

THIRD QUARTER 1994
GROUNDWATER MONITORING REPORT
NESTLE FOOD COMPANY
(FORMER CARNATION DAIRY FACILITY)
OAKLAND, CALIFORNIA

Dec 94

January 31, 1995

Ms. Jennifer Eberle Alameda County Health Agency Hazardous Materials Division 80 Swan Way, Room 200 Oakland, California 94601

SUBJECT: QUARTERLY GROUNDWATER MONITORING REPORT FORMER CARNATION DAIRY FACILITY 1310 14TH STREET, OAKLAND, CALIFORNIA

Dear Ms. Eberle:

Park Environmental Corporation (Park) is pleased to submit this Quarterly Groundwater Monitoring Report on behalf of Nestle USA, Inc. The report documents the groundwater monitoring and sampling work performed for the third quarter, July through September, of 1994 at the subject site.

Park conducted groundwater sampling activities in late December, 1994. A report documenting the fourth quarter groundwater data will be submitted to you in February, 1995. If you have any questions regarding this report, please call Park's new office in Citrus Heights, California at (916) 723-1776.

Thank You,

Park Environmental Corporation

Hugh T. Ashley, Project Engineer

F:\5008J11\HA\naj\3rdQMRcv.ltr

Enclosure

pc: Mr. Binayak Acharya, Nestlé USA, Inc.

Mr. Richard Hiett, CRWQCB, SFBR

THIRD QUARTER 1994 GROUNDWATER MONITORING REPORT NESTLE FOOD COMPANY (FORMER CARNATION DAIRY FACILITY) 1310 14TH STREET OAKLAND, CALIFORNIA

PRESENTED TO:

ALAMEDA COUNTY HEALTH AGENCY DEPARTMENT OF ENVIRONMENTAL HEALTH DIVISION OF CLEAN WATER PROGRAM UST LOCAL OVERSIGHT PROGRAM 80 SWAN WAY, ROOM 200 OAKLAND, CALIFORNIA 94621

ON BEHALF OF:

NESTLE USA, INC. 800 NORTH BRAND BOULEVARD GLENDALE, CALIFORNIA 91203

PREPARED BY:

PARK ENVIRONMENTAL CORPORATION 8084 OLD AUBURN ROAD, SUITE E CITRUS HEIGHTS, CALIFORNIA 95610

DECEMBER, 1994

TABLE OF CONTENTS

1.0		ODUCTION
	1.1	Scope of Services
2.0	GROU	JNDWATER MONITORING WELL SAMPLING METHODOLOGY
	2.1	Groundwater Measurements
	2.2	Monitoring Well Purging
	2.3	Groundwater Analyses
	2.4	Groundwater Sampling
3.0	FIND	INGS
	3.1	Groundwater Conditions
	3.1.1	Groundwater Flow Direction and Hydraulic Gradient
	3,1.2	Occurrence of Free Product
	3.1.3	Results of Laboratory Analyses
4.0	LIMI	ΓATIONS
5.0	PREP	ARATION OF REPORT
APP	ENDICI	ES Control of the con
APPI	ENDIX A	A MAPS AND FIGURES
	Figure	s 1 Site Location Map
	Figure	2 Site Plan
	Figure	e 3 Groundwater Elevation
	Figure	Free-Product and Dissolved Chemical Constituents Map
APPI	ENDIX I	B TABLES
	Table	I Groundwater Measurements, August 31, 1994
	Table	II Groundwater Purging Data, August 31, 1994
	Table	III Groundwater Analyses Summary
APPI	ENDIX (C LABORATORY REPORTS AND CHAIN-OF-CUSTODY Samples collected August 31, 1994

1.0 INTRODUCTION

Nestle USA, Inc., (Nestle) has retained Park Environmental Corporation (Park) to provide environmental services at the former Carnation facility in Oakland, California. A site location map and plot plan are shown on Figures 1 and 2 in Appendix A. Nestle has authorized Park to prepare this Quarterly Groundwater Monitoring Report (QMR), which includes brief groundwater sampling methodology and findings sections.

The Alameda County Health Agency (ACHA) is the lead environmental agency. This work was requested by Ms. Susan Hugo and Ms. Jennifer Eberle with the ACHA in accordance with the meeting between ACHA, Mr. Richard Hiett of the California Regional Water Quality Control Board (CRWQCB), Mr. Walter Carey with Nestle, and Mr. Richard Zipp with Park, on September 17, 1992. This site is referenced by the ACHA as 1310 14th Street.

1.1 Scope of Services

Specific tasks completed during this investigation included the following:

- Measure depth to water and/or free product thicknesses in 71 monitoring wells;
- Calculate groundwater flow direction in the vicinity of the free product plume and in the vicinity of the property boundaries;
- Purge, sample and analyze ten monitoring wells (MW-2, MW-3, MW-6, MW-25, MW-26, MW-27, MW-28, MW-29, MW-30 and MW-32) for total petroleum hydrocarbons as gasoline and diesel (TPH G and TPH D; EPA Method 8015), benzene, toluene, ethylbenzene, and total xylenes (BTEX; EPA Method 8020) and two samples (MW-26 and MW-32) for halogenated volatile organic compounds (HVOC; EPA Method 8260). In addition to the above mentioned analyses, modified EPA 8015 for gasoline tests were performed on an equipment blank and field duplicate sample for QA/QC purposes; and
- Prepare this QMR documenting the findings.

2.0 GROUNDWATER MONITORING WELL SAMPLING METHODOLOGY

2.1 Groundwater Measurements

Prior to obtaining depth to groundwater measurements in the sampled wells, the wells were checked for the presence of free product using a new disposable bailer for each well. Depth to groundwater measurements in the sampled wells and un-sampled wells were made using a YSI Model 3000 T-L-C Meter or Slope Indicator. Free product thicknesses were measured using a Free Product Interface Probe (manufactured by MMC). The depths to water or product were measured from the top of the well casing.

GROUNDWATER MONITORING REPORT FORMER CARNATION DAIRY - OAKLAND DECEMBER, 1994

Groundwater elevations were calculated using measurements from surveyed monitoring wells not containing free product. Results of these measurements are included in Table I in Appendix B.

2.2 Monitoring Well Purging

on 8-31-94

Each monitoring well was purged with a submersible pump until at least three well volumes of water had been removed. All of the wells sampled are constructed of 4-inch diameter PVC well casing (except MW-6, which is 2-inches in diameter). All purging and sampling equipment was washed in a solution of trisodium phosphate and rinsed in distilled water prior to each usage, to reduce the potential for cross contamination between wells.

As groundwater was removed from the wells, pH, temperature and conductivity were monitored and recorded on a field data sheet. These field documents are kept in a permanent project file. A summary of the data obtained during the purging of the wells is presented in Table II in Appendix B.

The wells were allowed to stand for a period of time to regain equilibrium prior to sampling. Groundwater purged from the wells was placed into DOT-approved 55-gallon drums, pending receipt of analytical results to select the appropriate disposition.

2.3 Groundwater Analyses

Analyses of the groundwater were performed by a California certified laboratory in accordance with state guidelines and EPA protocols. Groundwater samples from nine of the ten monitoring wells MW-2, MW-3, MW-6, MW-25, MW-26, MW-28, MW-29, MW-30 and MW-32). were analyzed for TPH G, TPH D and BTEX. In addition, groundwater from monitoring wells MW-26 and MW-32 were analyzed for HVOC. Monitoring well MW-27 located in 16th Street was not sampled due to a vehicle obstructing access.

2.4 Groundwater Sampling

Proper sampling collection and handling are essential to assure the quality of the data obtained from the given sample. Each groundwater sample therefore was collected using a new sterile disposable bailer. The sampled water was placed in laboratory prepared 40 millimeter glass containers. The sample containers were filled with water to the top to expel air space and were sealed with Teflon-lined caps. Water sample containers were labeled with the name of the sampler, the date, the job number, the preservative, and an identifying well number. The samples were transported to Nestlé USA, Inc. Quality Assurance Laboratory in Dublin, Ohio. Full chain-of-custody (COC) protocol was followed during sample handling and delivery.

GROUNDWATER MONITORING REPORT FORMER CARNATION DAIRY - OAKLAND DECEMBER, 1994

3.0 FINDINGS

3.1 Groundwater Conditions

3.1.1 Groundwater Flow Direction and Hydraulic Gradient

Groundwater monitoring wells containing free product were not used for the calculations of groundwater flow direction or hydraulic gradient. Groundwater measurements taken by **Park** on August 31, 1994 indicate that groundwater flow beneath the site continues to be in a north-northwesterly direction. The hydraulic gradient was calculated to be approximately 0.0021 or 0.21-feet drop per 100-feet of run beneath the site. The flow direction of the groundwater is shown graphically on Figure 3 in Appendix A. The measurements taken during this sampling event show the groundwater elevation ranging from about 5.00 to 5.50-feet above mean sea level (MSL), which is consistent with elevations monitored during the previous years. All groundwater measurement data collected are summarized in Table I in Appendix B.

3.1.2 Occurrence of Free Product

Free product was identified in 24 of the 71 monitoring wells that **Park** monitored for this investigation. The thickness of free product ranged from 0.01-feet to 1.21-feet, with an average thickness of 0.41-feet in the free product measured wells.

Measurements collected during the previous quarter's investigation showed an average free product thickness of 0.86-feet. The reduction of the average free product thickness suggests that the on-going vapor extraction remediation system is removing free phase petroleum hydrocarbons from the subsurface.

As reported by **Park** (July 12, 1994 "Vapor Extraction Remediation Update May and June, 1994"), approximately 2,462 gallons of petroleum hydrocarbons had been removed from the subsurface by July 1, 1994, which further explains the significant reduction of the free product thickness below the site. The occurrence of free product and the relative thicknesses are shown on Figure 4 in Appendix A.

3.1.3 Results of Laboratory Analyses

Laboratory test results for groundwater samples collected on August 31, 1994 for this investigation as well as one year's previous quarterly sampling events are summarized in Table III in Appendix B. Results are also shown on Figure 4 in Appendix A. Laboratory reports and COC documents are included as Appendix C.

GROUNDWATER MONITORING REPORT FORMER CARNATION DAIRY - OAKLAND DECEMBER, 1994

4.0 LIMITATIONS

The monitoring services performed by **Park** were performed in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions.

The data presented in this report are representative of conditions at the site when monitoring and sampling was performed. The findings presented are based on the current data and past written and/or oral information provided by the regulatory agencies or Nestle USA.

GROUNDWATER MONITORING REPORT FORMER CARNATION DAIRY - OAKLAND DECEMBER, 1994

5.0 PREPARATION OF REPORT

Firm Preparing Report

Park Environmental Corporation 8084 Old Auburn Road, Suite E Citrus Heights, California 95610

Report Prepared by:

This report was prepared by **Park Environmental Corporation (Park)**. Mr. Richard J. Zipp is the registered professional overseeing this project. This report was written by Ms. Heidi Hubbard, Staff Geologist for **Park**.

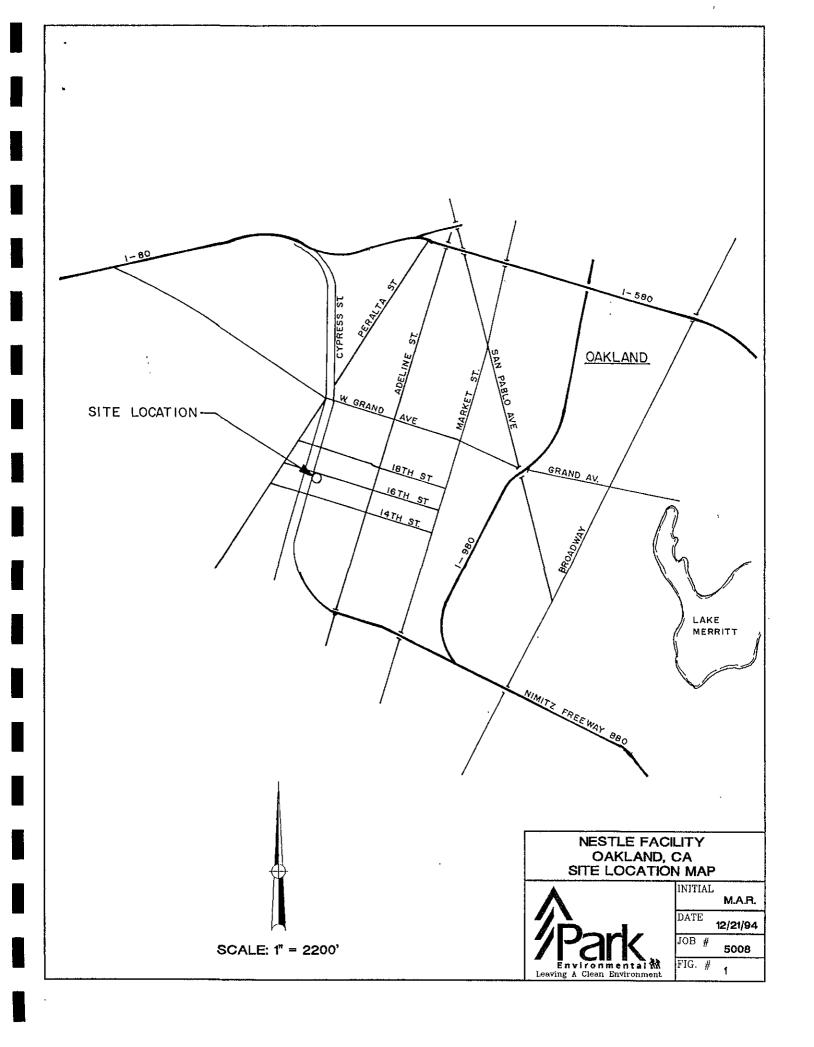
This report was prepared to assist the property owner to comply with California Code Of Regulations, Title 23, Chapter 16, Article 5, Section 2652(d), which requires the submittal of reports to the regulatory agencies at a minimum of three month intervals. If you have any questions or need additional information please call the undersigned at (916) 723-1776.

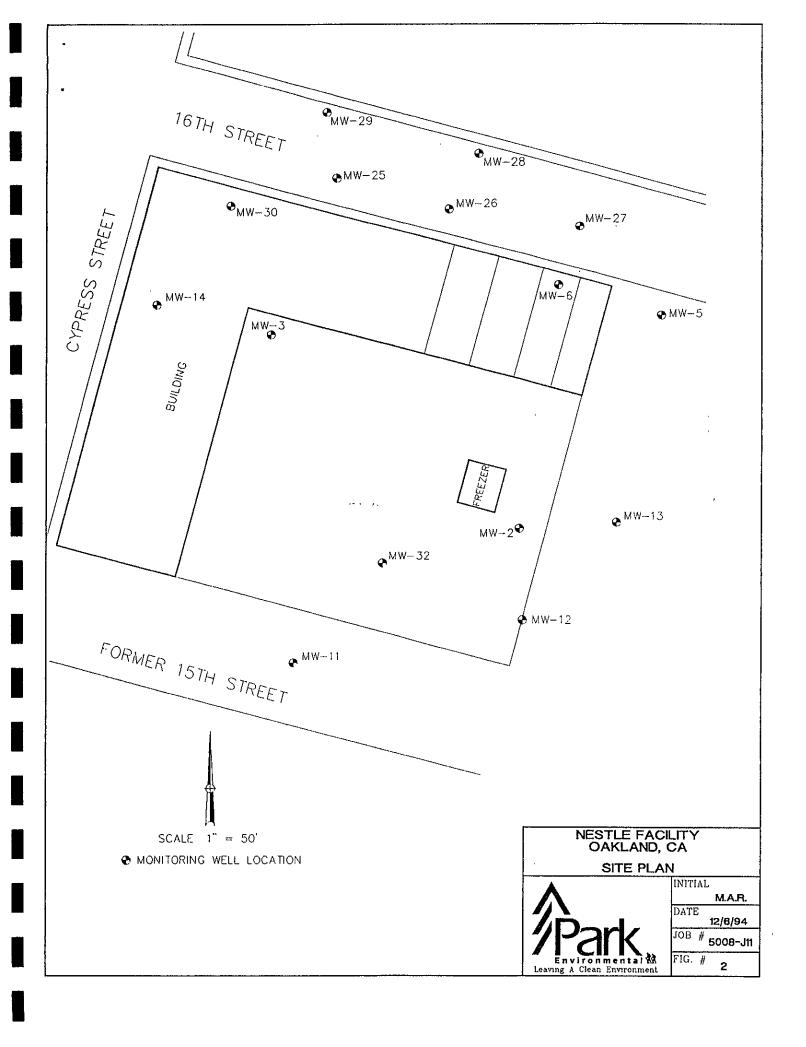
RICHARD J. ZIPP No. 1096

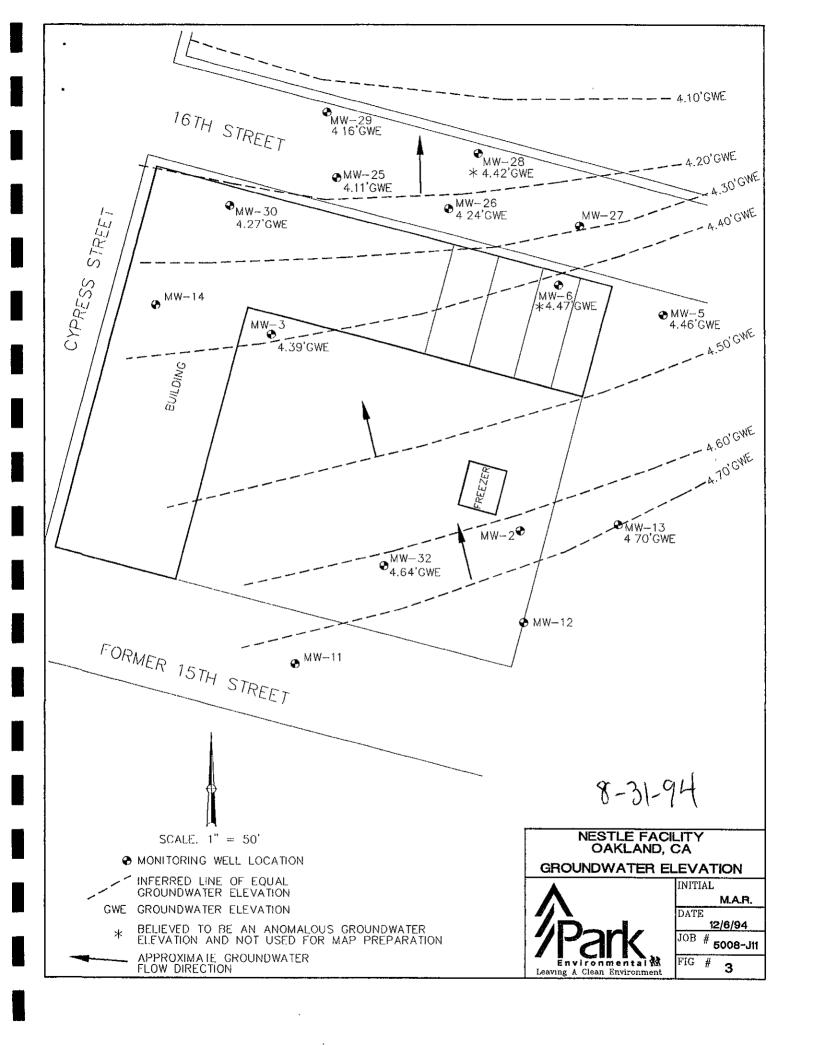
CERTIFIED ENGINEERING

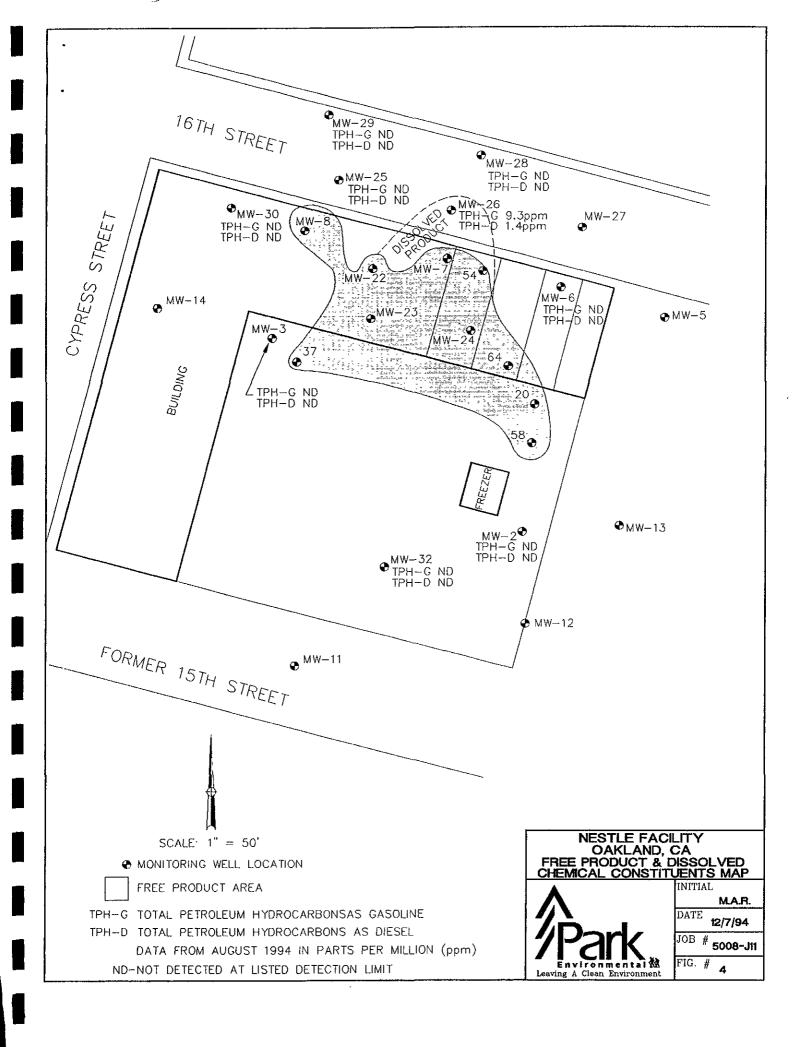
Thank You,

Richard J. Zlpp, R.G., C.E.G. Principal Hydrogeologist


rincipai riyarogeologist


Heidi L. Hubbard Staff Geologist


F:\5008J12\1294.QMR


pc: Ms. Jennifer Eberle, Alameda County Environmental Health

Mr. Richard Hiett, San Francisco Bay RWQCB

TABLE I GROUNDWATER MEASUREMENTS

AUGUST 31, 1994

Sample ID	TOC Depth to Product (feet)	TOC Depth to Water (feet)	Casing Elevation (feet)	Product Thickness (feet)	Well Diameter (feet)	Groundwater Elevation (feet)
MW-2*	-	10.49	-	-	4	-
MW-3*	-	9.91	14.30	-	4	4.39
MW-5	-	9.95	14.41	-	4	4.46
MW-6*	-	9,65	14.12	-	2	4.47
MW-7	9.87	9.88	14.29	0.01	4	NC
MW-8	9.82	10.13	14.20	0.31	-	NC
MW-11	-	9.80	-	<u>-</u>	4	-
MW-13	-	10.15	14.85	-	4	4.70
MW-22	9.97	10.16	14.44	0.19	2	NC
MW-23	9.93	10.61	-	0.68	4	NC
MW-24	10.19	10.58	14.67	0.39	2	NC
MW-25*	-	8.75	12.86	-	4	4.11
MW-26*	-	8.47	12.71	-	4	4.24
MW-27	-		14.04	<u>-</u>	4	,
MW-28*	-	9.03	13.45	-	4	4.42
MW-29*	_	8.44	12.60	- -	4	4.16
MW-30*	_	10.27	14.54		4	4.27
MW-32*		10.12	14.76	-	4	4.64

OC

Top of Casing Groundwater Samples Obtained For This Investigation

TABLE I Continued **GROUNDWATER MEASUREMENTS**

AUGUST 31, 1994

Sample 10	TOC Depth to Product (feet)	TOC Depth to Water (feet)	Casing Elevation (feet)	Product Thickness (feet)	Well Diameter (inches)	Groundwater Elevation (feet)
PR-20	9.31	10.19	14.36	0.88	2	
PR-21	10.23	10.65	14.37	0.42	2	
PR-22	9.69	10.16	14.43	0.47	2	
PR-23	9.51	9.68	14.47	0.17	2	
PR-24	-	9.81	•	-	· <u>-</u>	
PR-26	9.68	9,85	14.38	0.17	. 2	
PR-27	-	9.67	•	-	2	-
PR-28	-	9.63	-	,-	2	-
PR-30	9.46	10.67	-	1.21	-	-
PR-33	-	9.63	14.36		2	4.73
PR-34	9.72	10.09	14.49	0.37	2	-
PR-35	9.78	9.90	14.55	0.12	2	-
PR-36	9.72	10.09	-	0.37	-	
PR-37	9.67	9,81	-	0.14	-	-
PR-39	-	9.93	-	~	-	-
PR-41	11.02	11.45	-	0.43	2	-
PR-42	-	10.15	-	-	-	-
PR-43	<u>-</u>	10.26	-	-	-	-
PR-44	-	11.94	_	-	2	-
PR-45	-	9.94	-	-	2	-
PR-46	•	10.17		-	2	-
PR-47	<u>.</u>	9.88	-		2	-
PR-48	10.04	10.11		0.07	2	-
PR-49	-	10.07			2	_

TOC

Top of casing Groundwater samples obtained for this investigation

TABLE I Continued GROUNDWATER MEASURMENTS

AUGUST 31, 1994

Sample ID	TOC Depth	to	Casing Elevation	Product Thickness	Well Diameter	Groundwater Elevation
	Product (feet)	Water (feet)	(feet)	(feet)	(inches)	(feet)
PR-50	_	9.92	-	_	2	-
PR-51	9.78	10.50	-	0.72	2	
PR-52	10.13	10.18	-	0.05	2	-
PR-53	9.73	10.22	-	0.49	2	-
PR-54	9.97	10.05	-	0.08	2	-
PR-55	-	6.70	-	-	2	-
PR-56	9.95	10.10	-	0.15	2	-
PR-57	-	9.51	-	-	2	-
PR-58	9.40	10.29	-	0.89	2	-
PR-59	-	9.58	-	_	2	-
PR-60	-	10.23	-	-	2	
PR-61	-	10.08	-	-	2	-
PR-62	-	10.00	-	•	2	-
PR-64	9.85	10 91	-	1.06	4	-
PR-65	-	10.00			2	<u>-</u>
PR-66	-	9.73	-		2	_
PR-68	-	9.81	-		2	<u></u>
PR-69	-	9.51	-	-	2	-
PR-74	_	9.88	-	<u>-</u> ,	2	_
PR-75		10.00	-	-	2	-
PR-76	-	10.07	-	-	2	-
PR-77	-	9.78	-		2	-
V-89	-	9.73		-	4	-
V-90	9.77	9.93	-	0.16	4	-

TOC

Top of easing Groundwater samples obtained for this investigation No information

TABLE II Continued **GROUNDWATER PURGING DATA**

AUGUST 31, 1994

Sample ID	Total Gallons Removed	pH	Specific Conductance 3, 1000	Temperature in Fahrenheit
MW-27***	-	-	-	-
MW-28	5	8.7	0.12	73.8
	10	8.4	0.15	73.8
	15	8.5	0.15	73.8
	20	8.0	0.14	72.7
	25	8.1	0.16	72.0
	30	7.6	0.18	71.7
	35	7.7	0.17	71.8
	40	7.6	0.20	71.6
MW-29	5	8.0	0.20	77.3
	10	8.6	0.18	75.5
	15	8.7	0.17	74.1
	20	8.6	0.17	73.1
	25	8.7	0.16	71.4
	30	8.5	0.16	71.2
	35	8.6	0.17	71.1
MW-30	5	8.7	0.56	69.5
	10	8.5	0.58	68.7
	15	7.8	0.60	67.6
	20	7.8	0.62	67.3
	25	7.8	0.60	67.0
MW-32***	5	8.4	0.65	78.1
	10	8.2	0.65	78.3
	15	8.0	0.67	77.1
	20	7.9	0.68	76.9
	25	7.5	0.71	75.3

2-inch well hand bailed using a new disposable bailer Well was pumped dry at approximately 15-gallons

Well not accessible

Well was pumped dry at approximately 25-gallons

TABLE III GROUNDWATER ANALYSES SUMMARY EPA METHODS 8015, 8020 AND 8010

Sample ID	Date	EPA METHOD									
		80	is		802			8010			
		TPH G (ug/l)	TPH D (ug/l)	.B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	Chlorinated Compounds (ug/l)			
MW-2	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94	ND ND - ND ND ND	D N N N N N N N N N N N N N N N N N N N	55.55 55.55	88.88 88.88	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	ND ND ND ND ND				
MW-3	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94	300 220 170 100 320 ND	ND ND ND ND ND ND	35 97 4.9 42 120 83	2.9 1.0 ND ND 8.2 1.1	2.0 4.0 ND ND 8.4 5.3	3.2 1.1 1.2 ND 4.5 2.9	- - - -			
MW-6	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94 /	ND ND ND ND 69 ND «	ND ND ND ND ND ND	ND ND ND ND 2.7 ND	ND ND ND ND 8.7 ND	50 50 50 50 50 50 50 50 50 50 50 50 50 5	ND ND 3.5 ND 3.5 ND	- - - -			
MW-25 /	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94	ND ND 170 ND 97 ND /	ND ND ND ND ND ND	ND ND 4.2 2.1 2.4 0.5	ND ND 4.4 ND 14 ND	ND ND 2.5 ND ND ND	ND ND 20 ND 3.4 ND	- - - -			

TPH G Total petroleum hydrocarbons in the gasoline range

TPH D Total petroleum hydrocarbons in the diesel range

ug/l Micrograms per liter or parts per billion

ND Not detected at method detection limits. See specific laboratory reports for method detection limits

BTEX Benzene, toluene, ethylbenzene, and xylenes

TABLE III Continued GROUNDWATER ANALYSES SUMMARY EPA METHODS 8015, 8020 AND 8010

Sample ID	Date	EPA METHOD							
		80	8015		802		.8010 ⁷ 7		
		TPH G (ug/l)	TPH D (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	Chlorinated Compounds (ug/l)	
MW-26	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94	7000 1800 19000 14000 12000	1300 ND ND ND ND	180 470 4700 4800 4100	190 96 1300 570 300	55 30 9.0 200 120	330 80 1400 860 230	ND 140* 120* 28* 140* 1.7**	
	08/31/94~	9300 🗸	1400	4100 🛩	360	170	450	0.84*** ND ****	
MW-27	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND 0.85	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND 2.6 ND ND +	- - - - +	
MW-28 V	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94 ✓	110 ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND 3.1	ND ND ND ND ND	ND ND ND ND ND	ND ND 2.1 ND ND ND	-	

TPH G Total petroleum hydrocarbons in the gasoline range

TPH D Total petroleum hydrocarbons in the diesel range

ug/l Micrograms per liter or parts per billion

ND Not detected at method detection limits. See specific laboratory reports for method detection limits

BTEX Benzene, toluene, ethylbenzene, and xylenes

* 1,2 Dichloroethane

** 1,1 Dichloroethane

*** Dibromochloromethane

**** Chlorinated volatile compounds not detected using EPA Method 8260

+ Well not accessible, groundwater samples not obtained

TABLE III Continued GROUNDWATER ANALYSES SUMMARY EPA METHODS 8015, 8020 AND 8010

Sample ID	Date	EPA METHOD							
To the Angles of Angles London Son Son Son Son Son Son Son Son Son S		80	(5	8020				garti 77	
		TPH G (ug/l)	TPH I) (ug/l)	B (ug/l)	T (ug/l)	E (ug/l)	X (ug/l)	Chlorinated Compounds (ug/l)	
MW-29 _.	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94	ND ND ND ND ND ND	9 9 9 9 9 9 8 9 9 9 9 9 9 9	ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND 2.1 ND ND ND	ND ND 11 ND ND ND	- - - - -	
MW-30′	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94	ND ND ND ND ND ND	8 8 8 8 8 8 8 8 8 8 7	ND ND ND 1.3 1.1	XD XD XD XD XD XD XD	ND ND ND ND ND ND	ND ND 2.8 ND ND ND	-	
MW-32 🖊	03/23/93 07/27/93 11/05/93 02/25/94 06/03/94 08/31/94	440 ND 170 ND 350 ND	10 10 10 10 10 10 10 10	39 ND 20 5.6 120	6.2 ND ND ND 1.3 0.5	3.1 ND 1.8 ND ND ND 2.2	9.0 ND 2.1 ND 1.4 1.2	60* 14* 7.9* ND 11* 10* **	

TPH G Total petroleum hydrocarbons in the gasoline range

TPH D Total petroleum hydrocarbons in the diesel range

ug/l Micrograms per liter or parts per billion

ND Not detected at method detection limits. See specific laboratory reports for method detection limits

BTEX Benzene, toluene, ethylbenzene, and xylenes

* 1,2 Dichloroethane

** 1,1 Dichloroethane

*** Dibromochloromethane

**** Chlorinated volatile compounds not detected using EPA Method 8260

Well not accessible, groundwater samples not obtained

NESTLÉ USA, INC.

QUALITY ASSURANCE LABORATORY

P.O. BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL. (614) 791-9144 FAX (614) 793-5353

September 23, 1994

Binayak Acharya Nestlé USA, Inc. 800 North Brand Blvd. Glendale, CA 91203

cc:

Walt Carey Howard Hold

RE: WATER SAMPLES FROM OAKLAND, CA

Dear Binayak:

Attached are the analytical reports for the ten water samples (NQAL # 94SEP45-000/009) submitted to NQAL by Howard Hold, Park Environmental, from Oakland, CA. Please note that no field or trip blanks accompanied these samples.

The Diesel Range Organics (DRO) value of 1.4 mg/L on well MW-26 is primarily due to the gasoline range organics (concentration 9.3 mg/L). There are common components which are present in both gasoline and diesel and, due to how the California LUFT method is written, would be reported in both. The higher boiling components of diesel fuel were not detected.

If you have any questions please feel free to call.

Sincerely,

John R. Heuser, Ph.D.

Manager, Organic Contaminants

JRH:hy

Attachment

\$ \\ \frac{1}{29} \rightarrow \rightarrow

QUALITY ASSURANCE LABORATORY

P.O BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL. (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Sample Location:

Date Sample Collected:

8/31/94

Date Sample Received:

9/2/94

Sample ID:

MW-2

Oakland, CA

NQAL#: 94SEP45-000

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles				/	
Benzene	EPA 602	μg/L	ND	0.3	9/12/94
Toluene	EPA 602	μg/L	ND /	0.3	9/12/94
Ethyl Benzene	EPA 602	μg/L	ND /	0.3	9/12/94
Total Xylenes	EPA 602	μg/L	ND /	0.6	9/12/94
Leaking Underground Fuel Tan	k (LUFT) Meth	ods			
Gasoline Range Organics	CA LUFT	mg/L	ND (0.5	9/9/94
Diesel Range Organics	CA LUFT	mg/L	ND /	0.5	9/20/94

ND = Not Detected

QUALITY ASSURANCE LABORATORY

PO BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL, (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected:

8/31/94 -

Date Sample Received:

9/2/94

Sample ID:

Sample Location:

MW-3

Oakland, CA

NQAL#: 94SEP45-001

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles			1		
Benzene	EPA 602	μg/L 🗸	/ 83 ×	0.3	9/12/94
Toluene	EPA 602	μg/L /	/ 1.1	0.3	9/12/94
Ethyl Benzene	EPA 602	μg/L /	5.3	0.3	9/12/94
Total Xylenes	EPA 602	µg/L	2.9	0.6	9/12/94
Leaking Underground Fuel Tan	k (LUFT) Metho	ods -	•		
Gasoline Range Organics	CA LUFT	mg/L	ND /	0.5	9/9/94
Diesel Range Organics	CA LUFT	mg/L	ND /	0.5	9/20/94

ND = Not Detected

QUALITY ASSURANCE LABORATORY

P.O. BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL. (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected:

8/31/94---

Date Sample Received:

9/2/94

Sample ID:

MW-6

Sample Location:

Oakland, CA

NQAL#: 94SEP45-002

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles Benzene Toluene Ethyl Benzene Total Xylenes	EPA 602 EPA 602 EPA 602 EPA 602	μg/L μg/L μg/L μg/L	ND ND ND ND	0.3 0.3 0.3 0.6	9/12/94 9/12/94 9/12/94 9/12/94
Leaking Underground Fuel Ta Gasoline Range Organics Diesel Range Organics	nk (LUFT) Meth CA LUFT CA LUFT	ods mg/L mg/L	ND ND	0.5 0.5	9/9/94 9/20/94

ND = Not Detected

QUALITY ASSURANCE LABORATORY

P.O BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL. (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected:

8/31/94

Date Sample Received:

9/2/94

Sample ID:

MW-25

Sample Location:

Oakland, CA

NQAL#: 94SEP45-003

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles				per l	
Benzene	EPA 602	μg/L	0.5) 0.3	9/12/94
Toluene	EPA 602	μg/L	ND	/ 0.3	9/12/94
Ethyl Benzene	EPA 602	μg/L	ND	/ 0.3	9/12/94
Total Xylenes	EPA 602	μg/L	ND /	0.6	9/12/94
			/		
Leaking Underground Fuel Tan	k (LUFT) Meth	ods	/		
Gasoline Range Organics	CA LUFT	mg/L	ND √	0.5	9/9/94
Diesel Range Organics	CA LUFT	mg/L	ND	0.5	9/20/94

ND = Not Detected

- NESTLÉ USA, INC.

QUALITY ASSURANCE LABORATORY

P.O BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL. (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected:

8/31/94 -

Date Sample Received:

9/2/94

Sample ID: MW-26

Sample Location:

Oakland, CA

NQAL#: 94SEP45-004

Final Report

200 3

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles				,	
Benzene	EPA 602	μg/L	مسبها 4100	0.3	9/12/94
Toluene	EPA 602	μg/L	360	0.3	9/12/94
Ethyl Benzene	EPA 602	μg/L	170	0.3	9/12/94
Total Xylenes	EPA 602	μg/L	0.6	9/12/94	
Leaking Underground Fuel Ta	nk (LIIFT) Meth	ods			
Gasoline Range Organics	CA LUFT	mg/L	9.3	0.5	9/9/94
Diesel Range Organics	CA LUFT	mg/L	9.3	0.5	9/20/94
Diosol Rango Ciganio					
Volatiles					0/10/04
Bromobenzene	EPA 8260	μg/L	ND	4.0	9/12/94
Bromodichloromethane	EPA 8260	μg/L	ND	4.0	9/12/94
Bromoform	EPA 8260	μg/L	ND	4.0	9/12/94
Bromomethane	EPA 8260	μg/L	ND	4.0	9/12/94
Carbon tetrachloride	EPA 8260	μg/L	ND	4.0	9/12/94
Chlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94
Chloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
Chloroform	EPA 8260	μg/L	ND	4.0	9/12/94
Chloromethane	EPA 8260	μg/L	ND	4.0	9/12/94
2-Chlorotoluene	EPA 8260	μg/L	ND	4.0	9/12/94
4-Chlorotoluene	EPA 8260	μg/L	ND	4.0	9/12/94
Dibromochloromethane	EPA 8260	μg/L	ND	4.0	9/12/94
Dibromomethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,2-Dichlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94

· NESTLÉ USA, INC.

QUALITY ASSURANCE LABORATORY P.O BOX 1516 6625 EITERMAN RD DUBLIN, OH 43017-1516 TEL. (614) 791-9144 FAX (614) 793-5353

Sample ID: MW-26

Sample Location: Oakland, CA

NQAL#: 94SEP45-004

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles			i		
1,3-Dichlorobenzene	EPA 8260	μg/L	ND /	4.0	9/12/94
1,4-Dichlorobenzene	EPA 8260	μg/L	ND/	4.0	9/12/94
Dichlorodifluoromethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1-Dichloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,2-Dichloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1-Dichloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
cis-1,2-Dichloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
trans-1,2-Dichloroethene	EPA 8260	μg/L	NÞ	4.0	9/12/94
1,2-Dichloropropane	EPA 8260	μg/L	ИĎ	4.0	9/12/94
1,3-Dichloropropane	EPA 8260	μg/L	ND	4.0	9/12/94
2,2-Dichloropropane	EPA 8260	μg/L	ΝÞ	4.0	9/12/94
1,1-Dichloropropene	EPA 8260	μg/L	ND	4.0	9/12/94
Methylene Chloride	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,1,2-Tetrachloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,2,2-Tetrachloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
Tetrachloroethene	EPA 8260	μg/L	ND^{\dagger}	4.0	9/12/94
1,2,3-Trichlorobenzene	EPA 8260	μg/L	ND∖	4.0	9/12/94
1,2,4-Trichlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,1-Trichloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,2-Trichloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
Trichloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
Trichlorofluoromethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,2,3-Trichloropropane	EPA 8260	μg/L	ND	4.0	9/12/94
Vinyl chloride	EPA 8260	μg/L	ND	4.0	9/12/94

ND = Not Detected

NESTLÉ USA, INC.

QUALITY ASSURANCE LABORATORY P.O. BOX 1516 6625 EITERMAN ROAD

DUBLIN, OH 43017-1516

TEL (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected: Date Sample Received:

8/31/94 9/2/94

Sample ID:

MW-28

Sample Location:

Oakland, CA

NQAL#: 94SEP45-005

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles		~	/	0.2	9/12/94
Benzene	EPA 602	μg/L	1.4	0.3	
Toluene	EPA 602	μg/L	ND	0.3	9/12/94
Ethyl Benzene	EPA 602	μg/L	ND /	0.3	9/12/94
Total Xylenes	EPA 602	μg/L	ND (0.6	9/12/94
Leaking Underground Fuel Tan	k (LUFT) Meth	ods			
Gasoline Range Organics	CA LUFT	mg/L	ND /	0.5	9/9/94
Diesel Range Organics	CA LUFT	mg/L	ND /	0.5	9/20/94

ND = Not Detected

QUALITY ASSURANCE LABORATORY

P.O BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL. (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected:

8/31/94

Date Sample Received:

9/2/94

Sample ID:

MW-29

Sample Location:

Oakland, CA

NQAL#: 94SEP45-006

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles					
Benzene	EPA 602	μg/L	ND	0.3	9/12/94
Toluene	EPA 602	μg/L	ND /	0.3	9/12/94
Ethyl Benzene	EPA 602	μg/L	ND /	0.3	9/12/94
Total Xylenes	EPA 602	μg/L	ND /	0.6	9/12/94
Leaking Underground Fuel Tan	k (LUFT) Meth	nods	/	<i>,</i>	
Gasoline Range Organics	CA LUFT	mg/L	ND /	0.5	9/9/94
Diesel Range Organics	CA LUFT	mg/L	ND (0.5	9/20/94

ND = Not Detected

QUALITY ASSURANCE LABORATORY

P.O. BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected:

8/31/94 ~

Date Sample Received:

9/2/94

Sample ID:

MW-30

Sample Location:

Oakland, CA

NQAL#: 94SEP45-007

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles					0/10/04
Benzene	EPA 602	μg/L	0.8	0.3	9/12/94
Toluene	EPA 602	μg/L	ND	0.3	9/12/94
Ethyl Benzene	EPA 602	μg/L	ND	0.3	9/12/94
Total Xylenes	EPA 602	μg/L	ND	0.6	9/12/94
Leaking Underground Fuel Tan	k (LUFT) Meth	ods	.*		
Gasoline Range Organics	CA LUFT	mg/L	$ND \nearrow$	0.5	9/9/94
Diesel Range Organics	CA LUFT	mg/L	ND /	0.5	9/20/94

ND = Not Detected

NESTLÉ USA, INC.

QUALITY ASSURANCE LABORATORY P O. BOX 1516 6625 EITERMAN RD. DUBLIN, OH 43017-1516

TEL. (614) 791-9144 FAX (614) 793-5353

Client: Company:

Binayak Acharya

: Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected: Date Sample Received:

8/31/94 C 9/2/94

Sample ID:

MW-32

Sample Location:

Oakland, CA

NQAL#: 94SEP45-008

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed				
Volatiles									
Benzene	EPA 602	μg/L	39	0.3	9/12/94				
Toluene	EPA 602	μg/L	0.5	0.3	9/12/94				
Ethyl Benzene	EPA 602	μg/L	2.2	0.3	9/12/94				
Total Xylenes	EPA 602	μg/L	1.2	0.6	9/12/94				
Leaking Underground Fuel Ta	nk (LUFT) Meth	ods							
Gasoline Range Organics	CA LUFT	mg/L	ND/	0.5	9/9/94				
Diesel Range Organics	CA LUFT	mg/L	ND '	0.5	9/20/94				
	James Commen	\							
Volatiles	مار ۱۱ معروم)	NIIN	4.0	9/12/94				
Bromobenzene	EPA 8260	μg/L ~	ND		9/12/94				
Bromodichloromethane	EPA 8260	μg/L	ND	4.0					
Bromoform	EPA 8260	μg/L	ND	4.0	9/12/94				
Bromomethane	EPA 8260	μg/L	ND	4.0	9/12/94				
Carbon tetrachloride	EPA 8260	μg/L	ND	4.0	9/12/94				
Chlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94				
Chloroethane	EPA 8260	μg/L	ND	4.0	9/12/94				
Chloroform	EPA 8260	μg/L	ND	4.0	9/12/94				
Chloromethane	EPA 8260	μg/L	ND	4.0	9/12/94				
2-Chlorotoluene	EPA 8260	μg/L	ND	4.0	9/12/94				
4-Chlorotoluene	EPA 8260	μg/L	ND	4.0	9/12/94				
Dibromochloromethane	EPA 8260	μg/L	ND	4.0	9/12/94				
Dibromomethane	EPA 8260	μg/L	ND	4.0	9/12/94				
1,2-Dichlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94				

QUALITY ASSURANCE LABORATORY P.O. BOX 1516 6625 EITERMAN RD. DUBLIN, OH 43017-1516 TEL. (614) 791-9144 FAX (614) 793-5353

Sample ID: MW-32

Sample Location: Oakland, CA

NQAL#: 94SEP45-008

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Volatiles					
1,3-Dichlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94
I,4-Dichlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94
Dichlorodifluoromethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1-Dichloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,2-Dichloroethane	EPA 8260	μg/L	10	4.0	9/12/94
1,1-Dichloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
cis-1,2-Dichloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
trans-1,2-Dichloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
1,2-Dichloropropane	EPA 8260	μg/L	ND	4.0	9/12/94
1,3-Dichloropropane	EPA 8260	μg/L	ND	4.0	9/12/94
2,2-Dichloropropane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1-Dichloropropene	EPA 8260	μg/L	ND	4.0	9/12/94
Methylene Chloride	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,1,2-Tetrachloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,2,2-Tetrachloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
Tetrachloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
1,2,3-Trichlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94
1,2,4-Trichlorobenzene	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,1-Trichloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,1,2-Trichloroethane	EPA 8260	μg/L	ND	4.0	9/12/94
Trichloroethene	EPA 8260	μg/L	ND	4.0	9/12/94
Trichlorofluoromethane	EPA 8260	μg/L	ND	4.0	9/12/94
1,2,3-Trichloropropane	EPA 8260	μg/L	ND	4.0	9/12/94
Vinyl chloride	EPA 8260	μg/L	ND	4.0	9/12/94

ND = Not Detected

NESTLÉ USA, INC.

QUALITY ASSURANCE LABORATORY

P.O. BOX 1516 6625 EITERMAN ROAD DUBLIN, OH 43017-1516

TEL (614) 791-9144 FAX (614) 793-5353

Client:

Binayak Acharya

Company:

Nestle USA Inc.

Date of Report:

9/22/94

Date Sample Collected:

8/31/94

Date Sample Received:

9/2/94

Sample ID:

Duplicate

Sample Location:

Oakland, CA

NQAL#: 94SEP45-009

Final Report

Analyte	Method	Units	Result	MDL	Date Analyzed
Leaking Underground Fuel Tank	k (LUFT) Meth	ods			
Gasoline Range Organics	CA LUFT	mg/L	ND	0.5	9/9/94

ND = Not Detected

Nestlé USA Quality Assurance Laboratory - Confidential 6625 Eiterman Road, Dublin OH 43017

(Information										Date	Subr	nitte			Ĵер к	اسم		1.10	94	·	F	urc	hase	Or	der :	Num	ber	
Company Name	Park Environmen	Hal				•								_	74 7"	<u>urne</u>	<u>v</u>	<u>:11.</u>	<u>··</u> ,									
Address	4231 Pacific Stre		int	e7_		-			Date Received																			
	Raklin, Ca 956	17				-		Ì												Г				6	S E		17.7	
Submitter	Housed Hold					-			Turnaround Time Urgent (10 days or Less) Routine (11 days and up)							~	\mathcal{U}	J		/ /								
Phone #	916-652-3861			<u></u>										R	louti	ne (l I da	ays a	ınd u	ıp)	L		1	ク	9	1		U
Fax #	916-652-4195			-		-			₽₽∩	JEC1	г٠				500	B-	<u></u>	2										
Send Reports To	Havard Hold								i KO	,3 <u>L</u> C	1,		_															
Sena Reports 10	I man I pa					-							An	alys	is Re	eque	sted											
		Prese	rvatio	on (water	only)	HCI		Ю	\Box					\bot	\bot	\bot			_	- -		\perp		\dashv		_	\downarrow	
		Aabix (s=50il, w=water)	# of Containers	Date/Time	of Sampling	Dom 0108/5KB 493	EPA ECISTOIESE	EPA 8010 Vol.																				-
NQAL#	- Sample ID	Matrix (# of C				8	ES				1	_	_		_	1		_	\perp						_	\dashv	Remarks
	mw-z	W	4	Aug	31,1994	X						1	_ _				_	\perp	_ _	\perp				_		_		
	mw-2	W	1	Aug	31,1944		x																					
	mw-3	W	4		31,1994	X	1												ŀ		•							
	mw-3	W	1		31,1994		X																					
	pnw-6	W	4	1	51,1994	X																						
	MM-6	W	1	1 . 1	31,1994		X																					<u> </u>
	MW-15	W	4		31,1994	X																						
	mw-25	W	1	1 7 1	31,1994		X				Ţ																	
	mw-26	W	4	1	31,1994	X							\int															
	mw-26	W	1		31, 1994		X																					
	mw-26	W	14		31,1994			X				- \																
quished by:	Date/Time: Sepf 1,1994	1, 10		- 4	Accepted by:								Date/1	Γime:	:				F	Rema	rks u	pon re	ceptio	on:				
quished by:	Date/Time:	•			Accepted by:								Date/	Time	:													

Nestlé USA Quality Assurance Laboratory - Confidential 6625 Eiterman Road, Dublin OH 43017

t Information				·						Data	Sub	:	ad.		iept	ina	ارمرا				P	urch	ase	Ore	der l	Num	ber	
Company Name	Park Environman	h.								Date	: 3u0	111116	εu	_د	KYT.	1,15	ייי		-						,			
Address	4231 Pacific Street	. Sa	He 7		<u> </u>					Da	te Re	ceiv	eđ															
	Rocklin, Ca 9567	7																_	_									
Submitter	Haward Hold								Turnaround Time Urgent (10 days or Less)								٠,	_	\ r		71	17						
Phone #	916-652-31761													F	louti	ne (1	1 da	ıys aı	nd uj	p)	1	\mathbb{R}	_ \	J	ノレ	1	リト	Y
Fax #	916-652-4195														50	hQ.	. T	゚゚゚゚				0	9	\mathcal{C}		j	į	y i
Send Reports To	Howard Hold	11114								JEC	T:		_		200	<u> </u>	<u> ~1</u>	1 6							_			
Sena Reports 10	7 Within 1210											Γ	Ar	alys	is Re	que	sted											
		Prese	rvatio	n (water o	nly)	HU	Ha		HU								4	_ _	\perp		\perp		\perp	\perp	4	-	\dashv	
															ļ										-			
						EPA 8015/8020 MOD		3								Ì			İ									
		age (20 Y	Gas	EPA BOTS Diesel															ĺ					
		datnx (s=soil, w=water)	iners	me	g	5/20	15 (15	2										1	1					-	- [
		(s=soi	# of Containers	e/Ti	of 1plir	Ś	EPA POIS	8	EPA 8010				- [-		ļ	
NQAL#	Sample ID	Майх	∌of #	Date/Time	of Sampling	<u>127</u>	â	E84	EP			_			\perp					\perp	_	_	_	\dashv		_		Remarks
	mw-28	W	4	Aug	31,494	X										\bot		\perp		_	\perp	\perp	\downarrow		_	\dashv	_	
	MW-28	W	١	8-	31-94			X										_	_	_	\perp	_	_		-		_	
	MW-29	W	4	&	-31-94	Х													_			\perp	\dashv			_		
	mw-29	W	١	8-	-31-94			Х						_			_				_	_ -	_				_	
	mw-30	W	4	8	-31-94	Χ													\bot	_		_	_					
	mw-30	W	1	8	-31-94			Х											1	_ _	_						_	
,	mw-32	W	4	8	-31-94	X	_								_		1		-		_	_	\dashv					
	mw-32.	W	1	_ %	131-94			X	-												_							
	MW-32	W	4	9	3-31-94				X	<u> </u>									_					,				
	Duplicate	V	2	2	3-31-94		X		_								_											
					- -																							<u> </u>
equished by: Mand Hld	Date/Time: 9-1-94, 1	0:3	0 AV	N	Accepted by:								Date/	Time	::				R	emari	ks up	on rec	ceptic	m:				
quished by:	Date/Time:				Accepted by:								Date	Time	::													