Final

REPORT OF FINDINGS
SECOND SITE GROUP: CHANG'S
AUTOMOTIVE AND MARBLE SUBSTANCE
TECHNICS WEST, CYPRESS REGION 2
RECONSTRUCTION, PARE 2 4 1995
OAKLAND, CALIFORNIA STATE OF CALIFORNIA CALIFORNIA

Prepared For:

STATE DEPARTMENT OF TRANSPORTATION ENVIRONMENTAL ENGINEERING BRANCH

District 4

111 Grand Avenue, 14th Floor Oakland, California 94623-0660

Contract Number 53U495 Task Order Number 04-192211-05

Submitted By:

ENVIRONMENTAL SOLUTIONS, INC.

1201 North McDowell Boulevard Petaluma, California 94954

> February 21, 1995 Project Number 94-911

Prepared By:

Cydney M. Miller Senior Hydrogeologist

Catherine A. Henrich, C.E.G. 1586

Principal Hydrogeologist

TABLE OF CONTENTS

REPORT OF FINDINGS

SECOND SITE GROUP; CHANG'S AUTOMOTIVE AND MARBLE TECHNICS WEST, CYPRESS RECONSTRUCTION, OAKLAND, CALIFORNIA

Caltrans Contract Number 53U495
Task Order Number 04-192211-05
Environmental Solutions, Inc.'s Project Number: 94-911

1.0	INTRO	DUCTION	1
2.0		DESCRIPTION	
	21	SITE HISTORY AND PREVIOUS WORK	2
3.0	FIELD	INVESTIGATION	4
	3.1		4
	3.2		5
	33	QUALITY ASSURANCE/QUALITY CONTROL	6
4.0	RESUI		7
	4.1	GEOLOGIC CONDITIONS AND THE OCCURRENCE OF	
		GROUND WATER	
	4.2	ANALYTICAL RESULTS	7
5.0	SUMM	ARY	0
List	of Tab	es	
Tabl		Soil Sample Depths and Analyses	
Tabl		Analytical Results	
Tabl	le 3	Location of Contaminated Materials	
List	of Figu	res	
Figu		Site Vicinity Map	
Figu	ne 2	Boring Location Map	
App	endix A	Boring Logs	
App	endix B	Chain of Custody and Analytical Data Sheets	
Dist	ribution		
	rof.chg ary 21, 199.	Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05	

111

The contents of this report reflect the views of the author who is responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California Department of Transportation or the Federal Highway administration. This report does not constitute a standard, specification, or regulation.

94911rof.chg February 21, 1995

1.0 INTRODUCTION

- Environmental Solutions, Inc. has prepared this Report of Findings document for the Second Site Group: Chang's Automotive and Marble Technics West, Oakland California (Figure 1), as part of Task Order 04-192211-05 of Contract Number 53U495. The area investigated under this Task Order is located at 1009 and 1035 7th Street in Oakland, California and is associated with a portion of the proposed Interstate 880 (I-880) realignment, known as the Cypress Reconstruction project, being performed by the California Department of Transportation (Caltrans).
- This site investigation, part of a larger study being performed by Caltrans for the reconstruction of the Cypress Structure, involves 27 sites identified as containing potentially hazardous materials Many of these sites will require a Preliminary Site Assessment (PEA), however, since Caltrans will own only aerial easement for the second site group, a PEA is not required.
- 3. The work performed under this Task Order consisted of conducting a field study to assess the presence of hazardous constituents in the subsurface soil at 6 proposed footing (bent) locations. These proposed footings will be part of the support structure for an elevated portion of the I-880 realignment. The analytical data obtained from this investigation will be used to provide recommendations for health and safety concerns as well as disposal options for soil excavated during the construction of the footings.
- 4. This report presents the results of the second site group investigation including site geology and analytical results of soil samples collected during the field program.

94911rof.chg February 21, 1995

2.0 SITE DESCRIPTION

- The second site group is comprised of two sites, located near each other, which are known as Chang's Automotive, 1009 7th Street, and Marble Technics West, 1035 7th Street, Oakland, California (Figure 2). The location of the proposed footings is actually in back of the properties in a strip of land located next to an abandoned onramp of Interstate 880. There is a line of eucalyptus trees running along the back fence of the properties, making access to this area difficult.
- A site history for Chang's Automotive and Marble Technics West was presented in the workplan¹ for the site investigation prepared by Environmental Solutions, Inc. A summary of the site histories is presented below.

2.1 SITE HISTORY AND PREVIOUS WORK

Chang's Automotive Chang's Automotive is currently owned by James and Joyce Patterson and is reported to have been an auto service facility since 1967. There is no Underground Storage Tank (UST) on this facility. On June 24, 1991, Geo/Resource², consultants under contract to Caltrans, drilled one soil boring to a depth of 20 feet on this property, near a proposed footing location. Three soil samples and one Hydropunch groundwater sample were collected for analysis of total recoverable petroleum hydrocarbons (TRPH) by EPA Test Method 418 1 and heavy metals by EPA Test Method 6010. TRPH was detected at depths of 2, 8, and 10 feet at concentrations of 43, 10, and 13 milligrams per kilogram (mg/kg), respectively. Relatively low concentrations of metals were detected in the soil samples. The Hydropunch groundwater sample did not reveal TRPH concentrations at or above reported detection limits. Elevated concentrations of several heavy metals were detected including arsenic, barium, cadmium, mercury, and lead. However, the water sample was not filtered prior to analyzing and hence, is not representative of dissolved metal concentrations in ground water.

94911rof.chg February 21, 1995 Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05

2

-	
Constitution of the contract o	
and the second and th	
enne I de en de en en es s'annoc's angrés te dignés estop écus estop en	
ee ook dig week to gemen kii jo ka jo ja jo	
renegisk demonsk klassynd dys	

¹Environmental Solutions Inc Site Investigation Workplan, Second Site Group: Chang's Automotive and Marble Technics West. Cypress Reconstruction, Oakland, California October 28, 1994

²Geo/Resource Consultants, Inc. 1992. Site Investigation Report Area 3. Department of Transportation T.O. Number 04-192201-01 Highway 880, Cypress Reconstruction, Oakland. California. August

- A review of regulatory agency databases did not show this property listed and the site ownership/title search did not show any environmental concerns. The aerial photograph review did not show any surface staining on the property and the Sanborn fire insurance maps also did not show any environmental concerns.
- Marble Technics West. This site is currently owned by Robert and Rusty Moody and is a warehouse facility. In 1988 a leaking 10,000-gallon gasoline UST was removed. There is no reason to suspect that anything other than gasoline was stored in the UST. Some contamination of the soil and groundwater was detected at this time and a monitoring well was installed at the property.
- On June 22, Geo/Resource³ drilled one boring to a depth of 15 feet at the site. Three unsaturated soil samples were collected and analyzed for total petroleum hydrocarbons as gas (TPH-g) and aromatic volatile organic compounds according to EPA Test Method 8020. None of the soil samples showed the presence of any constituents at or above reported detection limits. The groundwater sample collected from the existing monitoring well did not detect the presence of any chemical compounds at or above the reported detection limits.
- The review of regulatory agency databases did not show this property listed The property was formerly known as Vend Mart and is listed on the Leaking Underground Storage Tank (LUST) list for Alameda County. The site ownership/title search and the Sanborn fire insurance maps did not show any environmental concerns.

³Geo/Resource Consultants, Inc., 1992 Site Investigation Report-Area 3, Department of Transportation, T.O. Number 04-199201-01, Highway 880, Cypress Reconstruction, Oakland, California. August.

3.0 FIELD INVESTIGATION

1. The field investigation for the second site group was performed on October 31 and November 1 and 8, 1994. A total of 6 borings were drilled at proposed footing locations (Figure 2) to depths ranging from 6.5 to 11 feet below ground surface (bgs) Because of sample refusal, borings B4 and B5 could not be advanced to their desired depth. As explained in the following section, these borings could not be drilled using a hand-held auger, so a drill rig was necessary to complete the borings

3.1 DRILLING AND SOIL SAMPLING PROCEDURES

- A drilling permit was issued by the Alameda County Health Department before starting the field investigation. Prior to the start of subsurface work, each boring location was cleared of utilities by Underground Service Alert (USA). All drilling tools were decontaminated by either a high-pressure hot water wash, or alconox wash with deionized water rinse, before and between each use. Decontamination and soil cuttings generated during drilling were contained in labeled DOI 17-H, 55-gallon drums and stored on-site in a fenced-in area pending disposal.
- Because of limited access, a hand-held auger was initially used to drill borings B1, B2, and B3 Because of the difficulty in advancing these borings to their desired depth, they and borings B4, B5, and B6 were drilled using a portable hydraulically-driven continuous coring device An organic vapor meter (OVM) was used to take readings on selected soil samples, and from the borehole to monitor conditions during drilling. The soil samples were logged for lithologic classification using the Unified Soil Classification System (USCS; Appendix A) and Munsell color standards. The lithologic information and OVM readings were recorded on the boring log sheets (Appendix A). Soil samples were collected using a 36-inch long modified split spoon sampler lined with stainless steel liners. Upon retrieval, the appropriate 6-inch section of liner was removed from the rest of the sampler and the ends were capped with non-adhesive teflon tape, and covered by an inert plastic cap. No adhesive tape was used on the sample containers. The samples were identified by the boring number followed by the sample depth in feet below ground surface

94911rof.chg February 21, 1995

(i.e., B1-4). The sample containers were labeled (sample number, date and time sampled, job number and description, collector's initials, and analysis requested) and placed in a cooler with blue ice to temperature of approximately 4°C and transported under chain-of-custody documentation to the analytical laboratory for analysis. A standard 2-week turn-around time was requested. The borings were grouted to the surface upon completion. The grout consisted of portland cement with up to 5% bentonite added.

3.2 ANALYTICAL TESTING PROGRAM

- The soil analytical program is presented on Table 1. The soil samples collected during this site investigation were sent to Chromalab, a California state-certified hazardous materials testing laboratory, for analysis. The analytical program for the soil samples included the following:
 - EPA Method 418.1, TRPH
 - EPA Modified Method 8015, Total Petroleum Hydrocarbons as diesel and gasoline (TPH-d, -g)
 - EPA Method 8240, Volatile Organic Compounds (VOCs)
 - EPA Method 8270, Semivolatile Organic Compounds
 - EPA Method 6010, for Title 22 Heavy Metal Scan
 - EPA Method 7196-Hexavalent Chromium
 - EPA Method 150 2/9045-pH
 - 22 CCR 667000 Waste Extraction Test (WET)
 - EPA Method 1311 Toxicity Characteristic Leaching Procedure (TCLP)
- If a metal concentration was less than the Total Threshold Limit Concentration (ITLC) value but was at or above ten times the Soluble Threshold Limit Concentration (STLC) value, a Waste Extraction Test was performed on selected samples at the request of Caltrans. At the request of Caltrans, a TCLP test was performed on selected samples in which concentrations were at or above 20 times the STLC value.

94911rof.chg February 21, 1995

3.3 QUALITY ASSURANCE/QUALITY CONTROL

- Quality Assurance/Quality Control (QA/QC) was performed by the analytical laboratory for each method of analysis with specificity for every appropriate analyte requested and/or representative analytes listed in the test method's QA/QC QA/QC data are reported in summary form for all samples submitted QA/QC procedures specified by each test method included the following:
 - One method blank for every ten samples, batch of samples or type of matrix, whichever is more frequent;
 - One sample analyzed in duplicate for every ten samples, batch of samples or type of matrix, whichever is more frequent;
 - One spiked sample for every ten samples, batch of samples or type of matrix, whichever is more frequent, with spike made at ten times the detection limit or at the analyte level and;
 - One quality control sample analyzed with every ten samples, batch of samples or type of matrix, whichever is more frequent.
- 2 Laboratory blanks, spiked samples, and duplicate sample analyses are reported on either the laboratory testing report or the QA/QC summary report Spiked samples are reported as percent spike recovery.

94911rof.chg February 21, 1995

4.0 RESULTS

1 A description of the site geology and results of the analytical program is presented in the following sections.

4.1 GEOLOGIC CONDITIONS AND THE OCCURRENCE OF GROUND WATER

The surface of the site, to a depth of approximately 4 inches, is covered by leaves in various states of decomposition. Underlying this layer of leaves, the subsurface geology is generally composed of interbedded layers of poorly graded sands and gravelly sands to a depth of approximately 11 feet. In Boring B1, a 1-foot silty sand layer was observed, in Boring B5 a 1-foot sandy gravel was observed, and in Boring B6 a 2-foot clayey sand was observed within the poorly graded sands. Occasionally encountered within the sands are roots and a trace of ceramic fragments. No groundwater was encountered during drilling of the borings.

4.2 ANALYTICAL RESULTS

- 1. The analytical results for the soil samples are presented in Table 2 and the certified laboratory reports and chain of custody forms are presented in Appendix B. A summary table listing type and depth of contaminants found in each boring is presented on Table 3. For the purposes of evaluating disposal options, a soil was classified as contaminated if TRPH concentrations exceeded 100 mg/kg, metals were present at concentrations at or exceeding ten times their respective STLC values, and/or VOCs or semivolatile organic compounds were detected in the soil. A soil was classified as hazardous according to CCR Title 22 if a soluble metal concentration (detected by WET analysis) was detected at concentrations at or exceeding the STLC value or the total metal concentration exceeded the TTLC value. A discussion of the analytical results for soil samples collected during this investigation is presented below.
- Total Recoverable Petroleum Hydrocarbons. Each soil sample collected was analyzed for Total Recoverable Petroleum Hydrocarbons according to EPA Test Method 418.1. Soils collected from each boring show the presence of TRPH.

94911rof.chg February 21, 1995 Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05

7

TRPH concentrations exceeding 100 mg/kg were detected in the following soil samples (an asterisk indicates concentrations exceeding 1000 mg/kg): B3-S, B3-4*, B4-S*, B5-S, and B6-1

- Total Petroleum Hydrocarbons as Diesel. Selected soil samples were analyzed for TPH-d according to modified EPA Test Method 8015 (Table 1). TPH-d was not detected in the samples analyzed at or above reported detection limits. However, unknown compounds in the diesel and motor oil range were detected in several soil samples (Table 2).
- 4. **Total Petroleum Hydrocarbons as Gasoline.** Selected soil samples were analyzed for TPH-g according to modified EPA Test Method 8015 (Table 1). TPH-g was not detected in any of the soil samples analyzed at or above reported detection limits.
- Volatile Organic Compounds Selected soil samples from each boring were analyzed for volatile organic compounds according to EPA Test Method 8240. Tetrachloroethene was detected in soil samples collected from borings B1, B2, and B3 at concentrations ranging from 7.1 to 92 micrograms per kilogram (ug/kg). This compound was found in soils collected from these borings at depths ranging from 4 to 10 feet bgs. Trichloroethene was detected at a concentration of 7.1 ug/kg in the 10-foot sample collected from Boring B1.
- 6. **Semivolatile Organic Compounds.** Selected soil samples were analyzed for semivolatile organic compounds according to EPA Test Method 8270. No semivolatile organic compounds were detected at or above reported detection limits except Di-N-Butyl Phthalate. This compound was detected in soil samples collected from borings B1 and B6 at concentrations ranging from 0.34 to 1.2 ug/kg. Because this compound was also detected in the laboratory's method blanks, its presence in the soils is most likely due to laboratory contamination.
- 8 Metals. Selected soil samples from each footing location were analyzed for either CAM 17 metals or six selected metals, (arsenic, chromium, copper, lead, nickel, and zinc), according to EPA Test Method 6010. Only lead was found in soil samples

94911rof.chg February 21, 1995 Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05

8

collected from each boring at concentrations at or exceeding 10 times is STLC value of 5 mg/l Lead concentrations exceeding its TTLC value of 1000 mg/kg were found in soil samples B4-S and B5-S. Therefore, these samples are considered a hazardous waste according to CCR Title 22.

9. **WET and TCLP Data.** A WET or TCLP test was performed on selected soil samples whose lead concentrations exceeded ten times its STLC value. The results are presented on Tables 2 and 3 and are presented below.

Sample	Total Lead	Soluble Lead
<u>Number</u>	Concentration (mg/kg)	Concentration (mg/l)
B1-S	68	WET-18
B2-S	200	TCLP-ND
B2-1	150	WET-9.6
B2-4	62	WET-1.7
B3-S	71	WET-3.9
B4-1	210	TCLP-ND
B4-5	73	WET-8.3
B5-1	110	WET-9
B6S	180	TCLP-ND
B6-1	78	WET-0.8

- These results indicate that samples B1-S, B2-1, B4-5, and B5-1 have soluble lead values at or exceeding 5 mg/l and hence, are considered a hazardous waste according to CCR Title 22.
- Hexavalent Chromium. Hexavalent chromium was analyzed on selected soil samples according to EPA Test Method 7196. No hexavalent chromium was detected in the soil samples analyzed at or above reported detection limits.
- pH. The pH was measured in two soil samples. A pH value of 7.3 and 6.4 was measured in samples B1-7 and B5-1, respectively.

94911rof.chg February 21, 1995

5.0 SUMMARY

- On October 31 and November 1 and 8, 1994, 6 borings located at the second site group areas were drilled to depths ranging between 6.5 to 11 feet bgs. A brief description of the site geology and analytical results from soil samples collected during this field investigation is presented below.
- On the basis of the borings drilled during this investigation, the subsurface geology consists of interbedded layers of poorly graded sands and gravelly sands to a depth of approximately 11 feet. Occasionally encountered within the sands are roots and a trace of ceramic fragments. No groundwater was encountered during drilling of the borings.
- On the basis of the soil samples collected and analyzed during this field investigation, petroleum hydrocarbons, VOCs, and hazardous levels of lead were detected in several soil samples.
- 4. TRPH concentrations exceeding 100 mg/kg were detected in soil samples collected from 4 borings. TPH-d was not detected but unknown compounds in the diesel and motor oil range were detected in several soil samples.
- VOCs were detected in soil samples collected at depths ranging from 4 to 10 feet bgs. Tetrachloroethene was detected in soil samples collected from 3 borings at concentrations ranging from 7.1 to 92 ug/kg and trichloroethene was detected in one soil sample at a concentration of 7.1 ug/kg.
- 6. Lead concentrations exceeding ten times its STLC value were detected in soil samples collected from each boring. WET results show that soluble lead is present above 5 mg/l in 4 soil samples, which classifies these soils as hazardous waste according to CCR Title 22. Two soil samples have total lead values exceeding the TTLC value of 1000 mg/kg which also classifies these soils as a hazardous waste according to CCR Title 22.

94911rof.chg February 21, 1995 Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05

10

TABLES

TABLE 1. SOIL SAMPLE DEPTHS AND ANALYSES

BORING NUMBER*	1 RPH 418.1	TPH-G 8015-M	TPH-D 8015-M	CAM 17 6010	CAM 6 6010***	VOCS 8240	SEMI VOCS 8270	CR VI 7196
B-1**	S, 1, 4, 7,	1, 4, 7, 10	S, 1, 4, 7, 10	S, 1, 4, 7, 10	NA	4, 7, 10	S, 1, 4, 7, 10	S, 1, 4, 7, 10
B-2	S, 1, 4, 7,	1, 4, 7, 10	S, 1, 4, 7, 10	NA	S, 1, 4, 7, 10	4, 7, 10	NA	NA
B-3	S, 1, 4, 7,	1, 4, 7, 10	S, 1, 4, 7, 10	NA	S, 1, 4, 7, 10	4, 7, 10	NA	NA
B-4	S, 1, 5	1, 5	S, 1, 5	S, 1, 5	NA	5	S, 1, 5	S, 1, 5
B-5**	S, 1, 4, 6	1, 4, 6	S, 1, 4, 6	NA	S, 1, 4, 6	4, 6	6	6
B-6	S, 1, 4, 7,	1, 4, 7, 10	S, 1, 4, 7, 10	S, 1, 4, 7, 10	NA	4, 7, 10	S, 1, 4, 7, 10	S, 1, 4, 7, 10

*In general soil samples were collected at the following depths from each boring: ground surface (S), 1, 4, 7, and 10 feet bgs (except as noted). Samples were analyzed for the following: Total Recoverable Petroleum Hydrocarbons (TRPH) according to EPA Test Method 418.1; Total Petroleum Hydrocarbons as gas and diesel (TPH-G, -D) according to modified EPA Iest Method 8015; Heavy Metals according to EPA Test Method 6010; Volatile Organic Compounds (VOCs) according to EPA Test Method 8240; Semivolatile Organic Compounds (SEMIVOCs) according to EPA Test Method 8270; Hexavalent Chromium (CR VI) according to EPA Test Method 7196; and Soil pH according to EPA Test Method 9045.

**The soil pH was measured on the 1 foot soil samples collected from borings B1 and B5.

***CAM 6=Lead, Nickel, Chromium, Copper, Zinc, and Arsenic.

NA=Not Analyzed

94911rof.chg February 21, 1995 Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05

		1000000	Hydro	carb	ons								6	010 M	etais (m	ia/ka)				300 H 300		0.000			SolaM	etals
	T			П			TTLC	500	500	10000	75	100	2500	8000	2500	1000	20	3500	2000	100	500	700	2400	5000		1
	1		_				10XSTLC	150	50	1000	8	10	5600	800	250	50	2	3500	200	10	50	70	240	2500		
Sample No	Depth (ft , bgs)	Hydrocarbons	8015m-Diesel (mg/kg)	8015m-Gasoline (mg/kg)	418 1 TRPH (mg/kg)	6010 Metals (mg/kg)		Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (total)	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Soluble Metals (mg/L) TCLP Lead	WET Lead
B1-S	SFC	e S	ND		33.0			ND	ND	63.0	0.22	0.60	1.6	5.6	24.0	68.0	0.11	ND	7.3	ND	ND	ND	16.0	140.0		- 18.0
B1-1	1.0	ê S	ND ^{a,f}	ND	33.0			ND	ND	120.0	0.28	0.39	3.7	5.9	20.0	44.0	0.15	ND	6.3	ND	ND	ND	18.0	55.0		
B1-4	4.0		ND .	ND	ND			ND	1.9	19.0		0.25	6.9	6.5	4.0	4.2	ND	ND	20.0	ND	ND	ND	13.0	21.0		
B1-7	7.0		NDd	ND	ND			ND	ND	40.0		0.17		5.6	13.0	37.0	0.12	ND	11.0	ND	ND	ND	17.0	51.0		
B1-10	10.0	ii Shanan	ND	ND	ND	00 00 90 200 000 00	000000000000000000000000000000000000000	ND	ND	42.0	0.23	0.12	16.0	3.1	6.8	16.0	0.07	ND	13.0	ND	ND	ND	17.0	34.0		- - +
B2-\$	SFC	S S	ND^b		ND				ND				7.7		45.0	200.0			10.0					82.0	NI)
B2-1	1.0	Š.	ND ^{c,e,f}	ND	51.0				ND				6.8		28.0	150.0			12.0					78.0	} <u>-</u> .	- 9.6
B2-4	4.0	Ĭ	ND	ND	12.0	8), 8.			ND				9.3		8.7	62.0			7.4			- -		32.0	-	- 1.7
B2-7	7.0	3	ND	ND	30.0				ND				16.0		6.1	15.0			13.0					26.0	-	
B2-10	10.0		ND	ND	ND		988 1888 000 000 000 000 000 000 00		1.7	 saccasascascascasc			4.5		3.2	2.2			20.0					15.0	0 	-
B3-S	SFC		ND		150.0				ND				ND		26.0	71.0			1.5					94.0	-	- 3.9
B3-1	1.0		$ND^{d,e,f}$	ND	71.0	8			ND				2.6		12.0	37.0			1.9					68.0		
B3-4	4.0) (6) (8	$ND^{m,t}$	ND	1700.0				3.3				17.0		6.1	25.0			11.0					14.0	-	
B3-7	7.0		ND ¹	ND	ND				5.5				11.0		3.8	18.0			5.9					28.0	-	
B3-10	10.0		ND	ND	ND				2.7				12.0		8.3	16.0			8.4					17.0	_	
B4-S	SFC	istortorio Si	ND ^{h,j,f}		20000.0) p qqqqqq000000000000	ND	ND	150.0	0.39	4.9	12.0	2.1	95.0	1000.0	0.57	3.7	13.0	ND	ND	ND	16.0	490.0	800000000000000 5 8	
B4-1	1.0		ND	ND	23.0			ND	ND	270.0	0.43	0.50	5.0	2.2	110.0	210.0	0.31	ND	5.3	ND	ND	ND	14.0	180.0	N)
B4-5	5.0	88 Ge	ND	ND	ND	35 38		ND	ND	100.0	0.22	0.68	8.5	1.8	14.0	73.0	0.15	ND	6.6	ND	ND	ND	12.0	63.0	-	- 8.3
B4-7	7.0																								-	
B4-10	10.0	ŝ				3																			· -	

ND = Not Detected --= Not Tested

Page 1

ND = Not Detected

Page 2

B4-10	B4-5	B4-1	B4-S	B3-10	B3-7	B3-4	B3-1	B3-S	B2-10	B2-7	B2-4	B2-1	B2-S	B1-10	B1-7	B1-4	B1-1	B1-S	Sample No
10.0	5.0 7.0	1.0	SFC	10.0	7.0	4.0		SFC	10,0	7.0	4.0 ***	1.6	SFC	10.0	7.0	4.0	1.0	SFC	ර Depth (ft , bgs)
egeneue 	: N	N	8	62 1000 6 1 6 1	1	1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		;	i i	l I		1	8	B	B	B	B	7196 CHROM VI
	. 7			7	_	~		***************************************	7	7	_			Z	2	z		-	8240 VOCs (ug/kg) Acetone
	. 2			X.										ND ND	_	ND ND	1		Benzene
	. NO NO			NO NO					O NO					DND			1	1 8	Bromodichloromethane
1	_	:		D N				- 7	D ND				1	N		S	1	•	Bromoform
1	_	:		O N				- 8	D ND					8	_	OND	•	•	Bromomethane
'	' 0 ! NO			8 8				- 3	8							_	•	•	Methyl Ethyl Ketone
ı	_)				1 1	ì				- 3	O N D	_	Z		' '	Carbon Tetrachloride
	: NO			Z Z Z					9				:	:	_	z		1 3	Chlorobenzene
:	. N			ND Z				2					- 1	N N		O Z		-	Chloroethane
•	: 25 : 2			ND 7				- 3					- 1	NO Z	_	S Z	•	1 3	2-Chloroethylvinyl ether
	: 2 : 2		;	8 -	_	NO 7		9	B				- 1	8 7	8	B	,	1 0 1	Chloroform
:	_	:		8	_			9					j	(T	S	豆っ			Chloromethane
•	_	;		; —	ND	ND 7		- 3	N O					8	B	<u> </u>			Dibromochloromethane
•		:		8	ND	ND		- 3	B					3	B	ō 7			1,1-Dichloroethane
	, Z			8				- 0	0					<u> </u>		ð	; ;		1,2-Dichloroethane
				8					NO Z					2	_	S	1		1,1-Dichloroethene
;	; 2			8				- 3	ND Z				t	Z	_	╗	1		Cis-1,2-Dichloroethene
:	_			8				- 3	ND 7			•		8	NO Z	U Z	i	•	Trans-1,2-Dichloroethene
;		:						- 0	N N		NO Z			8	BZ	N Z	i	1 0000	1,2-Dichloropropane
i .	: 25 : 2			S Z					S Z					NO Z		N	i t	1 0	Cis-1,3-Dichloropropene
		: :		ND Z									:	4	N Z	S		1 8	Trans-1,3-Dichloropropene
i	: 2		-	ND Z										2		B		1 0	Ethylbenzene
i			!	92				- 3	8					N Z				1	2-Нехаполе
				NO 7				- 2	9				- 1	5				1	Methylene Chloride
;	: 2			8				3	3					3					Methyl Isobutyl Ketone
:	; Z			S				- 9						S Z	_	Ξ.		•	Styrene
	: 20 : 2			8 .				- 2	9					Z Z	_	_			1,1,2,2-Tetrachloroethane
i	: 8			0				- 2					7	9				• 00000000	Tetrachloroethene
1	i N	: :	:	3	ð	5.0	i		0.0	9.0	4.0	:		92.0	69.0	38.0	;	;	
!	: 8	;	:	S	B	8	!	1 000	믕	Ö	8	:	1	B	8	8	1	t de	Toluene
i.	: 8			8				- 40	3					4				1 1	1,1,1-Trichloroethane
;	: 8	Ţ	1	중	중	몽	;	-	품	R	S	1	:	뭅	S	S	1	1 00000	1,1,2-Trichloroethane
t t	; 2	;	:	품	8	S	;	1	₽	용	B	;	:	7.1	용	Ö	1	1	Trichloroethene
:	: <u>Z</u>	1	i t	B	N	몽	;	1 0	중	중	N	:	:	B	N D	S	1	1 00000	Trichlorofluoromethane
:	_			몽				20						it.				1	Vinyl Acetate
	: 8			0				- 33										1 0000	Vinyl Chloride
:	: Z			X.				40	ć.					4				· ·	Xylenes

ND = Not Detected

Page 3

B4-10	B4-7	B4-5	B4-1	B4-S	B3-10	B3-7	B3-4	B3-1	B3-S	B2-10	B2-7	B2-4	B2-1	B2-S	B1-10	B1-7	81-4	B1-1	B1-S	Sample No	
10.0	7.0	5.0	1.0	SFC	10.0	7.0	4.0	1.0	SFC	10.0	7.0	4.0	1.0	SFC	10.0	7.0	4.0	1.0	SFC	Depth (ft , bgs)	
- 3 343 () - 3 - 3	ya.e	8883	1000			457b-	14(1)(38)	181,8883	.3773333 		45.58°	75 6 6	84 CG			900 900	100000	36 S-30%.	0-80019 6 8	8270 Semi VOCs (ug/kg)	
1	;	S	N	S	;	:	1	1	1000000		1	:	:	:	중	몽	S	B	S	Phenol	
30 1 00 1		Z N	- N	S		!	:	1	1 200		1	j E	t E	! !	S	R	N	N	8	Bis(2-Chloroethyl)Ether	
	:	S	N	S	:	,	;	;	1 0000000	:	1	1	:	1	F	B	B	S	£	2-Chlorophenol	
:	;	S	NO	S	!	f	:	:	* 0000000	:	;	1	t i	!	몽	R	Ŗ	B	S	1,3-Dichlorobenzene	
	;	ND ND	ND	S	1) 1	;	:	1 0000	:	;	1	ı ı			R	B	B	R	1,4-Dichlorobenzene	
2	;	S	B	8	:	1	;	;	1 000000	:	:	1	r t	1	몽	R	몽	8	N	Benzyl Alcohol	
74.000 F	;	S	S	품		;	t !	;		;	:	;	t t	1	픙	S	S	Ö	B	1,2-Dichlorobenzene	
30 t ·	ŀ	Š	Ş	R	:	;	ŗ	;	1 -		!	;	1	1	F	B	B	B	B	2-Methylphenol	
0 1 0 1	1	S	R	B	:		ı ı	t t	1 200	t .	† †	:	;	:	품	8	S	R	B	Bis(2-Chloroisopropyl)Ether	
1 1	;	S	S	S	:	!	1	1	1 0000000	1	1	1	;	:	중	Ö	S	R	8	4-Methylphenol	
:	i	N N	N D	S	,	t t	;	;			;	t t	;	1	픙	B	몽	8	등	N-Nitrosodi-N-Propylamine	
:	;	R	B	B	;	1	:	;	1 000	:	:	1	;	1	픙	몽	용	$\frac{8}{10}$	8	Hexachioroethane	
;	:	N	B	8	;	1	:	:	1 0000	:	;	1	t t	t F	중	$\frac{8}{10}$	$\frac{6}{8}$	B	용	Nitrobenzene	
t i	:	ND N	B	Z	;	;		:	1 000000	:	E P	1	1	- 2	R	B	용	8	B	Isophorone	
SS 1	!	B	B	8	:	:		:	1 000		t t	;	1	1	중	8	S	8	8	2-Nitrophenol	827
30.1	I I	S	Š	8	:	:	1	;	1 0	1	t t	;	!	;	중	B	S	B	B	2,4-Dimethylphenol	8270 Semi VOCs (ug/kg)
:	1	S	N	B		;	1	t t	1	1	1	;	:	-	중	S	S	S	8	Benzoic Acid	3
30 I	;	S	S	B		1	;	1	1 00000 1 00000	:	1	:	:	-	몽	용	몽	8	2	Bis(2-Chloroethoxy)Methane	000
0000	;	ND	N	S	:	1	:	;	1 00000		:	F 1	I I	;	품	B	B	B	8	2,4-Dichlorophenol	gu)
300	:	R	R	S	:	:	1	:	1 000000	:	;	:	ŧ 1		R	R	용	R	S	1,2,4-Trichlorobenzene	/kg)
0 0 t 0 t		S	R	Z	:	;	:	! }	1 000		1	:	:	:	몸	R	몸	R	B	Naphthalene	
5/5	ŗ	S	R	B	:	;	r t	t 1	1 8	1	1	!	;	:	몽	R	뭄	R	B	4-Chloroanaline	
:				B		;	T 1	Ŧ,	1	1	1	t t	:	-		용	몽	용	8	Hexachlorobutadiene	
\$:	;			8		t t	:	;	; ::::::::::::::::::::::::::::::::::::	:	:	1	;		용	8	용	8	R	4-Chloro-3-Methylphenol	
) 	:			S	1	ł 1	:	;	1 0 1 0		;	!	1	1 0	중	R	8	R	B	2-Methylnaphthalene	
				Z	:	1	;	;	1 000		:	:	; •	1 1 1 1	S	R	R	R	B	Hexachlorocyclopentadiene	
\$:	t t	N N	B	2		:	:	:	1 1 1 1 1 1 1 1		;	:	:	1	8	B	Ŗ	B	B	2,4,6-Trichlorophenol	
) 		S		Z	;	;	;		- 3		1	:	:	-	S	N	N		B	2,4,5-Trichlorophenol	
				E		;	+ +	t F	- 33	į.	1	t i	r r	:		N	S		공	2-Chloronaphthalene	
÷:			_	S	1	ı	1	;	1	:	:	t £	t t			N	Z	S	S	2-Nitroanaline	
5 5 1		N N		N	1	ŧ	:	:	; ;	:	:	1	1	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8	N	ND	ND	S	Dimethyl Phthalate	
8 8 8 1		S	N	Z		:	;	1			;	:	;	1 00 00 00 00 00 00 00 00 00 00 00 00 00		ND	ND	S N	R	Acenaphthylene	
000000				Z D	•	:	:	:	1.00	:	; ;	ţ.	:	1	S	R	N		S	3-Nitroanaline	
				N	:	i,	1	:			1	:	:		:		ND		S	Acenaphthene	
3 1 3 1				ND	:	:	ŀ	E	1 0000000000000000000000000000000000000	:	1	t F	!		8			N	8	2,4-Dinitrophenol	

Page 4

B4-10	B4-7	B4-5	B4-1	B4-S	B3-10	B3-7	B3-4	B3-1	B3-S	B2-10	B2-7	B2-4	B2-1	B2-S	B1-10	B1-7	B1-4	B1-1	B1-S	Sample No
10.0	7.0	5.0	1.0	SFC	10.0	7.0	4.0	1.0	SFC	10.0	7.0	4.0	1.0	SFC	10.0	7.0	4.0	1.0	SFC	Depth (ft., bgs)
1	\$33 •	S	B	Z			7833	1			: :	1982) 1	808886 E F		B	ND	Z	Z	ND	4-Nitrophenol
:	;			Z	3	l F	;	:	1 1 1 1		t t	1	r I	:	3	R		R	몽	Dibenzofuran
!	e E			S	8	f F	# P	:			1	:	1	1	S	R	N	S	S	2,4-Dinitrotoluene
ŧ	1	N	R	8	} 	1	1	:	1 3		.	:	1	:	S	R	R	S	B	2,6-Dinitrotoluene
: :	:	Z	Š	R	:	:	:	t L		9	:	,	:	:	舌	8	S	8	8	Diethyl Phthalate
1	;	B	R	R	1	;	;	1	1 0000000000000000000000000000000000000	1	:	ŀ	1	;	8	R	R	B	B	4-Chlorophenyl-Phenyl Ether
:	;	동	S	R		:	ı.	;	:		t t	1	ľ	i I	3	S	S	S	S	Fluorene
:	;			S	3	;	ı	;	- 3	3	t ;	;	1	1	공	R	B	B	Ö	4-Nitroanaline
1	1	S	B	R	6 6 1	:	1	;			:	:	;	1	8	N	R	S	B	2-Methyl-4,6-Dinitrophenol
;	1	S		S	1	:	:	E T		1	;	1	1	:	Z	R	N	R	B	N-Nitrosodiphenylamine
:	;	Z				;	;	:	# 000000000000000000000000000000000000		;	:	1		3	S	R	R	B	4-Bromophenyl-Phenyl Ether
:	;	R	B			t T	:	;	1		1	;	3	1	R	R	S	S	몽	Hexachlorobenzene
;	:	N		R		1	! 4	:	1 1 1 1 1 1 1		1	;	1	,	Z	F	S	S	8	Pentachiorophenol
1	;			N		:	1	1	- 1 00 - 1 00 - 1 00	8 6 1	;	t t	:	t I	Z	N	S	R	R	Phenanthrene
1	!			S N		:	:	:	1 1		;	1	1	3	Z		K	R	S	Anthracene
;	:		_	N	1		,	•		t .	; ;	:	1	1	2			1.19	R	Phenanthrene Anthracene Di-N-Butyl Phthalate Fluoranthene
ı.	:	Z	S	2		1	!	:		9	:	!	:	-	Š	R	N	R	N	Fluoranthene
:			N N			•	:	;	3	à	:	ı	r	ı	É	ND		ND		Pyrene
•	:	N	-	N		:	:		1 1			1			Z		ND	ND	ND	Butyl Benzyl Phthalate
:		N N	N	_		:		:	1		L F		1	:	9	ND	N	ND	N	3,3'-Dichlorobenzidine
:	:	_	N				;	:	1 1 1 1		1	;	1	:	(T	-	ND			Benzo(A)Anthracene
E T		z		z					• •	i i	:	1			z	z	z	N	z	Bis(2-Ethylhexyl)Phthalate
1	1			ND	;	:	:	;	1 0000		:	1	:	1	9			S		Chrysene
;	;			8		;	-	:	1 000		!	1	:	:	9				9	Di-N-Octyl Phthalate
:	:		ND			1	1	1	1 1	:	1	:	1	1	ŝ.	ND				Benzo(B)Fluoranthene
:	1			S		1	ŗ	:	1 8 1 8 1 8	1	;	!	t f	-	S		8	ND	- 3	Benzo(K)Fluoranthene
1	:			N		!	1	1	1 7000		:	1	1	;	ŧ -	S N	_		N	Benzo(A)Pyrene
:	:	_	N D		ĺ	:	:	1	1 2			:	:		S N	ND			ND	Indeno(1,2,3-C,D) Pyrene
:	:			N			:	:	1 000000000000000000000000000000000000	,	1	1	:		Z				3	Dibenzo(A,H)Anthracene
:				S	5		!	-	1		:	1	1	1	8			NO	1	Benzo(G,H,I)Perylene
jesen ver	.400.44					untun.	بجفيد	processor (gr		Pyrospor	400000	gan ya	yerrer.			45554 45554	errore	100000	. 22390	Miscellaneous

Table 2: Analytical Results - Chang's Automotive

			Hydro	carbo	ons								6	010 Me	etais (n	ig/kg)									Sol. Me	tals
			- Anni en Bransida	T			TTLC	500	500	10000	75	100	2500	8000	2500	1000	20	3500	2000	100	500	700	2400	5000		
		00000					10XSTLC	150	50	1000	8	10	5600	800	250	50	2	3500	200	10	50	70	240	2500		
Sample No.	Depth (ft., bgs)	Hydrocarbons	8015m-Diesel (mg/kg)	8015m-Gasoline (mg/kg)	418 1 TRPH (mg/kg)	6010 Metals (mg/kg)		Antimony	Arsenic	Barium	Beryllium	Cadmium	Chromium (total)	Cobalt	Copper	Lead	Mercury	Molybdenum	Nickel	Selenium	Silver	Thallium	Vanadium	Zinc	Soluble Metals (mg/L) TCLP Lead	WET Lead
B5-S	SFC		ND ^{i,j,f}	domenii 	170.0	(10 1000 (ND				24.0		140.0	2600.0		kotoosossa • •	17.0	Štošcoscosi •• ••				410.0		* •
B5-1	1.0	96 98 98	ND	ND	ND				ND				8.2	-, -	36.0	110.0			2.7					66.0		9.0
B5-4	4.0		ND	ND	ND				ND				9.3		3.1	2.6			5.7					4.4		
B5-6	6.0		ND	ND	ND			ND	ND	44.0	0.28	0.40	15.0	3.7	4.0	1.8	ND	ND	13.0	ND	ND	ND	18.0	7.7		
B5-10	10.0											- -														
B6-S	SFC		ND^k	**************************************	44.0	igeorgessus Se	000000000000000000000000000000000000000	ND	2.8	50.0	0.18	0.50	12.0	3.2	14.0	180.0	0.15	ND	9.3	ND	0.46	ND	9.3	53.0	ΠN	- +
B6-1	1.0	200 200 200	$ND^{e,f}$	ND	400.0	60 60 60		ND	7.1	160.0	0.27	1.9	12.0	14.0	35.0	78.0	0.11	ND	20.0	ND	ND	ND	16.0	120.0		8.0
B6-4	4.0	60 60	ND	ND	ND			ND	2.5	30.0	0.13	0.34	9.9	0.6	1.8	ND	ND	ND	6.0	ND	ND	ND	7.0	5.0		
B6-7	7.0	900 300 300	ND	ND	ND			ND	5.0	41.0	0.21	0.67	16.0	4.1	3.2	8.5	ND	ND	17.0	ND	ND	ND	12.0	12.0		
B6-10	10.0	k	ND	ND	ND	98 60 80 80		ND	3.2	38.0	0.16	0.68	12.0	3.0	2.5	3.4	ND	ND	12.0	ND	ND	ND	10.0	9.8		

ND = Not Detected
--= Not Tested

ND = Not Detected

Page 6

100000000000000000000000000000000000000	B6-10	B6-7	B6-4	B6-1	B6-S	B5-10	B5-6	B5-4	B5-1	B5-S	Sample No	
000-00000000000000000000000000000000000	=	7	4	_	က	1	6	4	_	S	Depth (ft., bgs)	
2000000	0	Ö	5	0	SFC	0	6	Ó	о	ဂ		<u> </u>
2000000	8	8	8	8	S		8		•	1	7196 CHROM VI	
20000000					8					0.00000000	8240 VOCs (ug/kg)	
2000000			중	;	1		B		÷		Acetone	
0000000			8	î	1 6	:	8		;	1 000000	Benzene	!
2010 0010 0010 0000 0000 0000 0000 0000	8	8	용	;	1 3		8		:		Bromodichloromethane	
000000	Ð		용	:			8	B	1		Bromoform	
86000	듬	B	B	;	1		B		;	1 20000	Bromomethane	
00000000	8	B	Ö	ţ	1 8	:	B	믕	:	1 000	Methyl Ethyl Ketone	
9900999	B	B	용	1	1 0	t F	용	Ŗ	;		Carbon Tetrachloride	
000000	B	B	몽	;	1 }	:	\mathbb{R}	ఠ	;	1 6	Chlorobenzene	
2000000	R	B	뭄	1	1	:	S	8	1	1 000000	Chloroethane	
20200	N	S	용	:			B	S	;		2-Chloroethylvinyl ether	
2000000	8	N	R	;	1 0	:	N	R	1		Chloroform	
000000	R	N	N	<u>;</u>	1 8 1 8	:	ND	Z	:	1 100	Chloromethane	
000000	ND	ND	S	:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:	ND	ND	:		Dibromochloromethane	
200000	N		S N	:	1 3	1	NO NO			1	1,1-Dichloroethane	0.00
200000	N		NO	:			ND		1		1,2-Dichloroethane	
0000000	ND	N	R	:	1 8 1 8	:	N		:	1 0	1,1-Dichloroethene	۵
	ND	N	Z Z	:			N	N	;		Cis-1,2-Dichloroethene	8240 VOUS (LIGIKG)
000000	ND	N	N		1 3	1	N	N	1		Trans-1,2-Dichloroethene	Ş
2000	S	No.		ı	1	:	ND		:	: 000000	1,2-Dichloropropane	S
20000	N	S	S	:	1 0		Š	S	:		Cis-1,3-Dichloropropene	198
000000	8	S	R	:	- 3	:	S	8	1 +	-	Trans-1,3-Dichloropropene	
30.00000	N	N	N	;	1 3		N	R	1		Ethylbenzene	
		N	S	;			B	R	:	1 1	2-Hexanone	
000000	B	R	S	:	1 1 1		B	8	E t	1	Methylene Chloride	
800000	S N		N	;			Z	2	1	1 1	Methyl Isobutyl Ketone	
2000	ĸ	N			1 5	:	N		:		Styrene	
000000	ND		N	;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ı	ND		ŗ		1,1,2,2-Tetrachloroethane	
	N	N	N	!			N	S.	:	1 *	Tetrachloroethene	
0000000	R	S	N	:	1 1	:	ND	S	!		Toluene	
0.0000	ND ND	N	S				S	N	1		1,1,1-Trichloroethane	
2000000	R		N	1	1 0000000000000000000000000000000000000	;	S		:	: 0	1,1,2-Trichloroethane	
20000000	N	ND	N	1			S	N	:	- 000	Trichloroethene	
00000000	N		N	:	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	N	N	t t		Trichlorofluoromethane	
2008000	S S		S		1 3 1 3		N	_	:	T 1	Vinyl Acetate	
Session	O NO		N	•	1 00000		N	B		;	Vinyl Chloride	
X0000X	Z	S	-	· !	:		N	_	1	· 6300	Xylenes	
3,	U	J	J	•	• 3	•	J	J	•	• 9	<u> </u>	<u> </u>

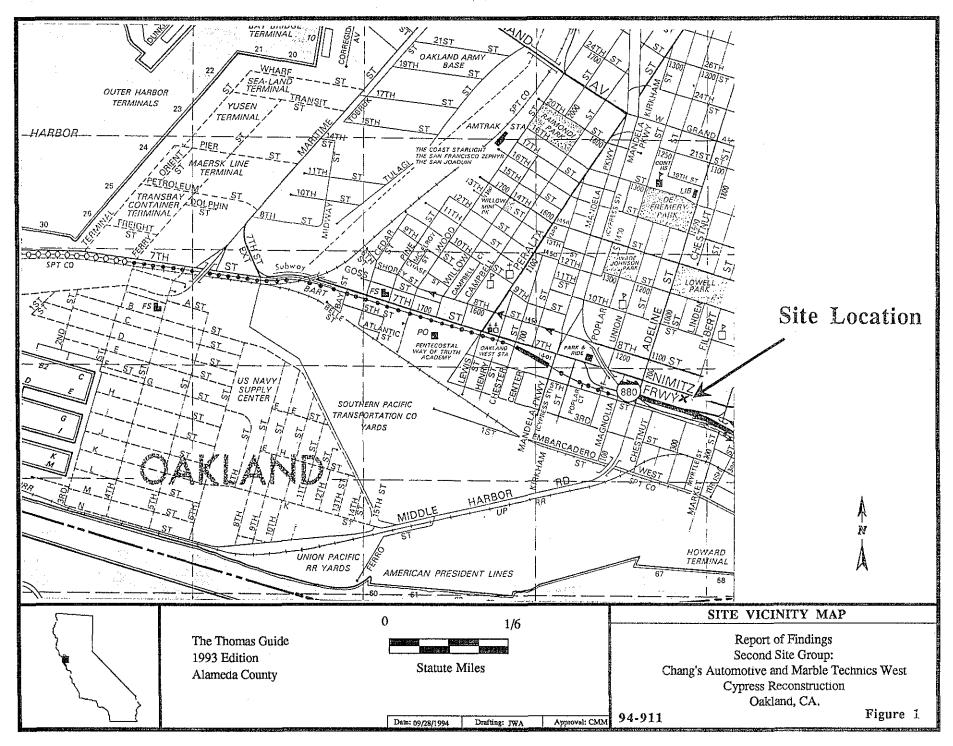
Table 2: Analytical Results - Chang's Automotive

7 1 2 5	B6-7	B6-1	85-10 86-S	B5-6	B5-1-6	Sample No.
	7.0 10.0	4.0	10.0 SFC		1.0 4.0	Depth (ft , bgs)
						2370 Somi VOCs (ug/kg)

. 1 0	-7	4	<u> </u>	ά	5	ტ	4	ᅼ	က်	mple	
10.0	7.0	4.0	1.0	SFC	10.0	6.0	4.0	1.0	SFC	Depth (ft , bgs)	
. O	984						- -:::::::::::::::::::::::::::::::::::	4953		8270 Semi VOCs (ug/kg)] [
<u> </u>	Z	Z	ND	Z	000 1	Z	;	:	1	Phenol	1
8			S			ND	;	:	1	Bis(2-Chloroethyl)Ether	
ě I	ND	Z Z				N	!	,	1	2-Chlorophenol	1
8	N	_	N	- 3	C C C C F	N	;	;		1,3-Dichlorobenzene	1
ŝ	N	S	S	R	1	N	:	1	1	1,4-Dichlorobenzene	
ž –	_	Z		N		N	:	:		Benzyl Alcohol	
ê	N	_	_		00000 F	N	:	:		1,2-Dichlorobenzene	
2	N	N	_	N	1	N	;	ŗ	, , , , , , , , , , , , , , , , , , ,	2-Methylphenol	
8 -	ND	N	R	S	5 5 1 5 1	N	:	1	:	Bis(2-Chloroisopropyl)Ether	•
§ -	_	Z	-	Z		N	:	:	1	4-Methylphenol	
ž	_	N	ND	Z		ND			1 000	N-Nitrosodi-N-Propylamine	
			N N			N			1 1	Hexachloroethane	
š	N	N	N	N	: :	N	ì		1	Nitrobenzene	
¥ .		S	_	N		N			•	Isophorone	-
÷ -	_	S	N	N		N				2-Nitrophenol	8
8		N		Z		ND	:	r	1	2,4-Dimethylphenol	70 S
N		R		N		ND	:		1 000	Benzoic Acid	8270 Semi VOCs (ug/kg)
8 🗔	N	8	N	N		NO	:			Bis(2-Chloroethoxy)Methane	텽
š I	_	S	O NO	N		N N	:	į	•	2,4-Dichlorophenol	S (a
§		8	N	N		N N		:		1,2,4-Trichlorobenzene	쑮
\$ <u> </u>	_	B	ND	N		ND	:	•	1	Naphthalene	Ĭ
ND	_			N		N	:	:	• •	4-Chloroanaline	
8				N	9	N	:	:	•	Hexachlorobutadiene	
35		S		ND		ND	•			4-Chloro-3-Methylphenol	
â		S	N N	N		O ND	:	1		2-Methylnaphthalene	-
UND		N	S	N		N	•	•		Hexachlorocyclopentadiene	
2:		Z		N		O NB	,	:		2,4,6-Trichlorophenol	
N		S	S	N		S N	•	•		2,4,5-Trichlorophenol	
OND		N O		OND		OND	•	•	1	2-Chloronaphthalene	
NO NO		O NO	O NO	OND		GNG	1	,	1	2 Nitroanaline	
OND		D N		ND	(D ND		i		Dimethyl Phthalate	ł
ND ND ND ND ND				D ND	4 1 0 1	D ND	1	1	•	Acenaphthylene	
6		S		D ND		D ND	1	•	•	3-Nitroanaline	
ND ND			O ND			DND	:	,		Acenaphthene	
1.				3		_			-	2,4-Dinitrophenol	
S	U	Ū	Ø	O :	1	Ö	•	1	1 8		

Page 8

B6-S B6-1 B6-4 B6-7 B6-10	B5-6 B5-10	B5-4	B5-1	B5-S	Sample No	
B6-S SFC B6-1 1.0 B6-4 4.0 B6-7 7.0 B6-10 10.0	6.0 10.0	4.0	1.6	SFC	Depth (ft., bgs)	
88888	; Z		1	•	4-Nitrophenol	
88888	: 2	;	ļ		Dibenzofuran	
88888	: 8	:	1		2,4-Dinitrotoluene	
88888	: ₽	:	:	;	2,6-Dinitrotoluene	
88888	: I	ı L	t t	t i	Diethyl Phthalate	
88888	: 8	r r	t I	1	4-Chlorophenyl-Phenyl Ether	
88888	: 8	,	. 1	1 1	Fluorene	
88888	:	1	1	1 0	4-Nitroanaline	
88888	; B	÷	1	- 1	2-Methyl-4,6-Dinitrophenol	
88888	: 8	:	:	- 1	N-Nitrosodiphenylamine	
88888	; ₹	;	;		4-Bromophenyl-Phenyl Ether	
88888	i	;	!	1 9	Hexachlorobenzene	
88888		l I	ı T	1 50 1 50 1 50	Pentachlorophenol	8
88888		1	1	1	Phenanthrene	70
88888	: 8	:	:	- 1	Anthracene	iemi
ND N	: 8	:	:		Di-N-Butyl Phthalate	8270 Semi VOCs (ug/kg
33333	: 8	1		1 000	Fluoranthene	(ug/
88888	; <u>8</u>	:	1	1 0	Pyrene	ĝ
888888		;	:	+	Butyl Benzyl Phthalate	
88888	: 8	:	1	:	3,3'-Dichlorobenzidine	
88888	: Z	:	;	l i	Benzo(A)Anthracene	
88888		:	1	1 1	Bis(2-Ethylhexyl)Phthalate	
- V		t r	1	1 0	Chrysene	
88888	; <u>P</u>	1	1	1	Di-N-Octyl Phthalate	
	; B	-	:		Benzo(B)Fluoranthene	
	: B	:	ť.		Benzo(K)Fluoranthene	
88888	: 8	!	l (1	Benzo(A)Pyrene	
88888	:	1	1	1 -	Indeno(1,2,3-C,D) Pyrene	
88888		:	:	1	Dibenzo(A,H)Anthracene	
GN	8	!	:	: 	Benzo(G,H,I)Perylene	
	540505 J00888	opre 20	-9/900	- 201000 3 3 3	Miscellaneous	M
	1 1 1 1	1	6.4	1	рН	Misc.


94-911

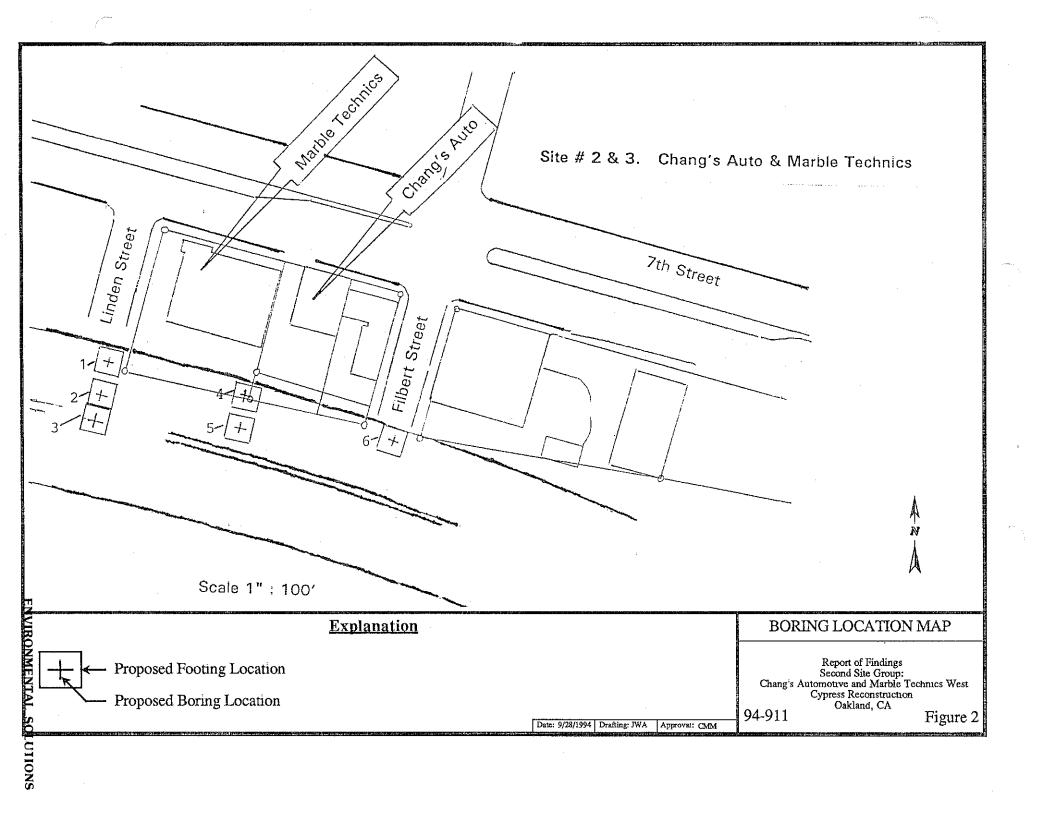

Table 2: Analytical Results - Chang's Automotive

TABLE 3. LOCATION OF CONTAMINANTED MATERIALS-CHANG'S AUTOMOTIVE AND MARBLE TECHNICS WEST

BORING	DEPTH OF BORING		
NUMBER	(FEET, BGS)	CONTAMINATED*	HAZARDOUS**
B1	10.5	VOCs (92)	Pb (68)<18>
B2	10.5	Pb (200) TCLP <nd></nd>	Pb (150)<9.6>
		Pb (62)<1.7>; VOCs (64)	1 2 (100) 10.0
D2	11	Un (4700), Dh (74) <2.05	
B3		Hc (1700); Pb (71) <3.9> VOCs (15)	
	, , , , , , , , , , , , , , , , , , ,		
- B4	6.5	Hc (20,000)	Pb (1000)=TTLC
		Pb (210) TCLP <nd></nd>	Pb (73)<8.3>
5.5	· · · · · · · · · · · · · · · · · · ·	11 (270)	DI (0000): TTI 0
B5	7	Hc (170)	Pb (2600)>TTLC
			Pb (110)<9>
B6	10	Pb (180) TCLP <nd>; Hc (400)</nd>	Pb (180)>STLC
EXPLANATION: Value	s represent highest concentration	on found in samples collected from a bo	ring.
Hc=Highest reported cor	ncentration of Total Recoverable P	etroleum Hydrocarbons (EPA 418.1) > 100	mg/kg
	eding 10xSTLC: Pb=lead		
VOCs=Highest reported	volatile organic compound concen	tration (EPA 8240) in ug/kg.	
*Soils classified as conta	aminated if TRPH concentrations a	re at or exceed 100 mg/kg, metal concentr	ations exceed
ten times its STLC value	e, or VOCs were detected. Becaus	e the only semivolatile organic compound of	detected was
Di-N-Butyl Phthalate whi	ich is most likely a laboratory conta	minant, it is not listed on this table.	
**Hazardous-Based on V	WET/TCLP results (mg/l) or concer	trations at or exceeding TTLC Values.	
Pb <5>≃WET result; Pb	>STLC=Soluble levels expected to	exceed STLC values based on WET/TCL	P
results on other soil sam	ples. Pb>TTLC=Contaminant con	centration exceeds TTLC value.	

FIGURES

APPENDIX A
BORING LOGS

Project Name: Caltrans- Chang's accomoting	ve and Marl	1 Marble Technics West Da				:10/31/1994 Boring Number: B1					
Project No: 94-911	Borehole I								empletion: Neat Cement		
Drilling Co: Precision Sampling, Inc.	Well Dept					Sı	ırfac	e Ele	evation: N/A		
Drilling Equip: Hand Auger /DA-1	Water Ele	v.: N//	4			Lo	oggeo	iВу	: JWA		
Sampler Type: Hand Sampler/Enviro Core	Casing Ele	evatio	n: N/		C	Checked By: CMM					
Description		Lithology	Depth (feet)	Sample Number	Casing	Annular Seal	Blows/6"	OVM (ppm)	Remarks		
Very dark brown (10YR 2/2) poorly graded Sa fine to medium grained sand, (0% Clay, 5% S 90% Sand, 5% Gravel), loose, moist, (decomposed leaves), (fill). Dark yellowish brown (10YR 4/6) gravelly Sa fine to coarse grained sand, fine to coarse grave (0, 5, 75, 20), loose, dry to moist, (fill)	nd (SW),]	1 2 3	B1- Su B1-1	rface	₹.	y en milatika y	0	Constituent percentages are visual field estimates only		
Olive (5Y 4/3) poorly graded Sand (SP), fine to grained sand, (0, 0, 100, 0), loose, dry to mois roots, (fill) At 6.5 feet, color change to dark yellowish bro	t, trace		5	B1-4				0	Boring hand augered to 5.5' on 10/31/1994.		
(10YR 4/4), dry, trace gravel			8	B1-7	THE REAL PROPERTY OF THE PROPE			0			
Dark yellowish brown (10YR 4/4) silty Sand (fine grained sand, (0, 30, 70, 0), medium dense Dark yellowish brown (10YR 3/4) poorly grad (SP), fine to medium grained sand, (0, 0,100, medium dense, moist. Boring Terminated at 10.5 Feet	, dry. ed Sand		11 11 12 13 14 15	B1-10				0	Boring completed to 10.5' on 11/1/1994 using DA-1.		
Environmental Solutions, Inc.		1				+		· · · · ·	Figure No. A-1		

Project Name: Caltrans- Chang's Automotive	ve and Mart	nd Marble Technics West Date:					:10/31/1994 Boring Number: B2						
Project No: 94-911	Borehole I	ehole Depth: 10.5 feet						Surface Completion: Neat Cement					
Drilling Co: Precision Sampling, Inc.	Well Dept	h: N/A	7			Sı	ırfac	e El	evation: N/A				
Drilling Equip: Hand Auger /DA-1	Water Elev	v.: N/A	<u> </u>			Lo	ogge	iВy	7: JWA				
Sampler Type: Hand Sampler /Enviro Core	Casing Ele	sing Elevation: N/A						Checked By: CMM					
Description		Lithology	Depth (feet)	Sample Number	Casing	Annular Seal	Blows/6"	OVM (ppm)	Domonles				
Description (10XP 20)	J_ J C J			4		A	1		Remarks				
Very dark grayish brown (10YR 2/2) poorly gra (SP), fine to medium grained sand, (5% Clay, 85% Sand, 5% Gravel), loose, moist, (decomposed leaves), (fill). Dark yellowish brown (10YR 4/6) gravelly Sar fine to coarse grained sand, fine to coarse grave (0, 5, 75, 25), loose, moist, (fill)	5% Silt, ad (SW),		1 2	B2- Sur B2-1	face			0	Constituent percentages are visual field estimates only				
Olive (5Y 4/3) poorly graded Sand (SP), fine to grained sand, (0, 0, 100, 0), loose, dry, (fill). Dark yellowish brown (10YR 4/4), gravelly Sa fine to medium grained sand, fine to medium grained (5, 5, 60, 30), medium dense, dry to moist	nd (SW),		5	B2-4		-		0	Boring hand augered to 3.5' on 10/31/1994.				
Very dark grayish brown (10YR 3/2) poorly gra (SP), fine to medium grained sand, fine to medi (0, 5, 70, 5), medium dense, dry			7 8	B2-7				0					
Olive brown (2.5YR 4/3) poorly graded Sand (medium grained sand, (0, 0,100, 0), loose, dry,			10	B2-10				0	Boring completed to 10.5' on 11/1/1994				
Boring Terminated at 10 5 Feet.			11 12 13 14										
Environmental Solutions, Inc.							· · · · · · · ·		Figure No. A-2				

Project Name: Caltrans- Chang's Automotive and Marble Technics West Date: 10/31/1994 Boring Number: B3										
Project No: 94-911	Borehole Depth: 11.0 feet					Sι	Surface Completion: Neat Cement			
Drilling Co: Precision Sampling, Inc.	Well Depth: N/A						Surface Elevation: N/A			
Drilling Equip: Hand Auger /XD-2	Water Elev	v∴N/A	<u> </u>			Lo	ogge	1By	; JWA	
Sampler Type: Hand Sampler/Enviro Core	Casing Ele	evatio	n: N/	A	Carrie paren	CI	neck	ed B	y: CMM	
		Lithology	Depth (feet)	Sample Number	Casing	snnular Seal	Blows/6"	OVM (ppm)		
Description (1977)	1 (031)	Lit	ă		<u> </u>	An	В	O	Remarks	
Dark yellowish brown (10YR 4/3) gravelly Sar fine to coarse grained sand, fine to coarse grave (0% Clay, 5% Silt, 60% Sand, 35% Gravel), lo (fill)	1,	j	1	B3- Sur B3-1	face			0	Constituent percentages are visual field estimates only.	
Olive (5Y 4/3) poorly graded Sand (SP), fine to grained sand, (0, 0, 100, 0), loose, dry, (fill)	medium .		2						Boring hand augered to 20' on 10/31/1994	
Dark yellowish brown (10YR 4/3) gravelly Sar fine to coarse grained sand, fine to coarse grave (0, 5, 60, 35), loose, dry, (fill)			4			•				
Dark olive brown (2 5Y 3/3) poorly graded Sand (SP), fine to medium grained sand, (0, 0, 100, 0), loose, dry, (fill)			5	B3-4						
Dark yellowish brown (10YR 3/4) gravelly Sand (SW), fine to medium grained sand, fine to coarse gravel, (5, 5, 70, 20), medium dense, moist.			7 8	B3-7						
			9 10 11	B3-10						
Boring terminated at 11.0 feet.			12						Boring completed to 11.0' on 11/8/1994.	
			13							
			14							
Environmental Solutions, Inc.		e de la companion de la compan				****		g==4472 = 3	Figure No. A-3	

Project Name: Caltrans- Chang's Automotive and Marble Technics West Date: 11/1/1994 Boring Number: B4										
Project No: 94-911	Borehole Depth: 6.5 feet					Su	Surface Completion: Neat Cement			
Drilling Co: Precision Sampling, Inc.	Well Dept	h: N/A	<u> </u>			Su	Surface Elevation: N/A			
Drilling Equip: DA-1	Water Elev	⁄∴N/A	1			Lo	gge	Ву	: JWA	
Sampler Type: Split Barrel/Enviro Core	Casing Ele	evatio	n: N/	A	and the contract of the second	Cł	iecke	d B	y: CMM	
Project No: 94-911 Drilling Co: Precision Sampling, Inc. Drilling Equip: DA-1 Sampler Type: Split Barrel/Enviro Core Description Black (10YR 2/1) poorly graded Sand (SP), fine medium grained sand, (0% Clay, 10% Silt, 90% 0% Gravel), loose, moist, (decomposed leaves), Dark yellowish brown (10YR 4/6) gravelly Sanfine to coarse grained sand, fine to coarse gravel (10, 5, 50, 35), medium dense, moist to dry, (fill) Dark olive brown (2 5 Y 3/3) poorly graded Sarfine to medium grained sand, (0, 5, 95, 0), loose trace ceramic fragments, (fill) At 4.2 feet, color change to dark yellowish bro (10YR 4/4), (0, 0, 100, 0) At 5.0 feet, color change to dark yellowish bro (10YR 4/6). Boring Terminated at 6.5 Feet	Well Dept Water Elev Casing Ele to Sand, (fill). d (SW), d (SP), c, dry,	h: N/A	7	A Sample B4-1	face	Su	rface ogge	e Ele I By	evation: N/A : JWA	
			12 13 14 15					THE EXPLOSION OF THE PROPERTY AND		
Environmental Solutions, Inc.				1	1				Figure No. A-4	

Project Name: Caltrans- Chang's	e and Marb	le Te	hnic	West	Date:	1., 1/1	994	Boring Number: B5		
Project No: 94-911	Borehole Depth: 7.0 feet					Surfa	Surface Completion: Neat Cement			
Drilling Co: Precision Sampling, Inc.	Well Dept	h: N//	1		·	Surfa	Surface Elevation: N/A			
Drilling Equip: DA-1	Water Elev	/∴N/A	<u>.</u>			Logg	ed By	/: JWA		
Sampler Type: Split Barrel/Enviro Core	Casing Ele	vatio	n: N/	A	e e la companya de l La companya de la companya de	Chec	ked B	y: CMM		
Description	1.(((2))	Lithology	Depth (feet)	Sample Number	Casing	Annular Seal	OVM (ppm)	Remarks		
Very dark brown (10YR 2/2) poorly graded Sand (SP), fine to medium grained sand, (0% Clkay, 10% Silt, 90% Sand, 0% Gravel), loose, moist, (decomposed leaves), (fill). Dark yellowish brown (10YR 4/6) sandy Gravel (GW), fine to coarse gravel, fine to coarse grained sand, (5, 5, 35, 55), medium dense, dry, angular gravel, (fill). Dark brown (10YR 3/3) poorly graded Sand (SP), fine to medium grained sand, (0, 0, 100, 0), loose, dry, (fill). At 3 5 feet, color change to dark yellowish brown (10YR 4/4), fine sand.		000	1 2 3	· · · · · · · · · · · · · · · · · · ·	rface	· · · · · · · · · · · · · · · · · · ·	0	Constituent percentages are visual field estimates only		
			5	B5-4 B5-6			0 0			
Boring Terminated at 7.0 Feet.			8 9 10 11 12 13 14	of the boundary to common the case as a management of the case and the				Figure No. A-5		

Project No: 94-911	Borehole I	Denth:	100					1/1/1994 Boring Number: B6				
		- F	10.0	Borehole Depth: 10.0 feet					Surface Completion: Neat Cement			
Drilling Co: Precision Sampling, Inc.	Well Dept	Well Depth: N/A						Surface Elevation: N/A				
Drilling Equip: DA-1/XD-2	Water Ele	v.: N/A			<u></u>	Lo	gged	Ву	: JWA			
Sampler Type: Split Barrel/Enviro Core	Casing Ele	evatio	n: N/	A	-	Ch	ecke	d B	y: CMM			
Description		Lithology	Depth (feet)	Sample Number	Casing	Annular Seal	Blows/6"	OVM (ppm)	Remarks			
Very dark brown (10YR 2/2) poorly graded Sa fine to medium grained sand, (0% Clay, 10% 90% Sand, 0% Gravel), loose, moist, (decomposed leaves), (fill). Dark yellowish brown (10YR 4/4) poorly grad (SP), fine to medium grained sand, (0, 5, 95, 6 dry, (fill).	Silt, ed Sand		1 2	B6- Sur	rface	7		0	Constituent percentages are visual field estimates only Refusal at 0.5' on first attempt. Refusal at 1.0' on second attempt.			
At 3.0 feet, color change to dark brown (10YI) (0, 0, 100, 0). At 4.0 feet, color change to dark yellowish brown (10YR 3/3).	wn		3 4 5	B6-4								
Dark yellowish brown (10YR 4/6) mottled win (10YR 5/3) and minor, very dark gray (10YR 2) Sand (SC), fine to medium grained sand, (20, medium dense, moist, (very dark gray veins are clay).	3/1) clayey 5, 75, 0),		6									
Dark yellowish brown (10YR 4/6) poorly grad (SP), fine to medium grained sand, (5, 5, 90, 0 dense, moist			8 9	B6- 7				gen gegin, die Adrich de Bellet, sowert werden der der de Bestelle bestellt der der de Bellet werden der der d	Boring completed to 10.0° on			
Boring terminated at 10.0 feet. Environmental Solutions, Inc.			11 12 13 14 15						11/8/1994 Figure No. A-6			

APPENDIX B
CHAIN OF CUSTODY AND ANALYTICAL DATA SHEETS

CHROMALAB, INC.

Environmental Services (SDB)

November 16, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project#: 94-911

Project: CALTRANS/CHANG's
Received: November 1, 1994

re: 10 samples for Gasoline analysis.

Matrix: SOIL

Run#: 4519

Analyzed: November 9, 1994

Sampled: November 1, 1994 Method: EPA 5030/8015M

		REPORTING	BLANK	BLANK SPIKE
	GASOLINE	LIMIT	RESULT	RESULT
Spl # CLIENT SMPL II	(mg/Kg)	(mg/Kg)	(mg/Kg)	(%)
68600 B1-7	N . D .	1.0	N . D .	88
<i>68601</i> B1-10	${f N}$, ${f D}$,	10	\mathbf{N} \mathbf{D}	88
<i>68602</i> B2-4	${f N}$., ${f D}$.,	1.0	$\mathbf{N} \cdot \mathbf{D}$	88
68603 B2-7	\mathbf{N} , \mathbf{D} ,	1.0	\mathbf{N} \mathbf{D}	88
<i>68604</i> B2-10	\mathbf{N} , \mathbf{D} ,	10	$N \cdot D$	88
68606 B4-1	\mathbf{N} \mathbf{D}	1 0	N.D.	88
68607 B4-5	${f N}$ ${f D}$	10	\mathbf{N} ., \mathbf{D}	88
<i>68609</i> B5-1	${f N}$ ${f D}$	10	\mathbf{N} , \mathbf{D} .	88
68610 B5-4	N D	1.0	N , D .	88
68611 B5-6	N . D	1 0	\mathbf{N} , \mathbf{D} .	88

Chemist

Organic Manager

Environmental Services (SDB)

November 16, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Sampled: November 1, 1994 Extracted: November 7, 1994

Submitted: November 1, 1994 Analyzed: November 8, 1994

Project: CALTRANS CHANG's

Project #: 94-911

Client Sample ID: B5-6

Method: EPA 3550/8270 Matrix: SOIL

Dilution Factor: None

		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
PHENOL	N D .	0.05	
BIS(2-CHLOROETHYL) ETHER	${f N}$ ${f D}$	0.05	
2-CHLOROPHENOL	$N \cdot D$	0.05	67%
1,3-DICHLOROBENZENE	\mathbf{N} , \mathbf{D} .	0.05	
1,4-DICHLOROBENZENE	\mathbf{N} \mathbf{D}	0.05	76%
BENZYL ALCOHOL	\mathbf{N} . \mathbf{D} .	0.10	
1,2-DICHLOROBENZENE	N .D.	0.05	_ = = = =
2-METHYLPHENOL	\mathbf{N} . \mathbf{D} .	0.05	
BIS (2-CHLOROISOPROPYL) ETHER	\mathbf{N} \mathbf{D}	0.05	
4-METHYLPHENOL	${f N}$ ${f D}$.	0.05	
N-NITROSO-DI-N-PROPYLAMINE	$N \cdot D \cdot$	0.05	
HEXACHLOROETHANE	\mathbf{N} . \mathbf{D} .	0.05	· · ·
NITROBENZENE	N.D.	0.05	
ISOPHORONE	\mathbf{N} \mathbf{D}	005	
2-NITROPHENOL	N D	005	
2,4-DIMETHYLPHENOL	\mathbf{N} \mathbf{D}	0 05	
BENZOIC ACID	N.D.	0.25	
BIS (2-CHLOROETHOXY) METHANE	N D	0.05	-
2,4-DICHLOROPHENOL	${f N}$ ${f D}$	0.05	
1,2,4-TRICHLOROBENZENE	N.D.	0 . 05	69%
NAPHTHALENE	$N \cdot D$	0 . 05	-
4-CHLOROANILINE	${f N}$ ${f D}$	0.10	
HEXACHLOROBUTADIENE	${f N}$ ${f D}$	005	
4-CHLORO-3-METHYLPHENOL	\mathbf{N} . \mathbf{D} .	0.10	
2-METHYLNAPHTHALENE	$\mathbf{N} \cdot \mathbf{D}$	0.05	
HEXACHLOROCYCLOPENTADIENE	$N \cdot D$	0 05	- -
2,4,6-TRICHLOROPHENOL	N.D.	0.05	- -
2,4,5-TRICHLOROPHENOL	N.D.	0 05	
2-CHLORONAPHTHALENE	\mathbf{N} . \mathbf{D} .	0 05	-
2-NITROANILINE	\mathbf{N} \mathbf{D}	0.25	
DIMETHYL PHTHALATE	${f N}$ ${f D}$.	0 . 05	
ACENAPHTHYLENE	N .D	0.05	
3-NITROANILINE	${f N}$ ${f D}$	0 . 25	
ACENAPHTHENE	N.D.	0 05	73%
2,4-DINITROPHENOL	N . D .	0 . 25	
4-NITROPHENOL	${f N}$ ${f D}$	0.25	
DIBENZOFURAN	${f N}$ ${f D}$	0 05	
(continued on next page)			_

Environmental Services (SDB)

Page 2

Submission #: 9411013

Project: CALTRANS CHANG's
Project #: 94-911

Client Sample ID: B5-6

Method: EPA 3550/8270	Matrix:	SOIL Reporting	
COMPOUND NAME	Sample mg/kg	Limit mg/kg	Blank Spike Recovery
2,4-DINITROTOLUENE	N ., D	0.05	
2,6-DINITROTOLUENE	N D	0.05	
DIETHYL PHTHALATE	N D	0.05	
4-CHLORO-PHENYL PHENYL ETHER	\mathbf{N} \mathbf{D}	0 05	
FLUORENE	\mathbf{N} \mathbf{D}	0.05	
4-NITROANILINE	N ., D	0.25	
4,6-DINITRO-2-METHYL PHENOL	N D	0 . 25	
N-NITROSODIPHENYLAMINE	\mathbf{N} . \mathbf{D} .	0.05	
4-BROMOPHENYL PHENYL ETHER	N ., D .,	0 . 05	
HEXACHLOROBENZENE	N D	0.05	
PENTACHLOROPHENOL	N D	0.25	
PHENANTHRENE	\mathbf{N} . \mathbf{D} .	0.05	
ANTHRACENE	N . D .	005	
DI-N-BUTYL PHTHALATE	N . D .	005	
FLUORANTHENE	${f N}$, ${f D}$.	0:05	
PYRENE	\mathbf{N} . \mathbf{D} .	0.05	82%
BUTYLBENZYLPHTHALATE	${f N}$ ${f D}$	0.05	
3,3'-DICHLOROBENZIDINE	N D	0,10	
BENZO (A) ANTHRACENE	${f N}$ ${f D}$	0.05	
BIS (2-ETHYLHEXYL) PHTHALATE	N.D.	0.05	
CHRYSENE	N . D .	0.05	
DI-N-OCTYLPHTHALATE	N ., D .,	0.05	
BENZO (B) FLUORANTHENE	N D	0.05	- - -
BENZO (K) FLUORANTHENE	N . D .	005	
BENZO (A) PYRENE	$N \cdot D \cdot$	0.05	
INDENO(1,2,3 C,D)PYRENE	$N \cdot D$	0.05	
DIBENZO (A, H) ANTHRACENE	\mathbf{N} . \mathbf{D} .	0.05	
BENZO(G,H,I)PERYLENE	N . D .	0.05	 -

ChromaLab, Inc.

Alex Tam

Analytical Chemist

Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 16, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

November 1, 1994 Sampled: Extracted: November 7, 1994

Submitted: November 1, 1994 Analyzed: November 8, 1994

Project: CALTRANS CHANG's

Project #: 94-911 Client Sample ID: B4-5

Method: EPA 3550/8270

Matrix: SOIL

Dilution Factor: None

		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
PHENOL	N . D .	0.05	
BIS(2-CHLOROETHYL) ETHER	N . D	0.05	
2-CHLOROPHENOL	\mathbf{N} . \mathbf{D}	0 , 05	67%
1,3-DICHLOROBENZENE	${f N}$ ${f D}$	0.05	
1,4-DICHLOROBENZENE	N.D.	005	76%
BENZYL ALCOHOL	\mathbf{N} . \mathbf{D}	0.10	
1,2-DICHLOROBENZENE	\mathbf{N} . \mathbf{D} .	0.05	
2-METHYLPHENOL	\mathbf{N} ., \mathbf{D} .	0.05	
BIS (2-CHLOROISOPROPYL) ETHER	\mathbf{N} . \mathbf{D} .	0.05	
4-METHYLPHENOL	${f N}$. ${f D}$	0 05	
N-NITROSO-DI-N-PROPYLAMINE	\mathbf{N} \mathbf{D}	0.05	
HEXACHLOROETHANE	${f N}$ ${f D}$	0.05	-
NITROBENZENE	\mathbf{N} \mathbf{D}	0.05	
ISOPHORONE	\mathbf{N} \mathbf{D}	005	
2-NITROPHENOL	${f N}$. ${f D}$.	0.05	
2,4-DIMETHYLPHENOL	${f N}$. ${f D}$.	0 05	
BENZOIC ACID	\mathbf{N} \mathbf{D}	0.25	
BIS(2-CHLOROETHOXY)METHANE	N D	0 05	
2,4-DICHLOROPHENOL	${f N}$, ${f D}$.	0 . 05	
1,2,4-TRICHLOROBENZENE	N D	0.05	69%
NAPHTHALENE	${f N}$ ${f D}$	0 . 05	
4-CHLOROANILINE	${f N}$ ${f D}$	0.10	-
HEXACHLOROBUTADIENE	${f N}$ ${f D}$	0 . 05	
4-CHLORO-3-METHYLPHENOL	\mathbf{N} \mathbf{D}	0.10	
2-METHYLNAPHTHALENE	\mathbf{N} \mathbf{D}	0.05	
HEXACHLOROCYCLOPENTADIENE	N.D.	0 05	
2,4,6-TRICHLOROPHENOL	$N \cdot D$	0 05	
2,4,5-TRICHLOROPHENOL	$\mathbf{N} \cdot \mathbf{D}$	0.05	
2-CHLORONAPHTHALENE	${f N}$., ${f D}$.,	0.05	
2-NITROANILINE	N D	0 . 25	
DIMETHYL PHTHALATE	N.D.	0 . 05	
ACENAPHTHYLENE	N D	0.05	
3-NITROANILINE	N D	0 . 25	
ACENAPHTHENE	N D	0 , 05	73%
2,4-DINITROPHENOL	N . D .	0.25	-
4-NITROPHENOL	N D	0.25	
DIBENZOFURAN	${f N}$., ${f D}$	005	-
(continued on next page)			_

Environmental Services (SDB)

Page 2

Submission #: 9411013

Project: CALTRANS CHANG's

Project #: 94-911 Client Sample ID: B4-5 Method: EPA 3550/8270

Matrix: SOIL

Method: HIA 3330/02/0	1300 02 233	. 5011	
		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mq/kg	Recovery
2,4-DINITROTOLUENE	\mathbf{N} . \mathbf{D}	0.05	
2,6-DINITROTOLUENE	N.D.	0.05	
DIETHYL PHTHALATE	N D	005	
4-CHLORO-PHENYL PHENYL ETHER	\mathbf{N} . \mathbf{D} .	0.05	
FLUORENE	N.D.	0.05	
4-NITROANILINE	${f N}$, ${f D}$.	0 . 25	
4,6-DINITRO-2-METHYL PHENOL		0.25	
N-NITROSODIPHENYLAMINE	${f N}$ ${f D}$		
4-BROMOPHENYL PHENYL ETHER	${f N}$, ${f D}$.		
HEXACHLOROBENZENE		0.05	
PENTACHLOROPHENOL		- 0.25	
PHENANTHRENE		0.05	
ANTHRACENE		0.05	
DI-N-BUTYL PHTHALATE	N D		
FLUORANTHENE	N . D .	0.05	
PYRENE	N D		82%
BUTYLBENZYLPHTHALATE	\mathbf{N} , \mathbf{D} .	0.05	-
3,3'-DICHLOROBENZIDINE	${f N}$ ${f D}$.		
BENZO (A) ANTHRACENE	\mathbf{N} \mathbf{D}		
BIS (2-ETHYLHEXYL) PHTHALATE	N . D .	0.05	
CHRYSENE	${f N}$ ${f D}$		
DI-N-OCTYLPHTHALATE	$N \cdot D$.	0 . 05	
BENZO (B) FLUORANTHENE	\mathbf{N} . \mathbf{D} .		
BENZO (K) FLUORANTHENE	${f N}$, ${f D}$.		-
BENZO (A) PYRENE	N D	0.05	
INDENO(1,2,3 C,D) PYRENE	N D		
DIBENZO (A, H) ANTHRACENE	$\mathbf{N} \cdot \mathbf{D}$	0.05	
BENZO(G,H,I)PERYLENE	\mathbf{N} . \mathbf{D} .	0.05	

ChromaLab, Inc.

Alex Tam

Analytical Chemist

Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 16, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Sampled: November 1, 1994 Extracted: November 7, 1994 Submitted: November 1, 1994
Analyzed: November 9, 1994

Project: CALTRANS CHANG's

Project #: 94-911

Client Sample ID: B1-10

Method: EPA 3550/8270

Matrix: SOIL

Dilution Factor: None

		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mq/kg	Recovery_
PHENOL	N D	0.05	
BIS(2-CHLOROETHYL) ETHER	\mathbf{N} \mathbf{D}	0.05	
2-CHLOROPHENOL	N.D.	0.05	67%
1,3-DICHLOROBENZENE	$N \cup D$	0.05	
1,4-DICHLOROBENZENE	N D	0,05	76%
BENZYL ALCOHOL	N., D.,	0.10	
1,2-DICHLOROBENZENE	${f N}$ ${f D}$	005	
2-METHYLPHENOL	N D	0.05	
BIS (2-CHLOROISOPROPYL) ETHER	\mathbf{N} \mathbf{D}	0.05	
4-METHYLPHENOL	\mathbf{N} \mathbf{D}	0.05	
N-NITROSO-DI-N-PROPYLAMINE	N ., D .,	0 05	
HEXACHLOROETHANE	${f N}$, ${f D}$.	0.05	
NITROBENZENE	N D	0.05	
ISOPHORONE	\mathbf{N} ,, \mathbf{D}	0 05	
2-NITROPHENOL	N D	0.05	
2,4-DIMETHYLPHENOL	\mathbf{N} \mathbf{D}	0.05	
BENZOIC ACID	\mathbf{N} \mathbf{D} .	0 25	
BIS (2-CHLOROETHOXY) METHANE	${f N}$ ${f D}$	0.05	
2,4-DICHLOROPHENOL	\mathbf{N} \mathbf{D} .	005	
1,2,4-TRICHLOROBENZENE	\mathbf{N} , \mathbf{D} ,	0.05	69%
NAPHTHALENE	\mathbf{N} ,, \mathbf{D} ,,	0.05	
4-CHLOROANILINE	${f N}$., ${f D}$	0.10	
HEXACHLOROBUTADIENE	${f N}$ ${f D}$,	0.05	
4-CHLORO-3-METHYLPHENOL	N.D.	010	
2-METHYLNAPHTHALENE	N.D.	0.05	
HEXACHLOROCYCLOPENTADIENE	${f N}$ ${f D}$	0.05	
2,4,6-TRICHLOROPHENOL	\mathbf{N} \mathbb{D}	0.05	
2,4,5-TRICHLOROPHENOL	\mathbf{N} \mathbf{D}	005	
2-CHLORONAPHTHALENE	$N \cup D$	005	
2-NITROANILINE	\mathbf{N} \mathbf{D}	025	
DIMETHYL PHTHALATE	N D	0.05	
ACENAPHTHYLENE	\mathbf{N} \mathbf{D}	0 05	
3-NITROANILINE	N D	0.25	
ACENAPHTHENE	N . D	0.05	73%
2,4-DINITROPHENOL	N D .	0.25	
4-NITROPHENOL	\mathbf{N} . \mathbf{D} .	0.25	
DIBENZOFURAN	${f N}$. ${f D}$	0 05	
(continued on next page)			

Environmental Services (SDB)

Page 2

Submission #: 9411013

Project: CALTRANS CHANG's
Project #: 94-911
Client Sample ID: B1-10

Method: EPA 3550/8270	<i>Matrix:</i> SOIL		
		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
2,4-DINITROTOLUENE	\mathbf{N} \mathbf{D}	0.05	
2,6-DINITROTOLUENE	\mathbf{N} , \mathbf{D} .	0.05	
DIETHYL PHTHALATE	N , D .	005	
4-CHLORO-PHENYL PHENYL ETHER	N , D	0 . 05	
FLUORENE	\mathbf{N} \mathbf{D}	0.05	
4-NITROANILINE	N ., D	0.25	
4,6-DINITRO-2-METHYL PHENOL	N . D .	0.25	
N-NITROSODIPHENYLAMINE	\mathbf{N} \mathbf{D}	0.05	
4-BROMOPHENYL PHENYL ETHER	\mathbf{N} \mathbf{D}	0,05	
HEXACHLOROBENZENE	\mathbf{N} \mathbf{D}	0 . 05	
PENTACHLOROPHENOL	${f N}$. ${f D}$.	0.25	·
PHENANTHRENE	\mathbf{N} \mathbf{D}	0.05	
ANTHRACENE	${f N}$, ${f D}$.	0.05	
DI-N-BUTYL PHTHALATE	N D	005	
FLUORANTHENE	\mathbf{N} \mathbf{D}	0.05	
PYRENE	${f N}$., ${f D}$.	0.05	82%
BUTYLBENZYLPHTHALATE	${f N}$, ${f D}$.	0 ., 05	
3,3'-DICHLOROBENZIDINE	N , D .	0.10	
BENZO (A) ANTHRACENE	\mathbf{N} \mathbf{D}	0 . 05	
BIS (2-ETHYLHEXYL) PHTHALATE	${f N}$, ${f D}$,	0.05	-
CHRYSENE	${f N}$, ${f D}$.	0.05	
DI-N-OCTYLPHTHALATE	\mathbf{N} . \mathbf{D} .	005	
BENZO (B) FLUORANTHENE	\mathbf{N} , \mathbf{D} .	0 . 05	
BENZO (K) FLUORANTHENE	${f N}$, ${f D}$	0.05	
BENZO (A) PYRENE	$N \cdot D$	0.05	
INDENO(1,2,3 C,D)PYRENE	\mathbf{N} . \mathbf{D}		
DIBENZO (A, H) ANTHRACENE	\mathbf{N} \mathbf{D}	0.05	
BENZO(G,H,I)PERYLENE	${f N}$ ${f D}$	0.05	

ChromaLab, Inc.

Analytical Chemist

Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 16, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Sampled: November 1, 1994 Extracted: November 7, 1994

Submitted: November 1, 1994 Analyzed: November 8, 1994

Project: CALTRANS CHANG's

Project #: 94-911 Client Sample ID: B1-7

Method: EPA 3550/8270

Matrix: SOIL

Dilution Factor: 1:5

_		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
PHENOL	N . D .	0 . 25	
BIS(2-CHLOROETHYL) ETHER	${f N}$ ${f D}$	0.25	
2 - CHLOROPHENOL	$N \cup D$	0.25	67%
1,3-DICHLOROBENZENE	$\mathbf{N}\cdot\mathbf{D}$.	025	Char - 1800 - 1800 - 1870 - 1870
1,4-DICHLOROBENZENE	${f N}$., ${f D}$.	0.25	76%
BENZYL ALCOHOL	\mathbf{N} \mathbf{D}	0.50	
1,2-DICHLOROBENZENE	N D	0.25	
2-METHYLPHENOL	N D	0 , 25	
BIS (2-CHLOROISOPROPYL) ETHER	$\mathbf{N} \cdot \mathbf{D}$	0.25	
4-METHYLPHENOL	N D	0.25	
N-NITROSO-DI-N-PROPYLAMINE	\mathbf{N} . \mathbf{D} .	0.25	
HEXACHLOROETHANE	N D	0.25	
NITROBENZENE	$N \cdot D \cdot$	0.25	
ISOPHORONE	\mathbf{N} \mathbf{D}	0.25	_ _ ·
2-NITROPHENOL	N D	0.25	
2,4-DIMETHYLPHENOL	\mathbf{N} \mathbf{D}	0.25	
BENZOIC ACID	$N \cdot D \cdot$	1.2	
BIS (2-CHLOROETHOXY) METHANE	N D	0.25	
2,4-DICHLOROPHENOL	\mathbf{N} , \mathbf{D} ,	0.25	
1,2,4-TRICHLOROBENZENE	N . D .	0 . 25	69%
NAPHTHALENE	${f N}$ ${f D}$	0.25	
4-CHLOROANILINE	\mathbf{N} \mathbf{D}	0 "50	
HEXACHLOROBUTADIENE	\mathbf{N} . \mathbf{D} .	0.25	
4-CHLORO-3-METHYLPHENOL	N D	0.50	
2-METHYLNAPHTHALENE	$N \cdot D \cdot$	0.25	
HEXACHLOROCYCLOPENTADIENE	\mathbf{N} . \mathbf{D} .	0.25	
2,4,6-TRICHLOROPHENOL	\mathbf{N} \mathbf{D}	0.25	
2,4,5-TRICHLOROPHENOL	$N \cdot D$	025	
2-CHLORONAPHTHALENE	N.D.	0 25	
2-NITROANILINE	\mathbf{N} . \mathbf{D} .	1.2	
DIMETHYL PHTHALATE	$\mathbf{N} \cdot \mathbf{D}$	0.25	
ACENAPHTHYLENE	\mathbf{N} \mathbf{D}	0.25	
3-NITROANILINE	N D	1.2	-
ACENAPHTHENE	N D	0.25	73%
2,4-DINITROPHENOL	\mathbf{N} , \mathbf{D} ,	12	
4-NITROPHENOL	${f N}$ ${f D}$	1.2	-
DIBENZOFURAN	\mathbf{N} . \mathbf{D} .	0.25	-
(continued on next page)			÷

Environmental Services (SDB)

Page 2

Submission #: 9411013

Project: CALTRANS CHANG's
Project #: 94-911
Client Sample ID: B1-7 Method: EPA 3550/8270

Matrix: SOIL

MCC1104: MIA 3330/02/0	HULLIA	. 5011	
		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
2,4-DINITROTOLUENE	N ., D	0 , 25	
2,6-DINITROTOLUENE	N D	025	
DIETHYL PHTHALATE	\mathbf{N} \mathbf{D}	0.25	
4-CHLORO-PHENYL PHENYL ETHER	N D .	0 25	
FLUORENE	\mathbf{N} . \mathbf{D} .	0.25	
4-NITROANILINE	\mathbf{N} . \mathbf{D} .	1.2	
4,6-DINITRO-2-METHYL PHENOL	${f N}$ ${f D}$	12	
N-NITROSODIPHENYLAMINE	N D	0 . 25	~
4-BROMOPHENYL PHENYL ETHER	N . D	0.25	
HEXACHLOROBENZENE	$N_{\cdot \cdot}D_{\cdot \cdot}$	0.25	
PENTACHLOROPHENOL	\mathbf{N} \mathbf{D} .	1.2	
PHENANTHRENE	N.D.	0 . 25	
ANTHRACENE	N.D.	0.25	
DI-N-BUTYL PHTHALATE	$\mathbf{N} \cdot \mathbf{D}$	0 . 25	
FLUORANTHENE	N . D .	0.25	
PYRENE	N D	0,25	82%
BUTYLBENZYLPHTHALATE	N.D.	0.25	
3,3'-DICHLOROBENZIDINE	${f N}$ ${f D}$	050	
BENZO (A) ANTHRACENE	$N \cdot D$	0.25	
BIS (2-ETHYLHEXYL) PHTHALATE	\mathbf{N} \mathbf{D}	0 . 25	
CHRYSENE	$\mathbf{N} \cdot \mathbf{D}$	0 . 25	
DI-N-OCTYLPHTHALATE	${f N}$ ${f D}$	0.25	
BENZO (B) FLUORANTHENE	N . D .	0.25	
BENZO (K) FLUORANTHENE	\mathbf{N} . \mathbf{D}	0 . 25	
BENZO (A) PYRENE	N . D	025	
INDENO(1,2,3 C,D)PYRENE	\mathbf{N} . \mathbf{D} .	0.25	
DIBENZO (A, H) ANTHRACENE	${f N}$. ${f D}$.	0.25	
BENZO(G,H,I)PERYLENE	N.D.	0 . 25	

ChromaLab, Inc.

Alex Tam

Analytical Chemist

Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 16, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Sampled: November 1, 1994 Extracted: November 7, 1994

Submitted: November 1, 1994 Analyzed: November 9, 1994

Project: CALTRANS CHANG's

Method: EPA 3550/8270 Matrix: SOIL

Project #: 94-911

Client Sample ID: B4-SURFACE

Dilution Factor: 1:200

crient bampre in. by bonines	Reporting		
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
PHENOL	N.D.	10	
BIS (2-CHLOROETHYL) ETHER	N D	10	
2-CHLOROPHENOL	N.D.	10	67%
1,3-DICHLOROBENZENE	N.D.	10	
1,4-DICHLOROBENZENE	N D	10	76%
BENZYL ALCOHOL	N.D.	20	
1,2-DICHLOROBENZENE	N.D.	10	16-8 Mar Mar 48-0 (M)
2-METHYLPHENOL	N.D.	10	
BIS (2-CHLOROISOPROPYL) ETHER	N.D.	10	
4-METHYLPHENOL	N.D.	10	
N-NITROSO-DI-N-PROPYLAMINE	N D	10	
HEXACHLOROETHANE	N.D.	10	
NITROBENZENE	N . D .	10	
ISOPHORONE	N.D.	10	-
2-NITROPHENOL	N.D.	10	
2,4-DIMETHYLPHENOL	N.D.	10	
BENZOIC ACID	N.D.	50	
BIS (2-CHLOROETHOXY) METHANE	N.D.	10	
2,4-DICHLOROPHENOL	N.D.	10	
1,2,4-TRICHLOROBENZENE	N . D .	10	69%
NAPHTHALENE	N.D.	10	
4-CHLOROANILINE	N ., D .,	20	
HEXACHLOROBUTADIENE	N D	10	
4-CHLORO-3-METHYLPHENOL	N . D	20	
2-METHYLNAPHTHALENE	N.D.	10	
HEXACHLOROCYCLOPENTADIENE	N D	10	
2,4,6-TRICHLOROPHENOL	N D	10	
2,4,5-TRICHLOROPHENOL	N . D .	10	
2-CHLORONAPHTHALENE	N D	10	
2-NITROANILINE	N . D	50	
DIMETHYL PHTHALATE	N.D.	10	
ACENAPHTHYLENE	N . D .	10	
3-NITROANILINE	N D	-50	
ACENAPHTHENE	N.D.	10	73%
2,4-DINITROPHENOL	N D	50	
4-NITROPHENOL	N D	50	
DIBENZOFURAN	N.D.	10	<u> </u>
(continued on next page)	· · · _ · · ·	•	
(=====================================			

Environmental Services (SDB)

Page 2

Submission #: 9411013

Project: CALTRANS CHANG'S
Project #: 94-911
Client Sample ID: B4-SURFACE
Method: EPA 3550/8270

Matrix: SOIL

,		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
2,4-DINITROTOLUENE	${f N}$. ${f D}$.	10	
2,6-DINITROTOLUENE	N D	1.0	
DIETHYL PHTHALATE	\mathbf{N} \mathbf{D}	10	
4-CHLORO-PHENYL PHENYL ETHER	${f N}$ ${f D}$	10	
FLUORENE	\mathbf{N} . \mathbf{D} .	10	
4-NITROANILINE	N . D .	50	
4,6-DINITRO-2-METHYL PHENOL	\mathbf{N} \mathbf{D}	50	
N-NITROSODIPHENYLAMINE	N D	10	
4-BROMOPHENYL PHENYL ETHER	${f N}$ ${f D}$	10	
HEXACHLOROBENZENE	\mathbf{N} \mathbf{D}	10	
PENTACHLOROPHENOL	${f N}$ ${f D}$	50	
PHENANTHRENE	\mathbf{N} \mathbf{D}	10	
ANTHRACENE	N D	10	<u>_</u>
DI-N-BUTYL PHTHALATE	N . D .	10	
FLUORANTHENE	$N \cup D$	10 .	
PYRENE	N D	10	82%
BUTYLBENZYLPHTHALATE	$N \cdot D$	10	
3,3'-DICHLOROBENZIDINE	${f N}$ ${f D}$	20	
BENZO (A) ANTHRACENE	N . D .	10	
BIS(2-ETHYLHEXYL)PHTHALATE	N . D .	10	
CHRYSENE	N D	10	
DI-N-OCTYLPHTHALATE	\mathbf{N} . \mathbf{D} .	10	
BENZO (B) FLUORANTHENE	N D	10	
BENZO (K) FLUORANTHENE	\mathbf{N} . \mathbf{D} .	10	
BENZO (A) PYRENE	\mathbf{N} . \mathbf{D} .	10	
INDENO(1,2,3 C,D)PYRENE	N . D .	10	
DIBENZO (A, H) ANTHRACENE	N D	10	
BENZO (G, H, I) PERYLENE	\mathbf{N} , \mathbf{D} .	10	

ChromaLab, Inc.

Alex Tam

Analytical Chemist

Ali Kharrázi Organic Manager

Environmental Services (SDB)

November 11, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: 2 samples for pH analysis.

Matrix: SOIL

Extracted: November 11, 1994

Sampled: November 1, 1994

Analyzed: November 11, 1994

Run#: 4541

Method: 9040/9045

BLANK BLANK SPIKE REPORTING

PH (UNITS)

LIMIT RESULT (UNITS) (UNITS)

RESULT (%)

Spl # CLIENT SMPL ID 68600 B1-7

7.3

 $0.1 \\ 0.1$

N.D. N.D.

QC CMH 16:19:25

68609 B5-1

Extractions Supervisor

Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 11, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: 12 samples for Total Recoverable Petroleum Hydrocarbons analysis.

Sampled: November 1, 1994

Matrix: SOIL

Extracted: November 10, 1994

Run#: 4542

Analyzed: November 10, 1994

Method: EPA 418.1

	TRPH	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
Spl # CLIENT SMPL ID	(mg/Kg)	(mg/Kg)	(mg/Kg)	(%)
68600 B1-7	N.D.	10	N.D.	84
68601 B1-10	N.D.	10	N.D.	84
68602 B2-4	12	10	N.D.	84
68603 B2-7	30	10	N.D.	84
68604 B2-10	N.D.	10	N.D.	84
68605 B4-SURFACE	20000	10	N.D.	84
68606 B4-1	23	10	N.D.	84
68607 B4-5	N.D.	10	N.D.	84
68608 B5-SURFACE	170	10	N.D.	84
68609 B5-1	N.D.	10	N.D.	84
68610 B5-4	N.D.	10	N.D.	84
68611 B5-6	N.D.	10	N.D.	84

Extractions Supervisor

Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 14, 1994

ENV. SOLUTIONS - PETALUMA

Submission #: 9411013

Atten: Cyd Miller

Project: CALTRANS CHANG's

Project#: 94-911

REPORTING INFORMATION

Sample(s) were received cold and in good condition on November 1, 1994. They were refrigerated on receipt, and analyzed on the date shown on the attached report. ChromaLab followed EPA or equivalent methods for all analyses reported.

Hydrocarbons in the Motor Oil range were also observed in the following samples:

B4-SURFACE B5-SURFACE

Jill Thomas

Quality Assurance Officer

Eric Tam

Laboratory Director

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS CHANG's

Project#: 94-911

Received: November 1, 1994

re: Twelve samples for Diesel analysis

Matrix: SOIL

Extracted: November 4, 1994

Sampled: November 1, 1994

Analyzed: November 5-8, 1994

Method: EPA 3550/8015

	Client	Diesel
Sample #	Sample ID	(mg/Kg)
•		
68600	B1-7	N.D. (a)
68601	B1-10	\mathbf{N} \mathbf{D}
68602	B2-4	${f N}$, ${f D}$
68603	B2-7	N . D .
68604	B2-10	${f N}$., ${f D}$,,
68605	B4-SURFACE	N.D.(b,d)
68606	B4-1	N D
68607	B4-5	${f N}$ ${f D}$
68608	B5-SURFACE	N.D.(c,d)
68609	B5-1	${f N}$. ${f D}$
68610	B5-4	\mathbf{N} . \mathbf{D} .
68611	B5-6	${f N}$., ${f D}$
Blank		Ň . D .
Spike Recove		107%
Dup Spike Re		111%
Reporting Li	lmit	1.0

(a) Unknown compounds were found in the Diesel range in the estimated amount of 2.6 mg/Kg compared with the Diesel Standard.

(b) Unknown compounds were found in the Diesel range in the estimated amount of 470 mg/Kg compared with the Diesel Standard.

(c) Unknown compounds were found in the Diesel range in the estimated amount of 850 mg/Kg compared with the Diesel Standard.

(d) Detection limit raised by 50 mg/Kg due to dilution.

ChromaLab, Inc.

Sirinat autlakorn

Sirirat Chullakorn Analytical Chemist Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 16, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's Received: November 1, 1994

Project#: 94-911

Received: November 1, 1991

re: 2 samples for pH analysis.

Sampled: November 1, 1994

Matrix: SOIL

Extracted: November 11, 1994

Run#: 4541 Analyzed: November 11, 1994

Method: 9040/9045

BLANK BLANK SPIKE REPORTING RESULT LIMIT RESULT PH (%) (UNITS) (UNITS) **Spl # CLIENT SMPL ID** 68600 B1-7 (UNITS) 0.1 N.D. 7.3 N.D. 6.4 68609 B5-1

Carolyn House

Extractions Supervisor

Ali Kharrazi Organic Manager

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

QC CMH 08:56:20

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller Project: CALTRANS/CHANG's *Project#:* 94-911

Received: November 1, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID: B1-7

Spl#: 68600 Sampled: November 1, 1994 Method: EPA 8240/8260

Matrix: SOIL

Run#: 4546

Analyzed: November 3, 1994

•		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N . D .	25	N . D	
BENZENE	${f N}$, ${f D}$.	50	\mathbf{N} . \mathbf{D} .	103
BROMODICHLOROMETHANE	${f N}$ ${f D}$	5.0	$\mathbf{N}\cdot\mathbf{D}$.	
BROMOFORM	${f N}$ ${f D}$	5.0	\mathbf{N} \mathbf{D}	and the
BROMOMETHANE	${f N}$, ${f D}$,	5.0	N D	
2-BUTANONE	\mathbf{N} . \mathbf{D} .	5 0	\mathbf{N} . \mathbf{D} .	
CARBON TETRACHLORIDE	f N , $f D$, $f N$, $f D$,	50	\mathbf{N} . \mathbf{D} .	time with
CHLOROBENZENE	$\mathbf{N}\cdot\mathbf{D}$	5 0	\mathbf{N} \mathbf{D}	100
CHLOROETHANE	\mathbf{N} , \mathbf{D} ,	5 0	\mathbf{N} \mathbf{D}	
2-CHLOROETHYLVINYLETHER	\mathbf{N} . \mathbf{D} .	5 0	\mathbf{N} \mathbf{D}	
CHLOROFORM CHLOROMETHANE	\mathbf{N} \mathbf{D}	5.0	\mathbf{N} \mathbf{D} .	
CHLOROMETHANE	${f N}$, ${f D}$,	5.0	\mathbf{N} \mathbf{D}	
DIBROMOCHLOROMETHANE	\mathbf{N} \mathbf{D}	5.0	$\mathbf{N} \cdot \mathbf{D}$	
1,1-DICHLOROETHANE	N D	5 0	\mathbf{N} , \mathbf{D} ,	
1,2-DICHLOROETHANE	\mathbf{N} . \mathbf{D} .	5 . 0 5 . 0	N . D .	
1,1-DICHLOROETHENE	N . D .	5 , 0	N . D .	97
1,2-DICHLOROETHENE (CIS)	N . D .	5 . 0	N . D .	-
1,2-DICHLOROETHENE (TRANS)	N.D.	5 . 0	N D	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	N . D .	5 . 0	N . D .	
1,3-DICHLOROPROPENE (CIS)	N.D.	5 0	N D N D	
1,3-DICHLOROPROPENE (TRANS)	N D	5 . 0 5 . 0	N D	
ETHYL BENZENE 2-HEXANONE	$egin{array}{c} \mathbf{N} \cup \mathbf{D} & \dots & \dots & \dots \\ \mathbf{N} \cup \mathbf{D} & \dots & \dots & \dots \end{array}$	5.0	N.D.	
METHYLENE CHLORIDE	\mathbf{N} " \mathbf{D} "	25	N D	
4-METHYL-2-PENTANONE	N.D.	5.0	N.D.	
STYRENE	N.D.	5.0	N D	. . -
1,1,2,2-TETRACHLOROETHANE	$\widetilde{\mathbf{N}}$. $\widetilde{\mathbf{D}}$.	5.0	N.D.	
TETRACHLOROETHENE	69	5 0	N.D.	 _
TOLUENE	N.D.	5 0	N.D.	97
1,1,1-TRICHLOROETHANE	N.D.	5.0	N.D.	
1,1,2-TRICHLOROETHANE	\mathbf{N} . \mathbf{D} .	5.0	N D	
TRICHLOROETHENE	N . D .	5.0	N.D.	97
TRICHLOROFLUOROMETHANE	\mathbf{N} \mathbf{D} .	5.0	$N \cup D$.	
VINYL ACETATE	N.D.	5.0	N.D.	
VINYL CHLORIDE	$N \cdot D$	50	\mathbf{N} . \mathbf{D} .	4 a
TOTAL XYLENES	\mathbf{N} , \mathbf{D} ,	5.0	\mathbf{N} \mathbf{D}	
				and the second s

Ali Kharrazi Organic Manager

Oleg Nemtsov Chemist

> 2239 Omega Road,#1 • San Ramon, California 94583 (510) 831-1788 • Facsimile (510) 831-8798 Federal ID #68-0140157

GC GLEG 10:25:24

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's Project#: 94-911

Received: November 1, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID: B1-10

Spl#: 68601

Matrix: SOIL

Sampled: November 1, 1994

Run#: 4546

Analyzed: November 3, 1994

Method: EPA 8240/8260

·		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N . D	25	N D	— m
BENZENE	\mathbf{N} \mathbf{D}	50	N D	103
BROMODICHLOROMETHANE	\mathbf{N} , \mathbf{D} .	5.0	$N \cup D_{i}$	
BROMOFORM	N.D.	5 ., 0	\mathbf{N} \mathbf{D}	-
BROMOMETHANE	\mathbf{N} . \mathbf{D} .	5.0	$N \cdot D$.	
2-BUTANONE	${f N}$., ${f D}$.,	5 0	N.D.	
CARBON TETRACHLORIDE	\mathbf{N} \mathbf{D}	00000000000000000000000000000000000000	N.D.	
CHLOROBENZENE	N D	5 . 0	N . D .	100
CHLOROETHANE	$N \cup D$	5 ()	\mathbf{N} \mathbf{D}	
2-CHLOROETHYLVINYLETHER	N D	5 0	\mathbf{N} \mathbf{D}	
CHLOROFORM	\mathbf{N} \mathbf{D}	50	N D	
CHLOROMETHANE	N , D ,	5.0	$N \cup D$.	
DIBROMOCHLOROMETHANE	\mathbf{N} . \mathbf{D} .	55.000 55.55.55 55.55	\mathbf{N} \mathbf{D}	_
1,1-DICHLOROETHANE	N D	5.0	N D	
1,2-DICHLOROETHANE	N . D .	5 0	\mathbf{N} . \mathbf{D} .	
	\mathbf{N} \mathbf{D}	5 ,, 0	N D	97
1,1-DICHLOROETHENE 1,2-DICHLOROETHENE (CIS) 1.2-DICHLOROETHENE (TRANS)	$N_{\cdot \cdot}D_{\cdot \cdot}$	5 . 0 5 . 0 5 . 0	\mathbf{N} \mathbf{D}	- -
1,2-DICHLOROETHENE (TRANS)	\mathbf{N} , \mathbf{D} ,	5 . 0	\mathbf{N} \mathbf{D}	· - · -
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS) 1,3-DICHLOROPROPENE (TRANS)	\mathbf{N} . \mathbf{D} .	5 0	\mathbf{N} \mathbf{D}	
1,3-DICHLOROPROPENE (CIS)	\mathbf{N} , \mathbf{D} ,	5 . 0	N . D .	
1,3-DICHLOROPROPENE (TRANS)	\mathbf{N} \mathbf{D}	5.0	\mathbf{N} , \mathbf{D} ,	
ETHYL BENZENE	\mathbf{N} . \mathbf{D} .	5 0	$N \cdot D$.	اهدي چيپ
2-HEXANONE	${f N}$, ${f D}$,	5.0	<u>N</u> <u>D</u>	
METHYLENE CHLORIDE	${f N}$ ${f D}$	25	N D	
4-METHYL-2-PENTANONE	$\mathbf{N}\cdot\mathbf{D}$.	5 . 0	${f N}$., ${f D}$	
STYRENE	\mathbf{N} , \mathbf{D} .	5 . 0	N . D	
1,1,2,2-TETRACHLOROETHANE	N.D.	5.0	<u>N</u> D	
TETRACHLOROETHENE	92	5.0	N D	
TOLUENE	<u>N</u> . D .	5 , 0	N . D .	97
1,1,1-TRICHLOROETHANE	N D	5.0	N D	
1,1,2-TRICHLOROETHANE TRICHLOROETHENE	<u>N</u> ., D .,	5.0	N D	
	7.1	5 . 0	N.D.	97
TRICHLOROFLUOROMETHANE	$N \cdot D$	5.0	N . D .	
VINYL ACETATE	N . D .	5.0	N . D .	= =
VINYL CHLORIDE	N D	5 . 0	N.D.	
TOTAL XYLENES	N D	50	${f N}$ ${f D}$	- -

Oley New 450V

Ali Kharrazi Organic Manager

Oleg Nemtsov

QC OLEG 10:25:24

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project#: 94-911

Project: CALTRANS/CHANG'S
Received: November 1, 1994

re: One sample for Volatile Organic Compounds analysis

Sample ID: B2-4

Spl#: 68602 Sampled: November 1, 1994 Matrix: SOIL Run#: 4546

Analyzed: November 3, 1994

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
*	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D.	
BENZENE	\mathbf{N} . \mathbf{D}	5.0	\mathbf{N} \mathbf{D}	103
BROMODICHLOROMETHANE	N . D .	50	$\mathbf{N} \cdot \mathbf{D}$	
BROMOFORM	N D	5 . 0 5 . 0	\mathbf{N} \mathbf{D}	
BROMOMETHANE	\mathbf{N} \mathbf{D}	50	$N \cdot D$.	- size - Stylen
2-BUTANONE	\mathbf{N} D	5 0	\mathbf{N} \mathbf{D}	
CARBON TETRACHLORIDE	\mathbf{N} \mathbf{D} .	5 , 0	N.D.	
CHLOROBENZENE CHLOROETHANE	N D	5 , 0	N.D.	100
CHLOROETHANE	N D	50	N.D.	
2-CHLOROETHYLVINYLETHER	N . D .	50	N D	Other state
CHLOROFORM CHLOROMETHANE	N.D.	5,0	N . D .	·
	\mathbf{N} , \mathbf{D} ,	5.0	N . D .	
DIBROMOCHLOROMETHANE	N.D.	50	\mathbf{N} . \mathbf{D} .	
1,1-DICHLOROETHANE	N.D.	5.0	\mathbf{N} . \mathbf{D} .	
1,2-DICHLOROETHANE	${f N}$, ${f D}$	5.0	\mathbf{N} \mathbf{D}	Committee
1,1-DICHLOROETHENE	\mathbf{N} . \mathbf{D} .	555555555555555555555555555555555555555	\mathbf{N} \mathbf{D}	97
1,2-DICHLOROETHENE (CIS) 1,2-DICHLOROETHENE (TRANS)	\mathbf{N} . \mathbf{D} .	5 ., 0	\mathbf{N} \mathbf{D}	
1,2-DICHLOROETHENE (TRANS)	\mathbf{N} , \mathbf{D} .	5 . 0	\mathbf{N} \mathbf{D}	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	$N \cdot D$	5 . 0	\mathbf{N} ., \mathbf{D}	— . —
1,3-DICHLOROPROPENE (CIS)	$N \cdot D \cdot $	5.0	\mathbf{N} \mathbf{D}	
1,3-DICHLOROPROPENE (TRANS)	\mathbf{N} \mathbf{D}	5 . 0	N . D	
ETHYL BENZENE	\mathbf{N} \mathbf{D}	5.0	\mathbf{N} \mathbf{D}	-
2-HEXANONE	N.D.	5.0	\mathbf{N} \mathbf{D}	
METHYLENE CHLORIDE 4-METHYL-2-PENTANONE	\mathbf{N} D	25	N , D	- -
4-METHYL-2-PENTANONE	N . D .	50	N.D.	· - -
STYRENE	${f N}$ ${f D}$	5.0 5.0 5.0 5.0 5.0 5.0	\mathbf{N} \mathbf{D}	
1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE	N.D.	5.0	$\mathbf N$. $\mathbf D$.	
	64	5.0	\mathbf{N} . \mathbf{D} .	
TOLUENE	\mathbf{N} \mathbf{D} .	5.0	N . D .	97
1,1,1-TRICHLOROETHANE	$\mathbf{N} \cdot \mathbf{D}$	5.0	N . D .	. — —
1,1,2-TRICHLOROETHANE TRICHLOROETHENE	\mathbf{N} D	5.0	\mathbf{N} . \mathbf{D} .	
	\mathbf{N} . \mathbf{D} .	5.0	N . D .	97
TRICHLOROFLUOROMETHANE	$\mathbf{N} \cdot \mathbf{D}$	5.0 5.0 5.0	N . D .	·
VINYL ACETATE	\mathbf{N} . \mathbf{D} .	5.0	N . D .	· - -
VINYL CHLORIDE	\mathbf{N} \mathbf{D}	5.0	<u>N</u> D	
TOTAL XYLENES	${f N}$ ${f D}$	5 0	${f N}$. ${f D}$.	

Oleg Newtov

Ali Kharrazi Organic Manager

Chemist

2239 Omega Road,#1 ● San Ramon, California 94583 (510) 831-1788 • Facsimile (510) 831-8798 Federal ID #68-0140157

QC OLEG 10:25:24

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's Project#: 94-911

Project: CALTRANS/CHANG's Received: November 1, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID: B2-7

Spl#: 68603 Sampled: November 1, 1994 Matrix: SOIL Run#: 4546

Analyzed: November 3, 1994

Method: EPA 8240/8260

RESULT	·		REPORTING	BLANK	BLANK SPIKE
ACETONE		RESULT	LIMIT	RESULT	RESULT
ACETONE	ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
BROMODICHLOROMETHANE	ACETONE	N.D.	25		<u> </u>
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	BENZENE	$N \cup D$.	5 0	$\mathbf{N}\cdot\mathbf{D}$	103
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	BROMODICHLOROMETHANE	\mathbf{N} . \mathbf{D} .	50	\mathbf{N} . \mathbf{D} .	
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	BROMOFORM	N D	50	N.D.	
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D			50	N.D.	
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D			5.0	N , D .	<u> </u>
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	CARBON TETRACHLORIDE	$N \cdot D$	5.0	\mathbf{N} . \mathbf{D} .	
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D		\mathbf{N} \mathbf{D}	50	\mathbf{N} . \mathbf{D} .	100
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D			50	\mathbf{N} \mathbf{D}	
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	2-CHLOROETHYLVINYLETHER	N D	50	\mathbf{N} . \mathbf{D} .	
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D		\mathbf{N} . \mathbf{D} .	5 0		
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D			5 0		
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D			50		
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	1,1-DICHLOROETHANE	\mathbf{N} . \mathbf{D} .	5.0		- . - .
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D			5 , 0	\mathbf{N} ,, \mathbf{D} ,,	
1,2-DICHLOROETHENE (TRANS) N.D. 5.0 N.D 1,2-DICHLOROPROPANE N.D. 5.0 N.D 1,3-DICHLOROPROPENE (CIS) N.D. 5.0 N.D 1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	1,1-DICHLOROETHENE	N D	5 0	\mathbf{N} . \mathbf{D} .	
1,2-DICHLOROPROPANE	1,2-DICHLOROETHENE (CIS)	<u>N</u> .D.	5 . 0	$\mathbf{N} \cdot \mathbf{D}$	- -
1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	1,2-DICHLOROETHENE (TRANS)	N D	5 . 0		
1,3-DICHLOROPROPENE (TRANS) N.D. 5.0 N.D ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 97 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	1,2-DICHLOROPROPANE	N . D .	5 . 0		
ETHYL BENZENE N.D. 5.0 N.D 2-HEXANONE N.D. 5.0 N.D METHYLENE CHLORIDE N.D. 25 N.D 4-METHYL-2-PENTANONE N.D. 5.0 N.D STYRENE N.D. 5.0 N.D 1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	1,3-DICHLOROPROPENE (CIS)	N . D .	₹'.Ö		
2-HEXANONE N.D. 5.0 N.D. METHYLENE CHLORIDE N.D. 25 N.D. 4-METHYL-2-PENTANONE N.D. 5.0 N.D. STYRENE N.D. 5.0 N.D. 1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D. TETRACHLOROETHENE 39 5.0 N.D. TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D.	1,3-DICHLOROPROPENE (TRANS)	N.D.	5.0		
METHYLENE CHLORIDE N.D. 25 N.D. 4-METHYL-2-PENTANONE N.D. 5.0 N.D. STYRENE N.D. 5.0 N.D. 1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D. TETRACHLOROETHENE 39 5.0 N.D. TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D.			5.0		
4-METHYL-2-PENTANONE N.D. 5.0 N.D. STYRENE N.D. 5.0 N.D. 1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D. TETRACHLOROETHENE 39 5.0 N.D. TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D.			5.0	N . D .	- -
1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D		и " р "	25	N.D.	· - -
1,1,2,2-TETRACHLOROETHANE N.D. 5.0 N.D TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D		N D		N D	
TETRACHLOROETHENE 39 5.0 N.D TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D	STYRENE	N D	5 , 0	N.D.	
TOLUENE N.D. 5.0 N.D. 97 1,1,1-TRICHLOROETHANE N.D. 5.0 N.D. 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D.	T, I, Z, Z~TETRACHLOROETHANE			N.D.	- - -
1,1,1-TRICHLOROETHANE N.D. 5.0 N.D 1,1,2-TRICHLOROETHANE N.D. 5.0 N.D		39 N D	50	N D	07
1,1,2-TRICHLOROETHANE N.D. 5.0 N.D			2.0		
TRICHLOROETHANE N.D. 5.0 N.D. 97	1,1,1-IRICHLOROETHANE	N .D .	5.0		
INICHLOROBIRENE N.D. S.O N.D. SI	T, I, Z - I KI COLUNCE I DANE		5,0		
TRICHLOROFLUOROMETHANE N.D. 5.0 N.D			5.0	M D	<i>31</i>
TRICHLOROFLUOROMETHANE N.D. 5.0 N.D VINYL ACETATE N.D. 5.0 N.D					
VINIL ACEIALE N.D. 5.0 N.D		M D "			
TOTAL XYLENES N.D. 5.0 N.D					- -

Oleg Nemtsov
Themist

Ali Kharrazi Organic Manager

2239 Omega Road,#1 ● San Ramon, California 94583 (510) 831-1788 ● Facsimile (510) 831-8798 Federal ID #68-0140157

QC QLEG 10:25:24

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's Received: November 1, 1994 *Project#:* 94-911

re: One sample for Volatile Organic Compounds analysis.

Sample ID: B2-10

Spl#: 68604 Sampled: November 1, 1994 Matrix: SOIL

Run#: 4546 Analyzed: November 3, 1994

Method: EPA 8240/8260

•		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N D	25	N.D.	
BENZENE	N D	50	\mathbf{N} . \mathbf{D} .	103
BROMODICHLOROMETHANE	N.D.	5.0	N D	NA BE
BROMOFORM	N.D.	50	N.D.	
BROMOMETHANE	$N \cdot D \cdot$	50	$N \cup D$	
2-BUTANONE	$N \cdot D$	5 0	N D	<u> </u>
CARBON TETRACHLORIDE	N . D . N . D .	55.00 55.00 55.00 55.00	N D	and - bed
CHLOROBENZENE CHLOROETHANE	N D	5.0	N D	100
CHLOROETHANE	N D .	5.0	\mathbf{N} , \mathbf{D} ,	
2-CHLOROETHYLVINYLETHER	$N \cup D$.	5 0	N ., D .,	<u>-</u>
CHLOROFORM	$N \cdot D \cdot$	5.0	\mathbf{N} . \mathbf{D} .	
CHLOROFORM CHLOROMETHANE	\mathbf{N} . \mathbf{D} .	50	\mathbf{N} \mathbf{D} .	
DIBROMOCHLOROMETHANE 1,1-DICHLOROETHANE	\mathbf{N} . \mathbf{D} .	5.0	\mathbf{N} \mathbf{D}	
1,1-DICHLOROETHANE	${f N}$ ${f D}$	5 0	\mathbf{N} . \mathbf{D} .	
1,2-DICHLOROETHANE	\mathbf{N} \mathbf{D}	5.0	\mathbf{N} , \mathbf{D} .	
1,1-DICHLOROETHENE	N D	5 . 0	N D	97
1,2-DICHLOROETHENE (CIS)	N . D . N . D .	5 . 0 5 . 0 5 . 0	\mathbf{N} \mathbf{D}	
1,2-DICHLOROETHENE (TRANS)	\mathbf{N} . \mathbf{D} .	5 0	\mathbf{N} \mathbf{D}	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	$\mathbf{N} \cdot \mathbf{D}$.	5 . 0 5 . 0	${f N}$ ${f D}$	
1,3-DICHLOROPROPENE (CIS)	$N \cdot D$.	5.0	\mathbf{N} \mathbf{D}	
1,3-DICHLOROPROPENE (TRANS)		5.0	\mathbf{N} \mathbf{D}	to to a
ETHYL BENZENE	\mathbf{N} \mathbf{D}	5.0	\mathbf{N} \mathbf{D}	- -
2-HEXANONE	${f N}$ ${f D}$	5.0	\mathbf{N} \mathbf{D}	
METHYLENE CHLORIDE	\mathbf{N} \mathbf{D}	25 5.0	$\mathbf{N} \cdot \mathbf{D}$	
METHYLENE CHLORIDE 4-METHYL-2-PENTANONE	$N \cdot D$.	50	<u>N</u> . D .	 -
STYRENE	<u>N</u> D	5 . Q	<u>N</u> D	
STYRENE 1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE	$\mathbf{N} \cdot \mathbf{D}$.	5.0	\mathbf{N} , \mathbf{D} .	
	10	50	<u>N</u> D	- <u>-</u>
TOLUENE	<u>N</u> D	5 . 0	N D	97
1,1,1-TRICHLOROETHANE	<u>N</u> D	5.0	<u>N</u> D	
1,1,2-TRICHLOROETHANE TRICHLOROETHENE	N . D	5.0	\mathbf{N} . \mathbf{D} .	
TRICHLOROETHENE		5 . 0	\mathbf{N} . \mathbf{D} .	97
TRICHLOROFLUOROMETHANE	N.D.	9000000000000	N . D .	
VINYL ACETATE	N.D.	5 " Ö	N . D .	
VINYL CHLORIDE	N.D.	5.0	N D	
TOTAL XYLENES	${f N}$, ${f D}$,	5.0	\mathbf{N} . \mathbf{D} .	

Oleg Newtson

hemist

Ali Kharrazi Organic Manager

QC OLEG 10:25:24

2239 Omega Road,#1 • San Ramon, California 94583 (510) 831-1788 • Facsimile (510) 831-8798 Federal ID #68-0140157

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

Analyzed: November 3, 1994

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller Project: CALTRANS/CHANG's *Project#:* 94-911

Received: November 1, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID: B4-5

Matrix: SOIL Spl#: 68607

Sampled: November 1, 1994 Run#: 4546

Method: EPA 8240/8260

•		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N.D.	25	N.D	
BENZENE	$N \cup D$.	5.0 5.0 5.0 5.0 5.0	N D	103
BROMODICHLOROMETHANE	\mathbf{N} ., \mathbf{D} .,	5.0	\mathbf{N} . \mathbf{D} .	
BROMOFORM	N D	50	$N \cdot D$	
BROMOMETHANE	\mathbf{N} \mathbf{D}	50	\mathbf{N} . \mathbf{D} .	
2-BUTANONE	N D	5.0	\mathbf{N} \mathbf{D}	
CARBON TETRACHLORIDE	\mathbf{N} . \mathbf{D} .	5.0 5.0 5.0	$\mathbf{N} \cdot \mathbf{D}$.	
CHLOROBENZENE	\mathbf{N} , \mathbf{D} ,	5 , 0	$N \cdot D \cdot$	100
CHLOROETHANE	ND	5 ., 0	$N \cdot D$	
2-CHLOROETHYLVINYLETHER	N . D .	50	\mathbf{N} \mathbf{D}	
CHLOROFORM	N D	50	N D	
CHLOROMETHANE	\mathbf{N} . \mathbf{D}	5 0	N D	
DIBROMOCHLOROMETHANE	N.D.	5.0	N , D .	
1,1-DICHLOROETHANE	$N \cdot D \cdot $	50	\mathbf{N} . \mathbf{D} .	
1.2-DICHLOROETHANE	\mathbf{N} \mathbf{D}	50	N , D .	- -
1,1-DICHLOROETHENE	\mathbf{N} \mathbf{D}	50	\mathbf{N} \mathbf{D} ,	97
1,1-DICHLOROETHENE 1,2-DICHLOROETHENE (CIS) 1,2-DICHLOROETHENE (TRANS) 1,2-DICHLOROPROPANE	N D	5 0	N D	
1,2-DICHLOROETHENE (TRANS)	N . D . N . D .	50	N D	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS) 1,3-DICHLOROPROPENE (TRANS)	N.D.	5 . 0	\mathbf{N} \mathbf{D}	Name - West
1,3-DICHLOROPROPENE (CIS)	N . D .	5.0	N " D "	
1,3-DICHLOROPROPENE (TRANS)	$\mathbf{N} \cdot \mathbf{D}$.	5 . 0	\mathbf{N} . \mathbf{D} .	
ETHYL BENZENE	\mathbf{N} . \mathbf{D} .	5 . 0	N , D .	
2-HEXANONE	\mathbf{N} \mathbf{D}	5.0	N D	
METHYLENE CHLORIDE	N D	25	${f N}$ ${f D}$	haman diberi
	N.D.	5.0	<u>N</u> <u>D</u>	
STYRENE	\mathbf{N} \mathbf{D}	5 0	\mathbf{N} . \mathbf{D} .	
1,1,2,2-TETRACHLOROETHANE TETRACHLOROETHENE	\mathbf{N} . \mathbf{D} .	5 , 0	N D	
TETRACHLOROETHENE	N D	5 , 0	N . D .	
TOLUENE	$N \cdot D$	5 , 0	\mathbf{N} . \mathbf{D} .	97
1,1,1-TRICHLOROETHANE	N . D .	5 . 0	\mathbf{N} . \mathbf{D} .	
	N . D .	5 . 0	N ., D .	
	N D	5 . 0	$\mathbf{N} \cdot \mathbf{D}$	97
TRICHLOROFLUOROMETHANE	N D	5.0	N . D	
VINYL ACETATE	N D	5 . 0	N D	
VINYL CHLORIDE	N D .	5.0	N D	
TOTAL XYLENES	${f N}$. ${f D}$.	5.0	\mathbf{N} \mathbf{D}	

Oleg Nemtsov Chemist

Ali Kharrazi Organic Manager

2239 Omega Road,#1 ● San Ramon, California 94583 (510) 831-1788 ● Facsimile (510) 831-8798 Federal ID #68-0140157

OC DLEG 10:25:24

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's Project#: 94-911

Project: CALTRANS/CHANG's Received: November 1, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID: B5-4

Spl#: 68610
Sampled: November 1, 1994

Matrix: SOIL

Run#: 4546 Analyz

Method: EPA 8240/8260

Analyzed: November 3, 1994

· ·		REPORTING	BLANK	BLANK SPIKE
	RESULT	\mathbf{LIMIT}	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N D	25	N.D.	
BENZENE	N ., D .,	5 , 0	\mathbf{N} \mathbf{D}	103
BROMODICHLOROMETHANE	N D	5 , 0	$N \cdot D$	
BROMOFORM	${f N}$, ${f D}$.	5 0 5 0	N.D.	
BROMOMETHANE	\mathbf{N} . \mathbf{D} .	5.0	\mathbf{N} , \mathbf{D} ,	
2-BUTANONE	\mathbf{N} , \mathbf{D} .	5.0	\mathbf{N} \mathbf{D} .	
CARBON TETRACHLORIDE	\mathbf{N} \mathbf{D}	5 ., 0	\mathbf{N} . \mathbf{D} .	. — —
CHLOROBENZENE	${f N}$., ${f D}$.,	5 , 0	\mathbf{N} \mathbf{D}	100
CHLOROETHANE	${f N}$ ${f D}$	5 0	$N \cdot D \cdot $	
2-CHLOROETHYLVINYLETHER	\mathbf{N} . \mathbf{D}	5 .: 0	\mathbf{N} . \mathbf{D} .	
CHLOROFORM CHLOROMETHANE	\mathbf{N} . \mathbf{D} .	5 ; 0 5 ; 0	\mathbf{N} . \mathbf{D} .	
	\mathbf{N} . \mathbf{D} .	5.0	\mathbf{N} . \mathbf{D} .	
DIBROMOCHLOROMETHANE	\mathbf{N} , \mathbf{D} .	5.0	${f N}$ ${f D}$	
1,1-DICHLOROETHANE	${f N}$ ${f D}$	5.0	\mathbf{N} \mathbf{D}	
1,2-DICHLOROETHANE	\mathbf{N} . \mathbf{D} .	50	\mathbf{N} \mathbf{D}	
1,1-DICHLOROETHENE	\mathbf{N} . \mathbf{D} .	5 . 0	${f N}$, ${f D}$.	97
1,2-DICHLOROETHENE (CIS)	N ., D	5 , 0	\mathbf{N} . \mathbf{D}	
1,2-DICHLOROETHENE (TRANS)	N D	5 0	N . D .	
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	N . D	5 ., 0	N D	- -
1,3-DICHLOROPROPENE (CIS)	<u>N</u> . D .	5 , 0	N D	·
1,3-DICHLOROPROPENE (TRANS)	N . D .	5 0	<u>N</u> . D .	
ETHYL BENZENE	\mathbf{N} . \mathbf{D} .	5.0	\mathbf{N} . \mathbf{D} .	
2-HEXANONE	N . D .	5.0	Ŋ.D.	-
METHYLENE CHLORIDE	N . D .	25	N . D .	- -
4-METHYL-2-PENTANONE	N . D .	5 . 0	N . D .	
STYRENE	N.D. N.D. N.D. N.D.	5 . 0	\mathbf{N} . \mathbf{D} .	
1,1,2,2-TETRACHLOROETHANE	N . D	5.0	N D	
TETRACHLOROETHENE	N . D .	5.0	N D	
TOLUENE	N D	5 . 0	N . D .	97
1,1,1-TRICHLOROETHANE	N . D .	5 . 0	N D	.
1,1,2-TRICHLOROETHANE	N D	5.0	N D	97
TRICHLOROETHENE	N D	5 0	N.D.	97
TRICHLOROFLUOROMETHANE	N D	5.0	N D	
VINYL ACETATE	N.D.	50	N D	- -
VINYL CHLORIDE	N . D .	5.0	N D N D	
TOTAL XYLENES	\mathbf{N} . \mathbf{D} .	5,0	" עד " אַד	

Oleg Neversor

Oleg Nemtsov Chemist Ali Kharrazi Organic Manager

2239 Omega Road,#1 ● San Ramon, California 94583 (510) 831-1788 ● Facsimile (510) 831-8798 Federal ID #68-0140157

QC QLEG 10:25:24

Environmental Services (SDB)

November 14, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994
re: One sample for Volatile Organic Compounds analysis

Sample ID: B5-6

Spl#: 68611 Sampled: November 1, 1994

Matrix: SOIL

Run#: 4546

Analyzed: November 3, 1994

Method: EPA 8240/8260

		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N . D .	25	N.D.	
BENZENE	N D	5.0	\mathbf{N} \mathbf{D} .	103
BROMODICHLOROMETHANE	N D	5.0	\mathbf{N} . \mathbf{D} .	
BROMOFORM	N D	5.0	\mathbf{N} . \mathbf{D} .	
BROMOMETHANE	N . D .	5.0	N.D.	
2-BUTANONE	N., D.,	50	N.D.	
CARBON TETRACHLORIDE	N D	50	N.D.	
CHLOROBENZENE	N D N D	5 . 0 5 . 0	\mathbf{N} , \mathbf{D} .	100
CHLOROETHANE	N.D.	5 0	\mathbf{N} \mathbf{D}	
2-CHLOROETHYLVINYLETHER	N D	5.0	\mathbf{N} . \mathbf{D} .	
	N , D .	5.0	\mathbf{N} . \mathbf{D} .	- -
CHLOROFORM CHLOROMETHANE	N.D.	5.0	N . D .	
DIBROMOCHLOROMETHANE	N . D .	5.0	\mathbf{N} \mathbf{D}	same many .
1,1-DICHLOROETHANE	\mathbf{N} . \mathbf{D}	5.0	N.D.	end end
1,2-DICHLOROETHANE	\mathbf{N} , \mathbf{D} ,	5.0	$N \cdot D$.
	N D	50	N D	97
1,1-DICHLOROETHENE 1,2-DICHLOROETHENE (CIS) 1,2-DICHLOROETHENE (TRANS)	N.D. N.D. N.D. N.D.	5.0 5.0 5.0 5.0	N D	
1,2-DICHLOROETHENE (TRANS)	\mathbf{N} . \mathbf{D}	5 0	N.D.	(Time - Time)
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS) 1,3-DICHLOROPROPENE (TRANS)	N D	50	N . D .	
1,3-DICHLOROPROPENE (CIS)	\mathbf{N} \mathbf{D}	5 . 0	\mathbf{N} . \mathbf{D} .	
1,3-DICHLOROPROPENE (TRANS)	Ν.υ	5.0	${f N}$. ${f D}$.	
ETHYL BENZENE	N D	5.0	\mathbf{N} . \mathbf{D} .	
2-HEXANONE	${f N}$ ${f D}$	5.0	\mathbf{N} \mathbf{D}	-
METHYLENE CHLORIDE	${f N}$. ${f D}$.	25	\mathbf{N} , \mathbf{D} ,	
4-METHYL-2-PENTANONE	${f N}$ ${f D}$	5.0	${f N}$ ${f D}$	-
STYRENE	$\mathbf N$ D	5.0	\mathbf{N} . \mathbf{D} .	<u> </u>
1,1,2,2-TETRACHLOROETHANE	N.D.	50	\mathbf{N} \mathbf{D}	- -
TETRACHLOROETHENE	N . D	5 0	\mathbf{N} , \mathbf{D} ,	- -
TOLUENE	N . D .	5.0	N D	97
1,1,1-TRICHLOROETHANE	N . D . N . D . N . D .	5 0	N . D .	- -
1,1,2-TRICHLOROETHANE	${f N}$. ${f D}$.	5 0	\mathbf{N} , \mathbf{D} .	- - -
TRICHLOROETHENE	\mathbf{N} \mathbf{D}	5.0	<u>N</u> D	97
TRICHLOROFLUOROMETHANE	\mathbf{N} , \mathbf{D}	5 0	\mathbf{N} \mathbf{D}	
VINYL ACETATE	N . D .	5.0	N . D .	
VINYL CHLORIDE	\mathbf{N} , \mathbf{D} .	5 ′ 0	N . D .	
TOTAL XYLENES	\mathbf{N} \mathbf{D}	5.0	N ., D	

Organic Manager

Oleg Nemtsov Chemist

> 2239 Omega Road,#1 • San Ramon, California 94583 (510) 831-1788 • Facsimile (510) 831-8798 Federal ID #68-0140157

QC OLEG 10:25:24

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

REPORTING

Received: November 1, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B5-6

Spl#: 68611
Sampled: November 1, 1994

Pia

Matrix: SOIL Run#: 4465

Extracted: November 4, 1994
Analyzed: November 4, 1994

BLANK BLANK SPIKE

Method: EPA 3050/6010/7471

	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/Kg)	(mq/Kq)	(mg/Kg)	(%)
ANTIMONY	N.D.	1.0	N.D.	106
ARSENIC	N.D.	0.25	N.D.	100
BARIUM	44	0.25	N.D.	103
BERYLLIUM	0.28	0.05	N.D.	101
CADMIUM	0.40	0.05	N.D.	102
CHROMIUM	15	0.5	N.D.	93
COBALT	3.7	0.5	N.D.	102
COPPER	4.0	0.25	N.D.	100
LEAD	1.8	0.5	N.D.	101
MOLYBDENUM	N.D.	0.25	N.D.	99
NICKEL	13	0.5	N.D.	103
SELENIUM	N.D.	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	100
THALLIUM	N.D.	2.0	N.D.	88
VANADIUM	18	0.5	N.D.	103
ZINC	7.7	0.25	$N \cdot D_{h}$	104
MERCURY	N.D.	0.05	И. Д∕	87

Note: MERCURY WAS PREPED AND RUN ON 11/08/94

Doina Danet Chemist

John S. Labash Inorganic Supervisor

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for Metals analysis.

Sample ID: B2-10

Spl#: 68604
Sampled: November

Matrix: SOIL Run#: 4465

Extracted: November 4, 1994
Analyzed: November 4, 1994

Sampled: November 1, 1994 Method: EPA 3050/6010

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/kg)	BLANK RESULT (mg/Kq)	BLANK SPIKE RESULT (%)
ARSENIC	1.7	0.25	N.D.	100
CHROMIUM	4.5	0.5	N.D.	93
COPPER	3.2	0.25	N.D.	100
LEAD	2.2	0.5	N.D.	101
NICKEL	. 20	0.5	$N.D_{\alpha}$	103
ZINC	15	0.25	N.D. \\	104
		1/ //	. v v	,

Doina Danet Chemist

John S. Labash

Inorganic Supervisor

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for Metals analysis.

Sample ID: B5-4

Spl#: 68610 Sampled: November 1, 1994 Matrix: SOIL

Run#: 4474

Extracted: November 7, 1994 Analyzed: November 7, 1994

Method: EPA 3050/6010

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mq/Kq)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ARSENIC	N.D.	0.25	N.D.	94
CHROMIUM	9.3	0.5	N.D.	88
COPPER	3.1	0.25	N.D.	99 .
LEAD	2.6	0.5	N.D.	101
NICKEL	5 . 7	0.5	и (/D/, /	97
ZINC	4.4	0.25	и./р./	100
~ ~		111	u v :	

Chemist

John S. Labash Inorganic Supervisor

QC CHARLES 17:34:46

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for Metals analysis.

Sample ID: B5-1

Spl#: 68609 Sampled: November 1, 1994 Matrix: SOIL Run#: 4474

Extracted: November 7, 1994
Analyzed: November 7, 1994

Method: EPA 3050/6010

REPORTING BLANK BLANK SPIKE RESULT LIMIT RESULT RESULT ANALYTE ARSENIC CHROMIUM (%) 94 (mg/Kg) (mq/Kq) (mg/Kg) 0.25 0.5 N.D. N.D. 8.2 N.D. 88 0.25 0.5 0.5 COPPER 36 N.D. 99 LEAD NICKEL ZINC 110 2.7 66 101 97 0.25 N.D\ 100

Doina Danet

John S. Labash

Chemist

Inorganic Supervisor

Environmental Services (SDB)

November 9, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for Metals analysis.

Sample ID: B5-SURFACE

Sp1#: 68608

Matrix: SOIL Run#: 4474

Extracted: November 7, 1994

Sampled: November 1, 1994

Analyzed: November 7, 1994

Method: EPA 3050/6010

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mq/Kq)	RESULT (%)
ARSENIC	N.D.	0.25	N.D.	94
CHROMIUM	24	0.5	N.D.	88
COPPER	140	0.25	N.D.	99
LEAD	2600	0.5	N.D.	101
NICKEL	17	0.5	N.D	97
ZINC	410	0.25 n	иф∥	100

Chemist

Inorganic Supervisor

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B1-7

Spl#: 68600 Sampled: November 1, 1994 Matrix: SOIL Run#: 4465 Extracted: November 4, 1994 Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

BLANK BLANK SPIKE REPORTING RESULT LIMIT RESULT RESULT (mg/Kg) (mg/Kg) (mq/Kq) (%) **ANALYTE** ANTIMONY ARSENIC N.D. 1.0 N.D. 106 0.25 100 N.D. N.D. 103 BARIUM 0.25 N.D. 40 0.05 101 BERYLLIUM 0.27 N.D. 0.05 102 CADMIUM 0.17 N.D. 13 5.6 0.5 93 CHROMIUM N.D. 102 COBALT 0.5 N.D. 13 37 0.25 0.5 100 N.D. COPPER LEAD 101 N.D. MOLYBDENUM 0.25 99 N.D. N.D. NICKEL 11 0.5 N.D. 103 SELENIUM N.D. 0.5 N.D. 86 0.25 100 N.D. SILVER N.D. THALLIUM 88 N.D. 2.0 N.D. VANADIUM 0.5 103 17 N.D. ZINC 51 0.25 N.D. 104 MERCURY 0.12 0.05 N.D.

Note: MERCURY WAS PREPED AND RUN ON 11/08/94

Doina Danet Chemist

Inorganic Supervisor

GC CHARLES 17:34:48

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096

Federal ID #68-0140157

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B1-10

Spl#: 68601 Sampled: November 1, 1994

Matrix: SOIL

Run#: 4465

Extracted: November 4, 1994
Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

						REPORTING	BLANK	BLANK SPIKE
				RESULT		LIMIT	RESULT	RESULT
ANALYTE				(mg/Kg)		(mq/Kq)	(mq/Kq)	(%)
ANTIMONY				N.D.		1.0	N.D.	106
ARSENIC			•	N.D.		0.25	N.D.	100
BARIUM				42		0.25	N.D.	103
BERYLLIUM				0.23		0.05	N.D.	101
CADMIUM				0.12		0.05	N.D.	102
CHROMIUM				16		0.5	N.D.	93
COBALT				3.1		0.5	N.D.	102
COPPER			•	6.8		0.25	N.D.	100
LEAD				16		0.5	N.D.	101
MOLYBDENUM				N.D.		0.25	N.D.	99
NICKEL				13		0.5	N.D.	103
SELENIUM				N.D.		0.5	N.D.	86
SILVER				N.D.		0.25	N.D.	100
THALLIUM				N.D.		2.0	N.D.	88
VANADIUM				17		0.5	N.D.	103
ZINC				34		0.25	N.D.	104
MERCURY				0.07		0. ₀ 05 1	N.D.	87
Note:	MERCURY	WAS	PREPED	AND RUN	ON	11/08×94	$\int \int $	

Doina Danet Chemist

John S. Labash Inorganic Supervisor

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B4-SURFACE

Spl#: 68605 Sampled: November 1, 1994 Matrix: SOIL Run#: 4465 Extracted: November 4, 1994
Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

REPORTING BLANK BLANK SPIKE RESULT LIMIT RESULT RESULT ANALYTE ANTIMONY (mg/Kg) (mq/Kq) (mg/Kg) 106 100 N.D. N.D. 1.0 ARSENIC 0.25 N.D. N.D. BARIUM 150 0.25 N.D. 103 BERYLLIUM CADMIUM 101 102 0.39 0.05 N.D. 4.9 0.05 N.D. CHROMIUM 0.5 93 12 N.D. COBALT 0.5 2.1 N.D. 102 COPPER 0.25 N.D. 100 95 LEAD 1000 0.5 N.D. 101 MOLYBDENUM 3.7 0.25 N.D. 99 103 NICKEL 13 0.5 N.D. SELENIUM N.D. 0.5 86 N.D. SILVER N.D. 0.25 N.D. 100 THALLIUM N.D. 2.0 88 N.D.

0.5

0.25

0.05

Note: MERCURY WAS PREPED AND RUN ON 11/08/94.

16

490

0.57

Doina Danet Chemist

VANADIUM

MERCURY

ZINC

John S. Labash

Mnorganic Supervisor

N.D.

N.D.

NO.

103

104

87

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B4-1

Sp1#: 68606 Sampled: November 1, 1994 Matrix: SOIL Run#: 4465

Extracted: November 4, 1994 Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

·	RESULT	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
ANALYTE	(mg/Kg)	(mq/Kq)	(mg/Kg)	(%)
ANTIMONY	N.D.	1.0	N.D.	106
ARSENIC	N.D.	0.25	N.D.	100
BARIUM	270	0.25	N.D.	103
BERYLLIUM	0.43	0.05	N.D.	101
CADMIUM	0.50	0.05	N.D.	102
CHROMIUM	5.0	0.5	N.D.	93
COBALT	2.2	0.5	N.D.	102
COPPER	110	0.25	N.D.	100
LEAD	210	0.5	N.D.	101
MOLYBDENUM	N.D.	0.25	N.D.	99
NICKEL	5.3	0.5	N.D.	103
SELENIUM	N.D.	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	100
THALLIUM	N.D.	2.0	N.D.	88
VANADIUM	14	0.5	N.D.	103
ZINC	180	0.25	$N \setminus D \cdot \cap$	104
MERCURY	0.31	0.05 6	и/р.//	87

Note: MERCURY WAS PREPED AND RUN ON 11/08/94

Doina Danet

QC CHARLES 17:34:46

Chemist Inorganic Supervisor

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B4-5

Spl#: 68607 Sampled: November 1, 1994 Matrix: SOIL Run#: 4465

Extracted: November 4, 1994
Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

	•	,		RESULT		REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
ANALYTE				(mg/Kg)		(mq/Kq)	(mg/Kg)	(%)
ANTIMONY				N.D.		1.0	N.D.	106
ARSENIC				N.D.		0.25	N.D.	100
BARIUM				100		0.25	N.D.	103
BERYLLIUM				0.22		0.05	N.D.	101
CADMIUM				0.68		0.05	N.D.	102
CHROMIUM				8.5		0.5	N.D.	93
COBALT				1.8		0.5	N.D.	102
COPPER				14		0.25	N.D.	100
LEAD				73		0.5	N.D.	101
MOLYBDENUM				N.D.		0.25	N.D.	99
NICKEL				6.6		0.5	N.D.	103
SELENIUM				N.D.		0.5	N.D.	86
SILVER				N.D.		0.25	N.D.	100
THALLIUM				N.D.		2.0	N.D.	88
VANADIUM				12		0.5	N.D.	103
ZINC				63		0.25	N.D.	104
MERCURY				0.15		0.05	N.D. []	87
Note:	MERCURY	WAS	PREPED	AND RUN	ON	11/08/94.	\) V	/

Doina Danet

Chemist

Inorganic Supervisor

QC CHARLES 17:34:46

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096

Federal ID #68-0140157

Environmental Services (SDB)

November 11, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: 7 samples for Total Recoverable Petroleum Hydrocarbons analysis.

Sampled: October 31, 1994

Matrix: SOIL Run#: 4542

Extracted: November 10, 1994 Analyzed: November 10, 1994

Method: EPA 418.1

Spl # CLIENT SMPL ID	TRPH (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
68479 B1-SURFACE	33	10	N.D.	84
68480 B1-1	- 33	10	N.D.	84
68481 B1-4	N.D.	10	N.D.	84
68482 B2-SURFACE	N.D.	10	N.D.	84
68483 B2-1	51	10	N.D.	84
68484 B3-SURFACE	150	10	N.D.	84
68485 B3-1	71	10	N.D.	84

Extractions Supervisor

Ali Kharrazi Organic Manager

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096 Federal ID #68-0140157

QC CMH 17:04:02

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: One sample for Metals analysis.

Sample ID: B2-SURFACE

Spl#: 68482

Matrix: SOIL Run#: 4465 Extracted: November 4, 1994

Sampled: October 31, 1994

Method: EPA 3050/6010

Analyzed:	November	

ANALYTE	RESULT	REPORTING LIMIT (mg/kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ARSENIC CHROMIUM COPPER LEAD NICKEL	N.D. 7.7 45 200 10	0.25 0.5 0.25 0.5	N.D. N.D. N.D. N.D.	100 93 100 101 103
ZINC	82	0.25	N-DX	104

Chemist

Inorganic Supervisor

(510) 484-1919 • Facsimile (510) 484-1096

1220 Quarry Lane • Pleasanton, California 94566-4756 Federal ID #68-0140157

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: One sample for Metals analysis.

Sample ID: B2-1

Spl#: 68483 Sampled: October 31, 1994

Matrix: SOIL

Run#: 4465

Extracted: November 4, 1994 Analyzed: November 4, 1994

Method: EPA 3050/6010

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ARSENIC	N.D.	0.25	N.D.	100
CHROMIUM	6.8	0.5	N.D.	93
COPPER	28	0.25	N.D.	100
LEAD	150	0.5	N.D.	101
NICKEL	12	0.5	N.D.	103
ZINC	78	0.25	И.Ф.\\	104

Chemist

Inorganic Supervisor

OC CHARLES 17:28:53

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: One sample for Metals analysis.

Sample ID: B3-SURFACE

Spl#: 68484

Matrix: SOIL Run#: 4465

Extracted: November 4, 1994

Analyzed: November 4, 1994

Sampled: October 31, 1994 Method: EPA 3050/6010

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ARSENIC CHROMIUM COPPER LEAD NICKEL ZINC	N.D. N.D. 26 71 1.5 94	0.25 0.5 0.25 0.5 0.5 0.25	N.D. N.D. N.D. N.D. N.D.	100 93 100 101 103 104

Chemist

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: One sample for Metals analysis.

Sample ID: B3-1

Sp1#: 68485 Sampled: October 31, 1994 Matrix: SOIL Run#: 4465

Extracted: November 4, 1994 Analyzed: November 4, 1994

Method: EPA 3050/6010

REPORTING BLANK BLANK SPIKE LIMIT RESULT RESULT RESULT ANALYTE ARSENIC CHROMIUM (mg/Kg) (mq/Kq) (mg/Kg) 100 N.D. N.D. 0.25 2.6 12 37 1.9 68 0.5 N.D. 93 0.25 0.5 0.5 N.D. 100 COPPER 101 103 LEAD N.D. NICKEL ZINC N.D. 104 0.25 N.D.

Doina Danet

John S. Labash Inorganic Supervisor

Chemist

GC CHARLES 17:29:53

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B1-SURFACE

Spl#: 68479 Sampled: October 31, 1994 Matrix: SOIL Run#: 4465

Extracted: November 4, 1994 Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

•		REPORTING	BLANK	BLANK SPIKE
•	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(mg/Kg)	(mg/Kg)	(mq/Kq)	(%)
ANTIMONY	N.D.	1.0	N.D.	106
ARSENIC	N.D.	0.25	N.D.	100
BARIUM	63	0.25	N.D.	103
BERYLLIUM	0.22	0.05	N.D.	101
CADMIUM	0.60	0.05	N.D.	102
CHROMIUM	1.6	0.5	N.D.	93
COBALT	5.6	0.5	N.D.	102
COPPER	24	0.25	N.D.	100
LEAD	68	0.5	N.D.	101
MOLYBDENUM	N.D.	0.25	N.D.	99
NICKEL	7.3	0.5	N.D.	103
SELENIUM	N.D.	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	100
THALLIUM	N.D.	2.0	N.D.	88
VANADIUM	16	0.5	N.D.	103
ZINC	140	0.25	N.D.	104
MERCURY	0.11	0.05 (\	и.р/	87

Note: MERCURY WAS PREPED AND RUN ON 11/08/94.

Doina Danet Chemist

Inorganic Supervisor

1220 Quarry Lane • Pleasanton, California 94566-4756 (510) 484-1919 • Facsimile (510) 484-1096

Federal ID #68-0140157

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B1-1

Sp1#: 68480 Sampled: October 31, 1994 Matrix: SOIL Run#: 4465

Extracted: November 4, 1994 Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ANTIMONY	N.D.	1.0	N.D.	106
ARSENIC	N.D.	0.25	N.D.	100
BARIUM	120	0.25	N.D.	103
BERYLLIUM	0.28	0.05	N.D.	101
CADMIUM	0.39	0.05	N.D.	102
CHROMIUM	3.7	0.5	N.D.	93
COBALT	5.9	0.5	N.D.	102
COPPER	20	0.25	N.D.	100
LEAD	44	0.5	N.D.	101
MOLYBDENUM	N.D.	0.25	N.D.	99
NICKEL	6.3	0.5	N.D.	103
SELENIUM	N.D.	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	100
THALLIUM	N.D.	2.0	N.D.	88
VANADIUM	18	0.5	N.D.	103
ZINC	55	0.25	N.D.	104
MERCURY	0.15	0.05	N. Ď/· /	87

Note: MERCURY WAS PREPED AND RUN ON 11/08/194

Doina Danet Chemist

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: One sample for CAM 17 Metals analysis.

Sample ID: B1-4

Spl#: 68481 Sampled: October 31, 1994 Matrix: SOIL Run#: 4465 Extracted: November 4, 1994 Analyzed: November 4, 1994

Method: EPA 3050/6010/7471

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mg/kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ANTIMONY	N.D.	1.0	N.D.	106
ARSENIC	1.9	0.25	N.D.	100
BARIUM	19	0.25	N.D.	103
BERYLLIUM	0.23	0.05	N.D.	101
CADMIUM	0.25	0.05	N.D.	102
CHROMIUM	6.9	0.5	N.D.	93
COBALT	6.5	0.5	N.D.	102
COPPER	4.0	0.25	N.D.	100
LEAD	4.2	0.5	N.D.	101
MOLYBDENUM	N.D.	0.25	N.D.	. 99
NICKEL	20	0.5	N.D.	103
SELENIUM	N.D.	0.5	N.D.	86
SILVER	N.D.	0.25	N.D.	100
THALLIUM	N.D.	2.0	N.D.	88
VANADIUM	13	0.5	N.D.	103
ZINC	21	0.25	и.Ф.	104
MERCURY	N.D.	0.05	N . D.	87

Note: MERCURY WAS PREPED AND RUN ON 11/08/94

Chemist

Inorganic Supervisor

QC CHARLES 17:28:53

Environmental Services (SDB)

November 8, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: 3 samples for Hexavalent Chromium analysis.

Matrix: SOIL

Extracted: November 2, 1994

Sampled: October 31, 1994

Run#: 4441

Analyzed: November 2, 1994

Method: EPA 7196

			REPORTII	NG BLANK	BLANK SPIKE
		HEXAVALENT	CHROMIUM LIMIT	RESULT	RESULT
Spl #	CLIENT SMPL	ID (mg/	(Kg) (mg/Kg)		(%)
	B1-SURFACE	N.I		N.D.	105
68477	B1-1	N.I		N.D.	105
68478	B1-4	N.E	0.5	и.Д.	105

Doina Danet Chemist

John S. Labash

Environmental Services (SDB)

November 14, 1994

ENV. SOLUTIONS - PETALUMA

Submission #: 9410378

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

REPORTING INFORMATION

Sample(s) were received cold and in good condition on October 31, 1994 They were refrigerated on receipt, and analyzed on the date shown on the attached report. ChromaLab followed EPA or equivalent methods for all analyses reported.

Hydrocarbons in the Motor Oil range were also observed in the following samples:

B1-1 B2-1

B3-1

Quality Assurance Officer

Eric Tam

Laboratory Director

Environmental Services (SDB)

November 14, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG'S

Project#: 94-911

Received: October 31, 1994

re: Seven samples for Diesel analysis

Matrix: SOIL

Extracted: November 4, 1994 Analyzed: November 5-13, 1994

Sampled: October 31, 1994

Method: EPA 3550/8015

Sample #	Client Sample ID	Diesel (mg/Kg)
68479	B1-SURFACE	\mathbf{N} . \mathbf{D} .
68480	B1-1	\mathbf{N} , \mathbf{D} , \mathbf{a}
68481.	B1-4	${f N}$, ${f D}$.
68482	B2-SURFACE	$N \cup D \cup P$
68483	B2-1	N D c,e
68484	B3-SURFACE	\mathbf{N} \mathbf{D}
68485	B3-1	N D ^{d, e}
Blank		N . D .
Spike Reco	very	107%
Dup Spike	Recovery	111%
Reporting 1		1 . O

- a Unknown compounds were found in the Diesel range in the estimated amount of 6.2 mg/kg compared with Diesel standard.
- b Unknown compounds were found in the Diesel range in the estimated amount of 1.5 mg/kg compared with Diesel standard.
- c Unknown compounds were found in the Diesel range in the estimated amount of 63 mg/kg compared with Diesel standard.
 d - Unknown compounds were found in the Diesel range in the estimated
- amount of 2.6 mg/kg compared with Diesel standard.
- e Detection limit raised by 2 mg/Kg due to dilution

ChromaLab, Inc.

Sirinat Chullakorn

Sirirat Chullakorn Analytical Chemist

Ali Kharrazi Organic Manager

kv

Environmental Services (SDB)

November 16, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Sampled: October 31, 1994 Extracted: November 2, 1994

Submitted: October 31, 1994 Analyzed: November 5, 1994

Project: CALTRANS/CHANG'S

Method: EPA 3550/8270 Matrix: SOIL

Project #: 94-911

Client Sample ID: B1-4 Dilution Factor: None

Reporting

		Keborcing	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	<u>Recovery</u>
PHENOL	${f N}$. ${f D}$.	0.05	
BIS(2-CHLOROETHYL) ETHER	\mathbf{N} . \mathbf{D}	0.05	ाला सामा जाना जाता जाता. जाता
2-CHLOROPHENOL	$N \cdot D$	0.05	72%
1,3-DICHLOROBENZENE	\mathbf{N} . \mathbf{D} .	0.05	
1,4-DICHLOROBENZENE	$\mathbf{N} \cdot \mathbf{D}$	0.05	69%
BENZYL ALCOHOL	\mathbf{N} . \mathbf{D} .	0.10	
1,2-DICHLOROBENZENE	\mathbf{N} . \mathbf{D} .	005	w
2-METHYLPHENOL	\mathbf{N} \mathbf{D}	0.05	
BIS (2-CHLOROISOPROPYL) ETHER	\mathbf{N} . \mathbf{D} .	0.05	
4-METHYLPHENOL	$N \cdot D \cdot$	0 0,5	
N-NITROSO-DI-N-PROPYLAMINE	${f N}$ ${f D}$.,	0 , 05	
HEXACHLOROETHANE	N . D .	0.05	
NITROBENZENE	$\mathbf{N} \cdot \mathbf{D}$	0.05	
ISOPHORONE	${f N}$ ${f D}$	005	
2-NITROPHENOL	N.D.	0.05	
2,4-DIMETHYLPHENOL	Ν. D.	0 05	
BENZOIC ACID	${f N}$, ${f D}$.	0 . 25	
BIS (2-CHLOROETHOXY) METHANE	${f N}$ ${f D}$	005	
2,4-DICHLOROPHENOL	\mathbf{N} \mathbf{D}	0.05	
1,2,4-TRICHLOROBENZENE	\mathbf{N} \mathbf{D}	0.,05	73%
NAPHTHALENE	N.D.	0.05	
4-CHLOROANILINE	\mathbf{N} , \mathbf{D} .	0 . 10	
HEXACHLOROBUTADIENE	${f N}$. ${f D}$.	0 05	
4-CHLORO-3-METHYLPHENOL	\mathbf{N} \mathbf{D}	0.10	
2-METHYLNAPHTHALENE	\mathbf{N} \mathbf{D} .	005	
HEXACHLOROCYCLOPENTADIENE	N D .	005	
2,4,6-TRICHLOROPHENOL	\mathbf{N} . \mathbf{D} .	0 05	
2,4,5-TRICHLOROPHENOL	N.D.	0 05	
2-CHLORONAPHTHALENE	\mathbf{N} . \mathbf{D} .	0.05	
2-NITROANILINE	\mathbf{N} , \mathbf{D} .	0 . 25	
DIMETHYL PHTHALATE	\mathbf{N} \mathbf{D}	005	
ACENAPHTHYLENE	$N \cup D$.	0.05	
3-NITROANILINE	$\mathbf{N} \cdot \mathbf{D}$.	0.25	-
ACENAPHTHENE	$N \cdot D \cdot$	0.05	76%
2,4-DINITROPHENOL	N D	0.25	
4-NITROPHENOL	\mathbf{N} \mathbf{D}	0.25	
DIBENZOFURAN	N D	0.05	
(continued on next page)			

Environmental Services (SDB)

Page 2

Submission #: 9410378

Project: CALTRANS/CHANG'S

Project #: 94-911 Client Sample ID: B1-4 Method: EPA 3550/8270

Matrix: SOIL

Method: EFA 3330/02/0	13CL CT TX		
		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
2,4-DINITROTOLUENE	$N \cdot D \cdot$	0.05	
2,6-DINITROTOLUENE	\mathbf{N} , \mathbf{D} .	0.05	
DIETHYL PHTHALATE	$N \cup D$	0.05	
4-CHLORO-PHENYL PHENYL ETHER	${f N}$ ${f D}$	0 05	
FLUORENE	$N \cdot D$	0.05	
4-NITROANILINE	\mathbf{N} . \mathbf{D} .	0 25	
4,6-DINITRO-2-METHYL PHENOL	N D	0.25	
N-NITROSODIPHENYLAMINE	\mathbf{N} . \mathbf{D} .	005	
4-BROMOPHENYL PHENYL ETHER	${f N}$ ${f D}$	005	
HEXACHLOROBENZENE	${f N}$. ${f D}$.	005	
PENTACHLOROPHENOL	\mathbf{N} \mathbf{D}	0.25	
PHENANTHRENE	N . D .	0.05	No. 44 -10 err 4-
ANTHRACENE	${f N}$ ${f D}$	0.05	
DI-N-BUTYL PHTHALATE	0 "80ª		
FLUORANTHENE	${f N}$ ${f D}$	005	
PYRENE		0.05	82%
BUTYLBENZYLPHTHALATE		0 . 05	
3,3'-DICHLOROBENZIDINE	${f N}$ ${f D}$	0.10	
BENZO (A) ANTHRACENE	\mathbf{N} \mathbf{D}	0 05	-
BIS (2-ETHYLHEXYL) PHTHALATE	${f N}$ ${f D}$		
CHRYSENE	\mathbf{N} \mathbf{D}		
DI-N-OCTYLPHTHALATE		0 ., 05	
BENZO (B) FLUORANTHENE	${f N}$, ${f D}$,	005	
BENZO (K) FLUORANTHENE	${f N}$., ${f D}$	0.05	
BENZO (A) PYRENE	\mathbf{N} \mathbf{D}		
INDENO(1,2,3 C,D)PYRENE	\mathbf{N} \mathbf{D}	005	
DIBENZO(A, H) ANTHRACENE	N D	0.05	
BENZO(G,H,I)PERYLENE	N D	0 05	

a - This analyte was present in the method blank at 1.5 mg/Kg.

ChromaLab, Inc.

Alex Tam Analytical Chemist

Ali Kharrazi Organic Manager

Environmental Services (SDB)

November 16, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Sampled: October 31, 1994 Extracted: November 2, 1994 Submitted: October 31, 1994 Analyzed: November 5, 1994

Project: CALTRANS/CHANG'S

Project #: 94-911

Client Sample ID: B1-1

Method: EPA 3550/8270

Matrix: SOIL

Dilution Factor: 1:5

Client Sample ID: BI-1	D11uv	cion factor:	1:5
	•	Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
PHENOL	$N \cdot D$	0.25	
BIS(2-CHLOROETHYL) ETHER	$N \cdot D$	0.25	
2-CHLOROPHENOL	N.D	0.25	72%
1,3-DICHLOROBENZENE	$\mathbf{N} \cdot \mathbf{D}$	0.25	
1,4-DICHLOROBENZENE	N.D	0.25	69%
BENZYL ALCOHOL	\mathbf{N} . \mathbf{D}	0.50	ja
1,2-DICHLOROBENZENE	$\mathbf{N} \cdot \mathbf{D}$	0.25	
2-METHYLPHENOL	N D	0 25	
BIS (2-CHLOROISOPROPYL) ETHER	N.D	0.25	
4-METHYLPHENOL	N D	0.25	, :
N-NITROSO-DI-N-PROPYLAMINE	N.D	0.25	
HEXACHLOROETHANE	N .D.	0.25	
NITROBENZENE	N D	0 . 25	
ISOPHORONE	N.D.	0.25	
2-NITROPHENOL	N.D.	0.25	
2,4-DIMETHYLPHENOL	N .D.	0.25	 -
BENZOIC ACID	$\mathbf{N} \cdot \mathbf{D}$	1.2	<u> </u>
BIS (2-CHLOROETHOXY) METHANE	N.D.	0.25	
2,4-DICHLOROPHENOL	$\mathbf{N} \cdot \mathbf{D}$.	0.25	
1,2,4-TRICHLOROBENZENE	$N \cdot D$	0.25	73%
NAPHTHALENE	N.D.	0.25	
4 - CHLOROANILINE	N.D.	0.50	
HEXACHLOROBUTADIENE	\mathbf{N} \mathbf{D}	0.25	
4-CHLORO-3-METHYLPHENOL	N.D.	0.50	
2-METHYLNAPHTHALENE	${f N}$, ${f D}$,	0.25	
HEXACHLOROCYCLOPENTADIENE	$N \cup D$	0.25	_
2,4,6-TRICHLOROPHENOL	\mathbf{N} \mathbf{D}	0 25	
2,4,5-TRICHLOROPHENOL	\mathbf{N} \mathbf{D}	0 25	~ ~ ~ ~
2-CHLORONAPHTHALENE	\mathbf{N} . \mathbf{D} .	0.25	
2-NITROANILINE	N.D.	1.2	
DIMETHYL PHTHALATE	N D	0.25	
ACENAPHTHYLENE	$\mathbf{N} \cdot \mathbf{D}$	0.25	
3-NITROANILINE	\mathbf{N} \mathbf{D}	12	
ACENAPHTHENE	\mathbf{N} ., \mathbf{D}	0.25	76%
2,4-DINITROPHENOL	$N \cdot D$	1.2	
4-NITROPHENOL	N D	1.2	
DIBENZOFURAN	N.D.	0.25	
(continued on next page)			

Environmental Services (SDB)

Page 2

Submission #: 9410378

Project: CALTRANS/CHANG'S

Project #: 94-911 Client Sample ID: B1-1 Method: EPA 3550/8270

Matrix: SOIL

	Sample	Reporting Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
2,4-DINITROTOLUENE	${f N}$., ${f D}$.,	0 . 25	
2,6-DINITROTOLUENE	${f N}$ ${f D}$	0.25	
DIETHYL PHTHALATE	${f N}$ ${f D}$	0 . 25	
4-CHLORO-PHENYL PHENYL ETHER	${f N}$., ${f D}$	0,25	
FLUORENE	N . D .	0.25	
4-NITROANILINE	$N \cdot D$	1.2	
4,6-DINITRO-2-METHYL PHENOL	N D	1.2	
N-NITROSODIPHENYLAMINE	$\mathbf{N} \cdot \mathbf{D}$	0.25	
4-BROMOPHENYL PHENYL ETHER	N . D .	0.25	
HEXACHLOROBENZENE	${f N}$ ${f D}$	0 . 25	
PENTACHLOROPHENOL	${f N}$ ${f D}$	1.2	
PHENANTHRENE	\mathbf{N} . \mathbf{D} .	0.25	
ANTHRACENE	${f N}$. ${f D}$.	0.25	
DI-N-BUTYL PHTHALATE	1 1 ^a	0.25	
FLUORANTHENE	$N \cdot D$	0.25	
PYRENE	$N \cdot D$	0.25	82%
BUTYLBENZYLPHTHALATE	\mathbf{N} , \mathbf{D}	0.25	_
3,3'-DICHLOROBENZIDINE	N . D .	0.50	
BENZO (A) ANTHRACENE	N D	0.25	
BIS (2-ETHYLHEXYL) PHTHALATE	\mathbf{N} \mathbf{D}	0 25	
CHRYSENE	N.D.	0 25	
DI-N-OCTYLPHTHALATE	\mathbf{N} . \mathbf{D} .	0.25	
BENZO (B) FLUORANTHENE	$\mathbf{N}\cdot\mathbf{D}$	0.25	
BENZO (K) FLUORANTHENE	${f N}$, ${f D}$.	0 25	
BENZO (A) PYRENE	N . D .	0.25	
INDENO(1,2,3 C,D)PYRENE	$\mathbf{N} \cdot \mathbf{D}$	0.25	
DIBENZO (A, H) ANTHRACENE	\mathbf{N} \mathbf{D}	0.25	
BENZO(G,H,I)PERYLENE	\mathbf{N} \mathbf{D}	025	

a - This analyte was present in the method blank at 1.5 mg/Kg

ChromaLab, Inc.

Alex Tam Analytical Chemist

Åli Kharrazi Organic Manager

Environmental Services (SDB)

November 14, 1994

ChromaLab File No.: 9410378

ENV. SOLUTIONS - PETALUMA

Attn: Cyd Miller

Four soil samples for Gasoline analysis

Project Name: CALTRANS/CHANG'S Project Number: 94-911

Date Sampled: October 31, 1994 Date Analyzed: November 9, 1994

Date Submitted: October 31, 1994

RESULTS:

e e	Client	
Sample	Sample	
# [_]	I.D.	Gasoline (mg/kg)
68480	ו די	мъ
68480	B1-1	N D
68481	B14	$\mathbf{N}_{+}\mathbf{D}_{-}$
68483	B2-1	${f N}$. ${f D}$,
68485	B3-4)	${f N}$. ${f D}$.
BLANK		${f N}$. ${f D}$.
SPIKE RECOVERY		90%
DETECTION LIMIT	garage and the second of the s	1.0
METHOD OF ANALYSIS	en e	5030/8015

ChromaLab, Inc.

Jack Kelly

Analytical Chemist

Ali Kharrazi Organic Manager

CC

Environmental Services (SDB)

November 16, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Sampled: October 31, 1994 Extracted: November 2, 1994 Submitted: October 31, 1994
Analyzed: November 10, 1994

Project: CALTRANS/CHANG'S

Project #: 94-911

Client Sample ID: B1-SURFACE

Method: EPA 3550/8270

Matrix: SOIL

Dilution Factor: 1:100

CITCITE Dampie ID. Di Donine		7	¥•±00
		Reporting	D11 d-31
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
PHENOL	N D	5	
BIS(2-CHLOROETHYL) ETHER	N . D .	5	
2-CHLOROPHENOL	N . D	5 .	72%
1,3-DICHLOROBENZENE	${f N}$, ${f D}$.	5	
1,4-DICHLOROBENZENE	\mathbf{N} \mathbf{D} .	5	69%
BENZYL ALCOHOL	$\mathbf{N} \cdot \mathbf{D}$	10	
1,2-DICHLOROBENZENE	${f N}$. ${f D}$.	5	
2-METHYLPHENOL	${f N}$. ${f D}$.	15	
BIS (2-CHLOROISOPROPYL) ETHER	N.D.	5	
4-METHYLPHENOL	N D	5	
N-NITROSO-DI-N-PROPYLAMINE	N . D .	5	
HEXACHLOROETHANE	N . D .	5 .	
NITROBENZENE	N D	5	
ISOPHORONE	N.D.	5	
2-NITROPHENOL	N.D.	5	
2,4-DIMETHYLPHENOL	\mathbf{N} D	5	
BENZOIC ACID	\mathbf{N} \mathbf{D}	25	
BIS (2-CHLOROETHOXY) METHANE	$\mathbf{N} \cdot \mathbf{N} \cdot \mathbf{D} \cdot \mathbf{N}$	5	
2,4-DICHLOROPHENOL	N D	5 .	
1,2,4-TRICHLOROBENZENE	\mathbf{N} , \mathbf{D} .	5	73%
NAPHTHALENE	N .D.	5	
4-CHLOROANILINE	N.D.	10	
HEXACHLOROBUTADIENE	$\mathbf{N} \cdot \mathbf{D}$	5	
4-CHLORO-3-METHYLPHENOL	\mathbf{N} \mathbf{D}	10	
2-METHYLNAPHTHALENE	N D	5	
HEXACHLOROCYCLOPENTADIENE	${f N}$ ${f D}$	5	
2,4,6-TRICHLOROPHENOL	. N ., D .,	5	
2,4,5-TRICHLOROPHENOL	${f N}$ ${f D}$	5	
2-CHLORONAPHTHALENE	$N \cup D$	5	
2-NITROANILINE	N.D.	25	
DIMETHYL PHTHALATE	N . D	5	
ACENAPHTHYLENE	N ., D .,	5	
3-NITROANILINE	N D .	25	
ACENAPHTHENE	N D	5	76%
2,4-DINITROPHENOL	N.D.	25	
4-NITROPHENOL	N.D.	25	
DIBENZOFURAN	N.D.	5	
(continued on next page)	2. " 2 "	~	•
(contentaca on new page)			

Environmental Services (SDB)

Page 2

Submission #: 9410378

Project: CALTRANS/CHANG'S

Project #: 94-911 Client Sample ID: B1-SURFACE Method: EPA 3550/8270

Matrix: SOIL

110011001		Reporting	
	Sample	Limit	Blank Spike
COMPOUND NAME	mg/kg	mg/kg	Recovery
2,4-DINITROTOLUENE	N D	5	
2,4-DINITROTOLUENE 2,6-DINITROTOLUENE	N.D.	5	
DIETHYL PHTHALATE	N.D.	5	·
4-CHLORO-PHENYL PHENYL ETHER	N.D.	5	
FLUORENE	N.D.	5	
4-NITROANILINE	N.D	25	
4,6-DINITRO-2-METHYL PHENOL	N.D.	25 25	
N-NITROSODIPHENYLAMINE	N D	5	
4-BROMOPHENYL PHENYL ETHER	N.D.	5	
HEXACHLOROBENZENE	N.D.	5	
PENTACHLOROPHENOL	N.D.	25	
PHENANTHRENE	N.D.	5	
ANTHRACENE	N.D.	5	
DI-N-BUTYL PHTHALATE	N.D.	5	
FLUORANTHENE	N.D.		
PYRENE	N.D.	5 5	82%
BUTYLBENZYLPHTHALATE	N D	5	
3,3'-DICHLOROBENZIDINE	N.D.	10	
BENZO (A) ANTHRACENE	N.D.	5	
BIS (2-ETHYLHEXYL) PHTHALATE	N . D .	5	
CHRYSENE	N D	5	
DI-N-OCTYLPHTHALATE	N D	5	·
BENZO (B) FLUORANTHENE	N . D .	5	
BENZO (K) FLUORANTHENE	N D	5	
BENZO (A) PYRENE	N.D.	5	
INDENO(1,2,3 C,D) PYRENE	N.D.	5	
DIBENZO (A, H) ANTHRACENE	N.D.	5	
BENZO (G, H, I) PERYLENE	N.D.	5	
BENZO (G, H, I) PERILENE	N.D.	S	

ChromaLab, Inc.

Alex Tam

Analytical Chemist

Organic Manager

Environmental Services (SDB)

November 11, 1994

Submission #: 9410378

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller Project: CALTRANS/CHANG'S Project#: 94-911

Received: October 31, 1994

re: One sample for Volatile Organic Compounds analysis.

Sample ID: B1-4

Spl#: 68481

Matrix: SOIL

Sampled: October 31, 1994

Run#: 4545

Analyzed: November 3, 1994

Method: EPA 8240/8260

•		REPORTING	BLANK	BLANK SPIKE
	RESULT	LIMIT	RESULT	RESULT
ANALYTE	(ug/Kg)	(ug/Kg)	(ug/Kg)	(%)
ACETONE	N D	25	N.D.	
BENZENE	\mathbf{N} \mathbf{D}	5.0	N.D.	103
BROMODICHLOROMETHANE	N.D.	5.0	\mathbf{N} . \mathbf{D} .	New Agents
BROMOFORM	\mathbf{N} . \mathbf{D} .	5 . 0	\mathbf{N} . \mathbf{D} .	·
BROMOMETHANE	\mathbf{N} \mathbf{D} .	5.0	\mathbf{N} \mathbf{D}	· ·
2-BUTANONE	\mathbf{N} . \mathbf{D} .	5 ., 0	${f N}$ ${f D}$	
CARBON TETRACHLORIDE	\mathbf{N} D	5.0 5.0 5.0	$\mathbf{N}\cdot\mathbf{D}$,	·
CHLOROBENZENE	N.D.	5.0	\mathbf{N} \mathbf{D}	100
CHLOROETHANE	$\mathbf{N} \cdot \mathbf{D}$	5.0	\mathbf{N} . \mathbf{D} .	
2-CHLOROETHYLVINYLETHER	${f N}$ ${f D}$	5.0	${f N}$ ${f D}$	
CHLOROFORM _CHLOROMETHANE	\mathbf{N} . \mathbf{D} .	5.0	$\mathbf{N} \cdot \mathbf{D}$	
_CHLOROMETHANE	\mathbf{N} . \mathbf{D} .	5.0	N D	
DIBROMOCHLOROMETHANE	${f N}$, ${f D}$,	5 0	\mathbf{N} \mathbf{D} .	이 사용를 찾아보고 있다.
1,1-DICHLOROETHANE	$\mathbf{N} \cdot \mathbf{D}$	5.0 5.0	${f N}$, ${f D}$, ${f v}$	
1,2-DICHLOROETHANE	$\mathbf{N}\cdot\mathbf{D}$	5.0	\mathbf{N} . \mathbf{D} .	그 사람들은 회사 회사 기가 있다.
1,1-DICHLOROETHENE	$\mathbf{N} \cdot \mathbf{D}$	5.0	N D	97
1,2-DICHLOROETHENE (CIS)	\mathbf{N} \mathbf{D}	5.0 5.0 5.0 5.0 5.0 5.0	N D	
1,2-DICHLOROETHENE (TRANS)	N . D	5.0	N D	— · · · · · · · · · · · · · · · · · · ·
1,2-DICHLOROPROPANE 1,3-DICHLOROPROPENE (CIS)	N . D .	5.0	N . D .	- -
1,3-DICHLOROPROPENE (CIS)	N . D .	5 . 0	N.D.	
1,3-DICHLOROPROPENE (TRANS)	N D	5.0	\mathbf{N} . \mathbf{D} .	
ETHYL BENZENE	N D	5.0	N D	
2-HEXANONE	N.D.	5.0	N . D .	
METHYLENE CHLORIDE	N ., D .,	25	N . D .	
4-METHYL-2-PENTANONE	N D	5.0	\mathbf{N} . \mathbf{D} .	
STYRENE	N D	5.0	N.D.	
1,1,2,2-TETRACHLOROETHANE	N.D.	5 . 0	N.D.	
TETRACHLOROETHENE	38	5 . 0	N.D.	 97
TOLUENE	N . D .	5.0	N ., D .,	
1,1,1-TRICHLOROETHANE	N.D.	5.0	N . D .	- -
1,1,2-TRICHLOROETHANE TRICHLOROETHENE	N D N D	5.0 5.0	N D N D	97
TRICHLOROFLUOROMETHANE	IN D	5.0	N.D.	<i>51</i>
VINYL ACETATE	N.D. N.D.	5.0	N.D.	
VINYL CHLORIDE	N.D.	5.0	N.D.	
TOTAL XYLENES	N . D	5 . 0 5 . 0	N.D.	
TOTUT VITENDO	TA " TA "	٠. ٥	TA " TA "	

Oleg Newsov

Ali Kharrazi Organic Manager

hemist

2239 Omega Road,#1 • San Ramon, California 94583 (510) 831-1788 • Facsimile (510) 831-8798 Federal ID #68-0140157

QC OLEG 18:27:24

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: 6 samples for 7196

HEXAVALENT CHROMIUM - CR+6 SOIL analysis.

Sampled: November 1, 1994

Extracted: November 4, 1994 Matrix: SOIL

Method: EPA 7196

Analyzed: November 4, 1994 Run#: 4458

		I	EPORTING	BLANK	BLANK SPIKE
		HEXAVALENT CHROMIUM	LIMIT	RESULT	RESULT
Spl #	CLIENT SMPL ID	(mg/Kg)	(mg/Kg)	(mq/Kq)	(%)
68600	B1-7	N.D.	0.5	N.D.	100
68601	B1-10	N.D.	0.5	N.D.	100
68605	B4-SURFACE	N.D.	0.5	N.D.	100
68606	B4-1	N.D.	0.5	N.D.	100
68607	B4-5	N.D.	0.5	N.D.	100
68611	B5-6	N.D.	0.5 🔨	(N.D).	100
			11	// //	

Chemist

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for Metals analysis.

Sample ID: B2-4

Spl#: 68602
Sampled: November 1, 1994

Matrix: SOIL Run#: 4465

Extracted: November 4, 1994
Analyzed: November 4, 1994

Method: EPA 3050/6010

ANALYTE	RESULT (mg/Kg)	REPORTING LIMIT (mq/Kq)	BLANK RESULT (mq/Kq)	BLANK SPIKE RESULT (%)
ARSENIC	N.D.	0.25	N.D.	100
CHROMIUM	9.3	0.5	N.D.	93
COPPER	8.7	0.25	N.D.	100
LEAD	62	0.5	N.D.	101
NICKEL	7.4	0.5 ∩	$N \cdot \mathbb{R} \cdot \infty$	103
ZINC	32	0.25	и. ф. №	104
		\\ \ <i>\</i>	, // IX	

Doina Danet Chemist

John S. Labash Inorganic Super

Inorganic Supervisor

Environmental Services (SDB)

November 8, 1994

Submission #: 9411013

ENV. SOLUTIONS - PETALUMA

Atten: Cyd Miller

Project: CALTRANS/CHANG's

Project#: 94-911

Received: November 1, 1994

re: One sample for Metals analysis.

Sample ID: B2-7

Sp1#: 68603

Sampled: November 1, 1994 Method: EPA 3050/6010

Matrix: SOIL Run#: 4465

Extracted: November 4, 1994 Analyzed: November 4, 1994

ANALYTE	 RESULT (mq/Kq)	REPORTING LIMIT (mg/Kg)	BLANK RESULT (mg/Kg)	BLANK SPIKE RESULT (%)
ARSENIC CHROMIUM	N.D. 16 6.1	0.25 0.5 0.25	N.D. N.D.	100 93 100
COPPER LEAD NICKEL	15 13	0.25 0.5 0.5	N.D. N.D. N.D. (),	101 103
ZINC	26	0.25	N.D.	104

Doina Danet Chemist

John S. Labash Inorganic Supervisor

Environmental Services (SDB)

December 8, 1994

Submission #: 9412023

ENV. SOLUTIONS - PETALUMA

Atten: CYD MILLER

Project: CHANG/MARBLE TECH

Project#: 94-911

Received: October 13, 1994

re: 7 samples for STLC/7420 LEAD - PB AA analysis.

Sampled: October 31, 1994 Method: CA WET/EPA 3010/7420 Matrix: SOIL

Extracted: December 8, 1994

Run#: 4779 Analyzed: December 8, 1994

	LEAD	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
spl # CLIENT SMPL ID	(mg/L)	(ma/L)	(mg/L)	(%)
71230 B1-S	18	0.1	N.D.	102
71231 B2-1	9.6	0.1	N.D.	102
71232 B3-S	3.9	0.1	N.D.	102

ampled: November 1, 1994 Method: CA WET/EPA 3010/7420 Matrix: 50IL Extracted: December 8, 1994 Analyzed: December 8, 1994 Run#: 4779

	LEAD	REPORTING LIMIT	BLANK RESULT	BLANK SPIKE RESULT
Spl # CLIENT SMPL ID	(mq/L)_	(mq/L_)	(mq/L)	(%)
71234 B2-4	1.7	0.1	N.D.	102
71235 B4-5	8.3	0.1	N.D.	102
71236 B5-1	9.0	0.1	N.D.	102

Matrix: SOIL

Extracted: December 8, 1994

Sampled: November 8, 1994 Method: CA WET/EPA 3010/7420 Run#: 4779

Analyzed: December 8, 1994

		REPORTING	BLANK	BLANK SPIKE
	LEAD	LIMIT	RESULT	RESULT
<u>spl # CLIENT SMPL ID</u> 71238 B6-1	(mg/L_)	(mg/L_)	(ma/f)	(%)
71238 B6-1	0.8	0.1	N. D.	102

Chemist

	18.7				CH	AIN	O V	F C	US]	'OD'	YRE	CO	RD		·	<u> </u>	1000	f 1.1					
nip To: <u>Cuirona</u>	1LAB	Inc.		Page		/	C	of	Z		<u></u> ;				1		<u> </u>		Anal	ysis	, , , , ,		
im; Ruzo				Project	Name	CA	LTK	ANS	<u> </u>	HAN	<u>65</u>			Çelê Gerê	//		T.		3/		/ */ /	i de la companya de l	
ttn: 11026			_	Ргојест	No	_7	4-	-91	7	-/-	<u> </u>			1)/¿)/ç	* T	Z0	/,0			
* Note	CHROM	ETO		. Site Lo	cation.	7"	LI	IDEA	<u>, S</u>	5/0m	KLAU)				14/	/ /	$\langle \cdot \rangle$	1/15/		6/	\forall /		
SAMPL				Date	<u> </u>				1 1 2 1 1 1	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				10		% (/ .	3/	7 m	/			
		1 ~	.	Sample T	ype	함	g.	Sar	mple	Contai	ners	1	SX.			3/		2%	0//	2/	*/		
Sample ID	Depth	Date	Time	Water Solid	Other	Comp	Grab	Vol.	No.	Туре	Pres.	//	ZS		<u>}0</u>		/ \	15	\mathcal{Y}	<u>/Q</u>	RE	MARKS	
B/-7	7'	1974	0915	X					\overline{I}	55.	N/o	/		V	V		\checkmark	V	1				
B1-10	10		0935	X			}		1_	<u>5.s.</u>		V	V	V	V		V,	~	1		30	~ ~ ·	
B2-4	4'	1/	1025	X		_			1		NO	V	V	1		V	V				<u> </u>	5PK	
<u> 82-7</u>	<i></i>	 	1100	X	H 1 T		\dashv	- 4	<u> </u>	<u>5.S.</u>		V	<u> </u>	V		V	<u> </u>				TURN AT	CINOOL	-
B2-10	10,	 	1115	X					+	S.S.			V.			V	-						
<u> 184 - SURFACE</u> 18 4 - 1	10		1320	X				<u> </u>	1	5.5. 5.5.	NO:	V	V					 					
B4-5	5	∦	1345	X		_			τ	55	No												
B5-SURFACE		1-1-	1425	×		1		_	\overline{J}	5.5													
85 - L	1		1450	×					1	-	NO	1/	V.	1		V				V			
B5-4	4	AA	1515	Xc				·	1	5.5.	NO	1/	1	V		V	V						
otal Number of Sam	otes Shippe	ed:	Sampler	's Signatur	e: \	~ <i>t</i> .	- •	۱,	\bigcirc	() (* ************************************		
	the food at the control of the same		gnature			1				**********				-	(Comp	any				Date	Time	
telinquished by		LN)	() (\mathcal{T}						FAL	VIKO	A J Fr A	FA.T			UTION	/S		15T Nov 1994	1616	
eceived by				1970		2							-	_	100		,	/		21	1 20 190		_
delinquished by															7.7.		-			٠.			
eceived by	7																						
Relinquished by																							
Received by												<u> </u>							·				
Special Instructions /	-													})	ENV	IRO					UTIONS, IN	C.	•
XI E	NVIRON	IMENT	AL SOI DOWELL	-UTION	2	·		• •									-2	Teo Trvin	chnole e, CA	ey E -927)rive 748		
]	201 N	. Mc	DOWELL	- BLVD	>.										1	(714)					1 4) 727- 7399		
	ILTAL	UMA	CA.	14954	· .		. :					1]]	ENV	IRO	NM	EN'	AL	SOI	LUTIONS, IN	C.	
Please send signed co	nu with ra	mite to the	• V.J.A.E.V.IA.	ION OF	J.M	W	1,0	î 15	12							2					Suite-103 -94598.		
A IGANG SCHU SIPIRAL CO	ba with ter	ted by an	MIIDINI.		كمللإسب			Lin Kor								(510					510)-935-5412		

			1			CHA	IN (OF C	CUS	IOD	Y RE	CO	RD-				, 194 2 194		<u></u>	30.4					
Ship To: CHROMA	- Pag	Page of								Analysis															
Altn: KUDO	4 Pro	Project Name CALTRANS CHANGS												N	//		1	[]	7						
	Project No. 94-9//										1	\mathcal{J}		5/5	\Re	Ž)/x	9/							
* Wate:	Site Location 7th Flatoen Sts OAKLAND									`	K.S.	1 4	/ 9				$\langle \alpha \rangle$								
1	Da	Date 310aT 1974									7	Ĭ.	W.	/.	X	4	/	//							
			T	Same	ple Type	ا م	1	T		<u> </u>		,	N	(\$)		5	2-7	-w		\\\\\					
Sample ID	Depth	Date	Time	}	Solid Oth	1 : 달.	-jrab	Vol.	No.	Conta	,	1		ia E		7	1	1	X.	Y		<u> </u>	REMA	ARKS	
Bi C actor	0	3100	1950		X Oild Oild	er O	10	V 01.	NO.	Type		_	71			/	7	1/	V		/ 				
BI-SURFACEZ BI-I		1904	1025		\$ 					55	No	\overline{V}	V	V				V	V			1.5	1.	EE	R
BI-A	A,		1200	25 m 1 2	Ŷ	-	+		1 1	5.5		V	1	V	· 1/	<u> </u>		V	100	<u>. د ت</u> س	1	AU.	1/1/	1212	<i></i>
BZ-SUEMCE	0'	 	1005	 -	$\frac{\lambda}{1}$	-	┼		\vdash	5.5		V		V	<u> </u>						7.0	ラドハ	H	2004	1D-
B2-1	1	11/	1010	 	$\langle \cdot $		┼	-	1	22	NO	i	10												
B3-SURFARE	0		1111		\Im	_			1	55	1			1/	<u> </u>					<u> </u>					
B3-1	Ĭ,	₩		1	y		 		1		NO		V	V		V	r				3				
			1			1						_	 											 -	
				1		_		 		- 	 		1												
		 	-						1						 			• :							
									-																
Total Number of Samp	lec Chinne	d. 7	Sample	e'e Sian	atura		¢.	1	i i		1 25	$\left(\cdot, \right)$											1,51		
Total Number of Samp.	ies Simppe			i s Sigii	ature.	- 2		°-7	<u> </u>		<u> </u>	<u> </u>					-								and the second second
Signiture										· · · · · · · · · · · · · · · · · · ·		Company Date									Tin				
Relinquished by	A-u	W. '	معالمت المساورة	<i></i>		_}				· · · · ·		ENVIRONMENTAL SOLUTION 310-1994 1555													
Received by										6/20malad 3/10/19/99															
Relinquished by					·																				
Received by		<u> </u>	<u> </u>					• •																	
Relinquished by					<u> </u>			: .				<u> </u>	· ·	<u> </u>	<u> </u>					- '					©.
Received by				- : '									·		· · · · ·						<u> </u>	· ·	<u> </u>	·	
Special Instructions / Shipment / Handling / Storage Requirements: MENVIRONMENTAL SOLUTIONS FAC 1201 N. WC DOWELL BLAD PETALUMA / CA. 94954												ENVIRONMENTAL SOLUTIONS, INC. 21 Technology Drive ITVINE, CA-92718 (714) 727-9336 FAX-(714) 727-7399													
Please send signed copy with results to the ATTENTION OF: The property of the ATTENTION OF: The property of the right indicated by an The property of the right indicated by an The property of the pr										-ENVIRONMENTAL SOLUTIONS, INC. 2815 Mitchell Drive, Suite 103 Walnut Creek, CA-94598 (510) 935-3294 FAX (510) 935-5412															
Please send signed cop at the address t o the ri	gnt indicat	ted by an	8 9 .											al de Carlos de La con tractor de la contractor de la co		(310)	- دود ر	3294	r/	ΔΛ. (C	10) 933	-5412			·

MILLER

CHAIN OF CUSTODY RECORD

Page.

TWO WIETLY TURN AROUND

Analysis

ENVIRONMENTAL SOLUTIONS, INC.

21 Technology Drive

Irvine, CA-92718

ENVIRONMENTAL SOLUTIONS, INC.

(714)-727-9336__FAX_(714)-727-7399___

2815 Mitchell-Drive, Suite 103 -Walnut-Creek, CA-94598

(510) 935-3294 FAX (510) 935-5412

ENVIRONMENTAL SOLUTIONS

Received by

Special Instructions / Shipment / Handling / Storage Requirements:

Please send signed copy with results to the ATTENTION OF:

& ENVIRONMENTAL SOLUTIONS

PETRLUMA, CA. 94954

1201 N. Mc Dowell BLVD

Ship To: CHEOMA LAB

DISTRIBUTION

REPORT OF FINDINGS SECOND SITE GROUP: CHANG'S AUTOMOTIVE AND MARBLE TECHNICS WEST, CYPRESS RECONSTRUCTION, OAKLAND, CALIFORNIA

Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05

Environmental Solutions Inc.'s Project Number: 94-911

February 21, 1995

California Department of Transportation Environmental Engineering Branch 111 Grand Avenue, 14th Floor Oakland, California 94623-0660
Attention: Mr. Joel Howie
Department of Toxic Substances Contro 700 Heinz Avenue, Suite 200 Berkeley, California 94710-2737
Attention: Ms. Lynn Nakashima
Environmental Solutions, Inc 1201 North McDowell Boulevard Petaluma, California 94954

94911rof.chg February 21, 1995 Caltrans Contract Number: 53U495 Task Order Number: 04-192211-05