 1700 1700 1700 2500 1700 2500 1700 2500 1700	1500 1500 740 1000 940 1700 1100 1800 1100 1200 1400	60 60 44 55 65 65 72 648 82	6 13 4 10 2 0 9 0 0	35 50 27 38 23 33 19 50 47 47	26-90 25-102 28-104 41-126 38-107 26-103 31-137 11-114 28-89 17-109 35-142

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 11 outside limits

Spike Recovery: 0 out of 22 outside limits

LABORATORY NUMBER: 121127-019 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: TW5

DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/24/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20803

Polynuclear Aromatic Hydrocarbons in Water by EPA Method 8270 Extraction Method: EPA 3520

COMPOUND	RESULTS	REPORTING
	ug/L	LIMIT
	•	ug/L
Naphthalene	Detected(7.5)	10
Acenaphthylene	ND	10
Acenaphthene	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Fluoranthene	Detected(8.5)	10
Pyrene	14	10
Benzo(a)anthracene	ND	10
Chrysene	Detected(5.5)	10
Benzo(b)fluoranthene	ND	10
Benzo(k)fluoranthene	ND	10
Fluoranthene	ND	10
Benzo(a)pyrene	Detected(6.2)	10
Indeno(1,2,3-cd)pyrene	ND	10
Dibenzo(a,h)anthracene	ND	10
Benzo(g,h,i)perylene	ND	10

* Low surrogate recovery.

ND = Not detected at or above reporting limit.

Nitrobenzene-d5 30	۰	
NICIODENZENE-do	-6	; *
2-Fluorobiphenyl 21	ş	*
Terphenyl-d14 11	200	; *

LABORATORY NUMBER: 121127-020 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW4

DATE SAMPLED: 05/17/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/24/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20803

Polynuclear Aromatic Hydrocarbons in Water by EPA Method 8270 Extraction Method: EPA 3520

COMPOUND	RESULTS ug/L	REPORTING LIMIT ug/L
Naphthalene	ND	10
Acenaphthylene	ND	10
Acenaphthene	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Fluoranthene	ND	10
Pyrene	ND	10
Benzo(a) anthracene	ND	10
Chrysene	ND	10
Benzo(b) fluoranthene	ND	10
Benzo(k) fluoranthene	ND	10
Fluoranthene	ND	10
Benzo(a)pyrene	ND	10
Indeno(1,2,3-cd)pyrene	ND	10
Dibenzo(a,h)anthracene	ND	10
Benzo(g,h,i)perylene	ND	10

* Low surrogate recovery.

ND = Not detected at or above reporting limit.

	Nitrobenzene-d5	33	% *
	2-Fluorobiphenyl	31	8 *
	Terphenyl-d14	31	%★
		====	

LABORATORY NUMBER: 121127-021 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW-2R

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/24/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20803

Polynuclear Aromatic Hydrocarbons in Water by EPA Method 8270 Extraction Method: EPA 3520

COMPOUND	RESULTS	REPORTING
	ug/L	LIMIT
		ug/L
Naphthalene	ND	10
Acenaphthylene	ND	10
Acenaphthene	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Fluoranthene	ND	10
Pyrene	ND	10
Benzo(a)anthracene	ND	10
Chrysene	ND	10
Benzo(b)fluoranthene	ND	10
Benzo(k)fluoranthene	ND	10
Fluoranthene	ND	10
Benzo(a)pyrene	ND	10
Indeno(1,2,3-cd)pyrene	ND	10
Dibenzo(a,h)anthracene	ND	10
Benzo(g,h,i)perylene	ND	10

* Low surrogate recovery.

ND = Not detected at or above reporting limit.

		=
Nitrobenzene-d5	34 %*	
2-Fluorobiphenyl	35 %*	
Terphenyl-d14	34 %	

LABORATORY NUMBER: 121127-022 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW1

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/24/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

BATCH NO: 20803

Polynuclear Aromatic Hydrocarbons in Water by EPA Method 8270 Extraction Method: EPA 3520

COMPOUND	RESULTS ug/L	REPORTING LIMIT ug/L
Naphthalene	ND	10
Acenaphthylene	ND	10
Acenaphthene	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Fluoranthene	ND	10
Pyrene	ND	10
Benzo(a)anthracene	ND	10
Chrysene	ND	10
Benzo(b)fluoranthene	ND	10
Benzo(k)fluoranthene	ND	10
Fluoranthene	ND	10
Benzo(a)pyrene	ND	10
Indeno(1,2,3-cd)pyrene	ND	10
Dibenzo(a,h)anthracene	ND	10
Benzo(g,h,i)perylene	ND	10

* Low surrogate recovery.

ND = Not detected at or above reporting limit.

Nitrobenzene-d5	29 %*	
2-Fluorobiphenyl	28 %*	
Terphenyl-d14	30 %*	

LABORATORY NUMBER: 121127-023 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW3

DATE SAMPLED: 05/18/95
DATE RECEIVED: 05/18/95
DATE EXTRACTED: 05/24/95
DATE ANALYZED: 05/26/95
DATE REPORTED: 06/02/95

Curtis & Tompkins, Ltd.

BATCH NO: 20803

Polynuclear Aromatic Hydrocarbons in Water by EPA Method 8270 Extraction Method: EPA 3520

COMPOUND	RESULTS	REPORTING
	ug/L	LIMIT
		\mathtt{ug}/\mathtt{L}
Naphthalene	ND	10
Acenaphthylene	ND	10
Acenaphthene	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Fluoranthene	ND	10
Pyrene	ND	10
Benzo(a)anthracene	ND	10
Chrysene	ND	10
Benzo(b)fluoranthene	ND	10
Benzo(k)fluoranthene	ND	10
Fluoranthene	ND	10
Benzo(a)pyrene	ND	10
Indeno(1,2,3-cd)pyrene	ND	10
Dibenzo(a,h)anthracene	ND	10
Benzo(g,h,i)perylene	ND	10

* Low surrogate recovery.

ND = Not detected at or above reporting limit.

Nitrobenzene-d5	30 %*
2-Fluorobiphenyl	33 %*
Terphenyl-d14	17 %*

LABORATORY NUMBER: 121127-024 CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MW6

DATE SAMPLED: 05/18/95 DATE RECEIVED: 05/18/95 DATE EXTRACTED: 05/24/95 DATE ANALYZED: 05/26/95 DATE REPORTED: 06/02/95

BATCH NO: 20803

Polynuclear Aromatic Hydrocarbons in Water by EPA Method 8270 Extraction Method: EPA 3520

COMPOUND	RESULTS ug/L	REPORTING LIMIT ug/L
Naphthalene	ND	10
Acenaphthylene	ND	10
Acenaphthene	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Fluoranthene	ND	10
Pyrene	ND	10
Benzo(a)anthracene	ND	10
Chrysene	ND	10
Benzo(b)fluoranthene	ND	10
Benzo(k)fluoranthene	ND	10
Fluoranthene	ND	10
Benzo(a)pyrene	ND	10
Indeno(1,2,3-cd)pyrene	ND	10
Dibenzo(a,h)anthracene	ND	10
Benzo(g,h,i)perylene	ND	10

* Low surrogate recovery.

ND = Not detected at or above reporting limit.

	====	
Nitrobenzene-d5	24	% *
2-Fluorobiphenyl	25	% *
Terphenyl-d14	17	8 *

LABORATORY NUMBER: 121127-Method Blank

CLIENT: CAPE ENVIRONMENTAL INC.

PROJECT ID: 2403C.16

LOCATION: ALAMEDA FEDERAL CENTER

SAMPLE ID: MB

Curtis & Tompkins, Ltd.

DATE EXTRACTED: 05/24/95

DATE ANALYZED: 05/26/95

DATE REPORTED: 06/02/95

BATCH NO: 20803

Polynuclear Aromatic Hydrocarbons in Water by EPA Method 8270 Extraction Method: EPA 3520

COMPOUND	RESULTS ug/L	REPORTING LIMIT ug/L
Naphthalene	ND	10
Acenaphthylene	ИD	10
Acenaphthene	ND	10
Fluorene	ND	10
Phenanthrene	ND	10
Anthracene	ND	10
Fluoranthene	ND	10
Pyrene	ND	10
Benzo(a)anthracene	ND	10
Chrysene	ND	10
Benzo(b)fluoranthene	ND	10
Benzo(k) fluoranthene	ND	10
Fluoranthene	ND	10
Benzo(a)pyrene	ND	10
Indeno(1,2,3-cd)pyrene	ND	10
Dibenzo(a,h)anthracene	ND	10
Benzo(g,h,i)perylene	ND	10

* Low surrogate recovery.

ND = Not detected at or above reporting limit.

Nitrobenzene-d5	73	%
2-Fluorobiphenyl	69	ફ
Terphenyl-d14	79	8
	======	

8270 Laboratory Control Sample Report

QC93652 Lab No: Date Analyzed: 26-MAY-95

WATER Matrix:

Extraction Chemist: DC MS Operator: 20803 505146134005 Batch No: Prep Final Vol : 1

Dilution Factor: 1

Compound	ug/L	SpikeAmt	% Rec	Limits
Phenol 2-Chlorophenol 4-Chloro-3-methylphenol 4-Nitrophenol Pentachlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-propylamine 1,2,4-Trichlorobenzene Acenaphthene 2,4-Dinitrotoluene Pyrene	47 46 52 38 51 27 37 28 35 32 38	75 75 75 75 75 50 50 50 50	63 61 69 51 68 54 74 56 70 64 76	
Surrogate Recoveries 2-Fluorophenol Phenol-d5 2,4,6-Tribromophenol Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 2-Chlorophenol-d4 1,2-Dichlorobenzene-d4	55 62 56 38 39 53 31	75 75 75 50 50 50 75	73 % 83 % 75 % 76 % 78 % 71 %	10-123% 35-114% 43-116% 33-141%

Results within Specifications - PASS

EPA 8270 WATER SEMIVOLATILE BLANK SPIKE\BLANK SPIKE DUPLICATE RECOVERY

Lab Name: CURTIS & TOMPKINS, LTD

Batchnum: Or US Curtis & Tompkins, Ltd.

Matrix Spike Sample No : QC93651

Percent Moisture: NA

COMPOUND	SPIKE ADDED (ug/L)	SAMPLE CONCENTRATION (ug/L)	BS CONCENTRATION (ug/L)	% REC #	QC LIMITS REC.
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-prop.(1) 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	(ug/L) 75 75 50 50 75 50 75 50 75 50	(ug/L) ====================================	(ug/L)	REC # 63 61 54 74 56 68 70 49 64 67 76	12-110 27-123 36-97 41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127

COMPOUND	SPIKE ADDED (ug/L)	BSD CONCENTRATION (ug/L)	% REC #	% RPD #	QC L. RPD	MITS REC.
Phenol 2-Chlorophenol 1,4-Dichlorobenzene N-Nitroso-di-n-prop.(1) 1,2,4-Trichlorobenzene 4-Chloro-3-methylphenol Acenaphthene 4-Nitrophenol 2,4-Dinitrotoluene Pentachlorophenol Pyrene	75 75 50 50 50 75 50 75 50 75	47 46 27 36 29 51 36 40 34 57	63 61 54 72 58 68 72 53 68 76 72	00034038635	42 40 28 38 28 42 31 50 38 50	12-110 27-123 36-97 41-116 39-98 23-97 46-118 10-80 24-96 9-103 26-127

(1) N-Nitroso-di-n-propylamine

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 0 out of 11 outside limits

Spike Recovery: 0 out of 22 outside limits

cb

ABBREVIATIONS

BTEX - Benzene, Toluene, Ethyl Benzene, and Total Xylenes.

CCR - California Code of Regulations.

DHS - California Department of Health Services.

EPA - United States Environmental Protection Agency.

LCS - Laboratory Control Spike

LUFT - Leaking Underground Fuel Tank.

MDL - Method Detection Limit

NA - Not Applicable.

NC - Not Calculable

ND - Not Detected at or above the defined detection limit.

PQL - Practical Quantitation Limit

RPD - Relative percent difference.

STLC - Soluble Threshold Limit Concentration.

Surr. - Surrogates.

TCLP - Toxicity Characteristic Leaching Procedure.

TEH - Total Extractable Petroleum Hydrocarbons.

Title 26 - Title 26 of the California Code of Regulations (CCR).

TR~ - Trace, estimated value.

TTLC - Total Threshold Limit Concentration.

TVH - Total Volatile Hydrocarbons.

WET - Waste Extraction Test.

UNITS

cm3 - Cubic centimeter Kg - kilogram. L - Liter. mg - Milligrams.

M3 - Cubic meter.

1umhos/cm - uS/cm - Micro Siemens/centimeter ppb - Parts per billion.
ppm - Parts per million.
ug - Micrograms.
ppbv - Parts per billion per unit volume

CHA	IN OF C	USTODY FORM		•		Ū	-		
Curtis & Tompkins, Ltd. 2323 Fifth Street Sa	mpler: <u>kenneth</u>	pytchford				Souly	lyses		
roject No: 2403C.16 Co		Env. Managment Inc.				PO (PUR	chre		
roject Name: Alameda Federal Conter Te	21n 5	324500 326022	1 1	5	+	179	0		
Laboratory Sample ID. Sampling Date Time	trix #of Presery		Sols	805	8	SET	552		
TW/MV4-10 5-17-95 X	1					-			
TW/MN 4-57 5/17/95)			-			-		++	
TW/MW4-15 5/17/95					-	1		1-1	
TU/MUS-5' 5. 17.95	 		1-			1			
TU/MUS-10 5.17-95	 								
TW/AW5-13 5-17-95	 	·]_	1		
MU6-10 5-18-95	` }-}-}-				_	_ _	_ .		
WN 6-13, 2.18-42	 - - - - - - -			_ -	-	_ _			│ ─
1BI -5" 518-95				 	-	- -			
TB1-10' 5.18.95									┼╌┼╌┤╌
TB 1-15' 5.18.95									
TB2-5- 5.18.95 X	1 1			1			עוםר	ED E	. <u> </u>
	c C	RELINQUISHED BY:	_				- 1		elelos
the 8100 surfe of analytes.	, &	Raym. Hale 2004 5.1098 DATE/III	ME_	Me	ry	1/	2le.	esh	DATE/IIM
the Dias		DATE/TIN							_DATE/IIM
		DATE/FII Signature on this form constitutes a firm p	ME_	nge o	rder l	for th	e servi	ces rec	DATE/IIM

	_ CI	IAI	NO	F($\mathbb{C}\mathbf{U}$	JS	TODY F	ORM					_			* <u></u>		
Curtis & Tompkins, 2323 Fifth Stree Berkeley, CA 9 (510) 486-0900 (510) 486-0532	Lid. 1 4710 Phone	Sampl	er: <u> </u> { to:	L.P.	•									yse & 525	S			
roject No: 2403C.16			any:(7	l	300	44				
roject Name: Algmeda F		Telepl Fax: _	none:	300	53	324 326	50L2		Q		00	09/0	- 1	2				
Laboratory Sample ID.	1	Matrix Waster Master	# of Con- tainers	HCL P, Co2, T, Ce2	erysti O ICE ICE	ye.	Fleld Notes		801	218	802	801	60	88	_		-	-
TB2-10°	5.18.95	X	1	-		-									上		<u> </u>	
1B2 -15° 1B3-5	5.18.95	H							-							╁╌┼╴	-	\dashv
TB3-10	5.18.95		7	<u> </u>	- -	- -			-	-		-	-	\vdash		+-+	十	\dashv
	5.18.95	<u> </u>	1		╂-	-	liter		X	 	-	 	 	X				
TU5	5.17.95	X	3	X	1-1-	-	VOA'S			X	X	X	X			1		
705 MW4	5-17-95		3				vo4s	· · · · · · · · · · · · · · · · · · ·	_	X	X	1	X			┼┼	-	\dashv
MW 4	5.12.95	1	2	X			lifer		_ \		-	┼	╁	X		- +		
MU-ZR	518.95	X	2			_ _	17-for		\		+	1	1	1	 			
MW-ZR	5-18-45	y	3	X	_ _	_ _	VOA		+	1	+	+	+^	X	 	+++		
nw l	5-18-95	X	2	_	-	_	liter			X	. /	1 1	1	\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	+	-		
MWI	इ.१८५इ		3	X			VOA	D RV						EU	VED .	BY:		
NOTES: 8240 Mothod only 1 Liter S	for 8100	Sart	e · + N	. 20		/)	RELINQUISHE	2004	4	h	æ		0	2-30	5/	15/55	Zor TE/II	ر اMI
only 1 citer !	for both	UFG	7 + 17	2 H V	`		V 5/16/98	DATE/TIM	1		1						TE/I	•
							re on this form const	DATE/III	ME			<u></u>	e th		does to	DA	TE/I	'IM'

	(CH	AJ	IN ()F	' (JS	TODY FORM					_			01 _	<u></u>	
Curtis & Tompkins, Ltc 2323 Fifth Street	d.											_	-{	\na	alys 4	es	Ţ	.	
Curtis & Tompkins, Ltd. 2323 Fifth Street Berkeley, CA 94710 (510) 486-0900 Phone (510) 486-0532 Fax Project No: 2403C-(6 Company: CEM															iess.				
oject No: 2403C.[6			Com	pany: _		E	MI							2	4				
oject Name: Alameda Fede	eral Conte	er	Telep	phone:	2	0			. usoo	٥		209	109	-	2	!			
urnaround Time: S day	1		Fax:				٤,	32	6022	V	73	3	/01	42	3				
Laboratory	Sampling Date Tir		Waste	# of Con taine	rs §	rese OS-	EVati SCE 32	ve	Fleld Notes	80	Sols	8	80	8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		<u> </u>		
MN3	5.18.95		7	2				1-1	Mer	X					X			4-4	
	5.18.95		À	3	Y				VOA		X	K	x	火	<u> </u>		_	-	
m ld L	5.1849	5	X	2					lifer	X				-	X			+	\vdash
mul	5-18-95	5	1	3					VOM	-	X	1	X	쑤	 	╂╌┼		-	
PRIP BLANK			X_	2	>	4			VOA	+-	-		┼~	╁	┨	╂╼╂		-	
Same management	}			<u> </u>	-	_					┼─		╁╌	╁╌	 	 	_	_	
mining			- -	 - 						1	 	 	 	1					
normal market			 - -				╂╼╂												↓_
x.i.mii + + 201 iiiiniiin			 - -	 - 		+	11	-				_	_	_	_ _	_			┼
ma, Minima	<u> </u>		1				1	1				1	_	-	- -		\vdash		╀
			1-1-							_ _	-	╁			+		\vdash	+	+-
NOTES									DEL MOLIGIED BY:	- -				 2 E(VEI) BY	l ':	ــــــــــــــــــــــــــــــــــــــ
NOTES:	Ca	Bloc	o S	aste					RELINQUISHED BY:	_									
NOTES: 8270 method	4	_						d R	ary m. Hala 5/18/95 2004 DATE/IN	AE.	per	'\ -{	71	<u>E</u> l	en	uz	3 <i>/ /6 i</i>	DATE	TIM
Contrib	1 1 1								DATE/III	NE_								DATE	/TIM
1							1			- 1									