

THIRD QUARTER 1995 GROUNDWATER MONITORING REPORT

NESTLE FOOD COMPANY (FORMER CARNATION DAIRY FACILITY) OAKLAND, CALIFORNIA

NOVEMBER, 1995

THIRD QUARTER 1995 GROUNDWATER MONITORING REPORT

NESTLE FOOD COMPANY (FORMER CARNATION DAIRY FACILITY) 1310 14TH STREET OAKLAND, CALIFORNIA

PRESENTED TO:

ALAMEDA COUNTY HEALTH AGENCY DEPARTMENT OF ENVIRONMENTAL HEALTH DIVISION OF CLEAN WATER PROGRAM UST LOCAL OVERSIGHT PROGRAM 80 SWAN WAY, ROOM 200 OAKLAND, CALIFORNIA 94621

ON BEHALF OF:

NESTLE USA, INC. 800 NORTH BRAND BOULEVARD GLENDALE, CALIFORNIA 91203

PREPARED BY:

PARK ENVIRONMENTAL CORPORATION 8084 OLD AUBURN ROAD, SUITE E CITRUS HEIGHTS, CALIFORNIA 95610

TABLE OF CONTENTS

1.0	INTRODUC	TION	
	1.1 Scop	e of Services	
	_		
2.0	GROUNDW	ATER MONITORING WELL SAMPLING METHODOLOGY 1	
	2.1 Grou	ndwater Measurements	
		toring Well Purging	
		ndwater Analyses	
	2.4 Grou	ndwater Sampling	,
3.0	FINDINGS		
3.0	3.1 Grou	ndwater Conditions	
		ndwater Flow Direction and Hydraulic Gradient	
	3.1.2 Occu	rrence of Free Product	
		ts of Laboratory Analyses	
4.0	PREPARAT	ION OF REPORT5	
FIGU:	RES		
	Eiguro 1	Site Location Map	
	Figure 1	Site Location Map Groundwater Elevation, September, 1995	
	Figure 3	Free Product Map	
	Figure 4	Dissolved Chemical Constituents Map	
	1 iguilo i	T. C.	
TABL	ES		
	Table 1	Groundwater Measurements, September 21, 1995	
	Table 2	Groundwater Purging Data, September 21, 1995	
	Table 3	Free Product Thickness Summary	
	Table 4	Groundwater Analyses Summary	
APPE	NDICES		
	Appendix A	Product Volume Calculations, June and September, 1995	
	Appendix B	Laboratory Reports and Chain-of-Custody Documentation	

1.0 INTRODUCTION

Nestle USA, Inc., (Nestle) has retained Park Environmental Corporation (Park) to provide environmental services at the former Carnation facility in Oakland, California. A site location map is shown on Figure 1. Nestle has authorized Park to prepare this Quarterly Groundwater Monitoring Report (QMR), which includes brief groundwater sampling methodology and findings sections.

The Alameda County Health Agency (ACHA) is the lead environmental agency. This work was requested by Ms. Susan Hugo and Ms. Jennifer Eberle with the ACHA in accordance with the meeting between ACHA, Mr. Richard Hiett of the California Regional Water Quality Control Board (CRWQCB), Mr. Walter Carey with Nestle, and Mr. Richard Zipp with Park, on September 17, 1992. This site is referenced by the ACHA as 1310 14th Street.

1.1 Scope of Services

Specific tasks completed during this investigation included the following:

- Measure depth to water and/or free product thicknesses in 71 monitoring wells;
- Calculate groundwater flow direction in the vicinity of the free product plume and in the vicinity of the property boundaries;
- Purge, sample and analyze nine monitoring wells (MW-2, MW-3, MW-6, MW-25, MW-26, MW-28, MW-29, MW-30, and MW-32) for total petroleum hydrocarbons as gasoline and diesel (TPH G and TPH D; EPA Method 8015), benzene, toluene, ethylbenzene, and total xylenes (BTEX; EPA Method 8020) and two samples (MW-26 and MW-32) for halogenated volatile organic compounds (HVOC; EPA Method 8260). In addition to the above mentioned analyses, modified EPA 8015 for gasoline tests were performed on an equipment blank and field duplicate sample for QA/QC purposes; and
- Prepare this QMR documenting the findings.

2.0 GROUNDWATER MONITORING WELL SAMPLING METHODOLOGY

2.1 Groundwater Measurements

Prior to obtaining depth to groundwater measurements in the sampled wells, the wells were checked for the presence of free product using a new disposable bailer for each well. Depth to groundwater measurements in the sampled wells and unsampled wells were made using an ACTAT Corporation Model P100 Olympic well probe. Free product thicknesses were measured with a KECK: KIR-89 Interface probe. The depths to water or product were measured from the top of the well casing.

Groundwater elevations were calculated using measurements from surveyed monitoring wells that did not contain free product. Results of these measurements are included in Table 1.

2.2 Monitoring Well Purging

Each monitoring well was purged with a submersible pump until at least three well volumes of water were removed. All of the wells sampled are constructed of 4-inch diameter PVC well casing (except MW-6, which is 2-inches in diameter). All purging and sampling equipment was washed in a solution of trisodium phosphate and rinsed in distilled water prior to each usage, to reduce the potential for cross contamination between wells.

As groundwater was removed from the wells, pH, temperature and conductivity were monitored and recorded on a field data sheet. These field documents are kept in a permanent project file. A summary of the data obtained during the purging of the wells is presented in Table 2.

The wells were allowed to stand for a period of time to regain equilibrium prior to sampling. Groundwater purged from the wells was placed into DOT approved 55-gallon drums, pending receipt of analytical results to select the appropriate disposition.

2.3 Groundwater Analyses

Analyses of the groundwater were performed by a California certified laboratory in accordance with state guidelines and EPA protocols. Groundwater samples from nine monitoring wells (MW-2, MW-3, MW-6, MW-25, MW-26, MW-28, MW-29, MW-30 and MW-32). were analyzed for TPH G, TPH D and BTEX. In addition, groundwater samples from monitoring wells MW-26 and MW-32 were analyzed for HVOC. Monitoring well MW-27 located in 16th Street was not sampled, due to a vehicle obstructing access.

2.4 Groundwater Sampling

Proper sampling collection and handling are essential to assure the quality of the data obtained from the given sample. Therefore, each groundwater sample was collected using a new sterile disposable bailer. The sampled water was placed in laboratory prepared 40 millimeter glass containers. The sample containers were filled with water to the top to expel air and were sealed with Teflon-lined caps. Water sample containers were labeled with the name of the sampler, the date, the job number, the preservative, and an identifying well number. The samples were transported to a California certified laboratory. Full chain-of-custody (COC) protocol was followed during sample handling and delivery.

3.0 FINDINGS

3.1 Groundwater Conditions

3.1.1 Groundwater Flow Direction and Hydraulic Gradient

Groundwater monitoring wells containing free product were not used for the calculations of groundwater flow direction or hydraulic gradient. Groundwater measurements taken by Park on September 22, 1995 indicate that groundwater flow beneath the site continues to be in a north-northwesterly direction. The hydraulic gradient was calculated to be approximately 0.0017 or 0.17-feet drop per 100-feet of run beneath the site. The flow direction of the groundwater is shown graphically on Figure 2. The measurements taken during this sampling event show the groundwater elevation ranging from about 3.91 to 5.48-feet above mean sea level (MSL), which is consistent with elevations monitored during the previous years. All groundwater measurement data collected are summarized in Table 1.

3.1.2 Occurrence of Free Product

Free product was present in 18 of the 66 monitoring wells that Park monitored for this investigation. The thicknesses of free product ranged from 0.08-feet to 1.41-feet, with an average thickness of 0.67-feet in the free product measured wells.

In comparison to the June, 1995 quarterly data, the September, 1995 data indicate a decrease in the average free product thickness and the lateral extent of product at the site. Soil product volumes for the June and September, 1995 sampling events are approximately 3,456 and 3,388-gallons, respectively, indicating a 68-gallon decrease between sampling events. Product volumecalculations, which are estimated based on average product thickness and the areal extent of the product plume, are included in Appendix A. During the latest sampling round, 18 monitoring wells contained measurable quantities of free product.

Free product measurements for sampling rounds since November, 1993 are summarized in Table 3. The occurrence of free product is shown on Figure 3.

3.1.3 Results of Laboratory Analyses

Laboratory test results for TPH gas and diesel analyses of groundwater samples collected on September 21, 1995 for this investigation as well as the results of previous quarterly sampling events since March, 1993 are summarized in Table 4.

Analytical results for selected wells and the estimated extent of dissolved TPH G and TPH D in the groundwater plume are shown in Figure 4. Dissolved TPH G and TPH D concentrations were reported in MW-3 and MW-25.

Concentrations of dissolved benzene were reported in MW-2, MW-3, and MW-6. Laboratory reports and COC documents are included as Appendix B.

Analytical results for well MW-3 indicate substantial increases in benzene concentrations over the last three quarters. Analysis of laboratory chromatograms for the period in question, however, does not explain the increased levels. Park will continue to monitor the wells and review analytical data in detail, but offers no explanation at this time for the apparently anomalous data.

PREPARATION OF REPORT 4.0

Firm Preparing Report

Park Environmental Corporation 8084 Old Auburn Road, Suite E Citrus Heights, California 95610

Report Prepared by:

This report was prepared by Park Environmental Corporation (Park). Mr. Richard J. Zipp, Principal Hydrogeologist is the qualified person responsible for overseeing this project. This report was written by Ms. Kathleen A. Volk, Engineering Aide for Park.

This report was prepared to assist the property owner in compliance with California Code of Regulations, Title 23, Chapter 16, Article 5, Section 2652(d), which requires the submittal of reports to regulatory agencies at a minimum every three months.

The monitoring services performed by Park were performed in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions.

The data presented in this report are representative of conditions at the site when monitoring and sampling were performed. The findings presented are based on the current data and past written and/or oral information provided by the regulatory agencies or Nestle USA.

This report has been reviewed by the client and they concur with the findings herein. If you have any questions or need additional information please call the undersigned at (916) 723-1776. TERED GEOLOGIO

Thank-You,

Richard Jozipp, R.G., C.E.O

Principal Hydrogeologist

No. 3611 PIE OF CALIFO

GRAHOIR ZIPP

Kathleen A. Volk Engineering Aide

F:\5008\KV\naj\GMR1195.rpt

Mr. Binayak Acharya, Nestle USA, Inc. pc

FIGURES

**

TABLES

TABLE 1 GROUNDWATER MEASUREMENTS

SEPTEMBER 22, 1995

Sample ID	TOC Depth to Product	TOC Depth to Water	Casing Elevation	Product Thickness	Well Diameter	Groundwater Elevation
	(feet)	(feet)	(feet)	(feet)	(inches)	(feet)
MW-2 *	-	9.42		•	4	
MW-3 *	-	9.08	14.30	-	4	5.22
MW-5	-	**	14.41		4	-
MW-6*	-	8.63	14.12	-	2	5.49
MW-7	9.30	9.51	14.29	0.21	44	4.78
MW-8	9.29	9,53	14.20	0.24	, 	4.67
MW-11	-	-	-	-	4	•
MW-13	+	-	14.85		4	
MW-22	9.42	9.74	14.44	0.32	2	4.70
MW-23	9.35	10.06		0.71	4	
MW-24	9.35	10.76	14.67	1.41	2	3.91
MW-25 *	-	7.45	12.87	•	4	5.42
MW-26 *		7.23	12.71	-	4	5.48
MW-27 ·	-	-	14.04		44	
MW-28 *	_	8.37	13.45	_	4	5.08
MW-29 *	-	7.58	12.60		4	5.02
MW-30 *	_	9.41	14.54	-	44	5.13
MW-32 *	-	9.32	14.76	•	4	5.44

TOC Top of casing

ND

* Groundwater samples obtained for this investigation

No measurement None detected

TABLE 1 CONTINUED GROUNDWATER MEASUREMENTS

SEPTEMBER 22, 1995

Sample ID	TOC Depth to			Product	Well	Groundwater
	Product (feet)	Water (feet)	Elevation (feet)	Thickness (feet)	Diameter (inches)	Elevation (feet)
		Control of the Control				
PR-20	8.75	9.87	14.36	1.12	2	4.49
PR-21	9.64	10.34	14.37	0.70	2	4.03
PR-22_	9.08	9.79	14.43	0.71	2	4.64
PR-23	8.56	8.68	14.47	0.12	2	5.79
PR-24		9.27	-		<u>-</u>	-
PR-26	9.31	9.44	14.38	0.13	2	4.94
PR-27	-	9.12	-		2	-
PR-28		9.09	-	-	2	-
PR-30	-	DRY	<u>-</u>	<u>-</u>	-	•
PR-33	-	9.05	14.36		2	5.31
PR-34	9.00	10.03	14.49	1.03	_2	4.46
PR-35	9.10	9.83	14.55	0.73	2	4.72
PR-36 _	-	DRY	-	-	-	
PR-37	9.02	9.62	-	0.60	-	
PR-39	-	9.39	•	-	<u> </u>	
PR-41	-	DRY	_	<u> </u>	2	
PR-42	-	9.60	-	-		-
PR-43	-	9.72	-		-	
PR-44		DRY	<u>-</u>	<u>, , -</u> .	2	
PR-45	-	9.44			2	
PR-46	-	9.55	-	-	2	-
PR-47	8.63	8.71	<u>-</u>	0.08	2	
PR-48	9.39	9.89	-	0.50	2	
PR-49	•	9.47	<u>*</u>	\ -	2	-

TOC Top of casing

ND

Groundwater samples obtained for this investigation

No measurement None detected

TABLE 1 CONTINUED GROUNDWATER MEASUREMENTS

SEPTEMBER 22, 1995

Sample ID	Product	TOC Depth to Water	Casing Elevation (feet)	Product Thickness (feet)	Well Diameter (inches)	Groundwater Elevation (feet)
	(feet)	(feet)	tieet	110019	(menes)	11000
PR-50	•	9.21		-	2	-
PR-51	-	DRY		-	2	-
PR-52		9.43	•	•	2	-
PR-53	8.81	9.89		1.08	2	
PR-54	<u>-</u>	9.39			2	-
PR-55	_	DRY		-	2	
PR-56	-	4,93	+		2	-
PR-57	-	8.95	-	•	2	
PR-58	8.82	10.00	-	1.18	2	-
PR-59	-		-	-	2	
PR-60	-	9.62	-	-	2	-
PR-61	-	9.40	-	-	2	_
PR-62	-	9.60			2	
PR-64	9.70	10.85		1.15	4	
PR-65	-	9.02	,		2	
PR-66	-	9.12	-	-	2	-
PR-68	-	9.27	-		2	-
PR-69	-	9.02	•	-	2	-
PR-74		-	-	-	2	
PR-75	-	-	`\• <u> </u>	-	2	-
PR-76	-	9.45		-	2	_
PR-77	-	9.15	-		2	_
V-89	-	r .	4 ·	-	4	-
V-90	-	DRY		-	4	-

TOC Top of casing

* Groundwater samples obtained for this investigation

No measurement

ND None detected

TABLE 2 GROUNDWATER PURGING DATA

SEPTEMBER 21, 1995

Sample ID	Total Gallons	Fiq	Specific	Femperature in
	Removed		Conductance	Fahrenheit
			x 1,000 (umhos/cm)	
			0.050	CO 1
MW-2-P	0	7.02	0.853	68.1
	8	6.63	0.849	68.2
	16	6.52	0.818	67.9
	25	6.49	0.825	67.9
MW-3-P	0	6.55	0.948	69.9
	10	6.48	0.950	69.1
	20	6.47	0.952	68.5
	30	6.48	0.949	68.3
MW-6 *	0	6.87	0.538	68.7
	1	6.78	0.540	68.1
	2	6.72	0.541	67.6
	3	6.74	0.537	67.8
MW-25 **	0	7.43	0.426	68.9
172,17 220	7	7.07	0.965	66.3
	14	6.87	0.979	65.7
MW-26	0	6.75	0.881	67.1
141 44 -20	10	6.62	0.772	64.9
	20	6.57	0.759	65.0
	31	6.54	0.773	64.5
MW-27 ***	-	-	-	-
MW-28	0	8.87	0.663	63.3
2.2	10	7.52	0.571	66.3
	20	6.84`- `	0.577	65.1
	31	6.68	0.589	64.3
MW-29	0 _	7.03	0.461	67.1
1.11.	10	7.02	0.402	67.1
	20	7.04	0.405	67.2
	30	6.90	0.358	69.8
		i		
MW-30	0	7.07	0.571	67.5
111,11 50	7 -	6.98	0.580	66.8
	14	6.99	0.579	66.5
	21	6.95	0.573	66.7
MW-32	0	6.46	0.756	70.1
171 11 52	8	6.46	0.767	71.8
	16	6.45	0.772	70.9
	25	6.47	0.775	70.3

2-inch well hand bailed using a new disposable bailer

Well was pumped dry at approximately 17 gallons

*** Well not accessible

No information

TABLE 3
PRODUCT THICKNESS

A utilities se							
11/04/93	02/24/94				03/13/95	06/09/95	09/22/95
		Produ	et Thickne	ss (ft.)			
			909 (0.00)				·
0 70		0.07	0.01	0.04	,,,,,		0.01
							0.21
					•		0.24 0.32
			ľ				
	0.07			1			0.71
	-						1.41
							1.12
							0.70
							0.71
				0.06			0.12
0.60	0.54			-	'	ND	0.13
-	-					-	DRY
					1		1.03
0.62							0.73
-							DRY
							0.60
		0.13	0.43	0.03	ND		DRY
		-	-	-	-		DRY
0.17	5.27	-	-	-	-		ND
0.75	0.41	-	-		-		0.08
1.12	0.20	0.83	0.07	1.43	0.64		0.50
	3.24	-	-	-	- 1		ND
1.08	1.58	-	-	-	-		-
-	6.57	0.01	0.72				ND
1.01	5.09	0.45	0.05	0.03			ND
1.15	3.01	0.61	0.49	1.52	ND	1.55	1.08
0.97	0.99	- '	0.08	0.01	ND	ND	ND
	0.70	0.87	-	0.01	-	ND	DRY
	1.30	0.89	0.15	1.48	ND	ND	ND
_		-		-	-	ND	ND
0.96		1.48	0.89	2.15	1.31	1.34	1.18
		1.03	- \	0.01	-	ND	ND
		-	<u>-</u> ` `	_	-	ND	ND
	0.11	0.09	1.06	2.15	1.03	1.17	1.15
			-	_	- i	ND	ND
		-			-	-	ND
	-	0.23	_	_	-		ND
_	1.41	0.94	0.16	1.68	0.02	0.02	DRY
	0.79 0.47 1.83 1.21 1.77 0.91 0.63 0.98 0.67 0.60 - 0.66 0.62 - 0.41 0.59 0.24 0.17 0.75 1.12 - 1.08 - 1.01 1.15 0.97 1.48 0.90	0.79	0.79 1.14 0.26 0.47 0.44 0.31 1.83 1.54 1.14 1.21 0.07 1.79 1.77 - 0.97 0.91 1.15 1.45 0.63 - 1.39 0.98 1.43 0.90 0.67 0.36 0.38 0.60 0.54 0.39 - - 2.81 0.66 1.17 1.07 0.62 1.26 1.70 - 1.13 1.13 0.41 1.29 0.96 0.59 0.53 0.13 0.24 0.22 - 0.17 5.27 - 0.75 0.41 - 1.12 0.20 0.83 - 6.57 0.01 1.01 5.09 0.45 1.15 3.01 0.61 0.97 0.99 - 1.48	0.79 1.14 0.26 0.01 0.47 0.44 0.31 0.31 1.83 1.54 1.14 0.19 1.21 0.07 1.79 0.68 1.77 - 0.97 0.39 0.91 1.15 1.45 0.88 0.63 - 1.39 0.42 0.98 1.43 0.90 0.47 0.67 0.36 0.38 0.17 0.60 0.54 0.39 0.17 - - 2.81 1.21 0.66 1.17 1.07 0.37 0.62 1.26 1.70 0.12 - 1.13 1.13 0.37 0.62 1.26 1.70 0.12 - 1.13 1.13 0.33 0.41 1.29 0.96 0.14 0.59 0.53 0.13 0.43 0.24 0.22 - - 0.75		0.79	0.79

No information

ND None detected

Aug.
FP
Thickness
as reported
by Park:

1.85 0.86 0.41 0.82 1.02 0.93 0.67'

_

TABLE 4 GROUNDWATER ANALYSES SUMMARY EPA METHODS 8015, 8020 AND 8010

Sample ID	Date	971	15	l	EPA MET	HOD 20		8010
		TPH G	TPH D	В	T	E E	X	Chlorinated
				2	2.40	r_⊊AN		Compounds (ug/l)
		(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ME/I)
MW-2	03/23/93	ND	ND	ND	ND	ND	ND	ļ <u>.</u>
14114-2	07/27/93	ND	ND	ND	ND	ND	ND	_
	11/05/93		_	_	_	_		_
1	02/25/94	ND	ND	ND	ND	ND	ND	-
!	06/03/94	ND	ND	ND	ND	ND	ND	-
1	08/31/94	ND	ND	ND	ND	ND	ND	-
	12/22/94	ND	ND	ND	ND	ND	ND	-
 	03/13/95	ND	ND*	0.8	ND	ND	ND	-
	06/09/95	ND	ND	ND	ND	ND	ND	-
 	09/21/95	ND	ND	0.7	ND	ND	ND	-
	· · · · · · · · · · · · · · · · · · ·							
MW-3	03/23/93	300	ND	35	2.9	2	3.2	-
	07/27/93	220	ND	97	1 1	4	1.1	-
]	11/05/93	170	ND	4.9	ND	ND	1.2	-
	02/25/94	100	ND	42	ND	ND	ND	-
 	06/03/94	320	ND	120	8.2	8.4	4.5	-
	08/31/94	ND	ND	83	1.1	5.3	2.9	-
<u> </u>	12/22/94	3800	270	1460	18	100	50	-
	03/13/95	14000	1700	3600	260	270	280	-
i }	06/09/95	3700	120	4700	58	140	71	<u> </u>
	09/21/95	14000_	300	9800	58	600		-
	00/00/00		NTO	NTO	MD	ND	ND	
MW-6	03/23/93	ND	ND ND	ND	ND ND	ND	ND ND	<u> </u>
[[]]	07/27/93	ND	ND ND	ND ND	ND ND	ND ND	ND ND	
	11/05/93	ND	ND .	ND ND	ND ND	ND ND	3.5	[
	02/25/94	ND 69	ND ND	2.7	ND ND	ND	C.C DN	Ĭ
	06/03/94	ND	ND ND	ND	8.7	1.6	3.5	[
	08/31/94 12/22/94	ND ND	ND*	ND	ND	ND	ND ND	Ĭ
	03/13/95	ND ND	ND	1.2	ND .	ND	ND	
	03/13/93	ND ND	ND ND	0.6	ND ND	ND	ND ND	
	09/21/95	ND ND	, ND	ND	ND	ND ND	ND ND	. ↓
	03/41/33	HD	. 110	110	1,10	1,10		

TPH G	Total petroleum hydrocarbons in the gasoline range
TPH D	Total petroleum hydrocarbons in the diesel range
ug/l	Micrograms per liter or parts per billion
ND	Not detected at methiod detection limits. See specific laboratory reports for method detection limits
ND*	Anomalous peak, phalate, reported. Chromatogram does not have a diesel like pattern.
BTEX	Benzene, toluene, ethylbenzene, and xylenes
_	No information

TABLE 4 CONTINUED GROUNDWATER ANALYSES SUMMARY EPA METHODS 8015, 8020 AND 8010

Sample ID	Date	80	15		EPA MET 80	HOD 20		8010
		TPHG	TPH D	В	T	E	X	Chlorinated
		(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Compounds (ug/l)
MW-25	03/23/93	ND	ND	ND	ND	ND	ND	_
IVI W -23	03/23/93	ND ND	ND	ND	ND	ND	ND	_
	11/05/93	170	ND	4.2	4.4	2.5	20	_
	02/25/94	ND	ND	2.1	ND	ND	ND	<u>-</u>
	06/03/94	97	ND	2.4	14	ND	3.4	-
	08/31/94	ND	ND	0.5	ND	ND	ND	-
	12/22/94	ND	*	0.5	ND	ND	ND	-
	03/13/95	150	950	0.58	ND	ND	ND	-
	06/09/95	ND	60	0.8	ND	ND	ND	-
	09/21/95	50	ND	ND	ND	ND	ND	-
	00/00/00	9000	1200	100	190	55	330	ND
MW-26	03/23/93	7000	1300	180 470	96	30	80	140*
İ	07/27/93	1800	ND ND	470 4700	1300	9	1400	120*
	11/05/93	19000 14000	ND	4800	570	200	860	28*
	02/25/94	12000	ND ND	4100	300	120	230	140*
	06/03/94 06/03/94	12000	עואו	4100	500	120	230	1.7**
	06/03/94	-	_	_	_	- -	_	0.84***
į	08/31/94	93000	1400	4100	360	170	450	*****
	12/22/94	5000	560	1030	170	85	290	[1]
	03/13/95	3000	810	320	19	23	66	*
	03/13/95	-	-	- 1	•	-		**
	06/09/95	10800	310	. 14000	64	31	230	3.1*
	06/09/95		•	-		-	-	240**
Į	06/09/95		-	-	-	-	-	1.0****
	09/21/95	8000	200	1900	160	160		120*
í	09/21/95	-	- [-	-	•	- 1	1.3**

TPH G Total petroleum hydrocarbons in the gasoline range TPH D Total petroleum hydrocarbons in the diesel range ug/l Micrograms per liter or parts per billion

ug/l Micrograms per liter or parts per billion
ND Not detected at methiod detection limits. See specific laboratory reports for method detection limits

ND* Anomalous peak, phalate, reported. Chromatogram does not have a diesel like pattern.

BTEX Benzene, toluene, ethylbenzene, and xylenes

* 1,2 Dichloroethane

** 1,1 Dichloroethane

*** Dibromochloromethane

**** 1,1,1-Trichloroethane

Chlorinated volatile compounds not detected using EPA Method 8260

[1] The following additional volatile compounds were detected using EPA Method 8260, n-Butylbenzene, 3.9;

sec-Butylbenzene, 2.2; tert-Butylbenzene, 5.7; isopropylbenzene, 9.8; naphalene, 18; propylbenzene, 6.3;

1,2,4-trimethylbenzene, 130; and 1,3,5-trimethylbenzene,23.

No information

TABLE 4 CONTINUED GROUNDWATER ANALYSES SUMMARY EPA METHODS 8015, 8020 AND 8010

Sample 11)	Date	Rí	15		EPA MET	HOD 20		8010
		TPH G	TPH D	В	1	E	X	Chlorinated
		(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Compounds (ug/l)
MW-27	03/23/93	ND	ND	ND	ND	ND	ND	
101 00 - 2.7	03/23/93	ND	ND	ND	ND	ND	ND	, <u>-</u>
	11/05/93	ND	ND	ND	ND	ND	2.6	-
Ì	02/25/94	ND	ND	ND	ND	ND	ND	-
	06/03/94	ND	ND	0.85	ND	ND	ND	_
	08/31/94	+	+	+	+	+	+	<u> </u>
	12/22/94	+	+	+	+	+	+	<u> </u>
	03/13/95	+	+	+	+	+	+	-
)	06/09/95	+	+	+	+	+	+	-
	09/21/95	+	+	+	+	+	+	\-
MW-28	03/23/93	110	ND	ND	ND	ND	ND	<u> </u>
	07/27/93	ND	ND	ND	ND i	ND	ND	ļ -
1	11/05/93	ND	ND	ND	ND	ND	2.1	-
	02/25/94	ND	ND	ND	ND	ND	ND	\ -
	06/03/94	ND	ND	3.1	ND	ND	ND	j-
!	08/31/94	ND	ND	1.4	ND	ND	ND	-
	12/22/94	ND	ND*	ND	ND	ND	ND	-
· 	03/13/95	ND	ND	0.91	ND	ND	ND	-
[06/09/95	ND	ND	ND	ND	ND	ND	!- :
	09/21/95	ND	ND	ND_	ND	ND	ND	-
	00/00/03) TD	ND	NTO	NTD	NID	ND	
MW-29	03/23/93	ND			ND ND	ND ND	ND ND	
	07/27/93	ND	ND ND	ND ND	ND ND	2.1	11	
	11/05/93	ND ND	ND ND		ND ND	ND	ND	
	02/25/94 06/03/94	ND ND	ND i	ND ND	ND	ND ND	ND	
	08/31/94	ND ND	ND	ND	ND	ND	ND	į
	12/22/94	ND	ND*	ND	ND	ND	ND	<u> </u>
)	03/13/95	ND	ND	0.59	ND I	ND	ND	·
	05/13/95	ND	ND '	ND	ND	ND	ND	<u> </u>
	09/21/95	ND	ND	ND	ND	ND	ND	

TPH G	Total petroleum hydrocarbons in the gasoline range
TPH D	Total petroleum hydrocarbons in the diesel range
ug/l	Micrograms per liter or parts per billion
ND	Not detected at methiod detection limits. See specific laboratory reports for method detection limits
ND*	Anomalous peak, phalate, reported. Chromatogram does not have a diesel like pattern.
BTEX	Benzene, toluene, ethylbenzene, and xylenes
+	Well not accessible, groundwater samples not obtained

No information

TABLE 4 CONTINUED GROUNDWATER ANALYSES SUMMARY EPA METHODS 8015, 8020 AND 8010

Sample ID	Date				EPA MET			
			15			20	l we	8010
		TPH G	TPHD	В	T	E	X	Chlorinated
		(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	(ug/l)	Compounds (ug/l)
MW-30	03/23/93	ND	ND	ND	ND	ND	ND	•
	07/27/93	ND	ND	ND	ND :	ND	ND	-
	11/05/93	ND	ND	ND	ND	ND	2.8	-
il	02/25/94	ND	ND	1.3	ND	ND	ND	\ -
	06/03/94	ND	ND	1.1	ND	ND	ND	-
	08/31/94	ND	ND	0.8	ND	ND	ND	-
	12/22/94	ND	ND*	0.6	ND	ND	ND	-
	03/13/95	ND	ND	0.98	ND :	ND	ND	-
Ì	06/09/95	ND	ND	ND	ND	ND	ND	-
	09/21/95	ND .	ND	ND	ND	ND	ND	-
				201		0.4		CON.
MW-32	03/23/93	440	ND	391	6.2	3.1	9	60*
 	07/27/93	ND	ND	ND	ND	ND	ND	14*
İ	11/05/93	170	ND	20	ND	1.8	2.1	7.9*
į	02/25/94	ND	ND	5.6	ND	ND	ND	ND \
	06/03/94	350	ND	120	1.3	ND	1.4	11*
il l	08/31/94	ND	ND	39	0.5	2.2	1.2	10*
	12/22/94	ND	ND*	4.8	ND	ND	ND	4.6*
Į.	03/13/95	1100	ND	220	3.6	6.5	5.8	16*
	06/09/95	2200	180	1500	7.9	43	14	0.7**
	06/09/95	-	-	-	-		-	0.5****
	09/21/95	2300	60 🔻	. 1200	2.4	72		6.7*
	09/21/95	-	-		-	-	-	1,4*****

	•
TPH G	Total petroleum hydrocarbons in the gasoline range
TPH D	Total petroleum hydrocarbons in the diesel range
ug/l	Micrograms per liter or parts per billion
ND	Not detected at methiod detection limits. See specific laboratory reports for method detection limits
ND*	Anomalous peak, phalate, reported. Chromatogram does not have a diesel like pattern.
BTEX	Benzene, toluene, ethylbenzene, and xylenes
*	1,2 Dichloroethane
**	1,1 Dichloroethane
***	Dibromochloromethane
****	1,1,1-Trichloroethane
****	Chlorinated volatile compounds not detected using EPA Method 8260
*****	Trichloroethene

+ Well not accessible, groundwater samples not obtained

- No information

APPENDIX A

PRODUCT VOLUME CALCULATIONS June and September, 1995

APPENDIX B LABORATORY REPORTS AND CHAIN-OF-CUSTODY

QUALITY ASSURANCE LABORATORY

PO BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-6516

TEL (614) 791-9144 FAX (614) 793-5353

October 23, 1995

cc: Binayak Acharya

Daron Robertson
Park Environmental
8084 Old Auburn Road
Suite E
Citrus Heights, CA 95610

RE: WATER SAMPLES FROM OAKLAND, CA

Dear Daron:

Attached is the result summary for the nine water samples (NQAL #95SEP948-000/008) submitted to NQAL from Oakland, CA. The chromatograms and QA/QC summary will follow.

If you have any questions or need any additional information please feel free to call.

Sincerely,

John R. Heuser, Ph.D.

Manager, Organic Contaminants

JRH:frm

Attachment

n/environ/cover/1995/misc/sep948 doc

DOT 23 1005

QUALITY ASSURANCE LABORATORY

P.O. BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-6516

TEL (614) 791-9144 FAX (614) 793-5353

Client: Company: Binayak Acharya

Nestle USA Glendale, CA

MW-26 Sample ID:

Sample Location:

Oakland, CA

Date of Report:

Date Sample Collected:

Date Sample Received:

10/23/95 9/21/95

9/27/95

NQAL #: 95SEP948-004

EPA 8010 Purgeable Halocarbons in Water

Analyte	Units	Result	Reporting Limit	Date Analyzed
-				
Bromodichloromethane	μg/L	ND	0.5	10/6/95
Bromoform	μg/L	ND	0.5	10/6/95
Bromomethane	μg/L	ND	0.5	10/6/95
Carbon tetrachloride	μg/L	ND	0.5	10/6/95
Chlorobenzene	μg/L	ND	0.5	10/6/95
Chlorodibromomethane	μg/L	ND	0.5	10/6/95
Chloroethane	μg/L	ND	0.5	10/6/95
Chloroform	μg/L	ND	0.5	10/6/95
Chloromethane	μg/L	ND	0.5	10/6/95
1,2-Dichlorobenzene	μg/L	ND	0.5	10/6/95
1,3-Dichlorobenzene	μg/L	ND	0.5	10/6/95
1,4-Dichlorobenzene	μg/L	ND	0.5	10/6/95
Dichlorodifluoromethane	μg/L	ND	0.5	10/6/95
1,1-Dichloroethane	μg/L	1.3	0.5	10/6/95
1,2-Dichloroethane	μg/L	120	0.5	10/6/95
1,1-Dichloroethene	μg/L	ND	0.5	10/6/95
cis-1,2-Dichloroethene	μg/L	, ND	0.5	10/6/95
trans-1,2-Dichloroethene	μg/L	ND	0.5	10/6/95
1,2-Dichloropropane	μg/L	ND	0.5	10/6/95
cis-1,3-Dichloropropene	μg/L	ND	0.5	10/6/95
trans-1,3-Dichloropropene	μg/L	ND	0.5	10/6/95
Methylene chloride	μg/L	ND	0.5	10/6/95
1,1,2,2-Tetrachloroethane	μg/L	ND	0.5	10/6/95
Tetrachloroethene	μg/L	ND	0.5	10/6/95
1,1,1-Trichloroethane	μg/L	ND	0.5	10/6/95
1,1,2-Trichloroethane	μg/L	ND	0.5	10/6/95
Trichloroethene	μg/L	ND	0.5	10/6/95
Trichlorofluoromethane	μg/L	ND	0.5	10/6/95
Vinyl chloride	μg/L	ND	0.5	10/6/95
Surrogate Recovery		w 1	12.140.0/	
Bromofluorobenzene	%	51	43-142 %	
Bromochloromethane	%	71	40-169 %	

QUALITY ASSURANCE LABORATORY

PO BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-6516

TEL (614) 791-9144 FAX (614) 793-5353

Client: Company: Binayak Acharya

Nestle USA Glendale, CA

MW-32 Sample ID:

Oakland, CA Sample Location:

Date of Report:

Date Sample Collected:

Date Sample Received:

10/23/95

9/21/95 9/27/95

NQAL #: 95SEP948-008

EPA 8010 Purgeable Halocarbons in Water

Analyte	Units	Result	Reporting Limit	Date Analyzed
Bromodichloromethane	μg/L	ND	0.5	10/6/95
Вготобогт	μg/L	ND	0.5	10/6/95
Bromomethane	μg/L	ND	0.5	10/6/95
Carbon tetrachloride	μg/L	ND	0.5	10/6/95
Chlorobenzene	μg/L	ND	0.5	10/6/95
Chlorodibromomethane	μg/L	ND	0.5	10/6/95
Chloroethane	μg/L	ND	0.5	10/6/95
Chloroform	μg/L	ND	0.5	10/6/95
Chloromethane	μg/L	ND	0.5	10/6/95
1,2-Dichlorobenzene	μg/L	Ĺ, ΝD	0.5	10/6/95
1,3-Dichlorobenzene	μg/L	ND	0.5	10/6/95
1,4-Dichlorobenzene	μg/L	ND	0.5	10/6/95
Dichlorodifluoromethane	μg/L	. ND	0.5	10/6/95
1,1-Dichloroethane	μg/L	ND	0.5	10/6/95
1,2-Dichloroethane	μg/L	6.7	0.5	10/6/95
1,1-Dichloroethene	μg/L	\ ND	0.5	10/6/95
cis-1,2-Dichloroethene	μg/L	\ ND	0.5	10/6/95
trans-1,2-Dichloroethene	μg/L	ND	0.5	10/6/95
1,2-Dichloropropane	μg/L	ND	0.5	10/6/95
cis-1,3-Dichloropropene	μg/L	ND	0.5	10/6/95
trans-1,3-Dichloropropene	μg/L	ND	0.5	10/6/95
Methylene chloride	μg/L	ND	0.5	10/6/95
1,1,2,2-Tetrachloroethane	μg/L	ND	0.5	10/6/95
Tetrachloroethene	μg/L	ND	0.5	10/6/95
1,1,1-Trichloroethane	μg/L	ND	0.5	10/6/95
1,1,2-Trichloroethane	μg/L	ND	0.5	10/6/95
Trichloroethene	μg/L	1.4	0.5	10/6/95
Trichlorofluoromethane	μg/L	ND	0.5	10/6/95
Vinyl chloride	μg/L	ND	0.5	10/6/95
Surrogate Recovery	2.4		40.140.07	
Bromofluorobenzene	%	55	43-142 %	
Bromochloromethane	%	77	40-169 %	

QUALITY ASSURANCE LABORATORY P.O BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-6516

TEL (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Nestle USA

Glendale, CA

Report Date:

Date Sampled: Date Received: 10/23/95 9/21/95

9/27/95

Project:

Oakland, CA

Result Summary

NQAL # Sample ID	Benzene (ug/L)	Toluene (ug/L)	Ethyl Benzene (ug/L)	m&p Xylenes (ug/L)	o-Xylene (ug/L)	GRO (mg/L)	DRO (mg/L)
95SEP948-000 MW-2	0.7	ND	ND	ND	ND	-ND	ND
95SEP948-001 MW-3	9800	58	600	42	53	14	0.3*
95SEP948-002 MW-6	ND	ND	ND	ND	ND	ND	ND
95SEP948-003 MW-25	ND	ND	ND	ND	ND	0.05	ND
95SEP948-004 MW-26	1900	160	160	210	110	8.0	0.2*
95SEP948-005 MW-28	ND	ND	ND	ND	ND	ND	ND
95SEP948-006 MW-29	**	**	**	**	**	**	ND
95SEP948-007 MW-30	ND	ND	ND	ND	ND	ND	ND
95SEP948-008 MW-32	1200	2.4	72	3,6	0.9	2.3	0.06*
Detection Limit ND = Not Detected	0.5	0.5	0.5	0.5	0.5	0.05	0.05

^{* =} no diesel pattern detected, result due to high gasoline concentration

^{** =} all vials broken during shipment

QUALITY ASSURANCE LABORATORY

PO 8OX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-6516

TEL (614) 791-9144 FAX (614) 793-5353

October 30, 1995

Daron Robertson Park Environmental 8084 Old Auburn Road Citrus Heights, CA 95610

RE: OAKLAND, CA QUARTERLY MONITORING PROJECT

Dear Daron:

Attached is the analytical report for the water sample, MW-29 (NQAL # 95OCT896-000), which was submitted to NQAL for various analyses.

Please let us know if you have any questions.

Sincerely,

John R. Heuser, Ph.D.

Manager

Organic Contaminants

JRH:frm

Attachment

n:/environ/cover/1995/oct896 doc

QUALITY ASSURANCE LABORATORY

PO BOX 1516 6625 EITERMAN ROAD DUBLIN, OP 43017-6516

TEL (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Nestle USA

Glendale, CA

~ .

Report Date:

10/27/95

Date Sampled: Date Received: 10/24/95 10/25/95

Project:

Oakland, CA

Result Summary

DRO Toluene Ethyl Benzene m&p Xylenes o-Xylene GRO Sample ID Benzene NQAL# (ug/L) (mg/L)(mg/L)(ug/L) (ug/L) (ug/L) (ug/L) ND ND ND ND ND ND 95OCT896-000 MW-29 ND 0.5 0.5 0.5 0.05 0.05 0.5 0.5 **Detection Limit** ND = Not Detected

> on e la Full